|
|
# Copyright (C) 2014-2023 RhodeCode GmbH
|
|
|
#
|
|
|
# This program is free software: you can redistribute it and/or modify
|
|
|
# it under the terms of the GNU Affero General Public License, version 3
|
|
|
# (only), as published by the Free Software Foundation.
|
|
|
#
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
# GNU General Public License for more details.
|
|
|
#
|
|
|
# You should have received a copy of the GNU Affero General Public License
|
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
#
|
|
|
# This program is dual-licensed. If you wish to learn more about the
|
|
|
# RhodeCode Enterprise Edition, including its added features, Support services,
|
|
|
# and proprietary license terms, please see https://rhodecode.com/licenses/
|
|
|
|
|
|
|
|
|
"""
|
|
|
Generic encryption library for RhodeCode
|
|
|
"""
|
|
|
|
|
|
import base64
|
|
|
import logging
|
|
|
|
|
|
from Crypto.Cipher import AES
|
|
|
from Crypto import Random
|
|
|
from Crypto.Hash import HMAC, SHA256
|
|
|
|
|
|
from rhodecode.lib.str_utils import safe_bytes, safe_str
|
|
|
from rhodecode.lib.exceptions import signature_verification_error
|
|
|
|
|
|
|
|
|
class InvalidDecryptedValue(str):
|
|
|
|
|
|
def __new__(cls, content):
|
|
|
"""
|
|
|
This will generate something like this::
|
|
|
<InvalidDecryptedValue(QkWusFgLJXR6m42v...)>
|
|
|
And represent a safe indicator that encryption key is broken
|
|
|
"""
|
|
|
content = f'<{cls.__name__}({content[:16]}...)>'
|
|
|
return str.__new__(cls, content)
|
|
|
|
|
|
KEY_FORMAT = b'enc$aes_hmac${1}'
|
|
|
|
|
|
|
|
|
class AESCipher(object):
|
|
|
|
|
|
def __init__(self, key: bytes, hmac=False, strict_verification=True):
|
|
|
|
|
|
if not key:
|
|
|
raise ValueError('passed key variable is empty')
|
|
|
self.strict_verification = strict_verification
|
|
|
self.block_size = 32
|
|
|
self.hmac_size = 32
|
|
|
self.hmac = hmac
|
|
|
|
|
|
self.key = SHA256.new(safe_bytes(key)).digest()
|
|
|
self.hmac_key = SHA256.new(self.key).digest()
|
|
|
|
|
|
def verify_hmac_signature(self, raw_data):
|
|
|
org_hmac_signature = raw_data[-self.hmac_size:]
|
|
|
data_without_sig = raw_data[:-self.hmac_size]
|
|
|
recomputed_hmac = HMAC.new(
|
|
|
self.hmac_key, data_without_sig, digestmod=SHA256).digest()
|
|
|
return org_hmac_signature == recomputed_hmac
|
|
|
|
|
|
def encrypt(self, raw: bytes):
|
|
|
raw = self._pad(raw)
|
|
|
iv = Random.new().read(AES.block_size)
|
|
|
cipher = AES.new(self.key, AES.MODE_CBC, iv)
|
|
|
enc_value = cipher.encrypt(raw)
|
|
|
|
|
|
hmac_signature = b''
|
|
|
if self.hmac:
|
|
|
# compute hmac+sha256 on iv + enc text, we use
|
|
|
# encrypt then mac method to create the signature
|
|
|
hmac_signature = HMAC.new(
|
|
|
self.hmac_key, iv + enc_value, digestmod=SHA256).digest()
|
|
|
|
|
|
return base64.b64encode(iv + enc_value + hmac_signature)
|
|
|
|
|
|
def decrypt(self, enc, safe=True) -> bytes | InvalidDecryptedValue:
|
|
|
enc_org = enc
|
|
|
try:
|
|
|
enc = base64.b64decode(enc)
|
|
|
except Exception:
|
|
|
logging.exception('Failed Base64 decode')
|
|
|
raise signature_verification_error('Failed Base64 decode')
|
|
|
|
|
|
if self.hmac and len(enc) > self.hmac_size:
|
|
|
if self.verify_hmac_signature(enc):
|
|
|
# cut off the HMAC verification digest
|
|
|
enc = enc[:-self.hmac_size]
|
|
|
else:
|
|
|
|
|
|
decrypt_fail = InvalidDecryptedValue(safe_str(enc_org))
|
|
|
if safe:
|
|
|
return decrypt_fail
|
|
|
raise signature_verification_error(decrypt_fail)
|
|
|
|
|
|
iv = enc[:AES.block_size]
|
|
|
cipher = AES.new(self.key, AES.MODE_CBC, iv)
|
|
|
return self._unpad(cipher.decrypt(enc[AES.block_size:]))
|
|
|
|
|
|
def _pad(self, s):
|
|
|
block_pad = (self.block_size - len(s) % self.block_size)
|
|
|
return s + block_pad * safe_bytes(chr(block_pad))
|
|
|
|
|
|
@staticmethod
|
|
|
def _unpad(s):
|
|
|
return s[:-ord(s[len(s)-1:])]
|
|
|
|
|
|
|
|
|
def validate_and_decrypt_data(enc_data, enc_key, enc_strict_mode=False, safe=True):
|
|
|
enc_data = safe_str(enc_data)
|
|
|
|
|
|
parts = enc_data.split('$', 3)
|
|
|
if len(parts) != 3:
|
|
|
raise ValueError(f'Encrypted Data has invalid format, expected {KEY_FORMAT}, got {parts}')
|
|
|
|
|
|
enc_type = parts[1]
|
|
|
enc_data_part = parts[2]
|
|
|
|
|
|
if parts[0] != 'enc':
|
|
|
# parts ok but without our header ?
|
|
|
return enc_data
|
|
|
|
|
|
# at that stage we know it's our encryption
|
|
|
if enc_type == 'aes':
|
|
|
decrypted_data = AESCipher(enc_key).decrypt(enc_data_part, safe=safe)
|
|
|
elif enc_type == 'aes_hmac':
|
|
|
decrypted_data = AESCipher(
|
|
|
enc_key, hmac=True,
|
|
|
strict_verification=enc_strict_mode).decrypt(enc_data_part, safe=safe)
|
|
|
|
|
|
else:
|
|
|
raise ValueError(
|
|
|
f'Encryption type part is wrong, must be `aes` '
|
|
|
f'or `aes_hmac`, got `{enc_type}` instead')
|
|
|
|
|
|
return decrypted_data
|
|
|
|
|
|
|
|
|
def encrypt_data(data, enc_key: bytes):
|
|
|
enc_key = safe_bytes(enc_key)
|
|
|
enc_value = AESCipher(enc_key, hmac=True).encrypt(safe_bytes(data))
|
|
|
return KEY_FORMAT.replace(b'{1}', enc_value)
|
|
|
|