##// END OF EJS Templates
svn: allow legacy (pre SVN 1.7) extraction of post commit data....
svn: allow legacy (pre SVN 1.7) extraction of post commit data. - This allows pushing without errors, but limits integration functionality - Better don't raise exceptions here, to allow older systems to push - log.error about it to inform users.

File last commit:

r799:825a2f59 default
r824:58907cca stable
Show More
subprocessio.py
519 lines | 17.3 KiB | text/x-python | PythonLexer
initial commit
r0 """
Module provides a class allowing to wrap communication over subprocess.Popen
input, output, error streams into a meaningfull, non-blocking, concurrent
stream processor exposing the output data as an iterator fitting to be a
return value passed by a WSGI applicaiton to a WSGI server per PEP 3333.
Copyright (c) 2011 Daniel Dotsenko <dotsa[at]hotmail.com>
This file is part of git_http_backend.py Project.
git_http_backend.py Project is free software: you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 2.1 of the License,
or (at your option) any later version.
git_http_backend.py Project is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with git_http_backend.py Project.
If not, see <http://www.gnu.org/licenses/>.
"""
import os
subprocessio: instead of raising a Thread error we sent a signal to gunicorn....
r358 import logging
initial commit
r0 import subprocess32 as subprocess
from collections import deque
from threading import Event, Thread
subprocessio: instead of raising a Thread error we sent a signal to gunicorn....
r358 log = logging.getLogger(__name__)
initial commit
r0
class StreamFeeder(Thread):
"""
Normal writing into pipe-like is blocking once the buffer is filled.
This thread allows a thread to seep data from a file-like into a pipe
without blocking the main thread.
We close inpipe once the end of the source stream is reached.
"""
def __init__(self, source):
super(StreamFeeder, self).__init__()
self.daemon = True
filelike = False
self.bytes = bytes()
if type(source) in (type(''), bytes, bytearray): # string-like
self.bytes = bytes(source)
else: # can be either file pointer or file-like
if type(source) in (int, long): # file pointer it is
subprocessio: py27+ compat
r341 # converting file descriptor (int) stdin into file-like
initial commit
r0 try:
source = os.fdopen(source, 'rb', 16384)
except Exception:
pass
# let's see if source is file-like by now
try:
filelike = source.read
except Exception:
pass
if not filelike and not self.bytes:
raise TypeError("StreamFeeder's source object must be a readable "
"file-like, a file descriptor, or a string-like.")
self.source = source
self.readiface, self.writeiface = os.pipe()
def run(self):
t = self.writeiface
subprocession: limit fd leaks
r624 try:
if self.bytes:
os.write(t, self.bytes)
else:
s = self.source
initial commit
r0 b = s.read(4096)
subprocession: limit fd leaks
r624 while b:
os.write(t, b)
b = s.read(4096)
finally:
os.close(t)
initial commit
r0
@property
def output(self):
return self.readiface
class InputStreamChunker(Thread):
def __init__(self, source, target, buffer_size, chunk_size):
super(InputStreamChunker, self).__init__()
self.daemon = True # die die die.
self.source = source
self.target = target
self.chunk_count_max = int(buffer_size / chunk_size) + 1
self.chunk_size = chunk_size
self.data_added = Event()
self.data_added.clear()
self.keep_reading = Event()
self.keep_reading.set()
self.EOF = Event()
self.EOF.clear()
self.go = Event()
self.go.set()
def stop(self):
self.go.clear()
self.EOF.set()
try:
# this is not proper, but is done to force the reader thread let
# go of the input because, if successful, .close() will send EOF
# down the pipe.
self.source.close()
except:
pass
def run(self):
s = self.source
t = self.target
cs = self.chunk_size
git: handle flacky and slow connection issues with git....
r357 chunk_count_max = self.chunk_count_max
subprocessio: py27+ compat
r341 keep_reading = self.keep_reading
initial commit
r0 da = self.data_added
go = self.go
try:
b = s.read(cs)
except ValueError:
b = ''
git: handle flacky and slow connection issues with git....
r357 timeout_input = 20
initial commit
r0 while b and go.is_set():
git: handle flacky and slow connection issues with git....
r357 if len(t) > chunk_count_max:
subprocessio: py27+ compat
r341 keep_reading.clear()
git: handle flacky and slow connection issues with git....
r357 keep_reading.wait(timeout_input)
if len(t) > chunk_count_max + timeout_input:
subprocessio: instead of raising a Thread error we sent a signal to gunicorn....
r358 log.error("Timed out while waiting for input from subprocess.")
os._exit(-1) # this will cause the worker to recycle itself
initial commit
r0 t.append(b)
da.set()
subprocessio: use safe b.read() and prevent potential valueErrors
r371
try:
b = s.read(cs)
except ValueError:
b = ''
initial commit
r0 self.EOF.set()
da.set() # for cases when done but there was no input.
class BufferedGenerator(object):
"""
Class behaves as a non-blocking, buffered pipe reader.
Reads chunks of data (through a thread)
from a blocking pipe, and attaches these to an array (Deque) of chunks.
Reading is halted in the thread when max chunks is internally buffered.
The .next() may operate in blocking or non-blocking fashion by yielding
'' if no data is ready
to be sent or by not returning until there is some data to send
When we get EOF from underlying source pipe we raise the marker to raise
StopIteration after the last chunk of data is yielded.
"""
def __init__(self, source, buffer_size=65536, chunk_size=4096,
pep8: fix potential code warnings.
r340 starting_values=None, bottomless=False):
starting_values = starting_values or []
initial commit
r0
if bottomless:
maxlen = int(buffer_size / chunk_size)
else:
maxlen = None
self.data = deque(starting_values, maxlen)
self.worker = InputStreamChunker(source, self.data, buffer_size,
chunk_size)
if starting_values:
self.worker.data_added.set()
self.worker.start()
####################
# Generator's methods
####################
def __iter__(self):
return self
def next(self):
while not len(self.data) and not self.worker.EOF.is_set():
self.worker.data_added.clear()
self.worker.data_added.wait(0.2)
if len(self.data):
self.worker.keep_reading.set()
return bytes(self.data.popleft())
elif self.worker.EOF.is_set():
raise StopIteration
pep8: fix potential code warnings.
r340 def throw(self, exc_type, value=None, traceback=None):
initial commit
r0 if not self.worker.EOF.is_set():
pep8: fix potential code warnings.
r340 raise exc_type(value)
initial commit
r0
def start(self):
self.worker.start()
def stop(self):
self.worker.stop()
def close(self):
try:
self.worker.stop()
self.throw(GeneratorExit)
except (GeneratorExit, StopIteration):
pass
####################
# Threaded reader's infrastructure.
####################
@property
def input(self):
return self.worker.w
@property
def data_added_event(self):
return self.worker.data_added
@property
def data_added(self):
return self.worker.data_added.is_set()
@property
def reading_paused(self):
return not self.worker.keep_reading.is_set()
@property
def done_reading_event(self):
"""
Done_reding does not mean that the iterator's buffer is empty.
Iterator might have done reading from underlying source, but the read
chunks might still be available for serving through .next() method.
:returns: An Event class instance.
"""
return self.worker.EOF
@property
def done_reading(self):
"""
Done_reding does not mean that the iterator's buffer is empty.
Iterator might have done reading from underlying source, but the read
chunks might still be available for serving through .next() method.
:returns: An Bool value.
"""
return self.worker.EOF.is_set()
@property
def length(self):
"""
returns int.
This is the lenght of the que of chunks, not the length of
the combined contents in those chunks.
__len__() cannot be meaningfully implemented because this
reader is just flying throuh a bottomless pit content and
can only know the lenght of what it already saw.
If __len__() on WSGI server per PEP 3333 returns a value,
the responce's length will be set to that. In order not to
confuse WSGI PEP3333 servers, we will not implement __len__
at all.
"""
return len(self.data)
def prepend(self, x):
self.data.appendleft(x)
def append(self, x):
self.data.append(x)
def extend(self, o):
self.data.extend(o)
def __getitem__(self, i):
return self.data[i]
class SubprocessIOChunker(object):
"""
Processor class wrapping handling of subprocess IO.
.. important::
Watch out for the method `__del__` on this class. If this object
is deleted, it will kill the subprocess, so avoid to
return the `output` attribute or usage of it like in the following
example::
# `args` expected to run a program that produces a lot of output
output = ''.join(SubprocessIOChunker(
args, shell=False, inputstream=inputstream, env=environ).output)
# `output` will not contain all the data, because the __del__ method
# has already killed the subprocess in this case before all output
# has been consumed.
In a way, this is a "communicate()" replacement with a twist.
- We are multithreaded. Writing in and reading out, err are all sep threads.
- We support concurrent (in and out) stream processing.
- The output is not a stream. It's a queue of read string (bytes, not unicode)
chunks. The object behaves as an iterable. You can "for chunk in obj:" us.
- We are non-blocking in more respects than communicate()
(reading from subprocess out pauses when internal buffer is full, but
does not block the parent calling code. On the flip side, reading from
slow-yielding subprocess may block the iteration until data shows up. This
does not block the parallel inpipe reading occurring parallel thread.)
The purpose of the object is to allow us to wrap subprocess interactions into
and interable that can be passed to a WSGI server as the application's return
value. Because of stream-processing-ability, WSGI does not have to read ALL
of the subprocess's output and buffer it, before handing it to WSGI server for
HTTP response. Instead, the class initializer reads just a bit of the stream
to figure out if error ocurred or likely to occur and if not, just hands the
further iteration over subprocess output to the server for completion of HTTP
response.
The real or perceived subprocess error is trapped and raised as one of
EnvironmentError family of exceptions
Example usage:
# try:
# answer = SubprocessIOChunker(
# cmd,
# input,
# buffer_size = 65536,
# chunk_size = 4096
# )
# except (EnvironmentError) as e:
# print str(e)
# raise e
#
# return answer
"""
# TODO: johbo: This is used to make sure that the open end of the PIPE
# is closed in the end. It would be way better to wrap this into an
# object, so that it is closed automatically once it is consumed or
# something similar.
_close_input_fd = None
_closed = False
def __init__(self, cmd, inputstream=None, buffer_size=65536,
pep8: fix potential code warnings.
r340 chunk_size=4096, starting_values=None, fail_on_stderr=True,
initial commit
r0 fail_on_return_code=True, **kwargs):
"""
Initializes SubprocessIOChunker
:param cmd: A Subprocess.Popen style "cmd". Can be string or array of strings
:param inputstream: (Default: None) A file-like, string, or file pointer.
:param buffer_size: (Default: 65536) A size of total buffer per stream in bytes.
:param chunk_size: (Default: 4096) A max size of a chunk. Actual chunk may be smaller.
:param starting_values: (Default: []) An array of strings to put in front of output que.
:param fail_on_stderr: (Default: True) Whether to raise an exception in
case something is written to stderr.
:param fail_on_return_code: (Default: True) Whether to raise an
exception if the return code is not 0.
"""
pep8: fix potential code warnings.
r340 starting_values = starting_values or []
initial commit
r0 if inputstream:
input_streamer = StreamFeeder(inputstream)
input_streamer.start()
inputstream = input_streamer.output
self._close_input_fd = inputstream
self._fail_on_stderr = fail_on_stderr
self._fail_on_return_code = fail_on_return_code
_shell = kwargs.get('shell', True)
kwargs['shell'] = _shell
_p = subprocess.Popen(cmd, bufsize=-1,
stdin=inputstream,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
**kwargs)
bg_out = BufferedGenerator(_p.stdout, buffer_size, chunk_size,
starting_values)
bg_err = BufferedGenerator(_p.stderr, 16000, 1, bottomless=True)
while not bg_out.done_reading and not bg_out.reading_paused and not bg_err.length:
# doing this until we reach either end of file, or end of buffer.
bg_out.data_added_event.wait(1)
bg_out.data_added_event.clear()
# at this point it's still ambiguous if we are done reading or just full buffer.
# Either way, if error (returned by ended process, or implied based on
# presence of stuff in stderr output) we error out.
# Else, we are happy.
_returncode = _p.poll()
if ((_returncode and fail_on_return_code) or
(fail_on_stderr and _returncode is None and bg_err.length)):
try:
_p.terminate()
except Exception:
pass
bg_out.stop()
bg_err.stop()
if fail_on_stderr:
err = ''.join(bg_err)
raise EnvironmentError(
"Subprocess exited due to an error:\n" + err)
if _returncode and fail_on_return_code:
err = ''.join(bg_err)
git: report errors from stdout if stderr is empty
r350 if not err:
# maybe get empty stderr, try stdout instead
# in many cases git reports the errors on stdout too
err = ''.join(bg_out)
initial commit
r0 raise EnvironmentError(
"Subprocess exited with non 0 ret code:%s: stderr:%s" % (
_returncode, err))
self.process = _p
self.output = bg_out
self.error = bg_err
subprocession: limit fd leaks
r624 self.inputstream = inputstream
initial commit
r0
def __iter__(self):
return self
def next(self):
# Note: mikhail: We need to be sure that we are checking the return
# code after the stdout stream is closed. Some processes, e.g. git
# are doing some magic in between closing stdout and terminating the
# process and, as a result, we are not getting return code on "slow"
# systems.
pep8: fix potential code warnings.
r340 result = None
initial commit
r0 stop_iteration = None
try:
result = self.output.next()
except StopIteration as e:
stop_iteration = e
if self.process.poll() and self._fail_on_return_code:
err = '%s' % ''.join(self.error)
raise EnvironmentError(
"Subprocess exited due to an error:\n" + err)
if stop_iteration:
raise stop_iteration
return result
def throw(self, type, value=None, traceback=None):
if self.output.length or not self.output.done_reading:
raise type(value)
def close(self):
if self._closed:
return
self._closed = True
try:
self.process.terminate()
dan
subprocessio: don't use __del__ to close the buffers and readers. Instead use a finally block....
r799 except Exception:
initial commit
r0 pass
if self._close_input_fd:
os.close(self._close_input_fd)
try:
self.output.close()
dan
subprocessio: don't use __del__ to close the buffers and readers. Instead use a finally block....
r799 except Exception:
initial commit
r0 pass
try:
self.error.close()
dan
subprocessio: don't use __del__ to close the buffers and readers. Instead use a finally block....
r799 except Exception:
initial commit
r0 pass
subprocession: limit fd leaks
r624 try:
os.close(self.inputstream)
dan
subprocessio: don't use __del__ to close the buffers and readers. Instead use a finally block....
r799 except Exception:
subprocession: limit fd leaks
r624 pass
initial commit
r0
subprocess: use subprocessio helper to run various subprocess commands.
r370
def run_command(arguments, env=None):
"""
Run the specified command and return the stdout.
:param arguments: sequence of program arguments (including the program name)
:type arguments: list[str]
"""
cmd = arguments
log.debug('Running subprocessio command %s', cmd)
dan
subprocessio: don't use __del__ to close the buffers and readers. Instead use a finally block....
r799 proc = None
subprocess: use subprocessio helper to run various subprocess commands.
r370 try:
_opts = {'shell': False, 'fail_on_stderr': False}
if env:
_opts.update({'env': env})
dan
subprocessio: don't use __del__ to close the buffers and readers. Instead use a finally block....
r799 proc = SubprocessIOChunker(cmd, **_opts)
return ''.join(proc), ''.join(proc.error)
subprocess: use subprocessio helper to run various subprocess commands.
r370 except (EnvironmentError, OSError) as err:
cmd = ' '.join(cmd) # human friendly CMD
tb_err = ("Couldn't run subprocessio command (%s).\n"
"Original error was:%s\n" % (cmd, err))
log.exception(tb_err)
raise Exception(tb_err)
dan
subprocessio: don't use __del__ to close the buffers and readers. Instead use a finally block....
r799 finally:
if proc:
proc.close()
subprocess: use subprocessio helper to run various subprocess commands.
r370