##// END OF EJS Templates
remove commented code
remove commented code

File last commit:

r9626:2592ed9e
r9652:05b6de65
Show More
XKCD_plots.orig.html
4156 lines | 296.0 KiB | text/html | HtmlLexer
/ tests / ipynbref / XKCD_plots.orig.html
Matthias BUSSONNIER
add other text example
r9594 <html>
<head>
<style type="text/css">
/**
* HTML5 ✰ Boilerplate
*
* style.css contains a reset, font normalization and some base styles.
*
* Credit is left where credit is due.
* Much inspiration was taken from these projects:
* - yui.yahooapis.com/2.8.1/build/base/base.css
* - camendesign.com/design/
* - praegnanz.de/weblog/htmlcssjs-kickstart
*/
/**
* html5doctor.com Reset Stylesheet (Eric Meyer's Reset Reloaded + HTML5 baseline)
* v1.6.1 2010-09-17 | Authors: Eric Meyer & Richard Clark
* html5doctor.com/html-5-reset-stylesheet/
*/
html, body, div, span, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
abbr, address, cite, code, del, dfn, em, img, ins, kbd, q, samp,
small, strong, sub, sup, var, b, i, dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, figcaption, figure,
footer, header, hgroup, menu, nav, section, summary,
time, mark, audio, video {
margin: 0;
padding: 0;
border: 0;
font-size: 100%;
font: inherit;
vertical-align: baseline;
}
sup { vertical-align: super; }
sub { vertical-align: sub; }
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
display: block;
}
blockquote, q { quotes: none; }
blockquote:before, blockquote:after,
q:before, q:after { content: ""; content: none; }
ins { background-color: #ff9; color: #000; text-decoration: none; }
mark { background-color: #ff9; color: #000; font-style: italic; font-weight: bold; }
del { text-decoration: line-through; }
abbr[title], dfn[title] { border-bottom: 1px dotted; cursor: help; }
table { border-collapse: collapse; border-spacing: 0; }
hr { display: block; height: 1px; border: 0; border-top: 1px solid #ccc; margin: 1em 0; padding: 0; }
input, select { vertical-align: middle; }
/**
* Font normalization inspired by YUI Library's fonts.css: developer.yahoo.com/yui/
*/
body { font:13px/1.231 sans-serif; *font-size:small; } /* Hack retained to preserve specificity */
select, input, textarea, button { font:99% sans-serif; }
/* Normalize monospace sizing:
en.wikipedia.org/wiki/MediaWiki_talk:Common.css/Archive_11#Teletype_style_fix_for_Chrome */
pre, code, kbd, samp { font-family: monospace, sans-serif; }
em,i { font-style: italic; }
b,strong { font-weight: bold; }
</style>
<style type="text/css">
/* Flexible box model classes */
/* Taken from Alex Russell http://infrequently.org/2009/08/css-3-progress/ */
.hbox {
display: -webkit-box;
-webkit-box-orient: horizontal;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: horizontal;
-moz-box-align: stretch;
display: box;
box-orient: horizontal;
box-align: stretch;
}
.hbox > * {
-webkit-box-flex: 0;
-moz-box-flex: 0;
box-flex: 0;
}
.vbox {
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
}
.vbox > * {
-webkit-box-flex: 0;
-moz-box-flex: 0;
box-flex: 0;
}
.reverse {
-webkit-box-direction: reverse;
-moz-box-direction: reverse;
box-direction: reverse;
}
.box-flex0 {
-webkit-box-flex: 0;
-moz-box-flex: 0;
box-flex: 0;
}
.box-flex1, .box-flex {
-webkit-box-flex: 1;
-moz-box-flex: 1;
box-flex: 1;
}
.box-flex2 {
-webkit-box-flex: 2;
-moz-box-flex: 2;
box-flex: 2;
}
.box-group1 {
-webkit-box-flex-group: 1;
-moz-box-flex-group: 1;
box-flex-group: 1;
}
.box-group2 {
-webkit-box-flex-group: 2;
-moz-box-flex-group: 2;
box-flex-group: 2;
}
.start {
-webkit-box-pack: start;
-moz-box-pack: start;
box-pack: start;
}
.end {
-webkit-box-pack: end;
-moz-box-pack: end;
box-pack: end;
}
.center {
-webkit-box-pack: center;
-moz-box-pack: center;
box-pack: center;
}
</style>
<style type="text/css">
/**
* Primary styles
*
* Author: IPython Development Team
*/
body {
overflow: hidden;
}
blockquote {
border-left: 4px solid #DDD;
padding: 0 15px;
color: #777;
}
span#save_widget {
padding: 5px;
margin: 0px 0px 0px 300px;
display:inline-block;
}
span#notebook_name {
height: 1em;
line-height: 1em;
padding: 3px;
border: none;
font-size: 146.5%;
}
Matthias BUSSONNIER
regenerate templates
r9626
Matthias BUSSONNIER
add other text example
r9594 .ui-menubar-item .ui-button .ui-button-text {
padding: 0.4em 1.0em;
font-size: 100%;
}
.ui-menu {
-moz-box-shadow: 0px 6px 10px -1px #adadad;
-webkit-box-shadow: 0px 6px 10px -1px #adadad;
box-shadow: 0px 6px 10px -1px #adadad;
}
.ui-menu .ui-menu-item a {
border: 1px solid transparent;
padding: 2px 1.6em;
}
.ui-menu .ui-menu-item a.ui-state-focus {
margin: 0;
}
.ui-menu hr {
margin: 0.3em 0;
}
#menubar_container {
position: relative;
}
#notification_area {
position: absolute;
right: 0px;
top: 0px;
height: 25px;
padding: 3px 0px;
padding-right: 3px;
z-index: 10;
}
.notification_widget{
float : right;
right: 0px;
top: 1px;
height: 25px;
padding: 3px 6px;
z-index: 10;
}
.toolbar {
padding: 3px 15px;
}
Matthias BUSSONNIER
regenerate templates
r9626 #maintoolbar > select, #maintoolbar label {
Matthias BUSSONNIER
add other text example
r9594 font-size: 85%;
Matthias BUSSONNIER
regenerate templates
r9626 margin-left:0.3em;
margin-right:0.3em;
Matthias BUSSONNIER
add other text example
r9594 }
div#main_app {
width: 100%;
position: relative;
}
span#quick_help_area {
position: static;
padding: 5px 0px;
margin: 0px 0px 0px 0px;
}
.help_string {
float: right;
width: 170px;
padding: 0px 5px;
text-align: left;
font-size: 85%;
}
.help_string_label {
float: right;
font-size: 85%;
}
div#notebook_panel {
margin: 0px 0px 0px 0px;
padding: 0px;
}
div#notebook {
overflow-y: scroll;
overflow-x: auto;
width: 100%;
/* This spaces the cell away from the edge of the notebook area */
padding: 5px 5px 15px 5px;
margin: 0px;
background-color: white;
}
div#pager_splitter {
height: 8px;
}
#pager_container {
position : relative;
}
div#pager {
padding: 15px;
overflow: auto;
display: none;
}
div.ui-widget-content {
border: 1px solid #aaa;
outline: none;
}
.cell {
border: 1px solid transparent;
}
div.cell {
width: 100%;
padding: 5px 5px 5px 0px;
/* This acts as a spacer between cells, that is outside the border */
margin: 2px 0px 2px 0px;
Matthias BUSSONNIER
regenerate templates
r9626 outline: none;
Matthias BUSSONNIER
add other text example
r9594 }
div.code_cell {
background-color: white;
}
/* any special styling for code cells that are currently running goes here */
div.code_cell.running {
}
div.prompt {
/* This needs to be wide enough for 3 digit prompt numbers: In[100]: */
width: 11ex;
/* This 0.4em is tuned to match the padding on the CodeMirror editor. */
padding: 0.4em;
margin: 0px;
font-family: monospace;
Matthias BUSSONNIER
regenerate templates
r9626 text-align: right;
/* This has to match that of the the CodeMirror class line-height below */
line-height: 1.231;
Matthias BUSSONNIER
add other text example
r9594 }
div.input {
page-break-inside: avoid;
}
/* input_area and input_prompt must match in top border and margin for alignment */
div.input_area {
color: black;
border: 1px solid #ddd;
border-radius: 3px;
background: #f7f7f7;
}
div.input_prompt {
color: navy;
border-top: 1px solid transparent;
}
div.output_wrapper {
/* This is a spacer between the input and output of each cell */
margin-top: 5px;
margin-left: 5px;
/* FF needs explicit width to stretch */
width: 100%;
/* this position must be relative to enable descendents to be absolute within it */
position: relative;
}
/* class for the output area when it should be height-limited */
div.output_scroll {
/* ideally, this would be max-height, but FF barfs all over that */
height: 24em;
/* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */
width: 100%;
overflow: auto;
border-radius: 3px;
box-shadow: inset 0 2px 8px rgba(0, 0, 0, .8);
}
/* output div while it is collapsed */
div.output_collapsed {
margin-right: 5px;
}
div.out_prompt_overlay {
height: 100%;
padding: 0px;
position: absolute;
border-radius: 3px;
}
div.out_prompt_overlay:hover {
/* use inner shadow to get border that is computed the same on WebKit/FF */
box-shadow: inset 0 0 1px #000;
background: rgba(240, 240, 240, 0.5);
}
div.output_prompt {
color: darkred;
/* 5px right shift to account for margin in parent container */
margin: 0 5px 0 -5px;
}
/* This class is the outer container of all output sections. */
div.output_area {
padding: 0px;
page-break-inside: avoid;
}
Matthias BUSSONNIER
regenerate templates
r9626
/* This is needed to protect the pre formating from global settings such
as that of bootstrap */
div.output_area pre {
font-family: monospace;
margin: 0;
padding: 0;
border: 0;
font-size: 100%;
font: inherit;
vertical-align: baseline;
color: black;
background-color: white;
}
Matthias BUSSONNIER
add other text example
r9594 /* This class is for the output subarea inside the output_area and after
the prompt div. */
div.output_subarea {
padding: 0.44em 0.4em 0.4em 1px;
}
/* The rest of the output_* classes are for special styling of the different
output types */
/* all text output has this class: */
div.output_text {
text-align: left;
color: black;
font-family: monospace;
Matthias BUSSONNIER
regenerate templates
r9626 /* This has to match that of the the CodeMirror class line-height below */
line-height: 1.231;
Matthias BUSSONNIER
add other text example
r9594 }
/* stdout/stderr are 'text' as well as 'stream', but pyout/pyerr are *not* streams */
div.output_stream {
padding-top: 0.0em;
padding-bottom: 0.0em;
}
div.output_stdout {
}
div.output_stderr {
background: #fdd; /* very light red background for stderr */
}
div.output_latex {
text-align: left;
color: black;
}
div.output_html {
}
div.output_png {
}
div.output_jpeg {
}
div.text_cell {
background-color: white;
padding: 5px 5px 5px 5px;
}
div.text_cell_input {
color: black;
border: 1px solid #ddd;
border-radius: 3px;
background: #f7f7f7;
}
div.text_cell_render {
font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;
outline: none;
resize: none;
width: inherit;
border-style: none;
padding: 5px;
color: black;
}
/* The following gets added to the <head> if it is detected that the user has a
* monospace font with inconsistent normal/bold/italic height. See
* notebookmain.js. Such fonts will have keywords vertically offset with
* respect to the rest of the text. The user should select a better font.
* See: https://github.com/ipython/ipython/issues/1503
*
* .CodeMirror span {
* vertical-align: bottom;
* }
*/
.CodeMirror {
line-height: 1.231; /* Changed from 1em to our global default */
}
.CodeMirror-scroll {
height: auto; /* Changed to auto to autogrow */
/* The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/
/* We have found that if it is visible, vertical scrollbars appear with font size changes.*/
overflow-y: hidden;
overflow-x: auto; /* Changed from auto to remove scrollbar */
}
/* CSS font colors for translated ANSI colors. */
.ansiblack {color: black;}
.ansired {color: darkred;}
.ansigreen {color: darkgreen;}
.ansiyellow {color: brown;}
.ansiblue {color: darkblue;}
.ansipurple {color: darkviolet;}
.ansicyan {color: steelblue;}
.ansigrey {color: grey;}
.ansibold {font-weight: bold;}
.completions {
position: absolute;
z-index: 10;
overflow: hidden;
border: 1px solid grey;
}
.completions select {
background: white;
outline: none;
border: none;
padding: 0px;
margin: 0px;
overflow: auto;
font-family: monospace;
}
option.context {
background-color: #DEF7FF;
}
option.introspection {
background-color: #EBF4EB;
}
/*fixed part of the completion*/
.completions p b {
font-weight:bold;
}
.completions p {
background: #DDF;
/*outline: none;
padding: 0px;*/
border-bottom: black solid 1px;
padding: 1px;
font-family: monospace;
}
pre.dialog {
background-color: #f7f7f7;
border: 1px solid #ddd;
border-radius: 3px;
padding: 0.4em;
padding-left: 2em;
}
p.dialog {
padding : 0.2em;
}
.shortcut_key {
display: inline-block;
width: 15ex;
text-align: right;
font-family: monospace;
}
.shortcut_descr {
}
/* Word-wrap output correctly. This is the CSS3 spelling, though Firefox seems
to not honor it correctly. Webkit browsers (Chrome, rekonq, Safari) do.
*/
pre, code, kbd, samp { white-space: pre-wrap; }
#fonttest {
font-family: monospace;
}
.js-error {
color: darkred;
}
</style>
<style type="text/css">
.rendered_html {color: black;}
.rendered_html em {font-style: italic;}
.rendered_html strong {font-weight: bold;}
.rendered_html u {text-decoration: underline;}
.rendered_html :link { text-decoration: underline }
.rendered_html :visited { text-decoration: underline }
.rendered_html h1 {font-size: 197%; margin: .65em 0; font-weight: bold;}
.rendered_html h2 {font-size: 153.9%; margin: .75em 0; font-weight: bold;}
.rendered_html h3 {font-size: 123.1%; margin: .85em 0; font-weight: bold;}
.rendered_html h4 {font-size: 100% margin: 0.95em 0; font-weight: bold;}
.rendered_html h5 {font-size: 85%; margin: 1.5em 0; font-weight: bold;}
.rendered_html h6 {font-size: 77%; margin: 1.65em 0; font-weight: bold;}
.rendered_html ul {list-style:disc; margin: 1em 2em;}
.rendered_html ul ul {list-style:square; margin: 0em 2em;}
.rendered_html ul ul ul {list-style:circle; margin-left: 0em 2em;}
Matthias BUSSONNIER
regenerate templates
r9626 .rendered_html ol {list-style:decimal; margin: 1em 2em;}
Matthias BUSSONNIER
add other text example
r9594 .rendered_html ol ol {list-style:upper-alpha; margin: 0em 2em;}
Matthias BUSSONNIER
regenerate templates
r9626 .rendered_html ol ol ol {list-style:lower-alpha; margin: 0em 2em;}
.rendered_html ol ol ol ol {list-style:lower-roman; margin: 0em 2em;}
/* any extras will just be numbers: */
.rendered_html ol ol ol ol ol {list-style:decimal; margin: 0em 2em;}
Matthias BUSSONNIER
add other text example
r9594
.rendered_html hr {
color: black;
background-color: black;
}
.rendered_html pre {
margin: 1em 2em;
}
.rendered_html blockquote {
margin: 1em 2em;
}
.rendered_html table {
border: 1px solid black;
border-collapse: collapse;
margin: 1em 2em;
}
.rendered_html td {
border: 1px solid black;
text-align: left;
vertical-align: middle;
padding: 4px;
}
.rendered_html th {
border: 1px solid black;
text-align: left;
vertical-align: middle;
padding: 4px;
font-weight: bold;
}
.rendered_html tr {
border: 1px solid black;
}
.rendered_html p + p {
margin-top: 1em;
}
</style>
<style type="text/css">
/* Overrides of notebook CSS for static HTML export
*/
body {
overflow: visible;
padding: 8px;
}
.input_area {
padding: 0.4em;
}
</style>
<meta charset="UTF-8">
<style type="text/css">
.highlight .hll { background-color: #ffffcc }
.highlight { background: #f8f8f8; }
.highlight .c { color: #408080; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #808080 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0040D0 } /* Generic.Traceback */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #B00040 } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #7D9029 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #A0A000 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
</style>
<script src="https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=TeX-AMS_HTML" type="text/javascript">
</script>
<script type="text/javascript">
init_mathjax = function() {
if (window.MathJax) {
// MathJax loaded
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ]
},
displayAlign: 'left', // Change this to 'center' to center equations.
"HTML-CSS": {
styles: {'.MathJax_Display': {"margin": 0}}
}
});
MathJax.Hub.Queue(["Typeset",MathJax.Hub]);
}
}
init_mathjax();
</script>
</head>
<body>
<div class="text_cell_render border-box-sizing rendered_html">
<h1>
XKCD plots in Matplotlib
</h1>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>This notebook originally appeared as a blog post at <a href="http://jakevdp.github.com/blog/2012/10/07/xkcd-style-plots-in-matplotlib/">Pythonic Perambulations</a> by Jake Vanderplas.</p>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>One of the problems I've had with typical matplotlib figures is that everything in them is so precise, so perfect. For an example of what I mean, take a look at this figure:</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[1]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">Image</span>
<span class="n">Image</span><span class="p">(</span><span class="s">&#39;http://jakevdp.github.com/figures/xkcd_version.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[1]:</div>
<div class="output_subarea output_pyout">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FGXXxu/ZTYP0RkvoJKH3IvAivQsiINIEgUAsgPIJ
Cq8IAgroqxRRUJpSpCO9ifQSpEgNvYYSCJDek93z/XEyuwkkIWV3Zjd5fte11yxbZu5ZsnvPc57z
nAMSCCyApUuXUqlSpUiSJKpfvz4dPnzY8Fy1atUoLCwsy/edPXuWiIjS0tLo008/JVtbW5Ik6aVb
mTJlKDEx0fA++fX29vak1Wqpe/fu9ODBAyIiWrFiBbm5udHx48fzfT6ffPIJOTo60u3bt/O9j5zY
vn07VaxY0XB+JUuWpBs3brzyfSdOnCAfHx+Kjo7O8zHv379PDg4O5OTkRFFRUfmRLRCYFBsIBCoz
e/ZsfPrppyhZsiSmTp2K5ORkrFmzBi1atAAAJCYmIiUlJcv3NmnSBMnJydi4cSNmzZoFLy8vTJky
Bfb29ple16hRIzg4OAAAUlNT0b9/f2zcuBG1atVCUFAQjhw5giNHjqBv3764efMmoqOjsWnTJjRt
2hSjR4/G77//jlu3bsHb2ztX57R//34kJibi/v378PT0REJCQo6v9/DwgJ2dXa72/ejRI/Tq1Qup
qamYNWsWrl69it9++w0dO3bE8ePHUbJkScNrY2Nj4ezsbPi3JEl49OgRlixZgjFjxgAAYmJicqXP
19cX77zzDpYvX47z58/j9ddfz5VegcBsqO2ggqLNypUrSZIk8vPzo9DQ0Jeef/78Obm6umb5HBGR
JElERBQeHk6SJNHSpUtfeczAwECSJIm6d+9OKSkpLz0/efJkkiSJ/vrrL7py5QppNBoqX758lq/N
js8++4wkSaKDBw9Sv379SJIk0mg0ZG9vn+UI8fvvv8/1vtu2bUtubm40d+5cw2ObNm0iOzs7atGi
heGxzZs3k1arpdOnT2d6f5MmTahcuXKG8+nbt2+u9cmfzaFDh3KtVyAwF8LABKrx6NEjcnNzI3d3
d3r8+HGWrzlw4ABVq1aN9Hp9ls/LBpaYmEiSJNHYsWMpLCzMcHsxVLZjxw6SJIlatGhBaWlpWe5T
/pGeMWMG1alTh3x8fOjWrVt5Ojd/f/9MP/SnTp2iq1ev0v3790mSJOrRowft2bOH9uzZQydOnMj1
fo8dO0aSJNG2bdteek6+GDh//jwREU2ZMiXL1x46dIgkSaL58+cbHsutvh9++IE0Go0hdCsQqIkw
MIFqTJ8+nSRJom+//Tbb1xw4cCDTqCI2NpbCwsLozp07NGbMGJIkiR48eEDR0dEkSRLZ29uTg4MD
SZJEtra21Llz50zm16FDB9JoNPTPP/9ke0zZwOTb4MGD83xu5cuXz/aHXpIkWrZsWZ73SUTUvn17
GjhwYJbP6fV6qly5Mk2ePJmIiJo2bUqurq4UHx+f6XUpKSnk5eVFNjY2dPfu3TzpS0lJoa1bt+ZL
u0BgasQcmEA1kpOTodFoMHjw4Bxfd+7cOVy+fBlubm5o06YNrl+/bnhOkiT4+Phg5cqVAIC///4b
tWrVwsmTJ1GzZk2ULl36pWNWrVoVjRs3zrXOVatWoWzZspg2bVoezg4oW7Ys6tatm6f35MSDBw+w
f/9+XLlyJcvnJUmCk5MTQkJCEB0djQsXLqBXr14oXrx4ptfZ2tqiTZs2WL9+PaKjo/OkwdbWFt26
dcv3OQgEpkSjtgBB0aVChQrQ6/XYu3dvjq+Li4tDzZo14evri+vXr6Nt27bYvXs3Bg4caHhNWloa
AOA///kPXF1d0b59+5fMSz7mtWvXcO/evVfqGz9+PHbs2AF7e3t88803GDduXK7OKyUlBbGxsdBo
TPv1WrduHd544w34+fll+fyWLVtw5coVjBo1CpGRkUhISIBWq83ytRcvXkSJEiVQuXJlk2oUCJRE
GJhANfr374/y5ctj1KhRePLkSabnTp06halTp0KSJGi1Wnz88cfYvXs3du/ejRUrVqBDhw5o3bo1
iAgAcOPGDQBAREQEEhMT8fjxY8MtJibGsN/x48eDiDBw4EDodLpMx1y6dCk2bdqEevXqAeDRWufO
nbF79244Ozvjhx9+wKZNm155XpcvX0ZkZGSBPpus2LFjB9zd3V96PCkpCd9//z369OmDb7755pXZ
gRcuXMC1a9cwd+5cODo65kkDEeH69esvfXYCgRoIAxOohp2dHdavXw+NRoMGDRpgxowZCAkJwcyZ
M9G8eXNDWnmzZs0we/ZsdOjQAR06dECpUqUAcMhMJiQkBABQpUoVlC1bFmXKlDHc3n//fcPrqlat
il9//RXHjx9H48aNsWjRIly9ehWDBw9GYGAgSpcuje7du2PkyJEoX748AKB58+ZYtGgRAGDjxo2v
PK/jx48D4HCbKfH398fmzZsxbtw4LF68GIsXL8b06dNRqVIlzJw5E7Nnz8bYsWMBwDDy0uv1L+0n
KCgI9erVwzvvvJNnDXPmzEHVqlXh7++PO3fuFOyEBIICIubABKrSsGFDnDp1CtOnT8eXX36JL774
Ara2thg5ciQ+++wzHD58ONtQXKNGjVCnTh0AgJ+fHypUqIBWrVoB4B/wLl26wNnZ+aURSWBgIKpW
rYovv/wSQUFBAAAvLy8sWrQIr732GgDgxx9/zPSePn36IDk5GQEBAa88p/DwcAC8Ru1F7t+//8r3
Z8fMmTPh7e2NX3/9FU+fPoWtrS2CgoIwf/589OjRI9Nry5Yti5o1a2Lbtm1ITExEsWLFALABnTp1
CpcuXcryGK/S5+7uDkmSYGdnBycnp3yfi0BgElROIilSJCcnZ5sOLsiaI0eO0Mcff6y2jDwhZzEO
HTr0peeOHTtGTk5OdOfOHbPrWL58OUmSREFBQbRo0SKaNGkS2djY0PLly7N9j5L6BIKCIhGlTyII
zMr9+/fRsGFDhIeHY968eRg5cqTakgRmYubMmZg5cyZ27tyJZs2aqarlrbfewpYtWwBwKHb69Omi
goag0CAMzMzo9XosWLAA48ePR1xcHAAOw5w+fRqVKlVSWZ1AIBBYLyKJw0Q8ffoUqampmR67fPky
WrRogZEjRyIuLg5ubm4AgMjISHTq1AnPnj1TQ6pAIBAUCoSBmYCIiAh8/PHHOHfuHABeBzR16lTU
q1cPx48fR+nSpbFx40aULVsWABAQEIAbN26ge/fuSExMVFO6QCAQWC3CwEzA/v37sWbNGsTGxiIt
LQ1NmjTB5MmTkZKSguHDh+Py5cvo2bOnoaL6okWLUK5cOQQHB6N///5ZpjoLBAKBIGeEgb2ClJSU
TAthdToddDodiOtIAuBFt9WqVUPNmjVhY2ODbt26wc/PDwcOHMDChQsNoUPZwHx9fbFr1y54eHig
VatWJq/YIBAIBEUBkcTxClavXo2tW7fivffeQ9u2bWFjY1w6p9frodFo0Lp1azx//hybNm1C5cqV
kZycDL1eb1h7I+Pr64uHDx/i/v378PX1RWRkZJaVFQQCgUDwasSlfw7o9Xrcvn0ba9euxVtvvYXX
X38ds2fPxvHjxxEdHW0YOV27dg16vd5gRvb29i+ZF2CsHCGX4RHmJRAIBPlHVOLIAY1Gg+HDh+Pu
3bv4448/cOLECZw4cQIAULNmTQQGBuKff/4x1Nzz8PDIcX9y5YL4+HizaxcIBILCjggh5pLIyEic
PXsW27Ztw/79+3H16lUQkaEKepcuXbB9+3bodLpsK4A3bNgQZ86cwcmTJ9GoUSMl5QsEAkGhQ4zA
skGe31qzZg2aN2+OsmXLok2bNmjTpg0ePXqEQ4cOYdOmTXjy5AkaNmyIYcOGAUCOCRnyCCw2NlaR
cxAIBILCjDCwbJCNqH///pg/fz6CgoKg1+uh1WpRpkwZ9OvXz7AYuUqVKob5rYwV0l9E7k/16NEj
85+AQCAQFHKEgeVAWFgYAMDT09PQlwrgnkiSJMHd3T1PiRjyQuaCVCQXCAQCASOyELNAnhY8evQo
ihcvbugLdfbsWaxZs8YwygoJCclTm3lhYAKBQGA6hIFlgWxg+/fvR5UqVVCiRAkAwMKFC7FmzRrD
67Zv346lS5cit3kwsoGFhoaaWLFAIBAUPYSB5cDx48dRq1YtQ5jw1KlTKFmypMGw/vnnH1SuXBnR
0dG52p8YgQkEAoHpEAaWBXICx9WrV2FrawsXFxcAwN27d9G1a1dDCPHff/81tL3PDcLABAKBwHSI
JI5siIiIgK+vL37//Xc4OTkhOjoaKSkpaNeuHQBOs9fpdChevHiuW6t7eXnBxsYGkZGRSEpKgoOD
gzlPQSAQCAo1YgSWDW5ubhgzZgy8vLxw4MAB/PXXX0hJSUFgYCD++usv/P7774iIiECjRo0y1UfM
CY1Gg1KlSgEAHj9+bE75AoFAUOgRI7Bs0Gg0GDlypKEZ5ZUrV7BlyxasXLkS69atA8CjsOTkZADG
1PpXUapUKTx48ABhYWGoUKGCOU9BIBAICjViBJYFcpLGhQsXMGPGDKSlpaFRo0b4+uuvcffuXZw7
dw6ff/453njjDTRo0CBP+/b29gYAPH/+3OS6BQKBoCghRmDZsG7dOowaNQpPnz5Fq1at0LRpU9y+
fRvR0dGoW7cuvvrqK8TExBh6feVm9AXAkPSRmppqNu0CgUBQFBAGlgVnzpxBYGAgunbtioCAACxc
uBAxMTGYMGEC7t69Cy8vL+zevRuVKlXK875tbW0BGJtbCgQCgSB/iBBiBvR6PQBgx44d8Pb2xs8/
/4y33noLmzdvxldffYXmzZvj9u3baN26NYKCggAg14uYZWQDEyMwgUAgKBjCwLJg3759aNiwIezt
7VGnTh1UrFgRvr6++N///gc3Nzf4+flh37592LVrV65DhzKJiYkAIFLoBQKBoIAIA8uAvIC5ePHi
uHLlisFsEhISUL16dYNZyYkYcgWOvIzCIiMjAYhuzAKBQFBQhIFlwYgRI2BrawsvLy8QEVasWIHB
gwcb1nvJC5ebNm0KIPcJHIDRwF7VvVkgEAgEOSOSODIgN7GsUqUK/P39ER0dDVdX15e6J1+9ejVT
lfq8IEZgAoFAYBqEgWVAHkmFhYUhODgYHh4esLW1hZ+fH1q2bIlu3bohICAAly5dQq1atQAAOp3O
0CcsN4gRmEAgEJgGifKaRlcECA8PR1JSEsqVK4cHDx5g9+7dOHDgAE6cOIFHjx4hOTkZn3zyCWbN
mmUYteWG1NRU2NnZQavVIjU1Nc8JIAKBQCAwIgwsAxnLQSUlJUGSJNjb27/0utDQUJQsWTLL53Ii
PDwcJUuWhKenJ549e2YSzQKBQFBUESHEDEiShAMHDuDo0aO4du0aQkNDkZqaiqpVq8Le3h4pKSlw
c3NDjRo1ULZsWbRt2zZP4cO4uDgAgLOzs7lOQSAQCIoMwsDSOXDgACZMmIDr168jKioK5cuXR8WK
FSFJEpYtWwZnZ2fY29sjOjoaNWvWxLBhw9ChQ4c8HSMtLQ2AcTGzQCAQCPKPMLB01q1bh5MnT2LU
qFEYNGgQ/Pz84OLigpEjR+LBgwdYunQp6tati+TkZMTFxeW6B1hG5OobwsAEAoGg4AgDS0euKu/v
75+pwny7du1w5MgRlCpVCq6urgCAEiVK5OsY8ggst/3DBAKBQJA9YiFzOoGBgXj//fcxfvx4fPbZ
Zzh79iwAoEePHrh48aKhAaVer89z/UMZMQITCAQC0yGGAhmYOHEibG1tsWLFCnz//fdo3bo17O3t
4eDggPv37xtS5vV6fb5S4IWBCQQCgekQBpaBMmXKYO7cuRgwYAB+++03rF+/HhEREQCAmTNnQqfT
YcCAAfkOAYoQokAgEJgOEULMgBwabNy4MRYsWIBr165h+/btGDduHJycnPDhhx/Czs4O3377bb72
L0ZgAoFAYDrEUCADclhQDhF6enqiS5cu6NKlCwAgJiYGixcvRv369fO1f5FGLxAIBKZDGFgWyKWh
iAg6nQ4Az4/17NkTH3/8ca5LR72IPAITIUSBQCAoOCKEmE5WmYWSJMHGxgaXLl3Cd999h5s3b0Kr
1ea7hqEIIQoEAoHpKPJDAb1eD8A46pLDh5IkGWojnj59Gt7e3mjWrFmBjiWSOF6BXg8cPgxs3Aic
Pg08fMiPV6gANG4M9O0LNGgAiCLIAoEAYgSG4OBgTJgwAYcOHQLARiaPsOTw4YkTJ6DVag2tUPKL
GIFlAxGwaRNQqxbQujXw00/AiRPA/ft8O3IE+OEHoFEjoGVLNjeBQFDkKfIGdvToUcyZMwcDBw7E
wIEDsWXLFjxMv/KXR0oXL16Eg4MD3NzcCnSslJQUAMLAMhERAfTsybfLlwFfX+C//wX+/hu4cwe4
dQvYtQv4+GPA3Z3N7LXXgGnT2PgEAkGRpcjHsoYOHYozZ85gw4YNWLVqFVatWgVbW1s0adIEo0aN
ws2bN3H58mXEx8cX2MDi4+MBAI6OjqaQbv1cuQJ07w7cvAk4OwPTpwMjRgB2dplfV6kS0KkTMGUK
3+bMASZNYnNbtAgQFwQCQZGkyBuYt7c3Vq9ejYkTJ+LQoUPYu3cvgoODcfToUVy4cAExMTEAgPLl
y8Pd3b1AxxIGloFjx4AuXYCYGKBuXWDzZqB8+Zzf4+oKzJoFtGsHvP02sGwZ8OwZ8OefL5ueQCAo
9BT5ECIAaLVa1K5dG6NGjcLWrVtx6NAh/Pzzz6hXrx4CAgLQvn17/PzzzwCMSR/5QRhYOidPAp07
s3n17AkcPfpq88pIly7A/v2ApyewYwcQGCjCiQJBEaTIj8Bk9Ho99Ho9bGxsUL16dfj7+6NDhw54
+vQpqlataggf5ncNGABDF+aCjuSsmqtXgY4dgdhYzipcuRLIQ1NQA02aAHv2cFLHihUcZvzqK5PL
FQgElosYgaWj0Wgypbfb2NigcuXKeO211wo89yUjJ4f4+PiYZH9WR0QE0K0bEBXFc1/Ll+fPvGQa
NADWrQM0Gp4b273bdFoFAoHFIwwsB4go361TsuLRo0cAiqiB6fVA//6csFG3LrBqlWmSL7p0AaZO
5fvvvgukf8YCgaDwIwwsB+QFzaZCHoGVKVPGZPu0GmbP5pCfpyewZQtgynnACROA9u05oeP998V8
mEBQRJDIlEMMQbbodDrY29tDp9MhOTkZdkUpa+7sWZ6zSk1l8+re3fTHePgQqF6dE0PWrgX69DH9
MQQCgUUhRmAoWJfl3PLkyRPodDp4e3sXLfNKSuLQYWoq8MEH5jEvAPDxAb77ju+PGgU8f26e4wgE
AotBGBiM5aMKkiL/KuT5ryIXPvzmG848rFoV+P578x5r+HDg9deB8HDgiy/MeyyBQKA6RdrA4uLi
MGfOHPzwww+Ij48vUIr8qyiSGYiXLgEzZ/L9RYuA4sXNezyNBvjlF85sXLQICAkx7/EEAoGqFGkD
c3R0RPHixfH1119j+PDhCA0NBWDMPjRHBmKRGYHp9VwWKi0NCAoC/vMfZY5brRofT68Hxo5V5pgC
gUAVirSBAcCIESPwv//9D0ePHsXEiRPx+PFjQ/ahKTMQw8PDAQClSpUy2T4tml9/BYKDgVKljKMw
pfjqK8DFhdeF7d2r7LEFAoFiFFkDk3t9AUBgYCCWLl2KlStXomHDhli4cCFCQkLw+PFjJCQkmOR4
soGVKFHCJPuzaJ4944ryAPDjj4CJFoLnGm9vYPx4vj9likirFwgKKUXWwCRJMvTnunDhgsFgwsLC
8MEHH6Bjx44YMmQIJk2aZCjoWxCKlIFNmsTVNtq1A3r3VkfDyJHcfuXYMSC915tAIChcFMlaiBER
Edi1axfWrl2LkJAQxMTEoGTJkmjbti26dOmCcuXK4dixY9ixYwdOnDgBHx8fjBkzpkDHjI6OBgCT
laWyWC5c4PChVsttT9TqnuzsDHzyCTB5MvcOa9VKHR0CgcBsFEkDO3HiBKZNmwZJktC2bVvUqFED
LVq0QP369Q2v6d69O4YMGYLk5GQEBAQU+JjJyckAAHt7+wLvy2Ih4saTej2vxapRQ109o0dz6v7+
/cD580CdOurqEQgEJqVIGljLli0RHBwMFxcX6PV6Q4dknU4HbXpxWVtbW9SqVctkxywSBvbnn8DB
g1wuasoUtdXw3NvgwcBPP/GocP58tRUJBAITUiTnwBwdHeHu7g6tVmswLwAG8wJMX8hXnm/LWPG+
UJGSAowbx/enTeP5J0sgKIi3K1ZwCxeBQFBoKJIGlhtMnUYvN7GUm1oWOhYvBu7c4XqEw4errcZI
zZq8Bi0ujmskCgSCQoMwMIWQkzciIyNVVmIGEhKAr7/m+1OnApY2ynzvPd6uW6eqDIFAYFqEgSmE
3IW5UBrY/PlAWBhQrx7Qs6faal6mRw821f37eY2aQCAoFAgDUwjZwKKiolRWYmJiY42VNr7+Wr20
+Zzw9ATatgV0OmDzZrXVCAQCEyEMTCEK7Qhs8WJuXdK0KdC5s9pqskdeUL1li7o6BAKByRAGphCF
0sDS0oC5c/n+559b5uhLpmtX3v79N8/ZCQQCq0cYmEIUyiSOTZuAe/eAKlWAN95QW03OlC4NNGzI
DTb371dbjUAgMAEWli5WeCmUI7BZs3g7ZgyXjrJ0unUDTp8Gtm+3fMMt5EREALt2ccOCe/d4KtXF
BahY0RiNdnVVW6XA0hEGphCFLokjOBg4cYIXLA8erLaa3PHGG1wbcft2LntlySHPQsrFi9yke9Mm
XvueFT/+CNjZ8bTlZ5+JCmCC7BEGphCFbgT2ww+8ff99IH2RtsVTrx5Qpgzw8CFw7hz/W6AIkZE8
TbpoEf9bo+HE0LZtuQepiws3MLhyhacpDx0CVq0CVq/mvqjTpwMeHuqeg8DykMiU9ZIE2fLw4UP4
+vqiZMmSePz4sdpyCsbdu0Dlyhw2vHuXTcFaCAoCFi7kWo2TJqmtpkhw+jSPpu7dA2xt+Zpn3Dig
bNns33PvHkeo58/nXCFPT0547dFDOd0Cy0ckcShEoRqB/fQTV5x/5x3rMi+A58EADiMKzM6iRUDz
5mxIjRpxU4Aff8zZvACgfHlOcD1/njvhPH8OvPUWMHYskF5WVCAQIzClICLY2tpCp9MhKSnJeqvS
x8YCvr5ATAxfWjdooLaivJGQwJfzSUnAo0ecnSgwCzNmGBtzf/ghj6jy82dPxGY2bhyPxtq04cYH
IslDIEZgCiFJElxcXAAAsdZcFf3339m8/vMf6zMvAChenDtFA8DOnepqKcRMmsTmJUncyebnn/Nn
XgDv45NPeF6sVCleBfH66zyVKSjaCANTEGdnZwBWbGA6nXHhcgE7VKuKnEK/bZu6OgopP/7IHXW0
Wu5iM2KEafbbrBlw/Djg78+Nv1u2FCZW1BEGpiBWb2AbNwK3bgEVKgBvvqm2mvwjV+X46y9usyIw
GZs28WgJAJYuBQYMMO3+K1ZkE6tfn/8UW7fmSLCgaCIMTEGs2sD0er6sBoDx461j4XJ2+Pry5Xxi
IrB1q9pqCg3XrgGDBvGc1ddf831z4OkJ7N0L1K0L3LjBc2LWntgryB/CwBTEqg1syxbg0iX+8Zf7
a1kz/fvzdtUqdXUUEhITgbff5gHtO+8YkzfMhYcHrxerXZuNs2tX0XC7KCIMTEHs7OwAAKnWlgdM
ZBx9ff55/mfjLYm33+ZR5J49okeYCZg0iats+Ptz6rwSRU48PdnEqlQB/v0X6NNHpNgXNYSBKYg2
Peym0+lUVpJHduwAzp7llPPAQLXVmIYSJYD27Tkve8MGtdVYNf/+yynyGg2wciWQHmhQBG9vrqno
5QXs3g188AFfbwmKBsLAFESj4Y9br9errCQPEAFTp/L9zz4DHBzU1WNK5DDi6tXq6rBi0tL4mkav
B0aP5sXKSlOlCieUFisGLFkCzJunvAaBOggDUxCrHIH99Rdw6hSPWEyVD20p9OjBhnz4MHD/vtpq
rJIFC3hwXr68McqsBq+9xksUAeDTT/m/VFD4EQamIJYwAiPiYhSRkbys65V88w1vP/2UFwEXJpyd
ge7d+f6aNepqsUJiYoyD89mzAScndfX06cOlptLSeIpTrBEr/AgDU5DExEQAQLFixRQ7JhEPoP77
X84cd3Xl4vEeHtyywt+fu6Fs3gwkJ7/w5iNH+ObuzpMLhZF+/XgrshHzzA8/cP5Ls2aWU2R3xgxO
qw8PB3r1yuJvWlCoEAamIAnpreyLKzCSSUjgousNGgCNG/MXOziYU43t7bl9hV7P62iWL+dCqQ0a
vJDFNX06b0ePVnZmXknkzonnzgGXL6utxmoIDzd21PnuO8tprWZjw4PpcuWAf/7hEZmg8CIMTEHi
4+MBAI5m7J+l0/FEtr8/dw45e5bTjUeP5myt8HCuYxsdzVenZ84AM2cCNWvyYMTWNn1H//7LaV2O
jsCoUWbTqzr29tzrAxDJHHnghx+A+HiuytW8udpqMuPtzYmldnbcOGHtWrUVCcwGCRSjZs2aBIDO
nz9vlv2fOEFUqxYRBw6J6tYlWrmSKDHx1e/V64lSUjI80KsX72TsWLNotSj27eNzrVSJPwhBjjx9
SuToyB/ZqVNqq8men35ijU5ORFevqq1GYA7ECExBzBVCTEriVhPNmvFi0goVgD/+4NHVgAG5y3yX
pAyjrytXuF+FnR3wf/9nUq0WScuWvMbt9m3g5Em11Vg8s2fz6KtLF6BhQ7XVZM+HHwJ9+3J1kN69
OawuKFwIA1MQc4QQb94EmjYFvv+e/z1uHE/l9O/PC0vzxcyZPIgbOtTQLyspyTR6LRKtln/pAJHM
8QoiIozrrL78Ul0tr0KSeB44IICroH34oVjkXNgQBqYgsoGZagT255+ceHHuHFC5MidpfPcdL+jM
N3fv8vBNq+WFy+l88QWwfn2BJVsu8qLmtWs5D1uQJXPnciJQ+/a89srScXbm+bBixYBly7hCvqDw
IAxMIYjIZCFEvZ5LEvbqxWtxevbkcGHjxiYQ+t13nAnSvz/3rgCHYH75hYu0/vGHCY5hiTRoAPj5
AU+eAAdPcYCBAAAgAElEQVQOqK3GIomKMraDmzRJXS15oWZN/vsFgI8+4gs+QeFAGJhCpKSkQK/X
w9bWFraGyaa8k5DAizS/+45ThmfP5itMk7RXDwvjS1RJAiZMMDzs6MgdVIh4zdj27SY4lqUhSaJC
/SuYN4+zV1u14obc1sSgQVzyKjmZ58Oio9VWJDAJameRFBUiIiIIALm5ueV7H48fEzVuzJlVrq6c
PGdSxo7lnffsmeXT48fz0w4OnPFY6Lh6lU/Q2ZkoIUFtNRZFbCyRhwd/PPv3q60mfyQkcGau/Ccu
Ek6tHzECU4iCzn9dvsxzDidPcpbh8eNcccBkRERwYTsg22ZO06cDw4dzQkfPnjxgK1QEBHAoMTYW
2LlTbTUWxW+/8Z/Ia6/xCMwaKVaM53FdXHj+WA6HCqwXYWAKUZD5r2PHeLHo3bs8z3XiBFC9uokF
zpvHudEdO/KPeBZIEvDzz8Drr3Mb9969C2G+gxxGFLURDeh0HKoGOMvVUqpu5IcqVdiMAT6X4GB1
9QgKhjAwhcivge3YAbRrxxPoPXpwfkHJkiYWFxtrvBx9RStdW1u+ivXx4VGgXG2q0CBX5di5kw1d
gE2bgDt3ONP1zTfVVlNwevYExozhi68+fUQ/U2tGGJhCyBXo5ZYquWHFCv7BSEriCegNG8xUEP7X
X7k8ffPmQIsWr3x5iRJcPxHgauSnTplBk1qUKwc0acLZMrt3q63GIpBrHn7yCa+uKAx8+y2vn3zw
ABg4kDN7BdaHMDCFyGsrldmzOXNKp+OEwIULzfTjkZRk/IX64otcx4fatOGrWJ2OC9VbU4uzVyKP
wkSnZpw5wyFrd3dgyBC11ZgOW1te8ufpCezZY+waJLAuhIEpRG4NjIijeHIFp1mzOExntnmHpUuB
x4+BevWATp3y9NapUwFfX/6RW7jQTPrUoFcv3m7fDqS3wCmqyAt/Bw3i5RSFibJleV2jJAGTJwN/
/622IkFeEQamEFK6A1EOtWzS0rjp8YwZPNpatoxHOWYjKck4iZWH0ZeMkxMwZw7f/+9/gadPTaxP
LSpW5ESWuDi+PC+iJCYaF64PHaquFnPRsSMwcSJfOPbvL5pgWhvCwBTiVSOw1FT+Ai1ezMV3N2/m
q16zsmgRf2Pr1OGGYPmgZ0+gQwdOMilUCR1vv83bIhxG3LyZF/w2bAjUrq22GvMxeTLQti1fgL3z
DpCSorYiQW4RBqYQORmYXB1AXqOydy/3WTIrCQlGx5kyJd+VfyWJq4IAwPz5QGioifSpjRxG3Lq1
yLb1lb373XfV1WFutFouvlKmDC9ZCQwURX+tBWFgCiEbWMX0+oIyiYmcabh1K0+U79unUJmeX37h
ua8GDYDu3Qu0qzp1uJh7SgowbZqJ9KlNlSpA3bq8xGDvXrXVKE5iojEJM5+Dc6uiRAlg2zbO8l2x
ohD9HRdyhIEphEajQZ06dbBy5UrDY3FxQNeuPM3i7c1rvBTpr/TsGfD113x/yhSTZIhMncpXsr/9
Bly/XuDdWQZyNmKhLsOfNX/9xYP0hg052aEoUL8+m9jAgWxkha7STCFEGJhCFCtWDAcOHICHhwcA
nlvo1IlNq3Rp4OBBHskowoQJvO6rfXvuSmgC/Px4ol+nA776yiS7VB95HmzLliI3MfLnn7zt2VNd
HUrTpg2PwMaONbTCE1gwEuWUFicwGXq93hBGjIhg8zp1iq9u9+1jA1CEf/7hFZw2Nty+OSDAZLsO
DeXIm07HtRtNuGv1qF2bP6edO4HOndVWowipqVztJTKSm3NXraq2IguAiMPJAA/PbGzU1SMAIEZg
iiGb19OnfJV36hRnax8+rKB56XTcEImIF5qZ2GHKlePFrnp9IcpILIKLmg8fZvOqWrUImldcHE9I
T5nCw8+AAF7tbGPDPYtcXXkVtK0tT5w1aQL068ftqbdtK0RrSawDMQJTkLAwrmt4+TLg788jL19f
BQX8+ivw/vt80CtXeCGXibl7lw2ZCLh6lUdkVs3ly0CNGoCHBye9FKCXm7UwciQXbf7vf4tIhYq0
NI6ZrlkD7NrF6yOzwtGR54sTEnKuPeXnx6H5bt248nUR+JtRC2FgChEaymtNbt7k38O//wZKlVJQ
wPPn7JoREcC6dcb5HTMwbBhXcBg6FFiyxGyHUY4aNdjI9uzhRW+FGL2ew9qPHnGUQJGkIrXQ6Th/
fto04MYN4+NNm3Jd0Lp1OYRcurRx5AXw1VlqKo+27tzhW0gIh+dPnmSDk3Fz4wWew4ZxtRtrLuVv
iajYi6zIcPMmUbly3EivXj2ip09VEDFiBAto29bsnfxu3iTSaolsbIhu3zbroZRh0iT+7IYPV1uJ
2Tlxgk+1bNlC3vDx8mWiRo34ZAGiKlWI5swhevCgYPtNTSU6fpxowgSiGjWM+weI6tQhmjuXKCrK
NOcgIGFgZubyZaLSpfnv97XXiCIjVRBx8iSRJLGjXL6syCEHDeJzHjFCkcOZl7Nn+WRKly7kv+pE
n3/OpzpqlNpKzIReT/Tjj0T29kan/v13Np5XEBfHnal1ujwc7/x5oo8/Nrazljt+jx1LFBqa//MQ
EJEwMLNy+jSRtzf/zbZsSRQTo4IInc54pfnZZ4od9upVIo2GyNaW6N49xQ5rHvR6Ih8f/gzPnFFb
jdnQ64n8/Pg0DxxQW40ZSEnhUbRsJMOGEUVH5/rthw4ZfW/GjDweOymJaN06/iGQj29jQzRwIF8g
CfKFMDAzsWsXkaMj/5127EgUH6+SkIULWYSPD18+Kkj//nzoDz9U9LDmQQ7BTp2qthKzcekSn6Kn
Z64GJNZFQgJRhw58gg4ORGvW5Gs3GzZwMAMgWrIkn1pOnSLq25fj7LKZtW9PtG9foR/hmxphYGbg
t9+Mf5sDBxIlJxufe1DQGHteePbMGLrI5xe2IISE8Jfdzo4oLEzxw5uWLVv4c2zcWG0lZmPaND7F
IUPUVmJiEhKI2rXjkytRguiffwq0u59/5l1ptUTbtxdgR3fvEo0ZQ+TkZDSyxo2J/vwzj3HKoosw
MBOi1xt/BACi8eMzX1Ddvn2bateurZygoCAW0qaNald2PXuyhC++UOXwpiMujuNHkkT05InaasxC
vXr8f7Vtm9pKTEhCAo9uZPMy0RzwF1/wLosV48SXAhERQfT118b5BoAoIIBo6dLMV7+ClxAGZiIS
EowhM0kimjcv8/NpaWlUpkwZcnZ2VkbQqVPGxI2QEGWOmQXHjvFn4u7OHmDVdOrEJ/P772orMTl3
7vCpOTkRJSaqrcZEpKURdetmNC8Tfg/0eqKhQ40h16tXTbDT+Hiin34iKl/eaGS+vkSzZike/rcW
hIGZgNBQovr1jT8Amza9/JrY2FgCQI6OjuYXpNNxKALgbCeVee01lvLTT2orKSDz5vGJ9O6tthKT
M3s2n9rbb6utxISMHs0n5eHBE3wmJiWFqEsXPkT58kQPH5pwxytWZE7D9/AgmjxZpTU4loswsALy
9998cQcQVapEdPFi1q+Lj48nAFSsWDHzi1q0iAWVKaNS6mNmNmwwfj5paWqrKQC3b/OJuLgUutDO
66/zqa1apbYSEzF3Lp+QnR3R4cNmO0xcnPFasU4dEy/x0uk4ntusmdHIihfntHyrT+01DcLA8klq
KtHEicaMpLZtOWciOxITEwkA2dvbm1fY8+cc0wCIVq8277FySVoaUcWKLKlAk96WQPXqfCL79qmt
xGQ8eWJMtslDVrnlsnu38Yu5cqXZD/f0KZG/v3G6OSnJDAc5fNg43JNT8N97T7F1nZaKKOabD0JD
uSDv119zZZivvuIqQ56e2b9HSi8hQ+au3PXf/3LZqNatuT+6BaDVcglGgPtoWjVdu/J21y51dZiQ
rVv5V7FtW+4IbtXcvw8MGMAnNHky3zczXl7c/LNUKWD/fmDw4JxLJeaLFi2AHTuAc+e4NJVeD/z+
O1C9OnfEPXy4aLaRVttBrQm9nuiXX3ghvVyYIbcLPlNSUggA2djYmE/ggQMszNbWLDH/ghAezrI0
GiuPfvz9N3/GSmaTmpmOHfmUFi5UW0kBSU42Trh27qx4KvrZs8bfhv79zRxlvnWL6IMPjCurAZ7I
LGIIA8slt29zeED+W+nZk3+Uc0taWhoBII1GYx6B8fFElSuzuK++Ms8xCki/fizvyy/VVlIAkpI4
dxogevRIbTUF5skTY93KnELgVsH//Z+xPJRKJ3PwoHFZV6dOCmTePn7MX6jSpYnu3zfzwSwPYWCv
ID6ek3/k3ywvL6K1a/O+rEqv1xMAMtug95NPWGCtWhabYHDwoHHkatWVHjp35hNZtkxtJQXmp5/4
VLp2VVtJATl0yDg3VOCFWQXj1Cn+nZDrnyqyiN+qv1D5R8yBZQMRsHo1N/SbMgVITAT69uWuGn36
5L0rgpThDWTqWPWWLcCcOTzZtGQJYGdn2v2biNdf51ZJYWHcTsZq6diRt3v2qKvDBKxaxdv+/dXV
USDi47mTKsBzwE2aqCqnYUPg2DFu8HriBNCgARAcbOaDFtUO0Wo76Itcu3aNBgwYQI9UCs/o9Vw1
qGFDY7iwXj2+wCsoGo2GAFCqKa+Wbt0icnVlod9/b7r9mompU41zBFbL5ct8Et7eVl3yR168XLy4
la+THTXKmMduQdGHsDCiFi2M09ILFohSh6bGYgzswYMHNGLECNJqtQSARo4cqejx09K4WHTt2kbj
KlGCaPFi06xdyhhC1JnqRy8hgahBAxb75ptW8e2Ql1IVK2YRS9Tyh17P8ywA0b//qq0m38yYwafQ
t6/aSgrA2bPGijMWWNU9JYWXbeV37twSiI2NpfsWOr+m+rgzIiICM2fOxLx585CUlASNRoPAwEB8
9tlnihz/6VPuHvzrr9xYFQDKlAE++wwYPhwoXtz4Wr1ej7t37+Lu3bvQaDSwtbWFjY0NbG1tUbx4
cTg7O8PFxQWOjo7QaDJHZ/XpebWSJL30XL7Q6ThF+MwZoEIF4LffrKLba8WKwH/+Axw9yl3cBw9W
W1E+kCTuzLxkCbBvH3faBZCWloakpCTo9XoQkWGb8X5+n0tNTc10S0lJMdxPS0uDVquFnZ0dbG1t
M20dHBxQvHhxFCtWzPA3KoezrT58SAR8/DFvR43iDsoWhq0tR/cbNQI++ID/5o8eBRYu5Ox3a2Dr
1q0YMGAA6tWrh27duqFbt26oX7++aX7HCohEpM7igbi4OMydOxf/+9//EB0dDQDo2bMnJk2aBH9/
/0xf4he/zNn9OyUlBQkJCUhMTERCQgISEhKQnJyMzp07wyZDjDgxkZfx/PEHsH07kJLCj1eowMY1
ZAjg4JBZ77Zt2/Dpp5/iRsbW49kgSRKcnJwMhiab2oEDBwwG7ejoCCcnJzg6Ohpu9vb20Gq1Wd5q
1aoFHx8f40HGjOFvhqsrB9xr1AAA6HQ6pKSkwMHBIdO8myWxcCEQFMTrjtScC0tNTUVUVBQiIyMz
3eTHoqOjERMTg+joaERHR6Nz584YOXIkv/n33/kPpVcvYMMGAMD+/fvRtm1b9U7oFfTt2xerV68G
AFy6BNSqBbi7A48fG6dNhwwZgpiYGIPhZTS/rB6T79vZ2UGSJMMFmnxfvmX1vc3KqOX7kiTBwcHh
pZubmxu0Wi2LXbeO1zp6ewPXrwNubip9srnj7l3+kzl4kP89YADw/fe8fiw/xMXF4dGjRwgLC8Oj
R4/w+PFjREdHIz4+HnFxcYiPj0diYiIAZPq/sLGxgb29PRwcHLLdZry/c+dOrFy5EklJSYZjlyhR
Au3atUOnTp3Qvn17lChRQhVDU8XALl68iNq1ayt2vPXr16N3794A+G9+6FCe9wX4YrpLF7466tSJ
8yAycuHCBcyfPx+XLl2Ck5MTNBrNS1fDqampSExMRExMDGJjYxEXF2dS/b/88guCgoKMD8ydC3zy
CV/e7dnDi5YBJCcno0WLFjh16hQ0Go3BRJ2cnF66n91NNlYnJyfY2dlBq9XCxsbmpZtWq830owTg
pQuOjI/b29ujXLlyAIDISKB0ab5wePCAR7wAcOvWLcTFxeW4vxcvUvK6TUhIQExMDCIjI/P8/9Ss
WTMcO3aM/3H1KlCtGuDjwycB/kEpXbo0AGT6EZfvv7jN7XOSJMHW1tZwk0dY8n0bGxukpaVlGpml
pKQgJSUFSUlJhvP/7bff0KVLFwDAF18A06dzlGHhQj6l4OBgNGvWLE+fiZK0bNkSB+Vf/9RUzrC6
fZvDJyNGAOC/oZ49e4KIoNVqodPpoNPpkJaWluVWp9NlebEs3yRJQrFixV66ZYy4ZLd1dXVFzZo1
UaJECcM56PXAvHnA+PFAUhIvHJ8yBfjoI/46ZyQqKgohISE4c+YMQkNDM5lVWFgYYmNjFfrkX835
8+cV/U2XUSWEmJ1Ty19aGxubl67iXvVv+Uvu6Oj40lXiw4cPDceoVo3Nq1Ejzibs149/g7Kjdu3a
+CWP5SN0Oh3i4uIQGxtrMLXHjx+jR48esLe3x5w5cwxXSBlvycnJhi+V/MUKDAxE9+7djTtfvJjN
C+DYZ7p5AcD//d//4fbt27C3t0dycjJiYmIQExOTJ+3m5Pr16/Dz84O7O18sbNkCbNrEX14A2Llz
J0aPHq2YHo1GAzc3N7i7u2e6yY+5uroabi4uLnB3dzf8qMHfn6/4Hz5kA/P1hZOTk0X9qGSHnGEL
ZA4fenl5YceOHZnM/lX35W1KSkq2kRH5M8uNUcv39Xo9kpOTkZSUZLhNnz7dKHbZMjavgABg2DDD
wyNHjsSFCxdM+nnFy1e7+aR3795YsGABvLy8oNFw1PONN3i7YwcHU+bNA6ZO5Uxn+SLazc0NzZs3
R+3atbFp0ybcvXsX58+fR2RkJADAwcEBpUuXRpkyZVCmTBmUKlUK7u7umaI7xYoVA5D5YjAtLc3w
2eZn++zZMzx8+BA6nQ4Af4/s7e0L9BnlF1VGYEQEnU6H4OBgbNu2Ddu2bcPVq1cNz2u1WkybNg0T
Jkwww7G52kz6YEAxIiMj4eHhAVdXV0RFReVvJ8uWcQyCCJg1i//ysyE1NRVxcXGGmzwyjI2NRWxs
rME0M75GNlX5vjy/It/kK1f59uIFBICXHsv4+JgxY/Dhhx8CAFauBN59F2jVCjhwgDWHh4ejffv2
htdntT87O7tsw1mv2sr3XVxc4ObmBmdn54KFPTp14hHwunXA22/nfz8Kc+IE0LQpX7jdu/dy1MHi
SUnh9RihoezEffsCABISEvDgwQPDaFSn0xkiCFlt5VtWF8PyTa/XIykpCYmJiZluCQkJhu+SfKGY
1X15a29vj5kzZxpGwDLbtgHjxgHXrvG/q1UDPv2Uw4svTmMA/Nsp5wrIYVulOHXqFCZMmIB9+/YB
AEqVKoVJkyZh2LBhsFNr6U5BMkBMyY0bN2jWrFnUunVrsrGxoXXr1qktyaQ8ffqUAJCHh0f+drBq
FddhAohmzjStOBWIijKWlnr8WG01+WTiRP7/mDBBbSV5Qs46/7//U1tJPlmwgE+gRg2ra2+Qlpb2
UhZyair3rixXLnMG9IQJllGr98qVK9SrVy9DFrWrqyvNmDGD4iygwZ/FGFhGIiMjKbHQdNVjwsLC
CACVKFEi729euNBYXXvqVNOLU4muXfmUfvlFbSX5ZM0aPoHu3dVWkmtSU43tf06fVltNPkhM5CaP
ANH69WqrMSnJydwGrG5do5EB3GtwyhSi4GDzFNzQ6/Wk0+leMtbo6GgaP348DRw4kACQg4MDff75
5/T8+XPTi8gnFmlghZHQ0FACQD4+Prl/k15vXKxTyMyLiOi33/i02rVTW0k+uXiRT6ByZbWV5Jq/
/mLJ/v5WsWzwZWbNMi5atuJF5Dmh13P3lMBAY40C+ebqStS6NdGYMTxq27ePu0HnZSG6Xq+ntGxG
rjqdjmLSF2jOnj2bJEmi0aNH0wcffEAPTdax03QIA1OIW7duEQCqUKFC7t6g03E3ZYBHX/Pnm1eg
Cjx/zutPtVorbTSbnMwnIElcNNMKeO89/pOaPFltJfkgJsZYZHDHDrXVKEJiItHmzUQffkhUpUpm
M3vx9vPPL79fp9ORPocrlevXr9OSJUtowIAB5OfnR5Ik0S/pIZFx48aRJEn0VXpxcJNWEDIRqi9k
LiqkpqYCAGxfzJXNirg4znDYvJlrnK1YYZioLkx4ePBasD17OCMxQzKZdWBnx8kEV67wrUEDtRXl
SFISL6QFOPvW6pg9G3j2DGjeHOjcWW01iuDgwAue5UXPDx4A589zW7DLl/nfciJsyZIvvz+rJKVn
z55h8uTJWLRoEdLS0uDq6oqAgAC0bNkSkydPRq9evQBwkgbASxOy25faCANTiFwb2PXrQO/ewMWL
nKa9bh2QnplXGOnd25jIZ3UGBvAC8itXgJAQizewnTuBmBiWGRCgtpo88uwZr/oFgBkzrKLqjDnw
9eWb3FdVhghIS9NDr2ejSUlJQXBwMPbt24eIiAgMGDAATZs2BcBFGRYsWICAgADMnj0b3t7eKFmy
JNzc3ODo6GjIbKxSpQoAGFLkLdHALE+RudHpuG1quqEoRVpaGgBe25ElRLyuq149Nq+AAOCffwq1
eQFAjx6cxr1vHzeStjrSK6AgJERdHbkgvWCIpTTqzhszZwKxsbx0oUULtdWoAqWveHr48CEOHjyI
x48fA0B65RLA1lYDjUaD06dPo1KlSmjbti02bNiAvXv34u2338aoUaOQnJwMR0dHAMDnn3+OTp06
oUGDBvBNX8eYMS1froYSGhqKiIiITBosBrVjmIpz7JhxNvSdd4j++IMoIsLsh719+zZt2bKFkrOq
ln3jhjElD+DOj1FRZtdkKXTowKe9eLHaSvLB+vVk6ABswSQmGhst3r6ttpo8cv++sfPwmTNqq1EF
OUPwxo0bZG9vT5Ik0bvvvpvp+X///ZfWr19P1atXpxo1atC2bdsoOjqaIiMjqV27dqTVaunIkSNE
ROTh4UFBQUH077//0ooVK2jQoEHUsWNHunbtmmGfu3fvJh8fH6pfvz7dvHmTiHgZQE5zakpT9Axs
925eP5Jx9lOrJWrVijOc0v+jFOHJE6Lx44ns7FiHiwvR8uVWmh6WfxYv5tPv0EFtJfng+nUWn5fs
UhXYutWYkm11jBjB4t9+W20lqtOnTx9ycXGhLl26kCRJ9NFHHxmSKz799FNq06YN7d27N9N7li9f
Tj169KD9+/cbHnvjjTdIkiRyc3OjUqVKUevWrWnNmjWUnJxsyFA8fPgwOTs7U8eOHenZCx2uIyMj
KSQkRHUzK3oGJnPrFtGcOURt2rCBZTQ0Pz/+0qxebfpVtno9X0UGBRE5OBiPOXiwQq1bLY9nz6w4
GzEtjRtqAaq1sc8NgwezxG++UVtJHrlxg/8wNBrOFy+k3Lhxg4YNG2YY6WTFtWvXyNHR0ZAlOGLE
CJIkiZYvX05ERMePH6dWrVrRsWPHiIgzDL/88kuSJIlGjBhBqampBsPp27cv1a1blxITEykhIYFi
s8jDv3TpEjk7O5OzszMFBQXRhg0b6L333qPq1auTJEnk7OxMoaGhpv4o8kTRNbCMRERwpYu+fV9e
eAEQVa1KNGgQ0dy5REeOcEOfvFx5PHzIubCffkpUsWLmfXfvrnoLdEugUyf+OBYuVFtJPmjShMVn
uMK1JFJTidzdWaLVeUC/fix86FC1lZiVQYMGGVLYXxzVyP/eu3cveXt70x9//EFERCEhIdSoUSOq
X78+XU4v2TFy5EiaPn06ERF988035O7uTm+++Sa1bduW6tatSxcvXiSdTkdDhw4lPz+/l3To9Xp6
mn4VmZSURE2aNCFJkgw3T09PevPNN2n16tX0559/UpTKUx0iCxHgnhL9+vEtNZV7bB04wLejR7ny
+NWrwPLlxve4ugKVKgElSgCenrwPSeJy06mpQHg48OgRF15Mn2w1UKoUt+EYOZIragvQpw+wezdn
Iw4frraaPFKnDifcnD+fqbiypXD6NHcA8POzsuzD8+e51qGdHTB5stpq8gSl13vVarU51iuUXyMX
6PX09IQkSYbH5X1JkoT4+HhERkYiLCwMAFC9enVMmzYN77//Pg4ePIhq1aqhYsWKOHfuHADgww8/
xLvvvgs3Nzc8efIE3377LaZMmYL169ejSpUqWL58OaKjo3Hv3j3s2LEDBw4cwJkzZ9C4cWOsW7cO
zs7OWLFiBcaNG4fDhw+jfv36GDt2LBo0aAAvLy+LaNckDOxFbG2B117j24QJXDj07Fk2tdOngQsX
gBs3gOhofjw3uLgADRtyCfyuXYFmzaywgqp56dGDe4Tt389NRr291VaUB+Q2Eiaugm4q/vqLtx06
qKsjz0ycyNsPP1S++nYBkftuvQqtVovU1FSULVsWAHLsNyhnMLu4uAAAjhw5gokTJyI8PByHDx/G
Bx98gGrVqmH79u2G18vvcXZ2RunSpZGUlGQoCAwA5cuXN7SDatWqFcaOHYv33nsPzs7OSEtLg5+f
H1atWoXiGTv7WhDCwF6FnR3QpAnfZIh4hHX3Lud+P38OyBXmNRq+lSjBTa/KlOEvnwWuobAk3N2B
du240eiff7KZWQ116vD2/Hl1dWSDVRrYsWPcbdbRkS8krYyoqCisXbsWOp0OgYGBOVZr12q1qJoe
icnYokRGvm9nZwedTodNmzbB19cXEyZMQEBAgOFYM2fOROXKlSFJEu7du4fy5csjNjYWFy9exC+/
/IKVK1di48aNkCQJpUqVgouLC/z9/fHGG2+gTJkyaN26NcqVKweNRgMigo2NDYjIYF46nc5Qud9i
UDWAKRBkQK6N2Lq12krySFQUC7e3N0+11QIQFcU5EDY2RNHRaqvJJXo90euv82f65Zdqq3klGZMj
5H9/9dVXhkSHyMjIHN+v1+tp3rx5htT4F4vqyvu+dOkS+fj4kCRJVLx4cerWrRtFR0fT2rVrqVix
Yt33RU8AACAASURBVPTll1/SvXv3qHfv3jRu3DhasmQJjRgxgsqVK0eSJNHYsWMN+wwPD6fz589T
vJWUQMsOYWAKkZiYSAsWLKBx48apLcViiYw0tlh58kRtNXmkfHn+wbWE/hcZ2LSJZbVoobaSPLB3
L4t2d7f49ZCRkZE0depUWrZsGRHxOqnjx48bkh6CgoJyrCEom9Py5cupePHi1LNnT4PhvWhkz549
oxYtWlDNmjUNmYZERPfv36fWrVtT48aN6fbt2/T++++TJElkb29P1apVo2HDhtHGjRuzzDR8UYe1
IQxMIR48eEAAqHTp0mpLsWi6dOHfrgUL1FaSR7p3Z+Fr1qitJBMffMCypk1TW0ku0euJmjdn0TNm
qK3mlYSHhxvMavPmzURE1LRpU5IkiVq3bk23bt3K8f2ySS1fvtyQ7p7RaJKSkuj8+fMUHBxMaWlp
NGTIEGrSpAkRsVnKa7b+/PNP8vLyosuXL9OdO3fo3Llz5jhdi0NMzCiEHEdOSEhQWYll06cPb9ev
V1dHnrHQRA6rm//at4/nvzw9gY8+UlvNK/H29kZQUBC0Wi3ee+89tG7dGmfPnoWtrS2++OILVKpU
Kcf3U3ppJg8PD0iShPXr12P8+PGYOXMmWrRogTJlyqBu3br46KOPEBMTg8qVK2d6v5yp2KVLF4wY
MQKOjo6oUKEC6qTPy+r1euj1essrAWUiRBKHQsj1x+Lj41VWYtm8+SYngh48yHkyJUqorSiXWKCB
3brFN3d3i68zbGTqVN6OHQs4O6urJZf89NNPKF68OGbPno1Dhw4BAPr27Yu2bdtCr9fnWARXfq5W
rVqoXr06QkJCMH/+fABA7dq1MWjQILz11lvQaDRwdHREVFQUwsPDkZSUBAcHB8N+7O3t8c0332S7
/0KL2kPAooJeryetVksAKCUlRW05Fo1cFtKqwohXr7LocuXUVmJgwQIrq8B06hQLdnPj3l9WxJMn
T2j06NGGcGLVqlUpODiYiCjb5pEvcvv2berYsSPVqlWLPv74Y7p06RIlJCS89JrHpq4OZMUUcnu2
HCRJEqOwXPL227y1qjBilSrcvCk01LikQmWsLnw4dy5vAwOtZvQl4+rqisTERMO/r127hoEDB+KP
P/4whPlygohQsWJF7Ny5ExcuXMCcOXNQo0YNFCtW7KXXlMyq8VcRRRiYgjg5OQEA4uLiVFZi2bwY
RrQKtFqgZk2+bwFhxLQ0nk4CrKQjT1gYsHYtr5e0grmvF9m/fz8WL14MHx8fnD9/Ht26dcPt27fx
7rvv4vvvv0dMTAyA7NuRSJIEIjKswdLr9Vm+RpAZYWAK4unpCYA7ogqyx82NRw16vbGDsFVgQfNg
J09y80p/f6B8ebXV5IKVK7kEW/fuQIUKaqvJMxPTq4ZMnDgRtWrVwpYtWzA5vfzVrFmzcqywISMb
lCRJhX/uykSIJA4F8fLyAgA8ffpUZSWWT+/ewI4dwNatwPvvq60ml8gVOdJr0amJ1YUP167l7aBB
6urIB4mJiahevTpq1KiBgQMHGh7/4osvUL9+fSQlJaFatWoAxCjK1AgDUxDv9AJ/wsBeTefOvD1w
AEhIACy0FFtm6tfn7Zkz6uqAlRnYzZv8mTk5Gf/jrYhixYphyZIl0Ov1cHBwMBTftbGxQbdu3dSW
V6gR41QFEQaWe0qW5PrHSUk8F2YV1K3LHQkuXWLhKhEVxcXxbWyAVq1Uk5F75GydN9/kRBgrxM7O
zpDWLkZZyiEMTEGEgeWNLl14u3OnujpyjZMTUK0aZ1CoOA+2fz/PHzZrZiXJfHL48J131NUhsDqE
gSmIMLC8kdHArKaQgLxi+PRp1SQcOMDbdu1Uk5B7rl3jKv6urlYS7xRYEsLAFEQkceSNhg25otCd
O8D162qrySWvvcbbw4dVkyAfumVL1STkHnn09dZbgL29uloEVocwMAUpkV4XSRhY7tBqgU6d+P6O
HepqyTVt2/J23z6O4ylMRARw8SK3sWvcWPHD551163grF8EUCPKAMDAFkQ0s3GpW56qPHEZMbzJr
+fj7A2XLAs+eqdLg8tgxDrc2aWIF+RAhIXzz8LCSeKfA0hAGpiDCwPJO5848Ejt8GIiMVFtNLpAk
Y+mLXbsUP/yRI7x9/XXFD5135PBhz55cekUgyCPCwBTEw8MDWq0WUVFRSElJUVuOVeDuzj/GOh2w
e7faanLJm2/ydsMGxQ8tL0GTp+IsFiJg1Sq+L7IPBflEGJiCaDQaQyaiKCeVe+S1oFu3qqsj13To
ALi4AGfP8iJdhSAyFgGpW1exw+aPQ4e414uvL9C6tdpqBFaKMDCFEWHEvNO9O2937eJyeRaPg4Nx
FCYnKSjAgwecxOHlBfj4KHbY/LF4MW+HDOEYsUCQD4SBKYwwsLxTuTJQvToQHa1qdnrekMNiK1Yo
tojt7FneygVBLJaoKGDjRr4/ZIi6WgRWjTAwhXF3dwcARFlIzyhroUcP3q5Zo66OXNOxI1C6NHD1
KnD8uCKHtJrw4apVXGqrXTugYkW11QisGGFgCiP3BIuNjVVZiXUxYABvN2wAkpPV1ZIrbGyAwYP5
/pIlihxSHoHVq6fI4fKPHD4cNkxdHQKrRxiYwjinF6cTTS3zRvXqPLKIirKi2ohDh/J23TpAgQuW
jCFEi+Xff1moh4dxWC0Q5BNhYAojRmD5Rx6F/fGHujpyjZ8frwGIjzeueTITz58D9+5x25mAALMe
qmDIo9GBA61gpbXA0hEGpjDCwPJPv36cnLB9Oyd0WAVymMzMYUR5/Vfduhac1JeYaLz6EOFDgQkQ
BqYwNjbcQ1SvQp08a8fHh/tbJScbk9gsnt69uafJiRPAlStmO4xsYHIxfIvkzz/5yqNRI6B2bbXV
CAoBwsAEVoXcsX3lSnV15JrixY0p9cuWme0wcveWhg3NdoiCI5I3BCZGGJjAqujVi6dODh4E7t9X
W00ukdc6rVjBNbFMDBEQHMz3LdbAbt7k/7RixYC+fdVWIygkCAMTWBWurlyZI2MpPYunaVNO6Hj0
CPjrL5Pv/soVICwMKFmSG0JbJEuX8rZPH/5PFAhMgDAwhZHnviSLLpVg2chhRAWLXBQMSQLee4/v
//67yXf/99+8bdfOQitwpKUZz1uEDwUmRBiYwkSm9wRxc3NTWYn10qkTd2oOCTFWn7B4ZNfdvh1I
SDDprvfs4a3cxcXi2L2bh4j+/sB//qO2GkEhQhiYwshV6L28vFRWYr3Y2hqnUawmmaNcOW6RnJBg
dBwT8Pw5sHcvoNEYu1dbHBmTNyxyiCiwVoSBKYxsYHJbFUH+ePdd3q5axREqq6BXL96asE/Y+vVc
ob99e54DszgeP+ZRp1YLDBqkthpBIUMYmMKIEZhpaNyY8yIePwb27VNbTS6RDWz7dpMVdJRHoHKV
Eotj+XLOvHzjDaBUKbXVCAoZwsAURhiYaZAk44/2+vXqask1lSsDdeoAMTEmcd07d4Bjx3ip2Vtv
mUCfqSEyViAJDFRXi6BQIgxMYYSBmY6ePXm7ZYtZlleZB9lpTNBeWl5G8OabQHqFMsvi6FHg+nVu
K2OxE3QCa0YYmILodDpERERAkiRDXzBB/qlZE6hSBXj2jH8rrYJu3Xi7fXuB1gAQGcOHcoKjxZGx
63J6CTWBwJQIA1OQyMhIEBHc3d0NNREF+UeSjAOaTZvU1ZJr6tXjoo4PHxr7n+SDs2e5V6aXl4Wm
z0dHG2O7clsZgcDECANTEBE+ND0ZDcxqFjXLo7AChBHlou7vvMPLCiyONWu4+nyrVjz3JxCYAWFg
CiIMzPQ0acJTLKGh3CvRKpANbNu2fL1dpwNWr+b7Fh8+FMkbAjMiDExBhIGZHo3G2Nh382Z1teSa
Nm04dfDff4EHD/L89sOHubBFpUps4BbH+fNcHt/V1ZhpIxCYAWFgCiIMzDxY3TyYgwPQoQPf3749
z2+Xp5b69LHQwhZy6vyAAVx9XiAwE8LAFOTp06cAhIGZmpYt+WI/JAS4cUNtNbkkn2FEnY77QgLA
22+bWJMpSEzkKsuACB8KzI4wMAURIzDzYGfHhR4AKxqFde3Kw6d9+4D4+Fy/7ehR4MkTDh/Wq2dG
ffll40YgKoobk1mkQEFhQhiYgggDMx9yGNFq5sFKluQJrORkrsabS+Qyir17W2j4cNEi3g4frq4O
QZFAGJiCCAMzH5068dRScDAnOFgF+Qgj7tjBW4vMjbh6lTNMHB2Bfv3UViMoAggDUxBRid58ODoa
F/Ru2aKullyTsSpHeqPTnLh1i+sfurtzhM7ikFPn+/UDnJ3V1SIoEggDUxAxAjMvVhdGrFkTqFAB
CA8HTp585cvlzstt2nB3EosiORlYtozvi/ChQCGEgSmIMDDz0q0brwvbv58rGVk8eazKIU+VWWTp
qC1buChl7dpAo0ZqqxEUEYSBKURKSgpiYmKg1Wrh6uqqtpxCiZcX8Prr3ODRBMXelSGX82A6HRsz
YKEGtnAhb0eMsNDsEkFhRBiYQkRERAAAPDw8IIkvuNno04e3a9eqqyPXtGzJ80WXLvEEVzacOQNE
RnL6fKVKCurLDbdu8XKAYsUsuLOmoDAiDEwhnj9/DgDw9PRUWUnhplcvDiPu2QOkXzNYNnZ2xl5Z
OYzC5Pmvdu0U0JRXfvyRt337Am5u6mr5//bOPS7Kauvjv/0MV+UqIDZeEgVN8M4RMAWviaNg2pt5
T+3NUsvrqY9ancC3TLDQMLWL4iW1g2bmDdTykimK+cpLmsqBBPWAiiIEKDdh1vvHdh4YAUGF5xkO
+/v5zGce5tmz99qjzI+199prCRoVQsAUoqIHJqg/mjfnQQ6lpQ3oUHMtlhENBZwHDVLAnschNxdY
v55fz5mjri2CRocQMIUwCJjwwOqfsWP5c4NZRhw2jLuNx45VGX1SWAjExfHrgQMVtq0moqKAu3e5
Yd26qW2NoJEhBEwhDEuIwgOrf0aN4gWADx/mEeomj5MT0KcPjz45eLDS7ZMneZR69+48UMVkKC0t
Xz6cN09dWwSNEiFgCiGWEJWjWTOe7F2v56n5GgSPWEY07H+Z3PLhtm3A1auAhwf3IgUChRECphD5
+fkAAFuRoUARDMuI0dHq2lFrRozgzzEx3LOpgOH8l0kJWGkpsHgxv160iC+BCgQKI/7XKURJSQkA
wNLSUmVLGgcvvghYWgLHjwPXr6ttTS3o2JF7Mjk5fM3wAXfu8BD6Jk14xL3JsHUrr13Tvj0waZLa
1ggaKULAFEIImLLY2QE6HUBUXgDS5KliGTEnhz8PG8ZFzCS4fx/4n//h1yEhfMNRIFABIWAKYRAw
CwsLlS1pPDTYZcQKaURatuSepElln9+0CUhN5V7j+PFqWyNoxAgBUwiDgJmbm6tsSeMhKIh7LfHx
wJUraltTC/r04anmk5OBf/0LAE9u8cILJhQjUVICfPQRvw4NNcGswoLGhBAwhZAebHLra1E2Q1A3
NG1aXql5+3Z1bakVZmZ83RMwWkacMwcwmfSZ69YB164Bnp7A6NFqWyNo5AgBU4gmDzYwCgoKVLak
cdHgDjUblhErCJi/v0q2PExBQbn39dFHwvsSqI4QMIUwCFhhYaHKljQudDqeKzchgQfNmTxDh3JP
7MQJIDMTAN8DMwlWrwZu3gS8vcuLrwkEKiIETCGsra0BCA9MaayseEg90EAONdvbcxHT603LbczL
A8LC+PWSJaJkisAkEAKmEMIDUw/DqtyBA+raUWsmTuTPW7aoa0dFVqzg6f39/XmaE4HABBACphDC
A1OPwYN5ooi4OO5ImDwjRvCDbGfOAJcuqW0NP00dEcGvhfclMCGEgCmECOJQD0dHwM+PZz8yVDU2
aayty6NP1qxR1xYACA8H8vOBwEATiigRCISAKYbBAxNLiOpgqBnZYJYR336bP2/cWGWJFcXIzARW
reLXH3+snh0CQRUIAVMI4YGpS0UBI1LXluq4fZs7OgCALl2AAQN4ra0NG9QzKjycFyR78UXgb39T
zw6BoAqEgCmEIQdicXGxypY0Try9eS2tq1d5ogtTZNUq7nDJGCocf/opFxGluXED+PJLfh0aqvz4
AkENCAFTCCFg6iJJ5cFzpriMWFICfP11+WodAJ7ct3t3nk7fICRKEhYGFBXxM1/duys/vkBQA0LA
FEIImPqY8j7YDz/w7SYLiwpLnJJUvu+0dClfTlSKjAyuqIDwvgQmixAwhRACpj4GD+yXX9RZkXsU
q1fz57feeihKfdgwHkKZlcVFTClCQ4HiYuDll4GuXZUbVyB4DISAKYQQMPVxdQV69uSrYocPq21N
Ob//zs+o2dmVn2GWYQxYvpxff/qpMufCzp4FoqJ4SisReSgwYYSAKYQQMNPgv/6LP2/erK4dFTF4
X5MnAzY2VTTo3RuYNo0Xkpwxo37DKIl48IjhuWPH+htLIHhKGJGpBhX/Z3Hjxg1otVq4urri5s2b
apvTaPn3v4FnnwXMzXleWkdHde3JyeFFKwsLuXP13HPVNMzO5mKSlQWsXQu8/nr9GLRhA/Daa0Dz
5jxc02TquAgElREemEIID8w0aN2aF4gsKQG++05ta3jYfGEhT3dVrXgBQLNmwOef8+s5c+SCl3XK
1avlofsREUK8BCaPEDCFMAiYoTKzQD1ee40/r1mj7qFmvb48U9Rbb9XiDePH80dBAU81VZeH4u/f
ByZN4iepR40CJkyou74FgnpCLCEqRGlpKczNzaHRaFBaWqq2OY2a+/eBtm358aqffuIemRocPMhD
+1u3BlJTecxEjeTm8kiU1FReETk6mofbPy1z5gArVwLPPAMkJvIlRIHAxBEemEJoNBowxlBWVoay
sjK1zWnUmJuXezyGVTk1MBxanjGjluIF8GW9vXt5yOL33wMLFz69G/nll1y8zM35gTQhXoIGgvDA
FMTKygrFxcUoLCyElZWV2uY0arKyuOdTVAQkJSkfbJeWBrRvzzUjPR1wcXnMDvbv55k6ysqA+fOB
zz57sjInmzYBU6bw6/oMDhEI6gHhgSmIhYUFABHIYQo4O/MtH4DXalSar77ijtMrrzyBeAGATsc9
MHNzfk7sv/+bq3FtIeIHo6dO5T9/+mmjEC+9Xo/x48dDkiS8Xov5ZmZm4oUXXkBKSooC1tUNCQkJ
WLx4MTaomQRaKUigGM7OzgSAbt26pbYpAiK6dImIMSILC6L0dOXGLSggcnIiAoji45+ys337iKys
eGedOxOdOFHze27dInrpJf4egCgs7CmNUJedO3eSk5MTMcbkR9euXenPP/+s1HbmzJnEGCN7e3ti
jNGRI0fke9u3b6d33nlH/lmv11Pfvn2JMUaffPIJERF5eHgYjWN4TJgwgdLS0oiIKDk5mZ5//vkq
2zHGaO7cuURElJGRQf7+/kb3LC0tacuWLU/0ORQVFdG4ceNIkiTS6XSUmJhIREQJCQkkSRKFhYXR
/fv3ydzcnN57771K7w8JCSHGGH377bdERLR+/Xpq3rx5lXPQaDSUkJDwRHbWJULAFESr1RIA+ve/
/622KYIHjB7Nv8MffKcowvr1fExvbyK9vg46/L//I3J3LxekgQOJNm4kysgoH6C4mOjMGaJ33yWy
t+ft7OyI9uypAwPU48yZM2RpaUmtWrWi2bNnU1RUFC1atIjs7e3Jzs6OLl26JLeNj48nxhhFRkbS
7du3yc3NjTw9PUn/4DOaM2cOMcZowYIFRET0xRdfkIWFBWk0GvL29iYiIsYYSZJEY8eOpaioKIqK
iqJp06YRY4z8/PyIiEin0xFjjIYOHSq3MTw2bNhA9+7do9LSUvL19SUzMzMaMWIErV27llavXk1d
unQhxhgtWbLksT6HwsJC8vLyIltbW1q7dq08JyKi5cuXE2OMpk6dSkVFRcQYoyZNmtCJh/7YMQjY
sWPH6ObNm8QYIzMzMwoNDa00j4MHDz7+P1Y9IARMQdq2bUsA6PLly2qbInhAYiL/Lre2JsrMrP/x
9Hqibt34mBs21GHHBQVEH3xAZGtbLmQAUdOmRI6ORGZmxq8HBhIlJ9ehAepw8eJFsrS0pMWLFxu9
np2dTS4uLhQUFCS/tmLFCrK0tKScnBwi4gLFGKPY2FgiKhcwV1dXSkhIIK1WS8uXL6ewsDBijBER
FzCdTlfJDk9PT3J1dSUiomXLlpG5uTkVFxc/0vaAgAByc3Mzek2v19O0adPIwcGhSg+yKoqKikin
05GFhQWlpqZWun/x4sVKAsYYo86dOxu1MwjYb7/9RkREnTt3pldffbVWNqiF2ANTEMNZsKLH2asQ
1CvduvFYiMJCZfbCfv2V5z5s3hwYN64OO7a2Bj76CLh2jeemGjKEH36+d4+n+ygt5ZEq06YBp07x
lPweHnVoAIeI5wDOyOBJk7dtA37+uf6KSnfq1AmzZs0CPRSL5ujoiE2bNiEmJga5DwaPiYmBjY0N
HBwcAABBQUFwdHTE3r17AQBt2rQBANy6dQve3t5o0aIFpk+fjhYtWoBVCJAJDg42Gmv//v24dOkS
/v73vwMAbG1tUVZWhsTERNy8eVN+PHx8Zs2aNZXsZoxh1apVsLW1le2qidWrV+PAgQOYP38+3Nzc
Kt3ftWuXfF3RhgsXLhjtk5WWlqJly5bo1asXAKBp06ZIS0vD9evX5TlkZWXVyibFUFtBGxPdu3cn
AHT27Fm1TRFUID6eOyU2NkR37tTvWCNH8rFCQup3HJmcHKKsLKLCwnobIi/P2Lmr6mFmRjRoEN+y
q2tCQ0MpNDS0ynstWrSg6OhoKigoIK1WS6+88op8Lzs7m4KDg6l///5ERHT06FF5j8rKykr2RFJS
Uow8sI4dO1J8fDxdv36dIiMjycrKivz9/eV+IyMjiTFGtra2JEmSfL3hIZc7LS2N2rZtW6XdCxcu
pMDAwFrN//Tp09S6dWtijNGwYcMo+SHP2uBZzZkzh/75z38SY4zi4+Np6NCh1KJFC8rIyCAiok6d
Ohl5hD169CCNRkM2Njay19axY0e5vSkgPDAFMYTOF5paLY9Gjq8vP8x89y6wbFn9jZOaCuzezWt+
TZ9ef+MY4eAAODkBCh7bMDPjHmbv3rwaS+/eXMYOHwbu3Kn78fR6fbX3fH190aZNG2RmZuLGjRtI
SkpCRkYGli1bBhcXF+zbt6+SVzFv3jzExcXJnoj00EHx5ORk9O7dGy1btsTcuXPh4+OD2NhY+f6e
PXvg7u6OvLw8nDt3DocOHcJff/2FKYbjCg+gR5xg8vHxkT3CmvDx8cG1a9dw+PBh3LlzB15eXthc
RbbqkSNHyqs/vr6++OKLL1BQUIDAwED88ccfuHPnjuxppqenIzExEaGhocjLy8OhQ4dw/vx5JCUl
QavV1souJajt8UlBHWBtbQ1ACJgpsmQJX+qKjOSHnFu3rvsxwsL4F/m4cUCLFnXfv1rY2tZ8lvrO
HeDQIWDAgLof/6effoJOp6v0ekFBAfbv34/NmzfjzgPlPH/+PFq3bg0bGxts374dK1asQFxcHG7d
umX03p49e8rXx48fN7onSRLeeustDB8+HJIkwd/fX94eAPhSXN++fQEAXl5e8PLyqtbu6tixYwf8
/PxqmLkxAwYMwMmTJ7Fu3TrMnDkTXl5e6Nmzpzz3h4XY3d0de/fuhU6nQ9cHNd9GjBghzwEAAgIC
wBjDwIEDH8sWpRAemIIYBEzsgZkevXrxM1lFRfVTgPjKFZ7oXZKARYvqvn9Tx8kJGDOmfpJ8NK+m
0127dsHX1xe2trbya6+++iqOHDmC3NxcvPTSS3jzzTcBACdPnqy2/4c9pcDAQERGRmLIkCEYPHiw
kXiVlZUhNTUVOTk5ICJkZ2cb7YPdv39fbutSzQHAkpIS7Nu3r0pRrglJkjBx4kSYm5vjm2++AVBZ
gCsSEBCAhQsXAuD7b6NHjwYA+dxbVlYWysrKjOZw+/btx7arvhAemIIID8y0+fhjYOdOLjQzZgB/
+1vd9b10KY+jmDhRlNiqa3r27FlJZAoLCxEREYGlD1WxnjJlCvr37y//3KFDBwDAtWvXqgyAMFDR
exk1alS17fLz85Geno709HR4eHggNTVVvscYQ2xsLAIDA2W7q2L58uUYPnw43N3dqx3HQEZGBvbv
34/AwEAcP34cd+/exZo1a5CXl4fg4GBkZ2cjKSkJjDGYm5tX2cf777+P9PR0ODk5YciDsuUXLlwA
AIwZMwatW7fGlStX5PbPPvssUlJSYFbr/Gf1h/oWNCKEgJk2Hh48p21EBN+jOn0a0Gievt+LF3mB
Y0kCPvjg6fsTGENERlGC+fn5eOONN+Dg4CB/IScnJ8PKygq9e/c2eq+Pj4/swXXr1g3u7u7y76kB
Pz8/oz0lQ0adqmjSpAm0Wi08PT3RqlUrBAQE4JlnnkG/fv3g7OxcrWgBPEPPgQMHEBYWhri4uFrN
/ejRo3jjjTcgSZK8F+jn54djx46hT58+uHLlCkpKSsAYg6+vL/5VRRkeSZLw9ddfG73Wvn172NjY
YNSoUdA8+CV4/vnn0aZNG3Tr1s0kxAsQAqYoQsBMn9BQHvp99ixPL7hgwdP1RwTMns1TFs6YIbyv
uqaoqAh79uyBq6sr1q1bh5iYGOzevRu9evXCkSNH5HaXL1+GtbW10XKfgenTp8sBE8nJyZXuP/fc
c3juQbG2KVOmwNfXt1p7LCwskJ6eXivbt23bhpycHKxbtw6pqan46quvUFxcjNjY2Gr3zR6mb9++
sLS0RElJCXQ6HWJiYqptK0mSkdA/iuDgYOTl5dWqraqoGgPZyJg1axYBoBUrVqhtiuARxMaWh36f
Pv10fUVF8b6aNePR7IK6JTEx0SjFkY2NDYWGhlJeXp7aptVI9+7dZbsN6Z/OnTtXp2NkZGSQJEk0
f/58IiJKTU2lnj171ukYaiI8MAURHljDQKfjS4mRkTwM/ORJoFWrx+/nzz+59wXwsi1OTnVrSCc+
OgAADbxJREFUpwBwc3PD4sWLERAQgH79+qltzmMxf/585Obm4u233663MbRarVH5Jjc3N5w9e7be
xlMaIWAKYthEFQUtTZ/wcODMGS5eQ4cCx48Djo61f//t28Dw4TwRxpgxPHhDUPfY2dnhH//4h9pm
PBGTDOUQBE+MCKNXEMP6M4kSbCaPpSWvG9mpE3DhAtCvH8/SVBtycoBhw4DkZJ6q6uuvn6xUl0Ag
eDRCwBRECFjDolkz4OBBHnhx/jzQvTsPsX9UQe3TpwE/P+B//xdo146nHLS3V85mgaAxIQRMQQxn
SYSANRxatwbi4vhyYE4O8NprQIcOPFrx5595iHxCArBxI08K3Ls397y6dgWOHv3PyrghEJgaYg9M
QQwe2KNytwlMDycnvpz43Xf8HFdqKrB4cdVtLSyAuXOBkBCgSRNl7RQIGhtCwBRELCE2XBgDJkzg
ARmHDwN79vCyKFlZXLQ6dAD69OHBGtVkCBIIBHWMWEJUECFgDR8zMyAwkJfcOnECSEoCzp0DduwA
5s0T4mXq6PV6jB8/HpIk4fXXX6+xfWZmJl544QU5N2Bj5ejRowgNDcWPP/6otilGCAFTELEHJhDU
PT/++COcnZ0hSZL86NatGy5fvlyp7axZsxAdHQ07OzusX78eR48ele99//33ePfdd+WfiQgvv/wy
Dh8+jB07dgDguRMrjmN4TJw4Uc4XmJKSgj59+lTZTpIkzJs3DwBw/fp1BAQEGN2zsrLC1q1bn+hz
2LdvH9q3bw9JkvDcc89h586dldro9Xq88847sLCwkMccPXp0td9JOTk5GDJkCAYNGoSUlBR0794d
ALB7925IkoTo6GikpaVBo9HIyYMrMmXKFEiSJCcUDg8Ph52dXZWfi42NDa5fv/54k1bvDHXjY8mS
JQSAFi5cqLYpAsF/BGfOnCFLS0tq1aoVzZ49m6KiomjRokVkb29PdnZ2dOnSJbltfHw8McYoMjKS
bt++TW5ubuTp6Ul6vZ6IiObMmUOMMVqwYAEREX3xxRdkYWFBGo2GvL29iYjkrBljx46lqKgoioqK
omnTphFjjPz8/IiISKfTEWOMhg4dKrcxPDZs2ED37t2j0tJS8vX1JTMzMxoxYgStXbuWVq9eTV26
dCHGGC1ZsuSxPoft27eTmZkZOTg40MKFCyk8PJxGjhxZqV1ERAQxxqhr1670zTffkI+PDzHGaObM
mZXaXr9+nVq1akUuLi60e/duo3uzZ88mxhgtXryYkpKSiDFGLi4ulJSUZNRu8uTJxBijq1ev0unT
p4kxRk2bNqWIiIhKn01cXNxjzZmISAiYgnzyyScEQP4FEQgET8fFixfJ0tKSFi9ebPR6dnY2ubi4
UFBQkPzaihUryNLSknJycoiICxRjjGJjY4moXMBcXV0pISGBtFotLV++nMLCwowqMut0ukp2eHp6
kqurKxERLVu2jMzNzam4uPiRtgcEBBhVQCYi0uv1NG3aNHJwcKA///yzVp/BsWPHSKPRkKurK/3+
++/VtktNTSUzMzPq0qUL/fHHH0REVFZWRmPHjiXGGEVFRclts7Ozydvbm5ycnCg3N7dSX7GxsZUE
zFARuiKTJ08mjUZDmZmZVFJSQg4ODvThhx/Wal61QQRxKIjYAxP8R1JczOvFADx7sV7Po14YA/Lz
gYICwNmZh3MOHgx06VJnQ3fq1AmzZs2q9Dvl6OiITZs2Yfjw4cjNzYW9vT1iYmJgY2MDBwcHAEBQ
UBBCQkLkoo6GhL63bt2Ct7c3evTogenTp2P79u1GSXCDg4ONxtq/fz8uXbqE8PBwAICtrS3KysqQ
mJhoVFXZ2dnZKIv7mjVrEBQUZNQXYwyrVq3CgQMHsHfvXsydO/eR8y8uLsakSZPAGMORI0fg6elZ
bdulS5eiefPmOHv2rJwVSJIkbN26FTk5OVi1ahVee+01AEBISAgSEhLw5Zdfws7OrlJfu3btkq8r
1jg7cOAADh8+jEGDBgHgWYeef/55OeO/lZUVkpOTcfPmTfk9lpaWcHycNDcVqTMpFNRIeHg4AaB3
331XbVMEgrojL49nLK7N45tv6nz40NBQCg0NrfJeixYtKDo6mgoKCkir1dIrr7wi38vOzqbg4GDq
378/EREdPXqUGGM0d+5csrKyot9++42IiFJSUow8sI4dO1J8fDxdv36dIiMjycrKivz9/eV+IyMj
iTFGtra2JEmSfL1hwwYj29LS0qht27ZV2r1w4UIKDAysce7fffcdMcZoxowZj2yXlpZGFhYWdOjQ
oSrvG7y4y5cvExHR3r17ycnJiTQaDU2cOJEyMjKM2huWBlesWEFLly4lOzs7OnfuHPXo0YO8vLwo
Pz+fiIisra1pwIABRMS9y2bNmpG5uTk1adKEGGOk0WioV69edPfu3RrnWhXCA6tniAh//fUXHB0d
H3kOLDc3F3Z2drUudyAQmAwWFvzgmwFJKvfEbG35gbjMTCA3t069LwN6vd6o4GRFfH190aZNG2Rm
ZuLGjRtISkpCRkYGtm7divfeew96vb5S6ZJ58+Zh0qRJcu2uh/tOTk42qivm7+9vVMZkz549cHd3
R3JyMi5cuIDMzEz079+/Uj/0iJUYHx8f3Llzp8a5FxcXAwCmTp36yHZbtmyBr6+v7Bk9jJ2dHfR6
PS5duoR27dohKCgIWVlZ2LlzJ95//305KGTw4MFG7xs5ciQ2btyIZs2aoUuXLli5ciUGDhyIF198
EStXrkRRUZH8nRYXF4ecnBx8++23GD16NI4fP4527dqhXbt2Nc6zWp5I9gS1orS0lGbMmEEeHh50
+/Zt+vTTTwmAXNqAiP9VsnXrVnJ2dqZt27apaK1A0DDx8/OrtAdGRHTv3j2ysLCgvLw8SktLMyq7
YmtrSz/88AP17duXGGOUmZkpe2BXr1416mfjxo1GHphGo6HZs2fTwYMH6eeff6aioiKj9v369aOp
U6fWaPdXX31VrQc2fvx4WrlyZY19GGz+6KOPHtmua9eu9OOPP1Z5r7S0lMaNG0cdOnSg0tLSSvdL
Skrogw8+IK1WS2lpaUREFBQURJIk0ZUrVygkJMRoHtHR0aTRaOTP+uOPPzay9eHP92kQYfT1SGFh
IU6dOoWUlBQEBwfLa8X04C+vq1evYvjw4ZgwYQKysrJM7oyFQNAQMOyvPMyuXbvg6+sLW1tb+bVX
X30VR44cQW5uLl566SW8+eabAICTJ09W2z895CkFBgYiMjISQ4YMweDBg42KZJaVlSE1NRU5OTkg
ImRnZ+PmzZvyo+J+kUs1hwZLSkqwb98+6HS6Gufev39/+Pn5ITQ0FBcvXjS6d+XKFcyaNQvp6ek4
f/58lftMKSkpGDVqFI4cOYJdu3bJ1ZcrYm5ujrfeegs3btxAdHQ0AMhh8VUxZswYTJ48GQDf03v5
5ZflsQAgKysLJSUlRp9LdnZ2jXOtCrGEWI/Y2NggJiYGvXv3Rnx8PO7evQuA/ydfuXIl3nvvPdy7
dw8ODg5Yvnw5pkyZoq7BAkEDpGfPnpVEprCwEBEREVhqCC55wJQpU9C/f3/55w4dOgAArl27Bjc3
t2rHqLj8N2rUqGrb5efnIz09Henp6fDw8EBqaqp8jzGG2NhYBAYGynZXxfLlyzF8+HC4u7tXO05F
tmzZgkGDBsHf3x8zZ87EqFGjkJCQgLlz52LixIlwcHCAi4sL5s+fj/Hjx8P+QXbpU6dO4dtvv0WP
Hj1w6NAhdOrUCQCQlJSEkydPYtiwYThw4AAKCwsRHh4OKysrBAYG4uLFi8jLywNjTA4GeZhVq1Yh
Ly8PAQEB6PigDPmFCxcA8CVXR0dHozNffn5+j/wjojqEgNUzWq0W+/fvR58+ffDHH38AALZv3y5H
4YwePRorV65EC5H1VSB4IojIaO84Pz8fb7zxBhwcHDBkyBAAfN/KysrKaO8K4HtNBg+uW7ducHd3
lwvPGvDz88PmzZvlny0sLKq1pUmTJtBqtfD09ESrVq0QEBCAZ555Bv369YOzs3O1ogXw/awDBw4g
LCwMcXFxtZ5/u3btcOrUKUREROCzzz7DkiVLwBjD+PHjERERgaZNmyImJgbLli3DggULoNfr0aFD
B4wePRrJycmVhHvHjh348MMPIUmSvF8/dOhQxMTEwMvLC7/88gsAoGXLltBqtVXaZG1tje+//97o
NQ8PD7i4uGD48OEAuKAPGjQILi4u8PX1rfV8jaizxUjBI/n1119Jo9EQAAJAWq2Wdu3apbZZAkGD
prCwkHr06EFDhw6ltWvX0siRI4kxRj4+PkaRbWvWrKFmzZpV2UdISEi1+0MPM3Xq1EqHdZ+UsLAw
sre3p7Vr19KiRYvI0dGRmjRpQr/88kud9P+knDhxgjQaDUmSVGV0o2Evq127dkTEo0Cr28urb4SA
KcjUqVMJAHXu3Jn++usvtc0RCBo8iYmJRsEZNjY2FBoaSnl5eWqbViPdu3eX7ZYkiXQ6HZ07d05t
s2rk5MmTpNFo6PPPPyciotOnT9cq5L8+YETiVK1S0ENLHQKB4OnIy8tDZGQkAgIC0K9fP7XNeSw2
b96M3NxcvP3222qb0mARAiYQCASCBokIoxcIBAJBg0QImEAgEAgaJELABAKBQNAgEQImEAgEggaJ
EDCBQCAQNEiEgAkEAoGgQSIETCAQCAQNEiFgAoFAIGiQCAETCAQCQYPk/wEPvRJNIO9OCwAAAABJ
RU5ErkJggg==
"></img>
</div>
</div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Sometimes when showing schematic plots, this is the type of figure I want to display. But drawing it by hand is a pain: I'd rather just use matplotlib. The problem is, matplotlib is a bit too precise. Attempting to duplicate this figure in matplotlib leads to something like this:</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">Image</span><span class="p">(</span><span class="s">&#39;http://jakevdp.github.com/figures/mpl_version.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[2]:</div>
<div class="output_subarea output_pyout">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4zFcXB/DvhNSaPURksQURO0FFkbe11ZLal9q3KkWp
Fm1p6WIpqkW19p0Q+5ZYm1BEbC2VEkEWiS1EZJVkct8/DkNIyDIzd34z5/M8edokk5kzkfmdufee
e65KCCHAGGOMKYyZ7AAYY4yxguAExhhjTJE4gTHGGFMkTmCMMcYUiRMYY4wxReIExhhjTJE4gTHG
GFMkTmCMMcYUiRMYY4wxReIExhhjTJE4gTHGGFMkTmCMMcYUiRMYM1mrV69G8+bNtX6/FStWxJEj
R/J0WwsLC0RERGg9BsZMAScwxrRMpVJBpVLl6baJiYmoWLEiAGDQoEGYOnWqTmKKiIiAmZkZsrKy
sn3d29sbK1as0MljMqZrnMAYMyEvn56Un2TLmKHhBMaMXnR0NLp27YqyZcvC3t4eY8aMyfb9L774
Ara2tqhcuTICAgI0X09ISMDQoUNRvnx5ODs7Y+rUqdlGMMuWLYOHhwcsLS1Rs2ZN/P3336889n//
/YfKlStj8+bNOcZmZmaG69evY+nSpdi4cSN++uknWFhY4IMPPsjx9idPnkSjRo1gbW2Nxo0b49Sp
U5rvvTx1OW3aNPTv3x8A0KJFCwCAtbU1LCwscPr06Tf92hgzeJzAmFFTq9Xo2LEjKlWqhMjISMTE
xKBPnz6a758+fRru7u548OABJk6ciKFDh2q+N2jQILz11lu4fv06Lly4gIMHD2L58uUAAD8/P0yf
Ph3r1q3D48ePsXv3btja2mZ77PPnz6Ndu3ZYtGgRevXqlWuMKpUKH330Efr27YtJkyYhMTERu3bt
euV2Dx8+RIcOHTBu3Dg8fPgQn332GTp06ID4+HjN/bw4mnrx/48fPw6AknJiYiKaNGmSn18jYwaJ
ExgzaiEhIbh9+zbmzJmDEiVKoFixYvDy8tJ8v0KFChg6dChUKhUGDBiA27dv4969e7h79y78/f0x
f/58lChRAmXKlMG4cePg6+sLAFi+fDkmTZqEhg0bAgCqVKkCV1dXzf0GBQXhgw8+wLp169C+ffs8
x/u6A9L37duH6tWro2/fvjAzM0Pv3r3h7u6OPXv2vPG+Xne/fCg7U6qisgNgTJeio6NRoUIFmJnl
/F6tXLlymv8vWbIkACApKQlxcXHIyMiAo6Oj5vtZWVmaJHXr1i1UqVIlx/sUQmDJkiXw9vbWTN1p
Q2xsbLYkCVACjomJKdT98hoYUyoegTGj5uLigqioKKjV6nz/XLFixfDgwQPEx8cjPj4eCQkJuHTp
kub74eHhOf6sSqXCkiVLEBkZic8++yzPj/mmROLk5ITIyMhsX4uMjISTkxMAoFSpUkhOTtZ8786d
O2+87z///BNDhgzJc4yMGRJOYMyoNWnSBI6Ojpg8eTJSUlKQlpaGkydPvvHnHB0d0aZNG3z22WdI
TExEVlYWrl+/jmPHjgEAhg0bhrlz5+L8+fMQQiA8PBxRUVGan7ewsEBAQACOHTuGL7/8Mk+xOjg4
4MaNG7l+v3379ggLC8OmTZuQmZmJzZs348qVK+jYsSMAoF69evD19UVmZibOnj2Lbdu2aRJXmTJl
NAUjjBkLTmDMqJmZmWHPnj0IDw+Hq6srXFxcsGXLFgA5l5C/+PnatWuRnp4ODw8P2NraokePHppR
Tffu3fH111/jww8/hKWlJbp27aoppnjGysoKhw4dgr+/P7799tsc43vx8YYOHYrQ0FDY2Niga9eu
r9zW1tYWe/fuxbx582Bvb4+5c+di7969muKR77//HtevX4eNjQ2mTZuGvn37an62ZMmS+Prrr9Gs
WTPY2NggJCQEACXFdevW5fn3yZghUQlewWWMMaZABjUCGzJkCBwcHFC7du1cbzN27FhUrVoVdevW
xYULF/QYHWOMMUNiUAls8ODB2TaSvmz//v0IDw/HtWvXsHTpUowcOVKP0THGGDMkBpXAmjdvDhsb
m1y/v3v3bgwcOBAALc4/evQId+/e1Vd4jDHGDIhBJbA3iYmJgYuLi+ZzZ2dn3Lp1S2JEjDHGZFHc
RuacmpG+jDdmMsZYwSiprk9RIzAnJydER0drPr9165ZmE+fLhBD8IQS+/fZb6TEYygf/Lvh3wb+L
138ojaISmI+PD9auXQsACA4OhrW1NRwcHCRHxRhjTAaDmkLs06cPgoKCEBcXBxcXF0yfPh0ZGRkA
gBEjRqB9+/bYv38/3NzcUKpUKaxatUpyxIwxxmQxqAS2adOmN95m0aJFeojEeHh7e8sOwWDw7+I5
/l08x78L5TLKThwqlUqR87mMMSaT0q6diloDY4wxxp7hBMYYY0yROIExxhhTJE5gjDHGFIkTGGOM
MUXiBMYYY0yROIExxhhTJE5gjDHGFIkTGGOMMUXiBMYYY0yROIExxhhTJE5gjDHGFIkTGGOMMUXi
BMYYY0yROIExxhhTJE5gjDHGFIkTGGOMMUXiBMYYY0yROIExxhhTJE5gjDHGFIkTGGOMMUXiBMYY
Y0yRisoOgLFXPHwInD8P/P03fWRkAFWq0Eft2kCjRoBKJTtKxphkKiGEkB2EtqlUKhjh0zJ+N28C
M2cCW7YAdesC9erRR7FiwPXr9HHiBGBvD3z1FdCxIycyxrRIaddOTmBMvjt3gK+/BnbuBEaOBMaP
B+zscr6tWg1s3w7MmEH/v3w50LixfuNlzEgp7drJa2BMrmPHgIYNaVQVHg788EPuyQsAihQBevSg
KcapU2kUtnGj/uJljBkMHoExOYQA5s0D5s4FVq8G2rUr2P38+y/g4wP06gX8+CNgxu/JGCsopV07
OYEx/cvMBAYOBK5dA/z8gAoVCnd/cXFA9+5A+fLA+vWcxBgrIKVdO/mVzvRLrQYGDaKkc+xY4ZMX
QNOPAQFARATw7beFvz/GmCJwGT3Tn6wsYNgw4PZtYO9eoHhx7d138eLArl1AkyZA1arAgAHau2/G
mEHiBMb0Qwjg44+BGzeA/fuBEiW0/xhlylBi9PYGKlYEWrTQ/mMwxgwGTyEy/Zg9G7hwgRJMqVK6
exwPD6pK7NmTRnqMMaPFRRxM9/bvB4YPB06fBpyd9fOYU6cCly4BO3bwZmfG8khp104egTHdCguj
oo0tW/SXvABgyhTaV7Zli/4ekzGmVzwCY7rz+DHw9tvAuHHARx/p//FDQmiP2KVLtD7GGHstpV07
OYEx3fnwQ8DCAliyRF4MEycCUVGAr6+8GBhTCKVdO3kKkenGxo3USX7+fLlxTJ9Obaf27JEbB2NM
63gExrQvMpKOPAkIABo0kB0NxTF+PE0lFuWdI4zlRmnXTh6BMe1Sq6lN1IQJhpG8AKBtW8DRkXou
MsaMBo/AmHb99BOwbx9w9Ch1jjcUZ84AXbpQVWTJkrKjYcwgKe3ayQmMac+VK8A77wDnzmmnx6G2
9exJo8LJk2VHwphBUtq1kxMY046sLGrh1KMHMGaM7Ghydu0a4OVFifZ1Z44xZqKUdu3kNTCmHcuW
ARkZwKhRsiPJXdWqlGBnzJAdCWNMC3gExgovNhaoWxf480+gVi3Z0bze7dtAzZq0FmZvLzsaxgyK
0q6dPAJjhTd6NDBypOEnL4CqEbt1A377TXYkjLFC4hEYK5zdu6nbxd9/a/d8L126ehVo3pwOwOSK
RMY0lHbtNLgRWEBAANzd3VG1alXMnj37le8HBgbCysoK9evXR/369fHDDz9IiJIBAFJTqc/hokXK
SV4AUL060KwZsGqV7EgYY4VgUCMwtVqN6tWr4/Dhw3ByckKjRo2wadMm1KhRQ3ObwMBA/Pzzz9i9
e3eu96O0dxGKNX068O+/gJ+f7Ejy79QpoG9fWgvj7hyMAVDetdOgRmAhISFwc3NDxYoVYW5ujt69
e2PXrl2v3E5Jv2CjdfMmsHAhMG+e7EgKpmlTwMkJ2LZNdiSMsQIyqLeeMTExcHFx0Xzu7OyM06dP
Z7uNSqXCyZMnUbduXTg5OWHu3Lnw8PDQd6hs3Djgs88AV1fZkRTcxInAtGm0wZkPvTRoajXw33+0
Rz4piQ71LlWKanIaNwbeekt2hEwGg0pgqjxcRBo0aIDo6GiULFkS/v7+6Ny5M8LCwl653bRp0zT/
7+3tDW9vby1GauL8/YHQUOUfFtmhAyWxY8eAli1lR8NeolbTAPn334GzZylZeXoC1tZAcjIlsshI
2p/evDm1vOzbF7C1lR25cgQGBiIwMFB2GAVmUGtgwcHBmDZtGgICAgAAM2fOhJmZGSZNmpTrz1Sq
VAnnzp2D7Qt/tUqbx1WU9HSgdm06JqV9e9nRFN6CBbQetmmT7EjYU+npwNq11FbTzg744gvgf/8D
bGxyvv2DB8CRI1QQu38/MGwYHT7g6KjfuI2B0q6dBrUG5unpiWvXriEiIgLp6enYvHkzfHx8st3m
7t27ml9wSEgIhBDZkhfTscWLgcqVjSN5AcCAAXTcyr17siNhAG7coAJRX19q7nLyJNC1a+7JC6Ak
17MnsH497eZIS6O96pMmUaEsM14GlcCKFi2KRYsWoW3btvDw8ECvXr1Qo0YNLFmyBEuenuq7detW
1K5dG/Xq1cO4cePgyyft6k9cHPDjj8ot3MiJtTVdIbmkXrrt24G33wb69QMOHaJZ3fwuTbq60qA6
NJSmF+vWBY4f1028TD6DmkLUFqUNgxXjk0/oiJQFC2RHol1nzgC9egHh4YCZQb2nMwlC0FLk1q3A
5s1UlKEtO3fSn2337jQlWayY9u7bGCnt2smvVpY3z/Z7ffut7Ei0z9OT5qgOHpQdickRgs4+PXYM
OH9eu8kLADp3pj/d6GhaR7t9W7v3z+TiBMbeTAgqmZ8yxTiPIVGpgI8/Bv74Q3YkJmfqVOoBHRDw
+nWuwrCxodFdu3aUIENCdPM4TP94CpG92f79lMAuXQLMzWVHoxtJSbSAcvEi4OwsOxqT8OOPwMaN
QGAgUKaMfh5z1y6qUvztNyr8YNkp7drJIzD2epmZwOefA3PmGG/yAoDSpYEPPwSWL5cdiUnYuBFY
uRI4fFh/yQsAPviAHnP8eKpyZMrGIzD2er//TmtfR44Yf7eK8+fpqJXr17mYQ4euXKGNx4cPU5Wg
DOHhQJs2NHM8caKcGAyR0q6d/CpluXv8mBr2zptn/MkLAOrXp/5Ef/0lOxKjlZJCh2L/+KO85AUA
bm5UXr9mDfD117TMy5SHExjL3cyZtPJdv77sSPRDpaKNzWvXyo7EaI0dC9SpAwwfLjsS6uUcFATs
2UMtMZny8BQiy1lkJNCgARU1ODnJjkZ/YmPpZOmYGKBECdnRGJWNG4HvvqO+hqVLy47muXv3AG9v
WgKdMkV2NHIp7drJIzCWs6++oh2gppS8AKB8eaBRI9oBy7QmLo4KWTdsMKzkBQBly9IS77p1tNmZ
KQePwIxYWhrVJZw5QxeQpCQgMZEuINWq0UfNmjk0PQ0JoR2gYWGGd7XRhw0bqLGev7/sSIzG0KGA
hQXwyy+yI8ldTAzQogUVdYwYITsaOZR27eQEZmTu3qV3ktu3A//8A7i7A02aAOXKUS4qXZqSWFgY
fVy8SEmsf39aXLe2EtSEbsAA2jBjilJSaOR5+TKNyFihHD9O03OhoZTEDNn161QhuWABtZ8yNUq7
dnICMwJCAAcOUMV7UBD1pu3Thw4dftMAKj2dBhrr1lFZ8/wWOzDgxrco8s8F6ntoqoYMATw8aA8c
K7D0dKoB+u472qGgBBcu0Nlivr7Au+/Kjka/lHbt5ASmYELQ3P3UqVTxPmECdRco6Kzf3eh0oFZN
fFr0N3T4pQ369TON6vkcBQYCY8ZQ9xFWYLNm0Qhs715l/S0FBtJrKSCAaplMhdKunZzAFOrSJSpJ
jomhEuBevbQwYFqwAPD3x+lp/vjkE+oh5+trnO0P3ygrC6hQgYantWrJjkaRbt+mX93Zs0ClSrKj
yb9t2+g1duIEULGi7Gj0Q2nXTq5CVJjkZDqo7733KGmFhtL6QqGT18OHwA8/AHPmoEkT4PRpoF49
Op/pyhWthK4sZmb0FnzzZtmRKNYPPwCDBikzeQE05TlpEvD++/TyYIaHR2AKcvgwbQD18gJ+/hlw
cNDinY8bBzx5QgtpL1i5Epg8mYry2rTR4uMpQUgIna549aqy5r8MwPXrVDx05Qpgby87msKZMIEq
eQ8eBIoXlx2Nbint2skJTAHS0mhb1pYtwIoVtMCsVVevAu+8Q8O5HDqrHjtGFYpLl1IzVJMhBFCl
Cs0lmUo3Ei3p14+2aXzzjexICi8rC+jdm97DbNpk3G0ylXbtNOJ/CuNw+TK9k42MpLJ4rScvAPji
C9r8kktb8BYtaBF+2DCqcjQZKhXN0/r6yo5EUS5efN7x3RiYmVF3sZgYeiPJDAcnMAO2di21uBk7
lg7k00kxxZEjlCXHjn3tzRo1out4jx5UZmwyevemoa+C3pXK9vXXNO1s6Hu+8qN4cWrOsm0bsGSJ
7GjYM0VlB8BelZYGfPoplfIGBtJGY51Qq6m/z08/AcWKvfHm771HL94OHWgkVrWqjuIyJHXq0O8m
JISGwuy1Tp2iEZifn+xItM/ens52bd6cClTbtZMdEeMRmIGJiqLlqIcPaeFYZ8kLoBP9rK1p53Me
delC+866dqWGFUaPpxHzZeZMqtwz1mKHqlVpFNa/P03pM7m4iMOAHD9Olduff04DI50WvsXHU5+p
AweoXj4fhKBF+hIlTOQA49BQoHVrIDrauFfwC+nyZRql37xp/I38t2yh6sRTpwBnZ9nRaI/Srp38
ajQQS5ZQ77XVq+mFofOq7W+/pWFUPpMXQLH98Qed+7hunQ5iMzQeHrQAyQddvtbcucDo0cafvAB6
ozlmDE2nP34sOxrTxSMwyTIynq937dqlp3Wlf/+lJm+hoYXapHPxIr3jPnYMqFFDi/EZou+/p5b+
v/4qOxKDdOsWLReGhwO2trKj0Q8hgFGjgBs3qErX3Fx2RIWnpGsnwAlMqvh4qup76y3aX2JlpYcH
FQJo1YoWs0aPLvTdLV8OLFxI7YKM4QWcq9BQ2sMQFcWbmnMwYQL9af38s+xI9Cszk/ZGlitHrwWl
/2ko5dr5DE8hSnLtGrVpqlOHjjTXS/ICgB076Ajajz/Wyt0NHUonj8ydq5W7M1w1agClSlFlDcsm
Ph5Ytcp49n3lR9Gi1G3sn3+A6dNlR2N6OIFJ8OefVGn4+ef0jlVvp5YkJVHLqIUL6ZWnBSoVsHgx
MG8eJWWjpVJRc7xt22RHYnB+/x3o1AlwcZEdiRylSwP79tF6sEkUNRkQnkLUs2XLgClTqCr7f//T
84NPnEgtwnVQefHzz/QiPnxY+dMouTp/nkrqw8KM+EnmT0YGdWr396fZBFN27Rp1rVm+nIo7lMiQ
r5054RGYnjzbMzx3LhWz6T15/fsvzfPoaK5v7Fjg0SPqHmK06tenRQ8+I0xj505qF2nqyQugAqyd
O6kD/6lTsqMxDTwC04PHj+mE5LQ06lCg9yotIYCWLakt0qhROnuY8+fp6InLl5XfgTxXEybQnBEv
eACgVmcjR9LAlBF/f0pigVvuoYb6X1pzTkqij8xMah5gY0MXAjc32khmICN6Q7t2vgknMB27fh3w
8aH88euvkir11qwBFi0CgoN1vuA2Zgy9Fhcs0OnDyHPyJDBiBI/CQIP6Nm2AiAiqpDV5ERFUJOXv
j7TT/yAtMR3FG9ZC8crl6U2PhQVthH/0iD7i4mjeMTmZmgo0aEAXihYtqDJKAkO6duYFJzAdCgyk
Qc833+h04PN6cXF0LO7evYCnp84f7v59Ktg7dcpIeyVmZdE75sBAOi/EhI0aRQcYmPRgNCWFzjha
uZI2w/n40EfDhli8ywk/z1fhr7+ozD5X8fG0TePMGWoyevw4jc46dqQa/WbNtFZ09SaGcu3MK05g
OiAE8NtvtPd1wwbadiVN376Ao6Ne69xnzqTpRGNs6AoA+OQTKrmbPFl2JNI8fkwNbf/9V9pgQa74
eHqRL1xICWbMGOry+1Ki+f57KrP/889cTyt6VVYW1eXv3k3dDaKjqWtOv370WDpsZyb72plvwgjJ
fFqpqUIMGSJE7dpCXL8uLQyyZ48QVaoIkZys14dNSRHCxUWIkyf1+rD6c/iwEI0ayY5CqoULheje
XXYUEmRlCbF8uRBlyggxaJAQoaFvvPlXXwlRt64QDx4U8DEjIoSYOVOImjWFqFBBiClThLh5s4B3
9npKSwk8AtOi6GjqrOHiQgV/pUvrPYTnEhJo6nDtWgklj7TstnQpVVwayPq09mRk0JzQpUtA+fKy
o9E7IeiUhMWLqYjDZISF0fpncjLth6lbN08/JgSdGRsURNtMCty0QAgama1aRVM7np7A8OE0Zaml
xXWljcDylcC2bduW6xNUqVTomo9jOXRJxj/CwYPAwIG0T3jiRAO4aI8YQf+VdPqeWk1r0s96Bhud
fv1oN7qWOpooyfHjwEcf0bKN9L9zfVmxgs6JmTKFpgvzWQwlBPU8PX0aCAigIsRCSU19frrmzZv0
eh8+/A2LbW9m1Als0KBBUL3mL3bVqlVaCaqw9PmPkJVF89xLlwIbN1IRkXRHjlAd77//6rFH1av2
76dkfvGiEZ5C4udHF7WAANmR6N3gwTQC+/xz2ZHoQUYG9cg6fJg2ebm7F/iuhKC7CgqiN7x5XhN7
k4sXaT1uyxagfXvKlI0bF+iujDqBKYW+/hFiY4EBA+hv3NeXaiWki4+nqY1ly6j5rERC0Ovoyy+N
cBSWmEjVC7duAZaWsqPRm8REmiK/ehVwcJAdjY7dv09rAqVL05SdFt4MCkGDuJ07KSdq9Zrx6BFV
Qy5cSP84Y8fSGU352OOgtARWoPfFd+7cwdChQ9Hu6ZnaoaGhWLFihVYDM3R79tAUWfPmNOAxiOQl
BE1pdekiPXkBNL00dSqNUBX0msgbCwuaQvT3lx2JXm3eTEuqRp+8YmLo37dpU6oE1NJMhkoF/Pgj
8OGHtN3r5k2t3C2xtqZ2P+Hh9K5x2TKgUiXghx8oGRujglR+tG3bVvj6+oratWsLIYRIT08XNWvW
LEwxiVYV8GnlSVKSEKNGUTHQX3/p7GEKZt06ITw8qAzQQGRlUQXW7t2yI9GBP/4Qok8f2VHoVdOm
Rvpv+aLoaCHc3KjyT4cWLhSifHkhzp7V4YP8848QQ4cKYW0txMCBb3wwXV47daFA0TZs2FAIIUS9
evU0X6tbt652ItICXf0jBAUJUbmyEP36CREfr5OHKLiICCHs7YU4f152JK/w86Oq86ws2ZFoWWws
XRiePJEdiV6EhgpRrpwQGRmyI9GhqCjaevLTT3p5uO3bqSLf31/HD3T/PiVkFxd6F7JxoxBpaa/c
TGkJrEBTiKVLl8aDBw80nwcHB8NKYrGArj07haRPH2D+fGrmbm0tO6oXZGTQhuUvvqCGswama1eq
PD54UHYkWuboCFSvTqvyJmDlSqq01VNTCP27e5fmR0eNoteSHnTp8rwB8NKlOnwge3vaeH/jBlXf
rFgBuLrSVGNEhA4fWMcKkvXOnj0rmjZtKiwtLUXTpk2Fm5ub+Pvvv7WdXAusgE/rFVlZ9A7J1VWI
/v0LsRFR18aPF6JDByHUatmR5GrjRiG8vGRHoQMzZgjxySeyo9C59HQhHByEuHJFdiQ6kpIiRJMm
QkydKuXhr14VokYNIUaM0OOA/soVunbY2QnRpo0QW7YobgRW4CrEzMxMXL16FUIIVK9eHeYGdJ68
Nipprl+nIp6bNw18w6afH9Wqnzsnoc193qnV1Dpw/XpaFzca//0HtG5Nu9iNeFPUrl3AnDm0Md3o
ZGVR01Jzc/oDlfTv+PgxjXDv3QO2btVjYVhqKjUhXr4cqj//NP4qxNTUVPz666+YMmUKvvnmGyxa
tAhpaWnajk2KBw9or0aTJlQl9PffBpy8rl6l6Y6tWw06eQG073PcODr40qi4uwMlSwIXLsiORKfW
rqVpLqM0ZQrtiVmxQuqbEEtL2pvcrh012Th0SE8PXKIElUUePaqnB9SeAo3AevToAUtLS/Tr1w9C
CGzcuBEJCQnwM5DurQUZgSUl0Ykjc+fS2UbffguULaujALUhMZGGMmPHUlsEBUhKotN7z5yh6l6j
8fnntFdo2jTZkehEfDz9u0VGGtjarzZs2EAv9uBggzrE7uhRGo316kVl98WK6edxlbYPrEAJzMPD
A6GhoW/8miz5+Ud49IgS14IFtH773Xe0Lm/QMjOp/5mLC/DHH4qaupo0CUhPp2IYoxEURPtvzp2T
HYlOLFtGBTgG8v5Ue65epb1eR44Y5JHSDx5Qd6ibN6m3qD5CVFoCK9AUYoMGDXDqhTOzg4OD0bBh
Q60EFBAQAHd3d1StWhWzZ8/O8TZjx45F1apVUbduXVwo4NTNzZu0dOTmRmfKHTtGmzQNPnkJQaMu
tZoyr4KSF0Bt5NasoV7DRqNZM6rkunVLdiQ6sX49tX40KqmpQM+etMnXAJMXANjZ0ZTimDF0JNPk
yXT8GHtBfio+atWqJWrVqiXc3d2FSqUSrq6uokKFCkKlUgl3d/dCV5RkZmaKKlWqiJs3b4r09HRR
t25dEfrScQX79u0T77//vhBCiODgYNGkSZNX7ie3p5WRIcT+/UJ06kSFN59/LsSNG4UOW79+/lmI
WrWEePRIdiQF9uGHQsyZIzsKLevXT4jFi2VHoXUREfRaMbqtbiNHCtGrl2I2J965Q6+bSpXolCRd
hZ3PlCBdvnZ07NmzRzdZ9KmQkBC4ubmhYsWKAIDevXtj165dqFGjhuY2u3fvxsCBAwEATZo0waNH
j3D37l045NLbRgg6XHH9eupX6OpKw3JfX1p7V5StW4F58+hYewXvuxs/nvaGffqp1k6BkK9TJ2D1
amDkSNmRaNWGDdQOMB/t9Ayfnx/NiZ4/r5gZDAcH+rc4cIBeP3PnArNnU7GZKctXAnuWWJ65d++e
VqsPY2K85P6aAAAgAElEQVRi4OLiovnc2dkZp0+ffuNtbt269UoC699/Gq5epSN8Spb0xrBh3ggK
UvAp8Lt2AaNHU/dzV1fZ0RSKpycVBWzfTovURqFtW2DoUKpUkXoQnPYIQZv2ly+XHYkW3b5Nr6N9
+xTZhLltW2o+v3Yt9elt3Bj46iugoCs4gYGBCAwM1GqM+lSgPfW7d+/GhAkTEBsbi7JlyyIyMhI1
atTA5cuXCxXM645qeZF4aZExp5+7cWMaunalN8YeHop5o5WzvXup0nD/fqBePdnRaMXo0bS/zmgS
mJUVVYUePGg0rfcvXADS0gAvL9mRaIkQtO1k+HB6F6VQRYsCQ4ZQZ6A//qBuHlWqUPOQdu3yd3SR
t7c3vF/YJzR9+nTtB6xDBSrimDJlCk6dOoVq1arh5s2bOHLkCJpoYSzr5OSE6OhozefR0dFwdnZ+
7W1u3boFJyenV+7rxAla9KxZU+HJKyCA/lr37Cn42ywD1LkzFYEV8j2PYenUif6djMSz4g1Fv35e
tGULTclMnSo7Eq0oUYKmE69fp5w8ZQoVpU2fruUu9wasQAnM3Nwc9vb2yMrKglqtxv/+9z+cPXu2
0MF4enri2rVriIiIQHp6OjZv3gwfH59st/Hx8cHatWsBUPWjtbV1rutfirdhAx04tnNngQ+oM1Rv
vQUMG0bvII1Gp040WlarZUdSaGo1rRP37Ss7Ei25f58WXVeu1N+mKj0xN6d9yOfO0TL5gwd0uWje
nLqn/PefER5n9FSBphBtbGyQmJiI5s2bo2/fvihbtixKa2Hev2jRoli0aBHatm0LtVqNoUOHokaN
GliyZAkAYMSIEWjfvj32798PNzc3lCpVymBOgdYqIYBZs+jqfvQoUKuW7Ih04qOP6OzNmTONZNmo
YkWgfHnaFNusmexoCuX4cSocKMQBxIZlzBigf3+jrnpQqeiMwgYNKHEdPkxLfW3b0rRjy5Y0Hdys
Gf27GsMp6QXayJyUlIQSJUogKysLGzZswOPHj9G3b1/Y2dnpIsZ8U9pmvGwyMmif16lTtOZVvrzs
iHSqSxfg/fcV00zkzaZMoY3ms2bJjqRQPv6YuqVMmiQ7Ei3w96cEdukSzbuZGCFoqv6vv6iA+cQJ
arzv7g7UqEH/dXEBnJ2B995T1rWzwM18DZliE1hkJK3M2tgAmzYpskoqvw4epA3lFy4YyVrL6dO0
Zqngxb2MDHrfFBJiBC2/njyhGYwFC+idEgNAjYP/+w8IDaW16Fu36BDqwEBlXTvzNYVYunTpXCsF
VSoVHj9+rJWgTNKOHfS294svqC2RMYzv86BVKzorLDjYSLrUN2pEixDXr1NpmAIdPUqhKz55AbRv
smZNTl4vsbSk2dSXZ1SV9iYyXwksKSlJV3GYrrg4Kpc8ehTYvduo5+hzYmZGeXvxYiNJYGZmQIcO
VI04bpzsaArE15dOF1G8qChKYFooMGOGyTTe5hsitZqKNDw8qILhwgWTS17PDBxI1/tHj2RHoiU+
Pootp3/yhPbM9+ghOxItmDCB1r6MYijJcmK8Cax2bZqK8/enOSpDkZVF04WNGlGZ/OHDwC+/KLo1
VGHZ21Ol1MaNsiPRklat6MwYBXYsDgigl04OWyuV5fBhGnkZRRUKy43xJrDly+mQx1mzqB64eXM6
9ycwkNoL6FtqKu1B8fCguvEpU6gFvoF2wta3oUONqGVRqVL09xYQIDuSfNu82QimD9VqGn3NnWuS
VYempEBViAsWLED//v1hY2Oji5gK7ZUqxORkqh09ehT480/g33+pJdM779DCi6cnveXU9gpmRgYd
q+rrS1NKb79NJXfe3spbLdWxrCygcmUanNavLzsaLfjjD6pbXr9ediR5lpxML4OwMAM/zPVN1qwB
li6l3z+/zvJFaRXcBUpgX3/9NTZv3owGDRpgyJAhaNu2bZ77GOrDG/8RkpOp3PnECdpvdfYsLb43
aEAVSzVq0EelSvRKzktFYGYm1aKGhdFmi7/+ojrkWrWoNL5HD6BcOe09SSM0fTo1TFi0SHYkWnDr
Fu3SvnuXdpEqgJ8fXff1dpS9LqSm0qF+vr5G1MRRf0wigQFAVlYWDh48iNWrV+Ps2bPo2bMnhg4d
iioGUDqc738EIeiCc+4cbY549hEZSZUF5crRNGSpUnQGS/HiNLpKSaGPe/fo58uWpWZkb79N2929
vGgak+VJVBSNvm7dMpKZnwYNaH2zRQvZkeRJz55A69bUV0+xZs+mN47btsmORJGUlsAK/NbQzMwM
5cqVg4ODA4oUKYL4+Hh0794drVq1wpw5c7QZo+6pVLQV3cWFusy+6MkTOoLh3r3nCSs1lZr5lSxJ
H3Z2QIUKRtdjTd9cXam2Zft2I+nB96y5rwISWEoKnTW1eLHsSAohLo56KJ08KTsSpicFGoH9+uuv
WLt2Lezs7DBs2DB06dIF5ubmyMrKQtWqVXH9+nVdxJpnSnsXwZ7z8wN+/52WKxXv3Dnqsnr1quxI
3mjrVmDJEoVPH44fD6SnA7/9JjsSxVLatbNAI7CHDx9i+/btqFChQravm5mZ6fzUZmbcfHyATz4B
btygog5Fa9CADri8epXWZQyYn5/C935FRdEpj6GhsiNhesS9EJnBGTuWlg6nTZMdiRaMHEl9mT7/
XHYkuUpJARwdgfBwoEwZ2dEU0Ecf0VT+zJmyI1E0pV07jXcfGFOsQYPozXRWluxItMDHh1qEGTB/
f1p7VGzyunGDijYM+E0C0w1OYMzg1K9PBZ/Hj8uORAv+9z/gn3+owMBAKX768LvvgNGjaQTGTAon
MGZwVCrqj7hmjexItKB4cWottX+/7EhylJpKDUO6dJEdSQFdvUqnNo4fLzsSJgEnMGaQ+valrhyG
1MaywAx4GtHfH2jYUMGdN6ZPp67/1tayI2EScAJjBsnRkbp87dghOxItaN+emsvK6MH5Blu3Knj6
MDQUOHKEqn6YSeIExgzWwIHA6tWyo9CCMmWoxXtgoOxIsklLo5lNxU4f/vgjTR1aWMiOhEnCCYwZ
rA8+oGPSoqNlR6IFBjiNeOgQ9bR2cJAdSQFcuwYcPEibBpnJ4gTGDFbx4jS9tW6d7Ei04FkCM6A9
Nlu3At26yY6igGbOpMMqefRl0ngjMzNoJ04Aw4bRcocBHXhQMNWr0yGmnp6yI0F6OvWovnRJgYdX
RkRQ5Ul4OGCgRzopldKunTwCYwbNy4sutufPy45ECz74ANi1S3YUAKjXpLu7ApMXQB3nR4zg5MU4
gTHDplIB/foZyTRi587Azp2yowBA04fdu8uOogBiYujYaN73xcBTiEwBrl2jw7NjYhRzNmTOsrKA
8uXpsFM3N2lhZGbSNoWzZ+kUIEUZNw4oUgSYN092JEZJaddOHoExg1e1Kh2OreijPgA62dsAphGD
goCKFRWYvOLiqEnmhAmyI2EGghMYU4T+/XkaUVsUO324cCEFXr687EiYgeApRKYIcXE06xYdrfDK
6SdPaONVWJiU/k1qNRVuSJ7FzL+kJBqGnzxJQ3KmE0q7dvIIjCmCvT3QogWwfbvsSAqpWDGgbVtA
0sGvJ05Q+byikhcALFtGnf05ebEXcAJjimFU04iSmjwqcvowPR34+Wdg0iTZkTADw1OITDHS0mj5
Q5Gbb1+UkAC4uFBZpR7nQ7OyAFdXKoapUUNvD1t4q1YBmzZR6yimU0q7dvIIjClG8eLUeNbXV3Yk
hWRlRa32DxzQ68OePk0PrajklZUF/PQTMHmy7EiYAeIExhSlb19g/XrZUWhB5856X9BT5PThnj1A
6dK0/sXYS3gKkSmKWk37lw4cAGrWlB1NIdy5Q72c7tyhoaWOCUFFfHv20MkuitGsGW1eVuyhZcqi
tGsnj8CYohQpAvTpQz1xFa1cOaBuXb3tzj53DnjrLaBWLb08nHacOEEJvmtX2ZEwA8UJjClOv37A
xo20PKJo3bsD27bp5aGeTR8qqqP/Tz8Bn39O71oYywEnMKY4derQssiJE7IjKaSuXWlOLz1dpw8j
BOVJRa1/XbkCBAcDgwbJjoQZME5gTHGedahX/DSikxOtgx09qtOHuXiRGvjWr6/Th9GuuXOB0aOB
EiVkR8IMGCcwpkgffkjTYjoevOhet270RHTIz09h04exsVShOWqU7EiYgeMExhTJ1ZWqEPfvlx1J
IXXrRt3pMzN1cvdCUAJTVBHfggW0X8LOTnYkzMBxAmOK1a+fEewJq1CB6tuDgnRy95cuUf/gRo10
cvfal5gILF8OfPaZ7EiYAnACY4rVowdVoT96JDuSQureXWfTiFu20O9JMdOHy5YBrVtTUmfsDXgj
M1O07t2Bdu2AYcNkR1II168DXl5aP3JaCKoRWbcOaNxYa3erOxkZQOXKNKXaoIHsaEyS0q6dPAJj
imYU04hVqtCiXmCgVu9WcdOHvr5AtWqcvFiecQJjivb++8C//wJRUbIjKaQ+fWh3thYpqvpQCGDO
HGDiRNmRMAXhBMYUrVgxukgrfk9Yr17Azp00ZNICxVUfHjhAmbZNG9mRMAXhBMYUr18/WudR0NT9
q5ycqDeiv79W7u7SJSA1VSFrX8DztlGKGC4yQ2EwCezhw4do3bo1qlWrhjZt2uBRLqVlFStWRJ06
dVC/fn00Vsyrk+mSlxddrP/+W3YkhaTFacRnoy9F5IMzZ6iQpXdv2ZEwhTGYBDZr1iy0bt0aYWFh
eO+99zBr1qwcb6dSqRAYGIgLFy4gJCREz1EyQ2RmRvte162THUkhdetGU2mJiYW6GyGel88rwuzZ
tO/L3Fx2JExhDCaB7d69GwMHDgQADBw4EDt37sz1tkoq82T60b8/nTqvo4YW+mFnB7RoQWthhfD3
31SRrogJirAw4Ngxhe+DYLJob9NJId29excODg4AAAcHB9y9ezfH26lUKrRq1QpFihTBiBEjMHz4
8BxvN23aNM3/e3t7w9vbW9shMwNSvTo1tTh0iCoTFatPH9oX0L9/ge9i0yaajVPE9OHcucDIkUCp
UrIjMUmBgYEI1PL2DX3S60bm1q1b486dO698/ccff8TAgQMRHx+v+ZqtrS0ePnz4ym1v374NR0dH
3L9/H61bt8bChQvRvHnzbLdR2mY8ph2LF9ObeV9f2ZEUQlISFXSEhwNlyuT7x7Oynp+8XKeODuLT
ptu3qaFlWBhgby87GgblXTv1OgI79JrTZx0cHHDnzh2UK1cOt2/fRtmyZXO8naOjIwCgTJky6NKl
C0JCQl5JYMw09e4NfPkltZaytpYdTQGVLg20b0+LWJ98ku8fDw6mu6hdWwexaduvv9LiJScvVkAG
swbm4+ODNWvWAADWrFmDzp07v3KblJQUJD5d4E5OTsbBgwdRWxGvVKYPtrZAq1Y6P51E9wYNAlat
KtCP+voqZPowIYGa9k6YIDsSpmAGk8AmT56MQ4cOoVq1ajh69CgmT54MAIiNjUWHDh0AAHfu3EHz
5s1Rr149NGnSBB07dkQb3vjIXjBgALB2rewoCqlVK+DuXTqJMh/UaiqfV0Q1+uLF1MSyYkXZkTAF
42a+zKikpwPOzjSVVrmy7GgKYcoUIDkZmD8/zz9y5AgwaRJw9qwO49KGlBT6xzlyhNbAmMFQ2rXT
YEZgjGnDW2/RCETxe8IGDaL+WPk4cvrZ9KHBW7aMdp9z8mKFxCMwZnTOnqXWguHhClgLep2WLYFx
44AuXd540/R0wNERuHCBGtsbrCdPADc32uvWsKHsaNhLlHbtNJh9YIxpS8OGQIkSwPHjtC9YsQYP
BlauzFMC8/cHPDyyJy9bW9tsW1MMiqen7AhMmo2NTY7blJSGR2DMKP38M9VArF4tO5JCSEoCXFyA
//4DypV77U27dwfatgVe3NfPrwOWm9z+NpT2N8MJjBml+/fpbMTISMDSUnY0hTB0KB2r/MUXud4k
Pp6K+SIjs+9/49cBy42xJDAu4mBGqUwZ4N13gc2bZUdSSEOHUtFDVlauN/Hzo2O0FLt5m7EC4gTG
jNaQIbSEpGhNm1KfwIMHc73JunWFap3ImGJxAmNGq21bICoKCA2VHUkhqFTAmDHAokU5fvvGDeDK
FdoTzJip4QTGjFbRosDAgUYwCuvTBzh9mg59fMn69bRl4K23JMSlZYMGDcLUqVNlh/FG3t7eWLFi
Rb5+JioqChYWFopaX1ICTmDMqA0eTFNsGRmyIymEEiVoPvS337J9WQjjmj5UqVRQKWDjXkHidHV1
RWJioiKen5JwAmNGrWpVOitszx7ZkRTSqFHAmjVUWv/U6dN0GrUiDq7MIx6hsPzgBMaM3vDhwJIl
sqMopAoVaFf2hg2aL61eTaMvpb6pv3DhAho0aABLS0v07t0baWlpmu/Fx8ejY8eOKFu2LGxtbdGp
UyfExMRovu/t7Y2pU6eiWbNmsLCwgI+PD+Li4tC3b19YWVmhcePGiIyM1NzezMwMCxcuRJUqVVCm
TBlMnDgxW7JcuXIlPDw8YGtri3bt2iEqKkrzvUOHDsHd3R3W1tYYM2YMhBC5JtqQkBB4enrCysoK
5cqVw4Sn3fYjIiJgZmaGrKfVpN7e3vjmm2/wzjvvwNLSEm3btsWDBw809xMcHAwvLy/Y2NigXr16
CAoKKuRv20gJI2SkT4sVUGqqEPb2Qly7JjuSQjp8WIiaNYXIyhJJSULY2AgRHZ37zQ35dfDkyRPh
6uoqfvnlF5GZmSm2bt0qzM3NxdSpU4UQQjx48EBs375dpKamisTERNGjRw/RuXNnzc+3bNlSVK1a
Vdy4cUMkJCQIDw8P4ebmJo4cOSIyMzPFgAEDxODBgzW3V6lU4t133xXx8fEiKipKVKtWTSxfvlwI
IcTOnTuFm5ubuHLlilCr1eKHH34QXl5eQggh7t+/LywsLMS2bdtEZmammD9/vihatKhYsWJFjs/r
7bffFuvXrxdCCJGcnCyCg4OFEELcvHlTqFQqoVarNfG7ubmJa9euidTUVOHt7S0mT54shBDi1q1b
ws7OTvj7+wshhDh06JCws7MT9+/f19rvP7e/DUP+m8mJsqLNI6X9IzDd+/xz+lC0rCwhatUSwt9f
rFwpRMeOr795Xl4HtJJW+I/8CgoKEuXLl8/2NS8vL00Ce9mFCxeEjY2N5nNvb28xY8YMzecTJkwQ
7du313y+Z88eUa9ePc3nKpVKHDhwQPP54sWLxXvvvSeEEKJdu3bZEpJarRYlS5YUkZGRYs2aNaJp
06bZYnF2ds41gbVo0UJ8++23rySblxOYt7e3+PHHH7PF065dOyGEELNmzRL9+/fP9vNt27YVa9as
yfExC8JYEhhPITKTMGIETbm9MEulPCoV8NVXwPffY9lSgWHDCn+X2kph+RUbGwsnJ6dsX6tQoYJm
ai4lJQUjRoxAxYoVYWVlhZYtWyIhISHb1J2Dg4Pm/4sXL57tFPfixYsj6YX1QgBwcXHR/L+rqyti
Y2MBAJGRkfj0009hY2MDGxsb2NnZAQBiYmJw+/ZtODs753o/L1uxYgXCwsJQo0YNNG7cGPv27cv1
tuVeaA9WokQJTbyRkZHw8/PTxGNjY4MTJ07gzp07ud6XqeIExkyCmxtQv74RnNbcsyeexMbBKexP
PD3nVZEcHR2zrWkBdOF+VqU3b948hIWFISQkBAkJCQgKCnrt2lNeqvteXNeKiorSJFBXV1csXboU
8fHxmo/k5GQ0bdoUjo6OiI6O1vycECLb5y9zc3PDxo0bcf/+fUyaNAndu3dHamrqG2N7kaurK/r3
758tnsTEREycODFf92MKOIExkzFyJPD777KjKKQiRbCt2leYXfp7FFXwWRJeXl4oWrQoFixYgIyM
DGzfvh1nzpzRfD8pKQklSpSAlZUVHj58iOnTp79yHy8ms9wS24vmzp2LR48eITo6GgsWLECvXr0A
AB9//DFmzJiB0Kc73hMSEuDn5wcAaN++PS5fvowdO3YgMzMTCxYseO1IaP369bh//z4AwMrKCiqV
CmZmOV9mc4u5X79+2LNnDw4ePAi1Wo20tDQEBga+kvAZJzBmQjp1ooa3Fy/KjqTg0tKACec+hIuI
BP76S3Y4BWZubo7t27dj9erVsLOzw5YtW9CtWzfN98eNG4fU1FTY29vDy8sL77///iujrBc/z2lv
1suff/DBB2jYsCHq16+Pjh07YsiQIQCAzp07Y9KkSejduzesrKxQu3ZtHDhwAABgb28PPz8/TJ48
Gfb29ggPD8c777yT6/M6cOAAatWqBQsLC4wfPx6+vr4oVqxYjvHkFr+zszN27dqFGTNmoGzZsnB1
dcW8efM0FYzsOe5Gz0zK9OnAnTvKHYn5+gLLlwOHey2j+dCnF9qc8OvgOTMzM4SHh6Ny5cqyQzEI
3I2eMQUaPpySgKGe8/gmy5Y9PfNr4EA6J+z0adkhMSYNJzBmUsqXp6nEpUtlR5J/ly/TR+fOoOaH
X38NTJpUsDJAE8MtnIwTTyEyk/P330DHjtTJXUlNcEeMoAT87bdPv6BWAw0bUml9z56v3J5fByw3
xjKFyAmMmaT33qNGv/36yY4kbx48oK0AV64AL2x/Ao4doyfx3390btgL+HXAcmMsCYynEJlJ+uwz
4OeflTP7tmwZ8MEHLyUvgPojNmsGzJ4tJS7GZOIRGDNJWVlAzZpUjejtLTua18vIACpVoo769evn
cIPoaKBePeDsWbrhU/w6YLnhERhjCmZmBowfD8ybJzuSN9u2DahSJZfkBQAuLvRkxo9XzpCSMS3g
BMZMVv/+QEgI8LQBg8H69Vdg3Lg33Ojzz+nEZsUfP81Y3nECYyarRAkatHz/vexIcnfqFG289vF5
ww2LFwc2bwYmT6ZaewUaNGgQpk6dKjuMN/L29saKFSv08lgbNmxA27Zt9fJYSsQJjJm00aOBo0cN
95r//ffAxIlAkSJ5uLGHB/DTT1RSn5Ki89i0Lad2UIZIn3H27dtX09aKvYoTGDNppUsDEyYA330n
O5JXnT4NXLoEPG3ZlzeDBgENGgCffqqrsHRKSQUETD5OYMzkjRoFBAYC//4rO5Lspk+nPcpPe8Hm
jUoFLF5M+8MM3IULF9CgQQNYWlqid+/eSHvhsLb4+Hh07NgRZcuWha2tLTp16pStG7u3tzemTp2K
Zs2awcLCAj4+PoiLi0Pfvn1hZWWFxo0bIzIyUnN7MzMzLFy4EFWqVEGZMmUwceLEbMly5cqV8PDw
gK2tLdq1a5ft6JVDhw7B3d0d1tbWGDNmzGuPdcnKysKMGTPg5uYGS0tLeHp64tatWwCAkydPolGj
RrC2tkbjxo1x6tQpzc+tXr0aVapUgaWlJSpXroyNGzdqvt68efNsz2PJkiWoVq0abGxsMHr06GyP
/7rnYZR0e16mHEb6tJgO/fSTED16yI7iudOnhXBxESItrYB3EBFh0K+DJ0+eCFdXV/HLL7+IzMxM
sXXrVmFubq45kfnBgwdi+/btIjU1VSQmJooePXqIzp07a36+ZcuWomrVquLGjRsiISFBeHh4CDc3
N3HkyBGRmZkpBgwYIAYPHqy5vUqlEu+++66Ij48XUVFRolq1amL58uVCCCF27twp3NzcxJUrV4Ra
rRY//PCD8PLyEkIIcf/+fWFhYSG2bdsmMjMzxfz580XRokVzPZH5p59+ErVr1xZhYWFCCCEuXrwo
Hjx4IB48eCCsra3F+vXrhVqtFps2bRI2Njbi4cOHIikpSVhaWmp+5s6dO+Ly5ctCCCFWrVol3nnn
nWzPo1OnTiIhIUFERUWJMmXKiICAgDc+j5fl9rdhyH8zOVFWtHmktH8EJl9SkhAODkJcvCg7EtK+
vRCLFxfuPvL0OtDWocz5FBQUJMqXL5/ta15eXpoE9rILFy4IGxsbzefe3t5ixowZms8nTJgg2rdv
r/l8z549ol69eprPVSqVOHDggObzxYsXi/fee08IIUS7du2yJSS1Wi1KliwpIiMjxZo1a0TTpk2z
xeLs7JxrAqtevbrYvXv3K19fu3ataNKkSbavNW3aVKxevVokJycLa2trsW3bNpGSkpLtNjklsBMn
Tmg+79mzp5g9e/Zrn0dUVNQr8RhLAuMpRMZAXZgmTaIiPtlCQgqw9lVQ2kph+RQbG6s5EfmZChUq
aKbmUlJSMGLECFSsWBFWVlZo2bIlEhISsk3dObzQlqR48eIoW7Zsts+TkpKy3b+Li4vm/11dXREb
GwuAToL+9NNPYWNjAxsbG9jZ2QEAYmJicPv2bTg7O+d6Py+Ljo5GlSpVcny+rq6urzzf2NhYlCxZ
Eps3b8Yff/yB8uXLo2PHjrh69Wquj1GuXDnN/5csWVLzPF/3PIwVJzDGnvrkEyA8HNi3T14MQlCT
+S+/zOfal8I4Ojq+cmGNjIzUVPfNmzcPYWFhCAkJQUJCAoKCgl679pSXqsAX14OioqI0CdTV1RVL
ly5FfHy85iM5ORlNmzaFo6MjoqOjNT8nhMj2+ctcXFwQHh7+ytednJyyrck9e77PYmjTpg0OHjyI
O3fuwN3dHcOHD3/j83lZbs/j7bffzvd9KQUnMMaeeuut55uGnzyRE8P27bTvqwDXL0Xx8vJC0aJF
sWDBAmRkZGD79u04c+aM5vtJSUkoUaIErKys8PDhQ0yfPv2V+3gxmeWW2F40d+5cPHr0CNHR0Viw
YAF69eoFAPj4448xY8YMhD7d0Z6QkAA/Pz8AQPv27XH58mXs2LEDmZmZWLBgAe7cuZPrYwwbNgxT
p05FeHg4hBC4ePEiHj58iPbt2yMsLAybNm1CZmYmNm/ejCtXrqBjx464d+8edu3aheTkZJibm6NU
qVIokqd9E8iW1F/3PIwVJzDGXtCuHW2nmj9f/4+dkkJNhhctAooW1f/j65O5uTm2b9+O1atXw87O
Dlu2bEG3bt003x83bhxSU1Nhb28PLy8vvP/++6+Msl78PKe9WS9//sEHH6Bhw4aoX78+OnbsiCFP
5873lDcAAAopSURBVGg7d+6MSZMmoXfv3rCyskLt2rU1e6/s7e3h5+eHyZMnw97eHuHh4XjnnXdy
fV6fffYZevbsiTZt2sDKygrDhw9HWloabG1tsXfvXsybNw/29vaYO3cu9u7dC1tbW2RlZWH+/Plw
cnKCnZ0djh8/jt+fHhn+8vPK6Tk++9rrnoex4ma+jL3k+nWgSRPgn3+Al5ZpdGrKFDqj7GkFdaHx
6+A5MzMzhIeHo3LlyrJDMQjczJcxI1WlCvDxx8AXX+jvMcPDgT/+AObM0d9jMqZ0nMAYy8GXXwJn
zgD6WEIQghpnTJyo3xGfKVFCiyqWfzyFyFguzp4F2renRFahgu4eZ9kyYOFCery33tLe/fLrgOXG
WKYQOYEx9hpz5wI7dgBBQboprPj7b6B1a+Cvv4Dq1bV73/w6YLkxlgTGU4iMvcZnn1HD3xyquAvt
8WOgRw9gwQLtJy/GTAGPwBh7gzt36DTk5cuBDh20c59CAL16AXZ2wNOKaa3j1wHLjbGMwIx8twlj
hVeuHE0j+vgA69cDbdoU7v6EoHO+wsOBtWu1E2NObGxsuHiB5cjGxkZ2CFrBIzDG8uivv4AuXejg
43ffLdh9CEH9FvftAw4dAhwdtRsjY4WhtGsnr4EZucDAQNkhGIzC/i7eeQfYupWm/v78M/8/n5VF
Z48dPUpFITKTF/9dPMe/C+UymATm5+eHmjVrokiRIjh//nyutwsICIC7uzuqVq2K2bNn6zFCZeIX
53Pa+F20bEkjsD596CTn5OS8/VxsLNCzJxAaChw5QmtfMvHfxXP8u1Aug0lgtWvXxo4dO9CiRYtc
b6NWqzF69GgEBAQgNDQUmzZtwn///afHKBmj6cNLl4C7d4E6dYCDB3M/USQxEfjmG6B2berw4e8P
WFrqN17GjJXBFHG4u7u/8TYhISFwc3NDxYoVAQC9e/fGrl27UKNGDR1Hx1h2ZcpQQYe/PzBmDJCQ
AHh700fJksDVq0BYGHD8OO3zOn9et5uhGTNJujwtsyC8vb3FuXPncvyen5+fGDZsmObzdevWidGj
R79yOwD8wR/8wR/8UYAPJdHrCKx169Y5nqUzY8YMdOrU6Y0/n9eSYKGgKhrGGGMFo9cEdujQoUL9
vJOTU7bTUKOjo1857psxxphpMJgijhflNoLy9PTEtWvXEBERgfT0dGzevBk+Pj56jo4xxpghMJgE
tmPHDri4uCA4OBgdOnTA+++/DwCIjY1Fh6f9e4oWLYpFixahbdu28PDwQK9evbiAgzHGTJTRdeII
CAjAuHHjoFarMWzYMEyaNEl2SFJER0djwIABuHfvHlQqFT766COMHTtWdlhSqdVqeHp6wtnZGXv2
7JEdjjSPHj3CsGHDcPnyZahUKqxcuRJvv/227LCkmDlzJtavXw8zMzPUrl0bq1atQrFixWSHpRdD
hgzBvn37ULZsWVy6dAkA8PDhQ/Tq1QuRkZGoWLEitmzZAmtra8mR5s5gRmDawPvEnjM3N8f8+fNx
+fJlBAcH47fffjPZ38Uzv/76Kzw8PEy+P+Cnn36K9u3b47///sPFixdNdhYjIiICy5Ytw/nz53Hp
0iWo1Wr4+vrKDktvBg8ejICAgGxfmzVrFlq3bo2wsDC89957mDVrlqTo8saoEtiL+8TMzc01+8RM
Ubly5VCvXj0AQOnSpVGjRg3ExsZKjkqeW7duYf/+/Rg2bJhJV6kmJCTg+PHjGDJkCACalreyspIc
lRyWlpYwNzdHSkoKMjMzkZKSAicTOhK7efPmrzT13b17NwYOHAgAGDhwIHbu3CkjtDwzqgQWExMD
FxcXzefOzs6IiYmRGJFhiIiIwIULF9CkSRPZoUgzfvx4zJkzB2ZmRvUnn283b95EmTJlMHjwYDRo
0ADDhw9HSkqK7LCksLW1xYQJE+Dq6ory5cvD2toarVq1kh2WVHfv3oWDgwMAwMHBAXfv3pUc0esZ
1avZ1KeGcpKUlITu3bvj119/RenSpWWHI8XevXtRtmxZ1K9f36RHXwCQmZmJ8+fPY9SoUTh//jxK
lSpl8NNEunL9+nX88ssviIiIQGxsLJKSkrBhwwbZYRkMlUpl8NdUo0pgvE8su4yMDHTr1g39+vVD
586dZYcjzcmTJ7F7925UqlQJffr0wdGjRzFgwADZYUnh7OwMZ2dnNGrUCADQvXv31zbPNmZnz56F
l5cX7OzsULRoUXTt2hUnT56UHZZUDg4OmmYTt2/fRtmyZSVH9HpGlcB4n9hzQggMHToUHh4eGDdu
nOxwpJoxYwaio6Nx8+ZN+Pr64t1338VaXZ4kacDKlSsHFxcXhIWFAQAOHz6MmjVrSo5KDnd3dwQH
ByM1NRVCCBw+fBgeHh6yw5LKx8cHa9asAQCsWbPG4N/4GkwzX214cZ+YWq3G0KFDTbbC6sSJE1i/
fj3q1KmD+vXrA6CS4Xbt2kmOTD5DnxbRtYULF6Jv375IT09HlSpVsGrVKtkhSVG3bl0MGDAAnp6e
MDMzQ4MGDfDRRx/JDktv+vTpg6CgIMTFxcHFxQXfffcdJk+ejJ49e2LFihWaMnpDZnT7wBhjjJkG
o5pCZIwxZjo4gTHGGFMkTmCMMcYUiRMYY4wxReIExpiOvGnjeEREBGrXrp2v+xw0aBC2bdtWmLAY
MxqcwBjTEV2U6yuhOwJj+sIJjLF8OnPmDOrWrYsnT54gOTkZtWrVQmhoaK63T0pKQqtWrdCwYUPU
qVMHu3fv1nwvMzMT/fr1g4eHB3r06IHU1FQAwLlz5+Dt7Q1PT0+0a9dO0x0ByP3AV8ZMDe8DY6wA
pk6dirS0NKSmpsLFxSXHc+csLCyQmJgItVqNlJQUWFhYIC4uDk2bNtV0jKlcuTJOnDiBpk2bajqn
fPrpp2jRogX27NkDOzs7bN68GQcPHsSKFSswePBgdOzYEd26dZPwrBkzLEbViYMxffnmm2/g6emJ
EiVKYOHCha+9bVZWFr788kscP34cZmZmiI2Nxb179wAALi4uaNq0KQCgX79+WLBgAdq1a4fLly9r
OqOr1WqUL19et0+IMQXiBMZYAcTFxSE5ORlqtRqpqakoWbJkrrfdsGED4uLicP78eRQpUgSVKlVC
WloagOzrZEIIqFQqCCFQs2ZNk28sy9ib8BoYYwUwYsQI/PDDD/jwww9znD580ePHj1G2bFkUKVIE
f/75JyIjIzXfi4qKQnBwMABg48aNaN68OapXr4779+9rvp6RkfHaNTbGTBUnMMbyae3atShWrBh6
9+6NyZMn48yZMwgMDHzlds9GV3379sXZs2dRp04drFu3LluD6erVq+O3336Dh4cHEhISMHLkSJib
m2Pr1q2YNGkS6tWrh/r16+PUqVOv3C9jpo6LOBhjjCkSj8AYY4wpEicwxhhjisQJjDHGmCJxAmOM
MaZInMAYY4wpEicwxhhjisQJjDHGmCJxAmOMMaZInMAYY4wpEicwxhhjivR/vfqsjLsSRhIAAAAA
SUVORK5CYII=
"></img>
</div>
</div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>It just doesn't have the same effect. Matplotlib is great for scientific plots, but sometimes you don't want to be so precise.</p>
<p>This subject has recently come up on the matplotlib mailing list, and started some interesting discussions.
As near as I can tell, this started with a thread on a
<a href="http://mathematica.stackexchange.com/questions/11350/xkcd-style-graphs">mathematica list</a>
which prompted a thread on the <a href="http://matplotlib.1069221.n5.nabble.com/XKCD-style-graphs-td39226.html">matplotlib list</a>
wondering if the same could be done in matplotlib.</p>
<p>Damon McDougall offered a quick
<a href="http://www.mail-archive.com/matplotlib-users@lists.sourceforge.net/msg25499.html">solution</a>
which was improved by Fernando Perez in <a href="http://nbviewer.ipython.org/3835181/">this notebook</a>, and
within a few days there was a <a href="https://github.com/matplotlib/matplotlib/pull/1329">matplotlib pull request</a> offering a very general
way to create sketch-style plots in matplotlib. Only a few days from a cool idea to a
working implementation: this is one of the most incredible aspects of package development on github.</p>
<p>The pull request looks really nice, but will likely not be included in a released version of
matplotlib until at least version 1.3. In the mean-time, I wanted a way to play around with
these types of plots in a way that is compatible with the current release of matplotlib. To do that,
I created the following code:</p>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<h2>
The Code: XKCDify
</h2>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>XKCDify will take a matplotlib <code>Axes</code> instance, and modify the plot elements in-place to make
them look hand-drawn.
First off, we'll need to make sure we have the Humor Sans font.
It can be downloaded using the command below.</p>
<p>Next we'll create a function <code>xkcd_line</code> to add jitter to lines. We want this to be very general, so
we'll normalize the size of the lines, and use a low-pass filter to add correlated noise, perpendicular
to the direction of the line. There are a few parameters for this filter that can be tweaked to
customize the appearance of the jitter.</p>
<p>Finally, we'll create a function which accepts a matplotlib axis, and calls <code>xkcd_line</code> on
all lines in the axis. Additionally, we'll switch the font of all text in the axes, and add
some background lines for a nice effect where lines cross. We'll also draw axes, and move the
axes labels and titles to the appropriate location.</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[3]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">XKCD plot generator</span>
<span class="sd">-------------------</span>
<span class="sd">Author: Jake Vanderplas</span>
<span class="sd">This is a script that will take any matplotlib line diagram, and convert it</span>
<span class="sd">to an XKCD-style plot. It will work for plots with line &amp; text elements,</span>
<span class="sd">including axes labels and titles (but not axes tick labels).</span>
<span class="sd">The idea for this comes from work by Damon McDougall</span>
<span class="sd"> http://www.mail-archive.com/matplotlib-users@lists.sourceforge.net/msg25499.html</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pylab</span> <span class="kn">as</span> <span class="nn">pl</span>
<span class="kn">from</span> <span class="nn">scipy</span> <span class="kn">import</span> <span class="n">interpolate</span><span class="p">,</span> <span class="n">signal</span>
<span class="kn">import</span> <span class="nn">matplotlib.font_manager</span> <span class="kn">as</span> <span class="nn">fm</span>
<span class="c"># We need a special font for the code below. It can be downloaded this way:</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">urllib2</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="s">&#39;Humor-Sans.ttf&#39;</span><span class="p">):</span>
<span class="n">fhandle</span> <span class="o">=</span> <span class="n">urllib2</span><span class="o">.</span><span class="n">urlopen</span><span class="p">(</span><span class="s">&#39;http://antiyawn.com/uploads/Humor-Sans.ttf&#39;</span><span class="p">)</span>
<span class="nb">open</span><span class="p">(</span><span class="s">&#39;Humor-Sans.ttf&#39;</span><span class="p">,</span> <span class="s">&#39;wb&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="n">fhandle</span><span class="o">.</span><span class="n">read</span><span class="p">())</span>
<span class="k">def</span> <span class="nf">xkcd_line</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">xlim</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">ylim</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
<span class="n">mag</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">f1</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">f2</span><span class="o">=</span><span class="mf">0.05</span><span class="p">,</span> <span class="n">f3</span><span class="o">=</span><span class="mi">15</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Mimic a hand-drawn line from (x, y) data</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> x, y : array_like</span>
<span class="sd"> arrays to be modified</span>
<span class="sd"> xlim, ylim : data range</span>
<span class="sd"> the assumed plot range for the modification. If not specified,</span>
<span class="sd"> they will be guessed from the data</span>
<span class="sd"> mag : float</span>
<span class="sd"> magnitude of distortions</span>
<span class="sd"> f1, f2, f3 : int, float, int</span>
<span class="sd"> filtering parameters. f1 gives the size of the window, f2 gives</span>
<span class="sd"> the high-frequency cutoff, f3 gives the size of the filter</span>
<span class="sd"> </span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> x, y : ndarrays</span>
<span class="sd"> The modified lines</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
<span class="c"># get limits for rescaling</span>
<span class="k">if</span> <span class="n">xlim</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">xlim</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">x</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<span class="k">if</span> <span class="n">ylim</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">ylim</span> <span class="o">=</span> <span class="p">(</span><span class="n">y</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">y</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<span class="k">if</span> <span class="n">xlim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">==</span> <span class="n">xlim</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
<span class="n">xlim</span> <span class="o">=</span> <span class="n">ylim</span>
<span class="k">if</span> <span class="n">ylim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">==</span> <span class="n">ylim</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
<span class="n">ylim</span> <span class="o">=</span> <span class="n">xlim</span>
<span class="c"># scale the data</span>
<span class="n">x_scaled</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">xlim</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="o">*</span> <span class="mf">1.</span> <span class="o">/</span> <span class="p">(</span><span class="n">xlim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">xlim</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="n">y_scaled</span> <span class="o">=</span> <span class="p">(</span><span class="n">y</span> <span class="o">-</span> <span class="n">ylim</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="o">*</span> <span class="mf">1.</span> <span class="o">/</span> <span class="p">(</span><span class="n">ylim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">ylim</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="c"># compute the total distance along the path</span>
<span class="n">dx</span> <span class="o">=</span> <span class="n">x_scaled</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="o">-</span> <span class="n">x_scaled</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="n">dy</span> <span class="o">=</span> <span class="n">y_scaled</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="o">-</span> <span class="n">y_scaled</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="n">dist_tot</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">dx</span> <span class="o">*</span> <span class="n">dx</span> <span class="o">+</span> <span class="n">dy</span> <span class="o">*</span> <span class="n">dy</span><span class="p">))</span>
<span class="c"># number of interpolated points is proportional to the distance</span>
<span class="n">Nu</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mi">200</span> <span class="o">*</span> <span class="n">dist_tot</span><span class="p">)</span>
<span class="n">u</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">Nu</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="mf">1.</span> <span class="o">/</span> <span class="p">(</span><span class="n">Nu</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="c"># interpolate curve at sampled points</span>
<span class="n">k</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">res</span> <span class="o">=</span> <span class="n">interpolate</span><span class="o">.</span><span class="n">splprep</span><span class="p">([</span><span class="n">x_scaled</span><span class="p">,</span> <span class="n">y_scaled</span><span class="p">],</span> <span class="n">s</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="n">k</span><span class="p">)</span>
<span class="n">x_int</span><span class="p">,</span> <span class="n">y_int</span> <span class="o">=</span> <span class="n">interpolate</span><span class="o">.</span><span class="n">splev</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">res</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="c"># we&#39;ll perturb perpendicular to the drawn line</span>
<span class="n">dx</span> <span class="o">=</span> <span class="n">x_int</span><span class="p">[</span><span class="mi">2</span><span class="p">:]</span> <span class="o">-</span> <span class="n">x_int</span><span class="p">[:</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span>
<span class="n">dy</span> <span class="o">=</span> <span class="n">y_int</span><span class="p">[</span><span class="mi">2</span><span class="p">:]</span> <span class="o">-</span> <span class="n">y_int</span><span class="p">[:</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span>
<span class="n">dist</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">dx</span> <span class="o">*</span> <span class="n">dx</span> <span class="o">+</span> <span class="n">dy</span> <span class="o">*</span> <span class="n">dy</span><span class="p">)</span>
<span class="c"># create a filtered perturbation</span>
<span class="n">coeffs</span> <span class="o">=</span> <span class="n">mag</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">x_int</span><span class="p">)</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">signal</span><span class="o">.</span><span class="n">firwin</span><span class="p">(</span><span class="n">f1</span><span class="p">,</span> <span class="n">f2</span> <span class="o">*</span> <span class="n">dist_tot</span><span class="p">,</span> <span class="n">window</span><span class="o">=</span><span class="p">(</span><span class="s">&#39;kaiser&#39;</span><span class="p">,</span> <span class="n">f3</span><span class="p">))</span>
<span class="n">response</span> <span class="o">=</span> <span class="n">signal</span><span class="o">.</span><span class="n">lfilter</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">coeffs</span><span class="p">)</span>
<span class="n">x_int</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+=</span> <span class="n">response</span> <span class="o">*</span> <span class="n">dy</span> <span class="o">/</span> <span class="n">dist</span>
<span class="n">y_int</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+=</span> <span class="n">response</span> <span class="o">*</span> <span class="n">dx</span> <span class="o">/</span> <span class="n">dist</span>
<span class="c"># un-scale data</span>
<span class="n">x_int</span> <span class="o">=</span> <span class="n">x_int</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">xlim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">xlim</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="o">+</span> <span class="n">xlim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">y_int</span> <span class="o">=</span> <span class="n">y_int</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">ylim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">ylim</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="o">+</span> <span class="n">ylim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">return</span> <span class="n">x_int</span><span class="p">,</span> <span class="n">y_int</span>
<span class="k">def</span> <span class="nf">XKCDify</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">mag</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">f1</span><span class="o">=</span><span class="mi">50</span><span class="p">,</span> <span class="n">f2</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span> <span class="n">f3</span><span class="o">=</span><span class="mi">15</span><span class="p">,</span>
<span class="n">bgcolor</span><span class="o">=</span><span class="s">&#39;w&#39;</span><span class="p">,</span>
<span class="n">xaxis_loc</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
<span class="n">yaxis_loc</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
<span class="n">xaxis_arrow</span><span class="o">=</span><span class="s">&#39;+&#39;</span><span class="p">,</span>
<span class="n">yaxis_arrow</span><span class="o">=</span><span class="s">&#39;+&#39;</span><span class="p">,</span>
<span class="n">ax_extend</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span>
<span class="n">expand_axes</span><span class="o">=</span><span class="bp">False</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Make axis look hand-drawn</span>
<span class="sd"> This adjusts all lines, text, legends, and axes in the figure to look</span>
<span class="sd"> like xkcd plots. Other plot elements are not modified.</span>
<span class="sd"> </span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> ax : Axes instance</span>
<span class="sd"> the axes to be modified.</span>
<span class="sd"> mag : float</span>
<span class="sd"> the magnitude of the distortion</span>
<span class="sd"> f1, f2, f3 : int, float, int</span>
<span class="sd"> filtering parameters. f1 gives the size of the window, f2 gives</span>
<span class="sd"> the high-frequency cutoff, f3 gives the size of the filter</span>
<span class="sd"> xaxis_loc, yaxis_log : float</span>
<span class="sd"> The locations to draw the x and y axes. If not specified, they</span>
<span class="sd"> will be drawn from the bottom left of the plot</span>
<span class="sd"> xaxis_arrow, yaxis_arrow : str</span>
<span class="sd"> where to draw arrows on the x/y axes. Options are &#39;+&#39;, &#39;-&#39;, &#39;+-&#39;, or &#39;&#39;</span>
<span class="sd"> ax_extend : float</span>
<span class="sd"> How far (fractionally) to extend the drawn axes beyond the original</span>
<span class="sd"> axes limits</span>
<span class="sd"> expand_axes : bool</span>
<span class="sd"> if True, then expand axes to fill the figure (useful if there is only</span>
<span class="sd"> a single axes in the figure)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c"># Get axes aspect</span>
<span class="n">ext</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_window_extent</span><span class="p">()</span><span class="o">.</span><span class="n">extents</span>
<span class="n">aspect</span> <span class="o">=</span> <span class="p">(</span><span class="n">ext</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">-</span> <span class="n">ext</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span> <span class="o">/</span> <span class="p">(</span><span class="n">ext</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">-</span> <span class="n">ext</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="n">xlim</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_xlim</span><span class="p">()</span>
<span class="n">ylim</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()</span>
<span class="n">xspan</span> <span class="o">=</span> <span class="n">xlim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">xlim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">yspan</span> <span class="o">=</span> <span class="n">ylim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">xlim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">xax_lim</span> <span class="o">=</span> <span class="p">(</span><span class="n">xlim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">ax_extend</span> <span class="o">*</span> <span class="n">xspan</span><span class="p">,</span>
<span class="n">xlim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">ax_extend</span> <span class="o">*</span> <span class="n">xspan</span><span class="p">)</span>
<span class="n">yax_lim</span> <span class="o">=</span> <span class="p">(</span><span class="n">ylim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">ax_extend</span> <span class="o">*</span> <span class="n">yspan</span><span class="p">,</span>
<span class="n">ylim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">ax_extend</span> <span class="o">*</span> <span class="n">yspan</span><span class="p">)</span>
<span class="k">if</span> <span class="n">xaxis_loc</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">xaxis_loc</span> <span class="o">=</span> <span class="n">ylim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="n">yaxis_loc</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">yaxis_loc</span> <span class="o">=</span> <span class="n">xlim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="c"># Draw axes</span>
<span class="n">xaxis</span> <span class="o">=</span> <span class="n">pl</span><span class="o">.</span><span class="n">Line2D</span><span class="p">([</span><span class="n">xax_lim</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">xax_lim</span><span class="p">[</span><span class="mi">1</span><span class="p">]],</span> <span class="p">[</span><span class="n">xaxis_loc</span><span class="p">,</span> <span class="n">xaxis_loc</span><span class="p">],</span>
<span class="n">linestyle</span><span class="o">=</span><span class="s">&#39;-&#39;</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s">&#39;k&#39;</span><span class="p">)</span>
<span class="n">yaxis</span> <span class="o">=</span> <span class="n">pl</span><span class="o">.</span><span class="n">Line2D</span><span class="p">([</span><span class="n">yaxis_loc</span><span class="p">,</span> <span class="n">yaxis_loc</span><span class="p">],</span> <span class="p">[</span><span class="n">yax_lim</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">yax_lim</span><span class="p">[</span><span class="mi">1</span><span class="p">]],</span>
<span class="n">linestyle</span><span class="o">=</span><span class="s">&#39;-&#39;</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s">&#39;k&#39;</span><span class="p">)</span>
<span class="c"># Label axes3, 0.5, &#39;hello&#39;, fontsize=14)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="n">xax_lim</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">xaxis_loc</span> <span class="o">-</span> <span class="mf">0.02</span> <span class="o">*</span> <span class="n">yspan</span><span class="p">,</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_xlabel</span><span class="p">(),</span>
<span class="n">fontsize</span><span class="o">=</span><span class="mi">14</span><span class="p">,</span> <span class="n">ha</span><span class="o">=</span><span class="s">&#39;right&#39;</span><span class="p">,</span> <span class="n">va</span><span class="o">=</span><span class="s">&#39;top&#39;</span><span class="p">,</span> <span class="n">rotation</span><span class="o">=</span><span class="mi">12</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="n">yaxis_loc</span> <span class="o">-</span> <span class="mf">0.02</span> <span class="o">*</span> <span class="n">xspan</span><span class="p">,</span> <span class="n">yax_lim</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_ylabel</span><span class="p">(),</span>
<span class="n">fontsize</span><span class="o">=</span><span class="mi">14</span><span class="p">,</span> <span class="n">ha</span><span class="o">=</span><span class="s">&#39;right&#39;</span><span class="p">,</span> <span class="n">va</span><span class="o">=</span><span class="s">&#39;top&#39;</span><span class="p">,</span> <span class="n">rotation</span><span class="o">=</span><span class="mi">78</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s">&#39;&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s">&#39;&#39;</span><span class="p">)</span>
<span class="c"># Add title</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mf">0.5</span> <span class="o">*</span> <span class="p">(</span><span class="n">xax_lim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">xax_lim</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">yax_lim</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">ax</span><span class="o">.</span><span class="n">get_title</span><span class="p">(),</span>
<span class="n">ha</span><span class="o">=</span><span class="s">&#39;center&#39;</span><span class="p">,</span> <span class="n">va</span><span class="o">=</span><span class="s">&#39;bottom&#39;</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s">&#39;&#39;</span><span class="p">)</span>
<span class="n">Nlines</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ax</span><span class="o">.</span><span class="n">lines</span><span class="p">)</span>
<span class="n">lines</span> <span class="o">=</span> <span class="p">[</span><span class="n">xaxis</span><span class="p">,</span> <span class="n">yaxis</span><span class="p">]</span> <span class="o">+</span> <span class="p">[</span><span class="n">ax</span><span class="o">.</span><span class="n">lines</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">Nlines</span><span class="p">)]</span>
<span class="k">for</span> <span class="n">line</span> <span class="ow">in</span> <span class="n">lines</span><span class="p">:</span>
<span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">line</span><span class="o">.</span><span class="n">get_data</span><span class="p">()</span>
<span class="n">x_int</span><span class="p">,</span> <span class="n">y_int</span> <span class="o">=</span> <span class="n">xkcd_line</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">xlim</span><span class="p">,</span> <span class="n">ylim</span><span class="p">,</span>
<span class="n">mag</span><span class="p">,</span> <span class="n">f1</span><span class="p">,</span> <span class="n">f2</span><span class="p">,</span> <span class="n">f3</span><span class="p">)</span>
<span class="c"># create foreground and background line</span>
<span class="n">lw</span> <span class="o">=</span> <span class="n">line</span><span class="o">.</span><span class="n">get_linewidth</span><span class="p">()</span>
<span class="n">line</span><span class="o">.</span><span class="n">set_linewidth</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">lw</span><span class="p">)</span>
<span class="n">line</span><span class="o">.</span><span class="n">set_data</span><span class="p">(</span><span class="n">x_int</span><span class="p">,</span> <span class="n">y_int</span><span class="p">)</span>
<span class="c"># don&#39;t add background line for axes</span>
<span class="k">if</span> <span class="p">(</span><span class="n">line</span> <span class="ow">is</span> <span class="ow">not</span> <span class="n">xaxis</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span><span class="n">line</span> <span class="ow">is</span> <span class="ow">not</span> <span class="n">yaxis</span><span class="p">):</span>
<span class="n">line_bg</span> <span class="o">=</span> <span class="n">pl</span><span class="o">.</span><span class="n">Line2D</span><span class="p">(</span><span class="n">x_int</span><span class="p">,</span> <span class="n">y_int</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">bgcolor</span><span class="p">,</span>
<span class="n">linewidth</span><span class="o">=</span><span class="mi">8</span> <span class="o">*</span> <span class="n">lw</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">add_line</span><span class="p">(</span><span class="n">line_bg</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">add_line</span><span class="p">(</span><span class="n">line</span><span class="p">)</span>
<span class="c"># Draw arrow-heads at the end of axes lines</span>
<span class="n">arr1</span> <span class="o">=</span> <span class="mf">0.03</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">arr2</span> <span class="o">=</span> <span class="mf">0.02</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="n">arr1</span><span class="p">[::</span><span class="mi">2</span><span class="p">]</span> <span class="o">+=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">0.005</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">arr2</span><span class="p">[::</span><span class="mi">2</span><span class="p">]</span> <span class="o">+=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">0.005</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">xaxis</span><span class="o">.</span><span class="n">get_data</span><span class="p">()</span>
<span class="k">if</span> <span class="s">&#39;+&#39;</span> <span class="ow">in</span> <span class="nb">str</span><span class="p">(</span><span class="n">xaxis_arrow</span><span class="p">):</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">arr1</span> <span class="o">*</span> <span class="n">xspan</span> <span class="o">*</span> <span class="n">aspect</span><span class="p">,</span>
<span class="n">y</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">arr2</span> <span class="o">*</span> <span class="n">yspan</span><span class="p">,</span>
<span class="n">color</span><span class="o">=</span><span class="s">&#39;k&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">if</span> <span class="s">&#39;-&#39;</span> <span class="ow">in</span> <span class="nb">str</span><span class="p">(</span><span class="n">xaxis_arrow</span><span class="p">):</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">arr1</span> <span class="o">*</span> <span class="n">xspan</span> <span class="o">*</span> <span class="n">aspect</span><span class="p">,</span>
<span class="n">y</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">arr2</span> <span class="o">*</span> <span class="n">yspan</span><span class="p">,</span>
<span class="n">color</span><span class="o">=</span><span class="s">&#39;k&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">yaxis</span><span class="o">.</span><span class="n">get_data</span><span class="p">()</span>
<span class="k">if</span> <span class="s">&#39;+&#39;</span> <span class="ow">in</span> <span class="nb">str</span><span class="p">(</span><span class="n">yaxis_arrow</span><span class="p">):</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">arr2</span> <span class="o">*</span> <span class="n">xspan</span> <span class="o">*</span> <span class="n">aspect</span><span class="p">,</span>
<span class="n">y</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">arr1</span> <span class="o">*</span> <span class="n">yspan</span><span class="p">,</span>
<span class="n">color</span><span class="o">=</span><span class="s">&#39;k&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">if</span> <span class="s">&#39;-&#39;</span> <span class="ow">in</span> <span class="nb">str</span><span class="p">(</span><span class="n">yaxis_arrow</span><span class="p">):</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">arr2</span> <span class="o">*</span> <span class="n">xspan</span> <span class="o">*</span> <span class="n">aspect</span><span class="p">,</span>
<span class="n">y</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">arr1</span> <span class="o">*</span> <span class="n">yspan</span><span class="p">,</span>
<span class="n">color</span><span class="o">=</span><span class="s">&#39;k&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="c"># Change all the fonts to humor-sans.</span>
<span class="n">prop</span> <span class="o">=</span> <span class="n">fm</span><span class="o">.</span><span class="n">FontProperties</span><span class="p">(</span><span class="n">fname</span><span class="o">=</span><span class="s">&#39;Humor-Sans.ttf&#39;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
<span class="k">for</span> <span class="n">text</span> <span class="ow">in</span> <span class="n">ax</span><span class="o">.</span><span class="n">texts</span><span class="p">:</span>
<span class="n">text</span><span class="o">.</span><span class="n">set_fontproperties</span><span class="p">(</span><span class="n">prop</span><span class="p">)</span>
<span class="c"># modify legend</span>
<span class="n">leg</span> <span class="o">=</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_legend</span><span class="p">()</span>
<span class="k">if</span> <span class="n">leg</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">leg</span><span class="o">.</span><span class="n">set_frame_on</span><span class="p">(</span><span class="bp">False</span><span class="p">)</span>
<span class="k">for</span> <span class="n">child</span> <span class="ow">in</span> <span class="n">leg</span><span class="o">.</span><span class="n">get_children</span><span class="p">():</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">child</span><span class="p">,</span> <span class="n">pl</span><span class="o">.</span><span class="n">Line2D</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">child</span><span class="o">.</span><span class="n">get_data</span><span class="p">()</span>
<span class="n">child</span><span class="o">.</span><span class="n">set_data</span><span class="p">(</span><span class="n">xkcd_line</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">mag</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">f1</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">f2</span><span class="o">=</span><span class="mf">0.001</span><span class="p">))</span>
<span class="n">child</span><span class="o">.</span><span class="n">set_linewidth</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">child</span><span class="o">.</span><span class="n">get_linewidth</span><span class="p">())</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">child</span><span class="p">,</span> <span class="n">pl</span><span class="o">.</span><span class="n">Text</span><span class="p">):</span>
<span class="n">child</span><span class="o">.</span><span class="n">set_fontproperties</span><span class="p">(</span><span class="n">prop</span><span class="p">)</span>
<span class="c"># Set the axis limits</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="n">xax_lim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="mf">0.1</span> <span class="o">*</span> <span class="n">xspan</span><span class="p">,</span>
<span class="n">xax_lim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="mf">0.1</span> <span class="o">*</span> <span class="n">xspan</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="n">yax_lim</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="mf">0.1</span> <span class="o">*</span> <span class="n">yspan</span><span class="p">,</span>
<span class="n">yax_lim</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="mf">0.1</span> <span class="o">*</span> <span class="n">yspan</span><span class="p">)</span>
<span class="c"># adjust the axes</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xticks</span><span class="p">([])</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_yticks</span><span class="p">([])</span>
<span class="k">if</span> <span class="n">expand_axes</span><span class="p">:</span>
<span class="n">ax</span><span class="o">.</span><span class="n">figure</span><span class="o">.</span><span class="n">set_facecolor</span><span class="p">(</span><span class="n">bgcolor</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_axis_off</span><span class="p">()</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_position</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="k">return</span> <span class="n">ax</span>
</pre></div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<h2>
Testing it Out
</h2>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's test this out with a simple plot. We'll plot two curves, add some labels,
and then call <code>XKCDify</code> on the axis. I think the results are pretty nice!</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[4]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="o">%</span><span class="k">pylab</span> <span class="n">inline</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stdout">
<pre>
Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].
For more information, type &apos;help(pylab)&apos;.
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[5]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">pylab</span><span class="o">.</span><span class="n">axes</span><span class="p">()</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="mf">0.1</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="mi">5</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">),</span> <span class="s">&#39;b&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;damped sine&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="o">-</span><span class="n">np</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="mf">0.1</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="mi">5</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">),</span> <span class="s">&#39;r&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;damped cosine&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s">&#39;check it out!&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s">&#39;x label&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s">&#39;y label&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&#39;lower right&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="o">-</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="c">#XKCDify the axes -- this operates in-place</span>
<span class="n">XKCDify</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">xaxis_loc</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">yaxis_loc</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">xaxis_arrow</span><span class="o">=</span><span class="s">&#39;+-&#39;</span><span class="p">,</span> <span class="n">yaxis_arrow</span><span class="o">=</span><span class="s">&#39;+-&#39;</span><span class="p">,</span>
<span class="n">expand_axes</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[5]:</div>
<div class="output_subarea output_pyout">
<pre>&lt;matplotlib.axes.AxesSubplot at 0x2fecbd0&gt;</pre>
</div>
</div>
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNXXx7+zm00PSSAhhIQivTcpAkpvAhEQBQWkSywg
oij40lTqT0GsqFSlSe+R3luQXgKE0EtCT+/ZPe8fJ7ObQIBssrszm9zP8+wzk+zu3DPJ7nznnnuK
REQEgUAgEAgKCRqlDRAIBAKBwJYI4RMIBAJBoUIIn0AgEAgKFUL4BAKBQFCoEMInEAgEgkKFED6B
QGARbty4gYkTJ+LmzZtKmyIQPBchfAKBwCL8/fffmDBhAj799FOlTREInosQPoFdsGDBAvj7+0Oj
0eDll1/G/v37jc9Vq1YNd+/ezfF9p06dAgDo9XqMHDkSjo6O0Gg0Tz0CAgKQkpJifJ/8emdnZzg4
OKBLly64c+cOAGDx4sXw9vbG4cOH83w+I0aMgLu7O65du5bnYzyPkJAQlCtXznh+JUqUwOXLl1/4
viNHjiAwMBBxcXFmjzlw4EA4OTlh+/btiI2NzYvZAoFNcFDaAIHgRcycOROff/45/Pz88O233yI1
NRXLli3Da6+9BgBITk5GWlpaju9t1KgRUlNTsXr1avzwww/w8fHBN998Aycnp2yva9CgAZydnQEA
6enp6NWrF1avXo2aNWsiODgY+/fvx/79+/HOO+/g8uXLiI2Nxdq1a9G4cWN88skn+Ouvv3DlyhX4
+vrm6px27dqF5ORk3Lp1C8WKFUNSUtJzX1+0aFE4Ojrm6tiRkZHo3r070tPT8cMPP+DixYtYsGAB
2rdvj0OHDsHPz8/42vj4eHh4eBh/liQJkZGRmDdvHkaMGAEAiIuLy5V9gYGB6NmzJxYuXIjTp0+j
WbNmubJXILA5JBComMWLF5MkSVSxYkW6efPmU88/evSIPD09c3yOiEiSJCIiun//PkmSRPPnz3/h
mIMHDyZJkuiNN96gtLS0p56fMGECSZJE27ZtowsXLpBGo6EyZcrk+Npn8eWXX5IkSbRnzx569913
SZIk0mg05OTkRJIkPfWYPn16ro/dunVr8vLyop9++sn4u7Vr15KjoyO99tprxt+tW7eOtFotHTt2
LNv7GzVqRKVLlzaezzvvvJNr++S/zd69e3Ntr0Bga4TwCVRLZGQkeXl5kbe3N929ezfH1+zevZuq
Vq1KBoMhx+dl4UtOTiZJkmjkyJEUFRVlfMTGxmZ7fUhICEmSRK+99hplZGTkeEz54j516lSqXbs2
BQQE0JUrV8w6t0qVKmUTiKNHj9LFixfp1q1bJEkSde3albZu3Upbt26l0NDQXB/34MGDJEkSbdy4
8ann5JuI06dPExHRN998k+Nr9+7dS5Ik0axZs4y/y619M2bMII1GQydPnjTr7yEQ2BIhfALVMmXK
FJIkif73v/898zW7d+/ONouJj4+nqKgounbtGo0YMYIkSaLbt29TbGwsSZJETk5O5OzsTJIkkU6n
o9dffz2baLZr1440Gg0dOXLkmWPKwic/+vXrZ/a5lSlT5pkCIUkS/f3332Yfk4iobdu21KdPnxyf
MxgMVL58eZowYQIRETVu3Jg8PT0pMTEx2+vS0tLIx8eHHBwc6Pr162bZl5aWRhs2bMiT7QKBrRBr
fALVkpqaCo1Gg379+j33dadOncL58+fh5eWFVq1a4dKlS8bnJElCQEAAFi9eDADYsWMHatasif/+
+w81atSAv7//U2NWqVIFDRs2zLWdS5cuRalSpTBx4kQzzg4oVaoU6tSpY9Z7nsft27exa9cuXLhw
IcfnJUmCu7s7wsLCEBsbizNnzqB79+5wdXXN9jqdTodWrVph5cqVZgep6HQ6BAUF5fkcBAJbIKI6
BaqlbNmyMBgM2L59+3Nfl5CQgBo1aiAwMBCXLl1C69atsWXLFvTp08f4moyMDADAq6++Ck9PT7Rt
2/Yp0ZPHDA8Px40bN15o3+jRoxESEgInJydMnjwZX3zxRa7OKy0tDfHx8dBoLPv1W7FiBTp37oyK
FSvm+Pz69etx4cIFDBs2DNHR0UhKSoJWq83xtWfPnkXx4sVRvnx5i9ooEKgBIXwC1dKrVy+UKVMG
w4YNw71797I9d/ToUXz77beQJAlarRbDhw/Hli1bsGXLFixatAjt2rVDy5YtQZldtyIiIgAAjx8/
RnJyMu7evWt8ZA3dHz16NIgIffr0gV6vzzbm/PnzsXbtWtStWxcAzw5ff/11bNmyBR4eHpgxYwbW
rl37wvM6f/48oqOj8/W3yYmQkBB4e3s/9fuUlBRMnz4dPXr0wOTJk18YbXnmzBmEh4fjp59+gpub
m1k2EBEuXbr01N9OIFATQvgEqsXR0RErV6405u5NnToVYWFhmDZtGpo2bWoM72/SpAlmzpyJdu3a
oV27dihRogQAdu3JhIWFAQAqVKiAUqVKoWTJksbHBx98YHxdlSpV8Oeff+LQoUNo2LAh5syZg4sX
L6Jfv34YPHgw/P398cYbb2Do0KEoU6YMAKBp06aYM2cOAGD16tUvPK9Dhw4BYLegJalUqRLWrVuH
L774AnPnzsXcuXMxZcoUlCtXDtOmTcPMmTMxcuRIADDO9AwGw1PHCQ4ORt26ddGzZ0+zbfjxxx9R
pUoVVKpUyWo5igJBfhFrfAJVU79+fRw9ehRTpkzBuHHjMGbMGOh0OgwdOhRffvkl9u3b90yXYYMG
DVC7dm0AQMWKFVG2bFm0aNECAF/4O3bsCA8Pj6dmQIMHD0aVKlUwbtw4BAcHAwB8fHwwZ84cvPLK
KwCAn3/+Odt7evTogdTUVFSuXPmF53T//n0AnGP4JLdu3Xrh+5/FtGnT4Ovriz///BMPHjyATqdD
cHAwZs2aha5du2Z7balSpVCjRg1s3LgRycnJcHFxAcDCdfToUZw7dy7HMV5kn7e3NyRJgqOjI9zd
3fN8LgKBVVE4uEaQybVr12jTpk107949pU2xK/bv30/Dhw9X2gyzkKNCBw4c+NRzBw8eJHd3d7p2
7ZrV7Vi4cCFJkkTBwcE0Z84cGj9+PDk4ONDChQuf+R5b2icQWAuJKHMRRKAYFy5cQNu2bXHnzh00
b94ce/bsUdokgRWZNm0apk2bhn///RdNmjRR1JZu3bph/fr1ANhlPGXKFFFxRVDgEcKnIGlpaZg2
bRomT56creTWr7/+io8//lhBywQCgaDgIoRPIUJDQzF48GBj0EXlypURHh4OgIMy1qxZ89S6jEAg
EAjyj4jqtAEPHjxAeno6AM45Gz58OJo0aYKwsDBUqFABu3btMgY6dOvWDUSEd999N1/V/wUCgUCQ
M0L4rMzjx48xfPhwY3uc3r174+eff4ZGo8Ho0aNx5swZtGzZ0ujq7N69O95//32kpKQgKCgIDx8+
VNJ8gUAgKHCIdAYrs2vXLixbtgyDBw8GAEyYMAH37t3DH3/8ka1clSx8Tk5OmDVrFu7du4f27dvD
x8dHEbsFAoGgoCKELx+kpaUhJSUFRYoUAQBjtQo5r0ySJBw9ehRVq1ZFjRo1AAD16tXD4cOHsyVX
AzC6QnU6HRwcHLBu3bqnXiMQCASC/CNcnflg9erVCA4OxtatW5GRkQGtVgutVgtJkoylsv777z9o
tVrEx8cb35eToMlVPOSZnxA9gUAgsA5C+PKIwWDA1atXsXz5cnTr1g3NmjXDzJkzcejQIcTGxhpn
feHh4TAYDDnWUMyKXBMxMTHR6rYLBAJBYUa4OvOIRqPB+++/j+vXr2PJkiUIDQ1FaGgoAKBGjRoY
PHgwjhw5YiyEXLRo0eceTy7vJIRPIBAIrIsQvnxQvHhxzJkzB9999x1OnjyJjRs3YteuXbh48SJG
jhxpbIXTsWNHALwG+Kw2MB4eHgBgdv8zgUAgEJiHEL48YDAYoNFosGzZMjRt2hSlSpVCq1at0KpV
K0RGRmLv3r1Yu3Yt7t27h/r162PQoEEA8Nz+ayVLlgTAzUQFAoFAYD1E5ZZ8oNFoMGvWLAQHB8Ng
MGSbzUVHR+Phw4eoUKFCrgJV1q5dizfffBOdO3fGxo0brWm2QCAQFGrEjC+PREVFAQCKFStmbIYK
cCNOSZLg7e39woCWrJQqVQpA/trSCAQCgeDFiKhOM5EnyAcOHICrq6uxGenJkyexbNky4+wuLCwM
EydOzPVxhfAJBAKBbRDCZyay8O3atQsVKlRA8eLFAQCzZ8/GsmXLjK/btGkT5s+fj9x6kn19feHo
6IjHjx8jKSnJ8oYLBAKBAIAQvjxz6NAh1KxZ0+jOPHr0KPz8/IxCd+TIEZQvXz7XUZoajQaBgYEA
RICLQCAQWBMhfGYiR2ZevHgROp3OWK7s+vXr6NSpk9HVeeLECTg6Opp1bH9/fwCm9UOBQCAQWB4R
3JIHHj9+jMDAQPz1119wd3dHbGws0tLS0KZNGwCc7qDX6+Hq6mpMTM8NQvgEAoHA+ogZXx7w8vLC
iBEj4OPjg927d2Pbtm1IS0vD4MGDsW3bNvz11194/PgxGjRoAAeH3N9blChRAoAQPoFAILAmYsaX
BzQaDYYOHYqhQ4ciISEBFy5cwPr167F48WKsWLECAM/6UlNTAZhSHF6EXNZMVG8RCAQC6yFmfGYi
B6+cOXMGU6dORUZGBho0aIBJkybh+vXrOHXqFEaNGoXOnTvj5ZdfNuvYcocGuUWRQCAQCCyPmPHl
gRUrVmDYsGF48OABWrRogcaNG+Pq1auIjY1FnTp18PXXXyMuLg5eXl4Act9iSA6GkVsTCQQCgcDy
COEzk+PHj2Pw4MHo1KkTKleujNmzZyMuLg5fffUVrl+/Dh8fH2zZsgXlypUz+9jyeqBc3FogEAgE
lke4OnOJwWAAAISEhMDX1xe//fYbunXrhnXr1uHrr79G06ZNcfXqVbRs2RLBwcEAkOvkdZmEhAQA
MCsSVCAQCATmIYTPTHbu3In69evDyckJtWvXxksvvYTAwEB8//338PLyQsWKFbFz505s3rzZ7C7q
0dHRAGBWjU+BQCAQmIcQvlwiJ667urriwoULSE5OBgAkJSWhWrVqRpHz9fUFYIrMNGfW9/jxYwBC
+AQCgcCaCOEzkyFDhkCn08HHxwdEhEWLFqFfv37G9TnZTdm4cWMAuQ9sAUwzvhd1axcIBAJB3hHB
LblEbj5boUIFVKpUCbGxsfD09ESDBg2yve7ixYvZujaYg3B1CgQCgfURwpdL5JlbVFQUDh8+jKJF
i0Kn06FixYpo3rw5goKCULlyZZw7dw41a9YEAOj1+mzNaV+EcHUKBAKB9RHCl0tk4atbty727duH
0qVL4/bt29iyZQt2796Njz76CJGRkUhNTcWnn36a7T25Rcz4BAKBwPpIZG7MfSEla9mxlJQUSJIE
Jyenp1538+ZN+Pn55fjci/Dy8kJsbCyio6ONye8CgUAgsCxixpdLJEnC7t27ceDAAYSHh+PmzZtI
T09HlSpV4OTkhLS0NHh5eaF69eooVaoUWrdubZabEzAlrptT2FogEAgE5iGusLlg9+7d+Oqrr3Dp
0iXExMSgTJkyeOmllyBJEv7++294eHjAyckJsbGxqFGjBgYNGoR27dqZPY5co1Ou2SkQCAQCyyOE
LxesWLEC//33H4YNG4a+ffuiYsWKKFKkCIYOHYrbt29j/vz5qFOnDlJTU5GQkJDnyitixicQCATW
R1xhc4HcZaFSpUrZOi60adMG+/fvR4kSJeDp6QkAKF68eJ7GMBgMMBgMkCTJbBepQCAQCHKPCG7J
JR999BEWLVqEDz/8EO+++y7q1q0LgCu67N69G82bNzcKl7nRnACQmpoKZ2dn6HQ60Z1BIBAIrIiY
8eWSsWPHQqfTYdGiRZg+fTpatmwJJycnODs749atW8YEd1n8zEV2c4r1PYFAILAuYsZnJv/99x8W
LFiAlStXGhPOq1Wrhi+++AK9e/fO8/pcTEwMvL29UaRIEdGBXSAQCKyIEL5ckjWPDwAePXqEI0eO
YO/evdi7dy/Onj2L5ORkTJ06FaNGjTL7+A8fPoSvry+KFSuGhw8fWtJ0gUAgEGRBCJ+ZPGsdLy4u
DnPnzkW9evXQokULs48bFRWFkiVLws/PD3fv3rWQtQKBQCB4ErHGZyZyeyIigl6vB8Drf2+++SaG
Dx9ufN5cRA6fGRABjx7x1ssLEH8zgUBgBqItUS7IaVIsSRIcHBxw7tw5fPfdd7h8+TK0Wm2eAlsA
kcP3QpKSgAULgA4dAG9vwNcXKF4ccHcH6tcHpkwBIiOVtlIgENgBQvieQ9bcOvlnWQTl7bFjx+Dr
64smTZrkaywx43sGBgMwezZQvjwwcCCwdSsQGwsUKQIUKwakpQHHjwNjxgAVKgDjxgGpqUpbLRAI
VIwQvudw+PBhfPXVV9i7dy8AdnPKIii7OUNDQ6HVao2dFfJKaubF2tHRMV/HKVA8eAC0bQsEBwN3
7wL16gFz5gB37gAxMcDDh0BcHLBpE9ClC5CcDEyaBLzyCnDjhtLWCwQClSKE7zkcOHAAP/74I/r0
6YM+ffpg/fr1uHPnDgCTS/Ls2bNwdnbOdzeFxMREAICbm1v+jC4onD4NNGgA7NrFLs1ly4Bjx4DB
g4GSJQHZpezhAXTqBKxbBxw4wDPDU6eAJk2Ac+eUPQeBQKBKxILScxg4cCCOHz+OVatWYenSpVi6
dCl0Oh0aNWqEYcOG4fLlyzh//jwSExMtJnx5rfNZoDh0CGjfHkhIABo2ZFHz93/x+5o2ZXHs0gXY
tw947TVg926gTh3r2ywQCOwGkc7wAvR6PcLCwrB3715s374dhw8fxqNHj1CkSBHExcUBAMqUKYNr
167la5z169eja9euCAoKwoYNGyxhun1y9CjQpg27MHv2BP76C3B2Nu8YKSnAu++aBDM0FChd2irm
CgQC+0PM+F6AVqtFrVq1UKtWLQwbNgznz5/H3r17sWLFCty9exelS5fG8OHDAcBYtiwv3Lt3DwDg
6+trMdvtjitXOGozLg7o0QNYvBjIS5SrszO7Rjt0APbsYVdoaCgg3MgCgQBC+HKFHN3p4OCAatWq
oVKlSmjXrh0ePHiAKlWqGN2ceRU9AMa1w5IlS1rEZrsjLg4ICgIePwY6dsy76Mk4OQFr1pjW+oYO
5XQIgUBQ6BHBLblAo9Fky69zcHBA+fLl8corr+R7bU9GFr6AgACLHM+uIAIGDAAuXACqVQP++ccy
Sene3sCqVYCLC7tMFy/O/zEFAoHdI4QvjxBRjonteSUyM/m6UArfvHk8O/PwADZs4Bw9S1G9OvDz
z7z/ySecFiEQCAo1QvjySF777j2LQuvqDA8HMtdI8fvvnI5gaQYN4ijR6GgWP4FAUKgRwqcSCqWr
U68H+vThcmS9e/PDGkgS8OefHNyyciWwfr11xhEIBHaBEL4XkLVMmbVISUnBo0eP4ODggOLFi1t1
LFXxyy+cd1eqFPDbb9Ydq0wZrucJ8AwzJcW64wkEAtUihO8FyGXKDAaD1caIiooCAPj7++crMtSu
uHEDGDuW93/7DfD0tP6YH38M1KzJY//0k/XHEwgEqqSQXGXNJyEhAT/++CNmzJiBxMREqwpSVuEr
FBCxCCUmAm+/zWkMtkCrBWbM4P0pU4D7920zrkAgUBVC+J6Bm5sbXF1dMWnSJLz//vu4efMmAFM0
pyXdn/czL8B+fn4WO6aqWb0aCAnhWZ6tZ15t2wKvv855g5Mm2XZsgUCgCoTwPYchQ4bg+++/x4ED
BzB27FjcvXvXGM1pyYhOWfgKxfpeUhLw2We8P21a7mpwWpr//Y+3s2eL9AaBoBAihC8HiMgobIMH
D8b8+fOxePFi1K9fH7Nnz0ZYWBju3r2LpKQki4wnC1+hKFf23XfArVtA3brA++8rY0PNmkC3bty3
b/p0ZWwQCASKIYQvByRJMjaGPXPmjFGYoqKi8OGHH6J9+/YYMGAAxo8fbyxUnR8SEhIAAEUsmbit
Rm7eNM22fvqJ19yUYswY3v7+O/f1EwgEhQZRq/MJHj9+jM2bN2P58uUICwtDXFwc/Pz80Lp1a3Ts
2BGlS5fGwYMHERISgtDQUAQEBGDEiBH5GlNuQuvk5GSJU1AvX3zBaQQ9e3LLICV5+WUuYr1lCzB/
PvDll8raIxAIbIYQvicIDQ3FxIkTIUkSWrdujerVq+O1115DvXr1jK954403MGDAAKSmpqJy5cr5
HjMtLQ1AARe+ffuAFSu4buZ33yltDTN0KAvfn38CI0cChSWVRCAo5Ajhe4LmzZvj8OHDKFKkCAwG
A3SZxZL1ej20ma45nU6HmjVrWmzMjIwMADAev8BBZApoGTVKPb3xOnTgxParV4EdO4B27ZS2SCAQ
2ABxi/sEbm5u8Pb2hlarNYoekF2ULJ3O4OHhAQAWWS9UJevWAcePAyVKsLtTLWi1wJAhvD9vnrK2
CAQCmyGELw9YOp3B29sbABAdHW2xY6oGvR4YN473x4wBXF2VtedJ5PqgmzZxqoVAICjwCOFTAQVa
+JYvB8LC2L2pVPrC8yhTBmjYkEVv82alrREIBDZACJ8KKLDCp9cDX3/N++PHc1d0NfL227xduVJZ
OwQCgU0QwqcC5C7uBU741q4FIiKAcuWAfv2UtubZvPkmbzdvBjLzNwUCQcFFCJ8KkGd8MTExClti
YX74gbeffQY4qDiAuFw5oFo1rt+5f7/S1ggEAisjhE8FFEhX5+HD/PD2Bvr3V9qaFyN3iNi0SVk7
BAKB1RHCpwIKpPDJs70PPuDO52qnc2febtzIeYcCxQgL46XhNm24R7GHB+Dnx8V2PviA/0WZNR8E
gjwhkbXbiwteSHp6OhwdHaHVapGenm7RVAlFuHYNqFCB8+SuXwdKllTaohej1wPFiwOPHwMXLwIW
qMgjMI8dO1jwDh588Wv9/IBPPgE+/VR9GTIC9SNmfCpAp9PBzc0Ner0e8fHxSpuTf37+GTAYgHfe
sQ/RA1ikO3bk/Y0blbWlkHH3LscXtW3LoufpyZkva9YAV64A0dHAnTvA3r3AxIlA9erAvXucFlq1
KtdHELfvAnMQMz6VUKpUKdy+fRs3btxAabWU9MoLcXFAYCAQHw+cOMHth+yFFSu4gHbz5sCePUpb
UyjYv5//5FFR7BH/v/8Dhg1j9+azIAJ27uTyqqdP8+969ADmzAEKeoMTgWUQMz6VUGBSGhYsYNFr
3ty+RA8A2rfn6NMDB3iaIbAqv/4KtGzJovfaa8CFCyx8zxM9AJAkXv87doydCx4efM9Svz5w9qxt
bBfYN0L4VILci8+uXZ16PffZA4B8tmpSBE9PoFkzPo8tW5S2pkAzeTLP7PR67gi1axcHspiDgwMf
49gx7i0cEQE0aQJs324dmwUFByF8KkEuVG3XwrdxIwe2lCtnipK0N7JGdwqswtdfA2PH8sxt3jzu
TZyfNM9KlYDQUF5STkjgpdrFiy1mrqAAIoRPJRQI4Zs5k7effKJsd/X8IAvf5s1AZrsogeX44w/g
m2/447F0KTBwoGWO6+oKLFnCzT8yMoC+fYG//7bMsQUFDyF8KsHuhe/AAW426+kJDBigtDV5p2JF
oEoVICaG/W8Ci/Hvv8DHH/P+7Nk8Q7MkGg33OJ46lQNgBgwQMz9BzgjhUwl2L3wTJ/J2+HD7D63r
2ZO3//yjrB0FiOvXgT59OMtl/HjLzfRyYvRoYNIkFr9+/bhBiECQFSF8KsHd3R2AnQrfkSPAtm2A
uzsLn73z7ru8Xb0aSE5W1pYCQHo630tER7MnecIE6485Zgy7VA0G4L33gN27rT+mwH4QwqcS5G7v
er1eYUvygDzbGzYMKFpUWVssQeXKXB8rPp79c4J8MX068N9/3JLx77/ZJWkLxo/nyi7p6UC3bsC5
c7YZV6B+hPCpBE3m1cDuhO/4cSAkhKML7DGF4Vn06sXbpUuVtcPOiYjgmRcAzJ1r+/ui6dO5Kkxs
LEd7RkXZdnyBOhHCpxK0mVGQdid88mzvo48AX19lbbEkPXtyvH1ICF81BWZDBAQHA6mpHGXZtq3t
bdBqOcClSRPg1i3uOSwKXAuE8KkEWfgMBoPClpjBmTPA+vWAszPw+edKW2NZAgKAFi34qr12rdLW
2CWrVvHamo8PMGOGcna4uHDdz4AArgX62WfK2SJQB0L4VIZSpVOJ+I740CGukv/ff1w8+LlMncrb
IUOAEiWsbqPNEe7OPJOezuXHAI6w9PFR1h4/PxY/R0fgt99Ejl9hRwifSkhKSgIAuNqwx0p6Ot+V
v/02UKwYBx80bcouqUaNAH9/oEwZzr06cuSJN0dEcIFEnY6rBRdEunfn89u5Mxd3AYKszJkDXL7M
VVUGDVLaGqZhQxY9gPv6nTihrD0C5RDCpxISExMB2Eb4Hj7kcO9SpVj0Vq3iUHMfHxa8Vq04qNHD
A7h5E5g1i71+jx5lOcj//sex4n37ml9k0V7w9uaICIOBRV6QK5KSgG+/5f2pU/NXjszSDB7MLY9S
UoC33uI6BYLCh4o+koUbecbnZsVu5UlJwI8/smbFxfHvqlVjT2XnzkD58tlfr9cDJ09yArDBwLNC
AOwTXbiQ49JHjbKavaqgVy9ex1y6lEuxCV7I7NncL69+fU4jUBs//8zByCdOAP378xKuvfd+FpiH
ED6VIM/4rCV827axwN24wT+3b8+zvldfffaXXqvli1f9+ix8RqZPZz/pO+9wia+CTOfOnJh/5Ah3
RX3y7kCQjeRkvrECOI9OjYLi7AysXAnUq8f3NDNmFFxvvSBnhKtTJVjL1Rkfz2ss7duz6NWuzcEr
W7ZwD7TcXpiMScf37/MCDgB89ZVFbVUlrq6maYsoYfZC5s3j5dA6ddTdoKNcOVOAy+jRXGpWUHgQ
wqcSrOHqPHcOaNAAmD8fcHLi9ZZjx4DWrfNx0B9/5Nv6oCCgVi0AvF5SoBsZyNGdS5Zw+KsgR1JT
gWnTeF+ts72sdOnC3Rz0ek7bvH9faYsEtkIIn0qw9Ixv4UKOYgsPB6pX5/WM0aPzGWgQE2MKi5Nj
1QH88gsfPcdIAAAgAElEQVQHQBbYspatW3Ny/sWLwOnTSlujWv76C7hzB6hRg0XFHpg8md39kZFA
794sgoKCjxA+lWCpGZ9ezzEY/fqxEPXty8tT1apZwMjffuOomFatgFdeAcBrf/PnAxs2sPgVyKoY
Oh3Qowfvi5y+HElLA6ZM4f1x42xXjzO/6HTAsmV8X7Njh6kQkaBgYycfz4KPJfL4EhKArl15Bubo
yEtxf/0FWMR7mpjIbk4g22xPo+FAAR8f7t3at28BvWuW3Z3//PNEpI8AABYt4tSXqlX5BsieCAjg
+xlJ4jSMbduUtkhgbYTwqYT8RnVGRgLNmgGbNnEh4B07OGfJYussc+ZwAqCc6JeFGjU4WMbDg1Mf
CmSGQ+PGQNmywO3bIhLiCfR609re2LEcDWxvtGkDfP01L+H27s3/ZkHBRQifSsjPjO/MGdajkyeB
ChWAw4c5YtNipKZyCgPAs70c1PTll9nd6eDA4eFLllhwfDUgSaY+fQXu5PLHhg1cpeWll0weYXtk
7FigXTu+v+vZkzN2BAUTIXwqIa/Ct3cvi9zt21xu7PBhLhNlURYu5KiFmjWfG6PeogUnBwM82wwL
s7AdSiML35o1BTyM1TzkAtSffqquKi3motFwJ4fAQK5ZO3q00hYJrIVESlVFFmRDypxF6fV6Y2++
F7F+Pd+ZpqZy+aVFizg516JkZABVqnDy9tKlpov/MyACBg7ktcVatbjYtZOThW1SCiJexAoPZ19y
vvJCCgZHjnCck5cXF/Rxd1faovxz+DAvG2RkAKtXcz8/QcFCzPhUhpTLRbkFC/gLmZrKBXeXLbOC
6AFco/LKFfah5sKPJUkcXFO+PLtg5SakBQJJ4jsMgAucCoyzveDggiF6AC/nfvcd7w8YwG5cQcFC
zPhUglarhcFgQEZGhrE337P4/nvgyy95f9w4FherJAsbDFzq5dw5Dm4ZPDjXbz10iF2vOh0LYJUq
VrBPCU6f5rIkxYtzRJE9RnJYiLt32S0IcFWggABl7bEkRHyPs2YN/7sPHeK+foKCgZjxqQTZvfm8
RrRELHiy6P30E4dfW61CxoYNLHqBgZynYAZNmrBOpqcDQ4cWoIIntWrx7Pf+fWD/fqWtUZSFCzmi
s3PngiV6AH+n5s9nz8WpU8Dw4UpbJLAkQvhUwouELyODa25+/z0HECxZYuVmAQYDMGEC73/5JScG
msnUqZxasXNnAfIMCncnAL6RmTeP99XSb8/SeHryv9jJiR0eCxcqbZHAUgjhUwnPE760NI4pWbCA
3S0bNpjyqa3GmjXsowwM5AZmecDHh0tCAdwJosAEQsrCt3p1oU1mP3IEuHQJKFECeP11pa2xHnXq
AL/+yvsffMApQwL7RwifSpCF78klV7lh5qpVQJEiHExo9QuNXm+a7Y0Zk6+omUGD2DMYEWGqhm/3
1KvHyex37/LiTyFkzRre9uxp3ykMuWHQIO7bl5zMbl2R3G7/COFTCRqNBtWrV4dzFpFJSuJivxs3
sstw1y5eO7M6y5cD588DpUtzbkI+0OlM3bi/+YaF3O7J6u5cuVJZWxSAiJu3AupsNGtpJAn44w9O
cYiMBDp14nZfAvtFCJ9KqFOnDvbs2WOc+SUk8Bds2zYuoLt7N1dHsTqJiaaaY+PH52lt70l69uSY
kFu3+AJSIHj7bd4WQndnWBiH+Pv6cmeDwoCTE5cD/P13Lsadmqq0RYL8IIRPJWzcuBE+Pj4AgNhY
Lp20Zw/g78/VWTJb31mfSZPYl1OvHvt3LIBGY1rrmzaNZ7J2T4MGQKlSXNHmyBGlrbEpspvzjTcK
VzaHhwev83XqxOvXAvtFCJ9K8PLyAgA8fswFcw8fZk/jvn1cLMQmhIebMpJnzbLoVa1TJ6B+feDe
PVMDd7umEEd3FiY353NJSWE3xtmz/EXduZO/uKdOAVevFtAeXQUDkcCuIu7fB9q25WDKcuV4Ta9M
GRsNTgR06MC+1UGDgLlzLT7Exo08S/D35+uCVSrN2BI5S790aeD6dfW3HLcA167xZ9PdHXjwoAD8
D80hIgJYtw44dowLGUREPN/NrdFwgmP58rxO0bgxP0qWtJ3NghwRwqcSIiO59OPFi0DlynzzaNOk
4DVruJGalxfHqfv6WnwIIvagnjrFIeIff2zxIWyLwcDuzshIdnc2bKi0RVbnhx+Azz/nddtly5S2
xgbExwN//snVq0+fzv6cVgv4+QHe3vzQ6Tj0MykJiI5mN3hOwlijBhAUxHeBjRoVihsm1UECxbl+
nah8eSKAqEYNort3bWxAQgJRqVJswKxZVh1qzRoeJjCQKCXFqkPZhmHD+IS++EJpS2zCq6/y6S5b
prQlViYpiWjaNKJixfiEAaIiRYjee49o/nyiEyde/AFOTSW6fJlo0yai8eOJ2rUj8vAwHQ8gqlCB
aPJkotu3bXNeAiIiEsKnMBERJs15+WWihw8VMOL//o8NqFePKCPDqkPp9UQ1a/Jwf/xh1aFsw759
fDLlyhEZDEpbY1Xu3iWSJCJHR6LYWKWtsSL//UdUpYpJnBo3Jlq3zjJ3aqmpRNu3E33yCVHJkqYx
NBqijh2JQkL4SyKwKkL4FCQsjMjfnz/3TZoQxcQoYER4OF/JAKJDh2wy5IoVPFzp0nwdsGsyMoh8
fPiEzp9X2hqr8ueffJqdOiltiZUwGIimTiXSavlEq1Qh2rLlhTc0BgPRuXNEu3bxRDAtLZfjZWQQ
/fsv0VtvEel0JhGsVo1o3rwC4hJRJ0L4FCI01HS9bNGCKD5eASMMBqL27dmIAQNsNqxez99tgGjO
HJsNaz369OGT+f57pS2xKh068GnOnau0JVYgJYWob18+QUki+uwzdnfmkvh4ogYN+O116uRhRvzg
AdF33xEFBJgEsEQJokmTiB49MvNgghchhE8BNm4kcnHhz3bHjtm/XxlWdjVmQ15w8/IiunfPduMS
0dKlPPRLL5lxh6xWli0z3cEUUGJieFKi0RDdv6+0NRYmKYmoTRv+H7q6slszD9y/z0t2AFHr1nmc
sKWmEi1aRFS7tkkA3dyIRowgunUrT3YJnkYIn43580++eABEAwdmv+jfunWLbt68aRtDEhPZ1wgQ
/fqrbcbMQkYGUeXKPPzixTYf3rJER7N7TKvl/QKIfKPSrJnSlliYpCSitm355Pz82FeZD65c4cMA
RO+8k4/lOoOB1wLbtTMJoE7HF42LF/Nlo0AIn83Q64nGjjV9hseNy750cPPmTSpbtixFRETYxiDZ
mDp1rB7Q8izmzmUT6tYtAHEhzZvzySxfrrQlVuGtt/j0fvxRaUssSFKSSViKF7fYGu2JE6bgzc8+
s9ABe/Y03TFLEtGbb3IQjiBPCOGzAfHxRN26mYK3copmbNy4MQGg8PBw6xt06ZIpoOXgQeuP9wyS
k/l6AxDt3KmYGZbhu+/4RPr2VdoSi5OUxN42gFNvCgR6PVH37nxSvr4caWZBtm83xatMn26hg0ZE
EAUHm767sk91+/YCcOdoW4TwWZkrVzg3DyDy9OQgrpyoXLkyAaALFy5Y1yCDgej119mg/v2tO1Yu
+PZb01qnXXP+PJ+Ij49iM2hrsWGDKdulwDBypOlLeeaMVYZYssSkTxZ150dGEn35ZfacwPr1iVat
KnCfPWshhM+KrF9P5O3Nn8vKlTlz4FlUrVqVAFCYhe88n2LdOtMX3sYBLTnx4IEp0Mfap25VDAaO
1AGIDh9W2hqL0r8/n9akSUpbYiF+/51PyMGBaMcOqw41Y4ZpqK1bLXzw6GiiKVNMbhOAqFIlXkMQ
qRDPRQifFUhJIRo+3PRZDAp6cY5e9erVCQCdPXvWeoYlJhKVKcNG/fKL9cYxkw8+YJOGDlXaknwi
V3EZM0ZpSyxGerqpeIld35jI7NljytObP98mQ37+OQ/n7k507JgVBkhKIvrtN6KyZU0XnYAAVt24
OCsMaP8I4bMw589zBRY5CGvGjNy532vWrEkA6PTp09Yz7quv2LDatfmKphJOnTJNQhMSlLYmH2ze
bCrBU0DYtcs0kbD7ZaSoKM6NA9hVaCP0eqJevUwxNFaLX0tPZ/+qXBpJTlUaNUqURHsCIXwWIj2d
iz44OZny044cyf37a9euTQDo5MmT1jHw+HG+05Ukm1VoMYfGjfnvNm+e0pbkg8RE/gBIUoFJdpNn
46NHK21JPsnIIGrZkk+meXOb3/ilpppSBUuUILLm/S0ZDFwfVC6sCnCRBYER0Y/PApw9y91GvvqK
OzMPGgScPGlesX6587rBGt2809PZKL0e+OQTNlZlfPABb+26Q7urK9CsGV9qduxQ2pp8k54OrFzJ
++++q6wt+WbSJGD3bu6m8M8/gIODTYd3dOQGKK1aAXfv8sdk/34rDSZJ3ABz/34gNBTo0QP49FMr
DWafCOHLB48ecWudOnW4RVfp0sDWrdzKztPTvGNJma1JiKzQJWrSJO4F9NJLplboKuPtt7mzy9Gj
bKrd0q4db7dtU9YOC7B9O3/Gq1UDatZU2pp8cPIkfwcAYOlSbgipAB4ewL//cvev2Fj+qPzzj5UH
bdQIWL6c+wEKjNid8BG7ZxW1IT0d+PlnoGJFblQOAEOH8sxPvu6Zi9VmfDt2ABMn8l3gvHmAm5tl
j28hXFyAXr14f9EiZW3JF1mFT+HPaX5ZupS3vXrZccu4tDSgf38gIwMYNoynXAri5MQ6FBzMDdx7
9QI++4zNE9gQhV2tZnHw4EFq1qwZLVaoxlVKCkdCy4GRAPvtLRGI2bBhQwJAoaGh+T+YzJ07nJwL
EH39teWOayVCQ02Vo1QUe2MeBoMpgMKaEbpWJjHRlLR+5YrS1uSDCRP4JMqXV1XklMHAgZgODqYy
r1FRSltVeLAL4Tt79iy98cYbBIAAUP369clgwxCz+Hgu1ZS1fVaVKpynZykzXn75ZQJAR48etcwB
U1KImjY1qbMdJLYaDEQVK7LJmzcrbU0+kKv8W6xkh+2R6243aqS0Jfng6lVTtNmePUpbkyMHDpju
k4oVI1q5UmmLzEOv19OSJUvowYMHSptiFrZd4TWT69evY8KECVi0aBGICK6urhgxYgRGjhxpXBOz
JmfPcrDFokVAfDz/rlYtYOxY4M03Aa3W9NrU1FTs378fx48fh0ajgU6nMz6cnZ3h4eGBIkWKPLV1
c3ODRqNBRqavQ5v1oHnFYGD3zsGDQEAAsGRJdmNViiQB770HjB/Pf/MOHZS2KI+0bQssXAjs3Qt8
/jkAIC4uDidOnAARwWAw5LjN63N6vR5paWlIT0/P8aHRaODo6AidTpdt6+TkBFdXV7i6usLFxQVN
mzaFs7MzgOxuTrvliy842qx3b6B5c6WtyZGmTYHjx/nrun07r3X36gX88gtQtKjS1r2Yo0ePonfv
3tBoNGjcuDGCgoIQFBSEqlWr2uQanVckIvUtROzatQuzZ8/G6tWrkZGRAQcHB3Tp0gV9+/ZF0aJF
n7ogPHlhyOnnjIwMJCUlISkpCcnJycb9Pn36oGLFisaxb9zgSLZ//gFOnDDZ9Oqr/D3q3BnQZFkZ
NRgMWLBgAcaMGYN79+7l6Xzd3d2RkpKCjIwMVK5cGb6+vnBzczM+3N3d4eLiAq1WC61WC41GY9zX
arUICgpC7dq1TQccPRr43/94NX3/fiDzuZSUFJw4cQJOTk7w8PCAu7s7PDw8jOKrBq5dA8qV4zW/
e/f4FGxFeno64uPjER0dbXzExMRk+1n+XUxMDGJjYxEXF4fY2FiUL18e+/bt4wNdvQqULw/4+vJJ
SBKSk5Ph6emJ9PR0252QGTRq1AihoaEAgMePgRIlOAj4zh3eB4Bu3brh+PHjcHFxySaYT+4/+Ttn
Z2dIkvTcx/OE/kmxlyQJTk5OcHZ2zvaoU6cO/Pz82Njdu3k9z9UVCA8HAgMB8P+YiODg4ACDwYCM
jAzo9fqntvJ+TtcZ+QEAzs7OcHFxMT50Ol2e/v5EwO+/8zUmKYn/5tOnm7++mpqaiqioKERGRhq3
8n5MTAwSEhKQmJiIhIQEJCUlgYiM/wOAb7ydnZ2Nf98nt0/+7sGDB9i7dy+uXr0KvV5vtMPPzw+v
vPIKWrVqhZ49e5r+LypBlcKn1WqtE9afA8HBwfgjM4b++HGgfn3Tc56efLP4wQc5R7X9999/CAkJ
waNHj+Dh4QGdTpfjHXdKSgri4+MRFxf31DYxMTFf9s+aNQsffvhh1l9wqKmDAxASYgy2SE9PR5s2
bUwX5ydwdXU1iuGTD1l8sz6cnJzg4OAABwcHaLVa4778M2CKUH3WRUPelyQJXbt2hZOTEwBTqPfC
hTwDBIDTp0/j+PHjzz1eenp6thubZ22f9VxGPiIMdDodYmNj4eLiwlcxPz/gwQPgyhVWcgBDhgxB
REQEJEmCRqPJts3pd7l9TqvVGmdyWR+Ojo7GC3x6erpxVpiWloa0tDSkpqYaz33gwIF48803AXBU
8vvvA23a8CwEAKKiohAYGGiz76W5VKlSBWFhYXwDR8QpO0eOcGDX2LEA+BwqVaqEhIQEq9nh4OAA
FxcXuLu7Z/Ps5OTtqVq1Ktq3b8+fmUwuXzY5awD+LsycCdSrl32cjIwMnD59Gjt27MDu3btx584d
REZG4vHjx1Y7t7zy7bffYty4cUqbkQ1VCl/ZsmVx69atbF8ynU4Hb29vFC1aFF5eXtDpdNnuGLNe
CHL62cHBwXgXmvWu1MfHBx999BE0Gg30eqBKFY78ffttToXJ9PxYDb1ej4SEBNStWxfXrl3D6tWr
4ePjY7wrS0xMRGJiIpKTk413onq9HgaDAR06dECjRo1MB5s/n/P1AI7gHDjQ+NRPP/2ErVu3IjEx
EfHx8UhISDBurXkhyC2//fYbPvroIwDAr79yAF6XLsC6dfx8eHg4qlSpYlUbtFot3N3d4e3t/dTD
y8sr276Xlxc8PT2zPdzd3U3unTfeADZuBBYv5rsnO6JVK54wzZ8PDBjAv0tPT0dMTMwLbyRy2k9J
SXnmrEl+aDSaHIU+J7EnIqSlpSElJcX4GDFiBFq0aMHG/vsvf3l9fdmFkBnJHBwcjEWLFiE9PR0Z
GRlGj4l8s5Z1X94+eR3J+gDYi5KcnGx8ZJ315AZfX1/88ccfxpsOgFcq/v4bGDWK750Avh59+y1f
n57kzp07WLduHbZt24b9+/fD3d0d/v7+KFmyJEqWLAl/f3/4+/ujWLFixptYNzc3uLq6Gv+eAIye
sdTUVKSmpiIlJSXbNqffZd0mJyfjwoULOHnypPGGvkiRIliyZAk6d+5s1t/F2qhS+ACesu/Zswcb
N27Ehg0bcOvWLeNzzZs3x549e6wyrsGQ3ZVpK8qVK4dr167hypUrKJc5QzCLRYuAfv34bveHH4AR
I3L9VoPBgKSkJKMYyqIrP578OSEhAWlpacjIyHjmA0C2C8SzLhzyfrVq1TB+/HgAQGQkL006OfEX
X3Z3jh07FpGRkc88Xtabmyfdbs/aZt3Pq5sqR6ZMAcaM4TyXX36x3HGtTGQkewUdHdlLa24+quIQ
AQ0asPtmxgzOFbAhstchISEhRw/Ps/YbNWqEYcOGwSOLbz86mtNuf/2VlyolCejWjU+pSZOcXaCy
B8WWEBFCQkLwf//3fzh79iwAoGrVqpg8eTK6du2qzrW+fATG2AyDwUCnTp2iiRMnUsOGDWnatGlK
m2RxSpUqRQDoel4ani1dampSOXWq5Y1TADkgddkypS3JI1u28Am89prSlpjFDz+w2d26KW1JHpG7
j5QowTkZBYBbt7gNn9zfT24R9eOPRHfvKmvbsWPHqEmTJsaI+1KlStGCBQsoQ+VR5HYhfE9iy1QG
W+Hv708A6La5xWRnzeLakADRN99YxzgFmDmTT+mtt5S2JI/cusUnULSoXVV3rl+fzba3sHoi4mrQ
tWrxCfz0k9LWWJzISG78UbSoSQC1Ws4BnDKFOz/YOv91z549BIB8fHxo5syZlJycbFsD8ohqXZ2F
DV9fXzx8+BD37t1D8eLFX/wGIvaDyIvGU6ZwNKca3Qp54OZNoEwZDsq7f1+1BWeeDRHXYIuNBaKi
TKGRKiYiAqhUiV3L9+5xZK1d8c8/HAYZGMgnY+0FeoVITjYtH2/enL3qi7MzUKMGB3K/9BIvGQQG
8v+1dGnzx6IswWNZI7/j4uIwdepUvPvuuzh58iS6deuGIkWK5PfUbIeyuiuQ8fT0JAD0+PHjF784
I8PU8E+SiP780/oGKkCjRnyKq1YpbUkeadKET8DKzU4txTffsLl9+yptSR5IS+PqLADRnDlKW2Mz
Hj3i2fn77xOVK2eaCT75GDQod8czGAzPdFPq9XqKy+zvN3PmTJIkiUaNGkUpdtj0Vh3JWwJjftcL
AyxiYjiZ8KefAJ0OWLECGDLEBhbanrfe4u2qVcrakWeqV+dtWJiyduQCIjtPWl+wgFNHKlXifIBC
QtGi/D2ZPZtPPzqa6yb8+itHhfbuDbRoYUzlzYaco5gVOT0GACIiIjB//nz06dMHlSpVgoODA5Zm
fkjkIDMXFxc4OTnlKxVICVRduaUwkSvhO30a6NmTE3KLFQNWr1ZtRQpL0L07J/Ru3MjuHbtzvdmR
8J0+zR8rX1+gdWulrTGT5GTgm294f+JEm7ccUhNeXpz716zZi1+bU9GKhw8fYsKECZgzZw4yMjLg
6emJypUro3nz5pgwYQK6d+8OACiR6bq/cuXKM4+lZgrvJ+RZ/PorZ7E3bGjTvIaMjAxUqVIFjo6O
Tz9pMHA7iFGjuNp8zZrA+vXsxC/AvPQS/yuOHeO1jCypTvaBLHznzilrRy6QZ9Xdu9uhbsyaxXkY
deqY3ASCbMg50RqNBmlpaTh8+DB27tyJx48fo3fv3mic2aNz48aN+P3331G5cmXMnDkTvr6+8PPz
g5eXF9zc3IypCRUqVAAAY9EJexM+scaXlchIk1O8eHGigQM5PNrKVd31ej2dO3cu5yePHSN65RWT
XR98UGDCtHPDd9/xaffsqbQleeDuXTbew0PVkZ0GA1Hlymzq9u1KW2MmsbFc3Rkg+vdfpa1RDDnS
/fbt27R7926Kymz1oNfrs73u6NGjFBAQQFqtlqpWrUqVKlWigIAAGjp0KKWkpNDy5ctJkiRasGDB
c8fbsGEDubi4ULt27ejRo0fZbLAHhPBl5dYtok8+ISpbNvvKsLMzUadOHERibrpBXgkLI+rXz5Sq
UKIE0dq1thlbRVy7xqfv6mqnel+8OJ/A1atKW/JMzp0zdQdIS1PaGjMZP56Nf/VVVd9cWBNZ3CIi
IsjJyYkkSaL33nsv2/MnTpyglStXUrVq1ah69eq0ceNGio2NpejoaGrTpg1ptVrav38/EREVLVqU
goOD6cSJE7Ro0SLq27cvtW/fnsLDw43H3LJlCwUEBFC9evXo8uXLRESUkZFhN+InhC8nDAaiM2eI
Jk0yhRZmfVSqxBmly5ZZNoM0IYFDtDp1Mo3l4EA0ciTf2RZSGja049yytm3Z+HXrlLbkmcjRnAMH
Km2Jmdy/T+Tuzsbv26e0NYrTo0cPKlKkCHXs2JEkSaKPP/6Y0jMT+z7//HNq1aoVbX9iSr9w4ULq
2rUr7dq1y/i7zp07kyRJ5OXlRSVKlKCWLVvSsmXLKDU11RjxuW/fPvLw8KD27dvTw4cPsx0zOjqa
wsLCVC2CQvhyQ1QU0dy5RG+8YfqiZX289BJnWk+dyrOyc+eIXpTIaTAQPXjAoe5TpxJ16ULk4pJ9
lvnhh0SZd1OFmenT+U/So4fSluSBkSNVX1ygXj02cdMmpS0xkxEj2PDXX1faEqsSERFBgwYNMs6s
ciI8PJzc3Nzojz/+ICKiIUOGkCRJtHDhQiIiOnToELVo0YIOHjxIRESXLl2icePGkSRJNGTIEEpP
TzcK1TvvvEN16tSh5ORkSkpKovj4+KfGO3fuHHl4eJCHhwcFBwfTqlWrqH///lStWjWSJIk8PDzo
5s2blv5TWAwhfOaSlkZ0+DCXSmjTJrtYPfnw8uLcogYNiBo35tljgwYslHKDzCcfr7xC9P33fDcr
ICKi69dN7k4VNdHOHQsXsvHduyttSY7cv8/mOTkRJSUpbY0Z3Lxp+g6dOKG0NValb9++JEkS/fHH
H0/NouSft2/fTr6+vrRkyRIiIgoLC6MGDRpQvXr16Pz580RENHToUJoyZQoREU2ePJm8vb2pS5cu
1Lp1a6pTpw6dPXuW9Ho9DRw4kCpWrPiUHQaDwdhwNiUlhRo1akSSJBkfxYoVoy5dutA///xDa9as
oZiYGKv9TfKLEL78kp7ObtEFC3h9sEMHogoVuJbQswRRfri7sxB+9BG/X8V3SEojx/esWKG0JWZy
+jQbXqGC0pbkyNKlbF7btkpbYiaDB9utG8BgMGSbYT0L2a0YFBREkiTRykxff9YEc3l9b926deTg
4EDTp083PrdlyxYqW7YszZo1i4iIZsyYYVz7i46Opps3b1JcXBxFRETQ4MGD6a3M+oBTpkwhBwcH
iomJodOnT9OUKVOobdu2VLRoUerQoYMxif3SpUvUpUsX8vb2ptatW9PmzZvp/v37qnZxythb4LL6
cHDg9IKaNbMnzur1nGz+6BF39jQYuJyYRsNZp/7+gLu7YmbbGz16AKGhnK//9ttKW2MGVapwoYEr
V4CEBNX9z7dt421m20b74NIlTljXajlvz86QO4m8CK1Wi/T0dJQqVQoAJ5Q/Cy8vLwAwlg3bv38/
xo4di/v372Pfvn348MMPUbVqVWzatMn4evk9Hh4e8Pf3N7aPSklJAQCUKVMG6enpSE5ORosWLTBy
5Ej0798fHh4eyMjIQMWKFbF06VK4urrm/Y+hEEL4rIVWy0nmxYqZ9TZSoK2IPfDWW9yOJSRElfrx
bBwdgapVgTNnOJE9a/9EhSGyU+EbP55vLAcN4kotdkZMTAyWL18OvV6PwYMH55y7m4lWqzX2oZR7
/e1UwOMAACAASURBVGXNmZP3HR0dodfrsXbtWgQGBuKrr75C5cqVjWNNmzYN5cuXhyRJuHHjBsqU
KYP4+HicPXsWf/zxBxYvXozVq1dDkiSUKFECRYoUQaVKldC5c2eULFkSLVu2ROnSpaHRaEDEHeyJ
yCh6er3e2LvQLlB2wimQGT16NDVu3Dh3tToLKY0b22mrovfeY8Nnz1bakmzIaQx+fnaUCXD2LBvt
6GgXSwNPujTT09Pp66+/NgaAREdHP/f9BoOBfvnlF2OKwpN5efKxz507RwEBASRJErm6ulJQUBDF
xsbS8uXLycXFhcaNG0c3btygt956i7744guaN28eDRkyhEqXLk2SJNHIkSONx7x//z6dPn2aEu0y
fyh3iBmfSvj7778RFRWFpKQkeHt7K22OKnn7beDwYWDlSq7cZjfUqsXbM2eUteMJss727OVGHd9+
y9shQ4BMF6BaiYmJwS+//IIyZcqgb9++0Ov1OHr0KL7JLK/Wq1cvuD/HdUGZ3h9PT0+4uLggMTER
cXFx8PLygsFgyDbDKlGiBMqVKwdvb2/8+eefaNKkCQCgSZMmeOWVV7B161YMGDAAPj4+mD59Ohwd
HVGuXDm0bdsWHTt2RLssU35fX1/4+vo+ZUdBQgifSpBdBklJSQpbol7s1t1pB8JnF5w7x3c9jo7c
gkvlpKenY8KECQAAT09PdOnSBZ9//jkAoEWLFvjyyy+fu9aXVXCSk5Ph4+NjfL1Go0FqairCw8OR
lJSEBg0aoEKFCjh//jyaNGlidIsGBgZi2LBhGDJkCFJSUjBq1Ch88MEHqJ1T1epnUNBEDxDCpxrc
MhvOJSYmKmyJeilVCmjcmGd9ISF2NOvLKnxEqphepaRwFX8AaNNGWVtyzeTJvB0yhBvNqRxfX18E
Bwdj7ty56N+/P+rUqYOTJ09Cp9NhzJgxKFeu3HPfT5mdE4oWLQpJkrBy5UrodDoEBgYiJCQE58+f
R3R0NOrWrYsdO3agfPnyOH/+vPH9cpeFjh07YsiQIXBzc0PpLE355PqdkiQVSHF7HkL4VIIsfGLG
93x69LBDd6efH7c9ePAAuHUrbx1BLczBg9zUoHZtu+iRC9y+zf90rRb48kulrck1v/76K1xdXTFz
5kzszbzTeOedd9C6dWuju/JZyM/VrFkT1apVQ1hYGGbNmgUAqFWrFvr27Ytu3bpBo9HAzc0NMTEx
uH//PlJSUuCcpQmvk5MTJss3DTkcvzBSeM9cZciuTjHjez5y8X3Z3WkXSJLq3J125+acNYsjObt3
V/3aXla0Wi1GjRqFYcOGGX938uRJhIaGQqPRGF2SOSHPwkqXLo0NGzagXbt2qFGjBj755BMsWbIE
U6ZMQbNmzfDqq6/C0dERH330EQ4fPpxN9AQ5I4RPJXh4eAAA4uLiFLZE3QQGAk2asKsuJERpa8xA
CF/eSU7mTqsAMHy4srbkAU9PTyQnJxt/Dg8PR58+fbBkyRKjO/J5EBFeeukl/Pvvvzhz5gx+/PFH
VK9eHS5ZGlTKr/Hz87PKORQ0hPCpBB8fHwDcCFLwfOQE9pUrlbXDLFQkfPfuAadOAc7OwKuvKm1N
LggJ4UIQdevyIq+dsWvXLsydOxcBAQE4ffo0goKCcPXqVbz33nuYPn268WZXXtN7EkmSQETGHDp5
be7J1whyjxA+lSCHDz948EBhS9SP3JB261buy2sXyMJ38qSydgDYsYO3zZuz+KmeFSt427u3KgKD
zGXs2LHGbc2aNbF+/XpjtOcPP/zw3IosMrKwSZJUqNfmLIUIblEJQvhyT+nSQI0aHN1+4ADQqpXS
FuWCGjU4DP/SJSAuDsgsLaUEduXmTEgAMstsoUcPZW3JA8nJyahWrRqqV6+OPn36GH8/ZswY1KtX
DykpKahatSoAMWuzJUL4VIIQPvPo2JGF799/7UT4HB151nfsGHDiBNCihSJm2F2Zsk2beI2vSRO7
CmqRcXFxwbx582AwGODs7GzMzXNwcEBQUJDS5hVaxJxZJQjhM4+OHXn777/K2mEWL7/M2+PHFTPh
3Dng7l2ukV69umJm5J7ly3lrN7krT+Po6GiMtBSzOnUghE8lCOEzjyZN2Ft44QJw/brS1uQSWfiO
HlXMBDlpvVUrO1gui4sDNm9mQ+U8FoHAAgjhUwlC+MxDpwPatuX9zZuVtSXXNG3K2z172OeoAPv2
8bZ5c0WGN48NG4DUVOC114CSJZW2RlCAEMKnErIK37PCmgXZkd2ddpPPV7UqX8Dv3WOfo40hMglf
s2Y2H958CoCbU6BOhPCpBGdnZxQpUgTp6emIjY1V2hy74PXXebtzJ2AXld4kyVQYc/t2mw8fEcGa
W7y4HbSxi47mfBWNhqu1CAQWRAifipBnfffv31fYEvvA3x9o0ICruMi5aapH9s/KIfo25MAB3r72
mh2s761bB6Snc/SrqEYisDBC+FRE8eLFAQjhM4c33uDthg3K2pFrOnXiBcq9ewEb/5/l3PmGDW06
bN5YtIi377yjrB2CAokQPhUhhM98ZOHbtAnIoZKT+vD25gQ6gwFYs8amQ8vCV6eOTYc1nytXgN27
ARcXu0xaF6gfIXwqQgif+dSsyZVc7t1TNEvAPOSL+bJlNhvSYABOn+Z91Qvf/Pm8ffttwNNTWVsE
BRIhfCpCCJ/5SJJp1rdunbK25JouXbhI5t69wLVrNhnyyhWu/lWyJAe3qJaMDOCvv3h/8GBFTREU
XITwqQjPzLtb0ZrIPOSgv2XLFEuPMw9PT5PRCxbYZMhTp3ir+tneli1AZCSHndpF6wiBPSKET0XI
Pfni4+MVtsS+aNaM+/Rdvw4cOqS0Nblk0CDeLljADVatjCx8detafaj8MW8ebwcOtIPQU4G9IoRP
Rbi7uwMAEuymtbg60GiAd9/l/SVLlLUl1zRvDpQrB9y+bZOcvhMneFu7ttWHyjt373KUklYL9Oun
tDWCAowQPhUhz/iE8JlP7968XbGC079Uj0bDsxrANMuxEkSmutj161t1qPyxcCGv8XXuDJQoobQ1
ggKMED4V4ebmBkAIX16oVYu7DTx6xAU/7IL+/VkA168HrFij9fZtPry3N1C2rNWGyR9EphsA2Q0s
EFgJIXwqQqvVAgAMdpGQpi4kyTTrW7xYWVtyTUAA0KEDT1H/+cdqw8izvZdfVvGy2cGD3KTX399U
i04gsBJC+AQFhl69eLt+PXe0sQsGDOCtHMJvBY4d462q3Zxz5/K2f3/AQfTHFlgXIXyCAkOZMhzh
mZICrF6ttDW5JCiIfZAnT5oyzC3M/v28VW2psthYYOVK3pfXPQUCKyKET1CgeO893tqNu9PJyTRV
tcKsLyEBOHyYlxJbtLD44S3DsmXcXqNFC6BCBaWtERQChPCpiPTMcESNRvxb8spbb7GW7N7NQR12
Qf/+vF2yhKMaLcj+/byEWL8+TyxViQhqEdgYcYVVEY8fPwYAFCtWTGFL7BcvL/YeEgFLlyptTS55
+WWuVPLggalTrIWQu9PLbQBVx5kzXGQ1azUbgcDKCOFTEQ8fPgQA+Pj4KGyJfSO7OxctspMSZpJk
uuhbcHEyI8PUxLxbN4sd1rLIs73evbkbg0BgA4TwqQhZ+OSGtIK80aEDUKwYcO4cTyjsAln41q61
WH+lnTu55V+lSjypVB2pqabFWOHmFNgQIXwqQsz4LIOjI9CzJ+/L/UxVT716nF0eFcXRKBZALt/W
p49K8/fWrQMeP+bK2fXqKW2NoBAhhE9FCOGzHHKg5OrVdujutECD2sRE02Hkv4XqkHP3RPshgY0R
wqciHmSWrRLCl38aNwb8/Lhjg5XS4yxPly683bAh32q9YQOL3yuvAOXLW8A2S3P9OrBjR/Z0DoHA
RgjhUxFixmc5NBqga1fet8AEyjY0bgwULQpcvgyEh+frUPLSWZ8+FrDLGsh9CLt3V3GehaCgIoRP
RQjhsyxyJOPatcrakWscHIBOnXh/48Y8H+bBAy7UrdUCPXpYyDZLotcD8+fzvnBzChRACJ9KICKj
8Ik8PsvQsiWnh507B0REKG1NLgkK4m0+hG/5ctaWDh0AVQYIb9/O1QXKleO+hAKBjRHCpxISEhKQ
lpYGV1dXuLq6Km1OgcDRkVu7AXY062vfHtDpuFvBo0d5OoQczSl3q1AdclDLwIHskxYIbIz41KkE
4ea0Dnbn7ixShGtWGgzAv/+a/fYbN4DQUMDVFXjjDcubl28ePODIG43GVKpNILAxQvhUghA+69Ch
A+DszGIQFaW0NblEdndu2GD2W1et4m3nzkBmX2N1sXAhFw99/XXuRygQKIAQPpUghM86uLkB7drx
/vr1ytqSa2Th27oVSEsz661yd5+337awTZaACJgzh/dFUItAQYTwqQQhfNZDTmuwG3dn2bJAzZpA
fDywd2+u33bz/9u787CoyvYP4N9nhl12RZTQwhRN3HkVks0URRRNvbLMxOWXS1lu1ZtbKWYueIWG
W5bhlhaauaQgLkG+uaQV+VouYYL6goooKC4swty/Px5nYGTVgHOQ+3Ndc81h5uGc+4zIzbNfAo4d
k82cffpUX3iP7dAhOU2jceOi0auMKYATn0pw4qs+/frJLqX4eODmTaWjqaTHaO7Uz1fs00cmP9X5
4gv5PGqUHMDDmEI48akEJ77q06CB3Jm9oACIiVE6mkrSj0zZtavSq7jExcln/QIwqpKVVdQByQtS
M4Vx4lMJ/XJlvDND9ah1ozs7d5Zrrl28KCciViA3t2grv549qzm2x7FxowwyMFDO32NMQZz4VIJr
fNVLXwuKiwNycpSNpVI0mqJJiJVo7jxyRN5Xu3YyX6pK8UEtY8cqGwtj4MSnGpz4qtfTT8udb+7e
lWsj1wqPsIqL/p5UWds7fhz44w+5jIwq22FZXcOJTyV4ubLqN2iQfNYP+Ve9wEC5e8GxY8DVq+UW
3b9fPqsy8ekHtYwYIZfTYUxhnPhU4saD5am4xld99As279ghu5tUr149mfyAckflZGYCv/0mc4qf
Xw3FVlk3bwLR0fKY5+4xleDEpwJEhMzMTACAA2/RUm1atJDNnbdvA3v2KB1NJVWiuTMhQXaj+fio
cBrDl18C9+4BPXoALVsqHQ1jADjxqcKdO3dQUFAAKysrWFhYKB3OE+2VV+Tz5s3KxlFp+gEu+/aV
OSpH37/Xo0cNxVRZBQXAsmXyeMoUZWNhrBhOfCqgr+1x/1710zd37tolB7qo3lNPAZ6eMunFx5da
5Icf5LPqEt+2bXI5GXd3uTYnYyrBiU8F9InP0dFR4UiefM88A3h7y9a33buVjqaSymnuvHRJ7jVo
awv86181HFd5iIAlS+TxpEm8/RBTFf5pVAFOfDWr1jV3lrOKi762162b3MBdNRIS5JYYDg5yNCdj
KsKJTwXuPmhzs7a2VjiSumHwYEAIud1ddrbS0VRChw6Aqytw+TKQmGj0ln6ZMlU1cxIBs2bJ43ff
Ven+SKwu48SnAvkPtp4x4zlONeKpp+Sw/7y8WrJVkRClruJSWFi0V62+NVQV9u+XO8g7OgITJyod
DWMlcOJTgby8PACc+GpSrW7ufKCwUI556dgRcHNTKK6HFa/tvf8+YGOjbDyMlYITnwpwja/mvfSS
HG+xd6+cAK56L7wgmwx//x1ITQUgJ6w//3zRijSqEBsrV5pxcgLeflvpaBgrFSc+FdAnPlPeo6zG
NGwIdO8up5rVih0bLCyK1iMrVuvr318mcVUgAmbPlsfTpnHfHlMtTnwqoE949+/fVziSumXIEPlc
m5s7X34ZaNVKoXgetn27XDutUSPgjTeUjoaxMnHiUwGrB+tM5dSK/XKeHAMHyikAP/wAXLumdDSV
0LevHOgSHw/cuQNA7jqhCoWFwIcfyuMPPlDh2mmMFeHEpwKWlpYAgHv37ikcSd3i6Aj06gXodMB3
3ykdTSU0bChn3+flqW/2/TffAKdPy0w8ZozS0TBWLk58KsA1PuXoR3fWin4+AHj1Vfm8caOycRR3
/35R397s2bz1EFM9TnwqoE98XOOrecHBsvXwP/+Ry5ip3iuvAFqtnLmekaF0NNKaNUBystx9ITRU
6WgYqxAnPhXQN3Vyja/mOTnJNaDz8oCDB5WOphIaNgR695Z9amqo9eXmAnPnyuOPPlLZummMlY4T
nwpwjU9ZvXvLZ/3yX6qn39B1xQrZQamkzz4D0tKA9u1VNK+CsfJx4lMBrvEpq9Ylvn795CCS8+eL
1ixTwt27wMKF8njuXN6BgdUa/JOqApz4lOXlBdjZAUlJsqtKjXJzi23Hp9UWrYry6aeKxYTPPpPz
QDp3LlpLlLFagBOfCpibmwMoWrOT1SwTk6JFUfbuVTaWsmzcCHzySbEXXn8dsLaWkxAPHar5gO7c
AcLD5fFHH8kRQozVEpz4VECf+HJzcxWOpO5Sc3MnEbB8uYzNsI2SgwMwZYo8/uCDEvv0VbsVK4Dr
1+W8wqCgmr02Y/+QIKrp/zHsYTqdDlqtFgBQWFgIDfeV1LjUVKBJE1mJunFDXVPRDh8GfH3lCNS0
NMCwpOvNm0CzZkBWltwKKDCwZgK6fVtuZZ+ZCezbV1RdZqyW4N+wKqDRaAzrdeoXrGY1y9UV8PCQ
LXhHjigdjbEVK+Tz6NHFkh4A2NsD//63PJ4yRU4krwkLFsik5+NTc8mWsSrEiU8lLCwsAHA/n5L0
zZ07digbR3FXrwJbt8oBk6Wu+zx5sqz1/flnzQx0OX8eiIiQxxER3LfHaiVOfCrBA1yUp9+tYdMm
QC0V79WrZUWuf3+gadNSClhaFlUJw8KAS5eqN6B335UfzvDhcjgsY7UQJz6V4MSnPE9P2dx5/ToQ
E6N0NHKvwM8/l8dvvVVOwd695f5E9+7JBaKra1L7jh3Azp2yI1Q/f4+xWogTn0pw4lOeEMCoUfJ4
zRplYwFkjklLk0tg9uhRQeFPPwXq15eDTaqjyfPaNWDsWHk8fz7QuHHVX4OxGsKJTyX0iY8Htygr
NFSO6IyJkd1ZSlq+XD6/9VYlutIaNy7K1tOmVe0IncJC2bSZkSG3rS+3+smY+nHiUwmzB+Pnucan
rIYN5c4/RMCyZcrFceoU8OOPQL16MudUSv/+wKRJslNwwADg4sWqCebDD+XM/gYNgHXreGkyVuvx
T7BK6BMf1/iUN2mSfF6zptiE8Rq2cqV8Dg2Vy6lV2iefyN11MzJk39+VK/8skM8/l9MXtFpgyxY5
2ZGxWo4Tn0pwU6d6dOwIBATIedpr19b89bOzgQ0b5PEjtyqamACbNwNt2gBnz8obSU19vEA2bADe
fFMeL1sGvPDC452HMZXhxKcSXONTl8mT5fOSJTU3L1xvwwY5kT4gQOavR2ZvDyQkAB06AOfOAc8/
Dxw/XvnvLyyUzZsjRsg23/DwogTI2BOAE59K8KhOdenXT46mvHhRzuurKURFzZz/aAxJgwZyAWsf
H1nj69pVrvJy40b535ecDPTtC3z8sezLi4gA3n//HwRSu+h0OgwdOhQajQaj9fseliM9PR09e/bE
uXPnaiC6qpGYmIg5c+ZgrRLNGWpBTBVefPFFAkDbt29XOhT2wPr1RACRuztRQUHNXPPAAXnNxo2J
8vOr4IR5eURTphAJIU9sZUU0bBjR118TnThBlJJCdPIk0caNRC+/TGRqKss5OhLt318FAShv27Zt
VL9+fRJCGB7t2rWjv//+u0TZ8ePHkxCC7OzsSAhB8fHxhve2bNlC7733nuFrnU5Hvr6+JISg+fPn
ExFRixYtjK6jf7z22muUkpJCRERJSUnUtWvXUssJIWjy5MlERJSWlkZ+fn5G75mbm9PGjRsf63PI
zc2lV199lTQaDQUHB9OJEyeIiCgxMZE0Gg0tXLiQ7t+/T6ampjRjxowS3z979mwSQtCGDRuIiGjN
mjXUsGHDUu9Bq9VSYmLiY8VZEzjxqcTgwYMJAG3evFnpUNgD+flEbm4yD0RH18w1Q0Lk9ebOreIT
Hz9OFBwsT17eQ6MhCg0lSk2t4gCU8csvv5C5uTm5urrSxIkTKSoqiqZPn052dnZka2tLZ86cMZT9
+eefSQhBkZGRlJGRQW5ubtS6dWvS6XRERDRp0iQSQtDUqVOJiGjZsmVkZmZGWq2WPD09iYhICEEa
jYaGDBlCUVFRFBUVRWPGjCEhBHl7exMRUXBwMAkhqHfv3oYy+sfatWvp7t27VFBQQF5eXmRiYkL9
+/en1atX04oVK6ht27YkhKB58+Y90ueQk5NDHh4eZGNjQ6tXrzbcExHR4sWLSQhBo0aNotzcXBJC
kJWVFR06dMjoHPrEd/DgQbp69SoJIcjExITCwsJK3MfevXsf/R+rBnHiU4nQ0FACQOvXr1c6FFbM
F1/IfNCmDVFhYfVeKylJXsvcnOjatWq6yF9/EYWHE/XrR9SqFVGTJvL5xRfl6//7X5Vf8o8/iH79
leiXX4iOHiWKjSVatozo/feJwsKIdu8munevyi9LRESnT58mc3NzmjNnjtHrmZmZ5OTkRCEhIYbX
lixZQubm5pSVlUVEMrEJISg2NpaIihKfs7MzJSYmkouLCy1evJgWLlxIQggikokvODi4RBytW7cm
Z2dnIiJatGgRmZqaUl5eXrmx+/v7k5ubm9FrOp2OxowZQ/b29qXWWEuTm5tLwcHBZGZmRsnJySXe
P336dInEJ4SgNm3aGJXTJ77jx48TEVGbNm1o+PDhlYpBbTjxqcSYMWMIAK1atUrpUFgxublErq4y
IVV3K/Tbb8vrvP569V6nprVoUXFF09JStshWh/fee4/CwsJKvB4bG0tCCLp58yYREQUGBlL9+vUN
76ekpJCjoyO9+eabREQUERFh1JzXqVMnunfvHq1bt440Gg0RycS3cuXKUq+zaNEiIiL67LPPSKPR
0LFjx+jKlSuGx/37942+788//6RnnnmmRNx5eXnUpEkTWrJkSaXuXx/3tGnTSn1//vz5hsR3584d
o3tcs2aNodzMmTPJ1dXV8LWXlxf5+flRWlqa4R4yMjIqFZPSeHCLSlhaWgIAcnJyFI6EFWduDkyd
Ko9nzpQDHqtDVpacGw4UzSN8Unh4AJ06yUeXLnIno9GjgXnz5Gfr6Qnk5ABWVtVzfWtr61JfDw4O
hrOzM+Li4pCTk4PTp0+jR7G14ezs7ODj44MzZ84AADp16gQAmDRpEszNzbFq1SpYWlrCx8cHVGxb
08jISBw7dgxXrlzB0qVLMWjQIPj6+uLfD7aQys/PBxEhMDAQTz31FFxcXODu7o6NGzcaxVevXr1S
4zYzM8Nrr72GuErumuzr6wtXV1eEh4ejb9++JQbi6AfU2draYteuXQCAo0ePIigoCDNmzMDly5cB
ANu2bTNsn6a/jyNHjqBly5ZwcXGBi4sLfH19DeXVzETpAJikT3y8C7v6jBkDLF4MnD4NrF8P/N//
Vf01IiPlFIbAQKBt26o/v5K2b6+4zNWr1Xd9nU5X5ubOXl5eaNq0KdLT03HlyhWcPXsWaWlp2LRp
E2bMmAGdTgcPDw+j75kyZQpCQ0MNifDhcyclJeH55583fO3n54eYYquef//992jevDmSkpJw6tQp
pKeno1u3biXOUzyZPqxLly64UdEI3WJlL126hISEBEyfPh0eHh6IiopCaGioUbkBAwbgwoULhs9l
2bJl8PT0RFBQEL755hvcuHHD8EdEamoqTpw4gY8++ggzZ85EQkICnJ2dS3xWasU1PpXQ78fHNT71
MTeXo/sBYNYsuQlCVbp5s2hd6VmzqvbctUWjRvJRHfbt2wdRymKn9+7dw549e9Cm2GTJP/74A02a
NMHHH3+MLVu2wMfHB6dOncK1a9eMvlef9ADgp59+MnpPo9FgwoQJiIuLw759+7Bv3z6jWmdBQQF8
fX0BAB4eHujevXupiXnfvn1l3tPWrVvR9hH/QnrhhRdw5MgRLF++HOPHj0diYiIAGBLowzE0b94c
u3btQnJyMtq1a4eMjAx0797dcA8A4O/vDyEEunfvXmuSHsCJTzW4qVPdhgyRK7qkpckVvKrSkiXA
rVtyBwY/v6o9NwMaNmxY6us7duyAl5cXbGxsDK8NHz4c8fHxuHXrFgYNGoRx48YBAI6Us+j3wzWz
oKAgREZGolevXggMDDTM0QWAwsJCJCcnIysrC0SEzMxMXL161fC4X2y1BCcnp1Kvl5+fj927dyM4
OLjim3+IRqPBsGHDYGpqii+++AJAycRdnL+/P6ZNmwYAEEJg8ODBAGBoLr1+/ToKCwuN7iEjI+OR
46pp3NSpEpz41E2jAZYulYkpPBx47TWgVat/ft7UVLm8JiD3kWVVr1OnTiWSU05ODiIiIrDgob9i
Ro4ciW7duhm+dnd3BwBcunQJbm5uZV6jeG1p4MCBZZa7ffs2UlNTkZqaihYtWiA5OdnwnhACsbGx
CAoKMsRdmsWLF6Nv375o3rx5mdfRS0tLw549exAUFISffvoJd+7cwcqVK5GdnY1+/fohMzMTZ8+e
hRDCqP+uuJkzZyI1NRX169dHr169AACnTp0CALzyyito0qSJoYkUAJ5++mmcO3cOJibqTS/qjayO
4cSnfr6+wOuvA1FRcseEQ4fkFkb/xL//LZtOX3pJnp9VPSIyauq8ffs2xo4dC3t7e8Mv8qSkJFhY
WBj1zQGyf0xfY2zfvj2aN29u+L+q5+3tja+++srwtVk5PxRWVlZwcXFB69at4erqCn9/fzRu3BgB
AQFo0KBBmckOkINQ4uLisHDhQhw+fLhS956QkICxY8dCo9FA92CDYm9vbxw8eBA+Pj64cOEC8vPz
IYSAl5cX/vrrrxLn0Gg0+Fy/I/IDzz77LKytrTFw4EBotVoAQNeuXdG0aVO0b99e1UkP4MSnGvo+
Ph7com6ffALs3w/88ovsj/snG5F/9x0QHQ1YWBTV+ljVys3Nxffffw9nZ2d8+eWXiImJwc6dpHU4
PwAADptJREFUO9G5c2fEx8cbyp0/fx6WlpZGzZJ6b7zxBpo2bQpAJsiHtWrVCq0eVP9HjhwJLy+v
MuMxMzNDaiUXDd+8eTOysrLw5ZdfIjk5GatWrUJeXh5iY2Mr3Z/m6+sLc3Nz5OfnIzg42GiQzcM0
Gk2pfaGl6devH7KV2rqkKig4lYIV8+233xIAGjRokNKhsAocOiQXOAGI1q17vHNcvEjk4CDPsWxZ
1cbHipw4ccJoXpq1tTWFhYVRdna20qFVqEOHDoa49cuMnTx5skqvkZaWRhqNht555x0iIkpOTqZO
nTpV6TXUiGt8KqFvLiisrolirMr4+MhRmBMnyqZPR0e5qHVl3bght8rLygKCg3lD8+rk5uaGOXPm
wN/fHwEBAUqH80jeeecd3Lp1C2+//Xa1XcPFxcXod46bmxt+++23arueWnDiUwl9EwOVM3eHqceE
CcDly7Kpc9AgYMUKOd+vopaijAwgJAQ4c0ZuObRpU8Xfwx6fra0tPvzwQ6XDeCwPz7NjVYenM6iE
flQYJ77aY/58OTiloAAYNw7o319Oci8NEbBnD/Cvf8mt8Z55Bti7F3BwqNGQGWPgGp9q6Gt8+pFX
TP2EABYtAtq1A8aPB3bvlg8fH6B7d+DZZ+USZ0lJMumdPCm/r3NnYMcOwMVF2fgZq6s48akEN3XW
XsOGycnnc+fKJc0OH5aPhzk5yRri5MlAGVOmGGM1gBOfSnDiq90aN5Y7py9aBMTGAomJwP/+B5iY
AE2aAN7eQM+ecvkzxpiyuI9PJbiP78lgbQ28/LIc9LJpk6wBfvyxHNDCSU/9dDodhg4dCo1Gg9Gj
R1dYPj09HT179iyx40Fdk5CQgLCwMGyvzIrkKsCJTyW4j4+x6rF9+3Y0aNAAGo3G8Gjfvj3Onz9f
ouyECRMQHR0NW1tbrFmzBgkJCYb3vv32W8PWQoD8I/Wll17CDz/8gK1btwKQS5wVv47+MWzYMMOy
XufOnYOPj0+p5TQaDaZMmQIAuHz5Mvz9/Y3es7CwwKZNmx7rc9i9ezeeffZZaDQatGrVCtu2bStR
RqfT4b333oOZmZnhmoMHDy7zD/KsrCz06tULPXr0wLlz59ChQwcAwM6dO6HRaBAdHY2UlBRotVrD
2qDFjRw5EhqNxrBeaHh4OGxtbUv9XKytratuyyMF5xCyYuLi4ggA9ezZU+lQGHti/PLLL2Rubk6u
rq40ceJEioqKounTp5OdnR3Z2trSmTNnDGV//vlnEkJQZGQkZWRkkJubG7Vu3Zp0Oh0RFe3APnXq
VCKSO7SbmZmRVqslT09PIiLDZPMhQ4ZQVFQURUVF0ZgxY0gIQd7e3kREFBwcTEII6t27t6GM/rF2
7Vq6e/cuFRQUkJeXF5mYmFD//v1p9erVtGLFCmrbti0JIWjevHmP9Dls2bKFTExMyN7enqZNm0bh
4eE0YMCAEuX0m9a2a9eOvvjiC+rSpQsJIWj8+PElyl6+fJlcXV3JycmJdu7cafTexIkTSQhBc+bM
obNnz5IQgpycnOjs2bNG5UaMGEFCCLp48SIdO3aMhBBUr149ioiIKPHZHD58+JHuuTyc+FRi7969
BIACAwOVDoWxJ8bp06fJ3Nyc5syZY/R6ZmYmOTk5UUhIiOG1JUuWkLm5OWVlZRGRTGxCCIqNjSWi
osTn7OxMiYmJ5OLiQosXL6aFCxeSEIKIZOILDg4uEUfr1q3J2dmZiIgWLVpEpqamlJeXV27s/v7+
5ObmZvSaTqejMWPGkL29Pf3999+V+gwOHjxIWq2WnJ2d6b///W+Z5ZKTk8nExITatm1Lf/75JxER
FRYW0pAhQ0gIQVFRUYaymZmZ5OnpSfXr16dbt26VOJd+1/niiU8IQX369DEqN2LECNJqtZSenk75
+flkb29Ps2bNqtR9/RPc1KkS3MfHnljjxsmlbUJCgD595KNfPznno3Nnufvu0KHA2rVVfunnnnsO
EyZMKPH/ysHBAevXr0dMTAxu3boFAIiJiYG1tTXs7e0BACEhIXBwcDDsSq5fr/PatWvw9PREo0aN
8MYbb6BRo0ZGa1z2e2gZnz179uDMmTN49913AQA2NjYoLCzEiRMnjLbz0e9xp7dy5coScQshsHz5
ctjY2BjiKk9eXh5CQ0MhhEB8fDzatWtXZtkFCxagYcOG+O233wxrgWo0GmzatAm9evXC8uXLDWVn
z56NxMREzJs3D7a2tiXOtWPHDsNx8a2W4uLi8MMPPxi+LigoQNeuXdGwYUOYmprCwsICSUlJRp9L
VlZWhff5yKo9tbJKOXDgAAGgF154QelQGKtaLVrIRUkrerzxRrVcPiwsjMLCwkp9r1GjRhQdHU33
7t0jFxcXevnllw3vZWZmUr9+/ahbt25ERJSQkEBCCJo8eTJZWFjQ8ePHiYjo3LlzRjW+li1b0s8/
/0yXL1+myMhIsrCwID8/P8N5IyMjSQhBNjY2pNFoDMdr1641ii0lJYWeeeaZUuOeNm0aBQUFVXjv
X3/9NQkh6M033yy3XEpKCpmZmdGBAwdKfV9fazx//jwREe3atYvq169PWq2Whg0bRmlpaUbl9U2Y
S5YsoQULFpCtrS2dPHmSOnbsSB4eHnT79m0iIrK0tDT8ztPpdOTo6EimpqZkZWVFQgjSarXUuXNn
unPnToX3+ih4OoOCiAi//vorOnfuXO50hkuXLsHc3BzOzs41HSJj/9yqVcDdu/JYv29dYSFgaQnY
2QGZmXIB00rsL/c4dDpdqTucA4CXlxeaNm2K9PR0XLlyBWfPnkVaWho2bdqEGTNmQKfTldgJYcqU
KQgNDTVsIfTwuZOSkoy2N/Lz8zPaFeH7779H8+bNkZSUhFOnTiE9PR3dunUrcZ7SfhfodenSxbBz
enny8vIAAKNGjSq33MaNG+Hl5YUePXqU+r6trS10Oh3OnDmDZs2aISQkBNevX8e2bdswc+ZMw2CZ
wMBAo+8bMGAA1q1bB0dHR7Rt2xZLly5F9+7d8eKLL2Lp0qXIzc01/O47fPgwsrKysGHDBgwePBg/
/fQTmjVrhmbNmlV4n4+sStMoqzSdTkejR48mIQRt27aN4uPjCQAFBAQYyhQUFNDSpUupXr16NHjw
YOWCZawW8/b2LtHHR0R09+5dMjMzo+zsbEpJSTHaxcHGxoa+++478vX1JSEEpaenG2p8Fy9eNDrP
unXrjGp8Wq2WJk6cSHv37qX9+/dTbm6uUfmAgAAaNWpUhXGvWrWqzBrf0KFDaenSpRWeQx/z3Llz
yy3Xrl072r59e6nvFRQU0Kuvvkru7u5UUFBQ4v38/Hz64IMPyMXFhVJSUoiIKCQkhDQaDV24cIFm
z55tdB/R0dGk1WoNn/XHH39sFOvDn2914D4+hQgh8PTTT4OIMHToUJx+sMgjPfgr79SpU/D19cXE
iRNx9+5dEJHhrzfGWOXpN5J92I4dO+Dl5QUbGxvDa8OHD0d8fDxu3bqFQYMGYdy4cQCAI0eOlHl+
eqhmFhQUhMjISPTq1QuBgYFGe/wVFhYiOTkZWVlZICJkZmYa9WcV7w9zcnIq9Xr5+fnYvXs3goOD
K7z3bt26wdvbG2FhYYbfMXoXLlzAhAkTkJqaij/++AMOpSwce+7cOQwcOBDx8fHYsWOHYReZ4kxN
TfHWW2/hypUriI6OBgDD9ITSvPLKKxgxYgQA+XvwpZdeMlwLAK5fv478/HyjzyUzM7PCe30U3NSp
oJkzZ+LSpUtYvXo1ZsyYAUB29oaFhWH+/Pm4f/8+XFxcsGLFCgwYMEDhaBmrnTp16lQiOeXk5CAi
IgILFiwwen3kyJHo1q2b4Wt3d3cAsrvBzc2tzGsUb6YcOHBgmeVu376N1NRUpKamokWLFkhOTja8
J4RAbGwsgoKCDHGXZvHixejbty+aV7JpeOPGjejRowf8/Pwwfvx4DBw4EImJiZg8eTKGDRsGe3t7
ODk54Z133sHQoUNhZ2cHADh69Cg2bNiAjh074sCBA3juuecAAGfPnsWRI0fQp08fxMXFIScnB+Hh
4bCwsEBQUBBOnz6N7OxsCCFgWsbafMuXL0d2djb8/f3RsmVLAPKPfUA2DTs4OBjN2fP29i73j49H
xYlPQUIIrFy5EpcvXzb0Afz++++Gf+Bx48YhPDzc8IPIGHt0RGQ06vL27dsYO3Ys7O3t0atXLwCy
X87CwsKobw6QfWn6GmP79u3RvHlzWFpaGpXx9vbGV199ZfjazMyszFisrKzg4uKC1q1bw9XVFf7+
/mjcuDECAgLQoEGDMpMdIPvr4uLisHDhQhwubTHYMjRr1gxHjx5FREQEPvnkE8ybNw9CCAwdOhQR
ERGoV68eYmJisGjRIkydOhU6nQ7u7u4YPHgwkpKSSiT8rVu3YtasWdBoNIYFN3r37o2YmBh4eHjg
xx9/BAA89dRTcCljJXZLS0t8++23Rq+1aNECTk5O6Nu3LwD5+7FHjx5wcnIqd1f7x1LtjamsQnfu
3KHnnnuOABAAcnd3p4MHDyodFmO1Xk5ODnXs2JF69+5Nq1evpgEDBpAQgrp06WI0UnDlypXk6OhY
6jlmz55dZv/Xw0aNGlVikvbjWrhwIdnZ2dHq1atp+vTp5ODgQFZWVvTjjz9Wyfkf16FDh0ir1ZJG
oyl1tKi+r65Zs2ZEJEfVltVXqRROfCoRHx9P9vb21KFDB8rJyVE6HMaeCCdOnDAatGJtbU1hYWGU
nZ2tdGgV6tChgyFujUZDwcHBdPLkSaXDqtCRI0dIq9XSp59+SkREx44dq9TUi5okiHjGNGPsyZSd
nY3IyEj4+/sjICBA6XAeyVdffYVbt27h7bffVjqUJw4nPsYYY3UKT2dgjDFWp3DiY4wxVqdw4mOM
MVancOJjjDFWp3DiY4wxVqdw4mOMMVancOJjjDFWp3DiY4wxVqdw4mOMMVancOJjjDFWp3DiY4wx
Vqdw4mOMMVancOJjjDFWp3DiY4wxVqdw4mOMMVancOJjjDFWp/w/8uJgOFS3f4YAAAAASUVORK5C
YII=
"></img>
</div>
</div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<h2>
Duplicating an XKCD Comic
</h2>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Now let's see if we can use this to replicated an XKCD comic in matplotlib.
This is a good one:</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[6]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">Image</span><span class="p">(</span><span class="s">&#39;http://imgs.xkcd.com/comics/front_door.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[6]:</div>
<div class="output_subarea output_pyout">
<img src="
T2lDQ1BQaG90b3Nob3AgSUNDIHByb2ZpbGUAAHjanVNnVFPpFj333vRCS4iAlEtvUhUIIFJCi4AU
kSYqIQkQSoghodkVUcERRUUEG8igiAOOjoCMFVEsDIoK2AfkIaKOg6OIisr74Xuja9a89+bN/rXX
Pues852zzwfACAyWSDNRNYAMqUIeEeCDx8TG4eQuQIEKJHAAEAizZCFz/SMBAPh+PDwrIsAHvgAB
eNMLCADATZvAMByH/w/qQplcAYCEAcB0kThLCIAUAEB6jkKmAEBGAYCdmCZTAKAEAGDLY2LjAFAt
AGAnf+bTAICd+Jl7AQBblCEVAaCRACATZYhEAGg7AKzPVopFAFgwABRmS8Q5ANgtADBJV2ZIALC3
AMDOEAuyAAgMADBRiIUpAAR7AGDIIyN4AISZABRG8lc88SuuEOcqAAB4mbI8uSQ5RYFbCC1xB1dX
Lh4ozkkXKxQ2YQJhmkAuwnmZGTKBNA/g88wAAKCRFRHgg/P9eM4Ors7ONo62Dl8t6r8G/yJiYuP+
5c+rcEAAAOF0ftH+LC+zGoA7BoBt/qIl7gRoXgugdfeLZrIPQLUAoOnaV/Nw+H48PEWhkLnZ2eXk
5NhKxEJbYcpXff5nwl/AV/1s+X48/Pf14L7iJIEyXYFHBPjgwsz0TKUcz5IJhGLc5o9H/LcL//wd
0yLESWK5WCoU41EScY5EmozzMqUiiUKSKcUl0v9k4t8s+wM+3zUAsGo+AXuRLahdYwP2SycQWHTA
4vcAAPK7b8HUKAgDgGiD4c93/+8//UegJQCAZkmScQAAXkQkLlTKsz/HCAAARKCBKrBBG/TBGCzA
BhzBBdzBC/xgNoRCJMTCQhBCCmSAHHJgKayCQiiGzbAdKmAv1EAdNMBRaIaTcA4uwlW4Dj1wD/ph
CJ7BKLyBCQRByAgTYSHaiAFiilgjjggXmYX4IcFIBBKLJCDJiBRRIkuRNUgxUopUIFVIHfI9cgI5
h1xGupE7yAAygvyGvEcxlIGyUT3UDLVDuag3GoRGogvQZHQxmo8WoJvQcrQaPYw2oefQq2gP2o8+
Q8cwwOgYBzPEbDAuxsNCsTgsCZNjy7EirAyrxhqwVqwDu4n1Y8+xdwQSgUXACTYEd0IgYR5BSFhM
WE7YSKggHCQ0EdoJNwkDhFHCJyKTqEu0JroR+cQYYjIxh1hILCPWEo8TLxB7iEPENyQSiUMyJ7mQ
AkmxpFTSEtJG0m5SI+ksqZs0SBojk8naZGuyBzmULCAryIXkneTD5DPkG+Qh8lsKnWJAcaT4U+Io
UspqShnlEOU05QZlmDJBVaOaUt2ooVQRNY9aQq2htlKvUYeoEzR1mjnNgxZJS6WtopXTGmgXaPdp
r+h0uhHdlR5Ol9BX0svpR+iX6AP0dwwNhhWDx4hnKBmbGAcYZxl3GK+YTKYZ04sZx1QwNzHrmOeZ
D5lvVVgqtip8FZHKCpVKlSaVGyovVKmqpqreqgtV81XLVI+pXlN9rkZVM1PjqQnUlqtVqp1Q61Mb
U2epO6iHqmeob1Q/pH5Z/YkGWcNMw09DpFGgsV/jvMYgC2MZs3gsIWsNq4Z1gTXEJrHN2Xx2KruY
/R27iz2qqaE5QzNKM1ezUvOUZj8H45hx+Jx0TgnnKKeX836K3hTvKeIpG6Y0TLkxZVxrqpaXllir
SKtRq0frvTau7aedpr1Fu1n7gQ5Bx0onXCdHZ4/OBZ3nU9lT3acKpxZNPTr1ri6qa6UbobtEd79u
p+6Ynr5egJ5Mb6feeb3n+hx9L/1U/W36p/VHDFgGswwkBtsMzhg8xTVxbzwdL8fb8VFDXcNAQ6Vh
lWGX4YSRudE8o9VGjUYPjGnGXOMk423GbcajJgYmISZLTepN7ppSTbmmKaY7TDtMx83MzaLN1pk1
mz0x1zLnm+eb15vft2BaeFostqi2uGVJsuRaplnutrxuhVo5WaVYVVpds0atna0l1rutu6cRp7lO
k06rntZnw7Dxtsm2qbcZsOXYBtuutm22fWFnYhdnt8Wuw+6TvZN9un2N/T0HDYfZDqsdWh1+c7Ry
FDpWOt6azpzuP33F9JbpL2dYzxDP2DPjthPLKcRpnVOb00dnF2e5c4PziIuJS4LLLpc+Lpsbxt3I
veRKdPVxXeF60vWdm7Obwu2o26/uNu5p7ofcn8w0nymeWTNz0MPIQ+BR5dE/C5+VMGvfrH5PQ0+B
Z7XnIy9jL5FXrdewt6V3qvdh7xc+9j5yn+M+4zw33jLeWV/MN8C3yLfLT8Nvnl+F30N/I/9k/3r/
0QCngCUBZwOJgUGBWwL7+Hp8Ib+OPzrbZfay2e1BjKC5QRVBj4KtguXBrSFoyOyQrSH355jOkc5p
DoVQfujW0Adh5mGLw34MJ4WHhVeGP45wiFga0TGXNXfR3ENz30T6RJZE3ptnMU85ry1KNSo+qi5q
PNo3ujS6P8YuZlnM1VidWElsSxw5LiquNm5svt/87fOH4p3iC+N7F5gvyF1weaHOwvSFpxapLhIs
OpZATIhOOJTwQRAqqBaMJfITdyWOCnnCHcJnIi/RNtGI2ENcKh5O8kgqTXqS7JG8NXkkxTOlLOW5
hCepkLxMDUzdmzqeFpp2IG0yPTq9MYOSkZBxQqohTZO2Z+pn5mZ2y6xlhbL+xW6Lty8elQfJa7OQ
rAVZLQq2QqboVFoo1yoHsmdlV2a/zYnKOZarnivN7cyzytuQN5zvn//tEsIS4ZK2pYZLVy0dWOa9
rGo5sjxxedsK4xUFK4ZWBqw8uIq2Km3VT6vtV5eufr0mek1rgV7ByoLBtQFr6wtVCuWFfevc1+1d
T1gvWd+1YfqGnRs+FYmKrhTbF5cVf9go3HjlG4dvyr+Z3JS0qavEuWTPZtJm6ebeLZ5bDpaql+aX
Dm4N2dq0Dd9WtO319kXbL5fNKNu7g7ZDuaO/PLi8ZafJzs07P1SkVPRU+lQ27tLdtWHX+G7R7ht7
vPY07NXbW7z3/T7JvttVAVVN1WbVZftJ+7P3P66Jqun4lvttXa1ObXHtxwPSA/0HIw6217nU1R3S
PVRSj9Yr60cOxx++/p3vdy0NNg1VjZzG4iNwRHnk6fcJ3/ceDTradox7rOEH0x92HWcdL2pCmvKa
RptTmvtbYlu6T8w+0dbq3nr8R9sfD5w0PFl5SvNUyWna6YLTk2fyz4ydlZ19fi753GDborZ752PO
32oPb++6EHTh0kX/i+c7vDvOXPK4dPKy2+UTV7hXmq86X23qdOo8/pPTT8e7nLuarrlca7nuer21
e2b36RueN87d9L158Rb/1tWeOT3dvfN6b/fF9/XfFt1+cif9zsu72Xcn7q28T7xf9EDtQdlD3YfV
P1v+3Njv3H9qwHeg89HcR/cGhYPP/pH1jw9DBY+Zj8uGDYbrnjg+OTniP3L96fynQ89kzyaeF/6i
/suuFxYvfvjV69fO0ZjRoZfyl5O/bXyl/erA6xmv28bCxh6+yXgzMV70VvvtwXfcdx3vo98PT+R8
IH8o/2j5sfVT0Kf7kxmTk/8EA5jz/GMzLdsAAAAgY0hSTQAAeiUAAICDAAD5/wAAgOkAAHUwAADq
YAAAOpgAABdvkl/FRgAAm1xJREFUeNrsXQVYFdn7/tvdK3Ynit2Fgf1TFBVjsbuwW7FjjV0XRcUi
REUFEQzA7lYMLKS7u/v/cr/L2dl7AbnABS573ofnPsPMnJkzZ8685/1OfN//aWhoNObg4ODgyFOo
q6v/H1CpUqV2HBwcHBx5hKpVq/4f4X//+18qBwcHB0ce4ffff+f0ysHBwcHplYODg4PTKwcHBwen
V06vHBwcHJxeOTg4ODi9cnBwcHB65fTKwcHBwemVg4ODg9MrBwcHB6dXTq8cHBwcnF45ODg4OL1y
cHBwcHrl4ODg4OD0ysHBwcHplYODg4PTKwcHBwcHp1cODg4OTq8cHBwcnF45ODg4ODi9cnBwcHB6
5eDg4OD0KgMuXbr06dMnXpQcHBwceUmvb9++Rdpq1apFR0fz0uTg4ODIM3r99u0bJbexseGlycHB
wZFn9Ori4kLJL1y4wEuTg4ODI8/o1dLSkqtXDg4Ojryn10OHDlFyZ2dnXpocHEUDKXExKQnxSSGB
yVER+EsKC0kKDkwM8uclk6/0umjRIqQtUaJEXFwcL00ODoVDckxUrP27sKtGQacPBp3Y6z51kIt6
Z8d+DTP8c53Qy3f70rBr52LsXoCCeenJl16RCmlr1arFi5KDQ6EEanL0y4ee80dnxqS//HMZ1cFv
z6qop3dwKV6ccqHX7t27I227du14UXJwKAqint911xqYIWk6DW7lPmOoz4bZPhvn+O9f57t5PjjU
b4e2/741vtsWu2p0y4Bnx3QJOrk/+vWjlKQkXrZ5Rq9xcXFly5ZFWg0NDXlnNCkpycXF5du3b56e
nlFRUdlJEh0dHRYWFhQU5Ozs/Pz582fPnj19+tRahIcPH+L3y5cvYVLw8fF58+bNTRFsbGyMjIy2
bt06adKk//0bo0aNwu+YMWPwO2HCBPyOGzeO7c/wZHV19bFjx6LEp02bht/Fixdv2LBh586dBw8e
PJ6OEyKcPHnywoUL5ubm9+/fv5mOBw8ePBUAT0Qb7969YztfiIANPAJ+X7165e7u7ufnh0JzF8DJ
yYlK4+XLl5Tq/fv37CKWlpZnz549dOjQvn379u7du27dOk1NzYkTJyLPw4YN6yvC8OHDFyxYsHTp
0tWrVy9ZsgRPYWJigjyjVHFNLy+vmJg0yzExMRFFGh4eTv9yFDgiH97yXjPdUbURI0evZRODDf6K
sDWPc/wa7/wjJTEh6yskBvpFPrIOPLbbdUIvKWpu6b1SK8zCGPSd6O/NSztX9Orv709pN23aJF87
JiVlwIAB/ydAyZIl8Vu6dGn6t1ixYrRRokQJ+rd48eL/x1FwwCtQUlJi/w4cOJB/bAWLuJ9fIEj/
YcP+jSFI45y+5eaaCT4eAX9vdVJrkYEQVm3kMWt4wMGN0a8fc3rNCb26urpS2u3bt8s1l4GBgbgL
GLNhw4ZVqlSR6TsH4dasWbNDhw7tROjUqZOqqir0V8eOHatXry6kZjoZO1u0aNFfBJwGvbZw4UI9
PT2os0uXLl0QwNTU9ELmuHjxIm2YmZnhTPYvk6jQhjo6OsuWLZs3b97vImhpac2YMQMbsAbwOtTU
1PoKgAy3EwAPwh6KDnXp0gW/tLN9+/Zdu3YFwVURoFq1ang6bOBXWVmZzmdJevTo0bNnT2z06tUL
4hQ5WbRokba29po1a3R1dSGloaBv374NnWtvbw9dT49z+fJlAwODAwcO4HGgyiljpNmnTJmCZ8HF
qZAhmTnHFRQSvNycR7Zj3Oc+Ywhs+TyzLCNCY+xeQAJ7LZ/sOKCJNNV6LhwbcedaanIyp9ecqNct
W7bINZewbXEX8ALrKIDJGRERES5CbGws9QNgG79RUVG0zdfpFgagkqB5K1euXBLvmCsgxLs7uWn2
JqbzmDMy7rscPYQkhQRG3r8eeuWMz4bZziNUhCTrMX901LM7nF6zi9DQUEq7atUquebS3d1dSK8c
ioUhQ4bg9X379o0XRf4jKTTYdUJPIji/XctTU1Ly797JSXEO9j4b5zr2byJUsgke/5U58nlDrytW
rJBrLn19fXEXmLT8a1FErFu3Dq/v0qVLvCjyGSmJCV7amsRr3mtnpCTEF4x8dv7uu2XBP0p2QBO/
Hdrxrj85vWbZOCUnU9pFixbJNZfPnz/HXVq2bMk/GEXEjh078PrOnj3LiyKfEWykK54eoK2ZHB1Z
sJmJ+fTae/W0f6YZDGoWcGhTUpFeCZbbea8VK1ZE2pkzZ8o1l3Z2drhL165di0ahR0dHGxgYrF27
dvz48QsXLgwMDGSH3r59O2XKlE2bNkVG5vZjwBXCw8PTtEN8fLLsowqPHj1q0qTJyJEjMzzqLUI2
L3XixAm8vj/++IPzXX4i7sdnUBjN/08KDigkuYp6esd96iBGss5DlUNM9JJjiuYwSa7oNSwsjNLO
nTtXrrl88eJFFosXevbsqa+vn1na79+/r1q1iuZdJiUlffv2jTEXtr98+SI8OSEhAQRH2xEREUj4
9evXVJFjMENDQ2y8e/cOOx0dHYWp3N3dvby8aNve3l5NTa1bt27Xrl3LMD9mZmY0e0xJSalp06bF
ihWrW7cujarfuHGDTTUbOnQoUeTevXsHDBgwbty4M2fOpIqcl0PLYyMgIKBVq1a7d++WuP78+fMb
N26Ma9J1ypQpU7x48f79+9MT6erqPn36VCKJj4/PqFGjNm/ezFgYD1i+fHmaACf9CImJich57969
s/n6LCwscKnly5dzyss3JPp6uU3uRxQWYWNeuLoskhLDb10WTpt1HdcjzNwwJb6oLazPFb16eHhQ
2pUrV8o1l+Ad3IU4QhpgEyKjDKGpqQkKc3V1dXZ2btSoEangoKCgVNGK3mHDhglPvn37Nk54/fo1
tpcuXYrt06dPY/vw4cM0sDZ9+nTsbN26NSiGkoBwK1euPHbsWGwfOXIEdFaqVKnq1avjpnfv3pXO
z8WLF3GFx48f00i6ubk5KIwagAYNGtSuXRukT54cnj17NnDgQGz06dMHWUXrEhcX17Bhw2XLliHh
tGnTcOj8+fPSZTVhwoQRI0bgqKqq6tSpU/Hv8ePH1dXVy5Urh53InrGxsTDJ33//Te9x586drNDw
L4oLLUHbtm3RJEgb++zkXwKEjvOpiDjyhcBSPBeNLZjhrOznMSE+2EjXeZjyP6u/1DsH/LUlwdeT
02saIP0o7datW+WaS0i2LHLYr18/iLUMD4HCQIu9evWCLuvUqRN0HLiGyW2oQglF/OPHDxwFS2ID
QhI0Cj2L/TDksR/sRvQKXL9+nZKA7IguT506hQ0Y1CBcsHnZsmVh+0tnycDAAKfhBKYEoRNnz55N
Eo/YnGJAwDCXtqlx8qZNm2C5g75Hjx6dWYnBche+F+QEj7NixQrcvVatWhLFBYpn034h9n/+/ImC
6tu3L/RpxYoVsS3slkHJ4NZoCUJCQrL5+j58+ICLo7Q57+UPIqyvpK/ImvTLVVgFi6TwkEC9XU6D
mv/TJzuwqd/uFdGvHv7X6fXy5cuUFt+nXHNJN8osh5MmTcLRsLAw6UPUaQtx/fDhQ2zA/sVOsAa4
LzQ0dPLkyc2bN5fW4+vXrx8yZAhIBGKWWdwVKlTABhiKHpnJXjAX/vXy8oKGBen4+4u76u/cucP6
GaS57MGDB/Hx8fb29nTBgwcPbt++ndFudHQ0W5PGLkgAA4LiW7VqBZ51d3fPrMRg77PVdKB7odhc
uHAh/gWHspO/fv2KPZ07d8YvKgTJdltbW6hdlNWMGTOYu3Q0V1DE+Dezro8MgcLh9JqfcJ+a5k/A
aUireOfvCpHhpJDAYOMjLmO7CufJeq/SCrO6kBwb8x+lV0NDQ0oL7SbXXF69ejWLHII4iA6kD/31
11/EBaQxiVNOnjxJOnHWrFngxH81+xEROFSzZk2JybxgHDAyu1f37t2h6RwcHKiHATxI9rKent4v
n4WU6YEDB6AiqfRUVFRiY2NBZLiOvr7+4cOHoVhZJ6zEqBTEOC0I3rVrVxZ3IXrdsGEDtvEgyDzr
cd64cSMOCamfGhWURrdu3fBcpUqVQpYcHR2xU1tbG+1Qo0aNQLUoPR0dHTpTtq9dNG2Z02v+IM7x
K9FTwKFNipXzlMTEcGszt8mqEv5iQs3OQuT+5+h13759lBbasAA7B16/fo2ja9asyazj1dPTs0aN
GhCqL168ePbs2ZUrV3D+nDlz8PBgMeH54eHh9ES1a9cOCPhnsBUn4zrYAPFRjyfrYRg4cCDIixwz
UpduSkoKuCwwMDBDH7gkFUHTsP3btm1L83nxCLRCVxqw1oV9HTQsRh2jxO8ZgvSvlpYWttXU1Nq0
acMOLVmyROKyiYmJ2KOurv7y5Uu6PqQ3lSpkNU64d+8edQiA2Xv27Cmrb1+atszdDuQP/PevI2KK
tX+nkA+Qkhz54Ib3yt8d+zcWTDBoDXmrcGNfuaJX2J6UlvUkyglkUGeWQ+g7WO69evWif58/fw5l
R0NPSkpKLVq0oJ4BCcC6p4eHYhVeCnvIDdhvv/127tw52r9161bsAU2QegWN9uvXD4LOzc0Nogzc
jX+ZED579izdYvLkydK5BScyXQncvHmzTJkyysrKtDoDzAXhCWpu2rQpXUSoyklcQ0pDgIMHmzRp
kpnzMFwHLQcMedLXKASJvhThbDAAUpqKF4aCrq4uNmxsbHDa0aNH6YS9e/fiX+RTImF2QF0006ZN
49wnd2pKSiLfAp7z1QvniJYMPQbBAWn+Yoa0+meCgWbvyEfWCvRcuaJXljjDfs88xIULF3CXMWPG
ZHYCDkFehYSEgB/JhwgEF9mkELAUsWb37t2XL1+GVY6NunXrQsxSj4GLi4vwUlWrVoVAs7a2Bnnh
mrhOqmjmAM708/MjyxrPi/3YgBIEveJqyAD+TRG9eEjg69evd+rUqWPHjtJZdXZ2lphrMWjQICpG
AwMDtrNv377S7nLIiv/zzz8Z31FvcoaAvAUbporWpNarV4/th5JFqyNxcuPGjSUqgKmpqXCp1c+f
P/Hv6tWrc/D6aObA7NmzOf3JGwkezsREYeaGReOJksJCQi4cdx76zwQDz8XjYr9+KPr0SqMxwIcP
8n1ami+V2cQsQE9PDyccP3787t27bK4YtCc2Tp06Be6DQoyNjWXnw1CFnbtlyxac8OjRv1wHtWrV
CsoxVeQPDKnATYzLwG7gF2yQNAYLQyHS3FXaL5zANGLEiGbNmklnlUKXM54CI/fu3ZvyDCXLThs7
diz2VKtWDcKT9DUMdnLxR+oSeaCJXJktGcCDgGGxoa2tjVQ0W/br16+QvRCwEifjUlOmTBHuQWEi
1a1bt4R9GjlzjUb0umDBAk5/8kbkw1vEQXEO9kXpuZJCgwIO6wjdcXnMHRXz4VVRplewCaWFRSnX
XJKhCkGX2QnkUmv8+PHDhw8vVapUxYoVYe1CLhH1V6pUSU1NTXg+MQ6dwBiEAMlZp04d2lZXVweB
whxev349iVZSr3T05cuX5MwQ54CLixcvDrVIbrrAfZC04F/prO7atQtJJk6cCIWrr6/ftWtX6oiQ
cHpCp1EOQdMaGho0a1UY85ye4uLFixmWSXMRSPOiQPBQq1atAuGizaCJvUKULVtWwnin/mU0TvTv
mzdvqAHL8etbu3Ytpz95I8REj2bpF8mni/32wWvZJOHAF/5N8HYvmvT68eNHSrtv3758UK9Z0CsA
Yxy6jGaDEhviX1AtGdQSs0epCxV6Db/btm2zsLCALluxYgXs7s6dO0MS0mk0FxWsRBdkPMuuA/6l
vlrWPwtKBTFNnjwZ2zo6OtL5XLNmjbALGKSMVgEKGttCff3+/Xs8SGho6IEDB2DOV61atWXLlpRt
Nl0MBjuYvU+fPhkWCJJ0796dtiHqaaJClSpVrly5InEmTZJlTErw9/dH3nr06BEfn+YH5NmzZzhH
Yj1CNmFiYsL6NDjkh4jbFkQ6PmumF+HHjH792Hv1VBZwwXlYmxDjoylxsUWNXmG0knyTt91H9Ep2
emaAEqQHefLkiZ2dHUUrGDhwIPV10tpWBlo6hVaBzX9igOKbOnWq2CRJSgK/QJNeu3atbdu2UVFR
f//9NyibXefdu3cogSZNmtDJy5YtYyP7Q4cOzTACCoStoaHh5cuXQTcnT56kUUHslF6rmoE2CQlB
M0CeBAguLi5sPa4E9u7de+TIEeF9ob5plYSkRRkZuWfPHulD1EgQmyPthAkTfHx8cvD6aCZcFguX
OfIEzDlW6JWi7z0n1v6d5wL1f+Zvje4UfutyYQv2lVuXLjVq1EDaESNGFGznQKpoQGnUqFFs8jyN
NdHIjISLgFRRjyeYkX7BQfj+X716BaoCL6f8e1wSxr6Qzr58+SKxdh5EaWVlJeymOH36NLResuL7
Zo+Li3v9+nVKrgdqadFtzjoWOLLbOxnkL45EME3tvxJSMCU51PSky5gu/0RhmD44wvZq4Ylcm1t6
7dixI9K2atVKrrkE98nqkDAgIIAG/TkKHNDpeH0nTpzgRSE/QLESxYScO/qfevDk6MjAozuE8b7c
pqiG3zAtKOe2eUmvlJ46H+UHPz8/3KVcuXL8K1JceuXqVa7wmD1CtGC/WaK/z3/w8RN9PX13aAtH
vZxHqASd2JtYoP5kc0uvNHhNU+7ll0vm+ZB/RYqI/fv3C1cocOQ54l1/Eqf46iz8L5dDgqcLSkAY
ZtxpQFOfTfOint5JjopQPHol13nyXlkQFxeXBb3GxsZC3v7XIuUlJibmYAFVBrZVcrKsi1xlxYED
B/DuTp48yXlQTgi5qE9sEvXkNi+N5Jio4LN/umr2EopZp8EtfbctjrhrmZ8Ba3NLr8yDVIaj5HlW
e0JCMqPX8PDwqlWrUgeFiopKx44d1dXVN2/eDIOUuWSVFSkpKfr6+hKrubIAaG7fvn2jR4+eMGHC
hg0bnj17JnG1mzdvPn/+XHpoHoXm6OjIGgYHB4dRo0ZVrlwZj9OiRQvhiJl0i9KrV68SJUrg/cXH
xxsZGQ0ZMgTPjhKgKOLr1q0zNja+cOGCxKIJGBnCYgkODm7atCmtPmBAfpDq/v37aLRoj7W1tXBF
WapopQDRpZ2dnZmZ2dWrVy9fvrxx48ZDhw5J55ZcNWbfPyyHrPBa+bsovErzFEX2L5XXLJsUcc/K
c8EYiajgbpP6+u1aHvnwVlJoUGGnV7AJJWefojxAQ1sZhjIEtdHYGvile/fuYAqaawXqOX78ePv2
7cFWzZo1g2VKLObj47N27drFixcfOXJE6G1ACLAJeWxZunQpmHr69OnTpk3T0tKaN2/e8uXL+/bt
i1s8efKEnU9OBgYOHNizZ0+aEIaTwVzErbNmzaIiKlWqFFiYsZutrS25calRowbNCW3btm2HDh22
b9++Y8eOhg0bFitWLLP4VKBO8i1L62KRVbCqqqpqmTJlatWqRRF62E1ZyweKxzUHDx7MJgPQBDVt
bW3wKcoEe4KCgsDOlLZcuXJz5syJjIzEIbRhwrkQaMOQbRSsxLS2Hj0ymNB++vTpX7r44sg5jURF
wgSmgFq8NDKwfZ2+Qd2n8axg0Ze4f3ZIa49Zw3x1FoaY6MU52Of5aFie9b1KuCXNWxB/ZTjvNSoq
itZrCZXdt2/fIOjALOAaEAE5GNyyZYuXl1fdunVBMZUqVaKlU8SwYCuhViW3WDo6OuT6TwK4LJhU
6C+V/A9YWlqmiiaijhs3jhgfUtHc3By3AzcNHz6cFmhBn4Ldvn79ChLEmSNGjEAbQNNC69Sps2fP
HromyrNx48agS4lwNQRQZPny5T09PVu2bAlCZ6uw6tevj8YA13/79i3kJNgT6pKlunXrFj0C6wYl
pzxovcDpKBMQKHl3hdK8c+eOhoYGzbrD+RKLymrXro12q1+/fuSiEK0CagKun6HFQI4ruXqVEyJs
xasJQi+d4qWRVX+an1fgsd0SXmX/xbZDW3uvnRGouz3MwjhPwn/lll5peikQGhoqb3rN0M0ovmfw
nYQ7gpCQkCpVqsBYJk0N/QUTuGzZspCf5DnF2dmZJF7nzp2hIrEBtcj8+9HCKjBgXFwc1Jy7uzu0
sKamppOTExIKp8ESQKk4f//+/WzPiRMnkAT2O67PHPHhauSp+vr16+BHGPLk7wrtgbKyMpRv8+bN
hU62KD6u9FMnJCSAW2muMfkQYLFw0HjgypkVIxQ3ayHITQT17Xz+/FlXV5fcouOQcAEx9i9btuzm
zZvCpc/kYJBi0gDQ8lmvK6EVH5xe5QTvVVpp7KDaCPTBSyNbetbBPthIF6LVa8kE13HdpVUtRQv3
XqkVcuFEbvoQckuvFAxK3hOzjh07loVHuwoVKkisa4AmBXsKw4Pj+6fHZE6dQcEzZ87EHtJrtF6L
xCz5Z4GmY8mh1CSicgkREBDAQgMwUNgYSFehURwdHQ3eJx8uFPeFAKqCUoaMFTrZIi8qeEMStyNP
rEzngg0pDliqyMsMNG9m+aSgLDiHRb5at24dttFsWFlZkRGQoQcJe3t7KijI/CNHjtBSYFqFRS4c
2To31nUA8c4ceFPrmGG3LEeuuwaSXf7XPs3FyfzRvDByqGoDfMOtzQL1dnrMGSnNs7lxm5tbeoVu
QloYv3J9flrOz+SSBCC4qlWrNmjQIDwC6P7NmzfY2aVLF+EqLzYER+6mhPzVrl07/LZp04ZRJLkf
FMY7odhTmWUvJiZGIrpBqiA+oMQaf/LeAsUnnGtBNAcN27p1a1dX16dPn4KSqNNAenEEdWUuXrz4
5MmTOI38GVJX75QpUxjVZkav27Zto97VS5cuIc9k9VO/AdUGU1NTlgSZRDtEPTASsLCwYJ0zkPbC
G4Fb8VLYA1J4sZx52+LIGvj4iQUC9XjXdh4gJTExwcstzNLEa/lkJ7UW/vvWpOZiSlJu6XXUqFHk
8Emuz0wDaMwFtQRwCOqyZcuWoMimTZvSGvmuXbsqKSlBwMIeh5CkLldpExU7u3fvTj2zLVq0ACk8
evSIpJxQXaL96NChQ6a2hmjemISBfObMGSpYCY9W0NrS69yo/VBRUaFMMqBVkL7d8uXLpckOApNJ
5szW45IvRB0dHTA4lRh1Vnz8+JGYV0tLi/VygHwpq8D9+/exDeq3tLQ0MzOjyDfUbCQkJEhHgf35
86cw2Ay562VymyMvO17vXRdH2759jZdGHhsGsTG5dN2dW3odPXp0vqnXzOgVnCjt9IA0KUO5cuWO
HTtWvnx52K3C0ypVqjR8+PBatWrBvLWzs4OobNiwIYX2Eq4yql+/fhZGd1JSEs6fOXOmcCdsdmn1
SiGwAIhr4cnkPGXAgAH4RX6gLvFQoFpSiBLAldFyPHz40NbWFtY6UaqJiQkOrVy5UjoSgYSNTw0M
OTwkAn3w4AGFyIWwxa+GhgZ1nhgaGtLYF+x62AcU+yA1PS462QGkXseNG5fF6yOXLnzmgDwQ+Pc2
otd4lx+8NAobckuvRCKgJ7nmkrysrl+/PrO+V+nxnDp16gwdOnTv3r2gS8ohqA2kVrNmTeb3z9/f
n5QXpC7RLvELxVI9cOAAuxrEbxbqFRcUxo4lvQZyJLNdeB1y4A2mBlux+VLR0dGgyyZNmowZM4bF
/oKchJkPjUnxu4To2bOnsIuWyI4mAxw8eFDaPRgDBU7HM6aKZoxRJyxw+fJlitcCxoQFIOxeoCiz
J06cQAEy94YQv8JOYWn1iuZw5MiRbKiQAh9kGAxNMfrmklOuOIZPsfUadcNjko3XIbvgHyHxhSQg
ice80WkzXtVaFB4/Jhx5Rq8UJApSUa653Lx5M+4iHKoSomTJkmzoXGjOz5kzJ1U0tYCiKuwVARsQ
ZXQOjaTjswfR0OP7+fkVL168TJky2P/3338Lbf+s3SGCFiHkcS8Y2ijTEiVKwPwPCAgAk6JwiNBf
v36N02BiUyxF5l+VbG3cDhSPu7O5TTSfaffu3RL3AtcL1Tr1IFPbQ5FxMwtxSCP+zDmvkZERvXrQ
HxUFaJT0LxvdIncBly5dQsaEhdy2bdvq1atDusbHx0urV2rSWK8IdewqqDvtoNikkdc9Gho6Svy1
u+h80C7IPyZbS1cSEhKEznzzEK4TeqZ5ipo5lHNZEaRXKJ3MJpPnuXrNcGiLhpWkZy9BD1Kc1FTR
xCywAyzu0NBQZBiURzMEFi9ejLTPnj2D2ctmzlKkP4BN6Sdv0/Pnz8+67xU0OnHiREo7atQomhNG
Pv9RPvr6+rgvJK2NjQ0+NtATlCmYDjkHm7ds2RI7p02bhpPJfTU9GjRj2bJlhVFdAXD30qVL2b/k
74bC1pK/bXf3jP23U0wHRq/BwcG0Qgxa29LSknoYoOihrKFhIYqR5/Lly9erV+/Tp08Scb1oLgda
Jooyy4qa8Mcff6Bs2So16ohQRJcuruEJ3S67Ep82P+fUy8y1xTknIcm2OZ9GskkpGTdmDx8+hGUA
w+JvEVBoJ0+eRON69+7db9++UWCLXMlqX0+xq4FtSziXFUF6Je/R0pOH8hYUOzrDsH3k7UXCBysJ
KGGuVFRUaNEXDehju1u3biA7/MJMhq3NTFcSgxSMWrhHyGgSIAuaAAUqMdZ/+PBhmmMLqsIHxrpB
aa4CeL9Lly40EITHhBIXLi+GzQ7WfvnyJdvj5OSEVLgm24P8Dxs2jDoHwI99+/bNzIcAaFoiKgGN
GZqbm/v4+MybN8/DwyM1PbAYAXf/8uULsifhNAC3QJHiaHJyMh5EYtaEBGgeMQuyoChwCI3va+5G
NKpxy9M9Iq21CI9PNv4etuG5v8oFZ0ayq576JST/Q7FozmEQ/P0r6OnpwaDJjcMHNq4VZmHMuayo
0SvztCIxqpPnIMcx1GkoAVTlDA8hidDB6MKFC0FkpBfAQaAGmNgjR46kxWaQje/fv2cnw9RFs+Hm
5kb/hoSEDB8+3NraOlMRkZgISYJPJTNn/tCJL168kFh5AVp0dHQUehrz8vKigINZl/n69euRpRwU
I3Tx7t27hRPCkIc3b95Ie8P5+PHj1atX0cCQAsVpkLdsHitr2KT7hTMEWQkoAQX6MB57RUOZEnvO
f+ATKyVQwbMnv4R2vuRC5wyxdH/iLVajAQEBR44cIQ5Fs2dmZmZlZYXCxAbqyZkzZyRIlqYS5gAB
f24WBy50/s65rKjRK/iC0uYsPnP2QRH9pHshCa9evfqlQxmwWPa9a4PCIBJ55cjb1ydcU1vI8dY/
trWJmFu3vAxIznwYyzk8ocNFMcM2MnS84RLJDAUwKdrLDKPv4MOBQaCvr89I9vHjxznIJ63vdJvQ
i9exIkivzI6WdyhDml2Ldp6/MEUETR378UMxZg7ZB8Ux3XrILvjXHBeesOSRb6P0joKVT/xS0i2D
rBOCeaFbWc8sLAZZs+o0qBno1XvdTF7HiiC90jR14K+//pJrLseOHctXVSouhg0bVqxYsZyFQcxn
JKWkjLASzxPY9iog+wmvOUcwhj3yMTj7CT08PIhh8Sur2znnke3S6HWVFq9jRZBeKcZ1FmZ73uaS
02uGgAXq6uoK8nJ3d3cV4dOnT0+fPn0owvXr1w8ePLhdgNWrVw8fPrxFixaNGzdu3rx5s2bNGoug
pKRUsmRJiWVj5F+xbNmyVdNRu3btjh079uzZc4AII0aMWLJkyYp06Ojo7Nmz5/z583Z2dpQrmoqQ
xaKMQoWrThFEkbPv+cg6s/XA+yBK29jI8WOgDANWHz58IAF76tQpmfwmOw9pDXr15N4GiiS90vTy
LCb85xXI7WFmY/dxcXEuLi63b9++IIKxsfGBAwc2bdq0YcOGjRs3bt68GYSyYMGC30WAoQotrKam
1rdvX3V19VGjRo0ZMwbPrqWltW7dOpyPtK9evQoJCQkICIA8h0lrb2//WQRs4xf/Ojs7fxbg9evX
IJSdO3duEAH8sm/fPlxq0aJFoB7sWbNmzbx583B3ZGORCORDFnfEUTo0depUbOAQfidMmKChoYFc
jR8//n/p6N27t7KychUB2KLVwgyaRKwQDgciEpK7iIaqWpxzonkCMgF0vPaZPzFs+4vOLuEyXMHK
yooY9u7du9lMkhwdSeNafntWciIrgvTK+l6FflLkAZrc3qpVK9AW2FNfX//48ePHjh0DEzVt2jRD
r6z/HVSsWLFhw4ZQo/iFFIUgRUH16dOnrwhoP+bMmbNBgC1btqAAHz16RG0Dazy+f//u6+sbHR0d
lo5IEbCBnbBb3UXA+c+ePbO2tr4pwokTJ/alA+0Krr927VqoWshV5KdOnToNGjRo164d+T8s5Nj4
IoDI8eB72XzQBQUF0cyTpJSUwdfc6SKrn8rgATkhIcHQ0BD0ik/J29s7O0kSA3yIXgMObeREVgTp
lWab58OMcfIJkgXKly9PC1vHigCRiO9caBH/9ddfBgYGRiJcuXLFxsYGaheSAb/XRABN4DRQz8iR
I6EKYSOXKFEC7NBYCthJLgjA7E2aNMEGqA2EsnjxYroCbOSVK1du27bt8OHDuC92gncOHTqEWx9O
x5kzZ9BOUGCCkydPQvzi6zp9+jQOHT169OzZs9cEAJfh19bWFrIaDAjKC01HjgPe5BtSUlIU4ktw
DU+gJQNtLziHxMnmJOn+/ftgRi8vL2H3QkdTlyRZHh22EQlY1JPsBI5L8HYT+8o6wl2RFUV6BTdR
WrbMVE5ITk5++vQpGnaY8MinpqYmjGts6+joXL9+Xa6BEjj+I5h334do8dLPcJkSxsTEwJACLdLM
v9iklN9tvehSr/xki3xlaWlJDJudWRZxP+2JXoPP/sVfXxGkV3I8ylx/cnAoKNwiEhoZpRHimJue
yTKqbZgUEjOrnnhHE73ueStbJ0N4eDjNIjAxMfml6o9+8zh9ydY5/gaLIL1SCCbg4cOHvCg5FBfb
XgUSIV53iZQ1La3CgoBlKwgSklPIU0GXSy6yXu3u3btE1sJgbhnT66uHRK/h1y/yN1gE6ZXijEo7
5OfgUCyoicajwIaJMmpXPz+/DEf8N78Uj5L5RsvWOR4QEEAX/KWLhsh0hwNRj235GyyC9IoqRWnP
nePmCYei4kdIPFHhiicyB5OH3UZsKIw0DOh+DKZrfgyU2Q+hgYEBLnjixImsxy0j71oRvUY+vMVf
YhGkV4qhBGR/sh4HR2HDX3ZiKnzoGSVrWppNdfr0aYmu0puukXTNZY9lpuynT58SZdNUhMwQ9cha
rF6f3OYvsQjSK4X8432vHAoNrdve4MFmxk4xibL1DAQGBma2FiApJeV/IifcjY0coxJkiyPg6OhI
l83afVqEzVWi1+g3T/hLLIL0euDAAUr7Szd6HByFFgOupjl17WPmKmvCz58/Ew8y35VC7H4jHi77
FCibR9ekpCQ9PT1c1szMLIvTQs7piSNFf//EX2IRpFeKcwfk2GElB0fBAnq1pUnaaoKJNl6ypn38
+DHRa4bud5+mT8/a9CJA1itbWFiQkxcWukIaQSf2cWevRZleyZEVUPjXDnFwZAiHUPG41s7XgbKm
vX79OkjwyJEjGdb/5JTUARZpulj5vHOojMvA3r17R8Qt9LYu2TVxZDvRa6KvJ3+PRZBex4wZg4TF
ihXLTUALDo4CxON0jXnma6isaWlci0VslMbf6fMHZPJtmCryRUf0+urVK06v/1F6HTduHKVNTuZB
gDkUEpbOYhcBV50iZEoYExNDK6ysrKwyO8c/JpHWF7Q85xQQI4OAjY2N1dXVxcUhkDM7x2fzvDR6
7d84JTaGv8ciSK9qampIWKFCBV6OHAoKg6+hRK/PfWSL2/rixQsSmMJAk9IIjUtqLerbveggmyuD
8+fP4+IGBgaZneC5cAzo1WVsV/4Siya99u/fHwkrVarEy5FDQbE53Qnh95B4mRIaGRllMa4lxDAr
d/LPLdP1b9++TdfPLF63++8DQK+uE3ryl1g06XXw4MFIWKVKFV6OHAqKsbc8wX3NjZ3iZPEemJiY
SLFgzc3Nf3ny/ndBNK82NE6GPrS3b98SvVJ09AzoVWtgWhxDrYH8JRZNem3bti0SKisr83LkUETE
JKaA9cB9mjLOyvL29ibuy0508Xf+sSSQjb+HZf8Wbm5udAvwbFbqdVIf/h6LJr1Wr14dCQcMGMDL
kUMR8dI3hojvj3eyeQ788uULcZ+9vf0vT4Ys7iqKMbPooW/2bxEXF0e3yMzbp5tmb9Cr+8xh/D0W
TXpVUlJCQjU1NV6OHIoIi/TIAjZusnkbYJ5cshnbda7IV7fyeWeZHHJdvnwZt8gsFIj7tMFpnQO/
c3FTpNVrDhJycBQGHP0UQvTqECrbuBYN64P4sjkl8aS9eH7CC18ZJlHduXMni9Etr+WTQa/Ow9um
Kki4HU6vMiAlJaVSpUpIOGHCBF6OHIqIDenTBvxjZFtVRTNeoS6zef7P9LVhB2QJkvj69essXGcF
Hd9DywoSPF35qyxq9IpXTgnnzZvHy5FDIWu/yFdWSxMnmVKFh4cT6z148CCbSZJTUluJZr/K5FKW
uc5ycHCQPhpmbij29/rgJn+VRY1e7e3tKeHu3bt5OXIoIvqYpfkEGGrpLlMqHx+frMf0M8RAi7TZ
r6pX3bLf/Zr10thEf2+iV789K/mrLGr0GhAQQAlxCV6OHAqH8PjkJqLwhXPvyzbhn4nKr1+/Zj/V
3rdB6eFhstsRwWRyxv6UU1KcBjQFvfps5uZjkaNXoFq1akjYr18/Xo4cCof7HlHEd39/CJYpoZ2d
XYYBYLKGmaN4lsLLbI9uxcfHZ7F4ISk4gNSr//51/G0WQXpVVlZGwhYtWvBy5FA4rH3mT3xnHySb
vzcWeTubs7IIX4Pj6HZG32RYXEB+tTMMFZocHUn06rNhFv7dunWrqqrqokWLbt26ZW9vz70sKTy9
9ujRAwlr1KjBy5FD4aAqClLQ0VTmWNm2trZErzL54WQrxLRlib5FN7p5M4PBqwQvN6LXwCPb8a+N
jc327du7detWrFgxfJXVq1fv37+/lpaWrq5ucHAwf92KR69169ZFwiZNmvBy5FAsRCQkNxZ1vM68
6y1rWprtf+zYMVkTjhRF3xpw1S1P6DXmw0ui17CrRsL9iYmJDg4Op06dWr9+/dSpU3/77bdSpUpB
2Orr63O/zIpEryVLlkTCYcP4sjwOBcMd96gcTEQlGBsbg/LwK2vCTaJptqB1n6jsRvcgeoUylT4U
ee+6OFLss6ziNCckJEBuz58/v2rVqi1btnz69Cl/+wpAr7GxscWLF0fC8ePH83LkUCxsTF9Q8C1Y
ZkF39uxZUJ6pqanMvQru4ujchtnrfo2Kispigm2YhbE41tZP++xcLTg4GF97iRIlrl69yiuAAqjX
smXL8kWxHIqIIZZps1DbX3RJlnFBaXx8PFGepaWlrDeNTEimxQWjbnhk53wW6DvDea9BJ/eLI8Xa
v8tmBlJSUpYsWVK+fPnsL4jgKDB6LVOmDBJOmjSJlyOHAsE7KrGRqONVplEmwi/mov4Kix76koCN
Sfw1rzN6zTAgAou1leDtJlMetLW1K1SokGGHA0ch6hyghNOnT+flyKFAYH4I9e1DZE3r6+tLlPf6
9esc3FomJzJ+fn5Z0Kvv9iVEr8mR4bJmY/bs2WDYZ8+e8cpQSOk1OjqaEmppafFy5FAgXPoZThxn
7RYpa9ofP34Q5X379i0Ht77vKR5Su+Hy61uzRbEZ0qv3uhlErylJSbJmIyEhAZ9tlSpV3r9/z+tD
YaTX+Ph4Sjh48GBejhwKBKNvYcRxj7yiZU377t27HCzZYgiISaJbb37x69DcLFri9+/fpY96LZ8E
bnUa3DJnhZCcnKyurl6rVi1vb29eJQodvbq5uVHCgQN5tB8ORcKpL2Lvqz9ldPMKPHjwgCgvLCws
Z3cfbpU2+7V/Nma/WllZZeHv1WPOyLRIsRrdclwOuKyysjIfmi6M9Pr582dKOHPmTF6OHAoEii2I
P6ewBFnTmpubg+/09fVTcurEeuebQNy6kaGje8Qv7p51sFiPWcNzHyn21atXJUuWzMESCQ750itz
SDhjxgxejhwKhD/S6dU729P7/1G+p06B786fP5/ju9umr2iwdI7MZueAu7uUy8SkJKfBLUGvXks1
c9vY7N9fqlQpPsxVuOgV7R4lHDRoEC9HDgXC9teBsvoGZNDV1c3ZpFcG1v2KbGR9poODA9Hrhw8f
JA7F/fhM41oBf27OfYFoaGi0b98+MTGR143CQq8RERGUsGfPnrwcORQIa9J9ZQXHykyvxHfW1ta5
yYDKBWfcfby1Z9anubq6Zkav0W+fEr2GXDie+wLx8vIqW7bs6dOned0oLPQKUMI2bdoo1jMnJyd/
/foVltePHz8SEhJ4JfivYdVTMb2GxcvstY/47saNG7nJwFRREJoW55wissyAi4sL3c7Ozk5S3KQ7
HAi/fjFPymTy5Mn9+/fndaMQ0Wvjxo2RsFu3bgr0wB4eHg0bNvw/AerVq9eiRQs8S61atapWrbpp
06Yskru7u+MKwj0+Pj5Hjx6dOXOmurr66tWrL1++HBAQwCtWYcb8Bz45CLFFIP/WVlZWucnA8c8h
6TPDsgoA7u/vT/QKKSBxKMzSRBxo65F1npSJhYUFvoWczTbjkAu9DhkyBAnr1q2rQA98//595Ll5
8+bgxBUrVgwbNgzNQ+fOnTt06NC3b98yZco0bdoUR7HRrFkzkOaBAwfevROv6V6/fj15sUFZkQ9N
fX19CpeL/XXq1KGSBEfb2tryulVoMe1OmnhsYuQoa8LExMQsXFhlH899xMvGTH5kNbsrMjKSbnf3
rqRPrFBzA7G7rJd54z0AZly1atV0dHR49Sgs9Dp27FgkrFixogI98OvXr5HnBg0aSB9as2YNDoFY
lZWVBw4cqKSkRCWjpqaGo0ZGRtiuWbNmx44dydNCSkoK6BXbU6dOxZeQKpqsRhcB50LV8upVODFV
RK+NZafX0NBQ4rt79+7lJgMhseLRrT1vs3KHmJSURGJZ2sdVuLUZ0WvEPau8KpZt27bBgOPdZYWF
XlliBXpgcpVQsmRJadfCEyZMwCHmTAiV+9u3b3fu3AkJCUlOTm7ZsiWO3rx5MzAwELUQ2/jGsF2s
WLFGjRoJY2+oqqoKr8NR6OhV1PXZ1FjmzoGAgACi18ePH+dKKiaLIxcsffQLnzI0D0za+WHkYxtx
36uNeV4Vi6enJypzLvs9OPKMXmE7Kxy9ArVr10aeQZoS+8eNG4f9169fl05ibGws7GVesWIF/sUv
tnv16oVt1jsGSUshyO7fv8+rV+FEP/O0MDA9rrjKmpCF4Gb9RTlGh4suoiC1vlmfdvHiRdxOekw/
7No5cefA60d5WDKdOnWaO3curyGFiF5LlCihQA8MmVm2bFnkeffu3To6OsePH79w4QLN+NPW1sbj
7NixA5r0+/fvwqUyI0aMwCETExP69+7du2xG2rx587CNi6DZX716tYqKCgXI4UZW4URSSmojkWGu
aeMla1rmY+Xjx4+5zIbatTSHs6Ou/8Lxq42NDW539OhRyW6KK2eIXmPs3+Vh4axZs6ZVq1a8khQu
9RoTE6MoDwwmBbcKZw7AIKKA9YcPHxbuZ74UwLPlypWjTliU17Rp04iIlZSUoFVpu3v37ixh//79
P336xOtW4URInLjf85eGuTS8vLyIXnP/fhc+SHP8qnLBOevTYANlGDbRf98aoleH53mpXs3NzYsX
Lx4aGsrrScHTK3VWgp4U6IFBiOXLl0cdwqeCj+TevXvsUzl06BAep3fv3suWLYPhz+LHwRLE/ipV
qqBhr1ChgpCCfX19d+7ciQ2Q7NKlS6tVq0ahczMMTM9RGOAVlUj0uuWFzPPnmHqVnogqK3a9Ea8c
C4zJamnDy5cv6Y5BQf8aBPNYoA5udf5f+6DAwDwsHDwXKrCDgwOvJwVPr3369EHC+vXrK9YzV6xY
EfQqbbyfPn0ajzN79myJ/X/++Sf2b94sXn0YEBCASt+tWzfsvHv37pEjR7ABqypVNLIMaqYy4UsM
CyecwxOI1/a+lTmIIZvnnzNnr0JYOkdQNu55ZDX1la2LldDLLqM7gV49F47N28LB7VB7Hz16xOtJ
wdMr1BwStm/fXrGeuXr16si2hBwALl26lKEDsDlz5mD/7du3hTsXL16MnQYGBsuXL8eGrq4uO9Sk
SRPsyVmwEA65dw6kT4ra/kpm3Wdvb58bZ69CfAqMo2zsf5cVy4eFhdEdhSOlCd7u1DPgu2le3hYO
NEHVqlU3bNjA60nB02u9evWQsHXr1gpHr1Cv0g7lzp8/j8dZtGgR/evm5gaK/PLli7q6OvZLRDAm
0aqtrT1+/HhsCGcmrl69Gnt27tzJq1chhH1QXPqcU5npFbYzkZ2Xl1cus5GYnNL1kiuyMcE6q0uh
lp44cQJ3NDQ0/KeFOHc0b1fECjFu3LjevXvzelLA9MpibY0cOVKxnrlhw4blypWT3o96jMepXLky
zdwilCpVqmnTpviV8LkJtsXRPn369O/fHxtv375lh2hhWOPGjT09PXkNK2y44yH2B2j8XWZ/2B8+
fCB6zZM3u/iRL61u8I3Oqh/p+vXruCOac9ad5bt1URq9qjZKCs775ddbtmypVKlSjr3ZcuQNvcbE
xFBChZsoN3r0aDTRGTYYmzZtGjhwYL9+/aBYZ86cqaOjs2zZsgEDBtDCLYnHX7x4sZ6e3uPHj/fs
2SMc2EXVpEE/XIfXsMKGU/biUAXPfXIeCcbR0TH3OWGOXw2/ZUX0bHSLSWa3KaqgV7cp/eVRPtRF
Ju2jiyNf6dXHx4cSrl27tmiXUVRUFK15zT6Sk5OtrKzy5CPkyFvseSv2pe0aLvPE5Bs3bhDThYeH
5z4ncUkpyufTPBMOs8pq9itzS0iTbZPCQqhnwG/bYnmUj5+fHw0q8KpSkPTKIsVCxPFy5FAULH/i
R7FYwG6yptXX1wfNsdUluceyx+LM+Gc+PQt2EtEr9f5HPb9H9Bp27ZyciqhWrVo0E4ajwOgVIGdR
Q4cO5eXIoSiYc8+HGE3WhNATRHMSc0hyA5Mf4pi1t92zmp5F971z5w62Qy+eJHqN+y6vpSv9+/cf
MWIEryoFTK+dO3dGwk6dOhVU7p8/f+7g4PDly5egoCAPD499+/apqqoiPzJVDn9//8ePH3/48CEq
KuMqnpCQsHbtWiiXVJG/1zxxNrh3794lS5bw+pf/WPTQlxhNVvUaHh5ONPfq1au8ysyPkHjKzOEP
wVmcRpMHaDpqwF+biV6ToyPlVESXLl06fPgwryoFTK/kRKpdu3YFkvWfP3/+nxTKlCkDej148CCd
c+HChffv39O2s7MzDfjiOzl69CjYrU+fPsJVWCNHjgTVbt68efHixQsWLMDv1KlTsZP8Y82aNStV
tMSgbdu2cXFxFy9exMV3794N5tXS0tLU1JwxY0ZISMjVq1d37txpamrKwscjA+DuFy9evHv3jqIk
4FCDBg0mTZp06tSpfv36LV26lPfS5hvmPxDTa0KybPTKVsS+efMmrzKDPDQ2SsvMggdZ+XY5e/Ys
c6rtvfJ3cKv7NDX+Kos4vYJokLBFixYFlXsQFthw27ZtXbt2VVFRefLkicRaqY4dO86blzb1GsRK
rga6d+9ubm7evHlzJSWlihUrVqpUSUdH58CBA1u3bv306RNorm/fvu3bt69atSpNrsKV1dXVQabk
cnD58uXVq1en5bPFixcHO+MclEDr1q1xzXr16uGCSFKyZMlixYr16NHDxMRk4MCBEm0AuLVUqVLk
oAsb5BbHycmJV8d8gLaouxN/MrJrWuzOvFpTIMRAizT3XaNvZDW6de7cOdzX3t4+NSXZeWQ70Kv/
gfWZnWxnZ3f79m0082ZmZuTP0NfXN58LGQomPj4+myfHxsaSc3pOr6kS5FWA6lUIyEwKWIvMgArZ
/jp16uAJU0V+M8mFIDgRfEdciX/Bgxm6toJSoNms1tbWOIf1G8yePbtKlSphYWE4KozGDD2LxmbA
gAFUUSBjoTiofAYPHly6dGloZ3yfqPevX7/GUZApqBnyH3oZO0Hxsk5O4MglvcraOUAcd+zYsaSk
pDzMz4y74rhbWeTn5s2bsLdAWIn+3uIIhueOZnimjY2NtEm3atUqCAgJCwl1G1IDn0BERATq5J49
e9DeDx8+fMuWLS9fvpR4xnv37h0/fpwZZKjMsNumT58O227ChAmgcvqgwKqbNm1q1KgRblq2bFnY
c6jelATVe9++fbiIcEXGjRs3evfuXa5cOZws/Gz9/PyQH5iP1JIFBgY+fPhQOBV3+/btSAKz0tLS
EvsvXbo0fvx4ZF5bWxtfuvSiXnyMOJm5zYUIQ8ZgSmIP+GH+/PmFkV5pUSxIpDDQK2UDEnLhwoW0
E+VepkwZMuph7EN1YgNVDXkmB5rkTMDV1VX6gnijOITaQEu52JJEVCbQK7QwdlJvLAHVq3LlyuQB
Vmz3JSTs3bsXp1Epff/+XXh9WnqADHC+y2esfCKOY+gfIwNLgoNIujJHP3mFs1/F83Bf+Gbqdg4N
MFgjrRV3EMffjrC9muGZu3btQr2CKYbG4MyZM1euXLlz5w6aBOwEi7EgC48fP4ZowM7y5cuDTLEB
9pk4cSIMNVRv+qiZ3yxdXV2iCFhmIOJUkcfkGjVq4BwKm4RDSAjOwn2xDaNtzZo1tNymZs2aVPPJ
bydl49atW6migRNYeMhGnz59qP8NFBkTE/P06VN8SnQy9Ac4nUgK7E8L2a9du0YxqPA7bdo0ZFu6
RZk8eTLzZw8xBCmDe0FXqampIc/07AzyixaYK3qlN1EYAnFraWmhzUwztQYO7NSpk6GhIUgWO5mz
FVQFKFlsk68AVA7sRP3DdoYjFagraB4nTZpEPoSGDRu2bNkyNNeoB3g3xLkkV3v16kUeuPG+0RTj
/eHkoUOHUvdCmzZt1q5dS0uHsUdTU5Ouj3ePnaNHj0aNxJWPHDmSJ1MpOX5dVW6LI8HI1PcKpUP0
Sr4r8xCv/cRxt07Yh2R2DuQYBREItzEneo39nrHDWXAW6hWkn3DnkydP6BuvVq0ayT0YeaT+SHOg
coKn6GRoZDMzsxIlSixfvpz21K9fHxbYhw8fQFKo4UjepEkTJmJg2BF1gsTRCGEDlZkO6enp4d+l
S5dCfCgpKYFwbW1tcVN8fRCPixYtYssdwaFTpkyhaCD9+vWDtWdsbAzxAU4EG1JfHAALFSoYegWc
TqvS8QFSNCYI6tjY2Pfv36NFoUN4WArIBAOU2BnZpjCmeCLkf/369WiE8vyF5g29snmvZH0XsMWn
rU1+EVHQEu3YypUrUe7UxUmgtgtFT5GyJJwJMKCJ7tu3L62eQHK0w8rKyhUrVkTzi/pHnc4Qs3h8
8t6Coyw8F14k6iteHior7DLycwiz69mzZ4y+qWYwoM2Xjk/Dkefofjltpf+ga+5sT3Z6CfGKiV7z
vJeQuZjZnLmDxBcvXlDNCdTbBW51GtgsOSJjl6ww6lFX0cALd7q7u6OCqaiooPZiY8yYMfiFRQwC
Qg3HCZCNQs8hd+/ehVDFaami8HFslQER4pcvX+bOnYuvAJ8Vk/Zs7BefIePlzZs3E9d7eHhQH0Wq
yKUstqGyR40aBRoV1nkHBwewCphdVVWVdcjMnDmT9DVFEaWRjCVLluDTw72g66WtQDCmcEo+Gamk
3HE7XD/fKCsPVm0VhkWxKG6UfqrI3TqKD/SHz8DJyQnZQzNF4QvRprm6ugYEBMyePZvolWwZ6SjH
rN+WrAY02l26dKGdnTt3hmb/8eMHEqJRFZ6Pc6CRd+/ejQygkWQ+68g0Q5Ykrp+QkAANi88G+SSh
vW/fPk5/ckVgOpcteSTbaI+FhQW4FWZy9kdsso+W59Libk22zdS3S0hICCgyrVNy53LQq8ecrOYd
QhuSQYkmnLpQIRVRu2BEg3doPABARcUvFByNKIB5r169Ctaj4Eao5GTCX7hwAf9Srytx2cmTJ8ns
g1JmPbOMXiFOYdVt27aNHMzjQwgNDSV+JI4GKZcvXx7Z2LRpEzEgAAbER4rc4qPA5wOdCxZGA4Bi
h1gmqgFVNWvWjMaB3dzcIHfwxdEoCHMWytpL4mKc+enTJ3KTT7OGAShfGqcp1PRKLRI1gwX+2aB+
kJmzYMECWD2s7xXtG9pnipTFBnxhkkPAwmDZsGFDFsurcR1yHVSvXj3mdJHolYhbgg2HDx+OykS2
GCor7C/6FM+ePYuThT33wPfv34U+4VFlcQ6fbChvfAyMJXrV/SibCDU1NQW9Ugdo3o8ciPorWps4
Jf3KkYrX0glpfgg3ZiVoKogA0woKFAqRJG3lypVpcAJ1EhyKz4R6MFE5sZOolgGshApJQ0mQIJDD
O3bsAFOQ67hJkyYRXULzwvzHpwfCwtdH8cco0ByLA2JpaZmaHqpOR0cHimTjxo04B4dA39S7yABG
Dg8Phxkn3Akjj9QMOBRfDUTPvHnzaPBjxowZvr6+NB0TjUqnTp2Yl1FcH3ocD4KdZGviiSRkU6Gm
V2oSC8miWG1tbRQx6xxg07PwqtBU0hATc3mloaEBeoVFs337dmEjLARELlWgVNFwGYx9xqFoGCnW
FiqlRB6wE80ptimEgZGREbaPHj2KbYn4BbDLSDiQHYBXjnxKR1fkyFuYOoQTvd5ylW2eBl5l3i6H
FeL45xDK1eegX/QOOQ1pleZtYNfyLM5B3QYhKikpQcMy1wH9+vUTToBJTXe/CR2aKhqIx/b+/fux
QZPZmWyikQOiMAhGXATilEiNAWIibdJY+hcHAQvWHjNmDL4UsB6q98qVK6VHny5fvgwytba2dnZ2
xtdBXpBAwTgfrQLM0Ddv3hA9ITmIEk2CsDMa+/Fdk2MpCCAo2T59+rAvqGrVquBlui/16lLXRKpo
xCjfVkLlnF5Jlmfo3r8AOweoe4h16EyfPp3aPWHEGjTIeFt4E+fOncPRDCUJPR0eDa09iI91DlA7
v3DhQvx2EAGVCTq3QYMGdC8y4qBMURcbNWqE5hQiF/t/++23eiJgA5UYQgCXReOP+lSuXDlkTzjN
i0NOWPlEPCvLJ0q2WBKnT58GvV65ckUeubILEGtqg69ZBblKCg2ica1go78zOweERQJTWn9gvzCG
DRoM7Ll06RK29+zZg22iSIjWp0+fQkiiTtra2mpqamKb8TI4C98OOSOFSQeJQAtzqKOWtAjEqZDB
ly1bpqamBro/fvw4LoiLo84z4cxAnrzZh8Z21q9fn+YVCOn18ePHZD5STqT7Ups1awaJiqNNmzal
sZaJEyfSIbQ9aAMKO72miqKqCEP+FSCQB3qp+ABAc2w/2BCvH7YM2jFhpycazDRT8eNHNrVAAqhk
aMzRftIGW2aOdhuSFq+cxh+HDRsGUwV1d/Xq1VDB+ALZhEFUXLxX6Fy0z9AO69atQz1DE7pp0ybU
8s+fP5PHBqBz5848tEH+oI9Z2rhW98uusiaECYKXS6ZuniMuKaWJaO3W/CzXbkW9eCAOvv0y0xjv
Hz58QI1CHZPYjzos7H9kBjs16tQNChucHaX4citWrABP0cIcwqxZsyiIfd26dcFc9EVQpwExdeXK
lYUUCf0BAdu4cWOhPU63lqBXfBEgdFxKIufVq1en/mLhJ0zzeUDTyEmGEUaQvbFjx7JuN0ZTkDs0
Y0cB6BVlR73XBf7Z4FWRJS6B5OTkwMxjvfn7++M15GAmI9RxZg4KhMg6FjdqBj4GYZ3mkCuCY5Mo
BPf65/4yJWSTXmm0Ry7foaj7tamxk390prNxQ4yPEL3Gu2YaapCGca5duyaxf+PGjdgPCmN7aLYW
UScNQgirIvWnHTt2rHbt2lu2bGH7KRLHp0+foFJZyG5XV1dYYNWqVcMGjlKHr9B8LFOmjIaGBttp
ZWVFfWvIFVssMHLkSOx89uzZuHHjmJqhXlewIU02YFeALIW1CslMK+NxHYnPE0dpAkN0dDQFZyLn
y3T+0qVLFYBeaZARsp9/uhyFH899xDNMj32SrY8bAo3olSbVywPmjuJOYYNvmfYP+Gyal0av/Run
xMVmds60adPwSZ47d27Hjh0gLNhMFy9ehK02d+5ciRU0UB5QhRCMsNmXLFlC66x27tx548YNsA/2
t2zZMjw8vEqVKmxQKDU9ogeEKlQqPn+239DQkGiuRIkSwvAlNDcLEMbvsre3p/nyNMUKuVq/fj3z
vQebmFYTxMTEDB48GDk5ePAgjuLWwicFuYP6qRN2xIgRkydP7tu3b6dOnWD4U4hVNvJMKzbJzRPN
URMu/ym89Nq6detCsmqLEBoaihdva2srHaU1ayGZKnJKQP3ikLQQKQYGBhYWFjY2NtevX89sLg75
zGbNLzbYTECCk5PT48eP2VH8C/mQHdnLIQ9cdRIHZ7V2k+0VsACxEuFa8xBJKSktTdKmZ423zjTM
jItGt7QgBUsmZHEdNvOaBu5po3Tp0jDkW7RoQUtXhXUe6hUMRfRKXZxsFnZAQNo8XEg/VodT05ct
6Onp4WQhvSYlJYGzaEmuUKjCGKdgdDjEduKDKlmy5KBBg0ixEkAm5HGJFgVUqlSJFuasWrUKUrp8
+fISnhNorQE57SPUq1evsQjIs5aWFnUA0u3Wrl1L814jIyMbNGiAV6kA9FqzZk25LimT1YJjk0K6
du3KHGURtdWtW1dNTQ3tIf799u2brq6ukIJRw9B04xy02+T5RQh1dfWpU6fOnDlz/vz5Y8eOhVlE
ZtTly5dx9OvXr/Xr1zcxMUHTjaYe1ge77JQpU2Ck4KZgfGqKmKGU2VoGDvlB92Mw0eurzJefZgh8
qESvcu3JmSVyRNvM2CkqIVn6aKKvp3hcyyCr2Xuwo8GYEHqo0qjhb9++NTIyMjU1RV3NQno/ePBg
8eLFON/S0tLY2Bj/MiJ2cHAQygt8SqA/Pz8/FAVzQSAEbi3sgiC9Ij1sC3K0trbG1SCuJ02atHv3
bqE0wU6wCqTo/v37kRMQq/TaKuRKW1v79OnT27Ztg1ovnLNuckWvv/32GxJKDPYVFGgGCSwdGAXk
LYX248WQGUKjh5CxW7ZsodFGeqOsd4ZWhrRv3/7Fixd2dna0HABsSyN4NWrUQIuKRnvIkCG0dAcW
DRphGgRAraKlgcJe9n79+pUqVQqCGpcFfYOjly9fjkpDSoHzXT5j55tAolcXGcPAgC+IXuXq1ezv
D2L2dwrLIHvhNy4RvcZ8eMVfpaIgV/RKA+iFwedAqmg6Gws4iNYVrS7ZLKDONm3aXLt2Da0cLT1e
uXIl2U1oNnECTbgDYOwsWLBg+PDhzPZ3d3cPDw+/c+cOTWgFgwv712fMmFG9enUyiPA7atQoWnHL
PkJwKN29XLlybBEXMb5QXHPkD5Y8Ent6DY9PlikhlJo8XBFKwNI5Ij1yQQZzcj3nq6ePa6WZR9xD
RdGnV1pfUadOnQJ/jNDQUORk586dkt1tV69iP/OdQwq3Zs2alStXpsl3KioqbCEzDBbIW+nwrhYW
FjSu2rFjx9WrV7P9gwYNgkamLgL89unTh9y89u7dm6ZnYbtdu3Y4SnNEOAoWE6y9QF5NjJ1k9fTK
Ogfk6v7jnX9MFoFjXTW6k7eB1OS0qpWHAWk4Cim9ku6D+VzgUdEDAwPBZRoaGmBYKNDBgwfDSIeB
P23atIYNG7KOpLi4OLYOD/J2w4YNyDxOpoXVHz9+xBOBIpWVlbt168a8Q9IUFlRokOmQIUNOnz59
/PjxixcvNm7cGOxJac3MzGj0gNyjHTt2LFXUN03DBWzSNUcBorOpC8hruJW7rAnd3Nzyoe81NimF
6HXVU6l5YykpTgOagl59RMthg4KC0JzzF1rE6RUURmkLQ7/yiBEjKDNly5aFPY5fSNT69euDMYWn
QYGS9yxyQRQcHAylSVM38PFoamrWrVt30qRJ48aNYz5eyQGPubk5+QkWomfPnhQXHlzcoUMHsC2I
XklJqXr16n5+fu3btwebly5dunv37nSpW7duqaurjxw5UnpmIodcEZdOXksf+cma9s2bN0SvGboG
zssG4JJLhpELErzdqWcg/FbasrFHjx7xNX5Fn15pPhpQGBYdhYeH29rauri4kGFOS1HJtbBABKRN
ISCfj8w3YKporRf1n4JY2WRpBuhc8rcC9Qphi9OuXr36119/FS9efOjQoZCxNNMQHNq2bVucTy4k
cCnqje3atWuFChVo+FVFRQW8j3/Lly//y7liHHmIn6HioIH73gXJmhZtIdGrvCNK0OQBaV+00W+e
iKPD/kgblEdbDpuJv9MiTq+0Zl/aHVRhwOjRo2k1tHBFx6tXr4j4JOiVVpvs2rVry5YtIE0WwYLg
6OiIowcOHIDyFU6TKFmyJKQoOJ28HU6ZMoW8dAO0TJB4nGYU6OnppYpcGURERJAjRIlJshxyxV2P
KKLX459ltrTk6i5LiEN24skDftH/mrgdeul0Wsfr0NYQCMnJyahL5IqFoyjT69OnTynt9u3bC/Yx
bt68uXbtWvYvzHxysVOzZs3+/fuz/RoaGqVKlcLJyLO1tbVQ1cKKnz59OjiXrYYGyeK7WrZsGSx6
8gszaNCgqlWrslStRSDKBmOSex5ag+vr6wuVSoXz5MkTpALXY4MSUqhEXvnyE2xZ1E0ZfWUFBASQ
dM2H/hwrl0jK5H3Pfy188N2yAPTqOr57qiAeOLni5yiy9AoSoRlOWlpaBfsYDx8+RDbAsG5ubvfv
32/QoAHo0t3dfdWqVVCjL168gCVO3QXY8+bNG2yQe0oGsHCzZs3Iy2KbNm3InQJNtCIvWaBXWnHI
3HHhqcmrEHYuWrSIJn6xSG0rVqygK/z8+fPu3bugVzD73r17379/jyzloLQ5coPd6ZNeHUJl84d9
7949ojPyhSZXuIYnUCbXPvuX/eQ6Lm3agItG2vqdqKgoyg9fmVLE6RUoV65cIZl4tHHjRrYKEPRK
EbSCg4OJaps2bUrOJkCOMPYnTZokEXkFArxMmTI41LhxY/Bsjx491q9fD+pEbSbfr6DL48ePQ3Uy
v7EULwvECgoeOnSotrY27sU8ZiFVFRFoqdjXr1/Z4gUJ30Uc+QCNW54UkFWmEFuJiYknT54El+Xb
UJLqVTfR9IZ/RreSgvyo49V/r3hSoIGBAXVWSCxy5ShS9IrKR2kLXL0S7O3tL1++DCNOGAgAO8F9
PXv2NDQ0zGICGeSth0fGseZhjtWuXTvDwQRzc3Oo4ClTphw8eBA0Krxvqsg9D3MznCpy84OvYu7c
udKBYTjkjR5X0lwRDrOUTYFCsZJUZNNI5I2Zd9NGtzqa/rN+IfrdM6LX0CtiD35sqI37Xy/K9Eru
wqQjU3JwFDa0veAM2tK08ZS10yl/pmQxbHoRgHw2MnSMTPc8EHHvujj49j0r2vP06VPKFYwt/maL
LL3SgiXmSbdgAWP/xo0bZ8+ehUo1NTWVEJI5BjQp607lUFyQv+p592WLYGhsbAwWO3PmTL6Z4ae+
hFL368/0PuKQ88fE3gbsxaMFnp6e8naQyFHw9Eou0Gm9U8E+Bsxw6l0tIQI2ypcvv2vXrpSUFLTw
GzZs6CuClpbW9u3b8bWAiFnaAwcOTJs2zcPD4+jRo6kiDy9ChwDr1q1j/sJ9fX3t7OxYuLTsABnQ
1tbu1q0b7Dh8q8uXL+/du7eKikqfPn1GjBgxduzYvPVPGB4ejocdNGiQsrKyhoYGHvbKlSv37t0T
zkJj8Pb2NjMzQ2nY2NjkbBLu169f586d26FDh/79+1tZibUVKsOWLVsWLVq0d+9ecjFXGECcteCB
DPSKFlreXrSlcTE9Ghhz6+WlrSly89okOUo85yE+Pp4ydvXqVU5hRZZeWYDJfDOdMoOJiQlY1d7e
HnQWFhYGm45mnuI7L1u2bM2aNQcOHDhs2DA2uFShQgU27XTp0qX169e3tbXFFUAH5I+dLTocPHgw
yBHcQd4J2NDZ/PnzJRyy3b9/v169ehItDQWJoyT4rVy5cvfu3Xv06NGiRYvffvutTZs2FPowr0AN
XpkyZYR+PwngUOGS+fPnz5MnMEK7du0+f/48b948CadQsAlUVVWPHDmSKuryQ/NAF0E5o00qVqxY
8eLFUTLVqlUrWbLkzZs3KQoZAxq5wrA+LSI+OT3+tgxLtvAq88HVgATupc/PPf8jrWKkxEQ7DW4J
evVaPll42oULF5AxPT09PrpVZOmVmAj4/v17wT4G7HdkgzzmEsCepUuXhoKrWrXqwYMH2f6AgICW
LVt++fKF7aEJWxR36+LFi+SnBlKXjnbq1GnAgAGdO3eGJDQyMrK2tj59+vTIkSNBKyBHodNYWiwA
pmZTvrCBPFAR4aYzZsyQdzlQzA+yGcH+oNRTp07p6+t36dKF3C0yz/PgVpAjuA+ZhMwEOYIKya+N
8ILkDwwvmtyGUXAK6HcKdtS+fXuargTroVatWuXKlatTpw7aMGp40MjRTubYuMCqR1QicdbmFwEy
MF36lKz8dE/lkj43a9urtAnUiQE+jqqN0sa1Lp4Unvbo0SPKm0y2FIci0euCBQsoLTk2L0CA5qBS
d+zYgQ0QARiQCAWyCzwipNekpCRQiXCeja6uLjkcwO+2bdugVWmCF80rbNu27ahRo7p27XrgwAHh
HfEvzvnw4QPbc/36dSoNcAo0ILmRxTbN9IJ8FnpxlxMgZ5ABiYh75FGhbt26JKKpK5niLbMe6jVr
1lDmW7VqJZxfsW7dOlrhhmYG5UYx76BbUc5gUlyTnYyiqFGjBo6iPWNdDebm5tjTp08fNl+tQOCQ
viJ215vA7KdCJcmfxVoS6C2Kt3jbPa3XKPTCibSeAdXGCZ7/MhA/ffpE9FrgyoZD7vRaGLxPQmCO
Hj0azMIs04kTJ8J0gigbM2bM7t27QZ00BbV69eqbN28GQYBSv337dvToUVplAHaAbYtUoB6IUFwQ
NAF6VVdXnzRpkqampvB2FDNO6Jid9O/06dNB9MrKysREIPoSJUpoa2sjb9KuDvMcJDaPHz8u3IlH
qFy5sq+v7+zZs9Fy1KtXz8HBgSJompqaHjt2bOXKlWgGkE9yzCiM20ErKWh5Hk2/g5aHCoZcJe+O
1LsaGBiIto0FehB2uVJ3ga2tbQHWjY+B4kjXR7MdZQtPRPwlXN2XP1j80LfNeWdqtTzmjEzrGZAK
ABMSEgJZwLtfizK90uJ9QN6uLrKDyZMnQy2CQJcsWQIFWqpUKXztFhYWEFmQXZUqVWrRogV1dKqo
qEBhsUWrrGsSJ0yYMAGGcIUKFQwMDMhRQO/evVVVVRctWgT5xu4F1m7Tpk2jRo2EPV9fvnxBEtT4
27dvk7uDhg0bvn//nlbZgrWRDVjWUNPSYejzChT/He0H2gbcfcSIERQaEyxJJ1y6dAkMi3dNwZAZ
0LQYGhq6ublhe86cOVDf1GQSvVILhCQREREk0tFWkUMfVKC+ffuSEzLodOohEcpnWmeM8wuwbli7
ihebnrTP7nySJ0+eEL1mNhtafjj7NXSjqBMj3t2Z5gyEXc9gzrWZmRmyh1fDfQMVTXqdP38+pZXw
gVIggJQWOvZGlqDIwLNNmzaVCAwJFVm7dm2YvWBPCD1yq3ju3DkQKJhi//79ICAkhwKF8durV68e
PXqAXkGm7ApGRkZI8scffwgvGxUVxSJigoNwEdiV9+/fx04rKyvQKzgXzIUSl58HHIhx6v/t2LEj
NDiscmI3oVMIyM/SpUszdzzQpEjFjHc8ZpkyZaiLA4UwatQotAqsk53i4lEIOeaTjO545syZuLg4
yHlqY9jt0NgUuFeKra/EK2I/B8VlMwnKB08hDJKab0Amb7ik6ZVgg78oNGxScAbfl52dHXc+UJTp
lYJWFYahLWDu3LlgQ+GeefPmgeOgUkGOwv0w9tu3b8/+/fDhA9Hr8OHDQanEO46Ojqi45HOga9eu
y5YtY/QKBoEClR70p44IECizLlPTnRkeOHBg9OjR5K5QrqAhPlA523Pv3j3sQZvB9mhra2MPdaoS
oHNv3rxJR2fNmsX2//XXXzAImjVrhhaoePHiAwcOHDNmDAgX56OpoBjL2IlChnqFrZqa3rWN4mK3
09DQkPBPlv/oL1pp2tHUJZsLYpkbF1Ys+YmE5JTw+OSUpETXCb1Ar56ZhIZlTr6FAwAcRYdeyYJm
o0AFC01NzUqVKgn3gBRKlCiBj1/ok5D2w3xm/1LUdRMTE+i4evXqkbdW0CvYk0IBQwkyP7Aw9qF8
q1WrRrG8JEBnCvekpKT89ttvIPTu3btD8cm7EHA7UL+wk/fFixfka5HtodkFq1atIt5HG1mlShUU
FFn0pqam2I9nBEvikbE9fvz4kSNHwvBnV0BzRc4WiDdxi+bNm+N8ipKLsmV1iXyNDxs2rAArhlOY
eFxr+ZPszsq6c+cOMZcw7m8+I+K2hdiF9vWMbZ34+PijR48ik4VhUQ9H3tPr6dOnKW1h6F8fMmRI
06ZNhVqyQYMGYDTIrvXr1wtNeBCxkF4/ffpEw0Hz58+H/NTT04N1TLFgYf7jEBQcLq6iogINWK5c
uRo1akiEGmZQU1MDE0ns7NWrF3gKJDtlyhSoSwsLC1Db1q1bweN5tbRMCOp4Zf+6u7vjEZB/Vizt
2rVDmejr65Nmpy4FPBcRaFBQEKRohw4dWAT5P//8E62O8LlQnlRh2CQw6vPFc6WK4geD3xMTE0+d
OlW6dGk0RdBZBVgxrjqJQwRec47IzvmgrWPHjoG2UL0LMMqRz/pZRK8ScwaEsLGxoWYgw5jYHIpN
r8zfK007L1ioqqpWrlx5+fLl+DZg1YJQyLwlh16whUEQFNoWehaMKfycwKooiPPnzw8aNAiylM2E
T0hImD59OqxgFgamZ8+eWSgayDTpya1gVZAXGI3NgWWYPXt2npeDkpKSsrKycA/IDo+Monj+/DnM
dtx38eLFFGQBXE/n0CgldfJs27YNzEgRHKBqqfNEqH8PHTpEop4t2AMNtW3bFpoXV6hbt26FChVq
1qxJUSOFIXILBLSKP/uuCNFgEGcVZIdGSrLbpL6iKVmNUuIydbvu5OREWZXwrslRFOgVb5fSCuVh
QWHnzp3t27enIWyafbl9+3ZoKFqpRZQKrgTP6urqSixzBLlAsWYRfXPatGkwxFjE2czg4uIiPQV4
06ZNgwcPhsBfsmQJRCvuEiwCNvz8/PK8HFqJINwDBoSiFMYHi4mJoS7mu3fv0jk0QZUtbCVA4SLb
ELwLFiwQLg1AA4aT1dXVUdqMPWkiME3tAimjtNEsFQaXToMs3MGtnUyzFUObeSDEM9I0vgJBUmgw
SVffrYuyOA21KN9cfXPkN71SDBU2XF4YEBcXB/n548cPtp4qOjqaOlKzSOXh4dGmTZsCGSbOc6xY
sWLevHnS3yEsDLQ3pqam5OgWew4fPiyc04O2IZu2MKwWEKjEhFAYAWZmZvjds2ePcCStYBEUm0TS
dc69bA2vv3r1igjr5cuXBZjtsGsmEk4IMwOMDOQWLzciIiKVoyjRKz5R2LxIC3XDi7LQws3N7eDB
g9ra2mvWrGFBJ0Gsp06dgiofPXo0Wkdp6xJNjo2NzZ9//gnFLe3tlPqmoe+gaj9//vz9+/fCOT3I
1k084/VENkJsRUZGHj9+HGwF2S7hbT2f4bdnRVpwrQFNE/1+0akK64Hag+fPn/OqXqToFQ0mpc2H
5Z4cOQP4lJwJMEDDghZVVVUlOoLHjx8fGhq6evXqli1b/vbbbyz0A/W03L17d+/evRMnTuzSpUur
Vq3wu3jxYpohy1CnTh0aKys82PFaPOP1jd+vLX1bW1uiKjs7uwLMc3J0pPPIdqBX79XTstObQU2C
sbExr+1Fil6Tk5PJ6xJzgMLBtOGwYcMKg7uNbt26wcIwNDSEzHn06BGNR/Xs2ZO8EECEhoWFXbt2
jRyM9evXDztr167dq1cvsC1s/KtXr965c0dI0HjjDRs2pJGrAQMGgHN37twJUp4yZUq1atVoHbBQ
D4KF89bpokygGa/tLjrH/2rKq6urK3ErWogCnDAAhFtfEU/JupmtGVewLSjnBT6KyJGX9Ar06dOH
pi7xopQATeQq2DxQCHFhqB4YHEOHDh09ejSN7wtPXrp0KdUEcKvEdUC+pUuXfvPmja+v2F8qzfcS
+spJFS1qgOxVUlKiJRUEkG+HDh0KZGZ0QIy443Xxw1+4eUUzo6+vD4bS1dUt8F4O//3r0noG1Fok
Bvi6hie4hP9iwkNISAhNgEXDJnThxqHw9Dp27Fha2sTfqwTArbCyC9YdJ82c+/PPP6UPgfVwSDge
YmFhwfwPSJxMKxGEKynwXKVKlRIuDyPQdFoDAwPhTiMjI+hfFxeXfH78B55i36mHPwRnbWrQEljg
7du3BVttUuLjXEZ1EPUMTMW/a5/5/2kXnH0ByxfIFil6XblyJSUXelDlSBWFNkCxfPr0qQDzAIO3
WLFi3bt3NzU1hTjFK4YJf+nSJbSF5JCFdTJ+/PixW7du5GqgRIkSHTt2hOSEXS9BmmAfZunXrl1b
YgZYqmghPAUtl64nuD5zYZ4/WPPMn+j1nX+m901JSUG7QtwkjGFRUIh8Yks9AwF/bo5JTGlm7DTu
1q8jPtAabkDo7YxD4en1xIkTlJzNoORgaN++/b59+wo2D8xpJLnTpg01NTV6cc2bN2/Xrh1NDQar
6ujojB49mly0NGzYkPnZunXrFrvIhAniJfCgyzJlykjIc1rHIR1VNzo6um3btvlcGsOs0ma8tr+Y
lasBpvsuXryYz+yfIYJO7Sd6jX796LVfDPLf2MjRN/oXpiHeAoUFy2fn3xzypVdaVA6Ym5vz0pTA
jh07evfuXeDZePXqFYxfipTj6elJPgYHDBiA37JlyyopKUGEampqPnnyJFXkugH7wYbCK5BfmP79
+4MfmeAFz0o7S+vZsydbUizdEoPN882vtmu62/9Zmc94ZbNcT548mbdReXIMzyXjwa3OI1RSEhNM
foTRI1i7/drhJwtdw1dwFR16pdU+5NKUl6YEYEqXKlWqsAWjp9Wu/fr1w6+hoWGGFUKiJ52cCh4+
fFi4c+rUqdgpDKNLvsylO2QJUVFRYHOwfP485rb0KVnmThFZ85Genl4h6bJMCg+h0C++OmkTyS2d
xd4S1jz7tcPPmJgYPAhN2uUDIUWEXimSCvDLBaP/QUAt1qpVizz1FQji4uKk3ano6OjQdAKKLSZx
lJwPSEyqp84BiqTLsHz5cgqiQ//6+vrWrVu3YsWKWThwUVNT27lzZ/48+xDLtJ6BNuedM+wZAMvT
aDt+CzwUGEPw6YPUMxBhm+YjKSklpd0FZ3qKpGxMFXvx4gU1GAXrQ4cjz+iVDW3l/7iwQmDMmDEF
6I7PwMCgXLlyjo6ObE98fHzr1q0rVKhAwbWkl/oMHz4c+2kFgYqKSp06dQYMGEABaEm9Qq7a2toe
OXKEhsJ27Njxxx9/bN++vX379hKTXqWBM0eNGpUPD/7eXxz9ZezNDMaFvn///nc6CjZKzb+1a5Lb
xD5pU7IGt0yOFPefTr3jnX1/NN7e3vRQfCCkiNDrkiVLCk88mEKIs2fPVqlSpaDCdTg4OJQoUUJV
VZX1eJIP7FWrVpHrLGmvtTS0xYLCtm3btmTJkhQGEUwtsUxLCNxI6FUrQ4DLqlevng+T9jene8n6
FhwnYU+gRaEoVYCJiUkh6XJN6zx5eoekq/++Nf90y7hHpXe//nppBp4ODSq5IChAfzQceUav8+bN
4/SaBfz9/VE4bKV//mPx4sXIQJs2bRYuXEiGf+/evaFhp0+fnmEMSohWkKmRkRHz5gU7+uvXr5Dh
ELYg35kzZx48ePD27dv37t2DGjUzM7tz586bN2+EnbCZwcPDAzeVd/Sqn6HxzYydQEkTrP+VJTws
xaciWFpaFqooVZ4Lx/5/e1cC1tSxtm//2+X29na393a5rVutXWzrVmtba13qWm1dqtZerXWvW+tW
tXWr1lqrVnGpuCIoCAIiCLLJJoKCICgqKCQBErJAQgghZCEJ/i/58DQNiEG2ROd98uQ5OTkzZ2bO
zPu935xZaAVC/fU/u6e1xspXDlflZU2yXXvccqsp3mpJYgZnolfa6uOBBx5o2SUwHBnQgDbbJTQn
dDrd1KlTuX0bBwwYQO/6wYm1pspoNDbdoywvL4f+PXHiRNPl12CqHBtWQIrvQpHOWsjv27ePqAfi
DvagZWe+2kB/PYOkq3jhBJu/hgULkZcBgfn2JBcqh/qUIcxZ03N6eu3Vqxct+cGKsg6B37dv35ZN
A0j29OnTjsApPXv2bNJdY3dfLiFunRFTNRHWbDZDx3l5eXGi1cPDwxHWgrDV9VOGVA93TbGdPbzy
XHVHR0qhXf5+UFAQ5dR6ajKDU9IrLQUCSeJQWsChsG3bNqh7Rxiy7ggYP378vHnzmihytcE8MFBI
ZJRuka7Z2dkuVvD393fAXixtagJxq+THaTX/TbJMLsBn7xW7tg4SCASUWZs14xmcj15HjRrlOHtx
OyZoL262GxJh4cKF/fv3b6LIl9ycBTszpnoNl5CQEFoEKz4+3gFFK2BSyvmD36BeVwOvliWv9KZK
6kq2c0XwG5ZFHmjDBTaDy7nplbYLtRlezmANertVr8UH1Gq1RCJBkV67di0lJSUmJiYxMREHFy5c
QDxZWVnXLMA1Ttfl7ebmBi1vMyvszgCHSaVSca/ILxTpWrtXceurh3m5pVXvrIxGY0REhIMPAi38
bWn1IgMuq27ZSiOqepNfOcRT6u2a85aRkcHW2L4b6LVbt260Bigryjrw8MMPcwP4QQrwT0GgoF2B
BWlpaXFxcadOnfL19d2zZw+tjGcntm/f7unpGRYWBtpFhM025fSOgfyiwtzZVisoOqVSmZube/78
+aCgoJ07dx47dox6pcyVN74Ir36j5XlN5SwVQ8/L5PVrD27Nn9Cv0nBLS+mfU0pZ+zVVYWdB7d+/
nwSso00aZPRaD9Ca9jVXCL3HgfoNApXL5WATKLUuXbqsXbsW8vPw4cMgRJcmAxgnMDAwMzMTjrDD
9oa/8MILdq5NhTJMTU0NDQ09fvw4HF7aH9vatHDc4ZFVPT1/UJCwwuw0rwEK5o651RstayBHvfzz
LMKcrzPZlTuUGxOwTk+v999/P8I+8sgjjq+bGoha53FDh8KFhy929uzZM2fOnDx50svLa9++fdYc
mp+fP3r06ClTply/fr0OZty1a9ehQ4cCAgIgYxHV1atX+Xw+Iudexej1+uLiYlC2TCaTSqV0X1zs
7+9vwzsc1SIxISEhkIpZWVm4HmTUsuvPEuruGQClXr58OTw8nDoQb1VWPj4+3NqsqYW6Doeqeidb
u+ckSZ1mOL2Bl1W9wsDyGbe9+GBmtf1wz7RLm+NBkxuEYmQ056z0Sut62CwCYjAYoqOj0fJBOjEx
MWgqcOK8rAAR5+bmhsd/4MABeM3QMpGRkRApUVFRSUlJoCGQiE2EpaWloBWhUIh/YZkRLW4BGkq0
4PTp0ziGzwhWwr+IBLfGeTAL4sSVuAAHOIO/cCVuRwOVKAhw8eLFSxYkWYCAuAbJRu3cu3cvtWpX
V1ecAZ3B8wKH0o7Nt8WVK1fmzZvXt29fKEoERzbj4+NBDSAR+LmQtxKJpIHj21FWKBnkBWnjpiTV
ChCxn58fzACKArkWiUQoVSQABS4Wi0HfGo0GPN7ULKzVarOzsxMSElAgqAm0FglIEyVcM807duxA
PUGy8QTxXHg8HuoDF9UZiZYG3uPz2wWFE7W9oo3LqqVrUtztuxFMlWRCRofa+5IjIiKCChBPmTGd
U9Irza0ErE9CJVGDabirSz6gi5MABOHr63vixAlYFHA0nHQQKMTali1bmm2/HFBPXl4e6DswMBBy
uFZha0+XLuyHp6cnjB+yA0sJkwBGjo2NBccFW4D4QXkgdFgvGDPkFwfIOLgbJ1EOQUFBuAzfuPLo
0aOgSBgkkCl1C94WuHVcXBzMTx3rP0Xka17z5BO3+mQ701tyo6yA17eq1zVvfG87g8yOldLyr9l2
rD9QRd9FRY6zTDij1zuhV1p4qVWrVrbGVq+H64rGhkeLb7RPNMsYC3AcFhaG8/iGgUU7hEKEkgUR
1K28bBQNgYLgmyarWIP+wnnQNGQRKKNeXINQUNmQV0gqEg+1S9kBXyDlIBEcgHTS09Oh/nQ6nclk
upXoA0/9/e9/b6kpmBD+SOG1a9eSk5NDQkLgPUCP21/UTQekAZx7/PhxVAPUCnzDY4BvAX1qz+hU
8Gkby1CB1gdzNtmxY4pDQbb2W5KuSi9XO4MkSasHwH57WmZnEFRgKuqmnojM0CT0SuEbcdYW3Eb4
MnCcyYuHLAKF4RtuO3VHwoeFA1uTyOhtEnhEpVLV3REMNYQL4AhD5SksAAHhJw4QA/4FD5otaKxM
wQtGKUHJOlRXslQqpaELNNILpIYShrW4cOECrCAMCYgvICAAtoG2euY4ESIUBO1mAdkt7l+cx79g
cMhV/Ovh4YFjmE8fHx9oWMhb6pRAycvl8oYsO8K9y3r5EO9WK7o6LFRBnsStguFdzLp6jFEbESJC
ltu688Qau1Z0LSgooOcSGhrKyM756HX06NG06D0ryjoANkEpQf86bxZgbOCR1CrADQYDiLLZdtuu
MFduSFW0tnBrW/ecYIGTrSVkyOfxh3Qiei05uq9eYYME1Qts77xk73ArekMIH65RxhozNCu9Dhky
BGHbtGnDirIuRqiouP/++yEDWVE0nFu/iZESxbzuyT8rdbJl98w6bf7E/sStwilDKisM9QquM1VS
X3O/4/l2BuGmGMCFYvXHyeiVFlFm9HpboIg2btzIyqEhKNaZPrN4x/h09xFcUjjfIm1Fvy8nbs0d
0b1CeCcr0K9Oql7h5YzYLtNiNBppiMvOnTvZIi9ORq+0yWi3bt1YUdaNnj17cvtaM9wBPK+VcoME
3vfLzVNXOF0WKkQCGi2Q07t1eeodakmeqqKt5YXepFP2LkGQnp5OAjYoKIhVJGei19atWyPsu+++
y4qybkyYMGHw4MGsHO4A5Ubzjzd3H6ha2SRaUmowO2NGZOvmk3QtmDumIfFQ90jrgzmZSrv0u9ls
5uZoONT7VUavt8HTTz9NizSzoqwby5Yt69q1KyuH+kKiMQ4Kql5jsMMhnhOtJ2ADQ252Tu82RK+l
wd4Nieq0uJwKZPm5IjuDZGVl0ajEAwcOsJXvnYZen3vuOYT94IMPWFHWjR07djz22GNsh+R6IUZU
znUIvOeXe7rAid99F236ofqN1tcDbzRsOQgEHmwxObA3RVp7J6OnpaWRgA0ICGBVy5k6B3r16sWK
sm7ExsbWunUgw60YZHNaMc0awGdKlKSswuy82dFeSibpyuvbXnfpfMMj5EZorUqyV8BWVlb6+/sT
w16+fJnVMSegVzi8CPv888+zoqwbUqkUBcXGZtmDUoN5cpSE6KOdB2/35RKzM2+FUWk0Cqd+Qm+0
1KcCGyVOFEifgHyaVXGl2F5nX6PR0KoObBSBc9Brz549Efall15iRXlbPPvss8uXL2flUDdAFu/7
5RK3dvEWnBE7/WD4oi0rqFtAunJWI0Z7SqihuRWfh9ZjJfucnBwSsO7u7qyrytHptUuXLgj7+OOP
s6K8LUaMGNF0+6DcBagwV65Jlre92SEw9IRQVFbh7JkqDfKqHug68h1zWSMvOjMtulrje9XnjV9M
TAwxbEhICKt1Dk2vXHi2Vd9tsXbt2oceeogVVK0oKDMODxZyo69+OFtkNDv95pjai0k5H7Wt7nLN
ON/o8eepK2iVwr4B9djwxmAweHh4EMMmJyezuue49Pr5559T8Gabcu68uHTp0n333dfA/Tu1xkph
WUV6kS5apDmaXep5TeWeWfWJKyjPLNZLNEan4yR1hXlXhvKtIwKuQyA8/26oS+byMuH0YdUjsUJ9
m+gutHtjv4D8ej13uVxO47S2bdt29epV1jYdlF7Hjx+PsA8++KAjLIPv+BgwYMBtt6GGJDkn1Qbw
1NsvKhedKfxfhLhvQP5rnvyXD/G4N+l1fHDl+365I0JEX0WKp0ZLvj4l+T6h8JcUxfaLxeBfvcmB
6FdWbtxzuaSnby6X+EmnxBLN3dAhaFIpRTM/I26VrV/UdDdCbaGiixLWzybl5+dzS53Va59Nhuaj
1+HDhyPsAw88wIrSrsaQlxceHv6nwKm8Acrbc6VkWWLhuLCCd47mkq/XdJ/2HrxOXvyBgfmrk4rO
y3QtxbUJkvJZsdKXrTL7nl/uMZ668u54zGazeP54bpRrpb5pu4NGnazaw3FsWL23ar5y5Qq3kiRj
WEek13HjxlHwwsJCVpr2oERvOivVumYoZ8dK4QjXzYZt3XPeOsKHvvsyQjw+vGB6tGRBvOynZPnu
y8rD11SheWXQudEizcncMvzcdrEYND0mrODj4/ldfQSQsd19BG948VvfOn6wOaQxFO7KpKJ9V0q8
rpdG5GsgiExNsw1ijsoAuQorYp0GZPCXFLlTD2u1gdLLtfp11uc9jYombxchuWVUkncw7SIjI4Nb
WD05Odlht7+8R+l11qxZFFwgELDSrBWVFlrZe6Xky/CCbj6COpz6kSdFk6Mky88WHbhaAsbMVOrl
2kbYIFJvqrxSrEeEa5Lln4WI3j4iuK3Ibe2e86F/Hlz1RWdkh7JUl+T6Ao1Rc6cMWGGuhCX4KlJs
3bkBHQ2DEcBTm+6uJl1+LianD/c6K6U5OiIqb3xo2Ud2Roz0DoJfu3aNWy49ODiYvXp1IHqdM2cO
BYfby0rTBtdLDLsylN19cmulMHDNoEDhLymKKKFGVt6s78mLdaYLhTr3TNWqpKJBQcLbimhOSkNH
wwDsvlwSnFuWVqQTltW16bVSb0qSaRedKbSJv5d/3oZUhVx3F24trL+WwevfoalfZ9XEYssLrlcP
80v0d2ICJRIJt0+Sm5sbj8djjdch6HXSpEkUXCaTsdIkFJQZXdKL3/OzZVU46VAZ352WQcmelWob
RZk2FnSWAQmphboj10vBfXPjpJ+cEHLz/evuzAVdjgsrQAufFSsdG1aAY8jS12sLizgD+WrzXeqA
Vojzc0e+Q9xatKVZ54+cvbkNl/27GNhALpcfOXKE64oNCQlhMrbl6fXjjz+mV1tsBojOVHlaXA5i
aufBs1GpEyPF8PeLtE6m18CDKoOZpzLEiMoj8jXe2aWrk+SgyPYe9Xv/BqOy45KSr6q4i5++gZcp
+Kz7n+sNmpr1WcNg0QCMPgF5d2y9TCZTbGwsN5xgz549bGmCFqbXzp0738trDvBLK45mly5LLPws
RPTyX0kHHvGCeJlPdmnxXecF602V6XLd1vTiVUlF8+NlMB5jQgv6BeS/czSX5lxBuU+JkqxNlu+7
UgJFbL7b35eUJ8Xyh75ZPVRg2idmdQusmggDRhUvWtSgUcNSqdTLy4uTsb6+vuytdYvR66OPPoqw
r7zyyj1SXgZTZYZCfyhL9V287H2/2jtVBwcJ/XJKDWb2EvaeQInvAXqXVTXEdc08U2lJiySjUGsk
2zY7VtrAqCBjz58/b71rfXh4eGlpKXvWzU2vFHbEiBF3cRmBJi8U6TZeUMAv7ni4dr8Y0nV6tASC
LkdlYLXq3kHx/s1ErPgo9m260aKjIGgJgjbuOYWN0Q2lVCr9/Pw4hgXbgnNr3SqYoanolXYruPu2
OTFVVibLtHC45sRJO3nV/obnXd/cH88WBQnK8tUVRqZV7z0oPXcRsQo+7ao5H9/i6eFecG2/qGys
OLOzs93c3DiS3bNnz+nTp9lihs1Ery+//DLCduzY8e4oDhDlMZ76+4TCHkdrcfzf9OL/L0K87rzc
n6fOUjLv/56GJj4ip3dry9yB94zSAgdJVb+AqgGw3XwEqsbbjsxoNF68eHH37t0cyW7bts3b2zsl
JUWlcsq9eQwGQ2VlZVlZmcoCtVpdXFxcWlqq1WpNjfpOsqH0OmjQIArupAV9wzLoPUqogUrt6Ztb
6wSnXv55K5OKkmRaxqcM1e0zL0fwyVtVcwf6vazPcqDppH9kVL/g2pCqaNyYdTpdYmKiNckSz3p5
eaWnpzvgik5gT1iF2NjYY8eOeXp67tu3z9XVdefOndwstVth+/btyCauvHLlSgvT6+TJkyl4VlaW
EzUPabkRlAodOiVK8nJtw4w+9M9bfq4oQaJV3I2j3xnuHGZzaYgPf+hbN/tbNzsW75sqe1lmcPUJ
aJJpPhB3169fP378ODd+i+PZI0eOREVFgWrz8vIgtpp/fi1UtkAgiImJ8fPzA5m6NBhhYWEtTK97
9uyh4D4+Po6vUhMk5b+kyAcG5tfal9ovIH9enCyAp767R2gy3HkVkghFcz6vfpfVu7Vi1y83Kh1u
qYTNacVUnyOacl1H+NGXLl0Cz+7YsaNWboJUDAoKgniEBoTr3XQpgVOfnJwMiQq9WWtKcP7AgQMg
KKQWSQoNDY2IiMB3SEhIQkJCXFwcGDk+Pj4yMvLUqVOgVLCzt7c3DpTKhnZhN5RekVAKDjntmE2i
WGfyzi5dEC/rXlt3ajsP3qchItfLyjw1o1SGuqDyd+MmvOIAGtYx0ynRGGlth9GhomYQkDqd7urV
q2A32sXrVoCcBLVB24rF4pKSkrpnIUH5Qv9CiopEIplMBgI1GAxmsxmhNBoNTuKOYMaTJ09azzSz
HuTg7u4O9szMzCwrK2vBZ9FQegXTU3BfX1/HqWFKvSksr2zluSJa6sLm08VbMCNG6pqhTCvSGUys
P5XhNtDnXC2YN4YbgCVe/FWFON+RE0xrbOOTJNU2203BieDNvLw8qFroQQhAmw4EG0D27t+/Hzzo
aQEEJlzhvXv31k3TdcTm7+9/9uxZiUTiOOt+NZReobcpOA5atsvpvEx7KEv1W6risxBRrW+oBgbm
b7ygiBeXs1f+DPZShrFC6fkHr1/76gFYw7uUxZ50/GQXlBlpZvaXEeIWrOsQmyDcjIyM2NhYLy+v
275TugPAaYYoxi0cc0BuQ+l1165dFDwyMrLpUqk2mHWmSrHGCBf+jKT88DUViHJxQuG0aMmnwaKu
PoK27rWP9u/pm7vwTCFoV1jGfH+GetpsflbeFx9yolWy5GtjkcRZEj83TkpNwHF21oFfD38f2jYp
KQnyFoLMywIPCyBj4QpDgR49ejQ8PBw6NM2ClJSUuLg40EtwcHBERER0dDRO8ni8oqIix1/npKH0
Cv1Pwc+cOdPw1GiN5gtFumBBmXd26d4rJQviZf0C8l+3Y90mm4WpRp0U7biktH//dwaGm3rVrMtI
KQ32Fi/+ioa1VonWT95SRx53rnxklxioBxYtiHlrzkqvv/76KwW/gy0nCzRGMKnLxeLvEwrHhxcM
ChK2q+dSTGDSzt6CAYH5K84VHcxUxYjK04t0agPb9YuhHqiQitSRgSU+e2W/LBAM78zJVRoeIFu3
wFSicMZ8cT2w8N7YU3ZKet26dSsFj4qKsud6GNIMhf6nZPl7t1gPpdZR/dOiJbNjpSuTiramFx+4
WrWW89VifYW5Us9eTDHUH2aNuiw6WLH7V+nKb4RTh+b0bvMXSr35Ec0epb3kxPtUizVGWrEX+oM1
FKek1/Xr11PwhISEuq+UlRs3pxX3P177mNOOh3ndfATjwgq2pBcH8tVheWXx4vIcleFu2oKJoSWd
fr2uPClWsXej9Ke5gmFv18qntDtW4a+LNfHhRvndsDz86iQ5ta8TgjJWB5yPXtetW1d336vRXJmp
1H93WmazBnOfgKqZpr45pRflunIj41CGxudTzdlopZer7OfvhNOH8QZ0rJVPBZ92FS/8X8nR/dq0
s1XDrSrvqqpYpDW9alnjDc4iUyrOR6/79++n4AEBATZ/wXOHGrXZWfqdo7mLEwpzStiqfQyND/21
jJKj+6TLZ+R92Yd7MVXzkz+hH2jXkM+7cQ9sjOpysXoS17rzbJkrZ6PXI0eO3GpSrKjM2Pqv+ywd
46kr2FtMhsZVqQZ9WexJSFTBsM634lP+4DcK5n5efOB3bfo5XH9PlQ+aHM1XhPvIFiN2Mnp1cXGh
4LGxsTX/jRZp/HJK8V3MFkZhaExOrRo+pfTYLl3xDX/Q6zZkyuv3cv6E/nD5Fbs3lKfEt8jWLA6F
E4Iybh8N9jbYmeh19erVFPzChQusNBmaFEZFYVlcqGz9wtwR3Wtx+ScNlG9fUxYVZNZqWFnZYE6c
jBh29+USVhpOQ6/cuNfw8HBWmgyNr1NNJkNudvH+zcLJg2t1/IXTPlG4rtdfZ3ua1oXCciO942rv
wYvMZ+bHSejVx8eHgru5ubHSZGgEPjXodZdT1acC5dt/Es38jFatrjl8quj35eXnYswaNSsxO3Hk
emn1vnCHeEkyLSsQJ6BXf39/Cn7o0CFWmgz1hbm8DOLUwL+mjjxeuOF70exRvI9fqVWl4rxk2RTl
EVf9tQxWbndit27c2HhBQQz7uic/JLfMVMn6YR2bXs+fP0/Bly9fzkqToQ5USISqQE/F3o2FG5eK
vhnBH/Q6r2/7W73rr6bUAR1BuLKfvwP5ttQG13cZfj4v5wbzfHQsL15czsrEcen1+vXrFHzBggWs
NBmqhZLRqLuapjkdVuKzV75jjXjRhPyvPq6bSbnFU8QL/yffsVYd6lchymUl2RT4I0NJq73QZ368
jMcGbDkmvSoUCgo+a9YsVpqOznomk7mstEIq0mWklCefrpqnVJBnKlFUCPl1jwY1FklLT3gVH9yq
9NguWzMPDCj+fpLkx+mS5TMkS76WrvxGumImDoRTh+ZPGpg75n1uVf9bfnq3Fk4ZUjB/PGKTb/+p
2G1LaYhPhUjAnlHzIK1It+hMofUKSv+LEGeyFeYcjV61Wi0FHzNmjNNxjamkGBJJe+l8+bkYTeIp
fIN3DPwso1yGb1NxEQ4qKwzm8rKadFO1xtKR3fI/1oFlQCt54z8STh9WRTpLpxRt+qF4/2bl4Z0l
fgfU4f5KL1dVgIfq+CH6lMWe1Kafw30Rf32nYJo1VT2VVeSYeqYsJqQ8Oa4sLrQ02Fvp+UfJ0f24
IzgLCYD6k29brdj9K+5b7LYV6ZH+NLdg3lj+4NdvOfB+6JtIvGzttyBKXFzsvg2xwYuXrp6TN/YD
e4RnXZp0WGdEIlk2FenR52QaC8UOPl0qJiZmzZo1LbhCc25u7ogRI+Li4pr0LklS7ZAgofWkyo+P
569PUbBJ6o5Cr4WFhRR83Lhxf3UPK2TrF6JxlsUEQyVpEiLBAvKdP6PlF21ZgfPixV8VfPcFmlzB
t2PFC/4n+XEaPtKVs6CMcIAzOI/LCn9dXHzgd/WpQF3mRYgs8JFZozZKRWil2vQkTXyEJj4cjiQ+
Ss9dCCicPFi84EuErfrMG5M7sgead96Y90WzR4lmfCqaNQIXiGYMF3496PYKy5p9hnQChyKs4LNu
dZBUvXlneGeQWsnRfWXRwfhQRpCp8vOnq3J0xBXFhUIQzfw0f2J/pCHno7aNdeuGfPgDX+P1aUtb
Tv3ZT9qnLbKT/9XHeV9+RA6+KuBQ+fl4Z1wbZfbs2ajS+/fvb6kE0FIezdDhZq68cTKvbFxYgTXJ
vnqYPyFCvOJc0Smhhqdqqs09NBXmnBLDJYUed/ntgmJatGRunNQ9UyXRGJX6es9CMlVWRagz3nla
1QazrNx4rcSA9Oy+XOJysfhodikUfUPmYTSUXlNSUij46tWrrc/rrqY5AhE0z0fwaVdwCq9vu5w+
LUN/uaN65I3vnT+hP7dtSW1v3jvCPMh+nq/YuxFqF85+ifcexe4NRVtXFv62pGpUae/WVenHt/Vs
/Y/a5I56V7JsiirQEzJfd+UCLX5a3ZlgNlXqdZUm410mOiZOnIgqvWzZspZKwNKlS5uzww0E6nW9
9MsIca1L17/pxR8bVvBTsvyEoCxZps0treCXVlyU60BGcq2pSGsSlVXgWGA5f0ZcHpZXtV4oPh5Z
qk0XFEsSChH8t1TFoSzVLynyr09JevrmvuHFb327lUg7HuZ9ckK4NLHQn6fGrd0yqygP8YD1Ugt1
kULN72nF8+Jkw4NFnbz4NgubfBoignnAHQP56hhReZbSkFakixeX4+fBTNUfGcodl5Srkoq+iZGO
DhUNDMyvIzE/ni1qMXrNyMig4Bs3bvyr720u2rrKprULhnfJnzQQRAAlCOkKXQZPVrJ0snDaJ6JZ
I+Fci74ZUTB/vHjRhKruvJWzIDlxveDTLrftyKuhCruAL6oinDVSNGc0fXBTfBfMHQM3GcfSVbNw
IzAL3GpwjTrMv8R3f7HbFvn2n0A6kMwK1/WF6xdJV8+Gv5z/9UDECelaFcmskXC3ITlBN0ZpQdUb
7ZuuLogGvAOvX59zFZ57+bmY8qRYXKa9mAQBDglfFhuiCvLCjSDhIcwti422vi178gZ0hCqEJIS3
rjrmXhZ1QpMYpb2QiLtUiPNBcH9pKtryClGuUVagu5yKu+syUkwqZVX/hh0dEVVcaaxAWI2ln6RC
Krr7qNMewBVDlZ4zZ05LJQC6FQmYOnVqM98XUvXXVMXHx+u9RUjDP6DIt44Imvmm9nwashh5ow3M
Wrt2bS3N1WgEBeivZcCdNykK79S2mo0yMRGWOtxfHXGsilmuZxjyeSalvIrglHJcUyHkV+TznW6C
edUo+kvnq3o5EiLBhvCmS4O9S0N98dPAzzJryu61JUgcASNHjkSVnj17dkslYObMmUgAGmcLFgJU
apCgbOMFxdga697dwaeNe86YsIKZMVKIWQjShWeqvqGIfz4vP3C1BAKzRG8ymivD8zVQuNCVs2Kl
bd1vH+1rnvyPjuXRmjVI5Pt+uXPjZNOiJYOChO1vt/VJW3dej6O5Q4KESNXOS0oI24h8TZRIE1tQ
nijRQn3zVIY8dUWJ3txi9CqXy//+978jeJ8+fdzd3ePi4nJycnQ6Xc0rjUZjbGzsjh07Vq1atXz5
8oMHD/pa4OPj4+/vf/z48eTkZJB1Xl6eSqXS6205RSqVJiYmBgYG7tq1a/369T/++CNcJ6S5Z8+e
77zzTvv27V966aXWrVvj56RJk9atWxccHHzmzJnLly/LZLKSkhIEv3LlCmIICQnx9PT84YcfEMO3
3347efLkxYsXI0l79uzZv3+/h4eHl5dXUFAQ0oMrd+/evXr1alw8ZcoUKBp4i0j/sWPH8C/t2057
sZ08eRIXx8fHh4WF/fHHHxs2bNi7d++2bdt+++23TZs24YyLi8uBAwdCQ0NxGa65evVqfn6+UChE
ZpOSklJTUxMSEpDaS5cuZdzE2bNnURoFBQV8Pl+jqX0Wo8FgyM3NRZmjABHzUQv8/PyQETgTKGT4
mAsXLkSyUSY4QKpiYmKQANpFzs3N7dChQ8hFeHg4iguZ3bx5M8oBSf31119/+eUXBMQBFfVXX32F
0v7iiy8QJzKIgsJNT58+fcaCa9euIRl4pqgDyPXvv/+OXONJ4flSyZyxArIpEAiKiorEYjEeyoUL
F5Akb29vpBwBkQYERNpQXNHR0fhGJPg+deoUigtpO3z4MAof1yALOEClKi8vpxJDRpAwJGPr1q1I
OR4BKgwlAP/iplqt7Wwl1FWETU9PV6v/nAD26aefokrPmDHDzlaABCBtiIcyiDtevHgRd8STRREh
8SjnLVu2IHcoOjwaZAEZQSJxEulcsmQJquK0adMgV+fOnbt9+/ZnnnkGCfjoo4+owqB6oCiQUxRd
cXHxHbx/Rn1LS0tDDHhqaHFIElKIp4YI0TTQRpRKJa6pteVaejYrz0m1cNJdM5RrkuW/XVBsSlPA
swYxgQeXJRZuSFXAGV8SJ9x3peQYT+2eqdp9WQl2zlTqC8qMxTqTtv6vy3BTOPVnpVoQHz7BgjKw
sERjTJJpTwjKQMTZJQauX1RfY46E2mDOUOgvK/RRQg3FAPZEWMSAv2A8xJom98waSq/AQw899Lca
eP311yEB+vfvj0qDltmpUydiYTvxj3/848knn0TMDz/8MI5rvcU9hfvvv/+pp56CCenRo8f777//
6quvPv74439j+Nvf/u///s/+i++7775nn322e/fuMMn9+vUbP378sGHD6K+OHTviPCoqypnqG2rs
f//73yeeeOJf//rX4xb885//fOyxx6h+vvjii3gcr732Wtu2bR944IHmzDKSBCXRoUOHN95448MP
PxwwYMD06dPBy7CCX3/9NRry8OHDYSHefvvtf//7388991y9In/00UfReN98803kDkUEgpgwYQKE
PGwtvudbAMsN8wk7Om/ePNyoV69e7dq1QxVF8EceeQSl9/zzz8M2DBw4EDEgbUgYwkLHQPesWbPm
yJEjmZmZFRUVCoVCIpGcOHFixYoVuFHXrl07d+6Mp9C3b1+EgqyB7YGW4m4N0447rly5kiwErE52
dvb169dheyBxoC1w/YIFC1AIoB3IgkWLFuF6GK3evXt36dIFjxgJw7NDsSB5Y8aMAUehNUF2IBKo
LhhUJGPEiBFDhw4dMmQIko27Q3tBCrQYvULRtGDrevrpp1GBUCG6deuGEkTxNdGN0DJxI9C9M3JQ
Q7gY/AWiQaVs06YN2h4jdIZ7DfD8WoxeAbgV8DdB/z///DNMx6BBg/7zn/9Yp69Vq1YwCDB6cN9g
cGB24PXAy4Ydg3/nagGMIewVLMbnn38OawNTBk+/vwWwxjAsiHznzp3wbqKiouA4w9eDU1ZrfwUc
SXjxuBjlArcL8hmpgg2EhYf9hP8LhxSeEVKClMNwwVuH14z0wN8k5xoOGi6DxwoXD04fbGy1x6FW
k/eHNMDVOnfuHPxK+NdIP/w+BIFdRdrg0OEy/Iv8RkZGwnFGEKQcF8CrXWEBcjpz5kzYW/iMcBgh
B3ASJhdnUFA4xjdJEphZlAA0Agw7NAXkEmwJigUP77vvvkNAJBuu/R4LkAtYctwaHh9Sq1KpKi1u
U0FBARKMZMBfxjXIJlxXZI3H4yG10AIIgtJAdlJSUkQiEbIMcQG7beMwIsKsrCwUIDxu6AXcmvoT
EGFiYiIixL9w+VGqiAoPmnpO8H3cArjJuBj5RTbxDUceMVCqUBOQBj6fD78VeiTkJlCG9C9qiK+v
L9eFgthQdNu2bYOXjbsjHhQ+UoW/EAP1meAJQpvgRrhm4sSJo0aNQtV6yQJoQOsqCmUK3YqyRTnj
AGegcyFyIQ+hwtA6IKlQ/mPHjoUmwtNB+iHENm3aBNd+0qRJeFioYHPmzIF6gs7CeepucnFxwRP3
8PCgHpKIiAiUNjKFKooqRF0lKC5URRQ4PPS8vDyUAJ44EgBhhXyhuFDzIaNQpVGZUZOhvKAkIPSQ
CzQ0ko0cIKUhAkh6v/vuu7gYCh2hIB5RCIgNiaHKhtggzVDBkGDqPoIURcxUPh988AHaLL5RJtDv
dfhVcDRffvlllBVKCbdDAcLHQpOH9LHf70SCkRd4AzbPpbG0EXL03nvv9enTh54j7kX+NDQTEg/O
QfVAEVE/GK6Bd0IX4Pvw4cMtSa+3fillRjNDO2dvSxgcEGVlZTAhwcHBMDyoqNx5uNst+2YJbIgE
wEu1s5Xl5uaCoGUWVDbNlI3S0lIIF2ga+PUwnLBesKYotFt11xIqKirEYrFQKMQ3ihq2GQYbVhzm
dvTo0dBMU6ZMgX3Cz8LCP199QxYUFxfDzJMdJRkEHYC7w/AnJyfDSMBorV69erEFsGSHLCBVgceK
b6gHyCZcj5uiiGp9dYFM1ZF4vV6PeG715qPl6ZWBwRkBdeMI9MqapLOD0SsDgy3g4aJFjBo1qqUS
QAOzevfuzZ4Fo1cGhrsKaAst2yK2bduGBDz//PPsWTB6ZWC4C+l12LBhLZUAo9Ho4uISGRnJngWj
VwaGuwq7d+9u1aqVl5cXKwoGRq8MDAwMjF4ZGBgYGL0yMDAwWKO4uNjPz89otGu2vtoCRq+MXhnq
B7lcrlLVsjhZVlZWu3btNm3adMMypLyk5C/7D1ZWVgYEBMyZMwfVbs2aNVevXqXztLwLwkZGRkZF
ReXk5DT62HhEuHPnznfeeefFF19csWIFDYbX6/W4r0gkys7Ojo6ORpJwayQgMDAwLi4OiVcqlTNm
zOjWrdsTTzzRqlWr9957b8+ePRShQCDYsWMHAtqfBhTIwYMHp0+fPnXqVMRTcyZ7Xl7e5s2bf/rp
p4KCgpZ9vt9++214eHjNMuzXrx+4QiKRXLp0adGiRYMHD167dq3B8Jetuvh8/oYNG3r06EHEgvrg
6up6wzKJY/Xq1cuWLVuwYMH69etTU1NR8ihGRq8MDH+hieeff75r1642k5JBVc8999x9993n7e0N
hvrnP/+J42HDhpGEUSgUvXr1spmq+Pnnn5eWlo4ePdpmZZYOHTocP368EdMMlqSZr61bt8bB2LFj
v/jii7qXYnnqqacOHz6MA+T0ww8/7NSp0yOPPIKfR48e3bVrF4XF98yZM+ue/MNh0KBBlOsHH3yQ
wo4bN45j0vT0dCSPWyPi4sWLHFvRWmJBQUEmU9Uy/v7+/j179sQ14P1p06Y1xQADRL5w4cKlS5f+
+OOPnKlDkpC2kSNHHjlyhLJAQGXgrA7Qpk0bmmw6ceJEPFlYJmQZ9WHu3Lm1zoXNzc1l9MrA8Cdo
yT58c20PLZ+WSZ0/fz7o5rHHHgN9dOnShYbHw52kpYHBthkZGdevX4fCfemll3Dm7bffplH0AwYM
WL58OY47d+6MBgnCBU03SmqhkhAh6jqIHimhhSLBHSBZ3BesByEGUYljKMf9+/d7enriADrL19cX
JyGrKR7or1dffRUSGFT71ltv+fj4kJobOnSoPcl4+OGHwYaQzIjH3d2dJi+A7qVSKUoPpUTk6+Li
QoWGsoXOtSYjBNFqtbRiFpgLREbz4mE8iHkbCw899NBXX31FdA+GpZN79+7FT5gWkO+TTz4JmY/y
/P7771977TXIVTg0eKBQo//5z3+4IAAcAmQKKQfDIFRycjK8lpMnT0LJgnDhAdQ6Y7WJQItdnD17
1s7+jbuKXpHnmJiYn3/+GU4ZozBHBgj0lVdeQbWBM3vDMu0d7iR+gk/hKnp5eeEYyhTyFg41jtGQ
NBoNDoYPH85FApZ59913cbJv3774tvZGT5w4Qctw1LpqT30BvYn4MzMzbc4j2aCnnTt3Uq8irklM
TLS+ICwsDCfhCHNnQGrQZQi1bt06OuPm5mat3eoASsxmx8+tW7ci/smTJyMSKkxwFoiyT58+yD4U
K06C0H/44QfwLM2UnT17NviL2ycmPz///fffJ8PQiM/3hRdeoOUEifFJIIMK8RMWAt9opDZBoL5x
Pi4u7h0LrP8C/4JYIYcRVc2lnJsT3FJTTz/9NLgP3kmTameHoFfUbDg+sJbIMyXmzJkzjMIcHBCh
UDfQmCCvUaNGERFQf+KUKVPw88CBAziGpaQlU8FlICZQDBdDaGhoq1atQFWk0eh6G4F8x4sVWQNq
FFHt27cPzIX0WFM20kZ7asFJxzXwYa0DwgvGSQQnhQVqePHFF/v37w9t/sYbb3zxxRf16sGAgoPe
tDmJeCAVoVWfeeYZjnq2b99OjvOzzz4LI8R1fSL4U089BfLt0KEDF8Ply5fJgDXiwwUhdu/efcWK
FdyKd+BxMjakstFakXdaXxXWBSmnfaGg/ckPsF4JBeqeguCby06LAEbIpnfiwQcfhLc0fvx4POVG
seUtT6/QPtHR0TDO0AJt27at2SPTgnsg38uQSCR5eXlXrlw5depUQEAA3EBQEtxYf39/aJOa1yck
JIA3yT+F0qSl0eCCkNfPvfb54IMP8BMeeo8ePe6//340M9Rmzhdes2aNn59fzb2tSALbv2VAHVCp
VNQhSJ2n8KzT0tLoL6SHhBjRK3gTNmPLli307x9//EEVErV0/vz5EHQ49vb2RrFwK/8OGzYM1GNP
Mki+2eyYQGRks4KMVCqlkzabxZLJAa2jzCkeZISKNyIiohFrwn//+99u3bpRbwBSiGT36tVLLBZT
Xwr1X1vj7bffhmWlpVHXr19vLflhmdq1aweCXr16NXU1bNu2jXurWRPIl84CUDbitKYCULPBAtQx
XIDHimMcCIVCVDaYGdTe8+fPo1qeO3cuNTUV3+AZ1GTUYVdXV6jvjRs31tHhjmfas2dPZOG3336D
G1Gv95YtT69qtRo5tGfnguTk5NjY2ODgYKgJWvISz2zp0qXffPMN3CI8YBhwWij+zTffhPHBAVRA
+/btYdU7WwD3BCXVtWtXSIbBgwfDzYHogBOKgDjGAa0kiwO0mY8//hhxwm/FAU7C2OInjikULgAv
IMJ3Leh8E3CEcQvuJ6ojqiDuiCtpOU66uKcFdBJAAnCjsWPHjhw5Eu4zdN+IESNwgDPwHMeNG0eL
qI+4CaQQ8VCECEtxwuPGGegLHKN14RrKFK5HggdZAbHhJEWIe1HRUUbogLY/oN1H6gBKu9ZnSm0J
zQ/Vkc7AxyciQzZxO2SNWiMq/YQJE2zeHaHeE0fg54cfflhTaHz//feNZTlQf1A4sOhQi6gwaJlo
wEg5jXNA5SSfEeUJc0KhVq5cSWkAO1A2Fy9ebN2lC08ZJ2Et7EkDba+N9m99knYtrLnvN7WRmJgY
65Oo/Di5aNEifIMBudVUJ06c2LhjLR5//HE8jp07dyLykJAQ2joX7RFiH0wKxkQLxbM7e/bs9evX
qdeCXgPCdlI2OQc0MTGRUgipyz162Ila77tkyRKbl5z/+Mc/XnjhBTj1zbwlBD3uO96noAXolXyE
xgJt6oD2gKqAA7RVOG6ocHg8JFK4V5ONVda4Uc1nDPlDbwBwAa3tjzO4Ka6kWyMxOIBhxIHNysf2
rzSMfOH7vpuwXjvZ+qedscEhoji5M2BA2CHIIjRgVHE4p25ubmghAoEAsg7cdKtlPWH/bCoPUUBN
QKWCp3CApkJNCAaM4z78hKXkIkGjRakiYXA5G70eQnviduB0iCDcAlLlhmU4BE6CAqyvXLVqFU4a
LYAc4/F4NWNDoUGd2XNf8Dj1TlqfBItR+Vj3S5SUlNBJuBHWF8M24CSccRrwRBUMFQBpsBkd1UDg
AYEBN2/eTAmGPETVxQOCuoddt7kYF1DRPfroo9DylE2OXidPnoyf8fHxHh4eOEBpR0ZGIsJa74un
gHKgNdrxmBAnjCJqFNgZB8uXL//ll19gdyGE165di3+XLVsG5wNOxj4LQPG0mRit1o9jGHvYMz6f
n5OTAycDnhl4o+7dT6Bdpk6dCg8mNDTUmdQr8o/60bFjR+tRHbViyJAhKEqU44YNGyB4jxw5cvLk
yUQL0PAUCkW9eg/gU5ArUVpaqtFoVBagwZAbUn4T+AtX0r/QMvgLZyBw6K9GLAe5XE7DLWEbwSw4
oJWG8Y0aADrDGdQ/nKG1gW/7Upg8KUo5XYzcUS5o3wFaaBkx2wxEbTiSkpLwvKCduTP0Luv48eOo
0IWFhfCwSM7A84BrRu4hqju9GQOJc74whD/FgCzQgtY2rnFjgcYDQE2jFoFHqCsA5YyTXLeAtTa3
6S5EaVufgVsALWzPfVGlbd6w4YnAQJKds6ZXUoIA2MQ6BrQdyAgS+6AbVEs4efQCqlF6UTgvkzor
6N0ave4jyWz9mDiQLAWp4XvSpEmkeYle8fRBZyR4ya2xKeFmBtVAa8DYo+hATTAA1kt6O3HfK2on
VMnu3bvBttxYP2vgubKeUKcAHiXUEyffQFggCzgT1r4qNTy0T29vb440wSYICLIAxdBbe+51M/nL
8EUay6rBwFj3o0GXodYhchAlDYS6YZnaQIIaRv2HH37ANyw6rDtO2oxjgW7q0aMHGXiYKzglY8eO
tScZ9AbPevMO4iwi8QkTJnCvsEBh5JcMHjyYuxiij7xv0rZoO5w1ggSGnWisIfpkaeDyo4VyIzqg
3MlP6tChAxIAKUqGHHa9ffv2//rXvyBW8O+UKVNQejiAToSBR0YgsSmG06dPt3jTxvMlhmnTpg3M
PIxTk45kaPmRA8geDJ2rqyvsHrerJR4tYy6nAKQ9nhcaGP1MTk6uuYsJ8cL48eOpuYJN6Dy9Sp43
bx7aM3zPt956C4KXRh088cQTjdgtAD315JNPwteDPCH9Ql26165do2kCNyyzsGxs/NChQ4kpbFg+
KCgIJ0F8q1atglRHylNTU+1JxqBBg8DF3IQxiHpwaPfu3WnQK2gIWhXkC2+Xxj/1798fJ+F6wxdB
4tE64H3TpjW4qXUhUxfN1q1bG6W4UEqIDcbA3d2d+l7pPM0KefbZZ2NiYnAAlxwtF+WAYxQFLoCx
JM+aRm6BiK0fNw2PmzNnDvxRlD8e9OTJk6lnptlw8ODBiRMnwhtunvFhDjetAA9s3Lhxx44dY8zl
FCC/Hhxh3b0I0WfTXCF8OnXqRL0EcMTofEREBH5C7UIZWfMaqNB6qGmjyDFq6gRoT3rtTr0Ely9f
Js144MCB9PR0cC6YHXYC4svLy+uzzz6rGSFMAjesZ9euXXYmAxoTKs/f33/u3Lm0Yd+rr74Ki4K/
hEIh1DqXQngDUIjnzp2jbjTqqsZxcHDwDcsmUaBd6warUChwhnzwhhcXPRdwK9Eo14uKxwS/BEYC
9sY6tdDdNEq/bdu2SAMN0qC3IzQsmkBkbQM8/bp363JqsFlbDA0Cn88nj5V+0kxzuIE2l40cOXLW
rFlgIvwbEBBAJ8FxNMx7y5Yt9NIPLAzt08DXtbUCccJDmj59Orx+To2mpaXBT7JzSqsNQIvwf8Vi
sf1BFi5caN3lB+fUWheDIl1cXKBJlyxZwnUggO5HjRrVr18/yD3wPtfXUbNjmt56cRPMGoKKigo/
Pz96V2YTIQwV6T65XL5mzZrly5eDfLmOIKR/+/btSOfvv/+OZ40cWYdFVEOGDIFDAPGE0qMNB+0c
08boleFeBGTL3r17OUKE6jxx4kQdHUGRkZHWCguuLpqoWq2Gb3716lVo4bu7uPbs2QMXPiEhoSGT
MkFncG9tyAtsBW3bRNvEMjB6ZWBgYGD0ysDAwMDolYGBgYGB0SsDAwMDo1cGBgYGRq8MDAwMDIxe
GZobzbnaPAMDo1cGBgYGRq+MXhkYGBgYvTIwMDAwemVgYGBg9MrolYGBgYHRKwMDAwOjVwYGBgZG
r4xeGRgYGBi9MjAwMDB6ZWBgYGD0yuiVgYGBgdErAwMDA6NXBgYGBkavDAyOivLyclYIDIxeGRgY
GBgYvTIwMDAwemVgYGBg9MrAwMDA6PUmvT711FO9GBgYGBgaCc8880wVtw4bNuwlBgYGBoZGxdCh
Q/8f50+l/lmW+7QAAAAASUVORK5CYII=
"></img>
</div>
</div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>With the new <code>XKCDify</code> function, this is relatively easy to replicate. The results
are not exactly identical, but I think it definitely gets the point across!</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[7]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="c"># Some helper functions</span>
<span class="k">def</span> <span class="nf">norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">x0</span><span class="p">,</span> <span class="n">sigma</span><span class="p">):</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="mf">0.5</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">x0</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">/</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">sigmoid</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">x0</span><span class="p">,</span> <span class="n">alpha</span><span class="p">):</span>
<span class="k">return</span> <span class="mf">1.</span> <span class="o">/</span> <span class="p">(</span><span class="mf">1.</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">x0</span><span class="p">)</span> <span class="o">/</span> <span class="n">alpha</span><span class="p">))</span>
<span class="c"># define the curves</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span>
<span class="n">y1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">))</span> <span class="o">+</span> <span class="mf">0.2</span> <span class="o">*</span> <span class="p">(</span><span class="mf">1.5</span> <span class="o">-</span> <span class="n">sigmoid</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">))</span>
<span class="n">y2</span> <span class="o">=</span> <span class="mf">0.2</span> <span class="o">*</span> <span class="n">norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">)</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">))</span> <span class="o">+</span> <span class="mf">0.1</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">sigmoid</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mf">0.75</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">))</span>
<span class="n">y3</span> <span class="o">=</span> <span class="mf">0.05</span> <span class="o">+</span> <span class="mf">1.4</span> <span class="o">*</span> <span class="n">norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mf">0.85</span><span class="p">,</span> <span class="mf">0.08</span><span class="p">)</span>
<span class="n">y3</span><span class="p">[</span><span class="n">x</span> <span class="o">&gt;</span> <span class="mf">0.85</span><span class="p">]</span> <span class="o">=</span> <span class="mf">0.05</span> <span class="o">+</span> <span class="mf">1.4</span> <span class="o">*</span> <span class="n">norm</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="n">x</span> <span class="o">&gt;</span> <span class="mf">0.85</span><span class="p">],</span> <span class="mf">0.85</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">)</span>
<span class="c"># draw the curves</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">pl</span><span class="o">.</span><span class="n">axes</span><span class="p">()</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y1</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="s">&#39;gray&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y2</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="s">&#39;blue&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y3</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="s">&#39;red&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mf">0.3</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.1</span><span class="p">,</span> <span class="s">&quot;Yard&quot;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.1</span><span class="p">,</span> <span class="s">&quot;Steps&quot;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mf">0.7</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.1</span><span class="p">,</span> <span class="s">&quot;Door&quot;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.1</span><span class="p">,</span> <span class="s">&quot;Inside&quot;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">1.1</span><span class="p">,</span> <span class="s">&quot;fear that</span><span class="se">\n</span><span class="s">there&#39;s</span><span class="se">\n</span><span class="s">something</span><span class="se">\n</span><span class="s">behind me&quot;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">],</span> <span class="s">&#39;-k&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mf">0.25</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="s">&quot;forward</span><span class="se">\n</span><span class="s">speed&quot;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mf">0.32</span><span class="p">,</span> <span class="mf">0.35</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.75</span><span class="p">,</span> <span class="mf">0.35</span><span class="p">],</span> <span class="s">&#39;-k&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">,</span> <span class="s">&quot;embarrassment&quot;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.55</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">],</span> <span class="s">&#39;-k&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s">&quot;Walking back to my</span><span class="se">\n</span><span class="s">front door at night:&quot;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">1.5</span><span class="p">)</span>
<span class="c"># modify all the axes elements in-place</span>
<span class="n">XKCDify</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">expand_axes</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[7]:</div>
<div class="output_subarea output_pyout">
<pre>&lt;matplotlib.axes.AxesSubplot at 0x2fef210&gt;</pre>
</div>
</div>
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYVMfXx793KUsvCkgRBRTEgiY27GJDwQK2aDSK7WeM
NRpNTExiNORVkxg1iTEmigWN2EVBAQsiVixRjA0rIlWQqnTO+8fl3uzCIgssLJr5PM8+u3vv3Jkz
F93vnZkz53BERGAwGAwGg1FrSNRtAIPBYDAYbztMbBkMBoPBqGWY2DIYDAaDUcswsWUwGAwGo5Zh
YstgMBgMRi3DxJbBqIS0tDR1m8BgMN5wmNgy6pzAwEBoa2vD3t4e8fHx5c7/8ccf+PLLL9VgmTxp
aWk4ceIEzM3N4enpiVevXtVKO+vXr4eGhgY6dOiA7OzsWmnjTSAnJwfe3t44e/asuk1hMFQPMRi1
RHR0NJmZmdGNGzfEYxEREaSjo0PGxsbEcRxNnDhR7prIyEjiOI6srKyoqKhIYb2Ojo40atSoCtst
Li6mDh06kLOzMxERTZo0iezt7Sk/P1+u3OPHj4njOOrTp4947MqVK9SmTRviOE589e3blzQ1Nenh
w4dK9z0nJ4cWL14sV4+bmxs9fvxYrlxAQABpaGiI9+Prr79WWN+FCxeobdu2xHEc2dra0m+//ab0
/agNgoKCyN7eXuxbo0aN6P79+0pfHxkZST4+PlRYWCgeGz9+PHEcR9OnTyciog8//JA2b96sctsZ
DHXAxJZRLW7evElXrlyptJy1tTUtW7aMiIhKSkqoVatW1Lt3b8rJyaHZs2cTx3F08eJFsfzSpUuJ
4zj63//+V2GdHMeRRCKhly9f0sOHD6lBgwa0cOFC8XxKSgppaGiQRCIhIqIxY8YQx3E0Z84cuXoE
sZ08eTIRER07doy0tbVJS0uLhgwZQgcPHqSTJ0/Sixcv6NKlS0rdlxs3blDTpk3ps88+IwMDA/r4
448pNDSUNm7cSB06dCBbW1uKiYkhIqLs7GwyNzensWPHUm5uLnl5eZGWlhbFxcXJ1XnmzBkyNDQk
XV1dmj17Nv3yyy/UrVs3pe9HZTx//pwSExMrfCUlJcmVj4+PJ6lUShKJhNasWUMffvghaWtrk4OD
Q7myFbFmzRriOI7GjBlDRERHjhwhDQ0N0tbWJhsbG8rLy6MlS5aQRCKhO3fuyF27e/duunXrltL9
YzDqA0xsGdXim2++oZYtW1Zazs7OjmbOnElEROnp6cRxnDgqS01NJalUSu+9955Y3sfHhziOI19f
3wrr5DhOFJtx48YRx3H0+++/y5Xp3LlzObHlOI6ioqLEMoLYCvY5ODiQmZkZnTlzRplboJDHjx+T
trY2xcbGlju3ZcsW4jiOPv74YyIi+vvvv4njODp69CgR8Q8wHMfRp59+Kl4TExNDenp6ZGBgQCdO
nFDYpjL3oyKKi4vJxsaGOI4jbW1t0tDQkBuNC6/Lly+L1/Tr149MTExo3bp14rGDBw+StrY29ezZ
U6l2BbHV1tamqKgoateuHc2dO5cCAgKI4ziKjY2l1NRUMjIyoq+++kq87tGjR6SpqUnh4eFKtcNg
1BeY2DKqxdKlS8nOzq7Sck2bNiUfHx8iItqxYwdxHEdHjhwRzw8fPpzMzMzo1atXREQ0YcIE4jiO
jh8/XmGdHMdRy5YtafXq1cRxHH322Wdy5xMSEsTRHhHRyJEjRdHo06cPFRcXExHR/fv3ieM4Onny
pFjvn3/+KdaTkZFBiYmJlJGRocQd+Rc7OztRbPPz8+nx48c0ceJEatu2LR07dkxs39fXlziOo5s3
bxIRP/Lv2LGjOP1NROTq6koSiYRCQkKqfT8qo7CwkE6ePEkpKSnk7+8vTmeHhoZSaGioOBInIjp3
7ly5v6GA8PeVXTaoiAMHDsiJedOmTSk5OZlOnz4tii0R0ahRo8jY2JgyMzOJiMjb25saNWokN/3M
YLwJMLFlVItly5aRmZkZ5ebmise2bNlCP/30k/j96dOnpKOjI45S58+fTxKJhHJycoiIKDc3V/yB
Fn5cnZ2dieM4ioiIqLBt2R9piURCjx49kjsvjFiNjY2JiEgqldKCBQvEkaWwDrhq1Sq5tuzs7OTW
TFu1aiWOvnr37k3Hjh1T6t7Iiu2AAQNEW+fOnStXbvjw4WRtbU0lJSVExK/zrlixgjiOIyKi8+fP
E8dx5OHh8dr2KrsfVSE8PFzu71GWAQMG0AcffKDwXElJCTVr1oyWLl1aaTvC32jOnDmkoaFBhw4d
IiJ+9sPAwEBsPzk5mfT19Wn16tUUFRVFHMeRn59f9TrHYKgRJraManH37l3S0tISxcnPz0+cgjxw
4AAREXl4eJCzs7O4jte7d2/iOI7CwsLo9OnTcg42wvRukyZNSENDg6KjoytsW1ZYOI4jR0dHOecc
4YdcGFFzHEfbtm0jIqJBgwaRlpYW7d69m2bMmEEcx4nTxtu2bSNNTU1KSEggIqKHDx9SaGgoBQQE
kKOjI7Vr106peyMrtlevXqXQ0FAKDAykJk2a0LRp08RyTZs2JR0dHbp+/TodOnSIzM3NxX4lJyeL
wrdnz57XtlfZ/agKrxPbuLg40tDQkBvplqVdu3ZKOWsJf6OIiAi6evWqeDwzM1NObIn4JQuhj+++
+24Ve8Rg1A+Y2DKqjZubG/n4+NDt27fJ1taWunfvTs7OzuTj40O+vr6ko6NDkZGRYnlBbIXXJ598
QsuWLSOO42jVqlX08OFDcUrxdXAcR6ampnT37l1xitjGxobu3btHRLxHsazjk6zY5uTkUJcuXUQb
jI2N5Ubn3bt3px49eoijTQFfX18yNTVV6r7Iiq0sd+7cIYlEQllZWUTEi62sUK5atYpmzpxJHMfR
7t276f79+6SpqUlTp06t0f2oCq8T29WrV5OXl1eF1x46dIi0tbVfOyshICu2spSdRibip+JtbW2J
4zjasmWL8p1hMOoRTGwZ1WblypXEcRxpaGhQhw4d6NWrV3To0CHiOI709PQoLCxMrnzv3r3Jzs6O
goKCxNFubm4uGRoakre3N12/fl2sb/fu3eW8YoV13XfeeUcUraKiInrvvfeI4zhq27YtEf3rfKNI
bImIHjx4QFKplDiOo/fff1/OxujoaNLW1qYdO3aIx+7du0cmJiY0cuRIpe6LIrEtKCig48ePk1Qq
pby8PCLixbZDhw4UEhIirknGxcXJOVGNHTuWOI4rN4WdlZUl2l7Z/agKrxPbvn370qRJk8odz83N
pR9++IG0tbXphx9+UKqdisS2ovaFh5Ds7Owq9IbBqD9oqnufL+PNZfz48di0aRNKSkrg5+cHXV1d
eHl5YefOnWjatCm6detW7prevXtj8ODB4ncdHR3Y2toiNjYWVlZWMDExQUZGBsaOHVvu2i5duuD8
+fPYvHkzZs2aBW1tbWhoaGDXrl24ffs2bt26hXv37uH8+fMAAC0tLYV2N2vWDLt27cLvv/+ONWvW
yJ1zcXGBn58fpk2bhosXL8Lb2xszZ86EkZER1q5dq/S92bZtG6ysrAAA9+/fx549exAbG4uNGzdC
KpUCADiOw5AhQzBw4EDxOisrKxgaGiI2NhYA8Ouvv+LevXsYOXIkpk+fjpEjRyIlJQUfffQR3n33
XQB47f2IiYmBk5OT0na/DicnJwQEBMDMzAwtWrQAAKSkpODXX39FQUEB1qxZg5kzZypVl76+foV/
HwCQSOTj7QhlDQwMqmk9g6Fm1K32jDebzMxMpTxDCwoKqEmTJnIjTIHPPvuM3nnnHSIiunjxIhkb
G5NEIqEuXbrQp59+SgEBARQYGEi7du2qsP4nT57Q2rVrqbCwUJyuFhyhyo5slWHXrl3UsGFD4jiO
evTo8dp1yrIIjlWyL11dXTp8+LBYJi0tjQwNDRVOuY4ZM4a8vb3F75mZmbR8+XIyMTER6/Pw8Hjt
nlbZ+1EVtm/fXuHINiMjg7766iuysLAQHcfmzJlDBw8erFIbAn379i23VzsxMZE2bNhQrqzwN2Uw
3lSY2DLqhLS0NNLT06PAwMBy5+7du6fSCEjCD/P27duJqHpiS8Tv6QwLC5Nb01UV0dHRJJVKFW6T
OXXqFM2bN0/lbSrDDz/8QC1btqwwepe6cHNzI11dXXWbwWBUG46ISN2jawZDlQwaNAhxcXE4ffo0
zM3NMWrUKMycORN9+/ZVt2mMahIQEABjY2N4eHio2xQGo1owsWW8lvz8fGRnZ8PMzEzdpjAYDMYb
C8v6w6iQ69evo2/fvrCwsEBUVJS6zWG8haSmpqrbBAajTmBiy1BIVFQURo0ahZEjRyIkJAQWFhbq
NolRCQ8fPoSNjQ309PRw4sQJdZtTIUSElJQUbN26FRYWFpg8eTLYBBvjbYeJLUMkKysL3t7esLCw
wPbt23H16lUsWLAA7u7usLOzAwB88cUXkEgkci8PDw+cPn26wnpXrVoFIyMjsXyPHj2Qm5srni8s
LIS2tjaWLFlS7tpvvvkGEokE/v7+Ku1rZGQk7Ozs5PrRpEkT/P333wrLP3/+HEOGDBHLamhoYN26
dRXWHxwcDAcHB7G8paUlHjx4IFfm8uXLMDU1lbPBwcEB69atQ15eXpX6k5SUBHd3d2RmZqKoqAjz
5s2rlfy7y5Ytg5mZGZKTk8udk0gkcHR0BBEhNzcXNjY2cmusp06dgq2tLTQ0NGBpaYkpU6bAzc0N
+/btE/89DBo0CJcuXVLY9vXr11XeHwajzlCjcxajniEEGujatWu5CEpERH/88QdxHEd2dna0evVq
2rx5M61du5aaNWtGHMfRyJEjy+WM3b9/vxjR6M8//6SBAwcSx3E0bNgwMSB/bm6uGAjj7NmzctcL
KfciIiKosLDwtangEhMTKT09vdJ+PnnyhBo0aEBmZmY0depU2rx5M3377bdkaWlJWlpadPr06XLX
DB06lDiOo9GjR9MPP/xATZo0IYlEQgEBAeXKKpOCLikpiRo0aEA6Ojo0a9Ys2rx5M23evJmGDx9O
HMeRtbX1a0NWlmXGjBlkbGxMcXFxtG/fPuI4jlauXCmef/HiRaX3ThkP5M8++4w4jqPhw4eLfz8B
IdEDEdG1a9eI4ziyt7cnIqJNmzaJW6DGjRtHwcHBdP78eUpISJDrp5ubW4URqOzt7SkxMZHy8vIq
7YsQpYvBqC8wsWWIlM3vWpb58+eTpaUlpaamyh0vLCykoKAg4jiOxo8fLx7PzMwkU1NTcnBwkEuJ
tmjRIuI4TkydJogtx3HUpk0buboFsY2KiqLg4GAx/rKurm65vayKrldEWloamZiYlOtnbm4utWnT
hjp06CD30CBkwvHy8hJ/xFNSUqh169YklUrL5VtVJgXdjRs3iOM4uUhVAk+fPqU2bdqQqakpPX/+
vNL+EPExiWVTFXbo0IGsrKzE70KISk1NTdLS0lJ47/bt21dpO4LYKorZzHEceXp6it8tLCzI3t6e
srKyyMTEhOzt7V+bhzY/P5+aNWtWYYpDITLXhg0b5PYvK+rLkCFDKu0Lg1GXMLFliAhi26VLF4XB
EIKDg0lHR4eePn0qHsvKyqLExES6e/cucRxH+vr64qj4u+++IwMDA0pOTi5X17Rp06hBgwZExCdR
l/2hlM3qsmTJEmrcuLH4/dmzZxQeHk7FxcU0YMAAsrCwoIMHD1JoaCiFhYWJGYUq49dff1UYevDm
zZukqalJf//9NxHxmWxatGihMFRjSkoKWVtb0/z588VjyqSgi46OpoKCArK2tqZVq1aJ52VH7sIM
wOsCeQgIIR4/+eQT8di6deuI4zi6ePGieCwyMpJiY2MpMjKSOI6jDz/8UEyjp0xaPCKiTz75RO7B
RgifWFhYKBdIRMhYZG9vT0+ePCGOk0+bmJaWRomJiXLhFx8/fkwNGjSgly9fKmxbNgzmgwcP6Pz5
81RQUEAtW7YkJycnCg4OptDQUDpx4oTcv9+8vDwqKChQqn8MRm3BxJYhsnPnznIjBBsbGzGow8uX
L8nExIS+/fZbOn78uBhoQChrZGREGzduJCJeQBs0aECbNm1S2FZsbCxxHEfh4eG0a9cuURgGDRpE
lpaWFB8fT0RELVu2FKciy+Lj4yNOW1aVrVu3KhRbIn4UKEzB7ty5kwwNDSucnl62bJlc4oSqpKCb
Pn06NW/enNLT02n06NFyWZCE0ZkyIhEYGEgc928S+pKSEnr06FGFwTwqikusDC1atKDRo0fT0aNH
SVtbW5yd2L17t1x7Qozjdu3aUVZWFhkZGck9ROnp6RHHcWRoaEh9+/alq1ev0uPHj8nW1lYsk5ub
S4mJifTs2TNasWIFaWholFtmIOKnniuajfHz8yMDAwNq0qQJpaSkVLm/DIaqYLGRGSLOzs4wMDBA
Tk4OTE1N0aFDB1hZWYlxafX09ODp6YmVK1eipKQEeXl50NLSgp+fH2xsbNCpUyeYmJgAAA4dOgQT
ExNMmjRJYVtGRkYAgFu3bkFfXx8A4Orqil9++QUdOnTAwIEDsWvXLqSlpb02Hi5V04u1pKSkwnOu
rq5o0qQJAMDPzw8ff/yx2C9F/UhISEBmZiays7Nx6tQp3LlzR2FZjuNgYGCAW7duAQBGjRqFP//8
E46OjkhLSwMATJw4EePGjYONjQ1at26tVF+uXbsGgPcgd3R0xPTp00WHtaSkJKXqUJb8/Hy0adMG
Hh4emDJlCnx9fWFubo6srCyxj7J4e3vD0NAQn3zyCRYuXIhx48ZBKpXi8uXLePbsGZ49e4avvvoK
y5cvx7p165CQkIAzZ87AyckJ48aNk3O84zgOtra2VbJXcOzLyspCUVFRjfrOYNQIdas9o37Ru3dv
kkgkFWZXEbL6WFtbE8dxZGZmpnDKeejQobRmzZoK21m0aBGZmJhQVlaWmNRdICIiQhz5cBwnlwNW
Fh8fH3Jzc6tiD3nGjh2rcGRbXFxMTZo0oejoaEpLSyOO4yoc1QrrtsKoqqop6PLy8sjS0pKkUimZ
mZkRx/2bC7gqCOvawmvAgAF04MABkkgkChPP12Rka2dnR8uWLSMioqKiIvLy8pJLE/js2TMiItFJ
Syibl5dHzZo1K5dliYhfUmjfvr043Sz7cnFxodDQUFq4cGGFMZtfN7JlMOoLbOsPQyEVjSb79+8P
ExMTfPjhh1i1ahXS0tLQpk0bJCQkyJU7evQoTE1Ny12flJSEKVOmYP369QgMDIShoWG5Mr169cLi
xYsB8KOZ0aNHq6BH8lS0b/jixYvQ1NREq1atEBwcDAAKR7Xh4eFwc3ODkZERfv75ZwD8dh9Ffc7L
y8OPP/6I9957D9999x169eoFAJBKpRg6dCisra0REREBCwsLjBkzBgEBAVXuj6amJrZs2YJbt24h
LCwMw4cPh5ubG65cuVJrIzoNDQ34+/uL98fV1RU2NjYA+K1VskilUvzyyy/YvXs3zp49Kx4/d+4c
tm/fjj59+ojHJkyYgODgYISEhCAwMBDu7u7w9PSslT4wGHUFm0ZmVAl9fX3o6upCKpVi0aJF0NDQ
wMKFC+Hm5obw8HDxx9bR0RH/93//h/j4eFHY/vnnH/z5559o0qQJgoODRdFRxJIlS/Ds2TM0bNgQ
7u7uKu9H+/bty+0NLikpwXfffYfPPvsMGhoaYmq6YcOGwdPTE5qamiAi/PXXX4iIiMCoUaOwefNm
8cGkOinozM3NIZVK0apVK4SHh6Nv376YMGECSkpKMG7cOKX7Y21tDR8fH7ljLVq0QHh4OF69eiVO
26saQ0NDBAcH44svvsCGDRvE44rSHHp4eMDX1xceHh5YsGABXF1dMXnyZLRq1Qpff/01Xrx4AVtb
W2zbtq1cO2Wnp2Wh1ywlPH36FHv37sWECRNYYBaGelH30JpRv5g6dSq1aNGiwvM3b94kMzMzufRu
a9euJY7jyNHRUdyreffuXZo2bZqYpN3Kyoo+//xz0ctXlrLTyMrSt2/fajtIbdmyRW4aOScnhz79
9FNq06aNmKSeiJ8OdXV1lZuiXblypUKP2eqkoOvUqZPoVEbE3zdra2vS0NCgkydPKtWX999/X+E0
6rFjx4jjODExvcCZM2dUMo38Opo2bUocxynsw7p160hHR0d0AhO81R8/fkx2dnYK60tKSqJ27drR
ixcv5I4XFRWRo6Ojwv5fu3ZN/Pe3fv16ZbrHYNQaTGwZKuHo0aNka2tL165dq/K1W7durZbYtm7d
mnx9fat8HRGRh4cHdezYkf7880+aNGkSaWhoULNmzSgxMbFa9amSJ0+ekJeXl9yWotfRpUsXhWWL
i4upc+fO5dbUAwICyMLCopwIK4O9vX2VxLaiPbO3bt2ikydPygVPiYuLe+2atyJycnKoUaNG5O/v
X+6cEFijY8eOVaqTwagNWNYfGQ4fPowlS5Zg1KhRWLp0qbrN+c/w+PFjjBo1ClevXq2T9jIzM+XW
VjU1NTFz5kx88cUXbKqxEhYuXIhWrVphypQpry3n7OwMCwsLhIaGQldXt46sK8/evXvRrVs3cXmD
wVAXTGxLycvLg4uLCx48eABLS0skJiaq2yRGLUFEWLFiBVq3bg0vLy91m8NgMP4DMLEF/+M7ceJE
7NixQzz26NEj2Nvbq9EqBoPBYLwtsK0/AFasWIEdO3ZAR0dHPLZ161b1GcRgMBiMt4r/vNju378f
S5YsAcdx+Prrr8XjW7dufW2UIQaDwWAwlOU/LbZXr17FhAkTAAArV67EoEGDAADa2tp4+vQpTp06
pU7zGAwGg/GW8J8V2/j4eAwbNgy5ubmYPHkyFi1aJMboFYIU+Pn5qdNEBoPBYLwl/GcjSBkYGMDF
xQXNmjXD77//LgaJB/gwdBzH4cCBA0hPT1cYgo/BYDAYDGX5z45sjY2NERQUhCNHjkBbWxvAvyPa
3Nxc9OvXD/n5+di1a5c6zWQwGAzGW8B/dmQL8MEMjI2Nxe/CNPLLly8xe/ZstG/fHgMGDFCXeQwG
g8F4S2D7bMugo6OD/Px8vHz5Enp6euo2h8FgMBhvAf/ZaeSKEPba5ufnq9kSBoPBYLwtMLEtg7B+
W1BQoGZLGAwGg/G2wMS2DFKpFAATWwaDwWCoDia2ZRCSXTOxZTAYDIaqYGJbhuLiYgD8XlsGg8Fg
MFQBE9syCI5RwnQyg8FgMBg1hYltGZjYMhgMBkPVMLEtAxNbBoPBYKgaJrYyEJEotsIWIAaDwWAw
agoTWxlevXqFkpISSKVSaGr+pyNZMhgMBkOFMLGVITU1FQBgbm4OjuPUbA2DwWAw3haY2MogiK2Z
mZmaLWEwGAzG2wQTWxlqS2zz8/PFuhkMBoPx34OJrQy1IbbXr19H3759YWFhgaioKJXVy2AwGIw3
Bya2MqSlpQEAGjZsqJL6oqKiMGrUKIwcORIhISGwsLCoch15eXlwc3ODRCKBr6+vSuyqK0pKSjBu
3DhIJBJMmzZN3eYwGAyG2mBiK4MqRrZZWVnw9vaGhYUFtm/fjqtXr2LBggVwd3eHnZ0dAGDVqlUw
MjKCRCIp9zIwMEBCQgIAPnTke++9h8jISBgaGsLX1xf37t0T2yopKcHEiRPlrtfU1MT777+Pq1ev
Vv9GvIZBgwbh0qVLCs9dv35d7vucOXMQEBAAIyMj+Pn5ITw8vFZsYjAYjPoO298igzCybdCgQbXr
ePHiBQ4fPowuXbrgl19+KefVHBUVhc8//xx6enr48ccfYWJiInfe2dkZ1tbWAIB9+/YhKCgIhw4d
QuvWrdGpUyd8/PHHOHbsGADgq6++wo4dO9CqVSvMmjULUqkUycnJ+OWXX7B7927Mnj0bP//8c6U2
FxUVVbqmrKurC2NjY+Tn51eY63fEiBE4f/48LC0tcenSJWzYsAFr167FuHHj0LlzZ8yePRv//PMP
OI5Dfn4+0tPTX9umvr4+DA0NK7WfwWAw6jtMbGXIyMgAAJiamta4LmdnZ4Xbh959910YGxtj7ty5
WLBgwWvruHDhAmxsbODp6QlNTU1MmTIFa9aswZ07d9CyZUvcuXMHLi4uiIqKkot4NX/+fGzbtg0f
ffQRjIyMKp1+DgsLw7Bhw1BSUgIdHR3k5eWVK9O6dWtcu3YNcXFxFW6LIiIxW9KFCxegra2NiRMn
wsTEBAsWLMDcuXMREhICDw8PbNmyBTNnzgSACtscPHgwjhw58lrbGYxaJSkJ2LsXuHoVePAAELKB
cRygowMYGACGhoC1NdCiBf9q1w5QwW8I4+2Cia0MqhTbO3fuoKioqFxwDC0tLejo6CAmJgZJSUni
calUWq7d4OBgNGrUSKxjzJgxWL9+PY4cOYKWLVuif//+iIyMRElJiVwf8vLy0KxZMwD86LgysfX0
9ERsbCzu37+PXr16YdCgQbhx4wY2btwIPT09cByHbt26IT4+Hunp6ejQoUOl/Q8ODoaBgYE4ch8y
ZAiWLl2Kw4cPw8PDAzNmzMCAAQOQkpKCjh07ol27diguLsaaNWugqakJDQ0N9O7du9J2GIxaIT0d
+PRTwM8PkPn/pRQcB7RtC/TqBQwcCPTvD7Dwr/95mNjKIIht2andqnD+/HkAwKVLl8SQj9bW1rh/
/z50dXXF0d/+/ftx+PBh5ObmQiKRoH379ggPD4e+vj4AICkpCQkJCRgxYoRYt52dHVq1aoW7d+8C
ALy9vTF79mzs378fHMdh48aNOH/+vCi+FhYWWLlypVJ229jYwMbGRrS3qKgI3t7ecmWeP38OfX19
6OnpAeCdtzIyMlBcXAx/f3/ExcUhLi4O5ubmuH37Nvr16ydea2xsjO7du4u2A0CzZs3Eh4JGjRrB
3t4enp6eSt5pBqOWuHMHGDQIePoU0NQEhg4FPDwAJydAXx8g4l95eUBODpCVxZe9dw+4exe4dg24
cYN//fILYGQEDBkC+PjwwithrjL/RZjYyvDy5UsAEAWvOjg7O8PAwAA5OTkwNTVFhw4dYGVlJQrv
uXPnkJ6eju3bt2P06NGIjIyEg4MDHBwc5Oq5e/cucnNzER0djYSEBPzwww9Yt24dAF6YAF4Uu3bt
irlz5yK58RTwAAAgAElEQVQrKwslJSUwMTHBH3/8AWNjY/Ts2RM6OjrV6gcRKTyekJCAM2fOwMnJ
CePGjcPp06fFcxzHwdbWFsnJyUhMTMTdu3cRHx+PnTt34osvvkBJSQlatWpVLXsYjDohJoYfkaam
Ap06Adu3A87OVasjLw+IigJOnQIOHeJF96+/+JeDAzB9OjB5MlCN3QmMNxhiiLz77rsEgK5cuVKj
enr37k0SiYSys7PLnQsPDyeO4yg2Nva1dQjlhFfjxo0pKCiInJycSFdXVyy3du1a4jiObGxsiOM4
evfdd6mkpKRG9vv4+JCbm1u5448fP5azieM4cnFxodDQUFq4cKHYr7LlDA0Naf/+/dSjRw/iOI6S
k5PL1e3m5kaTJ0+ukd0MRo3IziZycuLHre7uRC9fqqbe+/eJvv2WqEkTYUxMpKVFNHEi0e3bqmmD
Ue9h8xkyaGhoAOC33KgCAwODcsfu378PgN9mVFBQgKSkJPH14sWLcuUXLVqEc+fOIS4uDoMHD8YH
H3yAvLw8/P333wCA0aNHAwC+++47zJw5E9evX0ePHj2QnZ2tkj4oYsKECQgODkZISAgCAwPh7u6u
cPp34sSJOHXqFDIzMzFixAh8+OGHAP6damcw6hVffMGPbF1cgAMHgNLlkhrTvDnw5ZfAo0dAUBA/
LV1czI+aW7cGRo7kHbAYbzVMbGUQPHpzc3NrrY1bt24BAHr27AkHBwdYW1uLryFDhpQr/9FHH6Fr
167i9xYtWgAA4uLiAPBJEwDeo/fXX3/F3LlzceHCBbi7uyMrK0vl9tva2mLbtm3w8PCAu7s77O3t
AUChh/KkSZPg5uYmnnNycgIAPH36tFxZqmDamsGoE54+BX77jV9P9ffn12ZVjYYGMHgwcPgw79k8
YwagpcULe8eOvAj/84/q22XUC5jYyiDsb01MTKxRPc2bN4ejo6PCc46OjjA3N8eYMWPg7u6OyZMn
Y8eOHQgNDUVISIhYLiYmBvb29mIgDAFPT09IZBwsQkNDYW9vLzpSrV27FvPnz8elS5fg5eVVLftf
t71HUoFzh7OzM9q2bQtDQ0PExMRAR0dH7iEBADp37qwwilZxcbEYyIPBUAs//8yPNseM4bfu1Db2
9sCGDcCTJ8DChby4BwXxbU+ZApQ+TDPeItQ9j12fmD9/PgGg77//Xt2m0OLFi6l9+/YKz02ePLnS
deXt27eTpaUlJSYmVrnt1q1bk6+vb7njcXFx5OXlVen1v/32GzVo0EDhuaVLl9LBgwfljuXk5FCj
Ro3I39+/yrYyGDWmqIjIzIxfS710ST02JCURzZ5NpKnJ2yGVEn31lerWjRlqhyNi83cCP/30Ez75
5BPMnTtX9PxlMBhvORERgJsbv7YaE8Pvk1UXDx7w67u7d/PfmzYF1q0Dhg1Tr12MGsOmkWVo3Lgx
AODZs2dqtoTBYNQZBw7w78OHq1/QmjcHAgKAs2f5KeXYWMDbm1/PjY9Xr22MGsHEVgYmtspRUlKC
wMBALFu2jCUXYLz5RETw7wocFNVG9+7AlSv8WrKRERAczHsub9nCbx5ivHEwsZWhLsW2VatWcuEa
ZRGy5xQXF2PhwoXQ1tZWmCHIxsYGeXl5yMvLQ//+/eXO6ejo4KOPPkJMTIxc3cHBwXBwcFBYn0Qi
QWBgIADeO/ibb74pZ1tsbCw6deqE4cOHIz09nQWpYLzZFBbyEaMA4J131GtLWTQ1gTlzePuGDgUy
M3nnKU9PPmYz442CrdnKkJ+fDx0dHWhoaKCgoKBCz9vK6lAmm03btm0RERGBJk2alDsvlUqRn5+P
PXv2YOzYsTAzM8OyZcvkkg0AQKdOneDi4oLx48dj165d6NKlC6ZMmQKJRIJHjx5h/fr1yMrKwsqV
K7Fo0SIAgJ6eHvLz8zFnzhy0bdtWrj5jY2OMHDkSAHDkyBF4eXnh9OnT6NWrFwD+IaB///4wNDTE
zp070a1btyrfHwajXnH7Nj9itLMDHj9WtzUVQ8RHoJozh4/b3KgRsGMHH/6R8WagVveseoiJiQkB
oOfPn1fr+g0bNoiRk3R1dctFXOI4jjw8PMjY2JiePn2qsA6O44iIKCUlhTiOIz8/v9e22b59exo4
cGC54zk5ObRkyRLiOI7+/PNPIiIaPHgw9erVq9J+DBgwgAwMDKioqIiIiJ48eUL29vbUqlUrKigo
qPR6BuONICCA9/4dOlTdlihHfDxRnz68zRxH9OWXRIWF6raKoQRsGrkMQtzhlJSUal0/Y8YM3L9/
H+fOnUNmZiacnZ3h6OiIoKAghISE4Pjx45g/fz6sra3FaeuKEHK53r59Wy7SVNlgFf369UN8fLxc
YIi0tDRkZ2fLZf8B+KhWiYmJiI2NFesr29fc3FzcuHEDPj4+YlStOXPm4MmTJ1i9ejW0tLSqdW8Y
jHpHdDT/XmaWp95ibQ0cPw4sW8Y7c/n6Av36AdX8vWLUIepW+/pGu3btCABdu3ZNJfUpivkbHh5O
PXv2FL9nZ2dTYmIiPX78mObPn08cx9GzZ88oMzOTOI4jqVRKOjo6xHEcaWlpkYeHh1z84/PnzxPH
cRQZGUmrV6+mLl26yI2kHRwc6OzZs0RENHz4cOI4joyMjOTiLt+4cUOs759//iGO4+T28m7atIn0
9PRIV1eX5s2bR2lpaSq5PwyGWhk6lB8lBgSo25KqEx5OZGXF29+kCZHM/2FG/YOJbRnat29PAOjy
5csqqa8isTU0NKRbt25RfHw8tWjRQk4cJRIJERH5+/uLIpqRkUFhYWGUkJBQro3CwkKys7MjMzMz
sQ47Ozs6cuQInTx5koqLi8WyGhoaNHXqVCIiOnPmjMJ+Pnv2jPbs2aOwP5s2bSIbGxuytLSk69ev
V/u+MBj1Ajs7Xqze1IQAiYlErq58H/T1iQ4dUrdFjApg08hlUEWaPWXIyclBmzZt0LhxY8TExKBf
v34ICQnBBx98IJYpKioCAPTo0QPGxsYYMGAArKysytWlqakJb29vpKWliSEn27VrhyFDhqBv375y
jl4lJSWiw1PPnj3RsWPHcvXZ2NiICQ7KMnXqVMTExMDDwwPjx4+v1BmMwai3ZGfz4RKlUqCC8Kr1
HktL4PRpYPx44OVLfq/wDz+w7UH1ECa2ZRAy79QkgbwyaGhoYN68eQgJCUFISAj8/f3h7u6OPn36
iGuvQoagFy9eIDc397XrtoI4bt26FV5eXjh8+DBGjBghCrZsfampqQCA5ORksb7k5GSlbdfT08P0
6dNx+/ZthIaGVv8mMBjqRAj637Ilv83mTUVHh0+e8H//x4vsp58Cn3wClJSo2zKGDG/wvzDVk5mZ
iefPn0NHR0dhwPzqQBU8YXbr1g1r1qwpd1w2AYCQIah58+aQSCRyKfjGjh2Lv/76S/wuZP8xNDTE
3r17MXbsWBw4cACjRo3C3r17oaWlJda3cOFCbNiwAQ8fPhSvNzU1xZ07dxT2+8qVK7h16xYGDhyI
4OBgZGdnw9fXFw0aNEDPnj2rcjsYjPrDm+Yc9To4Dvj8cz7BwcSJwJo1vNOUnx+gra1u6xhgYivH
7du3AfAZbAQv3JogZLNxcHAod66iPbydOnVCu9KsI46OjrCzs4ObmxsAfjTs6ekJQ0NDcSpYIDQ0
FN26dYOrqysAYPfu3Rg3bhz27t2L6dOnY8uWLWjatCl0dXXh5eUFHR0d9OzZE+3atUPLli3h5ORU
4QPG77//Dj8/P0gkEpSUPi2PHz8evr6+sLGxqda9YTDUzrVr/HtdZPmpK8aOBRo25KeTd+4EUlOB
ffsABbm1GXWMuheN6xObNm0iADRu3DiV1FdRNpvIyEiaN2+eStp4HcXFxbR69Wpq3LgxFdZgL96u
XbtEx61Vq1ap0EIGQ4288w7vWBQZqW5LVM/ly/9mMurcmaiacQMYqoNFkJJhwYIFWLNmDb777jt8
8cUX6jaHwXhrePz4MSIjI5GbmwsXFxd07twZmupcJ331io85DPBhEGvZIVItxMQAAwfyoR3Dw4Eu
XdRt0X8aNo0sg7Cm2bp1azVb8t/i5cuX0NTULBeOkqE60tKApUuBkBAgN5eP8jdrFtC5c+23ffXq
VQQHB4v+C0lJSbh+/TpGjhwpBpGpc/7+m08W37bt2ym0AODkBJw/D9y6xYS2HsC8kWWoLbENDw/H
N998g4MHD9a4rnv37qFPnz5yzlJvKi9fvkRiYiK6du0KR0dHnDlzRt0mvZXcusVryvr1wMOHQEIC
sH074OoKzJgB5OfXXts3btxAUFAQiAjdunXDiBEj0LBhQzx//hxbtmzBkydPaq/x13HqFP/+tsf3
trJi8ZPrCUxsS8nMzER8fDx0dHRgb2+vkjrT09Ph7u6Ofv364f79+3hHJqvIq1evxHCIQsadBQsW
yF2/bt06/PTTT+L3wsJCeHh4ICIiQtxyc+nSJbRt27bCLD7r1q2rks0zZszAnj17FJ6LFrw3S23T
0tLCuXPnEBERAU1NTYSEhJS7xs3NDRKJBHFxcQD4bUyzZ8+GRCKBoaEhbGxsYGZmhvj4eJwSfgAZ
KuPBA6BPH15gu3YFLl3id7wsXAhoaQEbNwIeHrUjuM+ePcORI0cAAO7u7hgwYABcXFzw4YcfonXr
1sjPz8euXbuQmJio+sYrQ/i3OmhQ3bfN+E/CppFLuXfvHgDAyclJJZ7IiYmJ6Ny5M/Lz83Ho0CEM
GzZM7vzixYvh7+8PNzc3jBw5Er/++ivWrl0LS0tLfPrppwD4EfHhw4ehp6eHGTNm4PPPPxd/mPbt
24f3338fkydPxt27dzF+/Hj06dNHrg1tbW2MHz8eRISUlJQKtyEBgJaWFho2bIj8/Hzk5uYqLDN3
7lysXLkSXbp0walTp1BcXIyHDx+iUaNGKCkpwdy5c3H27NlyXs0cx8HW1hYZGRno06cPbt68CScn
J8yePRtOTk545513EBMTg/bt21f5PjMq5tUrYNgw4PlzYMAAIDAQ0NXlz/3wAzBuHDB4ML+cN28e
8Pvvqmz7Ffbs2YPi4mJ06tQJXbt2Fc9paWlh5MiRkEgkuHnzJvbv34/p06dDu662qKSnAxcv8ntr
y/yfYTBqDXV6Z9UnduzYQQBo1KhRNa7rxYsX1KFDB2rYsCFlZmaWO3/mzBniOI569OhB8fHxRET0
8uVLcnNzI4lEQidOnCAiIi8vL+I4jlxcXCgqKor09PTowIEDNGPGDLKzsyMiopkzZ4qfK+LGjRti
bOWKMhEZGBgQEVH37t1p+/btCutxc3OjiIgIIiL67bffiOM42rZtG4WEhIj1zJw5U+6a3r17k56e
HhERLV++nDiOo08//VTZW8moAbNn886ozs5EWVmKy1y7RqStzZe7dEl1bR84cIC++eYb2rx5s5g5
qiyFhYX022+/0TfffENHjhxRXeOVsWcP3+HeveuuTcZ/HjaNXIoQXclRBWHbli5dimvXruG7776D
keDxKMO3336LDh06IDIyUgyvqKenh+DgYLi4uGD9+vUAIOa6/eeff+Dq6orevXvD29sblpaWYl2G
hobIzMzE3bt35aJBkcwotm3btoiPj8fx48eRmZmJKVOmQCqVwt/fHyEhIQgNDRXXzs6fP48BAwZU
2sdDhw6JnwsLC8XP27dvx82bN8XvRUVFYo7chw8folu3bli1apV4nSJ7GTXnwgXg11/5qeKdO4HS
BFLlePddYP58/vO8eaqJ8vfgwQNER0eLYUQrminS1NTEiBEjoKGhgatXryI2NrbmjSuDEPWMTSEz
6hAmtqUIa4p2dnY1rsvd3R0NGjTArFmzMGHCBCQkJIjnzp07h9OnT2PHjh3lrtPT08OCBQsQEhKC
3NxccVp13rx5aNiwIdavXw+O49C9e3fxmoKCAmRkZMDV1RXW1tawtrZG69atcfz4cbm6GzRogH79
+kFLSwuNGzeGpaUlxo8fL66lNWzYUCwreIgKYpiUlIQ//vgDV65cEe9Tfukin5GREYKCgmBvb48b
N26gYcOG+Pjjj1FUVISkpCScP39e3OJhb2+PlJQUFBQUAADWrl0La2trWFlZoV27dpgv/OozagQR
H60PABYtAiqbnV+yBLCw4GdWFSy7V4mCggIEBQUBAPr06YMGDRq8tnyjRo3Qo0cPAEBwcDCKi4tr
ZkBlELH1WoZaYGJbSlpaGgDAzMysxnUNGTIEqamp2LNnD65cuQJnZ2ecOHECALBlyxaMHTsWLVq0
UHitkZER8vLy8OjRI/HYmjVrEBYWJjpuyUafOnz4MPr27YvMzExERUUhIiICqampcHd3r7b9AQEB
SEpKwrRp00QBnzFjBl6+fAlbW1uxHMdx8PLyQl5eHpo2bQoXFxesWrUK4eHhmDRpkjjCFUJQzpgx
Azk5OVi7di0APkduWFgYQkJC4OLignXr1uH69evVtpvBc+AAP7K1sAAWL668vKEhH04X4LcH1WR0
GxkZiczMTFhZWaGLkttNevTogQYNGuD58+e4cOFC9RtXhlu3gPh4PoD/2xQ5ilHvYWJbiiC2siO8
mjJixAhER0dj3rx58PHxwYMHD3Dw4MFyXscCr169wrp16+Dm5lZu+9G7774rfo6MjBQFrKioSAzd
2LFjR5XEKh4/fjysra3h7+8PS0tLBAcH4/vvv5crI9wvwQ5hGnjMmDH4/vvv8ddff2HgwIEAgL59
+wLgRzHLly/HsmXLcP36dejo6KB///5wd3cX6xdGzozqUVICfPUV//mbbyqePi7LjBm8OF++DBw7
Vr22U1NTcf78eQDA4MGDKwxJWhZNTU14enoCACIiIpCRkVE9A5RBGNUOHMjHE2Yw6ggmtqVkZ2cD
gMI11pqgpaWFWbNmITExEX/99RfS09Nhamparty1a9fg7u6OhIQEuQQDiiA+DzEyMzORmpoqCt/z
58/lMgOVVDPrx+DBgxEYGIiQkBCcOHECHh4e4rorAGRkZIh7khWxcOFC0TNaX19f/CEFgGnTpsHF
xQWLFy8WBbqkpAQzZsyAjo4Our3t+x5rmQMHgDt3gCZNgGnTlL9OX79mo1siwrFjx1BSUoL27dtX
OWZ2s2bN0KZNGxQVFeFYddVeGWTFlsGoQ9jWn1IEYarptp+7d+/i/Pnz8PT0FNdeV61aBR0dHbi5
uUEqlcLHxwcjR46Ebuk+jKNHj+LQoUPo27cvTp06JTpAKRJlAQ0NDTx58gSvXr3CL7/8gqNHj8pl
8ZFKpYiKioKLi0uV+yDsjZRFNhuRMHp5Xbi9gIAATJgwAdOmTSvXj4MHD6Jbt27o1q0bfH19sXPn
TgQHB8PPz0+lMwv/NYgAX1/+8+LFvHNUVfjoI+D774ErV4CjR/ltQcpy584dPHr0CLq6uujXr1/V
Gi7F3d0d9+/fR0xMDO7evQtnZ+dq1VMhL18CkZH8iFYJJ0AGQ5UwsS1FEFuuhlNL+/btw9dffy2X
IWfQoEEIDg5G69atERQUhFWrVmHevHkA+Cw/np6e+OOPP8qtF3t6eip0MBk0aBBcXV3RqFEjGBkZ
oU+fPjA1NUXPnj3RvHlzdOzYEba2tmjZsqVCG+Pi4qrcz0aNGqFz586wsLAQ15OFDEOKMDc3Vxjk
AgCsrKxw/PhxTJ06FQMGDICpqSm2b9+ODz74oEo2MeQJDgZu3OCDBk2eXPXr9fSAzz7jnauWLQM8
PZWbaS0uLsbJkycB8EsGenp6VW8cvGd9nz59EBISgrCwMDg6Oqpkz7vI6dNAQQEfo1IFvhkMRlVg
YluKMKVZU7Ht06cPJBIJiAgzZszAb7/9Jne+X79+Sj/5a2lpiYneZZF1PKnO+lZycnKFNsiuDcui
q6uLixcvAoD4rlU6dKrOPWvevDlCQ0Nx9uxZODg4KExDyKgaP/7Ivy9cyOcTrw4zZgArVvBrt5GR
QJlMjgr5+++/8eLFCzRs2LDGgUk6deqEy5cvIy0tDdeuXUOnTp1qVJ8cwnY1Dw/V1clgKAlbsy1F
EIzqrnMKdO/eHUVFRSguLi4ntPWFoKAg/PnnnwrPXb16tdLrdXR0oK2tjZkzZwIAvL29q7VlSnCQ
YkJbc27dAiIi+LSlVVmrLYueHlD6Z8Xq1ZWXLywsREREBIB/HzRrgkQiER3qIiIixG1iNaagANi/
n//83nuqqZPBqAJMbEvRL8388erVKzVbUv8ZO3Ys8vLyRKcpLy8vbNmyRa5McnIyBgwYIAYLYdQu
wnPdhAn/Zo6rLrNmAVIpcPgwUBrFtEKio6ORk5MDS0tLtGrVqmYNl9KyZUvY2Njg5cuXuCYkeK8p
YWF8mEYXF0BFdjIYVYGJbSmC2L58+VIl9T19+hTDhg0TEwJoaWnhf//7nxgMAgBWrVoFIyMjhQkE
DAwMkJCQgAsXLsh588qSlJSE58+fi591dXXx0UcfAeADSIwfP77cNVu3boVEIsHy5csB8JmOyiYy
MDU1FfcFK8PevXuxaNEi8TsRYdSoUTh58iT27dsHgI/Q1b179woTJrCAFtUnLw8QYqSU/vlrhIUF
L9oAsGZNxeWISFxS6NatW42XYAQ4jhMDXVy6dKnGs00AgIAA/n3s2JrXxWBUA7ZmW4qBgQEAICcn
p0b1rF+/HmFhYcjLy8Pdu3fh6+sLV1dXXLp0CRs2bICnpyeOHDmCf/75B59//jn09PTw448/wsTE
RK4eZ2dnWFtbIyYmpsLEACEhIbhw4QI2btyICxcuID8/X0yokJubi927d2P48OEYNWpUuWvt7OyQ
lZWFYcOGITk5GWPHjkX//v2RkZGB9evXw93dHf7+/goFuyznzp3Dzz//DA0NDaxcuRLr169HVFQU
JBIJ9u3bh88//xzz5s3DhQsXMHDgQIwePVrueolEgvfY1F61OXYMyMriI0VVw/lcIQsWAJs2Adu2
8R7OivyJHj16hNTUVBgaGqpsVCvg5OQEU1NTpKen4969exU6+ynFq1f/rteOGaMaAxmMKsLEthRV
jWwbNGiA6OhoPH78WO5437598eDBA2zbtg1hYWEYMmQIjI2NMXfu3AqDXAB8nNmKRgwcx4lrWoMU
hJ4rKSnBrFmz4OnpWc5DVFdXVzzWuXNnub29c+fOxdChQ/Hll1/Cw8Oj0pB7Alu3bsWYMWOwYsUK
rFy5EgUFBfj8888B8Ot5J06cQGBgYN1ld/mPUBuDtpYt+WiGISG84ArhH2URon117NhRtV7D4B/A
XF1dERISgqtXr9ZMbIOD+W0/nTsDzZqpzkgGowqwaeRSVDWylU0lJtR35coV9OjRAy9fvsTFixfh
7e0NTU1N6OjoICYmRi4QRXp6utz1586dqzD0omzwftnEAAAfWQrgA10Igf9lj48cORKampr4+eef
yyUB0NTUhL+/P1JTU5VK6N60aVMAQEpKCjp06ABLS0vMmDGjXMKE4uJiXL9+Xa6/gj2M6pGTAwjb
olU9OSBMSW/cyEemkqWwsFCcRanOXm5lcHFxgUQiwaNHj2r2EMymkBn1ACa2pQhiK0SSUgX5+fmw
trZG586dcfHiRbz33nviVgYiQkFBAfbv349mzZrB2toajRs3xsCBA8v9sMjmhxWiRJ09exa///47
nj17JrYF8BGwLl68iBcvXmDfvn2YOnUqfvzxRzHi04EDB8BxnOg1Kozoy2JmZoYhQ4ZUuFdWFmG7
0Lx58yCVSvH7779DV1e3XMIEIkL//v1hY2MDa2trODk5KUzIwFCew4eB3FygWzeg9JlHZXh6Ao0b
A/fv8zlvZbl//z4KCwthbW392uArNUFPTw8ODg4gIsTExFSvkqwsfmTLccwLmaFWmNiWIghacnKy
yuqUSqU4ePAgQkJCsHHjRvj4+GDr1q0A+BFreno6/Pz88OLFC4SFhSEmJgZRUVFyAkhEOHLkCJKT
k3H06FE0atQI1tbW6NWrF6KiouQSAwD8Npy8vDwA/PTe999/D1NTUwwcOBCXL18Wk8/L1l8Rrq6u
4qhVGebPn49z586JDxRlEyY0b94cWVlZiI6OxokTJ5CRkYFJkyYpXT+jPLU5aNPUBP73P/7zxo3y
5wQvc1Wv1ZalWem0b7XT7x06BOTn8xuGqxhCksFQJWzNthRhyjMpKUml9coGjyguLsbPP/+MSZMm
idOnvXr1glQqRf/+/SusIzAwEIGBgQD4ddoVK1agbdu2mDJlilhGiI9cdp+jqakpjh8/jt69e4sR
n2RtCgsLq7DdvXv3YrEyaWNkkA1qEBkZKX4uKioSPUxbt25dLtECo+pkZPCpWTkOKONzpjKmTOET
Ghw+zA8ShW1FwgxQs1peAxX2bz958gREVHWPZzaFzKgnMLEtxcrKCgDKjfxURXZ2NlJTU8XpamFk
kJqaCktLS7x48UIsq62tLeeUZG9vj0WLFsHBwQEaGhqiWDo5OYllZIWtLC1btsTq1avh4+MDjuPk
vIFlp6hlSUhIQHR0NHr37l2N3vLIJhp49OgRTE1NQURIT0+XC1bQsGFDMRoVQ3kOH+ZjNbi58Rnj
aoPGjYEePfhoUocPA0JEzaZNmyIhIUHMfVxbNGrUCDo6OsjMzER2dnbVEoWkpgLHjwMaGoBMIg0G
Qx0wsS1FlWKbnp6OTZs2id8jIyNx5MgRFBYWiqIorKH27NkTpqamcgnmu3TpIgb75zgOX331lcLp
VkXJASoSrQkTJiAmJgaJiYmYJhNiqH379jh8+HC58suXL8ecOXOU+nEru21JFolEguzsbDx79gzP
nj2Do6OjXK5ejuNw9OhRMR0fQ3n27OHfa3spcswYXmz37PlXbB0dHZGQkKCyvbUVwXEcLCws8PTp
Uzx//rxqYnvgAFBUxGf4MTevPSMZDCVgYluKqqaRpVIpcnJyMH36dLnjdnZ2CA0NhaOjIwD+x8rc
3ByDS1OrcByHfv36wdzcvFyA/4p+0Lp06SImL0hNTQXHcXB1dcXTp08Vlv/222/LHSu7Zpubmws/
P4g8BlYAACAASURBVD8EBQXhypUrSvQYeOedd9C8eXMxi5Gsff7+/tDT04O1tTVatWqFxo0bo1ev
XrCyskLv3r1hZmZW43i6/0XS0/mgSBJJ7Q/ahg8HZs/mnaSKivi13EaNGlU5jV51MTMzw9OnT5Ga
mlq1aetdu/j399+vHcMYjCrAxLYUc3NzaGhoIC0tDQUFBdXeC2plZaXUdpZZs2Zh1qxZlZYzNTWF
vb29wnMrVqwod0xLS6tKo43du3cjNjYWmzZtQnR0NDZt2gR9fX2cOXNGbutOZSjyFnV2dhbTpAle
0wzVcOgQUFgI9OvHR3yqTaytAUdH3iv5+nWgY0f+AbBJkya123ApwgOl7FJLpSQk8MGitbUBb+9a
sozBUB4mtqVIJBI0atQICQkJSEpKqrMfksr46aeflCqnra2NYcOGwdbWFvr6+mjfvj2MjY0rvS4g
IACZmZmYPn06JBIJ3n//fXz77bfVSizAqDvqagpZoGdPXmzPnOHFFkC5lJC1hTB1XKVteXv38gl+
PT0BJf4fMBi1DRNbGSwtLeud2CqLsN0H4KNYKTsFvHz5chgbG2PixIm1ZRpDxaSlASdO8H4/I0bU
TZudOwN+fsA///x7rOyyQW1haGgIoIpiy7yQGfUMJrYy1LZHcn1kzpw56jaBUUUOHuTXTgcMqLsc
6EIWRNkopLXtHCVQZbF98gS4eBHQ1weGDKk9wxiMKsCCWsggbGMQMukwGPWRvXv597qMqS+sKpQJ
+V0nyEZ3e10QFpEDB/j3wYN5wWUw6gFMbGVo2LAhAN6zl8Goj6SmAidP8lPIden307gx/56YyC+F
1iVaWlrQ0dFBSUmJcvmmBbFle2sZ9QgmtjLIbqNhMOojhw4BxcW8F3Lps2GdoKvLDxILCgAVhg9X
GqWnkhMTgfPnAakU8PCQOxUTE4NFixYpNzpmMFQME1sZmNgy6jvCFLI6YuoL68PqWGVRWmwPH+aH
3u7uQOk1AjY2Njhz5gy+/PLL2jKTwagQJrYyCPldK0rWzmCok/R09UwhCwhBmNTxLKq02B4/zr8P
HVrulL6+PoKCgrBnzx5sLJtZgcGoZZg3sgzFxcUAoPJE2AyGKggP56eQe/Wq2ylkgXo/si0p+TcX
oEyyDVnMzc0REhKCnj17wsrKCsOGDVO1qQyGQtjIVgYmtoz6zIkT/PuAAeppv96LbXQ08OIF0KQJ
UEHUNYDPVBQYGIipU6fi0qVLqjaVwVAIE1sZSkpKADCxZdRPBLF9TTbGWkXY/lPdPO41QYgilZGR
UXGha9f49+7d+byDr6FTp07YunUrvL29xQxcDEZtwsRWhjd9ZCvYz3j7iI3lwyUaGf0bLrGuEdqN
iqr7toVUkCkpKRUXEsJbubgoVefgwYOxfPlyeHh4vL5eBkMFMLGVQRCrsgnY3wSOHTuG4cOHq9sM
Ri1x8iT/3qcPn3VHHXTtyg8Yz52r++0/pqam0NLSQnZ2dsV7bQWxbdNG6Xr/97//YezYsRg2bJhy
e3gZjGry5qlKLfImj2ybNGmiMPMO4+1A3VPIAJ9dqFs3ID8fOHasbtvmOE7MQlVhBqlqiC3Ap550
cnLCuHHj2OwQo9ZgYivDm7xm6+DggCdPnrAfi7eQkpJ/xbYCJ9taRTYIxOjR/PumTXVvh5Bq8tGj
R+VPpqXxAS309YGmTatUL8dx2LRpE7KysrBw4UJVmMpglIOJrQxv8shWV1cX5ubmiIuLU7cpIvn5
+SxAiAq4eZP3ALaxAUrTA9cpsrHCJ07ko0kdPw7cuVO3dgiJ4x88eFD+5K1b/Hvr1kA1loG0tbWx
f/9+hIaGYv369TUxk8FQCBNbGd7kNVsAaN68ueIfIjVw/fp19O3bFxYWFohSh0fNW4TsFHIdJdqR
4/r160hLSwMAmJoCEybwx3/8sW7taNy4MaRSKdLS0sonC6nmFLIspqamCA4Ohq+vL47V9Tw5463n
zVSVWuJNHtkC9Udso6KiMGrUKIwcORIhISGiJ2l9IDAwENra2rC3t0d8fLy6zVGKsDD+XR37a4kI
d+7cweXLl8VjCxfyg0d/f6Ci5dPaQCKRoHXr1gCAGzduyJ9UgdgC/FT1gQMH4OPjg5s3b9aoLgZD
Fia2MjCxrT5ZWVnw9vaGhYUFtm/fjqtXr2LBggVwd3eHnbBBE8D9+/fRvXt3SCQSSCQSaGtr44CQ
paWUtLQ0tGvXTiwjkUhgbGyMTz/9FAkJCWK5TZs2vVbI/fz88PPPP4vfz5w5g7Fjx0JPTw+xsbH4
4osv5MpfvnwZpqamcu06ODhg3bp1yMvLkyv7xx9/QFdXV67sgAEDVJ4LOT2dD4okkahHbJOSkpCR
kYF79+6Ja7eOjsCoUUBhIbB6dd3a88477wDgxVYuocDt2/x7q1Y1bqNr165Yt24dhg4diqSkpBrX
x2AAAIgh8n//938EgBYvXqxuU6rFvn37aNiwYWpp+/Hjx8RxHHXt2pVKSkoUliksLPx/9s47rqnr
/eOfGxIIAdnIki0qKKC42rpHcaB1VK3WurVLa7X91i5bsbu/1m9t61dbra3WDmdbV0WsIs46Kq6q
4EBBBRTZssnz++N4L0kYMpIbEu779Tqve5Pc3PPkEvK555xnUKdOnYjjOHr++edp8eLF5OLiQkql
kg4cOCAc99hjjxHHcRQVFUWrV6+m1atX08svv0zW1tZkaWlJv/zyi1afcXFxVfq6c+cO2djY0Asv
vEBERGq1mkJCQqhPnz5UUFBAc+bMIY7j6O+//yYiovT0dHJyciKlUkmzZ88W+h01ahRxHEeenp50
9uxZIiLaunUrcRxHQUFB9Oabb9Lq1atpzpw5pFQqycvLi+7cuaO367p2LRFA1K+f3k5ZL/bu3UvR
0dG0Y8cOredPnWJ2qVREd++KZ49araavvvqKoqOjqby8vPIFNzdm0I0beuvrvffeoy5dulBBQYHe
zinRfJHEVoP333+fANBbb71lbFMaxJkzZygkJMQoffPCN23atBqPef/998nCwoJmzpxJZWVlRESU
lJREXl5e5OjoSFlZWURE5OTkRDNnzqzy/uzsbJoyZQrJZDKKjY2lsrIy8vX1pdmzZ1c5Ni4ujjiO
oxMnTgjv5TiOli9fTkREmZmZZGVlRePGjSMidu04jqOffvqpyrlSUlKoQ4cO5OjoSHfv3qU9e/aQ
TCajtWvXah2XlJREKpWK5syZU5dLVieGD2ca8r//6e2UdUZT2K5du1bl9SFDmG3vvCOuXYcPH6bP
P/+88onsbGaItTVRRYXe+lGr1TRlyhR64okntIVdQqIBSNPIGvChP6bqIBUYGIhr164Jn8MYXLx4
EeXl5VWez8vLw9KlSzFv3jysWrUK8geZGYKCghAXF4eSkhKsW7cOADBgwIAq66l37txBcXExAgIC
QETYsmUL5HI5/Pz8hGQEp0+fFsJCfv31V7i5uaFz584AgJ07dwIAvL29AQDOzs4YOnQo9u3bh6Ki
IgQHB8PDw0Or3/LycqSnp0OhUMDLyws5OTn466+/MHDgQIwePbpKXdSgoCB8/vnnwudoLHl5bL2W
4wBj5CvJyMhAVlYWVCoVfKsJp3nzTbb9+mtxk1x07NhRe/kgMZFt27ZtkCdyTXAch5UrV6KwsBAv
vfSSVAdXolGYpqoYCF4AqhMLU8DGxgZOTk41B/0bkCNHjgAAjh07BktLS8hkMrRq1UpY61y2bBns
7e3xySefVHlvUFAQnnrqKWHtduTIkYiJiUFqaipef/11REREwN3dHZ6enoiOjkZYWBjmz58PALC3
t8e/D8I+BgwYgAEDBqCsrAyxsbHw8PAA98B9959//gHHcejXrx8AoLi4GE8++aTg2apQKDBs2DCs
WrUKOTk5GDduHNq0aQNPT094enoiNjYWUVFRePLJJwEAtra21V6Hp59+GiUlJXpJcL9zJ0sg0bMn
4OHR6NPVmwsP1kGDg4OrvQHt1YvZlpMDiFmxTqVSIVQzJeOlS2xrgLgoPiTo6NGjeP/99/V+fonm
g1RiTwNTF1sAaNOmDZKSkuDj4yNqv+3atYOtrS0KCgrg6OiIzp07w8PDA5aWliAirFmzBm+//bZw
jXWxs7MTnHCioqJgbW2NiIgIIeQkIiICH3zwAWxsbNCrVy/hfYMGDcK8efPwww8/IDs7Gzk5OTh1
6hQyMzMxc+ZM4bhTp06BiHDkyBFYWlpi2rRpuH79OgDmBOTj44MxY8Zg1apVCAoKEvqdPHkynn76
aXh5eQmesABqHOXY29ujQ4cO8PT0bNT1BIDNm9n2gb6LChEJYhtSi9PRm28CUVHMUWrOHECpFMe+
1q1bVz7gxbZtW4P0ZWdnh127dqFnz55wcXHBiy++aJB+JMwbaWSrgUKhAACUlZUZ2ZKGExQUZJS0
jREREYiIiADHcbhx4wZiY2Oxdu1ayGQyJCQkICcnB5MnT672vZcvX8bmzZvxwgsvgOM42NvbIzIy
Evfu3RNEq0ePHhg8eLCW0AJshFleXo4ZM2ZALpeDiDB16lTcv38fI6upsD5o0CD069cPo0ePRnR0
NABg//79AIDevXvDzc0N+fn5cH5QMHbEiBGIjIzUEloAiI2NFUbNup/l6tWrwnR1QykoAP78k+0b
Q2zv3LmDe/fuQaVSaXmT6zJkCBAeDqSnA1u2iGefjY1N5QN+GtmAGT/c3d2xZ88efPzxx/jpp58M
1o+E+SKJrQaWlpYAWOYjU4Uf2RoT3SnWnTt3wsbGpsqolojwxx9/oG/fvujatSvefvtt4bWxD/IC
xsTE4JFHHsHXX3+NuXPnVulr2LBhANj62r59+zB8+HAkJibCy8sLbXVGOr6+vti+fTvS0tLw+eef
Y8GCBbC1tcXRo0cBAFZWVhg+fDg8PT0RHx+Pli1b4qmnnsL69eur9Ovq6lrtZ9+0aROioqIedoke
yq5dQHExS/7fqlWjT1dv+FFtu3btavVh4Dhgxgy2L6bYat3oGHAaWRN/f3/s3r0br732GraI+WEl
zAJpGlkDNzc3ADDp2Lq2bdti3759xjZDizZt2iAlJQWTJk1C7969wXEcysrKsHLlSpw/fx6zZs3C
V199pRXfzIuZi4sLYmNjMXjwYCxbtgwVFRVa6fQsLS3BcRwmTZqEnj17oqysDNu3b8fYsWOriHuf
Pn20hFCpVMLb2xs3btzQ6tfKygohISGIi4tD//79MWnSJKjVajz99NPCcREREVU+Z2ZmJlauXKmX
7EP8FPKYMY0+Vb0hImEdvLYpZJ7Ro4G5c4GYGLbGbGVlaAs1KC8H+NjyoCCDdxcSEoJdu3Zh0KBB
sLS0xPDhww3ep4SZYCQv6CbJ0aNHCQB16dLF2KY0mMTERPL39zdK3zNmzKC2bdtWeV6tVtPKlSup
ffv2xHEcyWQyGjNmDH311VdCCJAu//nPf+jpp58WHhcUFFDv3r2J4ziKjo7WOvb48eNasb2nT5+m
+/fvC49LS0vJx8enSqgOEdHrr79OHTt2FB537dqVvv32W+HxpUuXyNPTkywsLGjv3r3C81OnTqU1
a9YIj7Ozs6lHjx61hj7VlfJyIgcHFs1STcSNwblz5w5FR0fTp59+WueQl/btmb2HDxvYOF2SkljH
Pj6idnvs2DFydXWlXbt2idqvhOkiia0GKSkpBIDc3d2NbUqDKS0tJSsrKyoqKjK2KXrn/v379MYb
b1BERES93nfv3j1SqVS0devWKq8lJibSmDFjan3/9evXacSIETR//nwiYmLk4+NDEydOpG+//Zb6
9OlDHMfR8OHD9RKPefw404+AgEafqkEcOnSIoqOj6ffff6/ze557jtn82WcGNKw6tm1jHUdGitwx
i/d1cXGhPXv2iN63hOkhia0GpaWlJJPJiOM4KikpMbY5DaZdu3ZCtiMJ/fPHH38Qx3FCc3V1pS++
+EJv35mPPmL6MWuWXk5Xb77//nuKjo6m8+fP1/k9y5czm6dPN6Bh1fF//8c6njtX5I4Z8fHx5OLi
QvHx8UbpX8J0kBykNFAoFHB3dwcR6T3HrZi0bdsWibyHphGJi4tDdHQ0fv/9d2ObolciIiKwePFi
JCQkQK1W486dO5g3b57gYNdY/v6bbfv21cvp6kVRURFSU1Mhk8mEknZ1gfdFE/1rZ+Cwn4fRu3dv
rF+/HmPGjBEc7SQkqkMSWx1aPXD9NEZiCH3Rtm1bo3okZ2dnIzIyEgMGDMDly5fRvn172NraaiXt
l8lkUCqVWLRoEYqKigAwr+WAgIAqx/Ft69atAIAffvgBbm5u1R4jl8uRkJAAAPj999/h4uKi9Xp4
eDiuXr3aqM/n7e2Nd955B+Hh4Y27UDVw+jTbVuODZXCuXLkCIoKvry+U9QiaNZrYihD28zAGDBiA
tWvXYuTIkTh16pTR7JBo2kjeyDq0atUKx48fN5nya9URFBSEw4cPG6XvtLQ0dOvWDSUlJfjjjz/w
xBNPYP/+/SgsLESLFi0wa9YswcP1xx9/xPvvv4/S0lJ8/PHHGDt2LEpKSjB37lyEhYVpndfe3h4j
RoxARkYGZsyYAQsLCyxatKhKPGurVq3QqVMnnDx5EhMmTICrqyteeuklhIeH48qVK1i+fDkiIiJw
7NgxtDPiD3RN3LsHpKQAKpUozrVVuHz5MgD2HaoPHh7MCzkzk8UI15BgS/+IFPbzMIYMGYIVK1Yg
KioK+/btQ3BwsFHtkWh6SGKrAz+yTU1NNbIlDScwMBBr164Vvd/s7GwMHz4cRUVFuHbtGuzs7LRe
f/vtt7FgwQLh8RNPPIGWLVsiOTkZANC/f3/k5+dj6dKlNfbh5uaG9u3bIyIiAosWLarxOD7pwaxZ
s/Duu+8Kz7/22mto27YtXnvtNWzfvr1Bn9OQ8GVaw8IAsSs9EpFQorFNmzb1eq9MBvj6AklJwPXr
jS4rWzcyM9ndia2tkM9SrVYbLbf56NGjkZ+fj0GDBuHQoUOiZ3GTaNpIYquDx4N/WlOOtQ0ICBAE
TEwWLVqEU6dOYcWKFVWEFkCVmMTPPvsMcrlcSFZha2uLpKQk3LhxA1YPgjVlMlmVmrU2NjZITk7G
7du3hR9WuVwOFxcX4Zjg4OBqk8c7Ojpi7dq1iIqKQk5ODhwcHBr/wfXI2bNsa6AZ6lq5c+cOioqK
YG9vL2TQqg9+fiKLreYU8oMkF/fv30eLFi1E6Lx6pkyZIiyjHDp0SOs7KdG8kdZsdeB/2O/cuWNk
SxqOl5cX7ty5I3raycjISDg5OWH27NmYNGmSVqF3AHjjjTdw5coVXL16FbNnz8Znn32GN954A489
9hgAoLS0FFeuXEFYWJhQAKBz5844yyvQA0pLS3HkyBG0bdtWOK5nz55V+qupWMCQIUPg5uaG3bt3
6/HT64fz59lWM8++WPDJPRo6IvP3Z9sHKacNTzVTyHxOa2Myb948jBo1ClFRUbh//76xzZFoIkhi
qwOfRSojI8PIljQcuVwOV1dX0T2qhw0bhszMTGzcuBEnT55Eu3bt8Ndffwmvb9++HW3atEFQUBBW
rFiBefPm4b333hNe37ZtG6ZPn47c3FzEx8fj+PHjSE1N1Vq/vXnzJk6fPo3o6Gjk5eXhr7/+wrlz
53Dp0qUqyf9rKzXYvXv3JjnNx4utKCNDHVJSUgCg2nJ6dYFPoSy62Gp4IjeVGamPPvoI7dq1w4QJ
E1BRUWFscySaAJLY6sBPfxYUFBjZksbh4eFhtB+e0aNH4+zZs3j55ZcxZcoUobqOs7MzPvvsM8TE
xODAgQP473//q/U+tVqN3r17AwB69eqFLl26VDk3X5GJT/vYv3//KkUCeGoqFlBYWIhdu3ahgzEU
rRbUauBBlkTU8JEMBhEJI1uTE1uNkW1aWppQ1tGYcByHVatWoaioCC+//LJUC1dCEltdzKHyD8Cm
w405Fa5QKDB79mykpaUJI+wFCxbg1VdfRWRkJHr27Kl1PO8Fm5mZCYDNLKSnpyM9PV1rlkHzuIqK
CuGY9PR03L17V+ucumu9PH/88Qe6d+9u1LW96khJYZ687u6A2Et92dnZKCgogEqlatB6LVAptteu
6c+uWqkm7CczM7NJTCUDLG/35s2bER8fX6vTn0TzQHKQ0oEXW1OuaQuwBP5i/uhcunQJR44cwdCh
QxETE4OioiJ8+umnUCqVgrPTqFGjanw/n/j+P//5D1asWKEVC+vo6IiLFy+iZcuWwnFPPfUUvL29
hVEzwEZkly9fFgoQREREVBlRFBUVYcmSJfj444/18rn1ycmTbKsT9SQKmqPa6mYD6gIf7fLvv0Bp
KaCnHB/VU1LCVF0mAzRq2967dw9ZWVnw8vIyYOd1x97eHjt37sSjjz6KgIAAjBgxwtgmSRgJSWx1
4NdXjBU+oC+cnJyQlZUlWn+bN2/Gu+++C5lMJqyVDh48GDt37hRGnLVlWPLz84O1tTVGjBgBpVKJ
Xr16ITw8HMHBwWjTpo0wSg0MDIStrS1GjRolVAl67LHH4OPjg/DwcK1KP0SkJRz5+fl49tln4eDg
gMjISL1fg8bCh0Y/8BcTFX69tjHr2Pb2QJs2zCP5/HkDJ+W4cgWoqAACAoSK9SUlJSgpKWkyI1se
Hx8f/PHHHxg6dCi8vb2rrRglYf5IYqtDfn4+ADS5Kcb64ujoiOzsbNH669evH2QyGYgIzz//PJYv
Xy68lpGRgfHjx8Pd3b3G93fs2LFOnpvDhw9HXl7eQ48rLi7Gtm3b4Obmhu+++w47d+7E1q1b0bVr
1yZXgpCHF9sePcTvu7HrtTxdujCx/ecfA4vtuXNsq+G2zdehFvN7X1e6du2Kb775BiNGjMDRo0eF
eH6J5oMktjqYi9g6OTmJmh+5R48eNU69u7m54ZdffhHNFgBITEzE6Qd5D3fv3g0bGxssWrQIr7zy
ipDwoimRnQ2cOgXI5UD37uL2nZeXh+zsbFhaWgre+A2lc2fgl1+A48eBWbP0ZGB18OFg1cy5N7WR
Lc+TTz6JK1euYNiwYTh48KDJ/8ZI1A9JbHXgvZBritE0FZydnQVno+aIv78/Fi9ejN69e6NPnz7G
NuehxMayWdF+/QCxf4P5BCi+vr6NXj7hp8APHGisVQ+hGrHl/S3EXD6pLwsWLMDly5cxfvx4bN26
VWvZQ8K8Me2FSQNgLiNbY3sjGxs7Ozu88847JiG0ALBzJ9tGRYnfNy+2/nxWikbQpQu7WUhKAgxW
y4OITQMAWtPISqUSCoUCRUVFQnGLpgbHcVixYgXKysowd+5cKSSoGSGJrQ7mIrYeHh5VMipJNE0q
KoBdu9j+0KHi9k1EuPYgVicgIKDR55PLgQeh0oiLa/TpqicxEUhLA1q2ZB5ZD+A4Dq6urgCaTnKL
6lAoFNi8eTMOHTqEzz77zNjmSIiEJLY65ObmAmAu+6aMj48PUlNTTfrOedasWc3ihuHwYZZT399f
/OI1mZmZyM/Ph0qlqjEuub7078+2BvND27u3siOdMCU+5KepV+2ys7PDn3/+iWXLlonuzyBhHCSx
1YH3dK0ukb4p0aJFC6hUKpNOO5mcnFwlL7I5sn49244bV0U7DM7FixcBsJJ6DY2v1YUX27172Yyv
3omN1e5IA1MRW4BVGNu5cyfmzZvXZD3kJfSHJLY68CNbUxdbgJVJE9MjWd+0b98e5/lkwWZKeTmw
aRPbHz9e/P4vXLgAAEKNYX0QFga4ugKpqZUZFfVGTg4QE8OSWQwbVuVlPqTm5s2bJjGrExoaio0b
N2L8+PE4w9dXlDBLJLHVgR/Zmvo0MsB+QPkfU1Okffv2QsYoc2XfPjaF3Lat+GX17t27h4yMDFhZ
WellvZZHJgMGDWL7/Fq03vj9d5aeqm9foYatJk5OTrC2tkZBQYFw49zU6du3L/73v/8hKipKKyOa
hHkhia0O5jSyDQ0NNelp2A4dOpi92PJTyOPHiz+FzF/btm3b6j0EZcgQttW72P76K9vWMA3AcRy8
vb0BVGbFMgXGjh2L119/HYMHD27WIXvmjCS2OvBxtqbujQywrEymPDXVvn17XLhwodZSeaZMSQnw
229s/6mnxO1brVbjn3/+AcBuyvRNZCS7eThwgBVX0AsZGWwhWC4HnnyyxsN4sU1NTdVTx+Lw0ksv
YdSoURg2bJhUB9cMkcRWB77aT215fE2F8PBwnD171mTradrb28PBwUFIJWhu7N4N5Oay6WM+ib9Y
JCYmIi8vD05OTggMDNT7+V1cWCas0lI9eiVv2MDqEA4eDDg51XgYn9/ZlEa2PB999BGCg4Mxbtw4
k688JqGNJLY68F9wc8jsYm9vj5YtWwpl6UyRDh06mK2TFD8jKvaoFgCOHz8OAOjWrZvevJB10ftU
8k8/se2kSbUe5unpCQsLC9y5c6dJ1LatDxzHYeXKlSAiPPfccybh5CVRNySx1YHP78unfjN1+NGt
qWKuYltQAGzdyvbF9kLOyMjA9evXYWlpiY4dOxqsH02xbbRmJCYCJ06w9FTDh9d6qFwuh6enJwDT
m0oG2G/Pxo0bcf78ebz77rvGNkdCT0hiqwM/5Wqou32xCQ0NNWmx6tChA87xFV7MiK1bgaIilktY
D1kS68WJEycAsBsxvtawIejcmYUA3bgBPAjnbTh84ocxYwBr64cezk8lm6LYAiw3+44dO7B+/Xp8
8803xjZHQg9IYqsD7xhVoDevDuNi6uE/oaGhZim2vHZMnChuv0VFRcJMR9euXQ3al0zGllcBPUwl
79jBtuPG1elwzXhbU6Vly5aIiYnBe++9h638NIiEySKJrQ4ODg4AgJycHCNboh/atGmDpKQkY5vR
YEJCQnDlyhWUlpYa2xS9cfcuc46ysADGjhW374SEBJSVlSEgIEDII2xI9LJue+cOKzygVAJ1LCzh
8SAGNyMjw6TXPQMDA7F161bMnDkTf//9t7HNkWgEktjqYG5i27p1a1y7ds1kf3Csra3h5+cnQmFN
jAAAIABJREFUpBU0BzZvZsUHIiPZNKtYqNVqYQq5W7duovQZGclGuAcOAA9qfNSfPXvYtnfvOk0h
AyxOXqlUorCwUCguYqp07doVa9aswciRI036xrm5I4mtDuYmtnZ2drC0tDTpQHlTjxfWZeNGtp0w
Qdx+r1y5gpycHDg4OCAoKEiUPp2dgUceAcrKKusH1Jtjx9i2b986v4XjOLi7uwNo2hWA6kpUVBQ+
/PBDDBkyxKTznTdnJLHVwdzEFmDrV6a8dtWxY0ckJCQY2wy9kJsLHDzIppAf4lSrd/hwn65duza6
SHx94MsG/vlnA09w+jTbdupUr7fxYmsu4jRjxgxMnjwZUVFRZuNT0pyQxFYHR0dHAOYltl5eXiZd
qi4iIsJsxDY2lk0h9+gBPLivE4WsrCxcvXoVcrkcneopWo1FU2wbtJrBJzVp27Zeb3NzcwNgHiNb
nnfffRedOnXC2LFjpaQXJoYktjqY48jWw8MDaWlpxjajwXTq1AkJCQlmkbZx5062jYoSt1/+ZiUk
JATWdVz31BcdO7KaAbduAQ1yLOeXQFxc6vU2c5pG5uE4DitWrIBMJsOsWbNM1hejOSKJrQ682GZn
ZxvZEv3h4eFh0iNbFxcXODo6mnQmLIBlGuS9cvnRnhhUVFTg9IOp2IiICPE6fgDHVXol13squagI
KCwELC0BW9t6vdXV1RUymQxZWVlm5c0ul8uxceNGXLx4EQsXLjS2ORJ1RBJbHcxxZOvp6WnSYgsA
Xbp0wcmTJ41tRqP45x8WxeLjA7RvL16/N27cQEFBAZydnYVkD2LT4HXbe/fY1sWl3mWRLCwshPAm
c1m35bGxscGOHTuwadMmLF++3NjmSNQBSWx1MMeRrbe3t0k7SAHMqcfUxZafQh46VNxyeny4SLt2
7YyWGW3gQFas58gRoF7/Wg2cQuYxx6lkHldXV8TExODDDz/Eb3z5KIkmiyS2Otg+mKoypxJXPj4+
Jl85p2vXrkKMqKmybRvbiumFTESC2LZp00a8jnWwtwd69mTOYXzYbJ3gxdbZuUH98mJrqmkbH0ZA
QAC2b9+O559/HgcOHDC2ORK1IImtDrzzSFFRkZEt0R8BAQFITk42aWeKzp074/Tp00KhCFPj5k0g
IQFQqYD+/cXrNy8vD9nZ2VAqlUIKQ2PRoKnkRo5s+Xjiy5cvm2ypyYcRERGBX375BWPHjjXpPOjm
jiS2OqhUKgBAYWGhkS3RH3Z2drC1tcWtW7eMbUqDsbe3h5eXl8lmktq+nW0HDWJZB8WCnz718PAQ
Nba2Onix3bWLOYvVCX76t2XLBvXp7OwMV1dXFBcXm/zsTm0MHDgQS5cuxZAhQ0yyjm9zQBJbHfjw
EnOp+sMTEhKCf//919hmNIrOnTvjn3/+MbYZDWLLFrYVO5EFH/LF5wo2JiEhgLc3cxKrcwgQf4Po
5dXgftu1awcAuHTpUoPPYQpMmDABr7zyCgYPHoysrCxjmyOhgyS2OvCZWfjqP+ZCeHi4yac87NSp
kxDCYkpcucJSFVpbAyNHits3P7Ll1y6NCccBvXqx/SNH6vgmPYht2wfJMC5dumTSSyl1Yf78+YiK
isLw4cPNainMHJDEVgc+abltPWP6mjoREREmOyrkCQsLE8rDmRIrV7LtU08BDxKUiUZTEluA1e8F
6iG2/LJBQECD+/T09ISdnR3y8/NN3iu/Lnz66acICAjA+PHjTdbHwRyRxFYHcx3Zdu3aVciNa6p0
6NDB5BxASkqAH35g+88/L27fhYWFyM3NhVwuh3MDvXn1DS+2R4/W4eDiYuD8eVY2qGPHBvfJcRxC
QkIAwGTX/OuDTCbD6tWrUVxcjBdeeMHsR/OmgiS2OvAjW3MT2zZt2iA3N9ek0zZ6enqipKTEpNaj
fvuNOdSGhwMiVbUT4BOZuLu7G905iic0FLCxAa5eZWu3tXLmDFBeDgQH1zt7lC7BwcEAmNg2B/Gx
tLTE5s2bkZCQgMWLFxvbHAlIYlsFfmRrbtPIMpkMjz32GI7Uef6u6cFxHIKCgkwqbeO337Lt88+L
m8gCqIwt9fb2FrfjWpDLAT5j5ENXNWJi2PbRRxvdr7e3N2xtbZGTk2PSN5z1oUWLFvjzzz9x5swZ
s4quMFUksdXBXEe2ANCzZ08cOnTI2GY0Cn9/fyQnJxvbjDpx8SIQH89Gck8/LX7/TVFsAaBLF7Z9
aEIwvvDvk082uk+O47RGt82Fli1b4vfffxdCGiWMhyS2OpjryBYwD7E1pWxYvGPUxImAnZ24ffNx
pRzHGS0fck3USWwvXGDN0REYMEAv/TZHsZVoOkhiq4M5j2y7dOmCCxcumHQqylatWplEco7iYmDt
Wrb/3HPi93/p0iWo1Wr4+vrCxsZGfANqoU5iu2kT244aBSgUeunX19cX1tbWuHfvHjL5zFQSEiIh
ia0O5jyyVSqVCA0NNemE/h4eHiaRVH7bNpZwv1OnyjVKMeHDvDp06CB+5w+hdWs20r99G6hx+ZSf
Qh47Vm/9ymQyIX2juSe4kGh6SGKrgzmPbAHgkUcewd9//21sMxqMm5ubSZRLW7OGbadNE7/vmzdv
4ubNm8LNVVNDJgM6d2b71TpJGWAKmYfPJpWYmKjX80pIPAxJbHUw55EtwKaSTTm5hSmI7e3bwO7d
bPZzwgRx+yYixMbGAmB/a0tLS3ENqCO1TiUbYAqZJzAwEBYWFrh586bwvy4hIQaS2Opg7iPbjh07
mmTKQx53d/cmL7Y//cQS7Q8f3uBiNQ3m33//RWpqKmxsbNCzZ09xO68H/Mi2WrHlp5DHjdN7v5aW
lgh4kI2KLz0oISEGktjqYO4j27Zt2yIlJcVk86Y6OjqiqKioydpPVDmFPHWquH2XlZVhz4Nisf37
94eVlZW4BtQDzZGtVo4JfgrZyclgtQj5XMnSVLKEmEhiq4O5j2wVCgX8/Pxw9epVY5vSIDiOg5eX
V5MtBn7iBIuvbdkSGDxY3L4PHz6MvLw8uLu7o2Mj0huKQUAAW5LNyAAe/Msxfv+dbUeM0PsUMg8v
tlevXkVpaalB+pCQ0EUSWx1ycnIAsPqp5kpgYCCuXbtmbDMaTFNObPH992w7caLBtKJacnNzcfjw
YQDA4MGDm0x6xprgOKBfP7ZvYaHxAl9Z/oknDNa3ra0tWrVqhYqKCpO96ZQwPZr2f6QRyM3NBQA4
ODgY2RLD4ePjY9IFptu0adMkpwALCoBffmH7M2aI2/fevXtRXl6OkJAQ+Pr6itt5Axk0CGjfnmXY
AgDcuwf8/Te7S9GzF7IupjKVnJiYiH79+jU4H/jWrVthaWkJf39/UePT69Nveno6PvnkE3zwwQfV
VikqLCzEypUrsXjx4hpvsht7ncRAElsN1Go18vLyAAB2Yqf8ERFPT0+TiFWtifbt2+NcnauPi8eG
DWxKtEcPJiJikZqainPnzkEul+Pxxx8Xr+NGMmiQTtrjuDjmWdarF2DgZRxebJOSklBRUWHQvng+
/fRT2NnZQSaTVWm2trZ477338N///lc4vqysDEOGDEF8fDx2794tPF9eXo4vvvgClpaWwvs7d+6M
U6dOafV34MABjB8/HiqVCjdu3MBbb72l9fqJEyfg6OioZUdAQAC+/PJLFBcXC8ep1WpMnjxZ6zi5
XI4JEyZUG9nwsH51r0nr1q3x448/IjQ0FHK5XOv12NhYtG7dGq+//jqcnZ3h4eGBL7/88qHX6dix
YwgLC6v2WstkMnz55ZcA2CzZxIkTq9i1Zs0ayGQyvPfeezXaXm9IQiA3N5cAkI2NjbFNMSjLly+n
Z5991thmNJgjR45QRESEsc3QoqKCKCyMCCBas0a8ftVqNa1cuZKio6Np37594nWsJzZt0njw2mvs
Ar7zjsH7VavVtHz5coqOjqaLFy8avL9jx44Rx3FkY2NDS5YsodWrV2u1w4cP04gRI4jjOFqxYgUR
Eb366qukVCqJ4zgaPXo0ZWVlkZubG73//vukUChoxowZtGPHDlq3bh3179+fHBwc6OjRo8LnCwkJ
oT59+lBBQQHNmTOHOI6jv//+m4iI0tPTycnJiZRKJc2ePVuwY9SoUcRxHHl6etLZs2eJiOitt94i
juOoffv2tHz5clq9ejV99NFH5OHhQRzH0UsvvaR1XWvrV5MZM2aQXC6nl19+mfLz86u8/t1335Gl
pSUNGDCAUlJShOcfdp2IiIKDg4njOHrmmWeqXOt169aRWq0mIiI3NzeysLCgTVpfRKIffviBOI6j
tWvXklqtpvT0dEpLS6uxZWZmPvQ7IImtBikpKQSAvLy8jG2KQfn1119p3LhxxjajwRQWFpJKpaL7
9+8b2xSBP/5gOuHpSVRcLF6/CQkJFB0dTUuWLKGSkhLxOtYTt29rPOjdm13EHTtE6fvQoUMUHR1N
GzZsMHhfpaWl5ODgQO+++26Nx/AiEhoaSsePHyeVSkW//fYbPf/88+Tn50f3798nR0dHio+Pr/Le
vXv3koWFBY0cOZKIiLKzs4njOFq+fDkREWVmZpKVlZXwf3/mzBniOI5++umnKudKSUmhDh06kKOj
I929e5dGjRpFYWFhVKzzxS4qKqJvvvmGOI6jt99+u0798ixevLjG/omIdu/eTUqlkmbMmFHv60RE
9OKLLwr7teHm5kYcx1HLli21fk94sd24cSOdPXtWEHNra2viOK5Ks7W1fWhf0jSyBs3BOQpgntb5
Wi6gpoW1tTXCwsKaTCYsIuCDD9j+ggWAWBE3paWl2Lt3LwBgwIABTTaBRW24uz/YKS+vDLoVqfBv
WFgYOI5DYmKiwUvQKRQKKJVKJCUlIT09XWjZ2dnCMfxa+/nz59G9e3f06dMHI0eOhLu7OziOg0ql
Qnh4uHC8Wq3GrVu3MH/+fDz33HPYuHEjfv31VwDAzp07AVRWfHJ2dsbQoUOxb98+FBUVITg4GB4e
HlrrqeXl5UhPT4dCoYCXlxdycnLw119/YeDAgbh9+zbUarVwbE5ODnJychAYGAgA2Lx5c536BYBT
p04hOjoajz76KJ6uphxWSUkJnnnmGSgUCnz66adVXq/tOvG0aNECubm5uHTpknCtMzIyqtQy5teI
7969q9UX//yTTz6J0NBQ3Lp1C3v27EFubi6mT58OKysrrFu3DjExMdi9ezeuX79exc4qPFSOmxEH
Dx4kAPTYY48Z2xSDsm/fPurTp4+xzWgUr7/+Or0jwnRjXfjlFzYga9mSSMzB9t69eyk6OppWrVol
TIuZLGfPsotYh9GIPlm3bh1FR0fT8ePHDdqPWq0mJycnUigUpFKpiOM4srCwoK5duwojKn40NW/e
PHJxcaFr164REdGePXuEUVrfvn2Fke2sWbOEkdWoUaOooqJC6G/+/Pkkk8mooKCAiNgo9KeffiKO
4+jGjRtERPTss89S69atKTs7m8aOHUv+/v5ao7Vhw4ZRaWkp3bp1iziOo3Xr1tFPP/1EvXr1IgsL
C+E4Nzc3+v333+vcb05ODnXr1o04jqOQkBCKjY2tcr1mzpxJMpmMWrZsSf/73/+0Zm3qcp3mz59P
HMeRnZ2dYKezszPt3r1bOM/Ro0eJ4zjasmULzZw5k1QqFZ0/f56IiIYMGUIymazav+WiRYvqNGrW
RRrZasB7IpuzcxQAWFlZoaSkxNhmNIr+/fsjLi7O2GYgLw949VW2/9FHgFhlQ7Ozs3HkyBEALNSH
E7syvb45cYJtRRrV8vAjRUNnVTt8+DCys7Px/fffIysrC7GxsUhKSsLx48er1Jr94osvEBsbC39/
fwCoMYxr/vz5iImJwc6dO3H9+nU88cQTwv/1qVOnQEQ4cuQI4uPjERISgkmTJgGA4Bw5ZswYXL16
FUFBQdi8eTOuX7+OyZMnIyYmBufOncP27duhUCjg6emJRx99FHPnzsWUKVNw6NAh2NnZYePGjcKo
buTIkXXu197eHseOHcPVq1cRGhqKQYMG4YUXXtD6bKtWrUJ+fj5mzJiBV199FX379hVmHutynbZt
24b+/fsjNzcXx48fR3x8PDIzMxEZGSkcwzuBdenSBf/3f/8HR0dHDBo0CCdOnEBajRUyGo4kthrw
Ae5KpdLIlhgWcxDbHj16ICEhwejlAhcvZpVruncXt+hAbGwsKioqEBYWhlatWonXsaHgp5D51FIi
0a5dOyiVSty+fRu3b982WD/8tGTv3r1hZWWFgQMHCmkjq6NTp07C/sGDB6u9mQoODkZkZCSGDBmC
mJgYHD58uEoKykGDBqFfv34YPXo0oqOjAQD79+8XbHFzc0N+fj6cnZ0BACNGjEBkZCTa67jTjxs3
Djk5OcJUrZ+fH5588kk8/vjj1f5e1tYvj7+/P9avX48TJ07gxx9/xLfffqv1ukqlwkcffYTk5GQU
FhZWEeTarlN5eTl69+4NgIlpr169qrxXE0dHR+zZswelpaXo3r07zpw5g/56zmAmia0G/D+EhVaU
vflhaWlp8plzbGxs0LFjRxw9etRoNsTHA198warYLFvGtmJw8eJFXLp0CZaWlhhg4HhU0eBHtl27
itqtQqEQfrBP8DYYgMuXLwMAMjMzUVpaqrVu+7DYUGKOrFqPdV9PTU1FRUWF1ijZ19cX27dvR1pa
Gj7//HMsWLAAtra2wv+MlZUVhg8fDk9PT8THx6Nly5Z46qmnsH79+io2jH1Q6vDDDz/Eiy++iNOn
T6Nnz57V+n48rF9dOnfujF69emmF82ji7u6O8ePHY8OGDbWGLPLXKTc3F5mZmbh37x4Ath6reb01
1541CQ4OxpIlSwCwTHVj9VjeEQDkDz+k+cDH2zX17DuNxRzEFgB69eqFgwcPYuDAgaL3nZ0NPPMM
c456+23xBmTFxcXYtWsXAOYUZRZLHnl5wJkz7G7FCMV/u3TpgqNHj+LcuXN4/PHHq0zr6oN///0X
APvOOjo6ao2iH3nkERw5cgSOjo41vp8fABARfvvtN0G8b9++jV9//RWJiYl48803BYclAOjTpw+i
oqKEx0qlEt7e3rhx44bwnKurK6ysrBASEoK4uDj0798fkyZNglqt1nJecnV1Fc6xbNkyyOVyfPXV
V4iMjMTu3bu1voe19VteXo5169YhLCwMubm5uHbtGnbv3o3Y2Fi89tprAIDt27eD4zgEBgbi8OHD
uHr1Kj7//HN069YN7u7uD71O169fR2FhIb7++mv8+eefWlnCrKyscPz48RpLT06aNAlJSUlIS0vD
zJkza+ynIUhiqwGfNaopZyHRB+YwjQwAjz76KJYvXy56v0TArFnAzZts+vjdd8Xql/Dnn38iPz8f
rVq1QheRp1wNxp49QFkZ0LMnqyovMk5OTmjdujWuXLmChIQE9OjRQ+99BAUFwdXVVRAhjuMwYMAA
uLq6onv37gCAoUOHwsnJqcp7Bw8eLBxjY2ODr7/+Wut1CwsLfPPNN3j22WcBsCQPycnJmD59epVz
DR8+XCtBxp49ezB//nwAbGS3f/9+9O/fH5MnT4a7u7swlbp79274+/tj9OjRAIClS5fCwsICX3zx
BUaMGIG4uLg69ZuRkYEZM2aA4zhhhO7t7Y0ffvgBU6ZMAcDWoq9duwaZTAa1Wg1ra2u88847gp0P
u05ubm6ws7NDv3794OjoiF69eqF169bo0qULvL29ERwcXP0f6QHvv/9+ra+npqY2zEei3i5VZszZ
s2cJALVr187YphiU9PR0cnFxMbYZjebmzZvk6uoqer8ffsgcZ1u0ILpyRbx+T5w4QdHR0fThhx/S
3bt3xevY0Eydyi7oJ58YzYTExESKjo6mpUuXann1miL37t0jlUpFW7durfJaYmIijRkzptb3X79+
nUaMGEHz589/aF8//vgjubu7U1paWp36VavVFBwcLHga817Lmjz33HOCtzafpMMQ7N+/X8tLuq5E
RUXRzJkz690fR6SzANCMyc7OhpOTE2xtbU06DvVh3L9/H66urgaPLTQ0RAQnJyckJSUJ01yGZutW
YORIlkh/61ZWs1YMLl++jF9//RVEhFGjRiEsLEycjg1NURHg5cXm5c+fFzfPpQZqtRrLli1DdnY2
xo8fL6RzlDBfsrOz8fjjj2Pv3r2i5FYw78XJeuLg4ACVSoWCggIhR7I5olKpUFpairKyMmOb0ig4
jkObNm2E9StDc+oUW6cFWJiPWEKbnJyMTZs2gYjQs2dP8xFagBWKz85mi94PhLawkDUx4fMLA8DJ
aivaS5gbjo6OOHnypGhJjCSx1YCvlQoAN2/eNLI1hoPjODg4OGhlrzFVfH19RalgdOkSS5xfUMDK
573+usG7fNDvJfz8888oKytDx44d9R6OYHRWrGBbjbCOjRsrqyeJSadOnWBhYYErV66Yxf+GRNNC
Elsd+JhFMctRGQNXV1fcvXvX2GY0Gi8vL4P/rVJSgMhIIDOTFYT//ns2jWxIiAjx8fHYsGEDKioq
0LVrVzzxxBOmn7xCkyNHgGPHAAcHYPx44ekVK4Cvv2aOaGKiUqmE+NLqqtlISDQGSWx1aA4jWwDw
8PAwSJYUsXFzc0NGRobBzp+czIqcp6ay0nlbtgCGTkGcm5uLn3/+WUgC0K9fPwwZMsS8hBYAeK/P
OXOE1FtqNXD9OnD2LHDokPgm8R7eCQkJ1dZWlZBoKFLojw7NZWTr7e1t0gXkeWbMmFFjkHpjuXQJ
GDgQuHUL6NwZ2LHDsOkYKyoqcPz4cSGMwtraGqNHj0br1q0N16mxOH4ciIkBbG2BefOEp2Uy4Nln
WWGHr79mpW3FpFWrVsIN3MWLF2uMx5SQqC/SyFYHXmzNfWTr7++P5ORkY5vRaFxdXeHm5qb38548
yX7ob91i23372GynISgvL8fJkyfx9ddfIzY2FmVlZQgJCcELL7xgnkILAHxR7jlzgAepAnmefx6Q
y4HffmMzCmLCcZwwupUcpST0iSS2OvTv3x8LFy40SGB7U6J169aiefGaGhs2AL17V67RxsToP9cC
ESEtLQ0xMTH44osvsHPnTuTm5sLFxQUTJkzA2LFj0aJFC/122lQ4cQLYuZNNE7zySpWXvbyAMWOA
igrgq6/ENy8sLAyWlpZISUnBnTt3xDdAwiyR4mybKf/88w9mzJhh8GonpkRpKUu9+Pnn7PH06cxZ
Rx9rtESEnJwc3Lp1C8nJybh69apQZQpga8+9evVCSEiI+a3N6jJsGBPbBQuAauqVAmxmoWtXdpNz
8yYg9n3Hjh078M8//6B79+4YPHiwuJ1LmCWS2DZT+MQWeXl5kMulpftLl1hIz6lTgIUFsGQJMHdu
3b2Oy8vLUVRUhOLiYuTn5yM3N1do2dnZSE9Pr5IiU6VSoUOHDggPD4eHh4f5iyzARrXdurFR7fXr
QC3JSHr3Bg4eZMUeNJZ1RSEtLQ0rV66EUqnEK6+8AoVCIa4BEmaH9CurQWlpqVCZgv/h0/wBNMZz
HMdVafV5vrrnbG1t4ezsDC8vLyQmJiIgIADZ2dn1PjcRobS0VEiQwe9rPi4rK0N5eTkqKiqqbDmO
g0wm02pyubxeTa1Wo6KiQqtp9sPv29vbw8fHRyglxlNcDHz8MfDJJ2xk6+fHYjwffbTymMzMTPz5
55+4f/8+1Go1iAhqtVrou7i4uE6eqyqVCh4eHvDz80NAQEDzEVhNFi9m2zlzahVagNUJPngQWLqU
HS7mPaGHhwc8PT1x+/ZtXLhwQah7KyHRUCSx1aC0tLRKzUVzxN3dHc899xw6duyI06dPo1WrVli1
apWxzdI7NjY2CAsLQ0REBFxcXLReU6vZ2uzChcC1a+y56dOB//4X0Ewoc+HCBfzxxx8PzbYlk8lg
bW0NpVIJW1tb2NvbC83BwQEtW7aEra1t8xNXTTTXav/zn4cePnw4EBQEXL7MnKXGjRPBRg06d+6M
27dv48SJEwgLC2vefzuJRiOJrQaWlpbo3bu3UI2CqqkhKeZzmlvdVt3zdT2W4zio1WpERETg1KlT
mDhxIvz8/FBcXFzv8ygUClhaWsLS0lJrn3+sUCiEUaiFhYXWVnOEqDlC5UekdWkcx2mdV6FQwNPT
E76+vnB1da1SLrGsDNi8mS0VnjnDngsJYWuzD2pNC58zNzcXdnZ2mDp1qjAK191aWFhAqVRCoVBI
P8YPox6jWoCFAc2fD7z4IpvWHzvW8MlENOnQoQP++usv3Lp1C9evX4e/v794nUuYHdKabTNm9+7d
+OSTTxAXF2dsUwxOTg6wahXzbuWjulq1AqKjgSlTxJ2ibJbwHk91WKvVpLAQ8PYGsrJYkguxgwQO
HDiAuLg4+Pv7Y/LkyeJ2LmFWSKE/zZjOnTsjISEB5nq/pVYD+/cDU6eycJIFC5jQtm0LfPMNkJQE
zJghCa0o1HNUy6NSVaZNXrLEAHY9hG7dusHKygrJycm4fv26+AZImA3SyFYHtVqNjz/+GESEN998
ExYWFsY2yaB4e3tj//79CAwMNLYpeuPSJbYeu3YtS7fIM2AAC+scPJhNUUqIRANHtTzp6YCvL1sC
uHwZEPurun//fsTHx8PNzQ3PPvtslaUJCYm6IH1rdEhLS8PChQuxbNkysxdagFU6SUhIMLYZjebC
BZaUKDQUCA5m08PJyWyq+O232Y/0X38BQ4dKQis6DRzV8ri7A08/zQoTLF2qZ9vqQI8ePWBvb4+M
jAycOnVKfAMkzALpZ0eH1Af54fi0jeZOeHg4zp49a2wz6k1pKXDgAPMmbt+etUWLWP1xBwe2Dhsb
ywZSH3wAmGvWwybPyZOVSaXr4IFcE3yiqe+/Z+u3YqJQKPD4448DAPbt24eCggJxDZAwCySx1YHP
idxcxDY0NBTnzp0zthkPhYhND3/9NQsJcXYG+vQBPvyQjWodHYFp04A//wQyMoA1a4DHH2cJKiSM
SCNHtTyhoazMYWEh8O23erKtHoSEhCAwMBBFRUXYsWOH2fo5SBgOSWx14CvhNBexDQmy/lAbAAAg
AElEQVQJwcWLF41tRrVkZrK115kz2ZpdcDDL6rRjByvizj/etYut633/PTBkiOFL4EnUkRMn9DKq
5Xn1VbZduhTIz2/06eoFx3EYPnw4rKyskJiYaJKzQRLGRfLD1IGvhBMQEGBkS8QhKCgI169fR3l5
udHTNpaUsHrie/awKeBTp7QLiLu4sJJ3kZFs1NpM7odMl4UL2fallxo1quV5/HGW2evoURYn/cEH
jT5lvbC3t8egQYOwbds27Nq1Cz4+PnB0dBTXCAmTRRJbHa49SCfUXMTWysoKbm5uSElJEf0zEwEX
LzJh3bOHhekUFla+bmkJ9OxZKa4dO0rOTSbDgQPsD2tnx2Ku9ADHsfCfxx5j2+eeYzG4YtKxY0ck
JSXh0qVL2LRpE6ZPn270m1QJ00D6lujQ3Ea2AKtte/36dVE+8507zCuYH73evq39eocOleLau7dh
i7VLGAgi5gIOsLlfJye9nfrRR1kmqU2b2BLCb7+Jm1WK4zg88cQTSE9PR1paGvbs2YMhQ4aIZ4CE
ySLF2WqgVqthY2OD4uJi5OXlmW89UR0mTZqEgQMHYsqUKXo/d3Exy/zDi6tuRb+WLZmwRkayKWJP
T72bICE2u3axGCtnZ5Z4Ws/FgFNTmfd5fj6wfj3w1FN6PX2duHXrFr7//nuo1WqMGDECHTt2FN8I
CZNCGtlqkJGRgeLiYri4uDQboQUgVDfRB2o1C7/Zs4e1+HgmuDxKJdCrV+XoNTRUmho2K4gq12rf
eEPvQguwqeMlS4Bnn2VOzv36sZs2MfHy8sKQIUOwc+dO7NixA05OTvDx8RHXCAmTQhJbDe7evQuA
FfJuTnTt2hWFmoul9UCtZqE3cXFszTU+Hrh3T/uY8PBKce3ZE7C2brzNEk2U335jnm0eHsDs2Qbr
ZuZM5qm+dy8waRIL+RI7zKtLly64e/cujh8/jg0bNmDmzJmSw5REjUhiq0HWg2h53Zqn5s6YMWPq
fGx+PovoOHaMtcOHWYiOJl5eLDUiPzXczO5dmi8VFcA777D9hQsNelfFcSyWulMntjzxwQcsqYnY
DBo0CPfu3cPVq1exbt06TJs2rVnNiknUHUlsNeDFVro7ZWRlAefOAWfPsrXWY8fYKFZ3ld/Tk03l
9e3LtgEB4jqtSDQRfvmFuZf7+bGhp4Fp1Yp1OWgQy53xyCNsX0xkMhnGjBmDH3/8EWlpaVi3bh2m
Tp0KleTZJ6GDJLYalJaWAgCUSqWRLRGXsjIgMZGJKt/OnassRaeJQsFCcLp1A7p3Z96hgYGSuDZ7
yspYQmqADTFFyizy+OOs20WLWHH5Q4eYH4CYKJVKPPPMM1izZg3u3r2LdevW4ZlnnoGNjY24hkg0
aSSx1UCtVgOA2Vb1IALS0irFlBfWixfZb6UuKhULxQkLY61rVya0zexeRKIufPMN8zxu2xZ45hlR
u164EPj3X2DjRiAqCvj7b/G92lUqFSZNmoQ1a9YgPT0d33//PSZOnAgnPYY9SZg2kthqYE5im5vL
pnz//Zd5B/PCquu8xBMYWCmqfAsIkDyFJepAdnblqPaTT0QvECyTsXKKN2+yDGRRUcxhz8FBVDPQ
okULTJs2DT///DPS09Px3XffYeTIkWjTpo24hkg0SSSx1aCiogKAaYltTg4TVV5Y//2X7d+6Vf3x
Dg5VRbV9e8DWVly7JcyIxYvZAn/fvsCIEUYxQakEtm5l2aVOn2Zrt3v2GCTyqFZsbW0xdepUbNmy
BZcvX8avv/6K7t27o1+/frCyshLXGIkmhSS2GjTlkS0vqryY8sJaU3isUgm0a1dZfi48nK1ltWol
ra9K6JGjR4GvvmLDyy++MOqXy8WFhQL17g0cP87yasTEiH8jaWVlhQkTJuDw4cPYt28fjh07hn//
/RcDBgxAaGhos6iTLVEVSWw1UKlU6N27N7p162aU/isqgJQUICmpsiUmPlxUg4OBkJBKYQ0JAfz9
pfJyEgYmK4sFuRIBr7/OFvSNjLc3sG8fE9zDh9kId/t2vWaMrBMcx6Fnz54IDAzEzp07cevWLWzd
uhX79+9Ht27dEBoaKoUINTOkdI0iQsRiUlNSWMq51FTgxg3gyhUmrFevsqLo1cGLKi+mvLD6+Umi
KmEESkvZ4uhffzGRPXq0SXnOXb7MYr351I4xMcarEkVEOHPmDA4dOoR7Gk4TPj4+aN26Nby9veHp
6QlLqTakWSOJbSMhYrVV79wB7t6tbJqPb92qFFfN1IXV4eUFBAUBbdpUtpAQSVQlmhDFxcCYMcDO
nSxP4okTQBNMVZiaCgwezJZdvL1Zyub27Y1nDxEhKSkJCQkJuHLliuAjArCRsIODA5ycnODk5AQb
GxuoVCqoVCrY2NjA2toaSqUSVlZWsLKyAietBZkckthqUFzMEjfk5ta9ZWayOqx1xcGB/eP7+LCt
tzfQujUT1datJUcliSZOWhrL/H/wIJub3bMHiIgwtlU1kpUFDB/OvJRtbIDVq41TuECXkpISXLly
BTdu3MDNmzeRnp6O+vwUW1lZQalUajXN5/h9Xqx5AZcwHpLYanDrVsOmmqyt2Q2+q2tl03zs4VEp
rtIyjYTJEhsLTJ4MZGSwL/Xu3eJnkGgAhYXArFks2xQAzJsH/N//sQQtTYXy8nJkZ2cjKysL2dnZ
KCwsRGFhIe7fv4/CwkIUFRWhpKQExcXFQvKd+jBw4ED06NHDAJZL1BVJbDUoLGQOFfb2dW/OzuyO
WULCbMnIAF55pVKt+vYFfv0VcHc3qln1gQj43/+A+fOB8nKgc2fghx9M4l6hCmq1WhBevtX0uLCw
EAUFBejZsyeCg4ONbXqzRhJbCQmJ6snOZrXsvvySOSYolcC77wKvvSZ64gp9cfQoMH48c1JUKJgT
9euvS8s3EoZHElsJCQltUlKA5ctZCsbcXPbcsGFMdAMCjGubHsjPBxYsYB8PYDPi773HZsglh2AJ
QyGJrQYpKSnIyspC69atYSvd6ko0J8rK2Brs99+zVEwPErxg4ECmRI8+alz7DMDhw2xa+cQJ9rhV
KzZbPm2a+KkeJcwfSWwlJJorJSVAfDwT1w0bKhNny+WshM5LL7G6dWaMWs0++gcfsBAhgM2Wjx3L
8nX07du0HKkkTBdJbCUkmgslJUBCAouDOXCAJaS4f7/y9fbtgYkTgalT2dxqM0KtBnbsYDPl+/ZV
Pu/gwHJ3jBoFREZK0QQSDUcSW03KyoAzZ1h+V300maz21ywsqt/q7usLIvarorl92HO1vV5ezn6s
799nDjT8vuZzhYVAURFrxcWV2+Jidh3kcjZ0UCjYgpmjY2VzcmLNxYU1V1f2a9dUA/qJmKDpXofq
rlFJSeX3g/87883SErCyqlvjj7WwYNe6oADIy2PxsLdvs8wOFy+ylphYNUVZeDhTk3HjWFWKpnpt
ReTaNWDNGmDLlsrRLsAucZcubLTbrx/Qo4fkWCVRdySx1SQjo2mGM9QkzPURRnNBoagUX91ma8vE
h28KBfvsFRU1t5ISJkB803xc0351rxUVMaFr6te6fXtWGuexx9h6rLFyGJoISUnAH3+wmfZjx9hX
hkcmY9ndunYFunVjQhwSwupAS0joIomtJvfusbkiXqT00TRFT/d5Xgiq2/L7+kZ3xK05uqpuRF7b
63I5CzLmm61t9fvW1mwhTKms3OfLjZWVsRFyWRkb7ebksJCT7GyW/icri6XpysxkuS81pz2bIpaW
2tekumZryz6/7s0R/zfnBbw+raKi8vwtWrBpYE9P1tq1Y4m127WT5kEbQX4+c6qKi2MtIYF9dTXh
OFYEhM9d3ro1e+znx5LaSOu/zRdJbJs6RNULckVF/YXTHKYIi4rYTREvwJpCXFjIRFtzBMrPAtTU
NKdi+RFxffatrNgvqErFhM5E408l6k9xMaude/w482g+dYqNhHUFmEcmYxMJfn6s+fgAvr7aW2tr
MT+BhJhIYishISGhJ0pLWcUhvu70tWvA9etAcjJLB/uwX1tXV20B9vUFAgMrR8hNrf58WloanJ2d
pYpFdUASWw3OnDmDsrIyhIaGwqqpfaslJCRMmtJS5q+WnMxKa6akaG9TU9nETE1wXGXhEl6A+f3A
QOM4a40cORKHDx/GM888g+nTpyPUFPNfioQkthp06tQJp0+fxj///IOIJlzJREJCwvxQq4H0dG0R
Tk5mda6vXmUj5NrcONzdqxfi1q2Zc39DIKIay/mVl5ejW7duSEhIEJ7r0qULpk+fjgkTJsBBygyi
RZMU2y1btgiVLXjziKjGfX099+WXXyIpKQlz5sxB27Zta32vWq1GaWlpta2kpKTG1/gGAAqFokqz
traGnZ2d0Fq0aKH1mG/29vbCvoWeC91WVFSgqKioSuP/8WQymVazsLCApaUlFAqFsOX3LSwsTLr2
Jv83V6vVQquoqKj2b13dPr8FALlcDgsLC6FpPra0tISVlRUsLS21mu5zsgaGgqnVahQXF6OoqEjY
6u7zj4uLi1FWVqbVysvLqzyuLxYWFtV+5x/W+O8Zx3HC909zy3EciKiKnTXtl5WVCX8nzX19PGdp
aYnAwEC0b98e7dq1g5+fH/z8/ODj4wNXV9cG/e14ysqYCF+9Cly5Utl4Ma6tGNBzz1Wmp7xw4QJW
r16N7OxsrZaVlYWCggLhWpWXl6OiogIymUyrbB+/tbGxgZ2dHQA2nZycnIySB/VGFQoFHnnkEYwe
PRoTJ05s9Gc3B5qk2NrZ2SE/P9/YZpgMNjY2WuJrY2MDuVwOhUIBuVwOuVwuCITuD011otqQEl61
oSvENW01BVpT2DSFzlBNV1A1n29KWFhYVCvA1V2viooK4e/O/whKGA+VSgVfX1/4+fnB19cXPj4+
WltPT88G3zhXVLA1YV58NYX4yhVWbOGdd9ixH374IRYuXKjHT1Y77777LhYvXixaf02VJim206ZN
Q1FRkTAi0tzWtK+P5+Lj43Hx4kX07t0bHTp0qPW9HMfVOBqpaVTCN8UD/3/d0QMvfnl5eULLz88X
9nNzc6vs5+fnG0QQVCoVrK2ttRr/o64pTPwPOi/iult1U487rQPVjeZ1/778fnXP8c4jFRUVwmiB
b+Xl5cJI4mGzI40VTKVSCWtra2Fb0z5vN3+zVt1oUy6X12vGgoiE70l9m+Z3TnOmQXPLcVy19mo+
5vc1b/J0/y9r+n+tz3MKhQJEJPxtNf/Gus+VlpaiqKhIqF8LQPh+8aNHBwcHODs7w8nJqUF/dyI2
KuZ9mLZs2YJr167B0dGxSrOzs9O6Sedv1DVL+PH7BQUFyM3NRU5OjtY2MTER27ZtQ0lJCaytrbFh
wwYMHz68QbabE01SbI3FG2+8gU8//RQffvgh3nrrLWObUyfUajUKCgq0BLiwsFDrn7usrAxyubzK
j4RCoRB+YDXF1crKSm9Tv2q1ukYhrmlbUVEBCwsLrWlqXbGrqXEcV6/jNacka3qtqUyD8z/guiL8
sOtlZWUFKyurBk9BS0jUlfXr12PatGkoLi5G//79sWnTpgbfJJgbUlCgBvyXIisry8iW1B2ZTCZM
H7dqgtmANH/sJRoHP3pTKBSwsbExtjkSEgJEhPfeew/R0dEAgGeffRbLli0TZvEkJLHVwt7eHgCQ
l5dnZEskJJoOcXFxiI+PR3h4OEaNGmVsc5otTfXvUFRUhOnTp2P9+vWQyWRYsmQJXn755SYzI9RU
kOaVNOA96ySxbbqo1Wo8/fTTkMlkmDlzprHN0Qv79u0Tpnn5aeBBgwahqKiozuf44Ycf4ObmVu1U
uFwux6lTp/Dzzz9X+7qnpyfWrVtX5ZzZ2dmIjIzEgAEDcPnyZXTs2FGfHxsA4OfnB09Pzxpfv3z5
Mnr06KG1Vv7bb7/VeLzudWjXrh0yMzO1jtmxYweUSqXWNQgNDcXatWsb5GVdH5KTk2FhYYGVK1dW
eW3q1KmQyWQ4ePCg1vM1/R22bt0KmUyG9evXAwB+//13uLi4aH2u8PBwXL16Vet8n376Kezs7Kr9
Ltja2uL27dv1+kwHDhzA+vXr0aJFC2zbtg3z5s2ThLY6SEJgx44dBICGDBlibFOaFZs3byY3NzfK
ycmp8lpmZiaFhYVRXFwcERG9+OKLxHEc2dvbE8dxtG/fPq3j33zzTeI4TqsNHjxYeD9PXl4ejRgx
Qus4CwsL+vzzz6m8vNxQH7VaunTpQhzHkZOTEy1cuJA++ugjmjVrFt2/f5/S0tJqbYWFhZSenk4c
x5FcLqfo6GhavXq1Vtu9ezcRES1atIg4jiM/Pz/65JNPaPXq1bRixQry9vYmjuMoJiZGsOn27dvU
qlUrcnV1pa1bt+rts548eZKuXbtGaWlpdOzYMYqOjqbZs2fTkSNHqhxbVlZGnTp1Io7j6Pnnn6fF
ixeTi4sLKZVKOnDgQLXn5jiObGxsaOXKlTR+/HjiOI66detG9+/fJyKic+fOkZWVFdnZ2dEbb7xB
q1evpu+++4769OlDHMdRcHAwpaam6u3z8ly+fJns7Ozok08+IY7jyNXVlS5duqR1zJQpU4jjOLpx
44bwXG1/h7lz5xLHcbR48WI6efIkWVlZUatWrWju3Lm0evVqevPNN8ne3p7s7Ozo4sWLRER07Ngx
4RotWbKkynfl8OHDDfp8y5Yto7Nnzzbovc0FSWw1OHDgAAGgnj17GtuUZkVcXBxxHEdPPfWU1vP3
79+noUOH0sCBA4mI6O+//yaO4+jLL7+ku3fvkr+/P4WEhJBarSYiopUrVwpiwv+QLF26lAIDA4nj
OHryySeppKSEiIhGjx5NHMdR//79afny5f/f3r0HRVX+fwB/P7uschUWQrkEORpIQTVkjowXWCXR
QEsbs1LxNl5i1KwJsykTDJzRylHLW2pDEyPhbdLxCppmGA1OqSWKlwovMJgi5lJKELx/f/Dd0667
q/1iV759/bxm+GPPPufwPHvOnPc5zznPOVy7di379etHpRSnTJly19pu2fklJSXZ7XzfeOMN7UDA
09PT7iBCKcUZM2aQJOPi4jhu3Ljb/i9L2JaVldlM37hxI5VSXLVqFUmyrq6OPXv2ZFBQEK9fv+7C
1v5VB6UU/fz8SJLNzc0cPXo0c3Jy2NTUpJXNycmhXq/n5MmTtelnzpxheHg4jUYjr169qpVtampi
TEwMQ0NDuWHDBm368uXLqZRieno6SXLbtm1USvHQoUN2dauoqGBISAi7d++ubSeuYtnGLQcASimm
pqbalBk/fjz1ej1/+eUXkndeD7t27dLCtqKigh07duT8+fNtytTV1TE4OJhDhw4lSTY2NjIgIIDz
5s1zafvEnUnYWjl69CgB8JFHHmnvqtxzJk6cSKUUN23aRJJsaWlhRkYGfXx8WF1dTZJcsmQJO3bs
yGvXrpEkP/zwQyqluGvXLpLkq6++ypCQENbW1tosu6mpiTt27KBSimPGjCFJpqenU6fT2dUjJyeH
BoOB33zzjdvaau2pp56iTqfjjz/+6PD748eP8+jRozSbzQwMDGSfPn24Z88eFhUV8eDBg1q53r17
s3///qyurtbOeq9cuWKzrKysLHbu3Nlm2h9//MF+/foxLCxM26HPnDmTSimuXr3axa1trYOXlxcX
LlzIb7/9Vpve0NDA7t27c/LkySTJ69evMygoiK+99prdMs6cOUNvb28uW7ZMm7Z+/Xp6eHjw2LFj
duVzc3Op1+t57do1/vrrrzQYDDaB3NDQoP1msbGx1Ol0Ll//33//PZVSHDlypBa2Op2O+/bt08qM
GTOG/fv31z7faT1MnTpVC1uSzMzMZHZ2tl05Syhbeo5CQkL4wgsv2PSQ1NXVubK5wgEJWysnTpwg
AMbExLR3Ve45tbW1jIyMpNFopNls5oIFC6iU4sqVK7UyTz75JIOCgrTPlZWVDAwM5EsvvUSS3Llz
Jz09PXnhwgWtjNlsZk1NDU+dOqV1n7W0tLC+vp5KKYd1SUhI4KxZs9zUUlsmk4kGg4FVVVUsLCzk
c88957Qrr2vXrnZnLhbx8fHU6/X09fXVduY9evRgVVWVVsZyVvn222+zurqahw8f5sCBA+nh4cHi
4mKt3Pbt2xkUFES9Xs+xY8dqBzuukJWVxa5duzr87tNPP6VSiidPnuSCBQvYrVs3mzNdaxMnTmRS
UhJJ8s8//+RDDz3EuXPnOizb0NBAb29v5uXlkSRTUlKYnJzM8+fPMy0tjaGhodpvZjAYOGnSpDa3
81aWLm5PT0/6+/vzhx9+YHx8PGNjY1lfX0+S9PLy4oABA7R57rQeLN3OS5YsIUlmZ2c7DFuyNWAL
CwvZ0tLCwMBAGgwGent7a5dPevXqxd9++83l7RZ/kbC1UlFRQQDs0aNHe1flnmQ5+wwMDKRSinFx
cWxsbCRJ3rhxg2FhYRw1apRWvq6ujsOGDaPJZCLZ2u0cEBDAnJwc7t27lyaTiV5eXtqOtFOnTvzo
o4+0+Z2F7erVq+/aNlBYWGhTx4CAAOr1eqamptp1HToL24sXL1IpxZycHLa0tPCLL75geXm5XTnr
LlzLX8eOHbXehFtt2bKFMTEx9PPz4969e13S3qysLOp0OofX9yxdre+99x6jo6P58ccfO13OrFmz
GBISwpaWFpaUlNDf3/+2Z2f+/v7MzMwk+dflhqCgIO13eP3111lUVMSffvqp7Y10wNK27Oxs7WCj
pKSEBoOBAwcOZHl5uXZZ41bO1oMlbCsrK0mS8+bNcxq2zzzzDEtLS1lSUkKlFPPz89nQ0MC9e/e6
rc3CloStldOnTxMAo6Ki2rsq9yyTyUSlFGNjY3n58mVtemVlJZVSfPTRR1lVVcVFixZRr9drZS1G
jx5NHx8fLcA6dOjAvLw8FhcXa93PZGs3tbOwPXLkCAcNGuS+Rt7i0qVLLCoq0gIyPz+fSikuXrzY
ppyzsLX8Ntbdyo5YwjY2Npb5+fksKiriiRMnbjtPY2Mj586dy7CwMG2n3haWAypHdbUE0ldffcXg
4GCnZ7WW67aW32LmzJm37YlYsWIFDQaDFiq1tbX08PBgQEAAfXx8qJTikSNH2ty223nnnXfswpZs
PdiybMdKKebm5jqc39F6GDp0qM0NVQkJCQ63j99//50dOnSg2WzWfmPrm7DE3SFDf6xYblf/X3jE
4L9Veno6gNZhDI4eXn78+HFEREQgNzcXGzduRN++fXHy5ElcvnwZADBq1CjcuHEDxv+85qRTp04Y
O3YsBg0aZPMWkuLiYqd12Lx58119VViXLl2QkpKC2NhYAK3PPzYajXj66af/1vxnz54FANTW1qK5
uRmXLl3S/q5cuWJXPi8vD2PHjkVKSgoefvjh2y7bYDBg+vTpqKmp0YaYtIWljdXV1XbfXbx4Ed7e
3jh48KD2fG9rJLF161aYTCb06tULb731FgBg586d2vq2ZjabMWfOHMyaNQv5+fno1q0bACAoKAgD
BgxAfHw8duzYAW9vbyQmJuLgwYNtbp8zV69edTj9+eefx/jx4wG07n9GjhzpsJyj9VBSUmIzxKZz
584O5926dSt69+4NPz8/m22lsbHRZlv5Nz3M599IHmphxfI4O8oTLNuNZR0cPnwYUVFRdt+PGzcO
EyZMQFJSEpRSuHHjBr7++muUlpZi+PDhSE5ORkBAAKZNmwYvLy/MmTMHcXFx2L9/v814TmdvISGJ
LVu2YMWKFe5poJWmpiYUFBSgZ8+eiIuLA9C6E8zMzMTw4cPx4IMP/q3lnDhxAkDrjjsiIgLnzp3T
vnvggQdw9uxZLbjCwsLQq1cvp8s6deoUSktLkZqaij179uDmzZtYtGgRPD09MXjw4H/YUnv79u3D
iy++qH2uqqrCjBkzkJWVhcjISFy4cAHp6elITEyEUgpNTU1Ys2YNysvLMWXKFHzwwQfaQ/ujo6Ox
Zs0aNDc3IzIyEgBw7tw5rFq1Cj4+Pvjss8/sQiw4OBh1dXUwmUzYvXs30tLSkJaWhu3bt2PAgAEu
a6dFVFQUlFIoKCiwG4O6fPlymM1mJCYmokePHgDuvB5OnjwJs9msPVUMAB5//HG7fdfNmzfx/vvv
Y+HChQD+2lb69+8Po9FoM6Y2ISEBpaWlLm+7aCVha8Wyo5cz2/bX7OTFnRMmTIDJZNI+R0dHAwAu
XLgAAPD19dWe7zx79mzo9XpkZmbCZDLhwIEDCA8PBwCn7yvesGEDAgMDkZyc7MLWOFZcXIyMjAxE
RUXh5ZdfRmNjIxYtWoQnnngCqy3vQ/uP+vp6XLt2zeFyunfvDl9fX4wYMUILoD59+iAyMhKPPfaY
zRmi5aUIzmzevBnz5s3TXjoBAEOGDMHOnTu1s1JXOH36NNatWwcAKCsrQ35+PmbPno3MzEwArWel
y5Ytw/r166GUwrPPPotJkyYhIyPD7ox33bp1WLx4MZYtW4b6+nr4+flh2rRp2LJli822Ym3//v3I
y8sD0Bo8u3fvRmpqKoYOHYrvvvsOMTExLmsrAEyfPh3Tp0/H/Pnz8cknn9h85+XlhU2bNtlMu9N6
+PLLLwEA4eHhCA0NBWD/7tn6+npMnToVRqMRKSkpAFpDPzg4GGlpaQBaz6aTk5MRHByM3r17u7TN
4hbt2on9X6ayspIAGBkZ2d5VuWfl5+fTw8PD7qaNoqIienl5saGhwW6eLl26aMNAjh8/zvvuu4+X
Ll3Svl+6dCmVUoyKirJ5YIX1NdvGxkaWlZXRx8fHZjjG3TJs2DCb4Si3+vnnn+nv7+/wYQ5/14ED
B/jmm2/etsyhQ4eo1+up0+mYkZHxj/+XM5bry9Z/kZGRLrsBqy3Ky8vZt29fmyFFrnbrNVtn7rQe
LNdeu3XrRpK8efMm4+PjOWTIEK5du5bDhw/XHughdxn/d5CwtXL+/HkCYERERHtX5Z7V0NDgMFBW
rlzJwMBAh/NkZWXx888/v+1yd+3axYiICO1GmMLCQm1oUW5uLsPCwqjT6VhQUCmTlzgAAAGkSURB
VND2Rgin6urqaDAY2Llz53syBMrKyjh48OA2L6e0tJR6vZ5Lly4lSR47dszmAMbX15fZ2dk0m81t
/l/CNeQVe1aqqqoQERGB8PBwVFVVtXd1hBuNGDEC27Zt0z4nJCTg3XffRb9+/dqxVkL8M5Zu98TE
RCQlJbV3dYQDErZWqqurcf/99yM0NPT//TBu8e+yfft2VFRU4JVXXrnjdUwhhGgrCVsrNTU1CAsL
Q0hICGpqatq7OkIIIf5HyDhbKzLOVgghhDtI2FqRcbZCCCHcQcbZWjEajTh06JBcwxNCCOFScs1W
CCGEcDPpRhZCCCHcTMJWCCGEcDMJWyGEEMLNJGyFEEIIN5OwFUIIIdxMwlYIIYRwMwlbIYQQws0k
bIUQQgg3k7AVQggh3EzCVgghhHAzCVshhBDCzSRshRBCCDeTsBVCCCHcTMJWCCGEcDMJWyGEEMLN
JGyFEEIIN5OwFUIIIdxMwlYIIYRwMwlbIYQQws0kbIUQQgg3k7AVQggh3EzCVgghhHAzCVshhBDC
zSRshRBCCDeTsBVCCCHc7P8ALqdZZsQ8/nwAAAAASUVORK5CYII=
"></img>
</div>
</div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Pretty good for a couple hours's work!</p>
<p>I think the possibilities here are pretty limitless: this is going to be a hugely
useful and popular feature in matplotlib, especially when the sketch artist PR is mature
and part of the main package. I imagine using this style of plot for schematic figures
in presentations where the normal crisp matplotlib lines look a bit too "scientific".
I'm giving a few talks at the end of the month... maybe I'll even use some of
this code there.</p>
<p>This post was written entirely in an IPython Notebook: the notebook file is available for
download <a href="http://jakevdp.github.com/downloads/notebooks/XKCD_plots.ipynb">here</a>.
For more information on blogging with notebooks in octopress, see my
<a href="http://jakevdp.github.com/blog/2012/10/04/blogging-with-ipython/">previous post</a>
on the subject.</p>
</div>
</body>
</html>