##// END OF EJS Templates
Remove ParametricTestCase from nbconvert tests
Remove ParametricTestCase from nbconvert tests

File last commit:

r9713:d698de4e
r12373:07fe9446
Show More
test_serialize.py
241 lines | 7.2 KiB | text/x-python | PythonLexer
MinRK
better serialization for parallel code...
r7967 """test serialization tools"""
#-------------------------------------------------------------------------------
# Copyright (C) 2011 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# Imports
#-------------------------------------------------------------------------------
import pickle
MinRK
test serializing lists / tuples / namedtuples
r9713 from collections import namedtuple
MinRK
better serialization for parallel code...
r7967
import nose.tools as nt
# from unittest import TestCaes
MinRK
mv IPython.zmq to IPython.kernel.zmq
r9372 from IPython.kernel.zmq.serialize import serialize_object, unserialize_object
MinRK
better serialization for parallel code...
r7967 from IPython.testing import decorators as dec
MinRK
test canning classes
r9001 from IPython.utils.pickleutil import CannedArray, CannedClass
from IPython.parallel import interactive
MinRK
better serialization for parallel code...
r7967
MinRK
update serialize tests
r7972 #-------------------------------------------------------------------------------
# Globals and Utilities
#-------------------------------------------------------------------------------
MinRK
better serialization for parallel code...
r7967 def roundtrip(obj):
"""roundtrip an object through serialization"""
bufs = serialize_object(obj)
obj2, remainder = unserialize_object(bufs)
nt.assert_equals(remainder, [])
return obj2
class C(object):
"""dummy class for """
def __init__(self, **kwargs):
for key,value in kwargs.iteritems():
setattr(self, key, value)
MinRK
update serialize tests
r7972 SHAPES = ((100,), (1024,10), (10,8,6,5), (), (0,))
DTYPES = ('uint8', 'float64', 'int32', [('g', 'float32')], '|S10')
#-------------------------------------------------------------------------------
# Tests
#-------------------------------------------------------------------------------
MinRK
better serialization for parallel code...
r7967 @dec.parametric
def test_roundtrip_simple():
for obj in [
'hello',
dict(a='b', b=10),
[1,2,'hi'],
(b'123', 'hello'),
]:
obj2 = roundtrip(obj)
yield nt.assert_equals(obj, obj2)
@dec.parametric
def test_roundtrip_nested():
for obj in [
dict(a=range(5), b={1:b'hello'}),
[range(5),[range(3),(1,[b'whoda'])]],
]:
obj2 = roundtrip(obj)
yield nt.assert_equals(obj, obj2)
@dec.parametric
def test_roundtrip_buffered():
for obj in [
dict(a=b"x"*1025),
b"hello"*500,
[b"hello"*501, 1,2,3]
]:
bufs = serialize_object(obj)
yield nt.assert_equals(len(bufs), 2)
obj2, remainder = unserialize_object(bufs)
yield nt.assert_equals(remainder, [])
yield nt.assert_equals(obj, obj2)
MinRK
update serialize tests
r7972 def _scrub_nan(A):
"""scrub nans out of empty arrays
since nan != nan
"""
import numpy
if A.dtype.fields and A.shape:
for field in A.dtype.fields.keys():
try:
A[field][numpy.isnan(A[field])] = 0
MinRK
catch NotImplementedError when using isnan in test...
r7975 except (TypeError, NotImplementedError):
MinRK
update serialize tests
r7972 # e.g. str dtype
pass
MinRK
better serialization for parallel code...
r7967 @dec.parametric
@dec.skip_without('numpy')
def test_numpy():
import numpy
from numpy.testing.utils import assert_array_equal
MinRK
update serialize tests
r7972 for shape in SHAPES:
for dtype in DTYPES:
A = numpy.empty(shape, dtype=dtype)
_scrub_nan(A)
bufs = serialize_object(A)
B, r = unserialize_object(bufs)
yield nt.assert_equals(r, [])
yield nt.assert_equals(A.shape, B.shape)
yield nt.assert_equals(A.dtype, B.dtype)
yield assert_array_equal(A,B)
@dec.parametric
@dec.skip_without('numpy')
def test_recarray():
import numpy
from numpy.testing.utils import assert_array_equal
for shape in SHAPES:
for dtype in [
[('f', float), ('s', '|S10')],
[('n', int), ('s', '|S1'), ('u', 'uint32')],
]:
MinRK
better serialization for parallel code...
r7967 A = numpy.empty(shape, dtype=dtype)
MinRK
update serialize tests
r7972 _scrub_nan(A)
MinRK
better serialization for parallel code...
r7967 bufs = serialize_object(A)
B, r = unserialize_object(bufs)
yield nt.assert_equals(r, [])
MinRK
update serialize tests
r7972 yield nt.assert_equals(A.shape, B.shape)
yield nt.assert_equals(A.dtype, B.dtype)
MinRK
better serialization for parallel code...
r7967 yield assert_array_equal(A,B)
@dec.parametric
@dec.skip_without('numpy')
def test_numpy_in_seq():
import numpy
from numpy.testing.utils import assert_array_equal
MinRK
update serialize tests
r7972 for shape in SHAPES:
for dtype in DTYPES:
MinRK
better serialization for parallel code...
r7967 A = numpy.empty(shape, dtype=dtype)
MinRK
update serialize tests
r7972 _scrub_nan(A)
MinRK
better serialization for parallel code...
r7967 bufs = serialize_object((A,1,2,b'hello'))
canned = pickle.loads(bufs[0])
yield nt.assert_true(canned[0], CannedArray)
tup, r = unserialize_object(bufs)
B = tup[0]
yield nt.assert_equals(r, [])
MinRK
update serialize tests
r7972 yield nt.assert_equals(A.shape, B.shape)
yield nt.assert_equals(A.dtype, B.dtype)
MinRK
better serialization for parallel code...
r7967 yield assert_array_equal(A,B)
@dec.parametric
@dec.skip_without('numpy')
def test_numpy_in_dict():
import numpy
from numpy.testing.utils import assert_array_equal
MinRK
update serialize tests
r7972 for shape in SHAPES:
for dtype in DTYPES:
MinRK
better serialization for parallel code...
r7967 A = numpy.empty(shape, dtype=dtype)
MinRK
update serialize tests
r7972 _scrub_nan(A)
MinRK
better serialization for parallel code...
r7967 bufs = serialize_object(dict(a=A,b=1,c=range(20)))
canned = pickle.loads(bufs[0])
yield nt.assert_true(canned['a'], CannedArray)
d, r = unserialize_object(bufs)
B = d['a']
yield nt.assert_equals(r, [])
MinRK
update serialize tests
r7972 yield nt.assert_equals(A.shape, B.shape)
yield nt.assert_equals(A.dtype, B.dtype)
MinRK
better serialization for parallel code...
r7967 yield assert_array_equal(A,B)
MinRK
test canning classes
r9001
@dec.parametric
def test_class():
@interactive
class C(object):
a=5
bufs = serialize_object(dict(C=C))
canned = pickle.loads(bufs[0])
yield nt.assert_true(canned['C'], CannedClass)
d, r = unserialize_object(bufs)
C2 = d['C']
yield nt.assert_equal(C2.a, C.a)
@dec.parametric
def test_class_oldstyle():
@interactive
class C:
a=5
MinRK
better serialization for parallel code...
r7967
MinRK
test canning classes
r9001 bufs = serialize_object(dict(C=C))
canned = pickle.loads(bufs[0])
MinRK
test serializing lists / tuples / namedtuples
r9713 yield nt.assert_true(isinstance(canned['C'], CannedClass))
MinRK
test canning classes
r9001 d, r = unserialize_object(bufs)
C2 = d['C']
yield nt.assert_equal(C2.a, C.a)
MinRK
better serialization for parallel code...
r7967
MinRK
test canning classes
r9001 @dec.parametric
MinRK
test serializing lists / tuples / namedtuples
r9713 def test_tuple():
tup = (lambda x:x, 1)
bufs = serialize_object(tup)
canned = pickle.loads(bufs[0])
yield nt.assert_true(isinstance(canned, tuple))
t2, r = unserialize_object(bufs)
yield nt.assert_equal(t2[0](t2[1]), tup[0](tup[1]))
point = namedtuple('point', 'x y')
@dec.parametric
def test_namedtuple():
p = point(1,2)
bufs = serialize_object(p)
canned = pickle.loads(bufs[0])
yield nt.assert_true(isinstance(canned, point))
p2, r = unserialize_object(bufs, globals())
yield nt.assert_equal(p2.x, p.x)
yield nt.assert_equal(p2.y, p.y)
@dec.parametric
def test_list():
lis = [lambda x:x, 1]
bufs = serialize_object(lis)
canned = pickle.loads(bufs[0])
yield nt.assert_true(isinstance(canned, list))
l2, r = unserialize_object(bufs)
yield nt.assert_equal(l2[0](l2[1]), lis[0](lis[1]))
@dec.parametric
MinRK
test canning classes
r9001 def test_class_inheritance():
@interactive
class C(object):
a=5
@interactive
class D(C):
b=10
bufs = serialize_object(dict(D=D))
canned = pickle.loads(bufs[0])
yield nt.assert_true(canned['D'], CannedClass)
d, r = unserialize_object(bufs)
D2 = d['D']
yield nt.assert_equal(D2.a, D.a)
yield nt.assert_equal(D2.b, D.b)