index.html
95 lines
| 3.5 KiB
| text/html
|
HtmlLexer
Matthias BUSSONNIER
|
r8053 | <!doctype html> | ||
<html> | ||||
<head> | ||||
<title>CodeMirror: sTeX mode</title> | ||||
<link rel="stylesheet" href="../../lib/codemirror.css"> | ||||
<script src="../../lib/codemirror.js"></script> | ||||
<script src="stex.js"></script> | ||||
<style>.CodeMirror {background: #f8f8f8;}</style> | ||||
<link rel="stylesheet" href="../../doc/docs.css"> | ||||
</head> | ||||
<body> | ||||
<h1>CodeMirror: sTeX mode</h1> | ||||
<form><textarea id="code" name="code"> | ||||
\begin{module}[id=bbt-size] | ||||
\importmodule[balanced-binary-trees]{balanced-binary-trees} | ||||
\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality} | ||||
\begin{frame} | ||||
\frametitle{Size Lemma for Balanced Trees} | ||||
\begin{itemize} | ||||
\item | ||||
\begin{assertion}[id=size-lemma,type=lemma] | ||||
Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree} | ||||
of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set | ||||
$\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of | ||||
\termref[cd=graphs-intro,name=node]{nodes} at | ||||
\termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has | ||||
\termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$. | ||||
\end{assertion} | ||||
\item | ||||
\begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.} | ||||
\begin{spfcases}{We have to consider two cases} | ||||
\begin{spfcase}{$i=0$} | ||||
\begin{spfstep}[display=flow] | ||||
then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so | ||||
$\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$. | ||||
\end{spfstep} | ||||
\end{spfcase} | ||||
\begin{spfcase}{$i>0$} | ||||
\begin{spfstep}[display=flow] | ||||
then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes | ||||
\begin{justification}[method=byIH](IH)\end{justification} | ||||
\end{spfstep} | ||||
\begin{spfstep} | ||||
By the \begin{justification}[method=byDef]definition of a binary | ||||
tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has | ||||
two children that are at depth $i$. | ||||
\end{spfstep} | ||||
\begin{spfstep} | ||||
As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain | ||||
leaves. | ||||
\end{spfstep} | ||||
\begin{spfstep}[type=conclusion] | ||||
Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$. | ||||
\end{spfstep} | ||||
\end{spfcase} | ||||
\end{spfcases} | ||||
\end{sproof} | ||||
\item | ||||
\begin{assertion}[id=fbbt,type=corollary] | ||||
A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes. | ||||
\end{assertion} | ||||
\item | ||||
\begin{sproof}[for=fbbt,id=fbbt-pf]{} | ||||
\begin{spfstep} | ||||
Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree | ||||
\end{spfstep} | ||||
\begin{spfstep} | ||||
Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$. | ||||
\end{spfstep} | ||||
\end{sproof} | ||||
\end{itemize} | ||||
\end{frame} | ||||
\begin{note} | ||||
\begin{omtext}[type=conclusion,for=binary-tree] | ||||
This shows that balanced binary trees grow in breadth very quickly, a consequence of | ||||
this is that they are very shallow (and this compute very fast), which is the essence of | ||||
the next result. | ||||
\end{omtext} | ||||
\end{note} | ||||
\end{module} | ||||
%%% Local Variables: | ||||
%%% mode: LaTeX | ||||
%%% TeX-master: "all" | ||||
%%% End: \end{document} | ||||
</textarea></form> | ||||
<script> | ||||
var editor = CodeMirror.fromTextArea(document.getElementById("code"), {}); | ||||
</script> | ||||
<p><strong>MIME types defined:</strong> <code>text/x-stex</code>.</p> | ||||
</body> | ||||
</html> | ||||