parallel_multiengine.txt
728 lines
| 23.8 KiB
| text/plain
|
TextLexer
Brian E Granger
|
r1256 | .. _parallelmultiengine: | ||
================================= | ||||
IPython's MultiEngine interface | ||||
================================= | ||||
.. contents:: | ||||
The MultiEngine interface represents one possible way of working with a | ||||
set of IPython engines. The basic idea behind the MultiEngine interface is | ||||
that the capabilities of each engine are explicitly exposed to the user. | ||||
Thus, in the MultiEngine interface, each engine is given an id that is | ||||
used to identify the engine and give it work to do. This interface is very | ||||
intuitive and is designed with interactive usage in mind, and is thus the | ||||
best place for new users of IPython to begin. | ||||
Starting the IPython controller and engines | ||||
=========================================== | ||||
To follow along with this tutorial, you will need to start the IPython | ||||
controller and four IPython engines. The simplest way of doing this is to | ||||
use the ``ipcluster`` command:: | ||||
$ ipcluster -n 4 | ||||
For more detailed information about starting the controller and engines, see our :ref:`introduction <ip1par>` to using IPython for parallel computing. | ||||
Creating a ``MultiEngineClient`` instance | ||||
========================================= | ||||
The first step is to import the IPython ``client`` module and then create a ``MultiEngineClient`` instance:: | ||||
Brian E Granger
|
r1338 | In [1]: from IPython.kernel import client | ||
Brian E Granger
|
r1256 | |||
In [2]: mec = client.MultiEngineClient() | ||||
To make sure there are engines connected to the controller, use can get a list of engine ids:: | ||||
In [3]: mec.get_ids() | ||||
Out[3]: [0, 1, 2, 3] | ||||
Here we see that there are four engines ready to do work for us. | ||||
Running Python commands | ||||
======================= | ||||
The most basic type of operation that can be performed on the engines is to execute Python code. Executing Python code can be done in blocking or non-blocking mode (blocking is default) using the ``execute`` method. | ||||
Blocking execution | ||||
------------------ | ||||
In blocking mode, the ``MultiEngineClient`` object (called ``mec`` in | ||||
these examples) submits the command to the controller, which places the | ||||
command in the engines' queues for execution. The ``execute`` call then | ||||
blocks until the engines are done executing the command:: | ||||
# The default is to run on all engines | ||||
In [4]: mec.execute('a=5') | ||||
Out[4]: | ||||
<Results List> | ||||
[0] In [1]: a=5 | ||||
[1] In [1]: a=5 | ||||
[2] In [1]: a=5 | ||||
[3] In [1]: a=5 | ||||
In [5]: mec.execute('b=10') | ||||
Out[5]: | ||||
<Results List> | ||||
[0] In [2]: b=10 | ||||
[1] In [2]: b=10 | ||||
[2] In [2]: b=10 | ||||
[3] In [2]: b=10 | ||||
Python commands can be executed on specific engines by calling execute using the ``targets`` keyword argument:: | ||||
In [6]: mec.execute('c=a+b',targets=[0,2]) | ||||
Out[6]: | ||||
<Results List> | ||||
[0] In [3]: c=a+b | ||||
[2] In [3]: c=a+b | ||||
In [7]: mec.execute('c=a-b',targets=[1,3]) | ||||
Out[7]: | ||||
<Results List> | ||||
[1] In [3]: c=a-b | ||||
[3] In [3]: c=a-b | ||||
In [8]: mec.execute('print c') | ||||
Out[8]: | ||||
<Results List> | ||||
[0] In [4]: print c | ||||
[0] Out[4]: 15 | ||||
[1] In [4]: print c | ||||
[1] Out[4]: -5 | ||||
[2] In [4]: print c | ||||
[2] Out[4]: 15 | ||||
[3] In [4]: print c | ||||
[3] Out[4]: -5 | ||||
This example also shows one of the most important things about the IPython engines: they have a persistent user namespaces. The ``execute`` method returns a Python ``dict`` that contains useful information:: | ||||
In [9]: result_dict = mec.execute('d=10; print d') | ||||
In [10]: for r in result_dict: | ||||
....: print r | ||||
....: | ||||
....: | ||||
{'input': {'translated': 'd=10; print d', 'raw': 'd=10; print d'}, 'number': 5, 'id': 0, 'stdout': '10\n'} | ||||
{'input': {'translated': 'd=10; print d', 'raw': 'd=10; print d'}, 'number': 5, 'id': 1, 'stdout': '10\n'} | ||||
{'input': {'translated': 'd=10; print d', 'raw': 'd=10; print d'}, 'number': 5, 'id': 2, 'stdout': '10\n'} | ||||
{'input': {'translated': 'd=10; print d', 'raw': 'd=10; print d'}, 'number': 5, 'id': 3, 'stdout': '10\n'} | ||||
Non-blocking execution | ||||
---------------------- | ||||
In non-blocking mode, ``execute`` submits the command to be executed and then returns a | ||||
``PendingResult`` object immediately. The ``PendingResult`` object gives you a way of getting a | ||||
result at a later time through its ``get_result`` method or ``r`` attribute. This allows you to | ||||
quickly submit long running commands without blocking your local Python/IPython session:: | ||||
# In blocking mode | ||||
In [6]: mec.execute('import time') | ||||
Out[6]: | ||||
<Results List> | ||||
[0] In [1]: import time | ||||
[1] In [1]: import time | ||||
[2] In [1]: import time | ||||
[3] In [1]: import time | ||||
# In non-blocking mode | ||||
In [7]: pr = mec.execute('time.sleep(10)',block=False) | ||||
# Now block for the result | ||||
In [8]: pr.get_result() | ||||
Out[8]: | ||||
<Results List> | ||||
[0] In [2]: time.sleep(10) | ||||
[1] In [2]: time.sleep(10) | ||||
[2] In [2]: time.sleep(10) | ||||
[3] In [2]: time.sleep(10) | ||||
# Again in non-blocking mode | ||||
In [9]: pr = mec.execute('time.sleep(10)',block=False) | ||||
# Poll to see if the result is ready | ||||
In [10]: pr.get_result(block=False) | ||||
# A shorthand for get_result(block=True) | ||||
In [11]: pr.r | ||||
Out[11]: | ||||
<Results List> | ||||
[0] In [3]: time.sleep(10) | ||||
[1] In [3]: time.sleep(10) | ||||
[2] In [3]: time.sleep(10) | ||||
[3] In [3]: time.sleep(10) | ||||
Often, it is desirable to wait until a set of ``PendingResult`` objects are done. For this, there is a the method ``barrier``. This method takes a tuple of ``PendingResult`` objects and blocks until all of the associated results are ready:: | ||||
In [72]: mec.block=False | ||||
# A trivial list of PendingResults objects | ||||
In [73]: pr_list = [mec.execute('time.sleep(3)') for i in range(10)] | ||||
# Wait until all of them are done | ||||
In [74]: mec.barrier(pr_list) | ||||
# Then, their results are ready using get_result or the r attribute | ||||
In [75]: pr_list[0].r | ||||
Out[75]: | ||||
<Results List> | ||||
[0] In [20]: time.sleep(3) | ||||
[1] In [19]: time.sleep(3) | ||||
[2] In [20]: time.sleep(3) | ||||
[3] In [19]: time.sleep(3) | ||||
The ``block`` and ``targets`` keyword arguments and attributes | ||||
-------------------------------------------------------------- | ||||
Most commands in the multiengine interface (like ``execute``) accept ``block`` and ``targets`` | ||||
as keyword arguments. As we have seen above, these keyword arguments control the blocking mode | ||||
and which engines the command is applied to. The ``MultiEngineClient`` class also has ``block`` | ||||
and ``targets`` attributes that control the default behavior when the keyword arguments are not | ||||
provided. Thus the following logic is used for ``block`` and ``targets``: | ||||
* If no keyword argument is provided, the instance attributes are used. | ||||
* Keyword argument, if provided override the instance attributes. | ||||
The following examples demonstrate how to use the instance attributes:: | ||||
In [16]: mec.targets = [0,2] | ||||
In [17]: mec.block = False | ||||
In [18]: pr = mec.execute('a=5') | ||||
In [19]: pr.r | ||||
Out[19]: | ||||
<Results List> | ||||
[0] In [6]: a=5 | ||||
[2] In [6]: a=5 | ||||
# Note targets='all' means all engines | ||||
In [20]: mec.targets = 'all' | ||||
In [21]: mec.block = True | ||||
In [22]: mec.execute('b=10; print b') | ||||
Out[22]: | ||||
<Results List> | ||||
[0] In [7]: b=10; print b | ||||
[0] Out[7]: 10 | ||||
[1] In [6]: b=10; print b | ||||
[1] Out[6]: 10 | ||||
[2] In [7]: b=10; print b | ||||
[2] Out[7]: 10 | ||||
[3] In [6]: b=10; print b | ||||
[3] Out[6]: 10 | ||||
The ``block`` and ``targets`` instance attributes also determine the behavior of the parallel | ||||
magic commands... | ||||
Parallel magic commands | ||||
----------------------- | ||||
We provide a few IPython magic commands (``%px``, ``%autopx`` and ``%result``) that make it more pleasant to execute Python commands on the engines interactively. These are simply shortcuts to ``execute`` and ``get_result``. The ``%px`` magic executes a single Python command on the engines specified by the `magicTargets``targets` attribute of the ``MultiEngineClient`` instance (by default this is 'all'):: | ||||
# Make this MultiEngineClient active for parallel magic commands | ||||
In [23]: mec.activate() | ||||
In [24]: mec.block=True | ||||
In [25]: import numpy | ||||
In [26]: %px import numpy | ||||
Executing command on Controller | ||||
Out[26]: | ||||
<Results List> | ||||
[0] In [8]: import numpy | ||||
[1] In [7]: import numpy | ||||
[2] In [8]: import numpy | ||||
[3] In [7]: import numpy | ||||
In [27]: %px a = numpy.random.rand(2,2) | ||||
Executing command on Controller | ||||
Out[27]: | ||||
<Results List> | ||||
[0] In [9]: a = numpy.random.rand(2,2) | ||||
[1] In [8]: a = numpy.random.rand(2,2) | ||||
[2] In [9]: a = numpy.random.rand(2,2) | ||||
[3] In [8]: a = numpy.random.rand(2,2) | ||||
In [28]: %px print numpy.linalg.eigvals(a) | ||||
Executing command on Controller | ||||
Out[28]: | ||||
<Results List> | ||||
[0] In [10]: print numpy.linalg.eigvals(a) | ||||
[0] Out[10]: [ 1.28167017 0.14197338] | ||||
[1] In [9]: print numpy.linalg.eigvals(a) | ||||
[1] Out[9]: [-0.14093616 1.27877273] | ||||
[2] In [10]: print numpy.linalg.eigvals(a) | ||||
[2] Out[10]: [-0.37023573 1.06779409] | ||||
[3] In [9]: print numpy.linalg.eigvals(a) | ||||
[3] Out[9]: [ 0.83664764 -0.25602658] | ||||
The ``%result`` magic gets and prints the stdin/stdout/stderr of the last command executed on each engine. It is simply a shortcut to the ``get_result`` method:: | ||||
In [29]: %result | ||||
Out[29]: | ||||
<Results List> | ||||
[0] In [10]: print numpy.linalg.eigvals(a) | ||||
[0] Out[10]: [ 1.28167017 0.14197338] | ||||
[1] In [9]: print numpy.linalg.eigvals(a) | ||||
[1] Out[9]: [-0.14093616 1.27877273] | ||||
[2] In [10]: print numpy.linalg.eigvals(a) | ||||
[2] Out[10]: [-0.37023573 1.06779409] | ||||
[3] In [9]: print numpy.linalg.eigvals(a) | ||||
[3] Out[9]: [ 0.83664764 -0.25602658] | ||||
The ``%autopx`` magic switches to a mode where everything you type is executed on the engines given by the ``targets`` attribute:: | ||||
In [30]: mec.block=False | ||||
In [31]: %autopx | ||||
Auto Parallel Enabled | ||||
Type %autopx to disable | ||||
In [32]: max_evals = [] | ||||
Brian E Granger
|
r1338 | <IPython.kernel.multiengineclient.PendingResult object at 0x17b8a70> | ||
Brian E Granger
|
r1256 | |||
In [33]: for i in range(100): | ||||
....: a = numpy.random.rand(10,10) | ||||
....: a = a+a.transpose() | ||||
....: evals = numpy.linalg.eigvals(a) | ||||
....: max_evals.append(evals[0].real) | ||||
....: | ||||
....: | ||||
Brian E Granger
|
r1338 | <IPython.kernel.multiengineclient.PendingResult object at 0x17af8f0> | ||
Brian E Granger
|
r1256 | |||
In [34]: %autopx | ||||
Auto Parallel Disabled | ||||
In [35]: mec.block=True | ||||
In [36]: px print "Average max eigenvalue is: ", sum(max_evals)/len(max_evals) | ||||
Executing command on Controller | ||||
Out[36]: | ||||
<Results List> | ||||
[0] In [13]: print "Average max eigenvalue is: ", sum(max_evals)/len(max_evals) | ||||
[0] Out[13]: Average max eigenvalue is: 10.1387247332 | ||||
[1] In [12]: print "Average max eigenvalue is: ", sum(max_evals)/len(max_evals) | ||||
[1] Out[12]: Average max eigenvalue is: 10.2076902286 | ||||
[2] In [13]: print "Average max eigenvalue is: ", sum(max_evals)/len(max_evals) | ||||
[2] Out[13]: Average max eigenvalue is: 10.1891484655 | ||||
[3] In [12]: print "Average max eigenvalue is: ", sum(max_evals)/len(max_evals) | ||||
[3] Out[12]: Average max eigenvalue is: 10.1158837784 | ||||
Using the ``with`` statement of Python 2.5 | ||||
------------------------------------------ | ||||
Python 2.5 introduced the ``with`` statement. The ``MultiEngineClient`` can be used with the ``with`` statement to execute a block of code on the engines indicated by the ``targets`` attribute:: | ||||
In [3]: with mec: | ||||
...: client.remote() # Required so the following code is not run locally | ||||
...: a = 10 | ||||
...: b = 30 | ||||
...: c = a+b | ||||
...: | ||||
...: | ||||
In [4]: mec.get_result() | ||||
Out[4]: | ||||
<Results List> | ||||
[0] In [1]: a = 10 | ||||
b = 30 | ||||
c = a+b | ||||
[1] In [1]: a = 10 | ||||
b = 30 | ||||
c = a+b | ||||
[2] In [1]: a = 10 | ||||
b = 30 | ||||
c = a+b | ||||
[3] In [1]: a = 10 | ||||
b = 30 | ||||
c = a+b | ||||
This is basically another way of calling execute, but one with allows you to avoid writing code in strings. When used in this way, the attributes ``targets`` and ``block`` are used to control how the code is executed. For now, if you run code in non-blocking mode you won't have access to the ``PendingResult``. | ||||
Moving Python object around | ||||
=========================== | ||||
In addition to executing code on engines, you can transfer Python objects to and from your | ||||
IPython session and the engines. In IPython, these operations are called ``push`` (sending an | ||||
object to the engines) and ``pull`` (getting an object from the engines). | ||||
Basic push and pull | ||||
------------------- | ||||
Here are some examples of how you use ``push`` and ``pull``:: | ||||
In [38]: mec.push(dict(a=1.03234,b=3453)) | ||||
Out[38]: [None, None, None, None] | ||||
In [39]: mec.pull('a') | ||||
Out[39]: [1.03234, 1.03234, 1.03234, 1.03234] | ||||
In [40]: mec.pull('b',targets=0) | ||||
Out[40]: [3453] | ||||
In [41]: mec.pull(('a','b')) | ||||
Out[41]: [[1.03234, 3453], [1.03234, 3453], [1.03234, 3453], [1.03234, 3453]] | ||||
In [42]: mec.zip_pull(('a','b')) | ||||
Out[42]: [(1.03234, 1.03234, 1.03234, 1.03234), (3453, 3453, 3453, 3453)] | ||||
In [43]: mec.push(dict(c='speed')) | ||||
Out[43]: [None, None, None, None] | ||||
In [44]: %px print c | ||||
Executing command on Controller | ||||
Out[44]: | ||||
<Results List> | ||||
[0] In [14]: print c | ||||
[0] Out[14]: speed | ||||
[1] In [13]: print c | ||||
[1] Out[13]: speed | ||||
[2] In [14]: print c | ||||
[2] Out[14]: speed | ||||
[3] In [13]: print c | ||||
[3] Out[13]: speed | ||||
In non-blocking mode ``push`` and ``pull`` also return ``PendingResult`` objects:: | ||||
In [47]: mec.block=False | ||||
In [48]: pr = mec.pull('a') | ||||
In [49]: pr.r | ||||
Out[49]: [1.03234, 1.03234, 1.03234, 1.03234] | ||||
Push and pull for functions | ||||
--------------------------- | ||||
Functions can also be pushed and pulled using ``push_function`` and ``pull_function``:: | ||||
In [53]: def f(x): | ||||
....: return 2.0*x**4 | ||||
....: | ||||
In [54]: mec.push_function(dict(f=f)) | ||||
Out[54]: [None, None, None, None] | ||||
In [55]: mec.execute('y = f(4.0)') | ||||
Out[55]: | ||||
<Results List> | ||||
[0] In [15]: y = f(4.0) | ||||
[1] In [14]: y = f(4.0) | ||||
[2] In [15]: y = f(4.0) | ||||
[3] In [14]: y = f(4.0) | ||||
In [56]: px print y | ||||
Executing command on Controller | ||||
Out[56]: | ||||
<Results List> | ||||
[0] In [16]: print y | ||||
[0] Out[16]: 512.0 | ||||
[1] In [15]: print y | ||||
[1] Out[15]: 512.0 | ||||
[2] In [16]: print y | ||||
[2] Out[16]: 512.0 | ||||
[3] In [15]: print y | ||||
[3] Out[15]: 512.0 | ||||
Dictionary interface | ||||
-------------------- | ||||
As a shorthand to ``push`` and ``pull``, the ``MultiEngineClient`` class implements some of the Python dictionary interface. This make the remote namespaces of the engines appear as a local dictionary. Underneath, this uses ``push`` and ``pull``:: | ||||
In [50]: mec.block=True | ||||
In [51]: mec['a']=['foo','bar'] | ||||
In [52]: mec['a'] | ||||
Out[52]: [['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar']] | ||||
Scatter and gather | ||||
------------------ | ||||
Sometimes it is useful to partition a sequence and push the partitions to different engines. In | ||||
MPI language, this is know as scatter/gather and we follow that terminology. However, it is | ||||
important to remember that in IPython ``scatter`` is from the interactive IPython session to | ||||
the engines and ``gather`` is from the engines back to the interactive IPython session. For | ||||
scatter/gather operations between engines, MPI should be used:: | ||||
In [58]: mec.scatter('a',range(16)) | ||||
Out[58]: [None, None, None, None] | ||||
In [59]: px print a | ||||
Executing command on Controller | ||||
Out[59]: | ||||
<Results List> | ||||
[0] In [17]: print a | ||||
[0] Out[17]: [0, 1, 2, 3] | ||||
[1] In [16]: print a | ||||
[1] Out[16]: [4, 5, 6, 7] | ||||
[2] In [17]: print a | ||||
[2] Out[17]: [8, 9, 10, 11] | ||||
[3] In [16]: print a | ||||
[3] Out[16]: [12, 13, 14, 15] | ||||
In [60]: mec.gather('a') | ||||
Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] | ||||
Other things to look at | ||||
======================= | ||||
Parallel map | ||||
------------ | ||||
Python's builtin ``map`` functions allows a function to be applied to a sequence element-by-element. This type of code is typically trivial to parallelize. In fact, the MultiEngine interface in IPython already has a parallel version of ``map`` that works just like its serial counterpart:: | ||||
In [63]: serial_result = map(lambda x:x**10, range(32)) | ||||
In [64]: parallel_result = mec.map(lambda x:x**10, range(32)) | ||||
In [65]: serial_result==parallel_result | ||||
Out[65]: True | ||||
As you would expect, the parallel version of ``map`` is also influenced by the ``block`` and ``targets`` keyword arguments and attributes. | ||||
How to do parallel list comprehensions | ||||
-------------------------------------- | ||||
In many cases list comprehensions are nicer than using the map function. While we don't have fully parallel list comprehensions, it is simple to get the basic effect using ``scatter`` and ``gather``:: | ||||
In [66]: mec.scatter('x',range(64)) | ||||
Out[66]: [None, None, None, None] | ||||
In [67]: px y = [i**10 for i in x] | ||||
Executing command on Controller | ||||
Out[67]: | ||||
<Results List> | ||||
[0] In [19]: y = [i**10 for i in x] | ||||
[1] In [18]: y = [i**10 for i in x] | ||||
[2] In [19]: y = [i**10 for i in x] | ||||
[3] In [18]: y = [i**10 for i in x] | ||||
In [68]: y = mec.gather('y') | ||||
In [69]: print y | ||||
[0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824,...] | ||||
Parallel Exceptions | ||||
------------------- | ||||
In the MultiEngine interface, parallel commands can raise Python exceptions, just like serial commands. But, it is a little subtle, because a single parallel command can actually raise multiple exceptions (one for each engine the command was run on). To express this idea, the MultiEngine interface has a ``CompositeError`` exception class that will be raised in most cases. The ``CompositeError`` class is a special type of exception that wraps one or more other types of exceptions. Here is how it works:: | ||||
In [76]: mec.block=True | ||||
In [77]: mec.execute('1/0') | ||||
--------------------------------------------------------------------------- | ||||
CompositeError Traceback (most recent call last) | ||||
/ipython1-client-r3021/docs/examples/<ipython console> in <module>() | ||||
/ipython1-client-r3021/ipython1/kernel/multiengineclient.pyc in execute(self, lines, targets, block) | ||||
432 targets, block = self._findTargetsAndBlock(targets, block) | ||||
433 result = blockingCallFromThread(self.smultiengine.execute, lines, | ||||
--> 434 targets=targets, block=block) | ||||
435 if block: | ||||
436 result = ResultList(result) | ||||
/ipython1-client-r3021/ipython1/kernel/twistedutil.pyc in blockingCallFromThread(f, *a, **kw) | ||||
72 result.raiseException() | ||||
73 except Exception, e: | ||||
---> 74 raise e | ||||
75 return result | ||||
76 | ||||
CompositeError: one or more exceptions from call to method: execute | ||||
[0:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
[1:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
[2:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
[3:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
Notice how the error message printed when ``CompositeError`` is raised has information about the individual exceptions that were raised on each engine. If you want, you can even raise one of these original exceptions:: | ||||
In [80]: try: | ||||
....: mec.execute('1/0') | ||||
....: except client.CompositeError, e: | ||||
....: e.raise_exception() | ||||
....: | ||||
....: | ||||
--------------------------------------------------------------------------- | ||||
ZeroDivisionError Traceback (most recent call last) | ||||
/ipython1-client-r3021/docs/examples/<ipython console> in <module>() | ||||
/ipython1-client-r3021/ipython1/kernel/error.pyc in raise_exception(self, excid) | ||||
156 raise IndexError("an exception with index %i does not exist"%excid) | ||||
157 else: | ||||
--> 158 raise et, ev, etb | ||||
159 | ||||
160 def collect_exceptions(rlist, method): | ||||
ZeroDivisionError: integer division or modulo by zero | ||||
If you are working in IPython, you can simple type ``%debug`` after one of these ``CompositeError`` is raised, and inspect the exception instance:: | ||||
In [81]: mec.execute('1/0') | ||||
--------------------------------------------------------------------------- | ||||
CompositeError Traceback (most recent call last) | ||||
/ipython1-client-r3021/docs/examples/<ipython console> in <module>() | ||||
/ipython1-client-r3021/ipython1/kernel/multiengineclient.pyc in execute(self, lines, targets, block) | ||||
432 targets, block = self._findTargetsAndBlock(targets, block) | ||||
433 result = blockingCallFromThread(self.smultiengine.execute, lines, | ||||
--> 434 targets=targets, block=block) | ||||
435 if block: | ||||
436 result = ResultList(result) | ||||
/ipython1-client-r3021/ipython1/kernel/twistedutil.pyc in blockingCallFromThread(f, *a, **kw) | ||||
72 result.raiseException() | ||||
73 except Exception, e: | ||||
---> 74 raise e | ||||
75 return result | ||||
76 | ||||
CompositeError: one or more exceptions from call to method: execute | ||||
[0:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
[1:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
[2:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
[3:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
In [82]: %debug | ||||
> | ||||
/ipython1-client-r3021/ipython1/kernel/twistedutil.py(74)blockingCallFromThread() | ||||
73 except Exception, e: | ||||
---> 74 raise e | ||||
75 return result | ||||
# With the debugger running, e is the exceptions instance. We can tab complete | ||||
# on it and see the extra methods that are available. | ||||
ipdb> e. | ||||
e.__class__ e.__getitem__ e.__new__ e.__setstate__ e.args | ||||
e.__delattr__ e.__getslice__ e.__reduce__ e.__str__ e.elist | ||||
e.__dict__ e.__hash__ e.__reduce_ex__ e.__weakref__ e.message | ||||
e.__doc__ e.__init__ e.__repr__ e._get_engine_str e.print_tracebacks | ||||
e.__getattribute__ e.__module__ e.__setattr__ e._get_traceback e.raise_exception | ||||
ipdb> e.print_tracebacks() | ||||
[0:execute]: | ||||
--------------------------------------------------------------------------- | ||||
ZeroDivisionError Traceback (most recent call last) | ||||
/ipython1-client-r3021/docs/examples/<string> in <module>() | ||||
ZeroDivisionError: integer division or modulo by zero | ||||
[1:execute]: | ||||
--------------------------------------------------------------------------- | ||||
ZeroDivisionError Traceback (most recent call last) | ||||
/ipython1-client-r3021/docs/examples/<string> in <module>() | ||||
ZeroDivisionError: integer division or modulo by zero | ||||
[2:execute]: | ||||
--------------------------------------------------------------------------- | ||||
ZeroDivisionError Traceback (most recent call last) | ||||
/ipython1-client-r3021/docs/examples/<string> in <module>() | ||||
ZeroDivisionError: integer division or modulo by zero | ||||
[3:execute]: | ||||
--------------------------------------------------------------------------- | ||||
ZeroDivisionError Traceback (most recent call last) | ||||
/ipython1-client-r3021/docs/examples/<string> in <module>() | ||||
ZeroDivisionError: integer division or modulo by zero | ||||
All of this same error handling magic even works in non-blocking mode:: | ||||
In [83]: mec.block=False | ||||
In [84]: pr = mec.execute('1/0') | ||||
In [85]: pr.r | ||||
--------------------------------------------------------------------------- | ||||
CompositeError Traceback (most recent call last) | ||||
/ipython1-client-r3021/docs/examples/<ipython console> in <module>() | ||||
/ipython1-client-r3021/ipython1/kernel/multiengineclient.pyc in _get_r(self) | ||||
170 | ||||
171 def _get_r(self): | ||||
--> 172 return self.get_result(block=True) | ||||
173 | ||||
174 r = property(_get_r) | ||||
/ipython1-client-r3021/ipython1/kernel/multiengineclient.pyc in get_result(self, default, block) | ||||
131 return self.result | ||||
132 try: | ||||
--> 133 result = self.client.get_pending_deferred(self.result_id, block) | ||||
134 except error.ResultNotCompleted: | ||||
135 return default | ||||
/ipython1-client-r3021/ipython1/kernel/multiengineclient.pyc in get_pending_deferred(self, deferredID, block) | ||||
385 | ||||
386 def get_pending_deferred(self, deferredID, block): | ||||
--> 387 return blockingCallFromThread(self.smultiengine.get_pending_deferred, deferredID, block) | ||||
388 | ||||
389 def barrier(self, pendingResults): | ||||
/ipython1-client-r3021/ipython1/kernel/twistedutil.pyc in blockingCallFromThread(f, *a, **kw) | ||||
72 result.raiseException() | ||||
73 except Exception, e: | ||||
---> 74 raise e | ||||
75 return result | ||||
76 | ||||
CompositeError: one or more exceptions from call to method: execute | ||||
[0:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
[1:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
[2:execute]: ZeroDivisionError: integer division or modulo by zero | ||||
[3:execute]: ZeroDivisionError: integer division or modulo by zero | ||||