##// END OF EJS Templates
Use contentEditable to allow modification via the the slider readout
Use contentEditable to allow modification via the the slider readout

File last commit:

r17485:f1cb1cc1
r17952:66b32ee6
Show More
Working With External Code.ipynb
183 lines | 16.8 KiB | text/plain | TextLexer
/ examples / IPython Kernel / Working With External Code.ipynb
Brian E. Granger
Pulling content from ipython-in-depth.
r17485 {
"metadata": {
"name": "",
"signature": "sha256:4352d4e1c693d919ce40b29ecf5a536917160df68b19a85caccedb1ea7ad06e1"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Working With External Code"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The IPython Kernel makes it easy to incorporate external code from sources such as the internet or copy/paste. "
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Pasting code into cells"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can copy and paste code from other sources directly into cells. Pasting code with `>>>` prompts works as expected:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
">>> the_world_is_flat = 1\n",
">>> if the_world_is_flat:\n",
"... print(\"Be careful not to fall off!\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Be careful not to fall off!\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"The %load magic"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `%load` magic lets you load code from URLs or local files:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%load?"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%load http://matplotlib.org/mpl_examples/showcase/integral_demo.py"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\"\"\"\n",
"Plot demonstrating the integral as the area under a curve.\n",
"\n",
"Although this is a simple example, it demonstrates some important tweaks:\n",
"\n",
" * A simple line plot with custom color and line width.\n",
" * A shaded region created using a Polygon patch.\n",
" * A text label with mathtext rendering.\n",
" * figtext calls to label the x- and y-axes.\n",
" * Use of axis spines to hide the top and right spines.\n",
" * Custom tick placement and labels.\n",
"\"\"\"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.patches import Polygon\n",
"\n",
"\n",
"def func(x):\n",
" return (x - 3) * (x - 5) * (x - 7) + 85\n",
"\n",
"\n",
"a, b = 2, 9 # integral limits\n",
"x = np.linspace(0, 10)\n",
"y = func(x)\n",
"\n",
"fig, ax = plt.subplots()\n",
"plt.plot(x, y, 'r', linewidth=2)\n",
"plt.ylim(ymin=0)\n",
"\n",
"# Make the shaded region\n",
"ix = np.linspace(a, b)\n",
"iy = func(ix)\n",
"verts = [(a, 0)] + list(zip(ix, iy)) + [(b, 0)]\n",
"poly = Polygon(verts, facecolor='0.9', edgecolor='0.5')\n",
"ax.add_patch(poly)\n",
"\n",
"plt.text(0.5 * (a + b), 30, r\"$\\int_a^b f(x)\\mathrm{d}x$\",\n",
" horizontalalignment='center', fontsize=20)\n",
"\n",
"plt.figtext(0.9, 0.05, '$x$')\n",
"plt.figtext(0.1, 0.9, '$y$')\n",
"\n",
"ax.spines['right'].set_visible(False)\n",
"ax.spines['top'].set_visible(False)\n",
"ax.xaxis.set_ticks_position('bottom')\n",
"\n",
"ax.set_xticks((a, b))\n",
"ax.set_xticklabels(('$a$', '$b$'))\n",
"ax.set_yticks([])\n",
"\n",
"plt.show()\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEMCAYAAAALXDfgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4FFW+xvFvp9NJCAphkdUECAgqLigG2UZgrsB4YQZQ\nAZVFQQRxlAFFUQR1BMVxRAV0QMFxAUXUgRkXBrioiCJIhLAjO5KwG7ORpde6f5SJooGQpLuru/N+\nnqefFElXnR+QvBxOnTrHZhiGgYiIhJUoqwsQEZHyU3iLiIQhhbeISBhSeIuIhCGFt4hIGFJ4i4iE\nIYW3iEgYUniLiIShMsN727ZtTJ06lXXr1gFwxx13BLomEREpQ5nhXVBQgMPhwDAMdu7cyQUXXBCM\nukRE5CzKDO927dqxceNGOnTowLp16+jUqVMw6hIRkbM4pzHv+Ph4ANatW0eHDh0CWpCIiJTtnMI7\nKSmJ999/nw0bNlC/fv1A1yQiImUoM7znzZtH165dufLKKxkwYMAZ3/fEE0/4sy4RETkLW1lLwi5f\nvhyXy8Xx48cZPnw4UVGl573NZkOry4qIBEeZ4X3OF1J4i4gEjR7SEREJQwpvEZEwpPAWEQlDCm8R\nkTCk8BYRCUMKbxGRMKTwFhGxSmFhhU9VeIuIWCEnBxITK3y6wltExArz5kFmZoVP1xOWIiLB5vFA\n8+Zw6BBUMDfV8xYRCbYlS8zgbtGiwpdQeIuIBNsLL5gfx46t8CU0bCIiEkzffAPt20NCAqSnw3nn\nVegy6nmLiATTiy+aH0eOrHBwg3reIiLBk54OzZqZxwcOaKqgiEhYeOkl8Hqhf/9KBTeo5y0iEhyn\nTpmBnZ1tjnu3a1epy6nnLSISDG++aQZ3x46VDm5QeIuIBJ7PBzNmmMfjxvnlkgpvEZFA++QT2LMH\nmjSBvn39ckmFt4hIoBU/lDNmDERH++WSumEpIhJImzbBVVeZc7ozMqBmTb9cVj1vEZFAKn4oZ/hw\nvwU3qOctIhI4GRnm6oFutznm3by53y6tnreISKA89xy4XHDzzX4NblDPW0QkME6cgKZNza3ONm2C\nK6/06+XV8xYRCYQXXjCD+49/9Htwg3reIiL+l5VlzunOy4N16+Daa/3ehHreIiL+NmuWGdzXXx+Q\n4Ab1vEVE/Csvz+x1Z2XBqlXQpUtAmlHPW0TEn+bMMYO7Uye47rqANaOet4iIvxQWmjNMTpyA//4X\n/vCHgDWlnreIiL/Mm2cGd9u20LNnQJtSz1tExB9cLvNBnIwMWLwY+vULaHPqeYuI+MNbb5nB3bo1\n9OkT8OYU3iIileXxwLRp5vHEiRAV+GhVeIuIVNaiRbB/P7RoAQMGBKVJhbeISGV4PDB1qnn8yCN+\n22yhLApvEZHKmD8fvvsOmjWDwYOD1qxmm4iIVFRREbRsCenpsGABDBoUtKbV8xYRqajZs83gvuIK\nuPXWoDatnreISEXk5kJyMmRmwscfQ69eQW1ePW8RkYqYPt0M7k6d4H//N+jNq+ctIlJeJ06Yve78\nfPjyS+jcOeglqOctIlJeTz9tBnevXpYEN6jnLSJSPgcPQqtW5o7wmzaZNystoJ63iEh5PPGEuQjV\nbbdZFtygnreIyLnbts0MbLsddu0yx70top63iMi5mjQJDANGjbI0uEE9bxGRc7N2LXTsCPHxsG8f\nNGhgaTnqeYuIlMUwYPx483jcOMuDG9TzFhEp29tvm4tO1asHu3dDzZpWV6Set4jIWeXlwYMPmsd/\n+1tIBDcovEVEzu6pp+DoUWjXDoYOtbqaEho2ERE5kz17zD0p3W745hszwEOEet4iImcybpwZ3MOG\nhVRwg3reIiKl++QT6N0batQwb1LWr291RadRz1tE5NecThg71jx+4omQC25QeIuI/NaLL8LevXDJ\nJXDvvVZXUyoNm4iI/NLhw+aqgfn5sGIFdO9udUWlUs9bROSXJkwwg7tfv5ANblDPW0TkZ199Bb/7\nHcTGws6d0KyZ1RWdkXreIiJg3qQcOdI8fuihkA5uUHiLiJimTDF72y1bwsSJVldTJg2biIhs2gTX\nXAM+H6xebdm+lOWhnreIVG1uNwwfDl4v/PnPYRHcoPAWkaruuecgLQ2aNIFp06yu5pxp2EREqq7v\nvoM2bcyblcuXQ48eVld0ztTzFpGqyeuFO+80g3vYsLAKblB4i0hV9fLL8PXX5pZm06dbXU25adhE\nRKqeAwfgssugoACWLIG+fa2uqNzU8xaRqsUwcA8bZgb3gAFhGdyg8BaRKsb3j3/g+OILCqtXh1mz\nrC6nwhTeIlJ1bN2KMW4cAKsHDjR3gw9TCm8RqRoKCnDdeCN2t5uTf/oT+9q2tbqiSlF4i0iV4Bkz\nhpi9eyls0oQTjz5qdTmVpvAWkcj3/vtEv/YaXoeDU/PmYcTHW11RpSm8RSSyHTyI9847AcidPBlP\n69YWF+QfCm8RiVxuN+4BA7Dn5ZHTrRtFP4V4JFB4i0jE8k6ejCM1laK6dSmcNQtsNqtL8huFt4hE\nJOPTT4l69ll8Nhun5szBqF3b6pL8SuEtIpHn2DHct9yCzTDIGzMGd8eOVlfkdwpvEYksTieu3r2J\n+eEHCtq2peCBB6yuKCAU3iISOQwDz4gRxGzYgLNePfL++U+Ijra6qoBQeItIxPC98ALRCxbgiYkh\nd/58fBdcYHVJAaPwFpHIsHw5tgcfBCBnxgw8l19ucUGBpfAWkfC3axeem2/G5vORdd99uPr0sbqi\ngFN4i0h4y87GfcMNRJ86Re7111M0YYLVFQWFwltEwpfXi+umm3AcOEBBixYUzJ4NUVUj1qrG71JE\nIpLn/vuJ+ewzXDVrcurttzGqV7e6pKBReItIWPI++yzRM2fis9vJe/11vImJVpcUVApvEQk7vldf\nxf7T2Hb288/jat/e4oqCT+EtImHFWLQI2913A5A1ZQrO/v0trsgaCm8RCR/LlmEMHozNMMi+//6I\nWuK1vBTeIhIevvoKb9++RHk8ZA8fTmGErllyrhTeIhL6Nm3Ce8MN2J1Ocm68kcIpUyJqbe6KUHiL\nSGjbvRv373+P/dQpcrt3p+DFF6t8cIPCW0RC2Y4duDp3xpGVxamOHcl/9dWIXSWwvBTeIhKaUlPx\ndOxIzMmTFLRty6k334TYWKurChkKbxEJPatW4e3aleicHE5ddx05ixZVqacnz4XCW0RCy0cf4evZ\nE3tBATm9epE3fz7Ex1tdVchReItIyDDmz8fXty9RLhfZt95KwZw54HBYXVZIUniLSEjwzZqFbehQ\nonw+skePpvC558But7qskKXbtiJiLZ8Pz6RJRE+bBkD2xIkU3nuvxUWFPoW3iFgnNxf3rbfiWLoU\nn81GzjPPUDRkiNVVhQWFt4hYY9cu3L164di3D/d555H7yiu4unWzuqqwofAWkeD75BO8AwfiyM+n\noHlzTs2fj7dpU6urCiu6YSkiwWMY+KZMwfjjH7Hn55PbvTu5y5YpuCtAPW8RCY68PNyDB+P48EMM\nm42s8eMpGjdO65RUkMJbRAJv9WpcgwYRk5GBOz6e3NmzcXXvbnVVYU3DJiISOEVFeMeOxejalZiM\nDAouvpisZcsU3H6gnreIBMa33+K+7TYce/bgi4oi5777zA0U9MSkXyi8RcS/3G68f/0rtmnTcPh8\nFCQlUTBnDu42bayuLKIovEXEf9avx3nnncRu24Zhs5E9bBiFkyZBtWpWVxZxFN4iUnmHD+N56CGi\n33mHWKCoYUPyZ83C1bGj1ZVFLIW3iFRcQQG+v/8d45lniC4qwhsdzakRIyi8/36M886zurqIpvAW\nkfIzDIyFC/GMH4/j6FEAcrt3p+jJJ/E2aWJxcVWDwltEzp3PB0uX4nzsMWLT0nAA+S1bUjRtGq4O\nHayurkpReItI2dxuePddXFOnErN7N7GAs1YtCiZOpOiWW7TutgUU3iJyZvn5GPPm4Xn2WRxHjhAD\nOOvWpWj0aAqHDNG4toUU3lIxPh94PObL7f752G6HuDhzl+/oaK1bEa727sXz2msYs2fjyMnBARQk\nJuIcO5aim26CmBirK6zyFN5icrng4EHYvx/278fIyMB94gTekycxfvgBW1YWUdnZ2HNysBcVYfP5\nyrykYbPhi4nB+OnlO/98fAkJkJCArU4d7HXqYK9bl6i6daF+fWjQABo2ND8mJCj4gy0nB957D9e8\necSsX18SDqcuuwzXuHE4e/aEKK2oESoU3lVNQQGkpWGkpuLesAHvnj1Eff89McePYzOMkrfZgLL6\nVj67HSM6GsNuL3nh9RLldhPlchHl82F3OsHpNE/IzDznMn0OB566dfE1aIAtMRF7cjLRzZpBUpL5\nSkyEunUV8JXl9cLKlbjnziXqo4+wu1zEAJ7YWAr+8Afct9+O69pr9eccghTekczrNYN6/Xqca9Zg\npKYSt28fNp/vN+FsREVR1KAB7sREjKZNISkJo3ZtfAkJ+BISMGrVwlerlnkcH28Oj5T1A+3xYHO5\nwOnEVlREVF4etuxsonJyiMrJwZadjS0nxwz1Y8ewnThB9IkTOH78keiCAmKOHoWjRyEtrfTfXlwc\n7saNoWlT7BddRHSLFtiSk6FZM0hOhho1/PUnGVmOH4fly3F9+CFR//d/ROfmUrzaSF7btngGDcLZ\nu7fGs0OcwjvSHD2KsWwZRUuW4Fi1iui8PGxA3E9f9kVFUXDRRXjbtMHXpg3eZs3wNmmC98IL/b9g\nUHQ0RnQ0xMdjAL6GDc/5VFtBAVEnTmA/doyoI0ewZ2RAejqkp2M/fJiYY8dw5Odj37cP9u2DTz/9\nzTXcNWviTUrC1rw5jlatiGrRwgz1Zs3Mnnt0Ffn2d7lg/Xp8S5fi+egjYrZtA37+x7vwwgtxDRyI\nc8AAvImJ1tUp5VJFvnsjmM8Ha9bg/egj3B9/TNzOndiA4pUkCho3xp2SAm3b4r7yStyXXgrx8VZW\nfE6M+Hi8TZuedYcVW04O9vR07OnpRB86BAcOwIEDRKenE3v0qHmjbetW2Lr1t9ePisLVoAFGkyZE\nNW+Oo2VLs9fepIk5LNOoUXiGu8cDO3dCaire9evxrF2LY+dOcygLM7C9MTGcSknB6NED1//8D97k\nZKurlgoIw+9OAWDPHjyvvYbvrbeIOXoUO2AHvLGxFLZvj7dHD5zdukX09lJGzZp4atbEc9llOH/z\nRYOokyexf/890YcOEXXwIMb+/UQdOIAjI4PYzExijxyBI0dg7drfXjsqCne9evgaN8aWlER0s2bY\nExPNm6m/vLFao0bwx4MNA06eNP/HsX8/xr59eHbvxrtjB44dO8z7DFDyPQFQ2KQJ7m7d8HTvjrN9\ney0UFQEU3uEkOxvfwoU4586lWlpayV9eUYMGuHr1wn399ebNpbi4s16mSrDZ8NWrh69ePfN/Hr/m\ndGLPyCjptdsOHoQDB4jKyMBx7BgxP/5IzLFjcOwYbNhwxma8sbF46tTBKJ5FU7s2UT/NpImqUwdq\n1jSnTRZPn/zlR5vt9KmWv/yYmws//oiRmYn35MmSWT9kZuI4cgR7YeHPv1XA8dMLoLBhQ5xXXAHX\nXIO3TRvcl1+OofH/iKPwDgcbNuB+5hmi/vMf7G431QBPXByFvXrhuvVWXO3bawpXecXG4m3eHG/z\n5rhK+7rLhf3YMeyHD2M/fJiow4cxjh2Do0eJOn4c+w8/EJOZSXRREfbiHnwA2DB/SH/9g+o+7zyc\njRvjadIEW3IyRnIy3iZNcLdujVG7dkBqkdCi8A5VhoGxciVFf/0r1daswYE5b/pU+/Z4bruNohtu\nwKhe3eoqI1dMDN6kJLxJSWd9my0/n6iTJ0tmz5w2kyY7GyM3F6OoCKOoyJx143JhczqxOZ3m33F0\nNNjtGA6HOYMnOhqbw2H2lGvXxla7Nr7atTF+mvXjS0jA27ix2dOXKk3hHWq8Xox//Qvnk08St327\n2cuuVo38wYNx3nWXOStEQoZRvTre6tXxWl2IVDkK71Dh9WK88QbuJ58k5tAh4gBXQgJFo0ZRcPvt\n6mmJyGkU3qHg889xjh5N7K5dxABFjRpRdO+9FA4cqFkBIlIqhbeV9u7FOWYMsf/9r7nEZv36FEya\nRFGfPuE5x1hEgkYJYYWcHFxPPEH0Sy8R6/HgiYsjf8wYCkaNUk9bRM6JwjuYDAPjjTfwPPAAMVlZ\nAOTddBMFjz6Kr0EDi4sTkXCi8A6Wo0dx3XEHMStWmFtHXX01hU89hfvKK62uTETCkMI7CHzvvot3\n1ChicnNxn3ceeVOn4uzfX8tsikiFKbwD6ccfcY4YQeySJUQB+Z07c+rFF/E1amR1ZSIS5hTeAWIs\nXYrn9tuJ/eEHPHFxnHr8cQqHDlVvW0T8QuHtb243nr/8hejZs82x7auuIv/llyN6dT8RCT6Ftz+d\nOIGrTx9i1q3DGx1N3kMPUTh6tLlmhYiIHym8/WXDBujXj5j0dApr1SL/rbdwt21rdVUiEqG0jqg/\nLFgAnTtDejrZl1zC2lmzFNwiElDqeVeGxwMTJsDzz5u/HjGC1D598GiYREQCTD3vivrxR/jDH8zg\njo6G2bPh1VcxYmLKPldEpJLU866II0egRw/Yvh3q14cPPjCHTUREgkThXV779kH37uZO5ZdeCsuW\nQWKi1VWJSBWjYZPy2LrV7GEfOAApKbB6tYJbRCyh8D5X69ZBly7mbuLdusGnn0KdOlZXJSJVlML7\nXKxcCddfD1lZ0KcPLF0K559vdVUiUoUpvMuyeDH06gX5+TBkiHlzMi7O6qpEpIpTeJ/N++9D//7g\ncsF998Ebb2h7MhEJCQrvM1m2DAYNAp8PHn0UZsyAKP1xhaLXX3+dli1bsnHjRqtLEQkapVFpvvoK\nbrwR3G4YNw6mTNFSriGsf//+xMXFcdVVV1ldikjQKLx/bdMm6N0bCgth2DCYPl3BHeLWrFlD+/bt\nsenvSaoQhfcv7d5tPjmZk2P2vF99VcEdBr744gtsNhuLFy9mwoQJ7Ny50+qSRAJO4V0sPd2cDnjy\npPkE5Tvv6OZkCJo3bx6tW7emZ8+e7Nu3D4Avv/ySkSNHcuONN9K9e3f+9re/WVylSOApvAFOnDAD\nOz0dOnSAJUsgNtbqquRX1qxZw5NPPslbb73FqVOneOCBBzh8+DCGYdD2pyV4T5w4QWZmpsWVigSe\nwvvUKbjhBti1C664Aj75BKpXt7oqKcVTTz1F165dad26NYZh0KhRI7Zs2UK7du1K3vPFF1/w+9//\n3sIqRYKjao8L+HzmgzcbN0Lz5rB8OdSqZXVVUoqNGzeyefNmZsyYQVxcHF9//TVgDpnUrFkTgP37\n9/Pdd9/xwgsvWFmqSFBU7Z7344/Dv/8NNWuaj7w3aGB1RXIGH3zwAQDdunU77fOdO3fGZrPx3nvv\nMXfuXN5//33i4+OtKFEkqKpuz3vRIpg61Xzw5r33oGVLqyuSs1ixYgWtWrWizq8WA7PZbDz22GMA\nDBgwwIrSRCxRNXveGzeac7jBnMfdo4e19chZ7d+/n6NHj542ti1S1VW98D52zFwZsPghnL/8xeqK\npAxr1qwB0BOUIr9QtcLb6TQfvsnIgI4dzX0n9RBOyCsO7yuuuMLiSkRCR9UJb8OAu++GtWvN3W8W\nL9Zc7jCxbt06YmNjaan7EiIlqk54z5hhLularRr85z/mxsES8vbt28fJkye5+OKLsdvtVpcjEjKq\nRnh//TWMH28ev/kmaOw0bKxbtw6A1q1bW1yJSGiJ/PDOyoJbbwWvFx580NxcQcLGN998A8All1xi\ncSUioSWyw9sw4K674NAhc7f3qVOtrkjKacOGDUBohLfX663wuR6Px4+ViER6eM+dC//6l7lZ8Lvv\nQkyM1RVJOWRmZnLw4EFsNhutWrWytJalS5eWPOVZETNnziQ1NdWPFUlVF7nhvX37z3O4X3kFkpOt\nrUfK7dtvvwWgbt261K5dO+DtHThwgKFDhzJ16lQefvhhDMMAYO3ataxbt46BAwdW+Npjxoxh5syZ\n7Nmz55zeP3z4cHr06EFKSkqF25TIFpnhXVgIAwdCURHccYc55i1hpzi8L7744oC35XK5uO222+jV\nqxcnT55k4cKF5OXlkZeXx9SpU5k4cWKlrh8dHc20adMYM2bMOQ2hzJ07l/bt23PkyJFKtSuRKzLD\n+/77zZ53q1Ywa5bV1UgFFW8oHIzx7lWrVnHo0CE6dOjAsGHDWLBgATVq1GDmzJn069ePuLi4Srdx\n4YUX0qpVKxYtWlTme+12u2bYyFlF3sJUixfDnDnm+PbChXDeeVZXJBXg9XrZvHkzAJdeemnA21u7\ndi116tQhKSmJpKQkAAoKCnjnnXdKnvD0h+HDhzN69GgGDRrkt2tK1RRZPe9Dh+DOO83jZ5/VfO4w\ntnfvXgoLC7HZbEEJ77S0NNq0aXPa51auXEliYiIJCQl+a+eyyy4jKyuLrVu3+u2aUjVFTs+7eGOF\n7Gxz9/cxY6yuSCph06ZNgDlWHMjH4seOHcvJkydJTU2lRYsWDBo0iKSkJKZNm8bq1au55pprznju\nli1b+OCDD7Db7aSnp/Pcc88xf/58cnNzOXbsGOPHj6dJkyannRMVFUVKSgqrVq3i8ssvL/n8rl27\nmDlzJgkJCcTFxREbG3vWm7QVaVsiS+SE9+zZsHq1+dj7669rwakwVxzeF110EQ6HI2DtvPjiiyVj\n3Q8//DA33HBDyde2b9/O4MGDSz3v+++/59133+Xpp58GzH8EevfuzYwZM/D5fPTr14/LL7+ckSNH\n/ubc5ORkduzYUfLr1NRUhgwZwhtvvEH79u0ByM/PZ+DAgdhK+T6uTNsSOSJj2OT77+Hhh83jl1+G\nunWtrUcqbcuWLQCn9U4DZdu2bYA5pPFL6enp1KhRo9Rz5syZw6RJk0p+XVBQQK1atWjbti2NGzdm\n1KhRZ9wcIiEhgfT0dAB8Ph9jx46lU6dOJcENUL16dfr06VMyXdFfbUvkCP/wNgwYOdLcSPimm8yX\nhDWv18vOnTuB4CwDu23bNmrUqEFiYuJpn8/LyztjeN9zzz2nbbe2YcMGfve73wHQqFEjJk+efMax\n8lq1apGbmwuY0yEPHjxYrvnclWlbIkf4h/ebb8KKFebGwS+9ZHU14gd79+7F6XRis9m48sorA97e\n9u3bS52WZ7PZSu35AqcF/d69ezl27BgdO3Y8p/Z8Pl/JdYvncZcnbCvTtkSO8A7vo0dh3DjzeMYM\nbSAcIbZv3w6Aw+EIylznHTt2lNpOjRo1yMrKKvP8NWvWEBMTc9rNze+///6M78/Ozi7Z8b5hw4YA\nFBYWlrfsCrUtkSN8w9sw4M9/NmeX3HADnOHGkoSf4vC++OKLiQnwejRZWVkcOXKk1OmISUlJpYZ3\nYWEhU6ZM4bvvvgNg9erVXHrppSUP8vh8PmbPnn3GNrOzs0vmkl9zzTU0btyYtLS037yvtCcxK9u2\nRI7wDe8PPoAlS8xFp155RbNLIkhxMAVjz8rim5WlhXdKSkqpa5F89tlnzJkzh127drFnzx4OHjx4\n2j8yM2bMOOsNw927d5eM5dvtdp5//nlWrlx52gyU48ePlzyJeejQIb+1LZEjPKcKZmbCvfeax88+\na25rJhEjmOG9detWatasWeqwSbdu3Xj88cd/8/kOHTowYMAAtmzZwrZt2/joo4+YOHEiEyZMwOFw\n0LNnT66++upS2/N4PHz77benzRbp3Lkzb7/9Ni+88AIXXngh8fHxxMTEcPPNN/OPf/yDIUOGMHLk\nSAYNGlSptiWy2Iwz3ZEp74XOcnPH74YMgQULoEsX+OwziAqd/0CsWLECr9f7m6f15Nzk5ORw6aWX\nYrPZWLVqFS1atAhoe6NHj8br9fLqq6/+5mtOp5Orr76aTz/9lAZ+up+SmprKQw89xOeff+6X60nF\nZGZmsnr1au655x6rS6mw0Em9c7V0qRnc1arBvHkhFdxSebt27QLM2ReBCu6XXnqJW265BYDNmzfT\nq1evUt8XGxvLsGHDmDdvnt/anjt3LqNGjfLb9aTqCq/kKyw0b1ICTJkCAe6VSfDt3r0bgHbt2gWs\njcWLFxMTE8OOHTtwOBz07t37jO+95557+Pzzz8nOzq50u3v37uXw4cOVWhdcpFh4hff06XDwIFx+\n+c8bLUhEKe55//JpQ3+7++67adCgATNnzmTevHln3ZU+Pj6e6dOn8+CDD1ZqWLCoqIhJkybx8ssv\nl/rIu0h5hc8Ny/R0+GktB2bOhOjwKV3OXfGMi0D2vAcMGFCuGRlt2rRh8ODBvPbaa4wYMaJCbc6c\nOZNHHnmEpk2bVuh8kV8LnwQcP94cNhkwALp2tboaCZCdO3cSHx8flDVNyqNLly506dKlwuc/9NBD\nfqxGJFyGTVatgvfeM29S/v3vVlcjAZKRkUFOTg5XXXXVWYcyRCQcwtvj+Xlt7kcegZ+eTJPIU7yS\nYKdOnSyuRCT0hX54v/IKbN0KzZrBgw9aXY0EUPEj4p07d7a4EpHQF9rh/cMPMHmyefz88+CHTWAl\ndG3cuJHzzz8/KE9WioS70A7vSZMgKwu6d4c+fayuRgKosLCQtLQ0rrvuOqL04JVImUL3pyQtDV59\n1ZwSOGOGFp6KcGvWrMHpdNKzZ0+rSxEJC6EZ3oYB991nfhwzBi65xOqKxM8mT57M9ddfX7Ls6ZIl\nS0hISDjjo+oicrrQDO9334U1a6BePXjsMaurkQD48ssvKSwsxOv1cvjwYZYuXcpdd91Vsi61iJxd\n6D2k43LBo4+ax08/DT/tOCKRJSUlhQsuuIDs7GzGjRtHcnIyfy5et0ZEyhR6Pe+5c+HAAXOo5Pbb\nra5GAuSRRx4hLS2Njh07EhcXx9tvv43D4Sj1vR6Ph2effZa33nqL1157jaFDh2qrL6nyQqvnfeqU\nuVogwFNPaf2SCFa7dm0WLlx4Tu+dMGECl1xyCUOHDuXHH39k+vTpNGnSJMAVioS20Op5z5gBx49D\nu3bQt6/V1UgI2LFjBx9++CFDhgwBzLVPArnioEi4CJ3wzsw0tzQDeOYZTQ0UwLyxee211xIbGwvA\nV199RaeMRggBAAADwUlEQVROncjJybG4MhFrhU54P/MM5OZCjx7QrZvV1UiISEhI4IILLgAgPz+f\npUuXkpKSwuLFiy2uTMRaoTGonJEBs2aZx8VrdosAffv2Zf369fz73//G6XTSr18/Pvvss5BbMlYk\n2EIjvP/6V3A6zbW627a1uhoJIbGxsUyfPt3qMkRCjvXDJt99B//8J9jtP880ERGRs7I+vCdPBp8P\n7rwTWra0uhoRkbBgbXinpsIHH5hLveoxeBGRc2ZteE+caH4cMwYaN7a0FBGRcGJdeH/+Oaxcaa5d\nMmGCZWWIiIQj68K7+Obk+PFQu7ZlZYiIhCNrwvvrr82ed40acO+9lpQgIhLOrAnvp54yP953HyQk\nWFKCiEg4C354b9wIS5dCfDyMHRv05oNhy5YtVpcgImXYvXu31SVUSvDDu/jx97vvhrp1g958MCi8\nRULfnj17rC6hUoIb3tu3w7/+BbGx8MADQW1aRCSSBHdtk2nTzI/Dh0OjRkFtOpiKioq004tICMvL\ny7O6hMoz/KRLly4GoJdeeumlVzlejz/+eIUy12YYhoGIiIQV6xemEhGRclN4i4iEIYW3iEgYUniL\niIQhhbeIVClFRUXcfPPNzJ8/3+pSKiU09rCMEAsXLsTtdpORkUG9evUYMWKE1SWJyK/ExcVx4YUX\nkpKSYnUplaKet5/s2rWL5cuXM3ToUOx2O5dddpnVJYnIGezcuZNWrVpZXUalKLz9ZMGCBfzpT38C\nYPPmzVx11VUWVyQipXG73Rw6dIhPPvmEhx9+GJ/PZ3VJFaLw9pPs7GxatWqFy+UiLy+Pb7/91uqS\nRKQUW7ZsoW/fvvTu3Ruv18vWrVutLqlCNObtJ0OHDmXFihXs2LGD5s2bc/ToUatLEpFSpKWl0aVL\nFwB27NhB7TDdyUvh7ScpKSklN0D69+9vcTUicibZ2dlcd911ZGVlYbfbSUxMtLqkCtHaJiJSpezb\nt4+PP/6Y7OxsRo0aRYMGDawuqUIU3iIiYUg3LEVEwpDCW0QkDOmGpYiIxbxeL4sWLWL//v0kJiay\nfv16HnjgAZKTk894jnreIiIW27x5MzfddBPJycn4fD769+9Pw4YNz3qOwltExGJXX301sbGxrF27\nlq5du9K1a1eqVat21nMU3iIiFktNTeWHH35g27ZtNGvWjC+//LLMczTmLSJisWXLllG/fn06derE\nkiVLqFu3bpnnaJ63iEgY0rCJiEgYUniLiIQhhbeISBhSeIuIhCGFt4hIGFJ4i4iEIYW3iEgYUniL\niISh/weZPyRnS1m/IAAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x108604e50>"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}