##// END OF EJS Templates
Skip tests that require X, when importing pylab results in RuntimeError....
Skip tests that require X, when importing pylab results in RuntimeError. Signed-off-by: Thomas Spura <thomas.spura@gmail.com>

File last commit:

r5784:44375eb5
r5844:69358b0c
Show More
trapezoid_rule.ipynb
118 lines | 21.1 KiB | text/plain | TextLexer
Fernando Perez
Add example notebooks about display protocol and simple math/plots.
r4776 {
Fernando Perez
Update trapezoid example and remove text_analysis....
r5784 "metadata": {
"name": "trapezoid_rule"
},
"nbformat": 2,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"source": [
"Basic numerical integration: the trapezoid rule",
"===============================================",
"",
"A simple illustration of the trapezoid rule for definite integration:",
"",
"$$",
"\\int_{a}^{b} f(x)\\, dx \\approx \\frac{1}{2} \\sum_{k=1}^{N} \\left( x_{k} - x_{k-1} \\right) \\left( f(x_{k}) + f(x_{k-1}) \\right).",
"$$",
"<br>",
"First, we define a simple function and sample it between 0 and 10 at 200 points"
]
MinRK
update example notebooks after sort_keys and split_lines
r5279 },
Fernando Perez
Update trapezoid example and remove text_analysis....
r5784 {
"cell_type": "code",
"collapsed": true,
"input": [
"def f(x):",
" return (x-3)*(x-5)*(x-7)+85",
"",
"x = linspace(0, 10, 200)",
"y = f(x)"
],
"language": "python",
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "markdown",
"source": [
"Choose a region to integrate over and take only a few points in that region"
]
},
{
"cell_type": "code",
"collapsed": true,
"input": [
"a, b = 1, 9",
"xint = x[logical_and(x>=a, x<=b)][::30]",
"yint = y[logical_and(x>=a, x<=b)][::30]"
],
"language": "python",
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "markdown",
"source": [
"Plot both the function and the area below it in the trapezoid approximation"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plot(x, y, lw=2)",
"axis([0, 10, 0, 140])",
"fill_between(xint, 0, yint, facecolor='gray', alpha=0.4)",
"text(0.5 * (a + b), 30,r\"$\\int_a^b f(x)dx$\", horizontalalignment='center', fontsize=20);"
],
"language": "python",
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD3CAYAAADmBxSSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8jGf+//HX5BwycmgIRQgiCdJINIIV4tT6bg+01rYs\nug67lR4cqu23VRbdlm1V9bAr1G72u+qnVHXFWR0aWodMokVFCHKOEBIi50yS+f1xNyeCZExyT5LP\n8/GYx9y5Z+77/mQevOfOdV/3dWkMBoMBIYQQzYqF2gUIIYQwPQl3IYRohiTchRCiGZJwF0KIZkjC\nXQghmiEJdyGEaIbuGe7Tpk3Dzc0NX1/fO15bsWIFFhYWZGdnV6777LPP8PT0pFevXvz444+mr1YI\nIUSd3DPcp06dyp49e+5Yn5qayr59++jSpUvluszMTFatWsWBAwcICwtj1qxZpq9WCCFEndwz3IOD\ng3F2dr5j/WuvvcaHH35YY11UVBSjR4/G3d2doUOHYjAYyM3NNW21Qggh6sSqvhtERETQqVMnHnnk\nkRrrdTodPj4+lT97eXmh0+kYMWJEjfdpNBojSxVCiJatPgMK1OuCakFBAUuXLmXJkiV3HKy2g94t\nyA0GgzwMBhYtWqR6DebykM9CPoum8lkMHWoADHz4YeMet77qFe6XLl0iKSkJPz8/PDw8SEtLo1+/\nfly9epWgoCDOnj1b+d5z584RGBhY74KEEMJcRUXBoUPg6Agvvqh2NfdWr2YZX19frl69Wvmzh4cH\nJ06cwMXFhf79+/PGG2+QkpJCQkICFhYWaLVakxcshBBq+eAD5Tk0FNq0UbeW+7nnmfuECRMYNGgQ\n8fHxdO7cmX//+981Xq/e7OLm5kZoaCjDhw/npZde4tNPP22YipuRkJAQtUswG/JZVJHPooo5fRbn\nz8PWrWBrC7Nnq13N/WkMxjTmPMgBNRqj2o+EEEJNM2bAv/4Ff/4zrFnT+Mevb3ZKuAshxH1cvgwe\nHqDXK2fwnp6NX0N9s1OGHxBCiPtYuRJKSmDcOHWC3Rhy5i6EEPdw/Tp07Qr5+RAdDY8+qk4dcuYu\nhBAmtHKlEuz/8z/qBbsx5MxdCCHu4sYN6NIFcnPh6FEYOFC9WuTMXQghTOTTT5VgHzlS3WA3hpy5\nCyFELXJylLP2nBw4fBiCg9WtR87chRDCBD7/XAn2kBD1g90YcuYuhBC3uXVL6deenQ0HD8KwYWpX\nJGfuQgjxwFauVIJ98GDlzL0pkjN3IYSoJitLOWvPzVVGgBwyRO2KFHLmLoQQD+DDD5Vgf+wx8wl2\nY8iZuxBC/CojA7p3h8JC0OnAnKakkDN3IYQw0tKlSrCPHWtewW4MOXMXQgggOVkZFKy0FE6fhj59\n1K6oJjlzF0III/zlL8qQvs8/b37Bbgw5cxdCtHgnT0JAAFhZwblz0K2b2hXdSc7chRCint58EwwG\nePll8wx2Y8iZuxCiRdu7F0aPBkdHuHQJHnpI7YpqJ2fuQghRR2Vl8MYbyvI775hvsBtDwl0I0WKt\nWwe//KKM/vjqq2pXY1oS7kKIFik3VzlbB3j/fbCzU7ceU7tnuE+bNg03Nzd8fX0r173xxhv4+PgQ\nEBDAnDlzKCwsrHzts88+w9PTk169evHjjz82XNVCCPGAli5V7kjt3x8mTFC7GtO7Z7hPnTqVPXv2\n1Fj32GOPERsbS0xMDPn5+WzYsAGAzMxMVq1axYEDBwgLC2PWrFkNV7UQQjyAixfh44+V5c8+A4tm\n2IZxz18pODgYZ2fnGutGjRqFhYUFFhYWPP744xw6dAiAqKgoRo8ejbu7O0OHDsVgMJCbm9twlQsh\nhJFeew1KSuCFFyAoSO1qGobVg2y8du1aZsyYAYBOp8PHx6fyNS8vL3Q6HSNGjLhju8WLF1cuh4SE\nENJUB0wWQjQ5e/fC9u2g1cKyZWpXc3eRkZFERkYavb3R4f7uu++i1WoZP348QK39LzUaTa3bVg93\nIYRoLCUlMGeOsrxwIXTooG4993L7ie+SJUvqtb1RLU3/93//x969e1m/fn3luqCgIM6ePVv587lz\n5whs6sOqCSGalRUrlOEFPD1h9my1q2lY9Q73PXv2sHz5crZt24Zdtb5D/fv3Z+/evaSkpBAZGYmF\nhQVardakxQohhLESEuDdd5XlVavAxkbdehraPZtlJkyYwKFDh7h+/TqdO3dmyZIlLFu2jJKSEkaO\nHAnAwIEDWbVqFW5uboSGhjJ8+HBsbGxYs2ZNo/wCQghxPxXjxhQVwcSJ8Gt8NWsytowQotn7+mt4\n7jlwclKaZdzc1K6o/mRsGSGEqCYnp+oi6t/+1jSD3RgS7kKIZu2114rJyICBA+FPf1K7msYjzTJC\niGbrv//N4dlnHbG0LOPnny2pNpJKkyPNMkIIAVy8eKXyTH3UqKgmHezGkHAXQjQ7SUlJTJ9+haws\nR3r2zGfEiGi1S2p0Eu5CiGbl/PnzrFgRzeHDfbG0NLBgQQKWluVql9XoJNyFEM3GqVOn2Lp1P//9\n75MATJ2aQc+eBSpXpY4HGjhMCCHMxfHjx4mKiuKHH54jPd0eT88Cpk+/onZZqpFwF0I0aQaDgUOH\nDnHmzBny8x9n58722NiU8957iVhbGygtVbtCdUi4CyGarLKyMr777jsSExPp2nUQkyb1AGDWrDS6\ndy9SuTp1SbgLIZokvV7Pzp07yczMJCDgUebM6UFOjhUDB+bw3HPX1C5PdRLuQogmp7i4mK1bt5Kf\nn09AQADr1rUnKqoNTk56Fi1K4i5TSbQoEu5CiCYlPz+fLVu2YGFhgZ+fHydPtmbVqo4ALFqUjKtr\nC21kv42EuxCiycjJyWHz5s04ODjg6enJjRtWvP12N8rKNEyZcoXg4By1SzQbEu5CiCbh+vXrbN68\nGTc3N7p06UJZGSxc2JVr12zw88vjpZfS1S7RrEi4CyHMXkZGBlu2bKFLly48/PDDAPzrXx04ftwR\nJyc9S5cmYCVpVoN8HEIIs5acnExERAQ9e/akbdu2AERGOvLFFw+j0Rj461+TcHPTq1yl+ZFwF0KY\nrfPnz7N792769OmDs7MzAJcu2fGXv3gA8Mor6QwceEvNEs2WhLsQwiydOnWK77//nr59+6LVagHI\nybFk3rzuFBRY8vjj2UyZclXlKs2XhLsQwuxUjBPTr18/WrVqBUBpKbz9djfS0uzw8ipg4ULpz34v\nEu5CCLNRMU7ML7/8QmBgILa2tr+uh6VLu6DTtcHZWc+KFRexs5MZ3e5Fwl0IYRaqjxPTv39/rKp1\nfwkPb8+2ba7Y2pazcuVF2reXC6j3c8/x3KdNm4abmxu+1eanys3NZcyYMbi7uzN27Fjy8vIqX/vs\ns8/w9PSkV69e/Pjjjw1XtRCiWdHr9Wzfvp3U1FQeffTRGsG+c6cLYWEd0WgMLF2aQJ8+LXN89vq6\nZ7hPnTqVPXv21FgXFhaGu7s7Fy5coFOnTqxevRqAzMxMVq1axYEDBwgLC2PWrFkNV7UQotkoLi7m\n22+/JTs7m4CAACwtLStfO35cy7vvdgXg9ddTGTpU7kCtq3uGe3BwcGX3owo6nY7p06dja2vLtGnT\niIqKAiAqKorRo0fj7u7O0KFDMRgM5ObmNlzlQogmLz8/n02bNqHX6/Hz80NT7QrpyZOtmTevB2Vl\nGiZNuiIjPdZTvdvco6Oj8fb2BsDb2xudTgco4e7j41P5Pi8vL3Q6HSNGjLhjH4sXL65cDgkJISQk\npL5lCCGauNvHianu3Dl7Zs/2pLjYgqefvs6sWS1vaIHIyEgiIyON3r7e4W4w1P0KteYu/ZSqh7sQ\nouW5fZyY6hIT7XjlFU/y8y0ZOTKbd95JxqIFzvZ8+4nvkiVL6rV9vT+ywMBA4uLiAIiLiyMwMBCA\noKAgzp49W/m+c+fOVb4mhBAVMjIy2LhxIx07drwj2C9dsmPmzJ7cvGnNb36Tw1//mkS1JnhRD/UO\n96CgIMLDwyksLCQ8PJwBAwYA0L9/f/bu3UtKSgqRkZFYWFhU3lUmhBCgjBOzefNmevToQceOHWu8\nFh9vz4sv9iQry5r+/W/xwQeXsLaWvuzGumezzIQJEzh06BBZWVl07tyZd999l9DQUCZNmoSXlxcB\nAQF88MEHALi5uREaGsrw4cOxsbFhzZo1jfILCCGahtrGialw7pw9L7/ck5wcKwYNymH58kvY2kqw\nPwiNoT6N6KY4oEZTr3Z7IUTTd/r0aQ4ePFhjnJgKJ044MG9ed/LyrBgy5CZ/+1sCNjamy4jS0lKO\nHj3K3LlzTbZPNdQ3O+UOVSFEg6ptnJgKBw44sXChByUlFowYcYP33kuUphgTkXAXQjQIg8HA4cOH\nOX36dI1xYips2tSWjz7qjMGgYfz4TF5/PVUunpqQhLsQwuTuNU5MaSl8/nkn/t//cwPgpZfSmTr1\niozwaGIS7kIIk9Lr9ezcuZOrV6/y6KOP1hhOIDfXkvnzPTh2zBFLSwPvvJPM009nqVht8yXhLoQw\nmeLiYrZu3Up+fj79+vWrcSNjUpIt8+b1IDnZDicnPR9+mEBAQN499iYehIS7EMIk8vPz2bJlCxqN\nBj8/vxqv7d3rzPvvd6GgwBJPzwJWrLjEww+XqFRpyyDhLoR4YBXjxGi1Wnr06FG5vqhIw8cfd+bb\nb5WJrUeNymbhwmRatSpXq9QWQ8JdCPFAsrKy2Lx5M23btqVr166V6y9csGfhwq5cvNgKG5ty5s1L\n5dlnr8uF00Yi4S6EMFpGRgZbtmzB3d29cjiB0lL4z3/as3ZtB0pLLXB3L2LZsgS8vApVrrZlkXAX\nQhglOTmZrVu30rNnT9q1awfAxYt2vPtuV86ebQ3A+PGZvPpqujTDqEDCXQhRb/Hx8ezatatynJj8\nfAu++OJhNm5sR1mZhvbti1m4MJmgIJmwRy0S7kKIeqk+Tkzr1lr27nXmk086ce2aDRYWBn7/+0xe\neikdBwc5W1eThLswWnk5pKbC+fOQlARXryqPK1eU5+xsKCys+dDrwdISrKyqHjY2Blq1KkOrLcfZ\n2QIXF0ucnTW4uUH79tChg/L88MPQuTPcdhe7aEQ6nY5jx47Rr18/YmPd+OyzjsTFKU0wvXvn89Zb\nKfj4yATW5kDCXdTJjRsQHa08Tp1SAv3CBSWw66u0VHlU0VDXf4oaDXTsCB4eVY9u3aB7d/DxAReX\n+tcj7q/6ODH29sN4660uHD3qCICrawkzZ17m6aezWuSMSeZKwl3UKjMTIiPh4EH4/nuIj6/9fW5u\n4OUFPXooZ9dublWPhx6CVq3A3h70+hyysy+Tnp5IQkIyJSXltG7tSJs2LrRp0xa93p68PEvy8iy5\ndQuuXSvj6lUDmZmWZGXZcPOmHTdutCInR0tamgVpafDDD7XX4+MDvXopj4plNzekC56RysvL2bv3\nO/bsKebIkSmcOKGEeuvWZUyZcoWJEzOxt5cmGHMj4S4AMBggNhYiIpRHdHTN1+3sICAAAgOVZ29v\nJdQdHWvfX35+Punp6SQkJJOQkEBhYSFt2rTB2dmZgABf7O3tb9uiuE515uUVk5CgJykJUlOtyciw\nJzOzFZmZTmRmunD1qjVXrypfTNU5O0Pv3uDrC336VD3fNmeEuE1Ojp7588+wffujpKa6AkqoP/dc\nJhMnXsXJqUzlCsXdyGQdLVxSEqxfrzzOn69ab2cHgwfD8OHKIyAArK3vvp+ioiIuX75MSkoKCQkJ\n5OTk4ODggLOzM23btsXBwaFBf4+ysjJyc/NJTCwlPt6KlJTWpKY6cPmyE1evulBYaFfrdh071gx7\nX1/lbP+O754WpLzcgE6nZ926ctatsyA/3wYAJyc9EyZk8vvfX0OrbTqh3lIn65Bwb4FKSmDLFli9\nGg4frlrv6gpPPQVjxsCoUUqTyt33UUJGRgapqalcunSJrKwsHBwccHR0xNXVFUdHxxqDRqmpqKiY\nlBQ9cXEWXLxoT3KylrQ0JzIyXNDr7/zGsrAw0KOH5o7Q795duQDcVJSVlVFcXFzro6ioiMLCQgoK\nCigsLKSwsJCEBCt0uk7odD25etW1cj99+uQxfvw1Ro680SSnvpNwbyQS7uq5cgVWrYIvvlB6s4By\nhvrMMzB5MowceffwKisr48qVK6SlpXHp0iWuXLlC69at0Wq1tG3bFmdnZ7MJ87oqLTVw6VIZZ89a\nEh9vQ1KSltRURzIznSgvv/PKoK2tAR8f8PXV1Aj9jh0btj2/pKTkriF9e0BXLBcVFaHX67GxscHS\n0hIrKyssLS0rH8r46rYkJrpx6lQHoqLak5pa9deVk5Oexx67wZNPZtGrV9Pu/dJSw70JnYcIYyUl\nwfLl8K9/QfGvTdt9+sDLL8PEidCmzZ3blJeXc+3aNdLS0khISCAtLQ07Ozu0Wi2urq706NGjxjjd\nTZGVlQYvLyu8vAD0QDaQTXGxhkuXrIiNtSA+3oaEhNakprYhO1vLyZNw8mTN/Tg6ltOrVzl+fpb4\n+lad8Vdvzy8vL7/vWXRFOBcUFFSuKyoqQqPRYGlpibW1dY1wrni2sbHB2toarVaLi4sLtra2WFtb\n15ggAyAnx5K4uFbExrbmxAktp045UFxc9SWm1ZYyeHAOo0bdYNCgnCb1V4q4k5y5N2OpqbB4Maxb\nV9X18JlnYM4cCA6uebZpMBjIzs4mPT2dxMREkpOTsbS0xMHBAVdXV1xdXe8Ii5YmL8+CS5fsOHvW\nivh4ay5dakVychvy82tvz3d0LMTF5RaOjjk4Od3ExSWPtm3zadu2ABeXIrTaMqytLSuD28bGpjKo\nqz9b1KN/YWkpXL9uTWamDenptiQm2pGQYMfFi/akpd1Zp6dnAYGBuQwZcpO+ffOaZaDLmbtoNm7c\ngGXL4LPPlDN1S0uYNAneflvpFljh5s2bXL58maSkJBITEykvL688+3v00UfvmPOypXNwKMfPr4Cq\nocqzMBggK8uKS5fsOX/elvPnrUlIaEVKipacHHtycuwBt1r3Z2lpwMmpFGdnPS4upTg4lNGqVRn2\n9uWVD2vrO7sYlpRYUFBgQUGB0nW0oMCCmzetyMy04fp1a8rLa28jsrUtx8urgN6983nkkXwefTQX\nZ+fSWt8rmj6jw33t2rX8+9//pri4mODgYD755BNyc3OZNGkSP//8MwEBAaxfv77Be0mIKmVlSnv6\nO+8oAQ/w3HPw3ntKP/S8vDzOn08nOTmZxMRECgsLK8Pcz8+vlu6J4n40GnB1LcXVNbfGOCplZXDt\nmjUZGbZkZNiQkWHDlSs2vy7bkpVlRV6eFVlZ1mRl3aMbUr3rMeDqWoKbm5727Uvw8CjEw6OIbt2K\n8PAobJZn5qJ2RjXLZGdn069fP86cOYO9vT1PPvkks2fP5tSpU6SmpvLRRx8xb948unbtyuuvv17z\ngNIs0yCio+GllyAmRvl52DB4990iOnRIJzU1lYsXL5Kbm4tWq8XJyalRuieKeysp0XDzphXZ2Vbc\nvGlFbq4VhYUW1R6W6PWaOy7WWlkZaN26rPLRqlU5bdqU4uamx9VVj7W1/P+qTppl6sHe3h6DwUBO\nTg4ABQUFODk5odPpWLBgAba2tkybNo1ly5YZs3tRD/n5SnPL3/+u3IjUoUMpL798gY4ddeh0Vd0T\nu3XrRps2bZpcj5bmzMbGQLt2etq106tdimiGjA73sLAwunbtiq2tLbNmzSIoKIjo6Gi8vb0B8Pb2\nRqfTmbRYUdOPP8LkyaUkJVlhaVlOcPAJxo49Tbt2rXB1fZg+fXpLmAvRQhkV7teuXSM0NJSzZ8/i\n7OzM+PHj2bFjR53/ZFi8eHHlckhICCEhIcaU0WIVFyvt6h9/bMBgsKJz5xv87//GERhohaVlX7XL\nE0KYQGRkJJG3j6NRD0aFu06nY8CAAZUT4Y4fP54ffviBwMBA4uLi8Pf3Jy4ujsDAwFq3rx7uon4S\nEuD3v4cTJ5Q7KZ9/PoFZs3KwtpaeLUI0J7ef+C5ZsqRe2xs1QGdwcDAxMTFkZ2dTXFzM7t27eeyx\nxwgKCiI8PJzCwkLCw8MZMGCAMbsXd7FlC/j7K8Hetm0+ixcfYN68m3IBTQhxB6PCvU2bNixYsIBn\nnnmGwYMH4+fnx7BhwwgNDSUlJQUvLy/S09OZOXOmqettkcrK4I034He/g1u3IDj4Om+99TW//a0M\nXi6EqJ3coWrmbt6ECRNgzx5l3Je33rqOi8t6Bg4cgPW9hmkUQgAttyukzJtixuLjYcAAJdhdXWHr\n1lzatfuKRx7xlWAXQtyThLuZOnoUBg5Uxlh/5BE4dqyU7OytPPzwwzg5OaldnhDCzEm4m6Ft22DE\nCGWC6aeegiNHIDHxe0pKSujatava5QkhmgAJdzOzdq0ycmNREfzpT/Dtt5CScpa4uDj69OmjdnlC\niCZCwt2MrFgBf/4zlJfDokWwZg3cuHGNffv24efn1+KH3BVC1J2khZlYtgzmz1eWV62C0FAoLi4m\nIiICDw8PGeRLCFEvEu4qMxjg3XeVSTU0GmW2pKlTlckzvvvuO2xsbOjYsaPaZQohmhhpllHZkiVK\nsFtYKDMmTZ2qrP/pp59ISUnBx8dH1fqEEE2ThLuKVqxQwt3CAjZsUGZLArh8+TI//PADfn5+9Zpi\nTQghKkhyqGTtWqiYxyQ8XJkxCSA/P5+IiAi8vLxkZiQhhNEk3FWwcSO8+KKy/Pnn8MILynJ5eTm7\ndu3CycmJdu3aqVegEKLJk3BvZAcPwpQpyoXUpUvhlVeqXjt27BhZWVl4enqqV6AQolmQcG9EZ87A\ns8+CXg9z5yrT41VITEwkOjoaPz8/mT1JCPHAJNwbyeXL8NvfQk4OjBsHH31U9VpOTg47d+6kT58+\n2NjYqFekEKLZkHBvBLm58MQTkJoKgwbBl18qPWQAysrK2LFjB+3bt8fZ2VndQoUQzYaEewMrL1cu\nmJ48CZ6eEBEB1TvBREZGUlhYiIeHh3pFCiGaHQn3BvbXv8J//wuOjrBjhzIue4Vz585x5swZfH19\n1StQCNEsSbg3oP/+t+ru040boWfPqteysrLYu3evDAgmhGgQEu4N5MwZmDxZWf7b32D06KrXSkpK\niIiIoGvXrmi1WnUKFEI0axLuDeDWLaXLY34+TJxYdSdqhX379mFpaUmnTp3UKVAI0exJuJuYwaCM\nyX7hAvj6KsMMVO+2fvLkSRITE2VAMCFEg5JwN7HVq2HTJnBwgM2boVWrqtcyMjI4dOgQfn5+WFpa\nqlekEKLZMzrc8/PzeeGFF+jZsye9evUiKiqK3NxcxowZg7u7O2PHjiUvL8+UtZq9n36COXOU5X/+\nE7y8ql4rLCxk27Zt9OjRg1bVE18IIRqA0eG+aNEi3N3dOX36NKdPn8bb25uwsDDc3d25cOECnTp1\nYvXq1aas1azdugXjx0NJiTKLUsUoj6BMvLFr1y4cHBxo3769ekUKIVoMo8N9//79zJ8/Hzs7O6ys\nrHB0dESn0zF9+nRsbW2ZNm0aUVFRpqzVrM2aBQkJ0LcvfPxxzdeioqLIzMzEq/qpvBBCNCCjwj0t\nLY2ioiJCQ0MJCgrigw8+oLCwkOjoaLy9vQHw9vZGp9OZtFhztXkz/Oc/YGenTLphZ1f1WnJyMseP\nH5cBwYQQjcqou2eKioqIj49n+fLljBw5khdffJGvv/4ag8FQp+0XL15cuRwSEkJISIgxZZiFtLSq\nsdlXrIDqnWByc3PZsWMHvXr1wtbWVp0ChRBNUmRkJJGRkUZvrzHUNZFv4+PjQ1xcHAC7d+9m3bp1\nlJSUsGDBAvz9/Tlx4gTLli3jm2++qXlAjabOXwLmrrwcRo1Sxmh/4gnYvr2q22NZWRmbNm3CysqK\n7t27q1uoEC1YaWkpR48eZe7cuWqX8kDqm51Gt7l7enoSFRVFeXk5O3fuZOTIkQQFBREeHk5hYSHh\n4eEMGDDA2N03CZ99pgR727bwr3/V7M/+448/kp+fL8EuhFCF0eH+0UcfMXv2bAICArCzs+P5558n\nNDSUlJQUvLy8SE9PZ+bMmaas1axcvAjz5yvL//wnuLlVvRYfH8/Jkyd55JFH1ClOCNHiGT1iVc+e\nPTl+/Pgd6yMiIh6ooKagvBymT4fCQvjDH+Dpp6tey87OZvfu3fj6+sqAYEII1cgdqkZYtQoOH1bO\n1j/9tGq9Xq9n+/btuLu74+joqF6BQogWT8K9nhIT4a23lOVVq+Chh6pe279/P+Xl5bi7u6tTnBBC\n/ErCvR4qBgXLz1fuQH322arXfvnlFy5evEjv3r3VK1AIIX4l4V4PGzbA/v3g4gKff161/urVqxw4\ncEAGBBNCmA0J9zq6cQNee01ZXr5c6f4Iyg1dERER9OjRg9atW6tXoBBCVCPhXkdvvw2ZmRAcDFOn\nKusMBgN79uzB3t6eDh06qFugEEJUI+FeB8eOwZo1YG2tjNdecbNSTEwMly9flok3hBBmR8L9PvT6\nqrFj3ngDevVSllNTUzly5IgMCNaI1q1bR3BwMGfOnFG7FCHMnoT7fYSFwS+/QLdusGCBsi4vL4/t\n27fj4+ODXfUhIEWDGjduHPb29tIjSYg6kHC/h2vXYNEiZXnlSrC3h/Lycnbs2IGLiwuurq7qFtjC\nxMTE4O/vL38pCVEHEu73sGAB3LwJjz8OTz2lrDty5Ag5OTl4enqqW1wLFBUVhVar5fDhw/ztb3/j\n4sWLapckhNmScL+Ln3+GtWvBygo++US5iHrp0iVOnDiBn5+f2uU1e4cOHeKZZ55h+vTpJCcnA0q4\njxkzhiFDhjBo0CBWrVqlcpVCmC8J91oYDPDqq8rzrFng7Q03b95k586d+Pr6Ym1trXaJzdrZs2d5\n8803WbJkCYWFhaxYsYIrV65gMBjw9fUFlBvHCgoKVK5UCPMl4V6LTZvgyBFo1w7+8hdlQLBt27bR\nqVMnnJyc1C6v2fv888/p378/vX7tmtShQwfOnTtHnz59Kt9z/PhxAgMD1SpRCLMnY9Lepri4amCw\n998HR0fYty8SvV5Ply5d1C2uBYiNjSUmJoa3334bKysrNmzYAMCFCxcqv1hTUlJISkri/fffV7NU\nIcyahPs1Tm1gAAAUnUlEQVRt/v53SE6GPn2UO1FjY2OJi4sjKChI7dJahL179wIwdOjQGus9PT1p\n164dERERJCQksGbNGumGKsQ9SLhXk50N772nLH/4IWRnX2P//v307dtXJt5oJAcOHMDDw4OHqo+l\n/KtJkyapUJEQTZO0uVfz/vtK18cRI2DYsGIiIiLw8PDAwcFB7dJahOTkZDIzM+nbt6/apQjR5Em4\n/yoxUWmSAfjwQwP79n2HjY0NHTt2VLewFiQmJgagxoVTIYRxJNx/9c47UFICkyaBwfATKSkpMiBY\nIztx4gSAfO5CmICEO3DqFHz1FdjYwCuvXOHw4cP07dsXCwv5eBrTiRMnsLGxoVu3bmqXIkSTJ+kF\nLFyoPM+Yoeenn/4rA4KpICkpiezsbLp16yazWQlhAkaHe1lZGf7+/jz166Arubm5jBkzBnd3d8aO\nHUteXp7JimxIx4/D9u3QqpWBvn134+TkRNuKaZZEozl58iQAPXv2VLkSIZoHo8P9008/pVevXpUj\n9IWFheHu7s6FCxfo1KkTq1evNlmRDaliGN9x49IoK7ssA4Kp5KeffgIk3IUwFaPCPS0tjV27djFj\nxgwMBgMAOp2O6dOnY2try7Rp04iKijJpoQ3h++/hwAHQasvw9t4hE2+o6JdffgGgR48eKlei/FVq\nrNLSUhNWIoTxjAr3uXPnsnz58hoXHKOjo/H29gbA29sbnU5nmgobiMGg9JABGDIkmv79PbGxsVG3\nqBbqxo0bpKWlodFo6N69u6q1xMTEsHXrVqO3X716deUolkKoqd63Xe7YsYN27drh7+9PZGRk5fqK\nM/i6WLx4ceVySEgIISEh9S3jge3dq8yNqtUW8fzzV3F27tToNQjF6dOnAXB2dm6UgdlSU1MJCwuj\nbdu26PV63nzzTQDOnDnD7t27WVhxhd0IkydPZs6cOaxcubLOv8vKlSvZu3cvWVlZrF69mn79+hl9\nfNF8REZG1sjY+qp3uB89epRt27axa9cuioqKuHXrFpMnTyYwMJC4uDj8/f2Ji4u754h91cNdDQYD\nLFmiLD/++Cl8fCTY1dSYTTJ6vZ5XXnmFGTNm8Msvv7Br1y5mz54NwPLly1mzZs0D7d/R0ZHf/e53\nzJs3jy+++KJOPX/mzp1Lx44d+fTTTyuHNBbi9hPfJRWhVUf1bpZZunQpqampJCYmsnHjRoYPH86X\nX35JUFAQ4eHhFBYWEh4ezoABA+q760Zz4IDSS6Z160Jeekl6g6qtItwb42L2sWPHuHz5MgEBAYwZ\nM4awsDBsbW356quvGDx4sEm6wD7xxBNYWVlx6NChOm9z8uRJevXqJU2DwmQeONkqLkCGhoaSkpKC\nl5cX6enpzJw584GLayh/+YsegIkTM2jTRsJdTWVlZZw9exZonHA/ceIETk5OdOzYkd69e+Pr60tx\ncTHr16/nd7/7ncmO8/LLL7Nly5Y6v//nn38mICDAZMcX4oGGOhw6dGjl0KxarZaIiAiTFNWQDh2C\nY8esad26mD/8IUftclq8xMREioqK0Gg0jRLusbGx9O7du8a6mJgY2rdvj7Ozs8mO0717d2JiYkhL\nS6NTp3s3+6WlpXH9+nUJd2FSLW4c23ffVZ5HjTqLg0O5usUI4uLiALCysmrQYQeWLl3KlStXOHXq\nFF27dmXWrFm4u7vz+uuvc/To0XvOi5uQkMCOHTsoKSkhLy+P+fPn8+WXX5KTk0NWVhavvvoq7du3\nr7FN69atcXFx4dChQ/zhD3+o8dq5c+c4ePAger2enJwcvLy8sLS0vKMGY44rRIUWFe4//ggHD4KD\nQxmjRsUBXmqX1OJVNMl4eHg06Jj58+fPJz09nbFjx/Lyyy/XuFB19uxZnn766Vq3y8jIICIigrlz\n5wLw1ltvMXnyZObNm4dWq2Xq1KkEBgYyduzYO7bt0qULly9frrHu+PHjLFq0iPXr19O2bVuSkpKY\nMGECvXv3rtHe/yDHFQJa2NgyS5cqz5MmZdOqVYm6xQigKty9vBr+i/b8+fPAnXfBZmdno9Vqa93m\n66+/rnH9SK/XY2dnR//+/XFxcWHatGmMHDmy1m3d3d3JyMio/Pny5cu88847zJ07t3KIi65du9Kq\nVas7mmQe5LhCQAsK99OnYfdusLeHyZNvqF2OQLmYevHiRaBxhvmNj4/HwcGBhx9+uMb6e4X7+PHj\nsbe3r/w5Li6usieYm5sbf/7zn+86mUuXLl24cuVK5c+ff/45paWlDB8+vHJdQkICt27duiPcH+S4\nQkALCvcPP1SeZ8wAZ2fjby8XppOUlERJSQkajabRwr22sWs0Gg35+fm1blP9iyApKYlr167x6KOP\n1ul4ZWVllJcr13UMBgMxMTEMHDiwRnfHEydOYGFhccfsUw9yXCGghYR7UhJs3AiWlvDaa2pXIyrE\nx8cDysXUiqErGvp4tTX/ODs7k5SUdN/tY2JisLa25pFHHqlcl5aWdtf3JycnV84Fm5SUxM2bN+/4\ncomJicHHxwd7e3vS09NNclwhoIWE+8cfQ1kZTJgAXbuqXY2ocOHCBUC5M7WhJyC/efMmV69erbW7\npaurKykpKXesLykpYe3atZVNR0ePHsXDwwNbW1sACgoK+Prrr+96zOrh3rZtW6ytrencuXPl60VF\nRfz000/4+/sD8NVXX5nkuEJAC+gtc/06/POfyvKvQ4gIM1ERXo0xZ2rFxdTawt3X15dTp07dsf7E\niRN88cUX9OzZk9LSUq5cuVL5JaTX6/nnP//JxIkT73rMlJQURo8eDYCDgwOBgYGVXyKlpaWsWLEC\ngIceeogrV67QoUMHkxxXCGgB4f73v0NhIfz2tyDDdpiXinC//aaihnD+/Hm0Wm2tbe4DBw5k27Zt\nd6z39fVl9OjR6HQ6bGxsWLduHZ988glLly5Fq9UyevTou/Yzv3XrFjdu3GDQoEGV6xYuXMjGjRv5\n8MMPKSsr48UXX+Q3v/kN69atIy8vjylTpjzwcYWo0KzDvaBACXeA//1fdWsRNeXm5nLt2jU0Gk2j\nhPu5c+cIDAysdV5cf39/LCwsuHz5co0LmQ4ODvz1r3+t8d7XX3+9Tsc7f/48PXv2rLE/V1dXXnnl\nlRrvq21U1Ac5rhAVmnWb+5dfQlYW9O8PwcFqVyOqu3TpEgBt2rShawNdCPn222+ZNWsWoPSn/+1v\nf1vr+2xsbJg+fTqffPKJSY5bXl7O3//+d1588UWT7E8IYzTbcC8vh4r/q3PngkywZF4SEhIA7ugC\naEo7d+7EycmJM2fO4OLiUjkOUm3Gjx9PfHw8P/zwwwMfd/PmzVhbWzNkyJAH3pcQxmq24b53L5w7\nB506wbhxalcjblcR7hU9RRrClClTsLW15cCBA3c0c9zOysqKjz76iNWrV1NUVGT0Ma9du8a3337L\ne++9Z/Q+hDCFZtvmvnKl8vzKK2BtrW4t4k4V3SAb8sy9+qilddGjRw/efvttNm3axAsvvGDUMTds\n2MDy5cvlgqdQXbMM9zNnYN8+aNUK/vxntasRtblw4QL29vaNcvNSffTp0+eBumZWzOokhNqaZbNM\nRVv7H/8IJhyiW5hIRkYGubm59OnTp07T0Akh6q/Zhfu1a7B+vbIsJ1HmqWIkSJkIWoiG0+zCfe1a\nKC6GJ5+EWu5XEWagItzNeZ5dIZq6ZhXupaUQFqYsv/qqurWIuzt16hROTk6NcvOSEC1Vswr37dsh\nLQ08PUHmMTBPBQUFnDlzhqCgILVLEaJZa1bhXjHUwMsvQy13mQszEB0dTVlZGcFyy7AQDarZRGBc\nnDI/aqtWYGQXZdEAvvjiCyZMmEBpaSmgDAnQsWNHRo0apXJlQjRvRoV7amoqw4YNo3fv3oSEhLBh\nwwZAGQxqzJgxuLu7M3bsWPLy8kxa7L384x/K8+TJ4OTUaIcV93H06FE0Gg0ajYa0tDSOHz/On/70\np1oH8BJCmI5R/8Osra1ZuXIlsbGxfPPNNyxYsIDc3FzCwsJwd3fnwoULdOrUidWrV5u63lrdugX/\n+Y+y/PLLjXJIUUfDhg2jc+fOnDt3jnnz5uHp6XnXAbyEEKZj1B2q7du3r7y92tXVld69exMdHY1O\np2PBggXY2toybdo0li1bZtJi7+bLLyEvD4YMkTHbzc2zzz7L1atXmTt3Lv369WP+/Plo7jKKm8Fg\nYMOGDTg6OpKVlUVqaip//OMf6dSpUyNXLUTT98B/G1+8eJHY2Fj69+9PdHR05e3k3t7e6HS6By7w\nfgwGqPgDQc7azY9Wq+XNN9/ku+++Y9myZWi12ru+NywsDAsLC5588knGjBnDwYMHJdiFMNIDjS2T\nm5vLc889x8qVK3FwcMBgMNRpu8WLF1cu1zZZQX0cP66MJdOuHYwda/RuhMrS09P56quv+O677wDl\npCEgIEDlqoRQT2RkJJGRkUZvb3S46/V6xo0bx+TJkxkzZgwAgYGBxMXF4e/vT1xcHIGBgbVuWz3c\nH9QXXyjPU6eCjY3JdisaWXR0NL6+vtjb2wOg0+kIDAwkNzf3nmf7QjRXt5/4LlmypF7bG9UsYzAY\nmD59On369GHOnDmV64OCgggPD6ewsJDw8PAGv7385k3YtElZnjGjQQ8lGljbtm1p164doNzo9P33\n3/PII4+wf/9+lSsTomkyKtyPHDnC+vXrOXjwIP7+/vj7+7Nnzx5CQ0NJSUnBy8uL9PR0Zs6caep6\na1i/Xpn8esQI6NGjQQ8lGtiAAQPo0KED+/fv58KFCzz77LMcOHCALl26qF2aEE2SUc0ygwcPpry8\nvNbXIiIiHqigujIYqppkZMz2ps/S0rLGnKN+fn4qViNE09dk7ySJioJffoG2beVCqhBC3K7JhnvF\nWfsf/ygXUoUQ4nZNMtxzcmDjRmX5T39StxYhhDBHTTLcN29WLqQOHaoM7yuEEKKmJhnu//d/yvPU\nqaqWIYQQZqvJhXt8PBw5Aq1bw7hxalcjhBDmqcmFe8Xoj+PHg4ODurUIIYS5alLhXlYG69Ypy3/8\no6qlCCGEWWtS4X7woDJHarduILO0CSHE3TWpcK+4kPrCCzJHqhBC3EuTicicHPj2W2V5yhR1axFC\nCHPXZMJ90yYoKoJhw6BrV7WrEUII89Zkwl36tgshRN01iXA/fx6OHVO6Pj77rNrVCCGE+WsS4V7R\nt/33v1duXhJCCHFvZh/u0rddCCHqz+zD/dAhSE9X+rYPHqx2NUII0TSYfbhv2KA8T5wIGo26tQgh\nRFNh1uFeXAzffKMsT5yobi1CCNGUmHW4796t3LzUty/4+KhdjRBCNB1mHe5ffaU8T5igbh1CCNHU\nmG245+bCtm3K8vPPq1uLEEI0NSYP98OHD+Pj44Onpyeff/650fvZulUZbiA4GNzdTVigGTlx4oTa\nJZgN+SyqyGdRRT4L45k83GfPns2aNWvYv38///jHP7h+/bpR+2kJTTLyD7eKfBZV5LOoIp+F8Uwa\n7jk5OQAMGTKELl268NhjjxEVFVXv/Vy7Bt99B1ZWyoxLQggh6sfKlDuLjo7G29u78udevXpx/Phx\nnnjiiXrtZ/Nm5c7U//kfcHU1ZYUKjUZDdnY2P/30k+l3Xg8ZGRmq12Au5LOoIp9FFVN8FuXl5VhZ\nmTTqmgRVfmNNHe9G2r27+d+4tH37drVLMBvyWVSRz6KKqT6LWbNmmWQ/TYVJwz0wMJA33nij8ufY\n2FhGjx5d4z0Gg8GUhxRCCFELk7a5Ozo6AkqPmaSkJPbt20dQUJApDyGEEKIOTN4s88knn/Diiy+i\n1+uZNWsWrg3RaC6EEOKeTN4VcujQocTFxXHx4sUabVym6v/eHKSmpjJs2DB69+5NSEgIGypGR2uh\nysrK8Pf356mnnlK7FFXl5+fzwgsv0LNnz8rOCC3V2rVrGTRoEP369WPOnDlql9Oopk2bhpubG76+\nvpXrcnNzGTNmDO7u7owdO5a8vLz77qfR7lA1Vf/35sDa2pqVK1cSGxvLN998w4IFC8jNzVW7LNV8\n+umn9OrVq84X2purRYsW4e7uzunTpzl9+jQ+LXRApezsbJYuXcq+ffuIjo4mPj6evXv3ql1Wo5k6\ndSp79uypsS4sLAx3d3cuXLhAp06dWL169X330yjhbqr+781F+/bt6du3LwCurq707t2bmJgYlatS\nR1paGrt27WLGjBkt/mL7/v37mT9/PnZ2dlhZWVVew2pp7O3tMRgM5OTkUFhYSEFBAc7OzmqX1WiC\ng4Pv+H11Oh3Tp0/H1taWadOm1Sk/GyXc79b/XcDFixeJjY2lf//+apeiirlz57J8+XIsLMx2mKNG\nkZaWRlFREaGhoQQFBfHBBx9QVFSkdlmqsLe3JywsjK5du9K+fXt+85vftNj/HxWqZ6i3tzc6ne6+\n27Ts/1Eqy83N5bnnnmPlypW0boGTw+7YsYN27drh7+/f4s/ai4qKiI+PZ9y4cURGRhIbG8vXX3+t\ndlmquHbtGqGhoZw9e5akpCSOHTvGzp071S5LVcb8/2iUcA8MDOTcuXOVP8fGxjJgwIDGOLTZ0uv1\njBs3jsmTJzNmzBi1y1HF0aNH2bZtGx4eHkyYMIGDBw8yZcoUtctSRY8ePfDy8uKpp57C3t6eCRMm\nsHv3brXLUoVOp2PAgAH06NGDhx56iPHjx3P48GG1y1JVYGAgcXFxAMTFxREYGHjfbRol3KX/e00G\ng4Hp06fTp0+fFtcToLqlS5eSmppKYmIiGzduZPjw4ayrmA29BfL09CQqKory8nJ27tzJyJEj1S5J\nFcHBwcTExJCdnU1xcTG7d+/mscceU7ssVQUFBREeHk5hYSHh4eF1OjlutGaZiv7vI0eO5KWXXmrR\n/d+PHDnC+vXrOXjwIP7+/vj7+99xdbwlaum9ZT766CNmz55NQEAAdnZ2PN9CJzJo06YNCxYs4Jln\nnmHw4MH4+fkxbNgwtctqNBMmTGDQoEHEx8fTuXNn/v3vfxMaGkpKSgpeXl6kp6czc+bM++5HY2jp\njZ1CCNEMyQVVIYRohiTchRCiGZJwF0KIZkjCXQghmiEJdyGEaIYk3IUQohn6/0A3Dhj0UlGDAAAA\nAElFTkSuQmCC\n"
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"source": [
"Compute the integral both at high accuracy and with the trapezoid approximation"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from scipy.integrate import quad, trapz",
"integral, error = quad(f, 1, 9)",
"print \"The integral is:\", integral, \"+/-\", error",
"print \"The trapezoid approximation with\", len(xint), \"points is:\", trapz(yint, xint)"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The integral is: 680.0 +/- 7.54951656745e-12",
"The trapezoid approximation with 6 points is: 621.286411141"
]
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": true,
"input": [],
"language": "python",
"outputs": [],
"prompt_number": "&nbsp;"
}
]
}
]
MinRK
update example notebooks after sort_keys and split_lines
r5279 }