##// END OF EJS Templates
Tidy up error raising in magic decorators....
Tidy up error raising in magic decorators. Closes gh-1778

File last commit:

r4910:0dc49390
r7047:6fd55e8d
Show More
rmt.ipy
146 lines | 3.3 KiB | text/plain | TextLexer
Brian E. Granger
Updating RMT parallel example.
r4591 # <nbformat>2</nbformat>
# <markdowncell>
# # Eigenvalue distribution of Gaussian orthogonal random matrices
# <markdowncell>
Bernardo B. Marques
remove all trailling spaces
r4872 # The eigenvalues of random matrices obey certain statistical laws. Here we construct random matrices
Brian E. Granger
Updating RMT parallel example.
r4591 # from the Gaussian Orthogonal Ensemble (GOE), find their eigenvalues and then investigate the nearest
# neighbor eigenvalue distribution $\rho(s)$.
# <codecell>
from rmtkernel import ensemble_diffs, normalize_diffs, GOE
import numpy as np
MinRK
remove kernel examples already ported to newparallel
r3675 from IPython.parallel import Client
MinRK
updates to docs and examples
r3670
Brian E. Granger
Updating RMT parallel example.
r4591 # <markdowncell>
MinRK
updates to docs and examples
r3670
Brian E. Granger
Updating RMT parallel example.
r4591 # ## Wigner's nearest neighbor eigenvalue distribution
# <markdowncell>
# The Wigner distribution gives the theoretical result for the nearest neighbor eigenvalue distribution
# for the GOE:
Bernardo B. Marques
remove all trailling spaces
r4872 #
Brian E. Granger
Updating RMT parallel example.
r4591 # $$\rho(s) = \frac{\pi s}{2} \exp(-\pi s^2/4)$$
# <codecell>
def wigner_dist(s):
MinRK
updates to docs and examples
r3670 """Returns (s, rho(s)) for the Wigner GOE distribution."""
Brian E. Granger
Updating RMT parallel example.
r4591 return (np.pi*s/2.0) * np.exp(-np.pi*s**2/4.)
MinRK
updates to docs and examples
r3670
Brian E. Granger
Updating RMT parallel example.
r4591 # <codecell>
MinRK
updates to docs and examples
r3670
Brian E. Granger
Updating RMT parallel example.
r4591 def generate_wigner_data():
s = np.linspace(0.0,4.0,400)
rhos = wigner_dist(s)
MinRK
updates to docs and examples
r3670 return s, rhos
Brian E. Granger
Updating RMT parallel example.
r4591 # <codecell>
s, rhos = generate_wigner_data()
# <codecell>
plot(s, rhos)
xlabel('Normalized level spacing s')
ylabel('Probability $\rho(s)$')
# <markdowncell>
# ## Serial calculation of nearest neighbor eigenvalue distribution
# <markdowncell>
# In this section we numerically construct and diagonalize a large number of GOE random matrices
# and compute the nerest neighbor eigenvalue distribution. This comptation is done on a single core.
# <codecell>
def serial_diffs(num, N):
"""Compute the nearest neighbor distribution for num NxX matrices."""
diffs = ensemble_diffs(num, N)
normalized_diffs = normalize_diffs(diffs)
return normalized_diffs
# <codecell>
serial_nmats = 1000
serial_matsize = 50
# <codecell>
%timeit -r1 -n1 serial_diffs(serial_nmats, serial_matsize)
MinRK
updates to docs and examples
r3670
Brian E. Granger
Updating RMT parallel example.
r4591 # <codecell>
MinRK
updates to docs and examples
r3670
Brian E. Granger
Updating RMT parallel example.
r4591 serial_diffs = serial_diffs(serial_nmats, serial_matsize)
# <markdowncell>
# The numerical computation agrees with the predictions of Wigner, but it would be nice to get more
# statistics. For that we will do a parallel computation.
# <codecell>
hist_data = hist(serial_diffs, bins=30, normed=True)
plot(s, rhos)
xlabel('Normalized level spacing s')
ylabel('Probability $P(s)$')
# <markdowncell>
# ## Parallel calculation of nearest neighbor eigenvalue distribution
# <markdowncell>
# Here we perform a parallel computation, where each process constructs and diagonalizes a subset of
# the overall set of random matrices.
# <codecell>
def parallel_diffs(rc, num, N):
MinRK
remove kernel examples already ported to newparallel
r3675 nengines = len(rc.targets)
MinRK
updates to docs and examples
r3670 num_per_engine = num/nengines
print "Running with", num_per_engine, "per engine."
Brian E. Granger
Updating RMT parallel example.
r4591 ar = rc.apply_async(ensemble_diffs, num_per_engine, N)
diffs = np.array(ar.get()).flatten()
normalized_diffs = normalize_diffs(diffs)
return normalized_diffs
# <codecell>
client = Client()
view = client[:]
view.run('rmtkernel.py')
view.block = False
# <codecell>
parallel_nmats = 40*serial_nmats
parallel_matsize = 50
# <codecell>
%timeit -r1 -n1 parallel_diffs(view, parallel_nmats, parallel_matsize)
# <codecell>
pdiffs = parallel_diffs(view, parallel_nmats, parallel_matsize)
# <markdowncell>
# Again, the agreement with the Wigner distribution is excellent, but now we have better
# statistics.
# <codecell>
hist_data = hist(pdiffs, bins=30, normed=True)
plot(s, rhos)
xlabel('Normalized level spacing s')
ylabel('Probability $P(s)$')