##// END OF EJS Templates
add %%capture cell magic
add %%capture cell magic

File last commit:

r7031:3024e635
r7325:778d14e9
Show More
cython_extension.ipynb
225 lines | 5.4 KiB | text/plain | TextLexer
/ docs / examples / notebooks / cython_extension.ipynb
Brian Granger
Adding Cython extension and example notebook.
r7031 {
"metadata": {
"name": "cython_extension"
},
"nbformat": 3,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"source": [
"Cython Magic Functions Extension"
]
},
{
"cell_type": "heading",
"level": 2,
"source": [
"Loading the extension"
]
},
{
"cell_type": "markdown",
"source": [
"IPtyhon has a `cythonmagic` extension that contains a number of magic functions for working with Cython code. This extension can be loaded using the `%load_ext` magic as follows:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%load_ext cythonmagic"
],
"language": "python",
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"source": [
"The %cython_inline magic"
]
},
{
"cell_type": "markdown",
"source": [
"The `%%cython_inline` magic uses `Cython.inline` to compile a Cython expression. This allows you to enter and run a function body with Cython code. Use a bare `return` statement to return values. "
]
},
{
"cell_type": "code",
"collapsed": true,
"input": [
"a = 10",
"b = 20"
],
"language": "python",
"outputs": [],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%%cython_inline",
"return a+b"
],
"language": "python",
"outputs": [
{
"output_type": "pyout",
"prompt_number": 9,
"text": [
"30"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"source": [
"The %cython_pyximport magic"
]
},
{
"cell_type": "markdown",
"source": [
"The `%%cython_pyximport` magic allows you to enter arbitrary Cython code into a cell. That Cython code is written as a `.pyx` file in the current working directory and then imported using `pyximport`. You have the specify the name of the module that the Code will appear in. All symbols from the module are imported automatically by the magic function."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%%cython_pyximport foo",
"def f(x):",
" return 4.0*x"
],
"language": "python",
"outputs": [],
"prompt_number": 18
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"f(10)"
],
"language": "python",
"outputs": [
{
"output_type": "pyout",
"prompt_number": 19,
"text": [
"40.0"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"source": [
"The %cython magic"
]
},
{
"cell_type": "markdown",
"source": [
"Probably the most important magic is the `%cython` magic. This is similar to the `%%cython_pyximport` magic, but doesn't require you to specify a module name. Instead, the `%%cython` magic uses manages everything using temporary files in the `~/.cython/magic` directory. All of the symbols in the Cython module are imported automatically by the magic.",
"",
"Here is a simple example of a Black-Scholes options pricing algorithm written in Cython:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%%cython",
"cimport cython",
"from libc.math cimport exp, sqrt, pow, log, erf",
"",
"@cython.cdivision(True)",
"cdef double std_norm_cdf(double x) nogil:",
" return 0.5*(1+erf(x/sqrt(2.0)))",
"",
"@cython.cdivision(True)",
"def black_scholes(double s, double k, double t, double v,",
" double rf, double div, double cp):",
" \"\"\"Price an option using the Black-Scholes model.",
" ",
" s : initial stock price",
" k : strike price",
" t : expiration time",
" v : volatility",
" rf : risk-free rate",
" div : dividend",
" cp : +1/-1 for call/put",
" \"\"\"",
" cdef double d1, d2, optprice",
" with nogil:",
" d1 = (log(s/k)+(rf-div+0.5*pow(v,2))*t)/(v*sqrt(t))",
" d2 = d1 - v*sqrt(t)",
" optprice = cp*s*exp(-div*t)*std_norm_cdf(cp*d1) - \\",
" cp*k*exp(-rf*t)*std_norm_cdf(cp*d2)",
" return optprice"
],
"language": "python",
"outputs": [],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"black_scholes(100.0, 100.0, 1.0, 0.3, 0.03, 0.0, -1)"
],
"language": "python",
"outputs": [
{
"output_type": "pyout",
"prompt_number": 7,
"text": [
"10.327861752731728"
]
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%timeit black_scholes(100.0, 100.0, 1.0, 0.3, 0.03, 0.0, -1)"
],
"language": "python",
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1000000 loops, best of 3: 621 ns per loop",
""
]
}
],
"prompt_number": 14
},
{
"cell_type": "code",
"collapsed": true,
"input": [
""
],
"language": "python",
"outputs": []
}
]
}
]
}