##// END OF EJS Templates
update reference to v3
update reference to v3

File last commit:

r8621:77c6c1a0
r8621:77c6c1a0
Show More
tutorial.ipynb.ref
442 lines | 11.9 KiB | text/plain | TextLexer
/ tests / tutorial.ipynb.ref
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 {
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {
"name": "tutorial"
},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "nbformat": 3,
Matthias BUSSONNIER
update reference to v3
r8621 "nbformat_minor": 0,
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"An Introduction to machine learning with scikit-learn"
]
},
{
"cell_type": "heading",
"level": 1,
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"Section contents"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "In this section, we introduce the machine learning\n",
"vocabulary that we use through-out scikit-learn and give a\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "simple learning example."
]
},
{
"cell_type": "heading",
"level": 2,
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"Machine learning: the problem setting"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
"source": [
"In general, a learning problem considers a set of n\n",
"samples of\n",
"data and try to predict properties of unknown data. If each sample is\n",
"more than a single number, and for instance a multi-dimensional entry\n",
"(aka multivariate\n",
"data), is it said to have several attributes,\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "or features."
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"We can separate learning problems in a few large categories:"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "supervised learning,\n",
"in which the data comes with additional attributes that we want to predict\n",
"(:ref:`Click here <supervised-learning>`\n",
"to go to the Scikit-Learn supervised learning page).This problem\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "can be either:"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
"source": [
"classification:\n",
"samples belong to two or more classes and we\n",
"want to learn from already labeled data how to predict the class\n",
"of unlabeled data. An example of classification problem would\n",
"be the digit recognition example, in which the aim is to assign\n",
"each input vector to one of a finite number of discrete\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "categories."
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "regression:\n",
"if the desired output consists of one or more\n",
"continuous variables, then the task is called regression. An\n",
"example of a regression problem would be the prediction of the\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "length of a salmon as a function of its age and weight."
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
"source": [
"unsupervised learning,\n",
"in which the training data consists of a set of input vectors x\n",
"without any corresponding target values. The goal in such problems\n",
"may be to discover groups of similar examples within the data, where\n",
"it is called clustering,\n",
"or to determine the distribution of data within the input space, known as\n",
"density estimation, or\n",
"to project the data from a high-dimensional space down to two or thee\n",
"dimensions for the purpose of visualization\n",
"(:ref:`Click here <unsupervised-learning>`\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "to go to the Scikit-Learn unsupervised learning page)."
]
},
{
"cell_type": "heading",
"level": 2,
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"Training set and testing set"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "Machine learning is about learning some properties of a data set\n",
"and applying them to new data. This is why a common practice in\n",
"machine learning to evaluate an algorithm is to split the data\n",
"at hand in two sets, one that we call a training set on which\n",
"we learn data properties, and one that we call a testing set,\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "on which we test these properties."
]
},
{
"cell_type": "heading",
"level": 2,
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"Loading an example dataset"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "scikit-learn comes with a few standard datasets, for instance the\n",
"iris and digits\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "datasets for classification and the boston house prices dataset for regression.:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
Matthias BUSSONNIER
update reference to v3
r8621 "from sklearn import datasets\n",
"iris = datasets.load_iris()\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "digits = datasets.load_digits()"
],
"language": "python",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "outputs": []
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "A dataset is a dictionary-like object that holds all the data and some\n",
"metadata about the data. This data is stored in the .data member,\n",
"which is a n_samples, n_features array. In the case of supervised\n",
"problem, explanatory variables are stored in the .target member. More\n",
"details on the different datasets can be found in the :ref:`dedicated\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "section <datasets>`."
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "For instance, in the case of the digits dataset, digits.data gives\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "access to the features that can be used to classify the digits samples:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print digits.data # doctest: +NORMALIZE_WHITESPACE"
],
"language": "python",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "outputs": []
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "and digits.target gives the ground truth for the digit dataset, that\n",
"is the number corresponding to each digit image that we are trying to\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "learn:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"digits.target"
],
"language": "python",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "outputs": []
},
{
"cell_type": "heading",
"level": 2,
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"Shape of the data arrays"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "The data is always a 2D array, n_samples, n_features, although\n",
"the original data may have had a different shape. In the case of the\n",
"digits, each original sample is an image of shape 8, 8 and can be\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "accessed using:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"digits.images[0]"
],
"language": "python",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "outputs": []
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "The :ref:`simple example on this dataset\n",
"<example_plot_digits_classification.py>` illustrates how starting\n",
"from the original problem one can shape the data for consumption in\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "the scikit-learn."
]
},
{
"cell_type": "heading",
"level": 2,
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"Learning and Predicting"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "In the case of the digits dataset, the task is to predict the value of a\n",
"hand-written digit from an image. We are given samples of each of the 10\n",
"possible classes on which we fit an\n",
"estimator to be able to predict\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "the labels corresponding to new data."
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "In scikit-learn, an estimator is just a plain Python class that\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "implements the methods fit(X, Y) and predict(T)."
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "An example of estimator is the class sklearn.svm.SVC that\n",
"implements Support Vector Classification. The\n",
"constructor of an estimator takes as arguments the parameters of the\n",
"model, but for the time being, we will consider the estimator as a black\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "box:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
Matthias BUSSONNIER
update reference to v3
r8621 "from sklearn import svm\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "clf = svm.SVC(gamma=0.001, C=100.)"
],
"language": "python",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "outputs": []
},
{
"cell_type": "heading",
"level": 2,
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"Choosing the parameters of the model"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "In this example we set the value of gamma manually. It is possible\n",
"to automatically find good values for the parameters by using tools\n",
"such as :ref:`grid search <grid_search>` and :ref:`cross validation\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "<cross_validation>`."
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "We call our estimator instance clf as it is a classifier. It now must\n",
"be fitted to the model, that is, it must learn from the model. This is\n",
"done by passing our training set to the fit method. As a training\n",
"set, let us use all the images of our dataset apart from the last\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "one:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clf.fit(digits.data[:-1], digits.target[:-1])"
],
"language": "python",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "outputs": []
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "Now you can predict new values, in particular, we can ask to the\n",
"classifier what is the digit of our last image in the digits dataset,\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "which we have not used to train the classifier:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"clf.predict(digits.data[-1])"
],
"language": "python",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "outputs": []
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"The corresponding image is the following:"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "As you can see, it is a challenging task: the images are of poor\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "resolution. Do you agree with the classifier?"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "A complete example of this classification problem is available as an\n",
"example that you can run and study:\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 ":ref:`example_plot_digits_classification.py`."
]
},
{
"cell_type": "heading",
"level": 2,
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
"Model persistence"
]
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "It is possible to save a model in the scikit by using Python's built-in\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "persistence model, namely pickle:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
Matthias BUSSONNIER
update reference to v3
r8621 "from sklearn import svm\n",
"from sklearn import datasets\n",
"clf = svm.SVC()\n",
"iris = datasets.load_iris()\n",
"X, y = iris.data, iris.target\n",
"clf.fit(X, y)\n",
"import pickle\n",
"s = pickle.dumps(clf)\n",
"clf2 = pickle.loads(s)\n",
"clf2.predict(X[0])\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "y[0]"
],
"language": "python",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "outputs": []
},
{
"cell_type": "markdown",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "source": [
Matthias BUSSONNIER
update reference to v3
r8621 "In the specific case of the scikit, it may be more interesting to use\n",
"joblib's replacement of pickle (joblib.dump & joblib.load),\n",
"which is more efficient on big data, but can only pickle to the disk\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "and not to a string:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
Matthias BUSSONNIER
update reference to v3
r8621 "from sklearn.externals import joblib\n",
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "joblib.dump(clf, 'filename.pkl') # doctest: +SKIP"
],
"language": "python",
Matthias BUSSONNIER
update reference to v3
r8621 "metadata": {},
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 "outputs": []
}
Matthias BUSSONNIER
update reference to v3
r8621 ],
"metadata": {}
slojo404
adding a basic test and moving tutorial.rst test file to tests directory
r6288 }
]
}