##// END OF EJS Templates
add '/' separator to keys in SSH engine dict...
add '/' separator to keys in SSH engine dict to prevent confusing with number-ending nodenames in log output.

File last commit:

r4637:d919e2ec
r5181:79a50b94
Show More
smooth_dos.ipynb
201 lines | 49.5 KiB | text/plain | TextLexer
Brian E. Granger
Converting notebooks to JSON format.
r4634 {
"nbformat": 2,
Brian E. Granger
Implemented metadata for notebook format.
r4637 "metadata": {
"name": "dos"
},
Brian E. Granger
Converting notebooks to JSON format.
r4634 "worksheets": [
{
"cells": [
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 1,
"input": "from sympy import *\nimport numpy as np\nimport math"
},
{
"source": "<h2>Strutinsky Energy Averaging Method</h2>",
"cell_type": "markdown"
},
{
"source": "Define a callable class for computing the smooth part of the density of states $\\tilde{g}_m(E)$ with curvature\ncorrection of order $2M$.",
"cell_type": "markdown"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 2,
"input": "class SmoothDOS(object):\n\n def __init__(self, energies):\n self.energies = energies\n\n def gaussian_smoothing_func(self, M, x):\n return (mpmath.laguerre(M,0.5,x**2)*exp(-x**2)/sqrt(pi)).evalf()\n\n def __call__(self, e, M=3, gamma=1.0):\n return sum(self.gaussian_smoothing_func(M, (e-ei)/gamma)/gamma for ei in self.energies)"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 3,
"input": "def avgf(M, x):\n return (mpmath.laguerre(M,0.5,x**2)*exp(-x**2)/sqrt(pi)).evalf()"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 4,
"input": "def smooth_dos(gamma, M, e, energies):\n return sum(avgf(M, (e-ei)/gamma)/gamma for ei in energies)"
},
{
"source": "<h2>1D Simple Harmonic Oscillator DOS</h2>",
"cell_type": "markdown"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 5,
"input": "def sho_smooth_dos(e):\n \"\"\"Compute the exact smooth DOS.\"\"\"\n return 1"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 6,
"input": "def sho_spectrum(nmax):\n \"\"\"Compute the first nmax energies of the 1D SHO.\"\"\"\n return [n+0.5 for n in range(nmax)]"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 7,
"input": "sho_evalues = np.linspace(0.0,20,100)"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 8,
"input": "sho_dos = SmoothDOS(sho_spectrum(30))"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": false,
"prompt_number": 10,
"input": "sho_exact_dos = [sho_smooth_dos(e) for e in sho_evalues]"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 23,
"input": "sho_approx_dos = [sho_dos(e,M=3,gamma=10.0) for e in sho_evalues]"
},
{
"cell_type": "code",
"language": "python",
"outputs": [
{
"output_type": "pyout",
"prompt_number": 24,
"text": "&lt;matplotlib.legend.Legend at 0x7f1790f77990&gt;"
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEaCAYAAAAPGBBTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcjWn/B/DPaZH2RYmUQtG+SBJSmprMhBhjiQqZ0Sy2\n8YzZ8FiesT2MZYylMVRCjLEVM5KlQlLRpixZspS0ad9Onev3h8f5iUpR3eecvu/X67xeTvf2ue9z\nnO+5rvs6981jjDEQQgghTZDiOgAhhBDRRoWCEEJIs6hQEEIIaRYVCkIIIc2iQkEIIaRZVCgIIYQ0\niwoFaVRQUBAcHR25jvHOsrKyMHHiRKirq+O3335r0TJSUlK4f/9+OydrX+fPn8eIESOgrKyMlJSU\ndtmGJBwn0jpUKDh2/fp1fP7559DT00O3bt0wfPhwJCYmdmiGrKwsSElJQSAQdOh2m+Ps7Izdu3e/\n8/L79u2DqqoqCgsLMWfOnDZff3NeHk9lZWWoqalhwIABmDBhAq5fv/7GvMePH4eDgwPU1NRgbGyM\nb7/9FjU1NcLplZWVWLlyJQYPHgwVFRUMGDAA69ata3Lbq1evhp+fH8rKymBlZfXe+9KexwkAZs+e\nDWNjY0hLSyM4OLjBtOXLl0NWVhYqKirQ0tKCra0tfvrpJ5SUlDS5PsYYNmzYACcnJ6ioqKBPnz74\n5ptvhNMNDAxw7ty5Bss09qXoba9LZ0OFgmOzZs2CmZkZ0tPTkZ2djWXLlkFOTo6TLKLw20vGGAQC\nAXg83nut59KlS7C3t4eUVONv8fddf0uUlJQgPz8fW7ZsgYaGBkaMGIHw8HDh9N9//x1+fn5wd3dH\nZmYmfv75Z1y4cAGurq7CeXbt2oWLFy/iwIEDKC0tRVhYGAwNDRvdHmMMly9fxrBhw94pb2NfFNr7\nOFlbW2P79u0YOHDgG9vi8Xjw8vJCaWkp0tPTMXv2bMTGxsLa2hrl5eWNri8sLAx79+7Ftm3bUFpa\niqioKAwcOLDBOt+2Ty15XTodRjhz+/Zt1rVrV8bn8xudHhgYyIYNG8aWLVvGdHR0mK2tLUtNTWWH\nDx9m5ubmzNbWlp0+fVo4f0VFBdu+fTszNzdnbm5uLCwsrMH6Tpw4wVxdXZm5uTnbsWMHq6ioYIwx\npqenx3g8HlNSUmLKysrsypUrLCgoiA0fPpytWLGC6ejoMHd3dxYbG9vkvujr67OtW7cyOzs71rdv\nX7Zjxw5WW1vLGGPs+fPnzMPDg2lpaTFDQ0O2dOlS9uzZM+GyTk5ObNWqVczNzY0pKyuzadOmMWlp\nada1a1empKTE5s6d2+g2r127xqZPn8709fXZkiVLWHZ2NmOMsZEjRwqXV1ZWZpmZmQ2W++mnnxpd\nP4/HY/v27WNWVlasX79+bOPGjQ2Wu3jxIps6dSozMDBgy5cvZ/n5+Y3mevDgAePxeKy+vr7B3729\nvZmenh5jjLGysjKmrq7O1q9f32Ce3NxcJiUlxUJDQxljjA0dOpQFBwc3edxfqq6uZoqKiozH4zFF\nRUVmaGjIGGPsyZMnbPHixUxfX5/NmDGDXb9+XbjM9OnT2YIFC9jEiROZhoYGO3fuXIcep1cNHz78\njf1ctmwZ8/b2bvC38vJyJi8vz5YsWdLoeqZOncpWrFjR5HYMDAze2M+X73XG3v66HDhw4K37Iomo\nUHCsX79+bMKECSw8PJwVFxc3mBYYGMi6dOnCfv75Z1ZUVMT8/f1Z3759ma+vL8vJyWGBgYGsb9++\nwvn//e9/s5EjR7Lbt2+zc+fOMQMDA3bhwgXGGGPnz59nvXv3ZpGRkezOnTvsgw8+YMuWLWOMMZaV\nlfXGB9vLba9YsYIVFRWxZcuWCf8zNUZfX58NGDCAXbx4kSUnJzMbGxu2c+dOxhhjhYWF7OjRo6yq\nqordvXuXubu7s8WLFwuXdXJyYjo6OuzkyZOMz+czPp/PnJ2d2e7du5vcXkVFBVNSUmK7du1ieXl5\nbN68eczJyUk4/W3LNzadx+MxFxcXdvPmTXbt2jWmrKzM7t69yxhjLCUlhenq6rLIyEhWVFTE5s6d\ny6ZOndroupsqFMeOHWM8Ho/l5uayy5cvMx6PxzIyMt5YftCgQczf358xxtiKFStY//792bZt24RZ\nmsPj8di9e/eEz0eMGMHmzJnD8vLy2O7du5mKigqrqqpijL0oFIqKiuzAgQOMz+ez6urqDj1Or2pp\noWCMMU9PT+bu7t7oeoKDg1nPnj3Zf//7X5aWlvbGdAMDA3b27NkGfwsMDBS+t1v6unQ2VCg49ujR\nI/bDDz8wPT09pqSkxObPn88KCwsZYy/ewBoaGsIPnEuXLjEej8dSU1MZY4zx+XymoKDAsrKyGGOM\nWVlZsYiICOG6Fy9ezObNm8cYY2zevHnsxx9/FE6LjIxklpaWjLHGP9gCAwOZurq68G85OTlMVlaW\nlZeXN7ofBgYGbOnSpcLnAQEBbPTo0Y3OGxkZyczNzYXPnZ2dmZ+fX4N5nJ2d2R9//NHkcTt69Chz\ncHAQPq+oqGAKCgqsoKCgRcs3Np3H47EjR44In7u7u7MdO3Ywxl58u161apVwWkFBAdPU1Gy0NdhU\nocjPz2c8Ho8lJCSwQ4cOMRUVlUazzZkzh3388ceMMcZqampYcHAwc3BwYLKysuyDDz5gly5danK/\nXi0U+fn5TF5evsFrNmzYMHb06FHG2ItC4eLi0uS6GGvf4/Sq1hSK9evXM1NT00bXU19fz44dO8Zc\nXV2ZnJwcs7OzY+Hh4cLp+vr6TElJiampqQkfCgoKzNHRkTHGWvy6dDZ0joJjenp6WLNmDR49eoSz\nZ88iMjISmzdvFk43NTUV9rNra2sDACwsLAAAMjIy0NDQQHZ2NsrKypCamgpbW1vhsra2trh48SIA\nIDY29o1paWlpKCsrazKbmZmZcNs9e/ZEXV0dnj171uT81tbWwn/b2NjgypUrAF70ff/0009wdHSE\nmpoaJkyYgIyMjAbnROzt7d9YX3N9ybGxsQ36nhUUFGBkZITY2NgWLd/U9Ff3oWfPnsjJyQEAnD17\nFmvWrIG6ujrU1dVhaGiIyspKJCUlNbuNV8XExAB48Zrr6uqirKwMGRkZb8x35coV9O7dGwDQpUsX\n+Pr6IjY2FtnZ2ejfvz+mTZvWovNJcXFx6Nu3LxQVFYV/GzRoEC5duiTc/8aO++s6+ji9TUxMjPD4\nvE5KSgrjxo1DZGQk8vPzMXr0aEyZMkV4ToPH4+HEiRN4/vy58LF9+3bh8Wzp69LZUKEQIfb29vDy\n8kJUVFSrl1VWVoalpWWDEVOJiYkYMWIEAGDYsGFvTLOwsICysjKkpaUBvP/J7Fc/DK5fv46hQ4cC\nAA4fPoxTp04hMDAQBQUFOHLkCNiL1qxwfhkZmQbrkpaWbnYU1rBhw3Dt2jXh84qKCmRmZgq3+TZv\nW//rXFxcsGTJkgYfMBUVFbCzs2vxOo4dOwZdXV1oa2vDwsICampqOHXqVIN5cnNzkZSUJHzdXqWl\npYWffvoJjx49woMHD966vSFDhuD+/fuoqKgQ/i0hIaHBCJ+Xr31TuDhOLzVWoCoqKhAZGdmi9Skr\nK+PHH38EYwzx8fFNzvfq+/BdXpfOgAoFh27fvo2NGzciOzsb9fX1uH79Ovbv3w9fX993Wp+npyfW\nr1+PO3fuICoqCqGhoRg3bpxwWmhoKM6fP4+7d+9i/fr1GD9+PIAX36K6d+/+XsNyGWM4cuQILl++\njNTUVPz+++8YPXo0ACAnJwdqamrQ1NTEnTt3Gh3e+XqRsrW1RVJSUpPFy83NDenp6dizZw/y8vKw\nZMkS2NnZoVu3bk2uszXrf7n8y+k+Pj4ICAjAmTNnUFtbi5KSEhw+fLjpA/K/5fl8Ps6cOYMvv/wS\nx44dE/6mQ1lZGatXr8aaNWuwfPly5OXl4a+//oKHhwccHBzg5eUFAPjPf/6DxMRE1NbWIicnB//9\n738xdOhQ9O3bt9ltA4Cmpibs7Ozw008/IS8vD0FBQUhPT4e7u/tbj09HHSc+n4/q6moIBALU1tai\nurpauK5Xt/ns2TPs2rULY8aMgba2Nr7//vtG17dlyxZER0ejqqoKhYWF2LBhA7p37w5nZ+e37ivQ\n8tels6FCwSFlZWVcvXoV9vb20NDQwMKFCzF16lRhoWhsKF9z3Snfffcdxo0bh08++QSrVq3Cxo0b\n4eTkBODFePhNmzZh9erVGDduHDw9PbFo0SLhOpcuXYpZs2ZBXV0dV69ebfW2eTwevv76ayxcuBDj\nxo3DrFmzMGPGDACAn58fevXqhf79+8PHxwd+fn5vXbe3tzfu3r0LLS0tLFiw4I3tKSoq4vz584iO\njoadnR3k5eWxf//+Fud92/pfLv9yHaampggODsaff/4JXV1dWFhYICIiosn1AxAWxzlz5iAvLw9R\nUVEYO3ascPoXX3yBP/74AxEREejfvz8WL14MZ2dnnD17VjiPlJQUZs6cCS0tLbi4uKC+vh7bt29v\ncpuv7/P+/fuhoKAAOzs7REVF4dy5c5CXl39j/7g6Tm5ublBQUEBcXBxmz54NBQUFYXcpj8fDoUOH\noKKiAnNzc+zYsQP29vZITk5u0J32KgUFBfzrX/9Cz549MWjQIGRmZmLv3r1NDpNu7Di05HXpbHjs\nffsbCAHQp08f7N69Gy4uLlxHIYS0MWpREEIIaRYVCkIIIc2iridCCCHN4qRF4efnJxwi2Jhbt27B\nwcEBXbt2xS+//NLB6QghhLyKk0Ixc+ZMnD59usnp3bp1w9atW/Htt992YCpCCCGN4aRQODo6Ql1d\nvcnpWlpaGDRoEGRlZTswFSGEkMbQyWxCCCHNknn7LKKrI+4pQAghkqg145jEvkXx8vIB9Hj/x7Jl\nyzjPICkPOpZ0PEX50VoiXSjeZYcIIYS0LU66nry8vBAdHY2CggLo6elhxYoV4PP5AAB/f3/k5ubC\nzs4OpaWlkJKSwpYtW5CRkQElJSUu4hJCSKfGSaEIDQ1tdnqPHj3w+PHjDkpDXmrpFTbJ29GxbFt0\nPLkl1r/M5vF41D1FCCGt1NrPTpE+R0EIIYR7VCgIIYQ0iwoFIYSQZlGhIIQQ0iwqFIQQQppFhYIQ\nQkizqFAQQghpFhUKQgghzRLrq8eSzqdOUIcnpU+QVZyFRyWPUFhZiOfVz1FcXYzqumoImAD1rB5S\nPCkoyCpAQVYBSrJK0FTQRHfF7tBW0oauii50VXQhI0Vvf0Jagn6ZTURWJb8SVx5fwbWn15CUm4Tk\n3GTcf34f2oraMFAzQG/V3uim0A3qXdWh3lUdXWW6QlpKGlI8KQiYAFX8KlTwK1BeW46CygI8q3iG\nZ+XP8Lj0MfIq8qCnogdDDUOYdTeDuZY5zLu/eMjLynO964S0q9Z+dlKhICKDMYbk3GSE3Q7D+azz\nuJZzDVY9rDC412DY9LCBdQ9rGGsao4t0l/feVnVdNR4WP0RmUSbS89JxI/8G0p6l4U7hHQzQHIDB\nvQbDvpc9HHs7wlDDkO59QiQKFQoidpJzk3Eg7QCO3DwCABhvPB6ufV0xvPdwKHXp2CsGV/GrkPIs\nBQnZCbjy5ApiHsagntXDsbcjPujzAdz6uaGvet8OzURIW6NCQcRCRW0FDt44iIBrAcgtz4WPlQ8m\nmk6ElbaVSH17Z4whqzgLMQ9jcPbBWZy9fxbyMvJwN3SHh5EHXPq4QEFWgeuYhLQKFQoi0goqC7A5\nbjN2Ju7EUL2h8Lf1xyjDUZCWkuY6WoswxpCen45/Mv/BqcxTuPb0Ghx7O2Kc8TiMHTAWPZR6cB2R\nkLeiQkFEUm55LtZdXofg5GBMMpuE74Z9JxFdOMXVxTh99zRO3D6B03dPw0TTBJ+YfIIJJhPQR70P\n1/EIeUN2aTZ0VXWpUBDRUcmvxMYrG7EpbhN8LH2waOgi9FLpxXWsdlFbX4sLDy7gyM0jOHbrGAzU\nDDDRdCImmU2CgZoB1/FIJ5ZTloMjGUfwZ8afSM9Lx/MfnlOhINxjjCH0Rih+OPsD7HXtsfaDtein\n0Y/rWB2mTlCH6Kxo/JnxJ47ePIp+6v0wxXwKJptNRk/lnlzHI51AYWUhjtw8gtAboUjOTcbYAWMx\nyXQSXPu6oqtsVyoUhFsPix/C/6Q/npY/xbaPt2F47+FcR+IUv56Pcw/O4eCNgzhx+wRse9piqsVU\nfGLyCdS6qnEdj0iQSn4lTtw6gf1p+3Hx0UWMMhwFL3MvjDIcha4yXYXz0TkKwhkBE+C3+N+wMnol\nFjosxKKhiyArLct1LJFSxa/C35l/Y3/afpx7cA5ufd3gbemNjww/gpyMHNfxiBiqE9Th/IPz2Je6\nD+F3wjFEdwimWUyD5wBPKMspN7oMFQrCidzyXPge80V5bTkCPQMxQHMA15FE3vOq5/gr4y/sT9uP\nG3k3MNFsIrwtvDFUb6hIDREmoocxhqTcJOxL3YfQG6HQU9HDNItpmGI+BdpK2m9dngoF6XARdyMw\n88RMfDbwM/zb6d90DaV38LD4IQ6kHUBIaghq6mvgbekNbwtvGHUz4joaESGPSx5jf9p+hKSGoJJf\nKXyftPaLGRUK0mEETIB/X/g3glOCETI+BM4GzlxHEnuMMVx/eh370vYhNC0UfdT7wNvCG5PNJ0NT\nQZPreIQDJdUlOHLzCEJSQ5D6LBWfmn4KH0sfDNMb9s4tTyoUpEOU1pTC+6g3SmtKcXjiYWgpanEd\nSeLUCeoQeS8S+9L24dSdUxihPwLelt4Y038MXbhQwtXW1+L03dPYn7Yfp++ehksfF/hY+sDDyKNN\nzmVRoSDtLrMwE54HPeFs4Iwto7bQCesOUFZThmO3jiEkNQSJOYnwHOCJaRbTMLLPSOrqkxACJkDs\n41jsT9uPvzL+grGmMbwtvDHRbCI05DXadFtUKEi7uvL4CsYfGo9lTsvwpd2XXMfplJ6WPcXBGwex\nP20/npQ+wSSzSZhqMRX2vezpJLiYYYwh5VkKDt44iNAboVDuooxpFtPgZeHVrj/SpEJB2s3fmX9j\n+vHpCB4XjI+NPuY6DgFwp/CO8EOmuq4ak8wmYbLZZNj0sKGiIcIy8jPwZ/qfOHjjIGrqazDZbDKm\nWkyFpbZlh2yfCgVpF3tT9mJR5CIcn3wcDnoOXMchr2GMIfVZKg6lH8Kh9EOQ4knhU9NP8anJpxjY\ncyAVDY4xxnCz4CYOpx/G4YzDKK4uxqemn8LL3AuDew3u8NdH5AuFn58fTp06he7duyMtLa3ReX78\n8UccOnQI6urq2L9/P4yNjRudjwpFx9iesB1rL63Fae/TMNUy5ToOeYuXI6f+uvkX/sr4C3WCOnxi\n8gnGDRiHoXpDxeZKveKOMYZrT6/h6M2jOHrzKCr4FZhgMgGTzCZhiO4QSPGkOMsm8oXi4sWLUFJS\ngq+vb6OFIj4+HgsXLkRYWBgiIiKwf/9+nDx5stF1UaFof9vit2F97Hqcn35eIq722tm8bGkcv3Uc\nx24dQ05ZDsYMGIPRRqPh1s+tw28MJemq66px4cEFhN0JQ/jtcCh2UcQnJp/gE+NPMEhnkMi07ES+\nUABAVlYWxowZ02ih2Lp1K+rr67FgwQIAQL9+/XDv3r1G10OFon1RkZA8D54/QNjtMJzMPIm4J3EY\nqjcUHxt+jFGGo9C/W3+R+SATJ49KHuHvzL/xd+bfiMqKgqW2JTwHeGLsgLEie4WC1n52ity4uvj4\nePj4+Aifa2lp4d69e+jXr/NceVQU7EzcSUVCAvVR74P5Q+Zj/pD5KK0pReS9SJy+dxobrmyAjJQM\n3Pq6wbWvK0YajKTfxjShuLoY0VnRiLwficj7kXhe9Rzuhu7wMvdCoGcguil04zpimxO5QsEYe6PS\nNfcth8db/soz5/89yHsxOwS4/wwExqDfN1QkJJcKgAn/ezBAKwO7+kViV58QQH82UKwPPHQCHo4A\nHjoCFW+/hpBEki8E9GIB/RigzwWg220g2x649yFw7yDwzAr7mBT2cZ2zWVH/e7wbkex6qqurwzff\nfAOAup46WuS9SHgf80akT2SHDdUjoqdOUIfEnERcfHgRMY9icOnRJXST7wYHPQcM6TUEg3sNhqW2\npcRd8ZZfz0d6fjris+MRnx2P2MexeFL6BPa69nDs7YiRBiMxuNdgsd9vsT9H8fJk9okTJxAREYED\nBw7QyewOkpCdAI8DHjgy6Qgc9R25jkNEiIAJcDP/JuKexOHKkyuIz47H3aK7GKA5ALY9bWHR3QIW\n2haw6G4hNl1WRVVFyMjPQNqzNCQ/S0ZybjLS89LRW7U3BvcaDDsdOwzVGwoLbQuJ+/W7yBcKLy8v\nREdHo6CgANra2lixYgX4fD4AwN/fHwDwww8/4NChQ9DQ0MC+fftgYmLS6LqoULSde0X3MDxwOAJG\nB2DsgLFcxyFioIpfhdRnqbj+9DrS8tJwI+8G0vLSICMlg/7d+qN/t/4w0jBCH7U+MFAzgL6aPrQV\ntTtseK6ACZBXkYfHJY+RVZyFe8/v4d7ze8gszMTNgpuo4lfBRMsEltqWsNa2hnUPa1hqWzZ5DwdJ\nIvKFoi1RoWgbJdUlcNjtgDmD5+Aru6+4jkPEGGMMzyqe4U7hHdwuuI3Mokw8LHmIrOIsZBVn4XnV\nc2gpakFHWQfaitrQkNdAN4Vu0OiqAWU5ZSh1UYKirCLkZOQgKyULWWlZyEjJQMAEYIxBwASorqtG\ndV01quqqUF5bjuLqYpTUlOB51XPkVeQJH0/Ln0JVThV6qnrordobhhqG6KfeD4YahjDRNIGOsk6n\nHeVFhYK0Sp2gDh4HPNC/W39s/Wgr13GIhKutr8Wz8mfIKctBXkUeiqqKUFhViKKqIpTXlgsfNfU1\n4NfzwRfwUS+oB4/HgxRPCjzw0FWmK7rKdIW8rDyUuihBrasaVOVUod5VHd0VuwsfPZV7Nrj9J/l/\nVChIq8z5ew7uFt3FyaknJa4flhDSOLH/HQXpOAGJATj/4DyuzLpCRYIQ0iRqUXRSV59cxZjQMbjs\nd5lut0lIJ9Paz07urkpFOJNfkY9Jf03CrjG7qEgQQt6KCkUnUy+oh9cRL0y1mApPY0+u4xBCxAAV\nik7m31H/BgPDf0b+h+sohBAxQWcwO5Gz988iKDkISf5JdPKaENJi1KLoJPIr8jH9+HTsHbcX3RW7\ncx2HECJGqFB0AowxzDwxEz6WPvig7wdcxyGEiBkqFJ3A1vityK/Mp/MShJB3Qh3VEi7tWRr+E/Mf\nxM2Kg6y0LNdxCCFiiFoUEqy2vha+x32xznUd+mnQHQIJIe+GCoUEW3VxFXop98JM65lcRyGEiDHq\nepJQiTmJ2Jm4E8n+yZ32UsqEkLZBLQoJVF1XjenHp2Oz+2b0VO7JdRxCiJijQiGBlkcth4mmCaaY\nT+E6CiFEAlDXk4RJepqEPUl7kPZlGnU5EULaBLUoJEidoA6fh3+Ota5roa2kzXUcQoiEoEIhQX69\n+itUu6rSKCdCSJuiricJ8eD5A6y+uBpxn8VRlxMhpE1Ri0ICMMbw5akv8e3Qb2GoYch1HEKIhKFC\nIQGO3DyC7LJs/MvhX1xHIYRIIOp6EnPlteVYGLEQ+z7ZR9dyIoS0C2pRiLlVF1dhhP4IjNAfwXUU\nQoiEohaFGLtVcAu7ru1C2pdpXEchhEgwalGIKcYY5v4zF0tGLKHLdBBC2hUVCjF19OZR5JbnYs7g\nOVxHIYRIOE4KRUxMDExMTGBkZIStW7e+Mb2srAz/+te/YG1tDQcHB9y7d4+DlKKruq4aiyIXYcuo\nLZCRot5DQkj74qRQzJ8/HwEBATh79iy2bduGgoKCBtNDQ0PB5/ORnJyMjRs34rvvvuMipsjaErcF\nltqWcOnjwnUUQkgn0OGFoqSkBAAwYsQI6Ovr48MPP8TVq1cbzHP+/Hl4eHgAABwcHHD37t2Ojimy\nnpU/w/rY9Vjvtp7rKISQTqLDC0VCQgKMjY2Fz01NTREXF9dgHnd3d4SGhqKqqgphYWFIS0vDgwcP\nOjqqSFp6YSmmW0+HUTcjrqMQQjoJkezgnjx5Mp48eQInJycMGDAARkZGkJOTa3Te5cuXC//t7OwM\nZ2fnjgnJgeTcZJy4fQK359zmOgohRIxERUUhKirqnZfnMcZY28V5u5KSEjg7OyMpKQkAMHfuXIwa\nNUrY1fS68vJyDB8+HMnJyW9M4/F46OD4nGGMwS3EDZ+YfIKv7L7iOg4hRIy19rOzw7ueVFVVAbwY\n+ZSVlYXIyEjY29s3mKekpAS1tbWorKzEmjVr4Obm1tExRc6Ze2fwuPQxPh/4OddRCCGdDCddT5s3\nb4a/vz/4fD7mzZsHTU1NBAQEAAD8/f2RkZGBGTNmQCAQwMHBATt37uQipsgQMAG+P/s91nywhq7n\nRAjpcB3e9dSWOkvX077UfdiWsA2xfrF0rwlCyHtr7WenSJ7MJv+vpq4GS84vQcj4ECoShBBO0CU8\nRNz2hO2w1LaEo74j11EIIZ0UtShEWEl1CdZeXovzvue5jkII6cSoRSHCNsVtwijDUTDrbsZ1FEJI\nJ0YtChFVWFmI3+J/Q/zn8VxHIYR0ctSiEFHrY9djotlE9FXvy3UUQkgnRy0KEZRbnotd13ch5YsU\nrqMQQgi1KETRmktr4GvlC10VXa6jEEIItShEzeOSx9iXug8ZX2VwHYUQQgBQi0LkrL60Gp8P/Bza\nStpcRyGEEADUohApj0se48/0P+ky4oQQkUItChGy9vJafDbwM2gqaHIdhRBChKhFISKyS7MRmhaK\nW3NucR2FEEIaoBaFiFh3eR38bPzQXbE711EIIaQBalGIgJyynBcjnb6mkU6EENFDLQoRsD52PaZb\nT0cPpR5cRyGEkDdQi4JjeRV5CE4Oxo2vbnAdhRBCGkUtCo5tuboFk80nQ0dZh+sohBDSKGpRcKik\nugQBiQF0hVhCiEijFgWHdiTuwCjDUXSFWEKISKMWBUeq+FXYHLcZZ33Pch2FEEKaRS0KjuxJ2gN7\nXXuYdzfnOgohhDSLWhQc4NfzsT52PQ5+epDrKIQQ8lbUouDAwRsH0Ue9D4boDuE6CiGEvFWLWxR8\nPh9///1LM0VMAAAcUUlEQVQ3wsLCUFNTA2lpaZSVlUFLSwvu7u4YP348eDxee2aVCIwxrI9dj/+6\n/ZfrKIQQ0iItKhRxcXE4ceIEvLy8sH37dsjJyQmnlZeXIy0tDfPnz4efnx+sra3bLawkOHPvDADA\nvZ87x0kIIaRleIwx1twMNTU1uH37NiwtLd+6sri4OAwZ0nHdKTweD2+JL3I+2PsBpltNh6+VL9dR\nCCGdVGs/O99aKIAX3SWi2K0kboXi+tPr8DzoiXvz7qGLdBeu4xBCOqnWfna26GS2mZkZjh8/jqdP\nnwIA8vLycObMGVRXV79TyJiYGJiYmMDIyAhbt259Y3pVVRWmT58OGxsbODk54cSJE++0HVGzPnY9\nFtgvoCJBCBErLWpRbNmyBfPnz0dNTY3w/ERFRQX279+P2NhYBAUFtWqjNjY22LJlC/T19eHu7o5L\nly5BU/P/7+q2c+dOpKamYvv27Xj48CFcXFxw9+7dN1o14tSiePD8Aex22eH+/PtQkVPhOg4hpBNr\nlxaFkpISACA6Ohqurq4ICQkBj8fD7NmzIS8v36qAJSUlAIARI0ZAX18fH374Ia5evdpgHlVVVZSV\nlYHP56OoqAgKCgoi2fXVGpuvbsasgbOoSBBCxE6LRj3dvn0bNTU1+PDDD3H79m34+PgIp7XkJPer\nEhISYGxsLHxuamqKuLg4eHh4CP/m5eWF8PBwaGpqoq6uDleuXGnVNkRNcXUxQlJCkPplKtdRCCGk\n1VpUKP755x+cPXsWCgoKUFFRgba2NmxsbGBoaIguXdq+v/23336DjIwMnj59irS0NHh4eODhw4eQ\nknqzAbR8+XLhv52dneHs7Nzmed7XH9f/wEdGH0FXRZfrKISQTigqKgpRUVHvvHyLzlFcuXIFDg4O\nKC0tRWJiIuLj4xEfH4/09HSUl5cjOzu7xRssKSmBs7MzkpKSAABz587FqFGjGrQoJk2ahFmzZsHd\n/cVvDezt7REcHNygJQKIxzmKOkEd+v3aD0cmHcEgnUFcxyGEkFZ/draoReHg4AAAUFFRgYuLC1xc\nXITTVq5c2aqAqqqqAF6MfOrduzciIyOxbNmyBvN88MEHCA8Ph5ubG7KyslBUVPRGkRAXRzKOQF9V\nn4oEIURsvfdFAefNm9fqZTZv3gx/f3/w+XzMmzcPmpqaCAgIAAD4+/tjypQpyMjIwKBBg6ClpYUt\nW7a8b0zObIrbhO+Hfc91DEIIeWct+mV2RkYGbGxsml0RYwynT5/GRx991KYBmyPqXU9XHl+B9zFv\n3JlzB9JS0lzHIYQQAO0wPFZOTg48Hg8bN25ETExMgx/Z1dfX4/79+zh27BjmzZsHExOTd0stoTbF\nbcJ8+/lUJAghYq1FJ7NfioiIwLlz51BQUICDBw9i6NChGDp0KNzd3TFs2LD2zNkoUW5RPCp5BJsA\nG2TNz4KynDLXcQghRKhdTma/5O7ujkePHmHBggUYM2YMIiMjERERgdzcXPTp0wc6OjqtDiyptids\nx3Sr6VQkCCFir9U3LiooKICKigrGjx+P7du34+uvv8bq1auxa9eu9sgnlqr4VdiTtAdf233NdRRC\nCHlvrR71NH36dEydOhUCgQD9+/eHnJwcfH196fzEKw6kHYC9rj36afTjOgohhLy3VhcKHR0dhIWF\nISsrC8XFxbCwsEBeXh6io6MxadKk9sgoVhhj+DX+V2xw28B1FEIIaROtOpktakTxZHZ0VjS+PPUl\n0r9KF/sLGRJCJFO7XD2WtNyv8b9i7uC5VCQIIRKDCkUbelTyCNFZ0fCx8nn7zIQQIiaoULShHYk7\n4GPlA6UuSlxHIYSQNvPe13oiL1TXVWNP0h5cmnmJ6yiEENKmqEXRRg6nH4Z1D2sYdTPiOgohhLQp\nKhRtZFvCNvqBHSFEIlGhaAPXcq7haflTeBh5vH1mQggRM1Qo2sC2hG34wvYLukosIUQi0cns91RY\nWYijN48ic24m11EIIaRdUIviPQUlB2HMgDHQUtTiOgohhLQLKhTvQcAE2JG4A18N+orrKIQQ0m6o\nULyHc/fPQamLEoboDuE6CiGEtBsqFO9h57Wd+GLQF3RdJ0KIRKNC8Y5yynJw/sF5TLOYxnUUQghp\nV1Qo3tHu67sx2Wwy3eqUECLxaHjsO6gT1GHX9V04MeUE11EIIaTdUYviHfyT+Q90lHVg09OG6yiE\nENLuqFC8g5cnsQkhpDOgQtFKWcVZiHsSh0lmdH9wQkjnQIWilXYn7Ya3pTcUZBW4jkIIIR2CTma3\nQp2gDnuS9iDCO4LrKIQQ0mGoRdEKp+6cgr6qPsy7m3MdhRBCOgwnhSImJgYmJiYwMjLC1q1b35i+\nYcMG2NjYwMbGBhYWFpCRkUFxcTEHSRvadX0XZtvO5joGIYR0KB5jjHX0Rm1sbLBlyxbo6+vD3d0d\nly5dgqamZqPznjx5Eps3b8bZs2ffmMbj8dBR8R+VPIJNgA0ef/OYzk8QQsRaaz87O7xFUVJSAgAY\nMWIE9PX18eGHH+Lq1atNzn/gwAF4eXl1VLwm7UnaAy9zLyoShJBOp8NPZickJMDY2Fj43NTUFHFx\ncfDwePM2opWVlYiIiMD27dubXN/y5cuF/3Z2doazs3NbxgUA1AvqsTtpN056nWzzdRNCSHuLiopC\nVFTUOy8v0qOewsPDMXz4cKipqTU5z6uFor2cvnsavZR7waqHVbtvixBC2trrX6JXrFjRquU7vOvJ\nzs4Ot27dEj5PT0/HkCGN38/h4MGDItHttOv6Lnw28DOuYxBCCCc6vFCoqqoCeDHyKSsrC5GRkbC3\nt39jvpKSEsTExMDT07OjIzbwtOwpoh9GY4r5FE5zEEIIVzjpetq8eTP8/f3B5/Mxb948aGpqIiAg\nAADg7+8PADh+/Djc3d0hLy/PRUShvSl7McFkApS6KHGagxBCuMLJ8Ni20t7DYxlj6P9bf4SMD6Hb\nnRJCJIbID48VJzEPYyAnLQf7Xm92jRFCSGdBhaIZfyT9gc8Gfkb3xCaEdGpUKJpQXF2M8Nvh8Lb0\n5joKIYRwigpFEw6kHYC7oTs0FRq/tAghhHQWVCia8Mf1PzDLZhbXMQghhHNUKBqR9DQJhVWFcO3r\nynUUQgjhHBWKRgQmB2Km9UxI8ejwEEKISF/riQvVddU4kHYAibMTuY5CCCEigb4yvybsdhise1jD\nQM2A6yiEECISqFC8Zk/SHvjZ+HEdgxBCRAYVilc8LnmMhJwEjDcez3UUQggRGVQoXhGcEozJZpMh\nL8vthQgJIUSUUKH4HwETIDA5kLqdCCHkNVQo/ifmYQwUZBVg29OW6yiEECJSqFD8T2ByIPys/egC\ngIQQ8hoqFADKaspw4tYJTLOcxnUUQggROVQoABzOOAxnA2d0V+zOdRRCCBE5VCgABCUHYYb1DK5j\nEEKISOr0heJu0V3cLrwNDyMPrqMQQohI6vSFIjglGFMtpkJWWpbrKIQQIpI6daGoF9QjODkYM61n\nch2FEEJEVqe+euz5B+ehqaAJS21LrqMQQgBoaGjg+fPnXMeQGOrq6igqKnrv9XTqQhGUQiexCREl\nz58/B2OM6xgSo61+F9Zpu55Kqktw6s4pTLWYynUUQggRaZ22UBzOOAyXPi7QVNDkOgohhIi0Tlso\nglOCMd1qOtcxCCFE5HXKQnG36C5uF9zGx0Yfcx2FEEJEXqcsFHtT9tJvJwghImvGjBlYunQp1zGE\nOCkUMTExMDExgZGREbZu3droPAkJCbCzs4OJiQmcnZ3bbNsCJsDelL3U7UQIIS3FOGBtbc2io6NZ\nVlYWGzBgAMvPz28wXSAQMHNzcxYZGckYY29Mf+ld4p+/f55Z7rBkAoGg9cEJIe2Ko4+kFikqKmKb\nNm1ipqambNSoUSwiIoIVFhYyXV1dFh4ezhhjrKysjPXr14+FhIQwxhg7efIks7a2ZioqKszV1ZUF\nBwc3WOetW7fYt99+y3r16sX09PRYUFAQ+/3335msrCzr0qULU1JSYmPHjn3nzE0dz9Ye5w5/VYqL\ni5m1tbXw+dy5c9nJkycbzBMfH8+mTp361nW9y5tq+rHp7JfYX1q9HCGk/YlyoRg/fjybN28ey83N\nZTExMUxHR4dlZmayM2fOsB49erC8vDz22WefsYkTJwqXiYqKYjdu3GB1dXXs9OnTTFlZmWVmZjLG\nGOPz+axbt25s3bp1rKioiBUWFrLk5GTGGGMzZsxgS5cufe/MbVUoOrzrKSEhAcbGxsLnpqamiIuL\nazBPREQEeDweHB0dMWbMGERERLTJtstry3H81nFMs6D7ThBCWq6srAxxcXFYu3YttLW14ejoiIkT\nJ+LYsWNwc3PDxIkT4eLigtOnTyMgIEC4nJOTE8zMzCAtLQ13d3d4enrixIkTAIDIyEjo6uriu+++\ng7q6OjQ0NGBlZSVclonQDw9F8pfZ1dXVSE5OxtmzZ1FZWQk3NzfcuHED8vLyb8y7fPly4b+dnZ2b\nPZ9x9OZROOo7QltJux1SE0I6Qlv82Li1n8GXLl1Cfn4+dHR0hH+rr6/HyJEjsWjRInz++ef47bff\nsHjxYqirqwvnSU9Px4YNGxAbG4vc3FzU1tZCSurF9/MLFy5g6NChTW6zLe+2GRUVhaioqHdevsML\nhZ2dHRYtWiR8np6ejlGjRjWYx8HBATU1NejRowcAYNCgQYiJiYG7u/sb63u1ULzN3pS98Lf1f7fg\nhBCRwMUXbQcHB2hpaSErKwtdunRpMK2+vh6zZ8+Gr68vtm3bhhkzZqBfv34AgG+//RaDBg1CdHQ0\nevToAW9vb2FLwcXFBd9//32j25OWloZAIGiz/K9/iV6xYkWrlu/wridVVVUAL0Y+ZWVlITIyEvb2\n9g3mGTJkCKKjo1FZWYmioiIkJSVh2LBh77XdxyWPkZSbhDEDxrzXegghnY+amhqGDx+On376CQ8f\nPkR9fT1u3LiBhIQErF69GtLS0ggMDMSiRYvg6+sr/JDPycmBpqYmVFVVERYWhrCwMOE6XV1dkZOT\ngw0bNqCoqAiFhYVISUkBANja2iI1NRV1dXWc7O/rOBkeu3nzZvj7+8PV1RVfffUVNDU1ERAQIOzb\n69atG2bOnIlBgwZh/PjxWLlyJZSUlN5rm/tS92Gi6UR0lenaFrtACOlkdu7cCX19fXz66afQ0tLC\n7NmzceHCBWzevBl79+4Fj8fD999/Dx6Ph3Xr1gEAfvnlF/z555/o3bs3QkND8cUXXwjXJyMjg4sX\nLyI7OxtmZmawsbFBamoqAGDs2LGQkpJCr1698Mknn3Cyv6/iMVE6Y9JKPB6vRSd8GGMw2WaCPZ57\nMFSv6T5BQgi3Wvp/mrRMU8eztce5U/wyOyEnAfWsHg66DlxHIYQQsdMpCkVwSjB8LX3bdBQBIYR0\nFiI5PLYt1dTV4NCNQ0j4PIHrKIQQIpYkvkXxd+bfMOtuhj7qfbiOQgghYkniC8Xe1L3wtfTlOgYh\nhIgtiS4UBZUFOP/gPCaaTeQ6CiGEiC2JLhSHbhzCx0YfQ0VOhesohBAitiS6UFC3EyGEvD+JLRS3\nC27jUckjuPVz4zoKIYSINYktFCGpIfAy94KMlMSPACaEkHYlkYVCwAQISQ2BrxV1OxFCxIeoXATw\ndRJZKGIexkBVThVW2lZvn5kQQlpg7dq1MDQ0RLdu3TBt2jRcvHgRABAUFIThw4djyZIl0NHRweTJ\nk3Hz5k3hcs7Ozli1ahVcXFygq6uLtWvXoqKiAgCQlZUFKSkpHD58GObm5nBze9FVHhYWBjc3N1hY\nWGDnzp2orKwEAHh4eODbb78VrnvKlCmYNWtWu++7RPbLvGxN0CU7CCFtxdDQEJcuXYKqqip27tyJ\nqVOn4vHjxwCA+Ph4DBkyBCkpKdizZw9cXV2RnZ0tXPa3337D77//DlNTU/j7+6OkpARr1qwRTj9w\n4ADCwsLQq1cvXLhwAXPnzsXu3buhr6+PL7/8Erm5uVi+fDn27NkDS0tLeHh4ICcnB4mJicJLk7er\n97gdK+cai19RW8HU1qqx7NJsDhIRQt6HuHwkCQQCpqenxxITE1lgYCCTk5NjVVVVwuk6Ojrs2rVr\njDHGnJycmI+Pj3BaREQEMzc3Z4wx9uDBA8bj8VhMTIxw+rx589iPP/4ofB4ZGcksLS2Fz48cOcJ0\ndXWZpqYmu3z5crM5mzqerT3OEteiCLsdhsG9BkNHWeftMxNCxA5vxfv3FLBlrb+UeVhYGIKCghAX\nF4eqqiqUl5cjJSUFUlJSMDIyQteu/3+vGxsbG1y5cgUDBw4Ej8eDtbV1g2np6enC7icADW7eFhsb\nix9++EH43NbWFmlpaSgrK4OysjJGjx6NOXPmwNjYuNlbqbYliSsUIakh8LH04ToGIaSdvMuH/Puq\nqKjA559/jt9//x1BQUFQVlZGnz7/f/24zMxMVFVVQV5eHgCQlJSElStXvsjLGJKSkoTzXr9+HWZm\nZlBUVER+fj6AFzcxemnYsGFITEzEhAkTAACJiYmwsLCAsrIyAGDx4sUwNTVFVlYWDh48iClTprTv\nzkPCTmY/K3+Gy48uY7zxeK6jEEIkSFlZGcrLy9GzZ08IBAKsWbMGOTk5wpv/CAQCLFu2DPn5+Vi/\nfj0AYODAgcLlz507h1OnTuH+/fvYsGEDxoxp+pbMnp6eCA0Nxfnz53H37l2sX78e48e/+EyLiYlB\nUFAQQkJCEBQUhLlz5yInJ6cd9/wFiSoUoTdC4WnsCcUuilxHIYRIkB49emDNmjXw8fGBlZUVamtr\nMXz4cPB4PPB4PNjb20NWVhZWVlZISEjAmTNnhMvyeDx8/fXX2LhxIxwdHTFy5EgsXry4wfRXOTs7\nY9OmTVi9ejXGjRsHT09PfPfddygtLcX06dOxbds29OzZE8OHD8esWbPg5+fX7vsvUbdCtf3dFutc\n18G1ryuHqQgh70ocb4UaFBSE3bt3C4fLvm7kyJHw8fHpkA/019GtUF+TkZ+BZ+XPMNJgJNdRCCGk\nAXErfq+TmEIRkhqCaZbTIC0lzXUUQkgn8rL76W3ziDOJ6HoSMAH0N+vjn2n/wLy7OdexCCHvSBy7\nnkQZdT29IiorCpoKmlQkCCGkHUhEoaDfThBCSPsR+0JRya/E8VvH4WXuxXUUQgiRSGJfKE7cOgH7\nXvboqdyT6yiEECKRxP4SHtTtRIjkUFdXF/sRQqJEXV29TdYj9qOe1Naq4ck3T+jX2IQQ0kJiMeop\nJiYGJiYmMDIywtatW9+YHhUVBVVVVdjY2MDGxgY///xzk+saO2AsFYk2EhUVxXUEiUHHsm3R8eQW\nJ4Vi/vz5CAgIwNmzZ7Ft2zYUFBS8MY+TkxOSkpKQlJSEJUuWNLku6nZqO/Sfse3QsWxbdDy51eGF\noqSkBAAwYsQI6Ovr48MPP8TVq1ffmK+lzSK6ZAchhLSvDi8UCQkJMDY2Fj43NTVFXFxcg3l4PB5i\nY2NhbW2NhQsX4t69e02ujy7ZQQgh7UskRz0NHDgQjx8/hqysLIKDgzF//nycPHmy0XlphETbWrFi\nBdcRJAYdy7ZFx5M7HT7qqaSkBM7OzsI7Ps2dOxejRo2Ch4dHo/MzxtCjRw88evQIcnJyHRmVEEII\nOOh6UlVVBfBi5FNWVhYiIyMb3C8WAJ49eyY8RxEeHg5LS0sqEoQQwhFOup42b94Mf39/8Pl8zJs3\nD5qamggICAAA+Pv746+//sKOHTsgIyMDS0tL/PLLL1zEJIQQAgBMDEVHRzNjY2NmaGjIfv31V67j\niD19fX1mYWHBrK2tmZ2dHddxxMrMmTNZ9+7dmbm5ufBvpaWlbOzYsUxPT495enqysrIyDhOKl8aO\n57Jly1ivXr2YtbU1s7a2Zv/88w+HCcXLo0ePmLOzMzM1NWVOTk5s//79jLHWv0fF8lpPLfkdBmk5\nHo+HqKgoJCUlIT4+nus4YmXmzJk4ffp0g7/t2LEDvXv3RmZmJnR1dbFz506O0omfxo4nj8fDwoUL\nhb+rGjVqFEfpxI+srCw2bdqE9PR0/PXXX1iyZAnKyspa/R4Vu0LR0t9hkNZh4nslF045Ojq+cT2d\n+Ph4zJo1C3JycvDz86P3Zys0djwBen++qx49esDa2hoAoKmpCTMzMyQkJLT6PSp2haIlv8MgrcPj\n8eDi4oJx48YhLCyM6zhi79X3qLGxMbXS2sDWrVsxZMgQrFu3DmVlZVzHEUt3795Feno6Bg8e3Or3\nqNgVCtL2Ll++jJSUFKxZswYLFy5Ebm4u15HEGn37bVtffvklHjx4gIiICNy7d0848IW0XFlZGSZP\nnoxNmzZBSUmp1e9RsSsUdnZ2uHXrlvB5eno6hgwZwmEi8dez54t7eZiYmGDs2LEIDw/nOJF4s7Oz\nw82bNwEAN2/ehJ2dHceJxFv37t3B4/GgqqqKr7/+GseOHeM6kljh8/mYMGECfHx84OnpCaD171Gx\nKxQt+R0GabnKykphUz4/Px8RERF0svA92dvbY8+ePaiqqsKePXvoi8x7evr0KQCgrq4OBw4cwMcf\nf8xxIvHBGMOsWbNgbm6OBQsWCP/e6vdoO4/OahdRUVHM2NiY9evXj23ZsoXrOGLt/v37zMrKillZ\nWTEXFxe2e/duriOJlSlTprCePXuyLl26MF1dXbZnzx4aHvseXh5PWVlZpqury3bv3s18fHyYhYUF\ns7W1Zd988w0rLCzkOqbYuHjxIuPxeMzKyqrB8OLWvkfF+sZFhBBC2p/YdT0RQgjpWFQoCCGENIsK\nBSGEkGZRoSCEENIskbxxESFckpaWhqWlpfC5l5cXvvvuOw4TEcItGvVEyGuUlZXb/DIRdXV1kJGh\n72VEPFHXEyEtZGBggLVr18LS0hKjR4/GgwcPAADV1dXYuHEjnJyc4OHhgaioKABAUFAQJk6cCFdX\nV7i7u6OmpgYrV66EmZkZpkyZgmHDhuHatWsIDAzEN998I9zOrl27sHDhQi52kZBGUaEg5DVVVVWw\nsbERPg4fPgzgxcUTq6qqkJqaCgcHB4SEhAAADh48CBkZGURHR2PPnj34/vvvhes6d+4c/vjjD5w7\ndw5hYWFIT09HUlIS/P39ceXKFfB4PEyaNAnh4eGor68H8KLAzJo1q+N3nJAmUFuYkNfIy8sL7+n+\nOl9fXwCAi4sLVq5cCQA4cuQIsrKyEBgYCAB4/vw57t+/L5zPwMAAAHDmzBlMmTIFXbp0wciRI6Gv\nrw8AUFRUhIuLC8LDw2FsbAw+nw8zM7P23EVCWoUKBSGt8PJeCbKysqiurgYACAQCbNu2DSNGjGgw\n78WLF4UXXHybzz77DKtWrYKJiQn8/PzaNjQh74m6ngh5T1OnTkVAQIDwBPjL1sjr40Tc3d3x559/\nora2FtHR0Xj48KFw2uDBg/HkyRMcOHAAXl5eHReekBagFgUhr3l5juKljz76CKtXr24wD4/HA4/H\nAwB8+umnKCgogLu7O0pLS9G3b1+EhYU1mAcARo8ejRs3bsDa2hqWlpYwMzMTdj8BwKRJk5CSkiK8\nQjIhooKGxxLSQQQCAfh8PuTk5JCQkIAFCxbg8uXLwumjRo3C0qVLMWzYMA5TEvImalEQ0kEqKysx\ncuRIVFdXo3///vjll18AAMXFxRg6dCicnZ2pSBCRRC0KQgghzaKT2YQQQppFhYIQQkizqFAQQghp\nFhUKQgghzaJCQQghpFlUKAghhDTr/wCAVvjlY6wV8gAAAABJRU5ErkJggg==\n"
}
],
"collapsed": false,
"prompt_number": 24,
"input": "plot(sho_evalues, sho_exact_dos, label=\"exact\")\nplot(sho_evalues, sho_approx_dos, label=\"approx\")\ntitle(\"Smooth part of the DOS for the 1D SHO\")\nxlabel(\"Energy\"); ylabel(\"$g(E)$\")\nlegend(loc=4)"
},
{
"source": "Note how the exact smoothed DOS and the Strutinsky approximation agree once the energy is away from\n0. In general, these are edge effects and are also present at the right limit if you don't use enough energy\nlevels. Here we have used 30, so the right side doesn't show these artifacts.",
"cell_type": "markdown"
},
{
"source": "<h2>1D Particle in a BOX (PIAB) DOS</h2>",
"cell_type": "markdown"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 16,
"input": "def piab_smooth_dos(e):\n \"\"\"Compute the exact smooth DOS.\"\"\"\n return 1.0/(2.0*math.sqrt(e*math.pi**2/2))"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 17,
"input": "def piab_spectrum(nmax):\n \"\"\"Compute the first nmax energies of the 1D PIAB.\"\"\"\n return [0.5*math.pi**2*(n+1)**2 for n in range(nmax)]"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 18,
"input": "piab_evalues = linspace(1.0,1000.0,100)"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 19,
"input": "piab_dos = SmoothDOS(piab_spectrum(20))"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 20,
"input": "piab_exact_dos = [piab_smooth_dos(e) for e in piab_evalues]"
},
{
"cell_type": "code",
"language": "python",
"outputs": [],
"collapsed": true,
"prompt_number": 21,
"input": "piab_approx_dos = [piab_dos(e, M=4, gamma=150.0) for e in piab_evalues]"
},
{
"cell_type": "code",
"language": "python",
"outputs": [
{
"output_type": "pyout",
"prompt_number": 22,
"text": "&lt;matplotlib.legend.Legend at 0x6107410&gt;"
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEaCAYAAADdSBoLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcFeXiP/DPnMNhlVVQMRBUVMAFUAFxRVKxn7mkWWJX\n7WpKXdc07aZ2XW5pXcv0a1Zorql565pFeU1xAdxYXMLCPUVLLwou7Jz1+f1x5CgKAno4Bw+f9+s1\nr7PMPDPPPOr5+Mw8MyMJIQSIiIiMSGbuChARkeVhuBARkdExXIiIyOgYLkREZHQMFyIiMjqGCxER\nGR3DhWpk/fr16NGjh7mr8diysrIwfPhwuLq64tNPP61WGZlMhosXL9ZyzWrXvn370LNnTzg6OiIj\nI6NWtmEJ7UTGw3Cpo44fP47x48fD29sbDRs2RPfu3XH06FGT1iErKwsymQw6nc6k232UyMhIrFmz\n5rHLb9q0Cc7Ozrh58yYmTZpk9PU/Sll7Ojo6wsXFBW3atMGwYcNw/Pjxh5b9/vvvERERARcXF/j7\n++Ott96CUqk0zC8uLsbChQsRFhYGJycntGnTBh9++GGl2160aBHGjh2LgoICBAUFPfG+1GY7AcCE\nCRPg7+8PuVyODRs2lJs3f/58KBQKODk5wcPDA506dcLs2bORl5dX6frWr18PuVwOR0dHNGnSBDEx\nMUhKSgIAJCYmwtvb+6Eyr776KhQKBbKzsyvcvqOjI9zc3PDCCy9gz549Rthry8JwqaPGjRuHtm3b\nIjMzE1evXsW8efNgY2NjlrrUhetshRDQ6XSQJOmJ1nPw4EGEh4dDJqv4r/6Trr868vLykJOTg+XL\nl8PNzQ09e/bEjz/+aJi/atUqjB07FtHR0Th//jzee+897N+/H3369DEss3r1ahw4cABbtmxBfn4+\n4uPj4efnV+H2hBA4dOgQunXr9lj1reg/F7XdTsHBwfjss8/QsWPHh7YlSRJiYmKQn5+PzMxMTJgw\nAYcPH0ZwcDAKCwsrXWe3bt1QUFCA8+fPo2XLlnj99dcrXbaoqAjbtm1DYGAgNm3aVOH2CwoKkJ2d\njUGDBuG1116rU/8JqxME1Tlnz54Vtra2Qq1WVzh/3bp1olu3bmLevHmiadOmolOnTuLkyZPi22+/\nFe3atROdOnUSP//8s2H5oqIi8dlnn4l27dqJvn37ivj4+HLr++GHH0SfPn1Eu3btxOeffy6KioqE\nEEJ4e3sLSZJEgwYNhKOjozhy5IhYv3696N69u1iwYIFo2rSpiI6OFocPH650X3x8fMSKFStEaGio\naNGihfj888+FSqUSQghx+/ZtMWDAAOHh4SH8/PzEu+++K65fv24o26tXL/H++++Lvn37CkdHR/HK\nK68IuVwubG1tRYMGDcTkyZMr3OaxY8fEmDFjhI+Pj5g7d664evWqEEKI3r17G8o7OjqK8+fPlys3\ne/bsCtcvSZLYtGmTCAoKEi1bthRLly4tV+7AgQNi5MiRwtfXV8yfP1/k5ORUWK9Lly4JSZKEVqst\n9/1f/vIX4e3tLYQQoqCgQLi6uoolS5aUWyY7O1vIZDLx9ddfCyGE6Nq1q9iwYUOl7V6mtLRUODg4\nCEmShIODg/Dz8xNCCPHnn3+KOXPmCB8fH/Hqq6+K48ePG8qMGTNGTJs2TQwfPly4ubmJvXv3mrSd\n7te9e/eH9nPevHniL3/5S7nvCgsLhZ2dnZg7d26F61m3bp3o3r274fO1a9eEJEniwoULYv/+/cLL\ny6vc8hs2bBDt27cXmzZtEu3atXvk9rVarXBwcBAnT56scn/qE4ZLHdWyZUsxbNgw8eOPP4o7d+6U\nm7du3TphbW0t3nvvPXHr1i0RGxsrWrRoIUaPHi2uXbsm1q1bJ1q0aGFY/h//+Ifo3bu3OHv2rNi7\nd6/w9fUV+/fvF0IIsW/fPtGsWTORkJAgzp07J5599lkxb948IYQQWVlZD/0Ylm17wYIF4tatW2Le\nvHnl/tE+yMfHR7Rp00YcOHBA/PLLLyIkJER88cUXQgghbt68Kb777jtRUlIiLly4IKKjo8WcOXMM\nZXv16iWaNm0qfvrpJ6FWq4VarRaRkZFizZo1lW6vqKhINGjQQKxevVrcuHFDTJkyRfTq1cswv6ry\nFc2XJElERUWJ06dPi2PHjglHR0dx4cIFIYQQGRkZwsvLSyQkJIhbt26JyZMni5EjR1a47srCZfv2\n7UKSJJGdnS0OHTokJEkSp06deqh8586dRWxsrBBCiAULFojWrVuLlStXGuryKJIkid9//93wuWfP\nnmLSpEnixo0bYs2aNcLJyUmUlJQIIfTh4uDgILZs2SLUarUoLS01aTvdr7rhIoQQgwcPFtHR0RWu\n5/5wuXPnjnjnnXdE+/bthRCiwnCJiooS7733nsjPzxe2trbi2LFjFW6/pKRExMXFiUaNGgmNRlPl\n/tQnDJc66sqVK+Lvf/+78Pb2Fg0aNBBTp04VN2/eFELo/6G4ubkZfqQOHjwoJEky/M9JrVYLe3t7\nkZWVJYQQIigoSOzatcuw7jlz5ogpU6YIIYSYMmWKeOeddwzzEhISRIcOHYQQFf8Yrlu3Tri6uhq+\nu3btmlAoFKKwsLDC/fD19RXvvvuu4XNcXJx4/vnnK1w2ISGh3P8SIyMjxdixY8stExkZKb788stK\n2+27774TERERhs9FRUXC3t5e5ObmVqt8RfMlSRLbtm0zfI6Ojhaff/65EEL/v/j333/fMC83N1e4\nu7tX2OusLFxycnKEJEkiPT1d/Pvf/xZOTk4V1m3SpEni//2//yeEEEKpVIoNGzaIiIgIoVAoxLPP\nPisOHjxY6X7dHy45OTnCzs6u3J9Zt27dxHfffSeE0IdLVFRUpesSonbb6X41CZclS5aIwMDACtez\nbt06YWVlJVxcXESzZs3E2LFjRUpKihDi4XC5fPmykMlk4uzZs0IIfWhNnTq13Patra2Fi4uLsLOz\nEwqFQvz000+P3I/6iOdc6ihvb28sXrwYV65cwZ49e5CQkIBly5YZ5gcGBhrOGzRu3BgA0L59ewCA\nlZUV3NzccPXqVRQUFODkyZPo1KmToWynTp1w4MABAMDhw4cfmvfrr7+ioKCg0rq1bdvWsG1PT09o\nNBpcv3690uWDg4MN70NCQnDkyBEA+mP5s2fPRo8ePeDi4oJhw4bh1KlT5c7xhIeHP7S+Rx3vP3z4\nMDp27Gj4bG9vj1atWuHw4cPVKl/Z/Pv3wdPTE9euXQMA7NmzB4sXL4arqytcXV3h5+eH4uJinDhx\n4pHbuF9ycjIA/Z+5l5cXCgoKcOrUqYeWO3LkCJo1awYAsLa2xujRo3H48GFcvXoVrVu3xiuvvFKt\n82MpKSlo0aIFHBwcDN917twZBw8eNOx/Re3+IFO3U1WSk5MN7VORLl264Pbt27h8+TLWrFlT6T5+\n9dVXaNeuHVq3bg0AGD58OLZs2QKtVmtY5uWXX8bt27dRVFSEw4cP44033sB3331ntH2xBAyXp0B4\neDhiYmKQmJhY47KOjo7o0KFDuZFmR48eRc+ePQHoT3I+OK99+/ZwdHSEXC4H8OQn9O//ATl+/Di6\ndu0KAPj222+xY8cOrFu3Drm5udi2bRuEvjdtWN7KyqrcuuRy+SNPnHbr1g3Hjh0zfC4qKsL58+cN\n26xKVet/UFRUFObOnYvbt28bpqKiIoSGhlZ7Hdu3b4eXlxcaN26M9u3bw8XFBTt27Ci3THZ2Nk6c\nOGH4c7ufh4cHZs+ejStXruDSpUtVbq9Lly64ePEiioqKDN+lp6eXG2Je9mdfGXO0U5mKQq2oqAgJ\nCQmPtb4Hbdy4EefPn4enpyc8PT0xbdo05ObmlvszKfs7KkkSOnfujOeee47h8gCGSx109uxZLF26\nFFevXoVWq8Xx48exefNmjB49+rHWN3jwYCxZsgTnzp1DYmIivv76awwZMsQw7+uvv8a+fftw4cIF\nLFmyBC+88AIAwMvLC40aNXqiIdBCCGzbtg2HDh3CyZMnsWrVKjz//PMAgGvXrsHFxQXu7u44d+5c\nhUNpHwy2Tp064cSJE5UGXt++fZGZmYm1a9fixo0bmDt3LkJDQ9GwYcNK11mT9ZeVL5s/atQoxMXF\nYffu3VCpVMjLy8O3335beYPcLa9Wq7F792688cYb2L59u+GaG0dHRyxatAiLFy/G/PnzcePGDfzn\nP//BgAEDEBERgZiYGADAP//5Txw9ehQqlQrXrl3Dv/71L3Tt2hUtWrR45LYBwN3dHaGhoZg9ezZu\n3LiB9evXIzMzE9HR0VW2j6naSa1Wo7S0FDqdDiqVCqWlpYZ13b/N69evY/Xq1Rg4cCAaN26Mt99+\nu8q6P8qRI0dw8eJFpKenIyMjAxkZGfjtt98wcuRIbNy4scJ9/OWXX7Bz504MHDjwibZtaRgudZCj\noyNSU1MRHh4ONzc3TJ8+HSNHjjSEiyRJFQ7PrMysWbMwZMgQDB06FO+//z6WLl2KXr16AdBfr/DJ\nJ59g0aJFGDJkCAYPHoyZM2ca1vnuu+9i3LhxcHV1RWpqao23LUkSJk6ciOnTp2PIkCEYN24cXn31\nVQDA2LFj8cwzz6B169YYNWoUxo4dW+W6//KXv+DChQvw8PDAtGnTHtqeg4MD9u3bh6SkJISGhsLO\nzg6bN2+udn2rWn9Z+bJ1BAYGYsOGDfjmm2/g5eWF9u3bY9euXZWuH4AhUCdNmoQbN24gMTERgwYN\nMsx//fXX8eWXX2LXrl1o3bo15syZg8jIyHLXUshkMvz1r3+Fh4cHoqKioNVq8dlnn1W6zQf3efPm\nzbC3t0doaCgSExOxd+9e2NnZPbR/5mqnvn37wt7eHikpKZgwYQLs7e0Nh3IlScK///1vODk5oV27\ndvj8888RHh6OX375pdyhvsrqUtl8QN9rGTJkCNq2bYtGjRqhUaNGaNy4MaZOnYodO3bg9u3bhu07\nOjrCyckJf/vb3zBu3DgMHz78kW1W30jiSY95ED1C8+bNsWbNGkRFRZm7KkRkQuy5EBGR0TFciIjI\n6HhYjIiIjM4sPZfk5GQEBASgVatWWLFixUPzN2/ejKCgIAQFBWHkyJE4d+6cYZ6vry86dOiAkJAQ\nhIWFmbLaRERUTWbpuYSEhGD58uXw8fFBdHQ0Dh48CHd3d8P8I0eOIDAwEM7OztiwYQP27NmDr776\nCoD+BPGxY8fg5uZm6moTEVE1mbznUnZb7J49e8LHxwf9+vVDampquWUiIiLg7OwMABgwYIDh1thl\neCSPiKhuM3m4pKenw9/f3/A5MDAQKSkplS6/atWqchcnSZKEqKgoDBkyBPHx8bVaVyIiejxWVS9i\nPnv27MGmTZvK3Rfq0KFD8PT0xOnTpzFw4ECEhYWhSZMm5cqZ4pkcRESWyFhHhkzecwkNDcWZM2cM\nnzMzM9GlS5eHljt58iRef/11xMfHw8XFxfC9p6cnACAgIACDBg0q95Cl+5XdeqK+T/PmzTN7HerK\nxLZgW7AtHj0Zk8nDpexcSnJyMrKyspCQkPDQ3UmvXLmCYcOGYfPmzeWerldcXGy4W29OTg527dqF\n/v37m67yRERULWY5LLZs2TLExsZCrVZjypQpcHd3R1xcHAAgNjYWCxcuxK1btwyPIVUoFEhLS0N2\ndjaGDh0KAGjYsCFmzJhR4bOviYjIvCzyIkpJkozexXtaJSYmIjIy0tzVqBPYFvewLe5hW9xjzN9O\nhgsREQEw7m9nnR4tRkQEAG5ubrh9+7a5q2ExXF1dcevWrVrdBnsuRFTn8d+0cVXWnsZsZ94VmYiI\njI7hQkRERsdwISIio2O4EBE9JV599VW8++675q5GtTBciIjI6BguRERP4Pbt21i2bBnatm2L5557\nDrt378atW7fg7e2Nn376CQBQWFgIPz8/bNq0CQCwY8cOhISEwNnZGX379sXGjRvLrfPs2bOYOXMm\nvLy80KxZM2zYsAGrV6/Gli1b8K9//QuOjo4YPHiwyfe1JjgUmYjqvLr8b3ro0KHw9vbG7Nmzce7c\nOYwYMQJJSUm4dOkSRo8ejZMnT2L27NnIy8vDN998AwBISkqCu7s7/P39sWfPHgwfPhzHjx+Hn58f\nNBoNmjRpglmzZmH8+PEQQuCPP/5AUFAQ/vrXv8Lb2xsLFy58ojqbYigyL6IkInpMBQUFSElJwebN\nm2FnZ4fGjRtj+PDh2L59O2bOnInhw4cjKioKd+7cwcmTJw3levXqZXgfHR2NwYMH44cffsCMGTOQ\nkJAALy8vzJo1y7DM/U/erash+yCGCxFZBGM9xqkmv90HDx5ETk4OmjZtavhOq9Wid+/emDlzJsaP\nH49PP/0Uc+bMgaurq2GZzMxMfPTRRzh8+DCys7OhUqkgk+nPUuzfvx9du3atdJtPy/OqeM6FiCyC\nEMaZaiIiIgIeHh64fv06bt++jdu3byM/Px8//PADtFotJkyYgNGjR2PlypX4/fffDeXeeusteHl5\nISkpCXl5eRg2bJihRxIVFYVDhw5VuD25XA6dTvfYbWRKDBciosfk4uKC7t27Y/bs2bh8+TK0Wi1+\n++03pKenY9GiRZDL5Vi3bh1mzpyJ0aNHG4Lh2rVrcHd3h7OzM+Lj48s9sr1Pnz64du0aPvroI9y6\ndQs3b95ERkYGAKBTp044efIkNBqNWfa3JhguRERP4IsvvoCPjw9efPFFeHh4YMKECdi/fz+WLVuG\njRs3QpIkvP3225AkCR9++CEA4OOPP8Y333yDZs2a4euvvzY8uwoArKyscODAAVy9ehVt27ZFSEiI\n4XzNoEGDIJPJ8MwzzxiebVVXcbQYEdV5/DdtXLxx5RNQqcxdAyKi+stiw0WpNHcNiIjqL4sNF/Zc\niIjMh+FCRERGx3AhIiKjY7gQEZHRMVyIiMjoLDZcOFqMiMh8LDZc2HMhIjIfhgsRERkdw4WIqI57\nGm5U+SCGCxHRE/jggw/g5+eHhg0b4pVXXsGBAwcAAOvXr0f37t0xd+5cNG3aFC+//DJOnz5tKBcZ\nGYn3338fUVFR8PLywgcffICioiIAQFZWFmQyGb799lu0a9cOffv2BQDEx8ejb9++aN++Pb744gsU\nFxcDAAYMGIC33nrLsO4RI0Zg3LhxpmqCClnsw8IYLkRkCn5+fjh48CCcnZ3xxRdfYOTIkfjjjz8A\nAGlpaejSpQsyMjKwdu1a9OnTB1evXjWU/fTTT7Fq1SoEBgYiNjYWeXl5WLx4sWH+li1bEB8fj2ee\neQb79+/H5MmTsWbNGvj4+OCNN95AdnY25s+fj7Vr16JDhw4YMGAArl27hqNHjxpu0282wgIBEP/+\nt7lrQUTG8rT8VOl0OuHt7S2OHj0q1q1bJ2xsbERJSYlhftOmTcWxY8eEEEL06tVLjBo1yjBv165d\nol27dkIIIS5duiQkSRLJycmG+VOmTBHvvPOO4XNCQoLo0KGD4fO2bduEl5eXcHd3F4cOHXpkPStr\nT2O2s8X2XDgUmah+kRYY5/G/Yl7NbjkfHx+P9evXIyUlBSUlJSgsLERGRgZkMhlatWoFW1tbw7Ih\nISE4cuQIOnbsCEmSEBwcXG5eZmam4dAYAISHhxveHz58GH//+98Nnzt16oRff/0VBQUFcHR0xPPP\nP49JkybB39//kY9JNhWLDRceFiOqX2oaCsZQVFSE8ePHY9WqVVi/fj0cHR3RvHlzw/zz58+jpKQE\ndnZ2AIATJ05g4cKF+voKgRMnThiWPX78ONq2bQsHBwfk5OQA0D84rEy3bt1w9OhRDBs2DABw9OhR\ntG/fHo6OjgCAOXPmIDAwEFlZWdi6dStGjBhRuztfBZ7QJyJ6TAUFBSgsLISnpyd0Oh0WL16Ma9eu\nGR64pdPpMG/ePOTk5GDJkiUAgI4dOxrK7927Fzt27MDFixfx0UcfYeDAgZVua/Dgwfj666+xb98+\nXLhwAUuWLMELL7wAAEhOTsb69evx1VdfYf369Zg8eTKuXbtWi3teNYYLEdFjatKkCRYvXoxRo0Yh\nKCgIKpUK3bt3hyRJkCQJ4eHhUCgUCAoKQnp6Onbv3m0oK0kSJk6ciKVLl6JHjx7o3bs35syZU27+\n/SIjI/HJJ59g0aJFGDJkCAYPHoxZs2YhPz8fY8aMwcqVK+Hp6Ynu3btj3LhxGDt2rMnaoSIW+5jj\nf/1LYOZMc9eEiIzhaXzM8fr167FmzRrD0OQH9e7dG6NGjTJLCFjsY46Tk5MREBCAVq1aYcWKFQ/N\n37x5M4KCghAUFISRI0fi3Llz1S5bhj0XIqrrnrbArAmzhMvUqVMRFxeHPXv2YOXKlcjNzS03v0WL\nFkhOTkZGRgaio6Pxz3/+s9ply3C0GBGZU9mhsaqWsVQmD5e8vDwAQM+ePeHj44N+/fohNTW13DIR\nERFwdnYGoL/yNCkpqdply7DnQkTmNGbMGCQnJ1c6f//+/WY/L1KbTB4u6enp8Pf3N3wODAxESkpK\npcuvWrXKMIKiJmUZLkRE5lOnr3PZs2cPNm3ahMOHD9e47MGD8zF/vv59ZGQkIiMjjVk1IqKnXmJi\nIhITE2tl3SYfLZaXl4fIyEjDxUOTJ09G//79MWDAgHLLnTx5EkOHDsXPP/8MPz+/GpWVJAnjxwus\nWmWCHSKiWvc0jharyyxytFjZuZTk5GRkZWUhISGh3C0OAODKlSsYNmwYNm/ebAiW6pYtw8NiRETm\nY5bDYsuWLUNsbCzUajWmTJkCd3d3xMXFAQBiY2OxcOFC3Lp1C6+//joAQKFQIC0trdKyFWG4EFkO\nV1dXix5ZZWqurq61vg2LvYhy6FCBbdvMXRMioqfHU31YzFTYcyEiMh+GCxERGR3DhYiIjI7hQkRE\nRsdwISIio2O4EBGR0VlsuPCuyERE5mOx4cKeCxGR+TBciIjI6BguRERkdAwXIiIyOoYLEREZHcOF\niIiMzmLDRacDtFpz14KIqH6y2HCxsWHvhYjIXCw2XKytGS5ERObCcCEiIqNjuBARkdExXIiIyOgY\nLkREZHQWGy42NrwzMhGRuVhsuLDnQkRkPgwXIiIyOoYLEREZHcOFiIiMjuFCRERGx3AhIiKjs9hw\n4VBkIiLzsdhwYc+FiMh8GC5ERGR0DBciIjI6hgsRERkdw4WIiIyO4UJEREZnseHCochEROZjseHC\nngsRkfmYJVySk5MREBCAVq1aYcWKFQ/NP3PmDCIiImBra4uPP/643DxfX1906NABISEhCAsLq3Qb\nDBciIvOxMsdGp06diri4OPj4+CA6OhoxMTFwd3c3zG/YsCFWrFiB77///qGykiQhMTERbm5uj9wG\nw4WIyHxM3nPJy8sDAPTs2RM+Pj7o168fUlNTyy3j4eGBzp07Q6FQVLgOIUSV22G4EBGZj8nDJT09\nHf7+/obPgYGBSElJqXZ5SZIQFRWFIUOGID4+vtLlGC5EROZjlsNiT+LQoUPw9PTE6dOnMXDgQISF\nhaFJkyYPLffjj/Nx+jQwfz4QGRmJyMhIk9eViKguS0xMRGJiYq2sWxLVOcZkRHl5eYiMjMSJEycA\nAJMnT0b//v0xYMCAh5ZdsGABGjRogBkzZlS4runTpyMgIADjx48v970kSfjuO4GNG4Ht242/D0RE\nlkiSpGqddqgOkx8Wc3Z2BqAfMZaVlYWEhASEh4dXuOyDO1lcXIyCggIAQE5ODnbt2oX+/ftXWJaH\nxYiIzMcsh8WWLVuG2NhYqNVqTJkyBe7u7oiLiwMAxMbGIjs7G6GhocjPz4dMJsPy5ctx6tQp3Lhx\nA0OHDgWgH1E2Y8YMeHt7V7gNhgsRkfmY/LCYKeiHKwv84x9AUpK5a0NE9HR4qg+LmQp7LkRE5sNw\nISIio7PYcOGNK4mIzMdiw4U9FyIi82G4EBGR0TFciIjI6BguRERkdAwXIiIyOosNFxsbhgsRkblU\n+/YvarUa//3vfxEfHw+lUgm5XI6CggJ4eHggOjoaL7zwAiRJqs261ohCoQ8XIYA6VC0ionqhWrd/\nSUlJwQ8//ICYmBi0adMGNjY2hnmFhYX49ddf8fXXX2Ps2LEIDg6u1QpXR9ktDBQKoLhYHzRERPRo\nxrz9S5XholQqcfbsWXTo0KHKlaWkpKBLly5GqdiTKGsgBwfgxg3AwcHcNSIiqvtMGi6A/tb3demQ\nV1XKGsjVFbh4EXB1NXeNiIjqPpPfuLJt27b4/vvv8b///Q8AcOPGDezevRulpaVGqURt4YgxIiLz\nqFa4xMbGYsiQIXBzcwMANGrUCN26dcPGjRvx6quv1mb9ngjDhYjIPKoVLg0aNAAAJCUloU+fPvjq\nq68gSRImTJgAOzu7Wq3gk+BwZCIi86jWUOSzZ89CqVSiX79+OHv2LEaNGmWYV50T/eZibc07IxMR\nmUO1wmXnzp3Ys2cP7O3t4eTkhMaNGyMkJAR+fn6wtrau7To+Nh4WIyIyj2qNFjty5AgiIiKQn5+P\no0ePIi0tDWlpacjMzERhYSGuXr1qirpWW9mIh7Aw4NNPgbAwc9eIiKjuM+ZosWr1XCIiIgAATk5O\niIqKQlRUlGHewoULjVKR2sCeCxGReTzxvcWmTJlijHrUCoYLEZF5VBkuSqUSJ06cqHS+i4sLAP2F\nljt37jRezYyA4UJEZB5VhouNjQ0kScLSpUuRnJxc7sJJrVaLixcvYvv27ZgyZQoCAgJqtbI1xaHI\nRETmUa0T+mV27dqFvXv3Ijc3F1u3bkXXrl3RtWtXREdHo1u3brVZzxopOyk1fDjw0kvA8OHmrhER\nUd1n8hP6ZaKjo3HlyhVMmzYNAwcOREJCAnbt2oXs7Gw0b94cTZs2NUqljIWHxYiIzKPGJ/Rzc3Ph\n5OSEF154AZ999hkmTpyIRYsWYfXq1bVRvyfCcCEiMo8a9VwAYMyYMRg5ciR0Oh1at24NGxsbjB49\nus6dbwEYLkRE5lLjcGnatCni4+ORlZWFO3fuoH379rhx4waSkpLw0ksv1UYdHxvDhYjIPGocLmV8\nfX0N7xs1aoSVK1caoz5GxdFiRETm8cQXUdZl7LkQEZmHxYcL74pMRGR6Fh8u7LkQEZkew4WIiIyO\n4UJEREbeDzK7AAAZoElEQVTHcCEiIqOz6HDhUGQiIvMwS7gkJycjICAArVq1wooVKx6af+bMGURE\nRMDW1hYff/xxjcrejz0XIiLzeOyLKJ/E1KlTERcXBx8fH0RHRyMmJgbu7u6G+Q0bNsSKFSvw/fff\n17js/TgUmYjIPEzec8nLywMA9OzZEz4+PujXrx9SU1PLLePh4YHOnTtDoVDUuOz92HMhIjIPk4dL\neno6/P39DZ8DAwORkpJSK2UZLkRE5mGWw2KmMH/+fFy6BJw9CyQmRiIyMtLcVSIiqlMSExORmJhY\nK+s2ebiEhoZi5syZhs+ZmZno37+/0cvOnz8fBw8CFy8CzBUioodFRpb/j/eCBQuMtm6THxZzdnYG\noB/1lZWVhYSEBISHh1e47IOP26xJWYCHxYiIzMUsh8WWLVuG2NhYqNVqTJkyBe7u7oiLiwMAxMbG\nIjs7G6GhocjPz4dMJsPy5ctx6tQpNGjQoMKyleFoMSIi85DEg90DCyBJEoQQOHUKePFF4NQpc9eI\niKjuK/vtNAaLvkKfh8WIiMyD4UJEREbHcCEiIqOz6HDhjSuJiMzDosOFPRciIvOw+HDhUGQiItOz\n6HCxsgI0GkCnM3dNiIjqF4sOF0nS917UanPXhIiofrHocAF43oWIyBwYLkREZHQWHy4cjkxEZHoW\nHy7suRARmV69CBcORyYiMq16ES7suRARmRbDhYiIjI7hQkRERmfx4cLRYkREpmfx4cKeCxGR6TFc\niIjI6OpFuHAoMhGRadWLcGHPhYjItBguRERkdAwXIiIyOosPlwYNgLw8c9eCiKh+sfhwad8eyMgw\ndy2IiOoXiw+Xzp2Bo0fNXQsiovpFEkIIc1fC2CRJQtluqdWAiwtw/br+EBkREVXs/t/OJ2XxPReF\nQn9o7MQJc9eEiKj+sPhwAXhojIjI1BguRERkdPUiXDp1YrgQEZmSxZ/QBwCNRn9S/+pVwNnZjBUj\nIqrDeEK/hqysgKAgntQnIjKVehEuAM+7EBGZEsOFiIiMzizhkpycjICAALRq1QorVqyocJl33nkH\nLVq0QKdOnXDmzBnD976+vujQoQNCQkIQFhZW7W0yXIiITMcsJ/RDQkKwfPly+Pj4IDo6GgcPHoS7\nu7thflpaGqZPn474+Hjs2rULmzdvxk8//QQAaN68OY4dOwY3N7dK11/RSSmtFnB1BS5f1r8SEVF5\nT/UJ/by7tyju2bMnfHx80K9fP6SmppZbJjU1FS+++CLc3NwQExOD06dPl5v/ODsvlwPBwcCxY49f\ndyIiqh6Th0t6ejr8/f0NnwMDA5GSklJumbS0NAQGBho+e3h44OLFiwD0yRoVFYUhQ4YgPj6+Rtvm\noTEiItOwMncFKiKEqLR3cujQIXh6euL06dMYOHAgwsLC0KRJk4eWmz9/vuF9ZGQkIiMj0bkz8N13\ntVVrIqKnS2JiIhITE2tl3SY/55KXl4fIyEicuHvRyeTJk9G/f38MGDDAsMyKFSug0Wjw5ptvAgBa\ntmyJ33///aF1TZ8+HQEBARg/fny57ys7bnj1KtChA3DpEuDkZMy9IiJ6+j3V51yc714in5ycjKys\nLCQkJCA8PLzcMuHh4di2bRtu3ryJLVu2ICAgAABQXFyMgoICAEBOTg527dqF/v37V3vbzzwD9OkD\nrF9vnH0hIqKKmeWw2LJlyxAbGwu1Wo0pU6bA3d0dcXFxAIDY2FiEhYWhe/fu6Ny5M9zc3LBp0yYA\nQHZ2NoYOHQoAaNiwIWbMmAFvb+8abXvaNGDUKGDiRP1JfiIiMr56cW+x+wkBhIcDc+cCgwaZuGJE\nRHXYU31YzNwkSd97WbbM3DUhIrJc9a7nAgAqFdC8OfDf/+pvaElEROy5PDFra/05l+XLzV0TIiLL\nVC97LgCQmwu0agX89pt+FBkRUX3HnosRuLsDb74JjBkD6HTmrg0RkWWpt+ECALNnA0ol8NFH5q4J\nEZFlqbeHxcpcuQKEhgI7dujvPUZEVF/xsJgRNWsGrFwJxMQAdy/+JyKiJ1Tvey5lxo8Hrl8Hvv0W\nsLGppYoREdVhxuy51PtwySnKwcErB5GUdRDf7DmPUpEHL788qHSlaNKgCbycvODl5IVOnp0Q6RsJ\nDwePWq49EZF5MFyqUFUD5SvzsTFjI1YfX42sO1mI8IpAj2Y94N+wLeKWuyD3T2fErbRFIbLxZ/6f\nuJx3GalXU5F8ORm+Lr54zu85jAkagwCPABPuFRFR7WK4VKGyBvoj7w8sPrgYW3/bimdbPIu/df4b\nevr0hFx27w6WOp3+AsujR/WHyHx975XX6DQ4du0Ytp/Zjo0ZG+Ht7I2xwWMxKmgU7BX2JtgzIqLa\nw3CpwoMNVKopxUeHP8InKZ9gQqcJmBQ6Cc84VX7lpBDAxx8DH36ovwfZK688vIxGp8Hu33dj1bFV\nOPLnEUwMnYiJoRPR0L5hbewSEVGtY7hU4f4G2nl+Jyb+dyI6enbER/0+gq+Lb7XXc+IEMHIk0LEj\nsGIF4OZW8XJnc89iyeEl+O70d3it42t4u9vbDBkieupwKHI1KDVKTPt5Gl7f8TpWDVyF/7z0nxoF\nCwCEhADHjumv5m/TRt+bUSofXq6Next8OehLnHzjJApVhWjzaRvMT5yPfGW+cXaGiOgpY7HhErEm\nAlfyruBE7An0adHnsddjb6+/weWBA0ByMhAQAGzaBKjVDy/r5eSFzwZ8hrTxabh05xJarWiFT458\nAqWmgkQiIrJgFntY7LO0z/B659chSZJR152YCCxYAPz+OzBliv76mLtPbn7Ibzd+wzt738FvN37D\ne73fQ0z7GMgki81zInrK8ZxLFYzZQJU5dgxYuhTYuRN44QX9DTC7dwdkFWRH8uVkzEqYhVJNKRY/\nuxj9/fobPfSIiJ4Uw6UKpgiXMv/7H7B5M7B+PVBcDIwYoQ+bzp31T70sI4TA92e+x+x9s9HYoTEW\nPbsIXb27mqSORETVwXCpginDpYwQwPHjwH/+A2zfDhQVAYMGAdHRQGQk4OSkX06j02Bjxkb8M/mf\naN2wNeb1mseQIaI6geFSBXOEy4NOnwbi44GEBCA1FQgOBnr1Anr0ACIiAFsHFTZmbMT7B96Hn5sf\nZnWdhT4t+vBwGRGZDcOlCnUhXO5XXAwcPKgfbXbggP58jZ8fEBYGdAxV4Ubjzfjmz6WQSRKmR0zH\niHYjYGtla+5qE1E9w3CpQl0LlwcplUBGBpCWpp/S04GsywLP9EhAachS3LE/imcbxeCNiLGI7hAC\ndmaIyBQYLlWo6+FSkeJi4LffgF9+AQ6fykJS3gZccVsHKB3R+PZQBNu8gC6+QWjVSoKfH9CyZeV3\nDCAiehwMlyo8jeFSEZ3Q4efMw9h09HvsubodKrUObneehbgUidyjvSAv8kbz5vqba/r66h98VjZ5\neQGNGgFyeVVbISLSY7hUwVLC5X5CCJzKOYX9WfuRmJWI5MvJkEsKtLAPQmMRBLuC9tDcaImCKy2Q\nfckdV/+UcPs20KQJ8MwzQNOm+snTU/9d2dS4MeDhAVhbm3sPicjcGC5VsMRweZAQApfzLiMjOwMZ\n1zPw641fcen2JVy6cwlKjRKejp5oZN8YjrJGUGgaAqVO0BQ7QZnviJJ8exTesUXBLTvk37ZB3m0F\n7K2t4eqsgIujAm4uZZMVGroo4O6mgIebNTxcbdDY3RqN3W3QpKEtFAqeDCKyJAyXKtSHcHmUfGU+\nsguzcb3wOm4U3UBucS4KVAXIV+YjX5mPEk0JSjWlKFGXQKVVQaVVoahUhWKlGiVKNUrVaijVaqg0\nGqi0Kqh1amh0amihhE5SQScrBaxUgMYGktYWcp09FLCHAg6wlTnAVtYADgr95GTjCBc7J7g6OKFh\nAye4OzqhsbMzGrs4wcPRGS52znC2cYazrTOsZFbmbjqieo3hUoX6Hi6moNHqkHNLhezcEmTfLMaN\nO8XIuVOM3LxC3Coswq2iAuSVFCCvtACFqgIUqvNRostHqciDSsqHWp4HYZMHmV0eYJMHnXU+ZFo7\nKLTOsBbOsIEz7GX6qYHCGQ0UTnCy0U8u9o5wtXeCm4Mj3Bo4wt3REe5ODeDh5AgP5wZwsLHl9UJE\nj4HhUgWGy9NBpQIKCvRTfr7A9TuFuH7nDnLy85FbmIfbxXm4VZyHfGU+ClR5KFDnoURbgBJdAUpF\nPpTIh1oqhEZeAK28ADqrIkBRCMjVgNoeMq0D5FoHyHUOsNI53O1d2cNGZg9ryR62cnvYWtnBrmxS\n2MFeYQcHGzs4WNuhga0dHGxs4WhnB0dbWzja2cLR3hZOdrZwtLeBk4MNXBxs4WBnBZmMYUZPP4ZL\nFRgu9ZcQQGGxBrl5RbhZoJ9uFxYhr7gYd4qLkFdchEJlCQqVxShSlqBIVYwSdQmKNcUo1ZRAqS2B\nUlcKla4EalECNUqhQSk0KIFWUkInlUInL4FOpoSQKQGrUkDSARpbQGsDSWsDmc4GMqGf5GUTbGAF\nG1hJ+kkhWUMhs4FCpn+1llnDxsoG1nJrWMutYWNlDVsrG9gorGFrZa1/VVjDzvreq521NeytrWFv\nc2+ys1HA3sYaDrb3JltrOcOPqoXhUgWGC5mSRqtFQYkSeUWlyC9SoqBEiYKSUhSWKFGkVKFYqUSR\nUolipRLFKiVK1SqU3H1ValQoVSuh1Kqg1CjvngNTQqVTQa1TQa1TQqNTQy1U0AgltEINLVT3Jkml\nPw8mKSEkNXQyFYSkhpArAZkakKsAmRbQWAM6BaBTQNJZQ9IpIAkFZOLeq0woIIN+kkMBGawglxSQ\nwwpyyQoyyQpWkgJyyQpWsrvvZVZQyKzKvVrLFbCSWUEhV0BR9irXv9pYKWAtV8Da6u77+18V+vc2\nCgVsFfe/Wt19bwVrhfzuZyvYKOSwsZbDSi5BoZAqvCM51QzDpQoMF6J7tDodSpRqFJaqUKJUo1ip\nRnGpCiUqNUpUapSWTWr9q1KjQanq7oAOjQZKtRpKjRpqrebud2qodRqoNRr9d1o1tDot1DoNNDo1\nNDrNvUEgQnPvVaihFWr9K9TQ4eFXnaSGTlJBSBp9WErqu+81gKSBkKkhJC0gaQGZRt9rlASgkwFC\nDghZuUnCA+8hQYIMkpAb5kmQ3/0shwxWkAkryKCAJKz0AWsIXOuHJivJWh+ysIZcUsBKsoZCptC/\nlynuvpfDSmYFuUwOuUwGuUwGmSSDXKYPRJkMkGQCkkxAdvdVkgQg6SDJdPpXSQAyHSRJB0kqKwPI\nJOjXJ5NgJZPfDXErWMmtYGOl7wHbyK1hp7CFrcIWdncnB2s72Cvs4WBjB3uFLays9HVxdTXebyeH\n5xBZOLlMhgZ2NmhgZ2PuqtQKIQS0QguNVge1RgeVWgelWguNRkCt0b/XavXvy+ZrtPpJpdZCrdVC\npdFCrdG/V6r1QXovUNVQadVQa9VQaVVQapVQa9VQ61SG0ZYaob7b01RBoyuGRqdGsSgLWC20Oi20\nWg2EENAJHXRCCyHwwCRBCAkQEiBkEDrZ3c8yQCeDEDIInX6+zlBG6NcJHQS00AktdJLGENRCUkEn\nU949jHv3kK68BEJeAmGlf4VcpT+kq7Y36p8Ley5ERPWYTuhQoi5BiaYEHg4ePCz2KAwXIqKaM+Zv\np1lOgSUnJyMgIACtWrXCihUrKlzmnXfeQYsWLdCpUyecOXOmRmXpnsTERHNXoc5gW9zDtriHbVE7\nzBIuU6dORVxcHPbs2YOVK1ciNze33Py0tDQcOHAAR48exVtvvYW33nqr2mWpPP7DuYdtcQ/b4h62\nRe0webjk5eUBAHr27AkfHx/069cPqamp5ZZJTU3Fiy++CDc3N8TExOD06dPVLktEROZn8nBJT0+H\nv7+/4XNgYCBSUlLKLZOWlobAwEDDZw8PD/z+++/VKktEROZXJ4cilw2vu19N7xXFe0vds2DBAnNX\noc5gW9zDtriHbWF8Jg+X0NBQzJw50/A5MzMT/fv3L7dMeHg4Tp06hejoaABATk4OWrRoATc3tyrL\nAuBIMSIiMzP5YTFnZ2cA+lFfWVlZSEhIQHh4eLllwsPDsW3bNty8eRNbtmxBQEAAAMDFxaXKskRE\nZH5mOSy2bNkyxMbGQq1WY8qUKXB3d0dcXBwAIDY2FmFhYejevTs6d+4MNzc3bNq06ZFliYiojhEW\nJCkpSfj7+ws/Pz/xf//3f+auTq27cuWKiIyMFIGBgaJXr15i8+bNQggh8vPzxaBBg4S3t7cYPHiw\nKCgoMJRZvny58PPzEwEBAeLAgQPmqnqt0Wg0Ijg4WDz//PNCiPrbFoWFhWL06NGiVatWIiAgQKSk\npNTbtli1apWIiIgQHTt2FFOnThVC1J+/F3/9619Fo0aNRLt27QzfPc6+nzp1SoSEhIjmzZuL2bNn\nV2vbFhUuwcHBIikpSWRlZYk2bdqInJwcc1epVv3vf/8TJ06cEEIIkZOTI5o3by7y8/PFhx9+KCZN\nmiRKS0vFxIkTxZIlS4QQQly/fl20adNGXL58WSQmJoqQkBBzVr9WfPzxx2LkyJFi4MCBQghRb9ti\nxowZYu7cuaKkpESo1Wpx586detkWN2/eFL6+vqKwsFBotVrx3HPPiZ9//rnetEVycrI4fvx4uXB5\nnH1/7rnnxNatW0Vubq7o1q2bSE9Pr3LbFnOT6vp4DUyTJk0QHBwMAHB3d0fbtm2Rnp6OtLQ0jBs3\nDjY2Nhg7dqyhHVJTU9G/f380a9YMvXr1ghACBQUF5twFo/rzzz/x3//+F6+99pphUEd9bYs9e/Zg\n9uzZsLW1hZWVFZydnetlW9jZ2UEIgby8PJSUlKC4uBguLi71pi169OgBV1fXct/VZN8LCwsBAGfP\nnsXLL7+Mhg0bYujQodX6bbWYcKnv18BcuHABmZmZCAsLK9cW/v7+SEtLA6D/y1M2OAIA2rRpY5hn\nCd58800sWbIEsvse7FEf2+LPP/9EaWkp3njjDYSHh+PDDz9ESUlJvWwLOzs7fP755/D19UWTJk3Q\nrVs3hIeH18u2KFOTfU9NTcWFCxfQqFEjw/fV/W21mHCpzwoKCvDyyy/jk08+QYMGDWo0FNtSrgf6\n6aef0KhRI4SEhJTb//rYFqWlpTh37hyGDRuGxMREZGZm4ptvvqmXbZGTk4M33ngDp06dQlZWFo4c\nOYKffvqpXrZFmSfd9+qWt5hwCQ0NLXeDy8zMTHTp0sWMNTINtVqNYcOGYdSoURg8eDAAfVuU3TLn\n9OnTCA0NBXDv+qEyZ86cMcx72h0+fBjx8fFo3rw5YmJisG/fPowaNapetoWfnx/atGmDgQMHws7O\nDjExMfj555/rZVukpaWhS5cu8PPzQ8OGDTF8+HAcOHCgXrZFmZruu5+fH65fv274/tSpU9X6bbWY\ncKnO9TOWRgiBcePGoV27dpg2bZrh+/DwcKxduxYlJSVYu3at4S9CWFgYdu3ahStXriAxMREymQyO\njo7mqr5RLVq0CH/88QcuXbqErVu3IioqCl999VW9bAsAaNWqFVJTU6HT6bBjxw706dOnXrZFjx49\ncPToUdy6dQtKpRI7d+5Ev3796mVblHmcfff398fWrVuRm5uL7du3V++31QgDEuqMxMRE4e/vL1q2\nbCmWL19u7urUugMHDghJkkRQUJAIDg4WwcHBYufOnY8carhs2TLRsmVLERAQIJKTk81Y+9qTmJho\nGC1WX9vi7NmzIjw8XAQFBYkZM2aIwsLCetsW69atEz179hSdO3cWc+fOFVqttt60xYgRI4Snp6ew\ntrYWXl5eYu3atY+175mZmSIkJET4+vqKv//979XatkU+LIyIiMzLYg6LERFR3cFwISIio2O4EBGR\n0TFciIjI6Orkw8KI6iK5XI4OHToYPsfExGDWrFlmrBFR3cXRYkTV5OjoaPT7TGk0GlhZ8f94ZHl4\nWIzoCfn6+uKDDz5Ahw4d8Pzzz+PSpUsA9LdhWbp0KXr16oUBAwYgMTERALB+/XoMHz4cffr0QXR0\nNJRKJRYuXIi2bdtixIgR6NatG44dO4Z169bhzTffNGxn9erVmD59ujl2kajGGC5E1VRSUoKQkBDD\n9O233wLQ33+ppKQEJ0+eREREBL766isAwNatW2FlZYWkpCSsXbsWb7/9tmFde/fuxZdffom9e/ci\nPj4emZmZOHHiBGJjY3HkyBFIkoSXXnoJP/74I7RaLQB9KI0bN870O070GNgfJ6omOzs7nDhxosJ5\no0ePBgBERUVh4cKFAIBt27YhKysL69atAwDcvn0bFy9eNCzn6+sLANi9ezdGjBgBa2tr9O7dGz4+\nPgAABwcHREVF4ccff4S/vz/UajXatm1bm7tIZDQMFyIjKHtmhkKhQGlpKQBAp9Nh5cqV6NmzZ7ll\nDxw4AE9Pz2qt97XXXsP777+PgIAAjB071riVJqpFPCxGVEtGjhyJuLg4wyCAsl7Pg2NooqOj8c03\n30ClUiEpKQmXL182zAsLC8Off/6JLVu2ICYmxnSVJ3pC7LkQVVPZOZcyzz33HBYtWlRuGUmSDM/A\nePHFF5Gbm4vo6Gjk5+ejRYsWiI+PL7cMADz//PP47bffEBwcjA4dOqBt27aGQ2MA8NJLLyEjI8Nw\n52+ipwGHIhOZmU6ng1qtho2NDdLT0zFt2jQcOnTIML9///5499130a1bNzPWkqhm2HMhMrPi4mL0\n7t0bpaWlaN26NT7++GMAwJ07d9C1a1dERkYyWOipw54LEREZHU/oExGR0TFciIjI6BguRERkdAwX\nIiIyOoYLEREZHcOFiIiM7v8D5L89YpM7o1sAAAAASUVORK5CYII=\n"
}
],
"collapsed": false,
"prompt_number": 22,
"input": "plot(piab_evalues, piab_exact_dos, label=\"exact\")\nplot(piab_evalues, piab_approx_dos, label=\"approx\")\ntitle(\"Smooth part of the DOS for the 1D PIAB\")\nxlabel(\"Energy\"); ylabel(\"$g(E)$\")\nlegend(loc=1)"
},
{
"outputs": [],
"cell_type": "code",
"collapsed": true,
"language": "python"
}
]
}
]
}