mcpricer.py
173 lines
| 3.4 KiB
| text/x-python
|
PythonLexer
Brian E. Granger
|
r4581 | # <nbformat>2</nbformat> | ||
# <markdowncell> | ||||
# # Parallel Monto-Carlo options pricing | ||||
# <markdowncell> | ||||
# ## Problem setup | ||||
# <codecell> | ||||
import sys | ||||
import time | ||||
from IPython.parallel import Client | ||||
import numpy as np | ||||
from mcpricer import price_options | ||||
from matplotlib import pyplot as plt | ||||
# <codecell> | ||||
cluster_profile = "default" | ||||
price = 100.0 # Initial price | ||||
rate = 0.05 # Interest rate | ||||
days = 260 # Days to expiration | ||||
paths = 10000 # Number of MC paths | ||||
n_strikes = 5 # Number of strike values | ||||
min_strike = 90.0 # Min strike price | ||||
max_strike = 110.0 # Max strike price | ||||
n_sigmas = 5 # Number of volatility values | ||||
min_sigma = 0.1 # Min volatility | ||||
max_sigma = 0.4 # Max volatility | ||||
# <codecell> | ||||
strike_vals = np.linspace(min_strike, max_strike, n_strikes) | ||||
sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas) | ||||
# <markdowncell> | ||||
# ## Parallel computation across strike prices and volatilities | ||||
# <markdowncell> | ||||
# The Client is used to setup the calculation and works with all engines. | ||||
# <codecell> | ||||
c = Client(profile=cluster_profile) | ||||
# <markdowncell> | ||||
Bernardo B. Marques
|
r4872 | # A LoadBalancedView is an interface to the engines that provides dynamic load | ||
Brian E. Granger
|
r4581 | # balancing at the expense of not knowing which engine will execute the code. | ||
# <codecell> | ||||
view = c.load_balanced_view() | ||||
# <codecell> | ||||
print "Strike prices: ", strike_vals | ||||
print "Volatilities: ", sigma_vals | ||||
# <markdowncell> | ||||
# Submit tasks for each (strike, sigma) pair. | ||||
# <codecell> | ||||
t1 = time.time() | ||||
async_results = [] | ||||
for strike in strike_vals: | ||||
for sigma in sigma_vals: | ||||
ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths) | ||||
async_results.append(ar) | ||||
# <codecell> | ||||
print "Submitted tasks: ", len(async_results) | ||||
# <markdowncell> | ||||
# Block until all tasks are completed. | ||||
# <codecell> | ||||
c.wait(async_results) | ||||
t2 = time.time() | ||||
t = t2-t1 | ||||
print "Parallel calculation completed, time = %s s" % t | ||||
# <markdowncell> | ||||
# ## Process and visualize results | ||||
# <markdowncell> | ||||
# Get the results using the `get` method: | ||||
# <codecell> | ||||
results = [ar.get() for ar in async_results] | ||||
# <markdowncell> | ||||
# Assemble the result into a structured NumPy array. | ||||
# <codecell> | ||||
prices = np.empty(n_strikes*n_sigmas, | ||||
dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)] | ||||
) | ||||
for i, price in enumerate(results): | ||||
prices[i] = tuple(price) | ||||
Bernardo B. Marques
|
r4872 | |||
Brian E. Granger
|
r4581 | prices.shape = (n_strikes, n_sigmas) | ||
strike_mesh, sigma_mesh = np.meshgrid(strike_vals, sigma_vals) | ||||
# <markdowncell> | ||||
# Plot the value of the European call in (volatility, strike) space. | ||||
# <codecell> | ||||
plt.contourf(sigma_mesh, strike_mesh, prices['ecall']) | ||||
plt.axis('tight') | ||||
plt.colorbar() | ||||
plt.title('European Call') | ||||
plt.xlabel("Volatility") | ||||
plt.ylabel("Strike Price") | ||||
# <markdowncell> | ||||
# Plot the value of the Asian call in (volatility, strike) space. | ||||
# <codecell> | ||||
plt.contourf(sigma_mesh, strike_mesh, prices['acall']) | ||||
plt.axis('tight') | ||||
plt.colorbar() | ||||
plt.title("Asian Call") | ||||
plt.xlabel("Volatility") | ||||
plt.ylabel("Strike Price") | ||||
# <markdowncell> | ||||
# Plot the value of the European put in (volatility, strike) space. | ||||
# <codecell> | ||||
plt.contourf(sigma_mesh, strike_mesh, prices['eput']) | ||||
plt.axis('tight') | ||||
plt.colorbar() | ||||
plt.title("European Put") | ||||
plt.xlabel("Volatility") | ||||
plt.ylabel("Strike Price") | ||||
# <markdowncell> | ||||
# Plot the value of the Asian put in (volatility, strike) space. | ||||
# <codecell> | ||||
plt.contourf(sigma_mesh, strike_mesh, prices['aput']) | ||||
plt.axis('tight') | ||||
plt.colorbar() | ||||
plt.title("Asian Put") | ||||
plt.xlabel("Volatility") | ||||
plt.ylabel("Strike Price") | ||||