##// END OF EJS Templates
Adding .widget to function.
Adding .widget to function.

File last commit:

r15133:73078b3d
r15136:860e7935
Show More
Lorenz.ipynb
268 lines | 7.0 KiB | text/plain | TextLexer
Brian E. Granger
Adding Interact and Lorenz examples.
r15133 {
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Exploring the Lorenz System of Differential Equations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this Notebook we explore the Lorenz system of differential equations:\n",
"\n",
"$$\n",
"\\begin{aligned}\n",
"\\dot{x} & = \\sigma(y-x) \\\\\n",
"\\dot{y} & = \\rho x - y - xz \\\\\n",
"\\dot{z} & = -\\beta z + xy\n",
"\\end{aligned}\n",
"$$\n",
"\n",
"This is one of the classic systems in non-linear differential equations. It exhibits a range of different behaviors as the parameters ($\\sigma$, $\\beta$, $\\rho$) are varied."
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Imports"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we import the needed things from IPython, NumPy, Matplotlib and SciPy."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from IPython.html.widgets.interact import interact, interactive\n",
"from IPython.display import clear_output, display, HTML"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"from scipy import integrate\n",
"\n",
"from matplotlib import pyplot as plt\n",
"from mpl_toolkits.mplot3d import Axes3D\n",
"from matplotlib.colors import cnames\n",
"from matplotlib import animation"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Computing the trajectories and plotting the result"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We define a function that can integrate the differential equations numerically and then plot the solutions. This function has arguments that control the parameters of the differential equation ($\\sigma$, $\\beta$, $\\rho$), the numerical integration (`N`, `max_time`) and the visualization (`angle`)."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def solve_lorenz(N=10, angle=0.0, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0):\n",
"\n",
" fig = plt.figure()\n",
" ax = fig.add_axes([0, 0, 1, 1], projection='3d')\n",
" ax.axis('off')\n",
"\n",
" # prepare the axes limits\n",
" ax.set_xlim((-25, 25))\n",
" ax.set_ylim((-35, 35))\n",
" ax.set_zlim((5, 55))\n",
" \n",
" def lorenz_deriv((x, y, z), t0, sigma=sigma, beta=beta, rho=rho):\n",
" \"\"\"Compute the time-derivative of a Lorentz system.\"\"\"\n",
" return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]\n",
"\n",
" # Choose random starting points, uniformly distributed from -15 to 15\n",
" np.random.seed(1)\n",
" x0 = -15 + 30 * np.random.random((N, 3))\n",
"\n",
" # Solve for the trajectories\n",
" t = np.linspace(0, max_time, int(250*max_time))\n",
" x_t = np.asarray([integrate.odeint(lorenz_deriv, x0i, t)\n",
" for x0i in x0])\n",
" \n",
" # choose a different color for each trajectory\n",
" colors = plt.cm.jet(np.linspace(0, 1, N))\n",
"\n",
" for i in range(N):\n",
" x, y, z = x_t[i,:,:].T\n",
" lines = ax.plot(x, y, z, '-', c=colors[i])\n",
" setp(lines, linewidth=2)\n",
"\n",
" ax.view_init(30, angle)\n",
" show()\n",
"\n",
" return t, x_t"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points, called attractors. "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"t, x_t = solve_lorenz(angle=0, N=10)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using IPython's `interactive` function, we can explore how the trajectories behave as we change the various parameters."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"w = interactive(solve_lorenz, angle=(0.,360.), N=(0,50), sigma=(0.0,50.0), rho=(0.0,50.0))\n",
"display(w)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The object returned by `interactive` is a `Widget` object and it has attributes that contain the current result and arguments:"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"t, x_t = w.result"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"w.arguments"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After interacting with the system, we can take the result and perform further computations. In this case, we compute the average positions in $x$, $y$ and $z$."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"xyz_avg = x_t.mean(axis=1)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"xyz_avg.shape"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Creating histograms of the average positions (across different trajectories) show that on average the trajectories swirl about the attractors."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"hist(xyz_avg[:,0])\n",
"title('Average $x(t)$')"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"hist(xyz_avg[:,1])\n",
"title('Average $y(t)$')"
],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}