##// END OF EJS Templates
Cleaning of reveal converter to make the PR
Cleaning of reveal converter to make the PR

File last commit:

r8909:c7e6d670
r8910:86a62ece
Show More
example_nb_tour_slides.html
2532 lines | 171.2 KiB | text/html | HtmlLexer
/ example_nb_tour_slides.html
damianavila
Updated example_nb_tour.ipynb to fit content to slides.
r8909 <!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="chrome=1">
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" />
<link rel="stylesheet" href="reveal/css/reveal.css">
<link rel="stylesheet" href="reveal/css/theme/default.css" id="theme">
<link rel="stylesheet" href="css/ipython.css">
<!-- For syntax highlighting -->
<link rel="stylesheet" href="reveal/lib/css/zenburn.css">
<!-- If the query includes 'print-pdf', use the PDF print sheet -->
<script>
document.write( '<link rel="stylesheet" href="reveal/css/print/' + ( window.location.search.match( /print-pdf/gi ) ? 'pdf' : 'paper' ) + '.css" type="text/css" media="print">' );
</script>
<!--[if lt IE 9]>
<script src="reveal/lib/js/html5shiv.js"></script>
<![endif]-->
</head>
<div class="reveal"><div class="slides">
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h1>A brief tour of the IPython notebook</h1>
</div>
<div class="fragment" class="text_cell_render border-box-sizing rendered_html">
<p>Rendered by nbconvert using <a href="http://lab.hakim.se/reveal-js">Reveal.js</a>!</p>
<p>by Damián Avila</p>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>This document will give you a brief tour of the capabilities of the IPython notebook.<br />
You can view its contents by scrolling around, or execute each cell by typing <code>Shift-Enter</code>.
After you conclude this brief high-level tour, you should read the accompanying notebook
titled <code>01_notebook_introduction</code>, which takes a more step-by-step approach to the features of the
system.<br />
The rest of the notebooks in this directory illustrate various other aspects and
capabilities of the IPython notebook; some of them may require additional libraries to be executed.</p>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p><strong>NOTE:</strong> This notebook <em>must</em> be run from its own directory, so you must <code>cd</code>
to this directory and then start the notebook, but do <em>not</em> use the <code>--notebook-dir</code>
option to run it from another location.</p>
<p>The first thing you need to know is that you are still controlling the same old IPython you're used to,
so things like shell aliases and magic commands still work:</p>
</div>
</section>
</section>
<section>
<section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[1]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">pwd</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[1]:</div>
<div class="output_subarea output_pyout">
<pre>u&apos;/home/damian/Desarrollos/ipython_mtaui_slide&apos;</pre>
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">ls</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stdout">
<pre>COPYING.txt <span class="ansibold ansiblue">IPython</span>/ <span class="ansibold ansipurple">python-logo.svg</span> setupbase.py <span class="ansibold ansigreen">setup.py</span>*
<span class="ansibold ansiblue">docs</span>/ <span class="ansibold ansigreen">ipython.py</span>* README.rst <span class="ansibold ansigreen">setupegg.py</span>* <span class="ansibold ansiblue">tools</span>/
example_nb_tour.ipynb MANIFEST.in <span class="ansibold ansiblue">scripts</span>/ <span class="ansibold ansiblue">setupext</span>/ tox.ini
</pre>
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[3]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">message</span> <span class="o">=</span> <span class="s">&#39;The IPython notebook is great!&#39;</span>
<span class="c"># note: the echo command does not run on Windows, it&#39;s a unix command.</span>
<span class="o">!</span><span class="nb">echo</span> <span class="nv">$message</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stdout">
<pre>The IPython notebook is great!
</pre>
</div>
</div>
</div>
</div>
</div>
</section>
</section>
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h2>
Plots with matplotlib
</h2>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>IPython adds an 'inline' matplotlib backend,
which embeds any matplotlib figures into the notebook.</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[4]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="o">%</span><span class="k">pylab</span> <span class="n">inline</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stdout">
<pre>
Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].
For more information, type &apos;help(pylab)&apos;.
</pre>
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[5]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">x</span> <span class="o">=</span> <span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">pi</span><span class="p">,</span> <span class="mi">500</span><span class="p">)</span>
<span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">sin</span><span class="p">(</span><span class="n">x</span><span class="o">**</span><span class="mi">2</span><span class="p">))</span>
<span class="n">title</span><span class="p">(</span><span class="s">&#39;A simple chirp&#39;</span><span class="p">);</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJztfXl0VuWd/+fNwpawJZA9gJgwIS6gYrW0aBTQopi6i2OR
ug3tyNQ6PTPT85szUz0ztXjaHvWMHUXPWMGxSm2rUBdUtFFaRKwiWmVkKdGEQAhkgSyELPf3x+OT
9+bmLs96732T53NODiS5z/K+ee/n+dzP9/t8n4RlWRYMDAwMDEYE0qKegIGBgYFBeDCkb2BgYDCC
YEjfwMDAYATBkL6BgYHBCIIhfQMDA4MRBEP6BgYGBiMIhvQNUh5PP/00Lr30Ui19f/vb38a//du/
Ke3znnvuwfLlyz1/f/rpp+Ptt99WOqaBAYUhfYPIUVVVhZycHJw8eVKo/U033YRXX31V8awIEokE
EomE8j798Je//AUXXHCB0jENDCgM6RtEitraWmzfvh15eXnYuHFj1NNxher9izL99fX1KZyJwUiE
IX2DSLFu3TosWrQIy5cvx9q1a32vffLJJ3HqqadiwoQJmDlzJn71q18N/HzBggUD16WlpeGRRx5B
eXk5JkyYgH//93/Hvn378NWvfhWTJk3CsmXL0NPTAwCoqalBSUkJfvKTn2Dq1Kk45ZRTBvp1w4sv
voi5c+di8uTJ+NrXvoaPP/7Y89pPPvkEixcvRm5uLgoKCvCTn/wEAFH6J0+exIoVKzBhwgScfvrp
eP/99wfazZgxA2+++SYAYgVde+21WL58OSZOnIgnn3xy4GfLli3DhAkTcM455+Cjjz4KeKcNDAgM
6RtEinXr1uGGG27A9ddfj1dffRWHDx92va6jowN33XUXNm3ahGPHjuGdd97B3LlzPft97bXXsGPH
Dmzbtg33338/7rjjDjzzzDP44osv8PHHH+OZZ54ZuLaxsRFHjx5FQ0MD1q5di7/7u7/Dnj17hvS5
Y8cO3HbbbXj88cfR3NyMlStXorq62tWWOn78OBYtWoTLLrsMBw8exN69e7Fw4UIAROlv3LgRN954
I9ra2lBdXY1Vq1YNtHXaPxs3bsR1112HtrY23HTTTQM/u/7669HS0oK//du/xZVXXone3l6fd9rA
gMCQvkFk+OMf/4gDBw6guroa5eXlqKys9FXZaWlp+Pjjj9HV1YX8/HxUVlZ6XvvP//zPyM7ORmVl
Jc444wwsWbIEM2bMwIQJE7BkyRLs2LFj0PX/8R//gczMTFxwwQW4/PLLsX79+oHfURJ+7LHHsHLl
Spx77rlIJBK4+eabMXr0aGzbtm3I+C+++CKKiopw9913Y9SoUcjOzsZXvvKVgd8vWLAA3/jGN5BI
JPCtb30LO3fu9Hwt8+fPR3V1NQBgzJgxAIB58+bh6quvRnp6Ov7xH/8RJ06ccJ2HgYEThvQNIsPa
tWtxySWXYPz48QCA6667ztPiycrKwvr16/Hoo4+iqKgIS5cuxWeffebZd35+/sD/x44dO+j7MWPG
oL29feD7yZMnY+zYsQPfT58+HQcPHhzS5+eff46f//znmDx58sBXfX2967V1dXWYOXMm0/zGjRuH
EydOoL+/3/XakpIS358lEgmUlJS4zsPAwAlD+gaRoKurC7/+9a/x5ptvorCwEIWFhfj5z3+OnTt3
evrTl1xyCV577TUcOnQIFRUVuOOOO4TGdtonLS0t6OzsHPj+888/R1FR0ZB206ZNw7/+67+ipaVl
4Ku9vR033HCD67V//etfmcbnnS9AFhWK/v5+1NfXu87ZwMAJQ/oGkeCFF15ARkYGdu3ahZ07d2Ln
zp3YtWsXFixYgHXr1g25/vDhw9iwYQM6OjqQmZmJrKwspKenM49nz5hxy5750Y9+hJ6eHmzZsgUv
vfQSrrvuuoFr6fV33HEHHn30UWzfvh2WZaGjowMvvfTSoKcGiqVLl+LgwYN46KGH0N3djePHj2P7
9u2e4/Pi/fffx/PPP4/e3l48+OCDGDNmDM4//3zpfg2GPwzpG0SCdevW4dZbb0VJSQny8vKQl5eH
/Px8rFq1Cr/61a+GWB39/f144IEHUFxcjNzcXGzZsgWPPPIIgKG59G7K2Pl7+/cFBQWYPHkyioqK
sHz5cqxZswazZs0acu0555yDxx9/HKtWrUJOTg7Ky8tdFygAyM7Oxuuvv47f//73KCwsxKxZs1BT
U+M6vtec/a795je/ifXr1yMnJwdPP/00fve733EtggYjFwlziIrBSEZNTQ2WL18+yC6JO+69917s
3bsXTz31VNRTMUhBSCn9W2+9Ffn5+TjjjDM8r/ne976H8vJyzJkzZ0jGhIGBAT+MTjOQgRTp33LL
Ldi0aZPn719++WXs3bsXe/bswWOPPYbvfve7MsMZGGiB6jILuqGjNITByIG0vVNbW4srrrjCdWfi
d77zHVx00UUD2Q0VFRV46623BqWrGRgYGBiEhwydnR84cAClpaUD35eUlKC+vn4I6RvVYmBgYCAG
Xt2uPXvHOSEvgqepcXH76u21sHSphepqCx99ZGH1agvTplloatIz3o9+9KNQXtcll1i4/HIL558f
zfv6wAMWcnIs3Hijvveiv98CQL56etTN/dNPSZ+33qqmv6oqC4sXy30uPvuMzGnTJrE5HDxI2m/c
KP4+r1nD33bRItKWp813vvMjABaOHWNvc/HFfOMcOWLhqacstLezXf/AAxYuukjdZ4z1SwRaSb+4
uHhQVkR9fT2Ki4t1DqkcDzwAtLUBv/kNcMYZwL/8C3DttcD3vx/1zMTR0gJs3QqsXw98/jmwb1/4
c9i8mbyXW7fqG2PfPqCwEJg2DaitVdfv//0fMHo0sH+/fF/9/cAHH5D3wbY/jBsbNpB/RefU0ED+
/e1v+du2tZF/P/iAv+3mzcCUKXxtjhwh/9I5s2DyZL4xfvtbYPly4I9/ZLu+qQlIlQQwraRfXV09
kMe8bds2TJo0KaX8/KYmYPVq4IkngMzM5M/vvRd44w3Ap8BirPHGG8DXvw5kZQEXXghs2RL+HHbu
BK65hixAR4/qGWPHDuD884HZswlRq8LevcAVVwCffqqmr5wcID+fj8ScOHAAKCgAXOrEMbcHxP4W
9fXkX97kPFofLjubr50I6Y8aRf49doztenod6/WU9D0qacQKUqR/4403Yv78+fjss89QWlqKJ554
AmvWrMGaNWsAAJdddhlmzpyJsrIyrFy5Ev/93/+tZNJh4cc/BpYtA8rKBv88Oxu4807gwQfVj1lV
VaW+Uwe2bgXoGR1f/zq7mlGF5maiDk85BZg715ssZN+Lujqi8isq1JL+vn1ksezsJK9FBg0NZI55
eUBjo/d1Qe/FkSPAV78qR/qVlWKkX1cHlJYCra187dragIyMJImzIj29CpmZyYWKBU1N5F+fck2D
cPz44H9Z+u/uTo4TZ0gFcu3lab3w8MMPywwRGY4eBZ580pssbruN3CS/+AXwZeFDJQiD9D/6CPjB
D8j/zzkH+OUvtQ85CJ9+St67tDRg1ixCoosWDb1OBemXlgJjxwIffijV1SDs2wdceSVQUkJIOydH
vK8jR4i90dsLeFSVBhD8XjQ1AQsWiNkzACHQM88EbGX9mVFXB5x+Or+909pK/j719cCJE+z30ahR
VSgr41P6jY1kYW1pYbteROknEsAXX5CntjjDlGHwwJNPkkf4ggL33xcWAnPmAK+9Fuq0pGFZxFqh
peip9RHmY+kXXwDTp5P/T5tGvtcBqvSLioBDh9T129AAFBcTsuZVqU5Q0s/P9yd9ln7Ky5P+Oi8a
GsjnWUTpHzxIPke8Sr+1lXjtvO9jRwcRC7ykf8oppC0Ljh8niwSP0p82Tf7zEAYM6bugvx945BFi
4fjh+uuBX/86nDmpArUQ6GI2cSIwYULSlw0DlIwBovR0BcC++IL0n5/vb53w4uhRIDcXmDpVHenn
5cmRflMTsSFFSb+pKblo8J7Fcvw4eY/7+4nFwYrWVmDSJP73sb2dPGWxvta+PmLDTZ/OTvrHjpEx
eJT+tGlAVxfb9VHCkL4L3n6bBDnPO8//uquvBl58ERA8zzsS7NlDVJI9c7aiAti1K7w5UNsF0Kv0
6+vJjStLqHZYFiGQ3Fy1Sl9mjpZFSOfUUwkRimTytbcTAp40id0CsbcdP54ICJ5Fp62NjDdlCp8X
3t5O3i/WbKfOTpJtNXEin9IvLmZT+pZFFrDiYkP6KYtnngFuumkwMbqhoIDcaO+9F868VGDvXjJn
O8rKAI/S71oQBulbFiHUvDx568SO48dJJsjo0fxk5QY76Ys+jVDymziRzIuV2Ow4fpwkKEyZwm/x
tLeTthMn8lk8ra2kzeTJfO3a28nTASvpd3UB48YRIcej9IuL2ZR+dzf5TGRlGdJPSZw8SYJhy5ax
XV9VBXxZMTclsHfv0Gyk6dNJvn5YoLYLQG6sAwfE1Kkfjh0jgUF6M1oWIQtZUGsHUGvv5OaKp67S
OSUSRDnzeusAIf3x40lQWoT0x48nY/MofWrvjBvHR5YdHWSRZCXwri4SzOchfR6lT4PQY8ca0k9J
vP46sTuo5xyEVCP9ffuiJ/1Dh0ggHCA3yqhR7N4pK+zknEioU/vU2gHU2Tu5uYQ0WYOGTrS3k7gM
wG+x2PsYP56PGCnoUwLv2JT0x45lV+108eaxd0RIn0fpG9JPcWzYQDYNsWLBAmDbNr4AVpTYvx+Y
MWPwz2bMCI/0+/sJ0U2dmvzZ1Knq85vtpA/I2SfOfmmKpop5HztGiE+W9OkGJ161TUGVvgjpy9o7
48axE3h3N8ntnziRz9PXqfS7ugzppyz6+0lg9oor2NtMmkQCo6ni69szZyjCVPqtreTmozskgXBI
PyeHP0AZ1O/EifJPKJRsVZE+L/ECSfWcnS1P+jwLTmcnGY+H9Nvb+dvwevqWRf6uRUVG6Q977NhB
HpOd9kcQzj8/NUj/5Emisqm1QlFURKwP3lQ9ERw+TFS3HWGQvqjX7URzc1LpT5ighvSzs0lfUSn9
ri6yCGdkEGLkrQFEx8/O5lswqO3CS/rZ2fykzzNOTw/5NyeH7fUY0k9hvPgisHQpf7tzzhHbyRg2
GhpIxpHzKNX0dOJPq8xl90JT02BrB1CbUklBvXIKVaR/7BhRtABR5zKk399PSCIrixBZe7t4uqWM
0qdPGwAhRlGlz0t61BbhCeR2dCRJn3WevPZOdzfJgho9ms22PXGC9G9IPwXx+9/zWTsUqUL69lRJ
JwoLyc5K3YhS6YtuXLLj2LEkQcqoc4AQ0LhxpBxFRoZ8uiVA/uVV6vb2MvaOCOmHpfR57B0R0jdK
PwXR0EBy1efP529bWUnSEGUIIAzU1ZHNSm4oKgqH9N2U/tSp6pV+S8vgcrqqlL5dFVN1LlrCwt4X
IL6I2JU+Dxna29N58JL+yZNkx+vo0fykZ1fIvJ4+jQlRK8YPvNk7J04Y0h8ReO01YPHiwSWUWZGZ
SQpOqSzqpQP2VEknCgvlSvuyoqlpaP30nBz5apVOtLUlbRhAzPZww/HjyfTI9HRyo4uoc9qXvayw
aDDXSfoiKZeipN/RQdomEuEo/Y4OMkeAvR0v6Xd3ExLPyCALel9fcP+G9FMQmze7V3pkRSpYPI2N
/gXkwlD6ra1Dq1Ly7shkgd17B/QofUDO4nH2JRojkFX6TnuHpz1V3kA4pG+vxsnaTtTTTyTY1L5R
+ikIyyIHi8iQ/ty5pGRxnHHokHfZ1zBJf9KkwT+bPFlNOqUdbW1JRQ6oDeSqIGpgsK1C+4rC3qGp
k7Q9j9Lv7CRtgHBInxIyz1ypp89q19jHMKQ/TPHpp+RDccop4n1UVqo5SUknGhu9SV9FSQEWhEX6
OpW+fTGRSduMi6dvV8+89o69rQzps7Zzkj6PvSNK+idO+F9vsndSEJs3AwsXyvVBSV91DRmVOHTI
295RUVKABamu9HXaO9nZ0ZA+JUUgXNKnbWXsHValT8t9sFTEtZP+mDFG6Q9LyPr5APGps7L4jnAL
G35Kf7iRvlPpq9hIRftVZe84A7m8hcco7L56KpE+HZcne4eXkIGkBcWbjQMYe2dYoqeHHAx+8cXy
fcXZ4unrS5YadkNYpN/SMpT0s7PJjaXyXAJn9g5Nr5SF096R9fSdpM9L2MBQTz4VSN+y5D19VuVu
V/o9PcEptryePs3eGTMm2AqKA0Y86b//Pik45kwjFEFlJfDJJ/L96MDRo4QEvVJSc3NJ2qTuYxPd
lL5MSWA3nDhBSIXeuECSzGRen71GDQVv6QE77GQNiJO+nbRFUjZFMmLsbenYPKTf00NSXtPTxe0d
XuWeSJDPf1Buv2ggly4qcceIJ/233wYuuEBNX3FW+n7WDkBuhqwsNbtWvdDfnzwtyQmVFg+1duyH
4NCcehFSpejoICSQkZH8mShRA8msEntfIvaAk/RllD6vWhVV+vYxWckb4CdkgDwN8LQRIf2xY8k9
FPTk0d8f7nnUbhjxpL9lCymPrAJxJ32vIC6FbounvZ2Qkp00KVSSvjOISyFTyRIYqswBsbIF9v4o
8QFySt+efSNL+jxlwlWQPrVpWJIgROwderIVoI/0WZX+li3kDI4oMaJJv78f+NOf1JH+rFnkDNo4
wi9Hn0I36btZOxSyhGyH03enkPX17TnpFDJK39mf6JOIrNK3E3dYSt/eLi2NTSUDyd2yAJ/Sp6TP
slDwWkh0UcnIIJVq/Ravnh6xXf8qMaJJ/5NPiJcdpIBZUVBAbjidFoko4qD0/UhftniZHU7fnUJ2
YXHaMYC80ldh79h99VS0dwBCmqz+fNzsHUrkiQQhfj+139trSD9SbNmizs8HyB+9rIwcSRg3jCSl
b6/PYocupS9K+m6evqzSp/YMj29sb5+RQZQq69kKbqTPYtM4SX/0aP4cetY2dqUvQvpBi6BdvQc9
SfT0uNubYWLEk74qa4eirIwcPh43uJU0diJq0ld1Tq4X6avw9O1EBYh56F79iZB+Xx8haEpqtPAZ
bwYOJW6AT+3b26ans9s0zjFFdsuyPh04Pf2g+fHuBbCr9yBf3yj9CGFZJHNnpJC+81xaN+gmfbcc
fYpUVfqq7R1Ra8aeqcSTDWPvg4KH9O1BZJ6x7ZYLTzuRlE2np6/D3qHqPWjRM0o/QuzfT4h/5ky1
/caV9J2HirghDKVvr3Fvh0rS1+Xpqw7kOu0dkR2dTsIG+DNw3Eiftb2MYrefk6yrGBrAb+/wLiw8
9o5R+hGCWjt2haQChvS9EVYgV5fS1xHIlbV33EifxYf260PU3gHY0yjtRAyI2zsinj6PvcMyLzuR
B23+Mko/Qujw8wFD+n6IOpAbN6Wv0t6xg9feUeXp84xtJ1aAncBF7R2eOICMvWOUfoyhi/SLigi5
qajzogq9vSRI6kW4FFGTvu5ArowqB7wDuSqzd0TsHTvpAvKePs+Tgj1dlGdsFUpfxErSmbIJmOyd
2KKxkWSznH66+r7T0oDp04HPP1fftyhaWkhZgvR0/+t0nGBlR1hK38vTl1HlQDwDuU7SBdR4+mEr
fVHS15GyyUPiAJ+9Y5R+RNiyBfja14JJUBQzZsSL9I8eZSsoN3EiWSB0nQnQ2jq48qUdYdg7Okhf
1t6xk63IebsqPH03e0c0kMuaRimj9Ol4ImOxkLid9FkKtPHYO0bpRwRd1g7F9OlAba2+/nnB4ucD
5GZKT9dXE9yrPAIQTiBXlvS9ArmdnfwLJSUSu+qjZMvTlwpP36m6eZW+U7HzbrKi7XTsyLWswSTO
q/QzM4M3qpnsnRSAbtKfMSM1SR9QW+LYCeehIXaoVvq67B0nwdLywLxnAbgtIGlpwdv43fqRIX3L
kiN9u/LmGTssT5+OQ7P0eLNxWP4eJnsn5jh2DNi9G5g3T98YcfP0eUhfp6/vPB7QDpWBXPtJUnbo
sHcAQrq8h2e4BWABeT8e4CP93l6y2NitTl7St5M3zy5Zkeydnh4+q8a5uLDaO/bNVirtHaP0I8DW
rYTw7R8E1Yib0j9yJB5Kv73dn/Tb29XEE/zsHRnryov0x4zh79fphVPI+vF0PjykbSdf3jmIKnaZ
djxWjcg4Ip6+yd6JMXRbO0DqBnIBfaRvWd62C0BuhFGj5JQ4RZiePiB2TJ4b2Yr05SxnAIgfSiIy
B7dyCro8fRF/PgzSd9o7RunHDCpPyvJCfj4hzrgckhwHT5+eOuWXMaUqmKvT01dl73iRvkgQ1vnU
qoL0edqHpfT7+ogVlZaWbMNr74iQOK+9Yzz9GOHECWDHDuCrX9U7TloaMG1afNR+HEjfz9qhUBXM
1enpO/1zQMzeUaX0veyZqJS+qKfPq8BZx3KOw0vi9GAU1nkZTz9meO89YPZsb4tBJeKUthkH0vcL
4lKoCOZSGynugVw/T59H6TuVLBCup69K6fPmz7OOJaL0ddo7RumHjDD8fIpp04C6unDGCkIqkb6s
0u/uJjeV242li/SHm9JnOeuVIkxP3565A7DV7g+D9HnsHaP0Q0aYpF9SAhw4EM5YQTh6FMjJYbtW
p70T9ISlwtP3CxbznOzkhjACuSJKXwfpx9HTt2fu0HkGEbJu0qenjJnsnRiirw945x3g618PZ7zi
YqC+PpyxguBXx96JVFf6XtYOQGItvCmRdoQRyBVR+qoDuaw58/39Q5VrmJ4+C4E73x9Wu4Y1T7+v
jyQn0M1fJnsnRvjoI6CwMPj0KFWIi9Lv7iYfTLcApBtSnfS9grgUKmvlUKjO05cpoUDnI+Pp826U
Ejm1S1aBs7aRHScokOtU7iZ7J0YI09oBCOnHQem3tREiZz0sZvJkUnRNNcIK5PrZO4A46ff3Dy05
QBF1nr5qpc/jy7uNLdI2LNLnzcZhKavgfNIZ9kp/06ZNqKioQHl5Oe6///4hv6+pqcHEiRNx1lln
4ayzzsJ//ud/yg4phLBJPy72jl85YzdE6elnZ8vVuwf87R1AnPRp2YQ0lztG5JhDlXn6Ojx91pLF
ovEAt1RP3uwdXQsFD+nbrSB6fdw9fanh+/r6sGrVKmzevBnFxcU499xzUV1djdmzZw+67sILL8TG
jRulJioDyyKk/7OfhTdmTg5RbEEkpBtxIX0WpZ+VBTQ1yY2jk/Td/HxATOk7q1OK9qUrkCuj9HkP
NgHYyTiMpwPeAmrO/v2eJFJe6W/fvh1lZWWYMWMGMjMzsWzZMmzYsGHIdZauAu2M2LuXfFimTw9v
zEQiHr6+Xw17N0ycSNqo/pOxkr6s0tfl6XsFcQHxQK4Kq8iNeMPy9GUWHGdbVqvGTph0d3dfn3cb
UaXPGsh19h9UlTPllf6BAwdQWlo68H1JSQnefffdQdckEgls3boVc+bMQXFxMX72s5+hsrJySF/3
3HPPwP+rqqpQVVUlM7VBCNvaoaAWz6xZ4Y9Nwav0R41K1sBR+YTS3g7MnOl/jQrS1+XpewVxAbV5
+qlk76hU+izpl06CBZKk7FXew6msWVIweQK5bvaOzjz9mpoa1NTUiHcASdJPMEQHzz77bNTV1WHc
uHF45ZVXcOWVV2L37t1DrrOTvmq8/XY0pB8HpU8DuTyYNIkEc1WSvl8tfYpx4+Lr6fsp/TFj+IPf
qpS+jkAuj9J3js26scstq4bX06ftenrc30vahoeUnfV9RJQ+T7YPL5yC+N577+XuQ8reKS4uRp1t
22ldXR1KSkoGXTN+/HiM+/JuWbJkCXp6etDc3CwzLDeiUvpxyODhVfqA2lOsKFjtHdkqm37kDMTH
3vHy9OOi9EUsGtqWNd1TNijL0o53HN4nA9n+o4AU6c+bNw979uxBbW0tTp48ifXr16O6unrQNY2N
jQOe/vbt22FZFnJYt4cqQEMDIT5HbDkUxCGDR5T0VR1oQsFScE2FveNnwwD6Arki9o4qTz+qPH03
e4dFsQPutXfiQPq8TwZu9o5Opa8CUsNnZGTg4YcfxqWXXoq+vj7cdtttmD17NtasWQMAWLlyJX7z
m9/gkUceQUZGBsaNG4dnn31WycRZsWUL2YXrlmqnGyUlwBtvhD+uHa2tQFERXxsdpB9WILery//s
gLFj1Xv6UZZWjtreEa3b40bGLPaO2yKjmvRlrg8K5MZB6UuvOUuWLMGSJUsG/WzlypUD/7/zzjtx
5513yg4jjKisHSA+9g5P9g6g9rxaChZPXxXp61L6YQRyoyi45vy7yGzO0mnvOLN3WNqJeO48KZgi
10et9If9jtwoSd/YO0mEqfR1kL5X2QRAbZ5+2AXXvIKxMkpfxN4R9fRZCpzpVu52Ek8FpT+sSb+l
Bdi/Hzj77GjGz88HmpvZbgJdEMneUXlIOQWLpy9b+hiIhvRTOU9fhrhlPH3e8gVubeh4KgOzbiTe
1+e9b0U2ZhAFhjXpv/UWMH9+dCtrejpQUAAcPBjN+EA8sncsi60MQ5wDuUFKX2Wefpj2jqzSF2lr
WYRIeQKmgHggl2cc5xiJhL9657WPjNLXjD/8AbjoomjnELXFEwd758QJ74NN7Bg7NlkVVBR+WTZA
vJS+l6cfZiBXh73DSt72bT5xSdnkHYN3c5ZR+prx5pvRk35hIXDoUHTji5C+anuHtf5QIiFv8UTl
6YuUVtal9DMzycLJsnjKkj6vxy7TLorsHdrGS72PuNo7cUZTEzmuMCo/n6KwMDp7p6eHEAjvzlrV
9g5P0TnZDVqpEsj18/RZVXpfHyn57FSOiYR4XXuAb3OWiKcvotjpeGFvzgL47R2j9CNCTQ3J2on6
DS4oiE7pt7WRdE3WWvoUUSl9QL4UQyoFcmWVPiVdt7+vDOlTtdrf79/WTXnrUuy0Xdibs4La8G7O
MkpfI+Jg7QDRBnJFMncAPUo/KIhLIRvM1RXI9VLmgPo8fZmNVRQypJ9IiCtv1nNrRdrF0dM3Sj9G
+MMfgIsvjnoW0Xr6In4+oD6Qy2vv6FT6IlYMoF7p+x2XyKv03SBD+rQ9izcvqvS9iNWvpLeKlE2a
XcOaghk0hvH0Y4KGBuLpn3lm1DOJ1t4RJf0o7R0VpO+XvSNyyhXgT/r0RufJOtKt9FkXNy/S103e
bk8X6elT5zPyAAAgAElEQVTBu1lFArl2ZU0raHr9rdxImcfe8VP6NFXVqwx0WBiWpP+HPwAXXhhN
vR0nogzkyij94RrI1UH6iYSa8gkAn9LXZe8A7Fk4buQdZHG42Tt0TJXWi0gbN/vFL/eexz6iCwRv
jE01YkCL6vHGG/GwdgAgLw84ckQu91wUInV3gNQN5Pb1ueeO2yFj7wQtJjz9+h2XKJNjTxEG6bsp
b9qWl4iB4MwfFdk7QW102jtx8POBYUj6lgW8+ipw6aVRz4QgM5Oo7SNHwh9bVOmPG0cIw+9Rmwdh
2TtUjfspKR1KH+AL5tLTmfxq77AcVxkHpe+l2IPq4biNqZrARdrIbs7iSe+MCsOO9P/yF3IDlpVF
PZMkovL1RbN3Egm1Fk/QubV2yJB+kLUD6CV9ngCsc0cqRVoaIQ7RHbG88xElbsBf6fMqdkCcwHkK
rgWNo1PpOxeIqDDsSJ+q/Kh9Mzui8vVFlT6g1uIJy9MPCuICyd2qvE8xQaTPs5j4KXSA3eJxK3hG
oULpB7X3I29eIqZj8rZTHQdwI2ZVKZtG6WvCpk3xsXYoolL6MqSvMm0zLHuHReknEmpTLCl4lL6X
n0/BGsyN2t6R8fRF7R3e7B3ebBw3YvYL5PJszjJKXwM6OoB3341PEJciqg1asqSvyt4Ji/SDNmZR
6CB9nj79NnoB7Eo/KJDLWuI4bE9ftb2jcoetzs1ZRulrQE0NcM45wXXbw0ZUG7REs3eA6Owdmewd
FqUPiBdIUxXIDbJ3VCh9mfLIdA66PH1Re0dV9g5PCmbQGG6k77X5yyh9DXj1VeAb34h6FkNhlH58
7B1ALJjLQvoqNlXx9OUXyJUpmkbbiyp9Fk8/rtk7spuz/DZ/GaWvAXH084HolL5o9g4wfAO5gPjx
hn6kz7OpSqWnL2Pv9Pd7q89Uyt7RvTlLlR1klL5i7N1LSGrOnKhnMhSpqvSHYyAX4Ff6lsWmzlV6
+mHYO5S03TLdZD19kc1ZcdmR63Y9rx3kdr1R+oqxYQNQXR2P0gtORKH0+/oIeYrGN6K0d0SVPk8g
l4f0/UoYU6i0d2QzbwD2lEu/9iJlGFja+tk7vO3CIH2/4Kybeve63ih9xdiwAfjmN6OehTvGjyck
3N4e3pjHjpFxRRfBKAO5MvYOayCXt2SCnzIH1NXMAfgOJpdR+rKkr7KcAm2nWumLePS6ngyM0leI
I0eAnTuBhQujnok7Eonwc/VlMneA6OydMEifV+mzkL7qPH3ZQK5oaWQK3UpfxN4Rzd7h9eh5D1Fh
fTKIQ1llYJiQ/osvAosWBd+YUSI/Hzh8OLzxZPx8gCj9KOwd2ZRNlkCuLtLnsXeCgsKyO3JV2DtB
7XVszlJZUkGkjc7Arym4phAbNgBXXhn1LPyRlxcu6ctk7gDqlL5lxU/px93e4SH9KO2dVNmcpSsw
63W91z4Ao/QVoaODHI142WVRz8QfeXlAY2N448kqfVWkf/IkOTSC9cMuQ/q6Armq7R2VgVxd9k4U
m7PCKrjGu2s2KJDLuhAZpa8Iv/89MH8+kJsb9Uz8MVLtHZ4Km0CSPIMO5XZDlEqfx95R5enrtnfC
3pwlkvXjZyXREta6C665XW+UvkY8+yywbFnUswhG2PZOXJQ+j7UDkGwjkdo4QLSBXF57x68/1t20
Uds7op5+WPZOX19yhyxrG50pnkbpK0BrKzkaMe5+PhCNvSOTvaNK6fOSPiBu8UQdyFVp78jUzWHt
IypPX7W9w2O9BLVRVbbBKH1NeP55UlFThtzCQqrZO1EpfUCc9Fk9/eFk78jU3vEibdo+ioJrKlM2
vZS16h25rJuzjNJXgGeeAW68MepZsCHVsndGjya+OiuReUGU9EXSNlPJ3tEdyI0ye4dlc1YYKZsi
TxQ8O2z95mSUvgbU1QF//jOwdGnUM2FDqmXvJBJqLJ6w7Z1Uyd7Rnaev297p6yOB0vR0/rYiZGxZ
ZEzZYmgibVRtzjJKXxK//CUJ4LJ4uHFATg6xS/weX1VClvSB4Uv6Uds7ccnT97JnaHu/OVBy9CrW
prrgmtd4UZM+z+Yso/Ql0NcH/M//ALffHvVM2JGeTtJKjxwJZzxVpC9bLyiOpB+1vaOyDENUKZs6
2vrZO6oIHNB7iAq93qv2jlH6gnjjDWDKFODss6OeCR/CtHhks3eA1FP6nZ2pU4ZBd8E13Zuz/IqH
iXjztJ1u1R7URkWBNlN7RwMefzy1VD5FmMHcVLZ3RMsrR23vhO3pRxnIlWkrYu+I5PaLpmy6BXJ5
sneM0leM/ftJ2YWbbop6JvwIK22zv5+Q9YQJcv2kmtJPFXtHpacflb0TFA8ISr0My95RlbKpYnOW
UfqCeOABovJlCS0KhGXvtLcT4pRVFdnZ0ZG+zpTNqAO5YeTpq8je8ZuDTI5/nO0dnZuz4qL0YzAF
dhw9Cvzv/wJ/+UvUMxFDWPaOCmsHSC2l39tLvrxIzA4Rpe9H0kB0Bdd01MOn7YMycFTbO0FkzHuY
elTZO35KPzvbvZ8wkVJK/5FHyOlYRUVRz0QMYdk7I5H0aQkGvyMNKURIP+gJQmXtnTB35Mp4+qKB
XJHDV/ziACotIZGCa6lWZTMGU2BDayvw0EPAli1Rz0QcYdk7KjJ3gGhJv7mZrw2rtQPoq6ff3U02
EQUtPHHK3vF6XTo9/VSzd/wCuV7ZO2ZHrgL89Kfk4POKiqhnIo6RaO/wllYGxJU+K+nrCORmZBCy
9yIHZ3+pYO+IKn0d9o5I9o5ue8ey+J4MjNLnQG0t8OijwI4dUc9EDmGRvmzdHQpVSp/Xx9RN+mPG
kOtZVDnARvq03xMngtWcCk/fsvz7SU8nWVx9fe6lEgC92Tui9o7IRitaEsL5t/RS1qo2Z/X2kvfW
bZewUfqSuOsu4O67gWnTop6JHKi9Y1l6x4mT0g8rT5+H9DMyyM3KWhKDh/RZvXhZT5/Wivci9EQi
2OKJytP3U+B+/rzbXBMJ/lo3Ip4+D4mb2juSWL8e+Owz4J/+KeqZyGPcOPLBVVGy2A+qSD/KlE1e
0mfdjUvBY/GwZO8A7MFcFUrfL0efQmaDFQtxh52947fIeJGsKk+fd1ExSl8QtbXAP/wD8PTTbDdd
KiAMiyfVlb5Inj6P0gf4TufitXdY+lNB+kH3BEuuvS5PXyTdU8TeAfSTvl/e/YhU+ps2bUJFRQXK
y8tx//33u17zve99D+Xl5ZgzZw52MBrzbW3AFVcA/+//AeecIzvL+CA/X38Gj8rsnVQpuMZL+tTX
Z4FKeyfIiwfkg7Cs/cgEY3UsGCI7cmm7KJQ+b5mHYaH0+/r6sGrVKmzatAmffvopnnnmGezatWvQ
NS+//DL27t2LPXv24LHHHsN3v/vdwH5bWkid/Koq4ucPJxilH4wwSJ/X3mEhfRZ7hwb/vLx42o8K
pS/j6VPi8oo/hV1wLSiGoIL0eWv2eyl3r0DxsFD627dvR1lZGWbMmIHMzEwsW7YMGzZsGHTNxo0b
sWLFCgDAeeedh9bWVjT6SN333gO+9jVg3jzgwQfZsitSCWGQflyyd+iNz7JL1g5RT59X6Udh77CQ
dWYmIZ/+fu9r/IqtUcjYO2lp/lkuOjJ/olb6vNk4Iv3HQelLrTsHDhxAaWnpwPclJSV49913A6+p
r69Hfn7+oOuWLr0He/YABw4Ad91VhR//uEpmarFFWPaOStJnTW10QkTlA3I7clnBo/SDsm0oWOwd
lqBwIpEkbK+FTEUg1y8Ya2/vRlSim7O8ctuD2vmNx0uyvIuEiL2jS+nX1NSgpqZGqg+pKSQYmcBy
PCO6tSsqugfXXANcey0hm+GKvDzg//5P7xiqSH/UKKL4WEnPibBJPxXsHRalT/sKIn2d9g6QJH23
v6FoPIASnxt16Mje4bVfVJC4ziqbVVVVqKqqGvj+3nvv5e5DivSLi4tRV1c38H1dXR1KSkp8r6mv
r0dxcfGQvh57TGYmqYO8POCtt/SOoYr0gWTaZhSkz/OEIRLIZbF3LIs9ZZPV3mFdQEStGQoZe4e2
582bl2kXdcqmSN592EpfBaQ8/Xnz5mHPnj2ora3FyZMnsX79elRXVw+6prq6GuvWrQMAbNu2DZMm
TRpi7Ywk5OUBTU36+rcs4umryN4B5Hx9UdJPTyc3DmupYkCf0qc3dhrDnaLK3gGCrRnWlE0VSt+r
rUggVyQgC4RD+qry7uNeT19q3cnIyMDDDz+MSy+9FH19fbjtttswe/ZsrFmzBgCwcuVKXHbZZXj5
5ZdRVlaGrKws/PKXv1Qy8VSF7kBuRwe5WVV9uGTSNkVJH0iqfdYnjM5OYPJk9v5ZSZ/V2gH02Dte
YAnkqrJ33OCn2Gkw1K0EhB95i5ycBaglfRV598O+9s6SJUuwZMmSQT9buXLloO8ffvhh2WGGDXST
vqrMHYoolD6QJP2cHLbrddk7rMqctU9VpM8ayNVl7/iRsL2t828imuopqvTdFmzebBxax6i/f/AT
n98iYXbkGgwgJ4cQM2vdF16o9PMBOdIXqbBJwRvM1WXv8Ch9FntHlacftb3DmvnDM2aQvcPbTkS5
u11P6/s4iVwkOygOSt+QfshITwdyc4EjR/T0HyfSV6H0WaGrDINqe4enjk+c7Z0gpe+l2oNsIYDY
Qm7twgjkepGyWxtTe8eAGTotnpFK+iKbs3Qo/bjZO1EqfTdiZVkseAhcpI3oGE4iH7G1dwz4kUqk
L1NpM2ylr2Nzlg57RxXp69yRS9vLevpOiNpCUZO+G5Hzbs4ySn8EQzfpq0rXBKLL3snK4qu0qTOQ
qzp7h6U/WZVO5xNHT19E6avO3uEJ5Hq14d2cZZT+CIZO0h9u2TusiEsgNyxPP+pArg5Pn7bTbe+k
pydP27LDT4m7ETnvomKU/ghGKtk7sqTPe1QiRVxIn6cERZj2jmzBtf5+/8Alba/a3pHx9FVl73id
tuWnxN3GMCdnGTBjpJB+e3t4pM97claU9k5YgVw/e4eSqF+Zi6C8+aAzAXjJm46pW+l7tQny9Fnt
nbhX2TSkHwFGCumPRHsnVfL0gxQ3S3sdnn4YgVyvNqquH9a1dwzEoLP+TpxIP0ylr5P0Ve7IVZmn
L7MjV/bkraD2fp5+1CmbtA3rZive6+Nee8eQfgRIpeyd7Oxoa++wwLJSK3snrIJrfvaObtIX2ZEL
hJO9A/B7+jzXuy0QbmUcokIMpjDyMFKyd2SVPmvKJr0ZeVRUqufpswZyRVMuaXu/Amgim7PipPR5
7R2ZzVlU5cfhJEBD+hEgO5ukjPHkobMiTvaObJ4+q9Ln3ZgF6CnDEGY9fdmCa3FV+iIB4LACuTKb
s+Li5wOG9CNBIqHH17csPZuz4u7p81o7gJ4yDGHW3omDvaM6IAuIxQKiDOSybs4Ket1hwpB+RJg6
Vb3F09VFPEORU668YD8nlxdhefoipD8c7B2dSl22vRd5i3r6YQVy/Tx9VnvHK6ffKP0RDh2+fmsr
30EiLMjMJB9WFivEDsuKN+nHPZCru/ZOGPZOmJ4+79MBrxrn3ZzFukBEAUP6EUEH6be0qPXzKUQs
nhMnkguGCHhIn3djFhBtGQYVtXdU5OnLkL5M4bQ4ZO+oCuSybs4ySt8gZZQ+IJa2KePnA+Eo/e5u
kkbnh1S2d+KaspmKm7N4ngyo0rdbokbpGwx7pR930k8kgokV4Ku9Y+ydJHQUXNOdvaNqc1ZaGvmy
HwZjlL5BSil9EdKX8fMBvjx9EdIH2Cwenh251Mf2e3pQlbIpm6cfV6UfViCXp5YOvZ63QJu9f6P0
DYzSDwBPnj7vqVkUrKTPqvQTiWCLR2XKZtztneFUcI1ncxYwdJEwSt/AKP0A8No7vIFcQG3glSLI
4hkO9o5MWea4KH2dm7Pc+jdK38Ao/QDQG8SrDIAduu0dHtIPWkhU1d6JMk+fqnWRsswyWT+8pM+b
8cND4nROrHn9RukbYOpUsiM3KHuEBzqVPm/2jqzSB9jVvijp61D6QfZOmKWVddk7MmWZZY5L5Ank
WpZaEue1d4zSNxiC0aMJKba2qutTl9IXORxdVukD+klfh9IPsnfCPi5Rh73D2jZKT7+3lxyL6FXV
kncDlYi941T6hvQNlNffUV1sjSIKTx9gJ32RzVlAvO2dINJnmZfsISqipRT8xtbh6bstMCI7f1Vt
zgKGLhKm4JoBAPW+fktLfAK5qpQ+S9pmqtk7sqTf309ywINIW5e9w1qWWdTTd5JxXx+JH3ipdl4C
F2kjUrbBKH2DIVBN+iNV6aeKvUN3abIoPj/Sp+maQbXZqVJ3K5YnU8aBZcHwe0rgrbKpmsC92vgF
W3k2ZwFG6Rt4wCh9f7Dm6seJ9P2eHijRshyk4efHsz4tpKV5H92nm/RVevphkb6I0mddJIzSNwCg
lvT7+gjRTpigpj874q70RTdnBdk7PMrc3qcsWQP+1oyKflhJnzeTxt5WlacvUo45iPR5A7myi4RR
+gYA1JJ+WxshfB1ncIqkbIadvaMjkMtTd4fCz94RIWtRa4ZCVq2rbpuqSp/X3nH2b5S+AQC1pK/L
zwfEUjaHg6fPa+0AwfYOa39paSTl0E1p88zLyyaKq6fvNmaYnr4ue8cofQMAaklfl58PRJu9E+Xm
LFHS97J3eIq3Ad7B3DDtnZGm9FVtznKrvWOUvkHKKP0oPX2dKZs6lL4qe4f2JUv6XuQrS/osO3J5
SyMA0ZO+rs1ZRukbAEgtpd/ezndObphKX1cgV4e9EwXpR2HvyByMHgbpiwRyZTZnGaVvAADIySEB
WJaiYkHQqfQzMsgHluV4QQoVSp8nZVNHIDdqe0dGpVPI2Dteef4sm7NEd/O6PSHoyN5R5ekbpW/A
hbQ0IDcXOHJEvi+dSh/gz+BJBU8/CnuHZ5467R0WtU7z/J0KV7fSjyqQG+TpyywSRukbDECVxaNT
6QN8vr5lEdKPe/ZO2IHcri7+3b1ufYWVvUPbO0lYZnNWWKpdh6fPY++4Vdk0St8AgDrS11Vhk4In
bfPkSaISg4ghCCykb1nxUvp+C8mJE/FR+mGQfliefkYG2ZzIcxC5bKnkoOvd6ukbpW8AQK3S123v
sJK+CmsHYCP97m5yM6Wn8/fPQvo8Hjzgb++oUvphefqAOOmLevoipJ9IuO+ADVoowtycZZS+wQBU
lVfWrfR5SF9FEBdgI31RlQ9Ek6cfNulHae+IKH2RzVmAO8mqLLhmau8YKINR+t5gydOXIf242zsq
sneitHecJElLQvspXpHaO27tdJdhsCz/12Jq7xh4IlU8fZ7snVRR+mHX3lEZyJW1d1iIFBAnfepp
248DpaQadLYur73j1k735ix6MpfXazFK38ATqki/uZmkf+pCFEqfJU9fdGMWkNr2TtTZO0EElkgM
Vfus+f1hkb7OM2+N0jfwhArSt6xw8vTj6umLbMwCgpV+V5faQG4qZu+4BWRZnxKcbVmPaFRB+kFj
8ZZVcGbj8D5JGKVvMAAVpH/sGCET2RRJP/CkbIaZvaMzkNvVxb94+fU5XLJ3WBS7W1uWdlEGcnny
7v2CvoD7ImGUvgEANaR/9Cgp6aATcVX6MmMFKX0R6ygVsnf6+8WJG+CLB/Cob0CtvcOTGtrfT768
Un/dyiqMOKXf3NyMxYsXY9asWbjkkkvQ2trqet2MGTNw5pln4qyzzsJXvvIV4YkOV2RnkywAlmqS
XtDt5wP8nr4K0qcqta/P+xoZ0s/MJDe609ul6Ozkt45U2ju6sncoabMe2yiSTeM2tqinH0b2TlCQ
mXcfwLCsvbN69WosXrwYu3fvxsKFC7F69WrX6xKJBGpqarBjxw5s375deKLDFYmEfK5+3JT+8eNq
jm1MJILVvswCk0gE2zG8pB+GvSObvUMPVmeBjNKP0tPnJeUgJe52fZC9M+yU/saNG7FixQoAwIoV
K/DCCy94Xmvx1OQdgZC1eI4eDUfps6ZsHjum7qzeINLv6JCLH/hZPCJKPxWyd06eVPOkwNuW1dN3
I33VSp83u2Y4KX3haTQ2NiI/Px8AkJ+fj8bGRtfrEokEFi1ahPT0dKxcuRJ33HGH63X33HPPwP+r
qqpQVVUlOrWUgyzpx83eOX4cOOUUNeOykL6MlRRE+ryevursnba2oT+XtXdU2UMsbXk9/fT05MYn
6q+L2jt+C7YqO8gLupR+TU0NampqpPrwJf3Fixfj0KFDQ37+4x//eND3iUQCCQ8z7E9/+hMKCwvR
1NSExYsXo6KiAgsWLBhynZ30RxpUKH3d9s6ECUTBs+DYMbJIqEBQrr4s6fvZMaJKP+7ZO2GSPq/S
B5IEayf9oM9TGCTuVO48gWJVSt8piO+9917uPnyn8frrr3v+Lj8/H4cOHUJBQQEOHjyIvLw81+sK
CwsBAFOnTsVVV12F7du3u5L+SIYKpa9KWXth4kR31emGsO2dLz9iQlBt71CitqyhQcGosneiIn0R
T5+26+lJvlfd3cFPsrpJX2QfwLDbkVtdXY21a9cCANauXYsrr7xyyDWdnZ04/qUn0NHRgddeew1n
nHGG6JDDFqmg9CdOJPV9WKAqkAuEY++oDOSmp5Mvpy8NiGXv6EjZVEH6LAQmq/Tt4+nI3uEJzLp5
9FEofRUQJv0f/vCHeP311zFr1iy8+eab+OEPfwgAaGhowOWXXw4AOHToEBYsWIC5c+fivPPOw9Kl
S3HJJZeomfkwQip4+mPHkg+9WwqhEyrtHZ3ZOwBRkyqVPu3TbSERsXfc3u9Uyd4R8fTdxtRB+rKl
mFkOeOfJ6w8TwmtPTk4ONm/ePOTnRUVFeOmllwAAM2fOxIcffig+uxGCvDzAIw7OhDCydxKJpMUz
dar/tartHb89DLqzd0RP5JI98QpQl73jRtoySl/njlzA3RZiOc9Xp72Tnp7cwJWWFvxa3BYVnTvm
eWB25MYAhYXAwYPi7Zub9ds7ALuvn0r2jupALuCdwRNV7R0d9o4I6bMq/dGjw7F3nGP4vSf0oBaq
3nmVPutrDwOG9GMAWdIPQ+kD7KQfpr2jM2VTtJibSnsnlbN3nIqd1eJwLlRhkT7PGEbpG0ghN5eo
Y69NPX7o6yMkq7OWPgUL6ff0kC/RImhOREX6vb3kS+RGdbN3LGvkZe+IevrO1y1yUhdrCibdN8pL
+kbpG0ghLQ3IzxdT+62txEoROSOWF5MmBWfwUGuHpa4LC6LK06fVO0Veh5u909tL/s48GRzD0d4R
qezJEnh2q93vR7JpaeSL1nXiXVh4lT7rexYGDOnHBEVFYqR/5Eg41g7ApvRVWjtAdIFcUT8fcF9I
eK0dr34AvieGqLN3nOTNQvqiSt/ehrVeD50fL+mzKH1j7xj4QtTXb2oi2T9hgJX0VQVxAULofjV/
ZFM2dZG+U12LnMLlNTdZpS+bvdPdzb7JSpT0eVM2nW1YSN8eMFat9I29YxAIUdI/fDhepK8ycwfw
r/ljWXrtHVHSd7N3eDN3vOZGiYTVJnKziHgWDbeTs1hTRkWVvkggV0Tp29uoVvomkGsQiKIioKGB
v11TU3DevCpEofTHj/eu+dPdTW4umZ2Ofkpf5YlcIvaO29x4CJv24ZyL7JMC61OL02fXae+IKH0n
iRulbxAqUkXpBwVyVXv6EyZ4K30VJ3R5ZQfF1d7hJX23BYinjzFjBpNpb28yZz0IMkqfNwAsovTt
C4VOpW9Zw6T2joFayHj6cVL6Ydo7Kkg/K8s9UCxD+jrtnShI396epwSE0xpibetU+iyBZ5E4gIy9
w6P0ad0dVRltsjCkHxMUForZO3Hz9FXbO34lnWUzdwBv0pfx9N2Uvoi9QwON9uMieZ8YKGnbzzHi
yd5xkr5MCQidgVyn0mcZKyylHyc/HzCkHxuIpmyGqfQnTQo/ZTMVlf6YMUMtIxF7x+04R16ln5Ym
VsuGwvnUwqP0RT19kUCuc6FgGUu30ufJDAoThvRjgqlTgZYW95K8fjh8eOTaOyoOYPcjfdFAblbW
UC9exN4Bhvr6PKRLIbNwOJ9aeBYvN6XP0jYspc8byHU+GbDW049TEBcwpB8bpKcT8nY5qMwXwz1P
n5K+2zHLqpS+2z4AGaXvtqFMxN4BhhK2isPaZTz9MOydsJS+jL3Do/SNvWPgCV6Lp7+fFFubMkXf
nOyIInsnI4PcnG4ZNnG1d9wygkTsHWCo0o+a9GUCuWHuyNVt7/DU3jFK38ATvBk8LS2EYMP6QI0Z
kywc5gXVSh/wTtuMayDXi/RV2DsitpOzjzCVvqinT8m1vz/4VCtgsGq3rOiVvgnkGjCBl/TD9PMB
ElgMKrqm4xQvrw1aupW+jKfvJH2V9o5s6qdM9g5vIFdW6VMyDkp3tKt2WtwuqAihUfoGkYM3bTNM
P58iJ4dYSl5obgYmT1Y7plcwVyXpO2MGqj19VfaOyLycxM2TveNG+mGmbLLO1d6GdVHTuSOXKn3L
MkrfwAe8pRjCVvoAUfHNzd6/b2lRf4qXl72jInuHqkhnfRnVnr6o0nfz9GWVPk8fMvaOqKfPq8Cd
bUQXF5VK31662Sh9A0+UlgL19ezXNzaSOvxhIjfXW+n39xPrR/WBLl72jqr0UDeLR8bTd7N3RJ9K
VNg7Mk8L1EunVkVY9o5dtbMevGJvo2Nx4VH6QDJt0+TpG3hi2jTgiy/Yr29oAIqL9c3HDX6kf+wY
ITaZAmhu8LJ3jh0jGUWycCN91UpfNOisw97hXTjs7cMK5FIyZg2AOwk8aqUPJNM2jb1j4AlK+m45
6W5oaCCWUJjwI30d1g7gXYpBVaZQdrY76YsGct08fVGlr8Pe4V047Bu0wg7ksr5eUaWvy9MHkqRv
7B0DT9BjD4Ny4SniRvo6griAt9Jva1Nn7zg3aB0/Lp4O6qX040L6MkqfJ5Ar4+nTdjxlnHk9fZ3Z
O0BysTRK38AXPBZPHElfl9L3sndUkP748e6kL7rJTKWn77SeROwdZ019EaUvYu846/aIKH1We0dE
6fiGtdYAAA51SURBVMvaOyy7hE+cMErfIAA8pH/gQLxIX5e94xXIVUX6bvaRDOmrtHecpC+q9GWe
FpxKn9XeGTdObFOYfTzWrKewlT7LEwh9HUbpG/hi2jSgri74uq4uQgZhHYpOESd7R6XSd/YvQ/r0
4BF7SeS4kD7NHedRnnbFzmPv2K0py2LPYrG306n0ZTx9lnlRe8cofQNflJayKf2DB4nKD/tghuFo
7ziVvmURu0eU9BMJQgh2iydKe8duN9FFg+dz47R3eJQ+HZc+IaQxMI69HavSp0HT/n7x1FAe0meZ
F33fTMqmgS9YlX4Ufj4QH3unr48Qg+zmLNq/fVHp7CQ3qUzqqTMjSDRlU4XSt/chm/LJs3hRxW5Z
fOM6lT4L6ScSSbtGxN5heV957R27p29I38ATrJ5+lKTf3OyeVqrL3nFT+u3thERZlCNL//ZFRcba
oXAuVKJKPzt7cJBZVOnTPmQ3d/GMn55OFHh3tzjp88yXxhBElD4r6fMEmOliKfKe64Qh/Zhh2jTg
88+Dr4uK9EePJh9+txr0uuwdt5LOKqt5OpW+CtK3L1TULlJl74St9O3teRcvSuA8T2UiSh/gJ31e
pe/cr8Bi73R3G9I3CEBJCamp41e+GIiO9AFvi0eXvZOTQ/q2o7VVzW5cQJ/Sp6Tf3U2sIhG7yEn6
IrEGex+y9hAv6VN/nmexccYCWOdL4yispG9PZWVZTGn/dJdx0N/TKH0DJmRkANOnA/v3+19XXx8d
6XtV2tRl70yePNRSUvlUoUPp2+0dmWqgTtIXmZs9viBrD3V08LWn6ptn3MzMZB19nkJ1dLFgJX2a
WmtZbMRMXwvr0wf19EXPUtAFQ/oxRFkZsHev/zV//Sswc2Y483HCS+nrsnfGjCH+sD0bRuVYOpS+
3d6JmvRllb5z0eC1d3iVPs1+4iFYgN/eoYvEyZNsT2L0tbCSuF3pi1RY1QVD+jEEK+mfemo483Fi
yhTgyJHBP7MsfaQPkH7tJZ1VWkm6lD7tU3Z3LyXc3l5CaDKefNievojSp+06O/kWKUrKrHOkqays
Y9jnxELixtM3YEYQ6R8/Tj7YYZdVpigoGHqAe3s7yaRRkULpBqevr1rp2w98VxEktts7bW3i5abt
hEszlnj3ZkTp6YsofdpOROnzkD7vwsI7J+PpGzCjrAzYs8f799TaCXtjFoUb6euu7e9U+irjBzoW
FLu9IxN0thOuaBE4uycvag/JePqypM+bskkXR9a58Sp9Xk/fkL5BIIKU/r590fn5gPtZvocOkcVA
F2gwl0Kl0ncGilVYR3Z7R0bp05O9urvFbSL7wtHWxr8AyXr6IvYOfUIQCeTqUvr2QC6vp29I38AX
06eTYmrOI/woovTzgWhIX6enP3bs4ECxigXFbu/IppdOnEj6EiV9Slb9/WLWFV006NF/PEFJUaXP
mykDJBcYXaRPPfqODmPvGCjGqFGkBs++fe6/j1rpR2HvTJlCDoKnUJ0eal9UVPStSukDpG1Lizjp
p6Uli66Jkn57e9La4bEVZZR+Vxf/jtzOTnZ7Z/RoknN//DjbGIkEeR9bWvgCuSZl04AJZ54JfPSR
++9GotLPzycLC0VTk9oKo3bSV/EUQYkakFf6kyfLkT6QtGhE7B2q9EVqHcl4+p2dfPPltXcSCdLm
6FG+DCFW0rd7+iZl0yAQc+cCH37o/ruolX5ubpIEKA4e1Ev6BQWDSf/QIbL4qIJT6cuS/tSpyb0M
skpfBenTDCURpU8XDJH9BtnZZN6i9g7Pgmm3d1gD3rykP24c+XwYT99AObxIv6uL+P1Rkn5a2tAa
QZ9/TmIRumC3lHp7yY2al6euf1pIDiAEK2vv2PcyxEHp0w11MkqfN3MHSGZG8ZI+tZR4Fky7vcO6
OFHS5ykR0dxsPH0DDfAi/U8/BWbNiv5QhhkzBpN+bW14pN/URMhEpvSxE/bSEiqUPiV9yyKkr8LT
l5kXJX1RpX/8OBmf11KjCxbvecZ0sdBp79A2vPYOK+nTMg+G9A2YUFpKgkDOgOlHHwFnnBHNnOyY
MYMQPUCyQurqwiP9gwfVWjsAIbOmJnKD9vSIH4pOQQOenZ2EvGTtndZWUohP9OlGRunn5CTHnzKF
v21zM1kAp07la9fQQD5bIimbOu2dgwfZ3kP69GhI34AJiQRR+zt3Dv75hx+SIG/UsJP+oUPkJtD5
wZ48ObkxRkfQuLSUFLGrryeVTlVsfKMZR7IVUalalsmQok8yIko/I4P8fXfv5id9OvemJr62ubkk
djVpEvvfgu634LV3Dhzgixt8/jnbApabSxbKnh7208bCgCH9GGPePODddwf/bOtWYP78aOZjx6mn
EhIASDbRjBl6x0skknEEHUq/tJQ8rdTVEdJXgSlTyE1/6JAa0pdV+s3NYkofION+8gmfWgcGK31e
0v/rX/nmWlBADiBKS2O3P7OyyEZI1s/TuHF8pN/QwJ/mqhuG9GOGmpqagf9fdBHw5pvJ33V0EE//
nHPCn5cT9pTSjz/WYznZ3wuAxDJ27yZfZWVqx6LHVNbVkQVABaZMIX+vSZPkjsvLzQV27arB4cPi
Sj83l5DbqFFi6YOU9EWU/pEjxB7iiUf4kb7zc0FRUECeDngyjAoKyBMr65NjQQFZOFlIf+JEYk+p
EhGqIEz6zz33HE477TSkp6fjgw8+8Lxu06ZNqKioQHl5Oe6//37R4UYM7B/oBQuA999PbvJ56y1C
+HHwB8vLieJubyeW05w56sdwI/3PPiNEWlmpdix6IL1K0i8tBf70J/mbvqwM2L27Bo2Nckr/vffI
E5qI6szLI++7iKd/+DDJOuIJvOfkEC/cLRbiRfp5eaQNz1MnvZaV9E85hfzLQvppaeR16Ix1iUCY
9M844ww8//zzuOCCCzyv6evrw6pVq7Bp0yZ8+umneOaZZ7Br1y7RIUccsrOJ2n/+efL9734HXHVV
tHOiyMgAZs8GduwgpD93rv4xqdLftUs96efkkBIDn3yijvTPPBN45RWguFiun/Jy4se3tIhvSJs6
lahg0U19eXmkDAOvvUMFCm9+P32dPPbOqFGk3ezZ7G0oiesgfYDMZ9iQfkVFBWbNmuV7zfbt21FW
VoYZM2YgMzMTy5Ytw4YNG0SHHJH49reBhx4iqvr554Hrr496RklcdhnwX/9FKoKGYTnNmwe89hp5
L1TvU0gkgPPPB557DjjvPDV9nnkmCRLKWlFjx5LUz6ws8YPg6WsSXTSoNSMam6iv57uezvPCC/na
FRToJX36uWMl/SlT4kf6sCRRVVVlvf/++66/e+6556zbb7994PunnnrKWrVq1ZDrAJgv82W+zJf5
Evjiha/LtnjxYhxyJooDuO+++3DFFVf4NQUAJBjNQ8t++KmBgYGBgTb4kv7rr78u1XlxcTHq6uoG
vq+rq0NJ3ELZBgYGBiMISlI2vZT6vHnzsGfPHtTW1uLkyZNYv349qqurVQxpYGBgYCAAYdJ//vnn
UVpaim3btuHyyy/HkiVLAAANDQ24/PLLAQAZGRl4+OGHcemll6KyshI33HADZvNEWQwMDAwM1II7
CqAYr7zyivU3f/M3VllZmbV69eqopxMZvvjiC6uqqsqqrKy0TjvtNOuhhx6KekqRore315o7d661
dOnSqKcSOVpaWqxrrrnGqqiosGbPnm298847UU8pMtx3331WZWWldfrpp1s33nijdeLEiainFBpu
ueUWKy8vzzr99NMHfnb06FFr0aJFVnl5ubV48WKrpaUlsJ9Id+SaPP4kMjMz8cADD+CTTz7Btm3b
8Itf/GLEvhcA8NBDD6GyspI5GWA446677sJll12GXbt24aOPPhqxT8u1tbV4/PHH8cEHH+Djjz9G
X18fnn322ainFRpuueUWbNq0adDPVq9ejcWLF2P37t1YuHAhVq9eHdhPpKRv8viTKCgowNwvdzhl
Z2dj9uzZaGhoiHhW0aC+vh4vv/wybr/99hGf2dXW1oYtW7bg1ltvBUAs04kyxflTGBMmTEBmZiY6
OzvR29uLzs5OFMvufEshLFiwAJMdBz1s3LgRK1asAACsWLECL7zwQmA/kZL+gQMHUGrb/lhSUoID
Bw5EOKN4oLa2Fjt27MB5qnYJpRjuvvtu/PSnP0Wa6E6kYYT9+/dj6tSpuOWWW3D22WfjjjvuQKf9
yLIRhJycHPzgBz/AtGnTUFRUhEmTJmHRokVRTytSNDY2Iv/Lgkz5+flotB8v54FI7yrz6D4U7e3t
uPbaa/HQQw8hW7aoewrixRdfRF5eHs4666wRr/IBoLe3Fx988AH+/u//Hh988AGysrKYHuGHI/bt
24cHH3wQtbW1aGhoQHt7O55++umopxUbJBIJJk6NlPRNHv9g9PT04JprrsG3vvUtXHnllVFPJxJs
3boVGzduxCmnnIIbb7wRb775Jm6++eaopxUZSkpKUFJSgnPPPRcAcO211/oWOBzO+POf/4z58+cj
NzcXGRkZuPrqq7F169aopxUp8vPzBzbQHjx4EHkMFfkiJX2Tx5+EZVm47bbbUFlZie9///tRTycy
3Hfffairq8P+/fvx7LPP4uKLL8a6deuinlZkKCgoQGlpKXZ/eXjB5s2bcdppp0U8q2hQUVGBbdu2
oaurC5ZlYfPmzahUXXkvxVBdXY21a9cCANauXcsmFnWlF7Hi5ZdftmbNmmWdeuqp1n333Rf1dCLD
li1brEQiYc2ZM8eaO3euNXfuXOuVV16JelqRoqamxrriiiuinkbk+PDDD6158+ZZZ555pnXVVVdZ
ra2tUU8pMtx///0DKZs333yzdfLkyainFBqWLVtmFRYWWpmZmVZJSYn1xBNPWEePHrUWLlzIlbKZ
sCxjnBoYGBiMFJj0CAMDA4MRBEP6BgYGBiMIhvQNDAwMRhAM6RsYGBiMIBjSNzAwMBhBMKRvYGBg
MILw/wFa1cBzw0Gh4AAAAABJRU5ErkJggg==
"></img>
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>You can paste blocks of input with prompt markers, such as those from
<a href="http://docs.python.org/tutorial/interpreter.html#interactive-mode">the official Python tutorial</a></p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[6]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="o">&gt;&gt;&gt;</span> <span class="n">the_world_is_flat</span> <span class="o">=</span> <span class="mi">1</span>
<span class="o">&gt;&gt;&gt;</span> <span class="k">if</span> <span class="n">the_world_is_flat</span><span class="p">:</span>
<span class="o">...</span> <span class="k">print</span> <span class="s">&quot;Be careful not to fall off!&quot;</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stdout">
<pre>Be careful not to fall off!
</pre>
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Errors are shown in informative ways:</p>
</div>
<div class="fragment" class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[7]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="o">%</span><span class="k">run</span> <span class="n">non_existent_file</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stderr">
<pre>ERROR: File &#96;u&apos;non_existent_file.py&apos;&#96; not found.
</pre>
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[8]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">x</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">y</span> <span class="o">=</span> <span class="mi">4</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">y</span><span class="o">/</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_pyerr">
<pre><span class="ansired">---------------------------------------------------------------------------</span>
<span class="ansired">ZeroDivisionError</span> Traceback (most recent call last)
<span class="ansigreen">&lt;ipython-input-8-dc39888fd1d2&gt;</span> in <span class="ansicyan">&lt;module&gt;</span><span class="ansiblue">()</span>
<span class="ansigreen"> 1</span> x <span class="ansiyellow">=</span> <span class="ansicyan">1</span><span class="ansiyellow"></span>
<span class="ansigreen"> 2</span> y <span class="ansiyellow">=</span> <span class="ansicyan">4</span><span class="ansiyellow"></span>
<span class="ansigreen">----&gt; 3</span><span class="ansiyellow"> </span>z <span class="ansiyellow">=</span> y<span class="ansiyellow">/</span><span class="ansiyellow">(</span><span class="ansicyan">1</span><span class="ansiyellow">-</span>x<span class="ansiyellow">)</span><span class="ansiyellow"></span>
<span class="ansired">ZeroDivisionError</span>: integer division or modulo by zero</pre>
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>When IPython needs to display additional information (such as providing details on an object via <code>x?</code>
it will automatically invoke a pager at the bottom of the screen:</p>
</div>
<div class="fragment" class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[9]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">magic</span>
</pre></div>
</div>
</div>
</div>
</section>
</section>
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h2>Non-blocking output of kernel</h2>
<p>If you execute the next cell, you will see the output arriving as it is generated, not all at the end.</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[10]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">time</span><span class="o">,</span> <span class="nn">sys</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">8</span><span class="p">):</span>
<span class="k">print</span> <span class="n">i</span><span class="p">,</span>
<span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">0.5</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stdout">
<pre>0 1 2 3 4 5 6 7
</pre>
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<h2>Clean crash and restart</h2>
<p>We call the low-level system libc.time routine with the wrong argument via
ctypes to segfault the Python interpreter:</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[*]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">from</span> <span class="nn">ctypes</span> <span class="kn">import</span> <span class="n">CDLL</span>
<span class="c"># This will crash a Linux or Mac system; equivalent calls can be made on Windows</span>
<span class="n">dll</span> <span class="o">=</span> <span class="s">&#39;dylib&#39;</span> <span class="k">if</span> <span class="n">sys</span><span class="o">.</span><span class="n">platform</span> <span class="o">==</span> <span class="s">&#39;darwin&#39;</span> <span class="k">else</span> <span class="s">&#39;.so.6&#39;</span>
<span class="n">libc</span> <span class="o">=</span> <span class="n">CDLL</span><span class="p">(</span><span class="s">&quot;libc.</span><span class="si">%s</span><span class="s">&quot;</span> <span class="o">%</span> <span class="n">dll</span><span class="p">)</span>
<span class="n">libc</span><span class="o">.</span><span class="n">time</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="c"># BOOM!!</span>
</pre></div>
</div>
</div>
</div>
</section>
</section>
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h2>Markdown cells can contain formatted text and code</h2>
<p>You can <em>italicize</em>, <strong>boldface</strong></p>
<ul>
<li>build</li>
<li>lists</li>
</ul>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>and embed code meant for illustration instead of execution in Python:</p>
<pre><code>def f(x):
"""a docstring"""
return x**2
</code></pre>
<p>or other languages:</p>
<pre><code>if (i=0; i&lt;n; i++) {
printf("hello %d\n", i);
x += 4;
}
</code></pre>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Courtesy of MathJax, you can include mathematical expressions both inline:
$e^{i\pi} + 1 = 0$ and displayed:</p>
<p>$$e^x=\sum_{i=0}^\infty \frac{1}{i!}x^i$$</p>
</div>
</section>
</section>
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h2>Rich displays: include anyting a browser can show</h2>
<p>Note that we have an actual protocol for this, see the <code>display_protocol</code> notebook for further details.</p>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<h3>Images</h3>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>An image can also be displayed from raw data or a url</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[12]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">Image</span><span class="p">(</span><span class="n">url</span><span class="o">=</span><span class="s">&#39;http://python.org/images/python-logo.gif&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[12]:</div>
<div class="output_subarea output_pyout output_html rendered_html">
<img src="http://python.org/images/python-logo.gif"/>
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>SVG images are also supported out of the box (since modern browsers do a good job of rendering them):</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[13]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">SVG</span>
<span class="n">SVG</span><span class="p">(</span><span class="n">filename</span><span class="o">=</span><span class="s">&#39;python-logo.svg&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[13]:</div>
<div class="output_subarea output_pyout">
<svg height="115.02pt" id="svg2" inkscape:version="0.43" sodipodi:docbase="/home/sdeibel" sodipodi:docname="logo-python-generic.svg" sodipodi:version="0.32" version="1.0" width="388.84pt" xmlns="http://www.w3.org/2000/svg" xmlns:cc="http://web.resource.org/cc/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:sodipodi="http://inkscape.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<metadata id="metadata2193">
<rdf:RDF>
<cc:Work rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
</cc:Work>
</rdf:RDF>
</metadata>
<sodipodi:namedview bordercolor="#666666" borderopacity="1.0" id="base" inkscape:current-layer="svg2" inkscape:cx="243.02499" inkscape:cy="71.887497" inkscape:pageopacity="0.0" inkscape:pageshadow="2" inkscape:window-height="543" inkscape:window-width="791" inkscape:window-x="0" inkscape:window-y="0" inkscape:zoom="1.4340089" pagecolor="#ffffff"/>
<defs id="defs4">
<linearGradient id="linearGradient2795">
<stop id="stop2797" offset="0" style="stop-color:#b8b8b8;stop-opacity:0.49803922"/>
<stop id="stop2799" offset="1" style="stop-color:#7f7f7f;stop-opacity:0"/>
</linearGradient>
<linearGradient id="linearGradient2787">
<stop id="stop2789" offset="0" style="stop-color:#7f7f7f;stop-opacity:0.5"/>
<stop id="stop2791" offset="1" style="stop-color:#7f7f7f;stop-opacity:0"/>
</linearGradient>
<linearGradient id="linearGradient3676">
<stop id="stop3678" offset="0" style="stop-color:#b2b2b2;stop-opacity:0.5"/>
<stop id="stop3680" offset="1" style="stop-color:#b3b3b3;stop-opacity:0"/>
</linearGradient>
<linearGradient id="linearGradient3236">
<stop id="stop3244" offset="0" style="stop-color:#f4f4f4;stop-opacity:1"/>
<stop id="stop3240" offset="1" style="stop-color:#ffffff;stop-opacity:1"/>
</linearGradient>
<linearGradient id="linearGradient4671">
<stop id="stop4673" offset="0" style="stop-color:#ffd43b;stop-opacity:1"/>
<stop id="stop4675" offset="1" style="stop-color:#ffe873;stop-opacity:1"/>
</linearGradient>
<linearGradient id="linearGradient4689">
<stop id="stop4691" offset="0" style="stop-color:#5a9fd4;stop-opacity:1"/>
<stop id="stop4693" offset="1" style="stop-color:#306998;stop-opacity:1"/>
</linearGradient>
<linearGradient gradientTransform="translate(100.2702,99.61116)" gradientUnits="userSpaceOnUse" id="linearGradient2987" x1="224.23996" x2="-65.308502" xlink:href="#linearGradient4671" y1="144.75717" y2="144.75717"/>
<linearGradient gradientTransform="translate(100.2702,99.61116)" gradientUnits="userSpaceOnUse" id="linearGradient2990" x1="172.94208" x2="26.670298" xlink:href="#linearGradient4689" y1="77.475983" y2="76.313133"/>
<linearGradient gradientTransform="translate(100.2702,99.61116)" gradientUnits="userSpaceOnUse" id="linearGradient2587" x1="172.94208" x2="26.670298" xlink:href="#linearGradient4689" y1="77.475983" y2="76.313133"/>
<linearGradient gradientTransform="translate(100.2702,99.61116)" gradientUnits="userSpaceOnUse" id="linearGradient2589" x1="224.23996" x2="-65.308502" xlink:href="#linearGradient4671" y1="144.75717" y2="144.75717"/>
<linearGradient gradientTransform="translate(100.2702,99.61116)" gradientUnits="userSpaceOnUse" id="linearGradient2248" x1="172.94208" x2="26.670298" xlink:href="#linearGradient4689" y1="77.475983" y2="76.313133"/>
<linearGradient gradientTransform="translate(100.2702,99.61116)" gradientUnits="userSpaceOnUse" id="linearGradient2250" x1="224.23996" x2="-65.308502" xlink:href="#linearGradient4671" y1="144.75717" y2="144.75717"/>
<linearGradient gradientTransform="matrix(0.562541,0,0,0.567972,-11.5974,-7.60954)" gradientUnits="userSpaceOnUse" id="linearGradient2255" x1="224.23996" x2="-65.308502" xlink:href="#linearGradient4671" y1="144.75717" y2="144.75717"/>
<linearGradient gradientTransform="matrix(0.562541,0,0,0.567972,-11.5974,-7.60954)" gradientUnits="userSpaceOnUse" id="linearGradient2258" x1="172.94208" x2="26.670298" xlink:href="#linearGradient4689" y1="76.176224" y2="76.313133"/>
<radialGradient cx="61.518883" cy="132.28575" fx="61.518883" fy="132.28575" gradientTransform="matrix(1,0,0,0.177966,0,108.7434)" gradientUnits="userSpaceOnUse" id="radialGradient2801" r="29.036913" xlink:href="#linearGradient2795"/>
<linearGradient gradientTransform="matrix(0.562541,0,0,0.567972,-9.399749,-5.305317)" gradientUnits="userSpaceOnUse" id="linearGradient1475" x1="150.96111" x2="112.03144" xlink:href="#linearGradient4671" y1="192.35176" y2="137.27299"/>
<linearGradient gradientTransform="matrix(0.562541,0,0,0.567972,-9.399749,-5.305317)" gradientUnits="userSpaceOnUse" id="linearGradient1478" x1="26.648937" x2="135.66525" xlink:href="#linearGradient4689" y1="20.603781" y2="114.39767"/>
<radialGradient cx="61.518883" cy="132.28575" fx="61.518883" fy="132.28575" gradientTransform="matrix(2.382716e-8,-0.296405,1.43676,4.683673e-7,-128.544,150.5202)" gradientUnits="userSpaceOnUse" id="radialGradient1480" r="29.036913" xlink:href="#linearGradient2795"/>
</defs>
<g id="g2303">
<path d="M 184.61344,61.929363 C 184.61344,47.367213 180.46118,39.891193 172.15666,39.481813 C 168.85239,39.325863 165.62611,39.852203 162.48754,41.070593 C 159.98254,41.967323 158.2963,42.854313 157.40931,43.751043 L 157.40931,78.509163 C 162.72147,81.842673 167.43907,83.392453 171.55234,83.148783 C 180.25649,82.573703 184.61344,75.507063 184.61344,61.929363 z M 194.85763,62.533683 C 194.85763,69.931723 193.12265,76.072393 189.63319,80.955683 C 185.7441,86.482283 180.35396,89.328433 173.46277,89.484393 C 168.26757,89.650093 162.91642,88.022323 157.40931,84.610843 L 157.40931,116.20116 L 148.50047,113.02361 L 148.50047,42.903043 C 149.96253,41.109583 151.84372,39.569543 154.12454,38.263433 C 159.42696,35.173603 165.86978,33.584823 173.45302,33.506853 L 173.57973,33.633563 C 180.50991,33.545833 185.85132,36.391993 189.60395,42.162263 C 193.10315,47.454933 194.85763,54.238913 194.85763,62.533683 z " id="path46" style="fill:#646464;fill-opacity:1"/>
<path d="M 249.30487,83.265743 C 249.30487,93.188283 248.31067,100.05998 246.32227,103.88084 C 244.32411,107.7017 240.52275,110.75254 234.90842,113.02361 C 230.35653,114.81707 225.43425,115.79178 220.15133,115.95748 L 218.67952,110.34316 C 224.05016,109.61213 227.83204,108.88109 230.02513,108.15006 C 234.34309,106.688 237.30621,104.44617 238.93397,101.44406 C 240.24008,98.997543 240.88339,94.328693 240.88339,87.418003 L 240.88339,85.098203 C 234.79146,87.866373 228.40711,89.240713 221.73036,89.240713 C 217.34417,89.240713 213.47457,87.866373 210.14107,85.098203 C 206.39818,82.086343 204.52674,78.265483 204.52674,73.635623 L 204.52674,36.557693 L 213.43558,33.506853 L 213.43558,70.828453 C 213.43558,74.815013 214.7222,77.885353 217.29543,80.039463 C 219.86866,82.193563 223.20217,83.226753 227.2862,83.148783 C 231.37023,83.061053 235.74667,81.482023 240.39603,78.392203 L 240.39603,34.851953 L 249.30487,34.851953 L 249.30487,83.265743 z " id="path48" style="fill:#646464;fill-opacity:1"/>
<path d="M 284.08249,88.997033 C 283.02006,89.084753 282.04535,89.123743 281.14862,89.123743 C 276.10937,89.123743 272.18129,87.924853 269.37413,85.517323 C 266.57671,83.109793 265.17314,79.786033 265.17314,75.546053 L 265.17314,40.456523 L 259.07146,40.456523 L 259.07146,34.851953 L 265.17314,34.851953 L 265.17314,19.968143 L 274.07223,16.800333 L 274.07223,34.851953 L 284.08249,34.851953 L 284.08249,40.456523 L 274.07223,40.456523 L 274.07223,75.302373 C 274.07223,78.645623 274.96896,81.014163 276.76243,82.398253 C 278.30247,83.538663 280.74899,84.191723 284.08249,84.357423 L 284.08249,88.997033 z " id="path50" style="fill:#646464;fill-opacity:1"/>
<path d="M 338.02288,88.266003 L 329.11404,88.266003 L 329.11404,53.878273 C 329.11404,50.379063 328.29528,47.367213 326.66753,44.852463 C 324.78634,42.006313 322.17411,40.583233 318.82112,40.583233 C 314.73708,40.583233 309.6296,42.737343 303.4987,47.045563 L 303.4987,88.266003 L 294.58985,88.266003 L 294.58985,6.0687929 L 303.4987,3.2616329 L 303.4987,40.700203 C 309.191,36.557693 315.40963,34.481563 322.16436,34.481563 C 326.88196,34.481563 330.70282,36.070333 333.62694,39.238143 C 336.56082,42.405943 338.02288,46.353513 338.02288,51.071103 L 338.02288,88.266003 L 338.02288,88.266003 z " id="path52" style="fill:#646464;fill-opacity:1"/>
<path d="M 385.37424,60.525783 C 385.37424,54.930953 384.31182,50.310833 382.19669,46.655673 C 379.68195,42.201253 375.77337,39.852203 370.49044,39.608523 C 360.72386,40.173863 355.85032,47.172273 355.85032,60.584263 C 355.85032,66.734683 356.86401,71.871393 358.91089,75.994413 C 361.52312,81.248093 365.44145,83.840823 370.66589,83.753103 C 380.47146,83.675123 385.37424,75.935933 385.37424,60.525783 z M 395.13109,60.584263 C 395.13109,68.547643 393.09395,75.175663 389.02941,80.468333 C 384.5555,86.394563 378.37584,89.367423 370.49044,89.367423 C 362.67328,89.367423 356.58135,86.394563 352.18541,80.468333 C 348.19885,75.175663 346.21044,68.547643 346.21044,60.584263 C 346.21044,53.098503 348.36455,46.801883 352.67276,41.674913 C 357.22466,36.236033 363.20937,33.506853 370.6074,33.506853 C 378.00545,33.506853 384.02914,36.236033 388.66877,41.674913 C 392.97697,46.801883 395.13109,53.098503 395.13109,60.584263 z " id="path54" style="fill:#646464;fill-opacity:1"/>
<path d="M 446.20583,88.266003 L 437.29699,88.266003 L 437.29699,51.928853 C 437.29699,47.942293 436.0981,44.832973 433.70032,42.591133 C 431.30253,40.359053 428.10549,39.277123 424.11893,39.364853 C 419.8887,39.442833 415.86314,40.826913 412.04229,43.507363 L 412.04229,88.266003 L 403.13345,88.266003 L 403.13345,42.405943 C 408.26042,38.672813 412.97801,36.236033 417.28621,35.095623 C 421.35076,34.033193 424.93769,33.506853 428.02752,33.506853 C 430.14264,33.506853 432.13104,33.711543 434.00248,34.120913 C 437.50169,34.929923 440.34783,36.430973 442.54093,38.633823 C 444.98744,41.070593 446.20583,43.994723 446.20583,47.415943 L 446.20583,88.266003 z " id="path56" style="fill:#646464;fill-opacity:1"/>
<path d="M 60.510156,6.3979729 C 55.926503,6.4192712 51.549217,6.8101906 47.697656,7.4917229 C 36.35144,9.4962267 34.291407,13.691825 34.291406,21.429223 L 34.291406,31.647973 L 61.103906,31.647973 L 61.103906,35.054223 L 34.291406,35.054223 L 24.228906,35.054223 C 16.436447,35.054223 9.6131468,39.73794 7.4789058,48.647973 C 5.0170858,58.860939 4.9078907,65.233996 7.4789058,75.897973 C 9.3848341,83.835825 13.936449,89.491721 21.728906,89.491723 L 30.947656,89.491723 L 30.947656,77.241723 C 30.947656,68.391821 38.6048,60.585475 47.697656,60.585473 L 74.478906,60.585473 C 81.933857,60.585473 87.885159,54.447309 87.885156,46.960473 L 87.885156,21.429223 C 87.885156,14.162884 81.755176,8.7044455 74.478906,7.4917229 C 69.872919,6.7249976 65.093809,6.3766746 60.510156,6.3979729 z M 46.010156,14.616723 C 48.779703,14.616723 51.041406,16.915369 51.041406,19.741723 C 51.041404,22.558059 48.779703,24.835473 46.010156,24.835473 C 43.23068,24.835472 40.978906,22.558058 40.978906,19.741723 C 40.978905,16.91537 43.23068,14.616723 46.010156,14.616723 z " id="path1948" style="fill:url(#linearGradient1478);fill-opacity:1"/>
<path d="M 91.228906,35.054223 L 91.228906,46.960473 C 91.228906,56.191228 83.403011,63.960472 74.478906,63.960473 L 47.697656,63.960473 C 40.361823,63.960473 34.291407,70.238956 34.291406,77.585473 L 34.291406,103.11672 C 34.291406,110.38306 40.609994,114.65704 47.697656,116.74172 C 56.184987,119.23733 64.323893,119.68835 74.478906,116.74172 C 81.229061,114.78733 87.885159,110.85411 87.885156,103.11672 L 87.885156,92.897973 L 61.103906,92.897973 L 61.103906,89.491723 L 87.885156,89.491723 L 101.29141,89.491723 C 109.08387,89.491723 111.98766,84.056315 114.69765,75.897973 C 117.49698,67.499087 117.37787,59.422197 114.69765,48.647973 C 112.77187,40.890532 109.09378,35.054223 101.29141,35.054223 L 91.228906,35.054223 z M 76.166406,99.710473 C 78.945884,99.710476 81.197656,101.98789 81.197656,104.80422 C 81.197654,107.63057 78.945881,109.92922 76.166406,109.92922 C 73.396856,109.92922 71.135156,107.63057 71.135156,104.80422 C 71.135158,101.98789 73.396853,99.710473 76.166406,99.710473 z " id="path1950" style="fill:url(#linearGradient1475);fill-opacity:1"/>
<path d="M 463.5544,26.909383 L 465.11635,26.909383 L 465.11635,17.113143 L 468.81648,17.113143 L 468.81648,15.945483 L 459.85427,15.945483 L 459.85427,17.113143 L 463.5544,17.113143 L 463.5544,26.909383 M 470.20142,26.909383 L 471.53589,26.909383 L 471.53589,17.962353 L 474.4323,26.908259 L 475.91799,26.908259 L 478.93615,17.992683 L 478.93615,26.909383 L 480.39194,26.909383 L 480.39194,15.945483 L 478.46605,15.945483 L 475.16774,25.33834 L 472.35477,15.945483 L 470.20142,15.945483 L 470.20142,26.909383" id="text3004" style="font-size:15.16445827px;font-style:normal;font-weight:normal;line-height:125%;fill:#646464;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"/>
<path d="M 110.46717 132.28575 A 48.948284 8.6066771 0 1 1 12.570599,132.28575 A 48.948284 8.6066771 0 1 1 110.46717 132.28575 z" id="path1894" style="opacity:0.44382019;fill:url(#radialGradient1480);fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:20;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1" transform="matrix(0.73406,0,0,0.809524,16.24958,27.00935)"/>
</g>
</svg>
</div>
</div>
</div>
</div>
</div>
</section>
</section>
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h4>Embedded vs Non-embedded Images</h4>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>As of IPython 0.13, images are embedded by default for compatibility with QtConsole, and the ability to still be displayed offline.</p>
<p>Let's look at the differences:</p>
</div>
</section><section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[14]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="c"># by default Image data are embedded</span>
<span class="n">Embed</span> <span class="o">=</span> <span class="n">Image</span><span class="p">(</span> <span class="s">&#39;http://scienceview.berkeley.edu/view/images/newview.jpg&#39;</span><span class="p">)</span>
<span class="c"># if kwarg `url` is given, the embedding is assumed to be false</span>
<span class="n">SoftLinked</span> <span class="o">=</span> <span class="n">Image</span><span class="p">(</span><span class="n">url</span><span class="o">=</span><span class="s">&#39;http://scienceview.berkeley.edu/view/images/newview.jpg&#39;</span><span class="p">)</span>
<span class="c"># In each case, embed can be specified explicitly with the `embed` kwarg</span>
<span class="c"># ForceEmbed = Image(url=&#39;http://scienceview.berkeley.edu/view/images/newview.jpg&#39;, embed=True)</span>
</pre></div>
</div>
</div>
</div>
</section><section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[15]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">Embed</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[15]:</div>
<div class="output_subarea output_pyout">
<img src="
aWYAAElJKgAIAAAACgAOAQIAIAAAAIYAAAAPAQIABgAAAKYAAAAQAQIAFAAAAKwAAAASAQMAAQAA
AAEAAAAaAQUAAQAAAMwAAAAbAQUAAQAAANQAAAAoAQMAAQAAAAIAAAAyAQIAFAAAANwAAAATAgMA
AQAAAAIAAABphwQAAQAAAPAAAADuDAAAICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIABD
YW5vbgBDYW5vbiBQb3dlclNob3QgRzEwAAAAAAAAAAAAAAAAALQAAAABAAAAtAAAAAEAAAAyMDEy
OjEyOjE4IDA4OjAxOjQ0ACAAmoIFAAEAAAB2AgAAnYIFAAEAAAB+AgAAJ4gDAAEAAACQAQAAAJAH
AAQAAAAwMjIxA5ACABQAAACGAgAABJACABQAAACaAgAAAZEHAAQAAAABAgMAApEFAAEAAACuAgAA
AZIKAAEAAAC2AgAAApIFAAEAAAC+AgAABJIKAAEAAADGAgAABZIFAAEAAADOAgAAB5IDAAEAAAAF
AAAACZIDAAEAAAAQAAAACpIFAAEAAADWAgAAfJIHALoIAADeAgAAhpIHAAgBAACYCwAAAKAHAAQA
AAAwMTAwAaADAAEAAAABAAAAAqADAAEAAAAgCgAAA6ADAAEAAACYBwAABaAEAAEAAACgDAAADqIF
AAEAAADWDAAAD6IFAAEAAADeDAAAEKIDAAEAAAACAAAAF6IDAAEAAAACAAAAAKMHAAEAAAADAAAA
AaQDAAEAAAAAAAAAAqQDAAEAAAAAAAAAA6QDAAEAAAAAAAAABKQFAAEAAADmDAAABqQDAAEAAAAA
AAAAAAAAAAoAAAAKAAAAIAAAAAoAAAAyMDEyOjEyOjE4IDA4OjAxOjQ0ADIwMTI6MTI6MTggMDg6
MDE6NDQABQAAAAEAAAAAAAAAIAAAAGsAAAAgAAAAAAAAAAMAAABrAAAAIAAAADgmAADoAwAAGQAB
AAMAMAAAABwEAAACAAMABAAAAHwEAAADAAMABAAAAIQEAAAEAAMAIgAAAIwEAAAAAAMABgAAANAE
AAAGAAIAFwAAANwEAAAHAAIAFgAAAPwEAAAIAAQAAQAAAKBZEQAJAAIAIAAAABQFAAANAAQAogAA
ADQFAAAQAAQAAQAAAAAASQImAAMAMAAAALwHAAATAAMABAAAABwIAAAYAAEAAAEAACQIAAAZAAMA
AQAAAAEAAAAcAAMAAQAAAAAAAAAdAAMAEAAAACQJAAAeAAQAAQAAAAABAgEfAAMARQAAAEQJAAAi
AAMA0AAAAM4JAAAjAAQAAgAAAG4LAAAnAAMABQAAAHYLAAAoAAEAEAAAAIALAADQAAQAAQAAAAAA
AAAtAAQAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAACAAAABQAAAAAAAAAEAP//AQAGAAEAAAAA
AAAAAAAPAAMAAQABQAEA/3///yR31BfoA2sAwAAAAAAAAAAAAAAAAAAAAAAAQBFAEQAAAAD//wAA
/3//fwAAAAD//zIAAgA4JisB4AAAAAAAAAAAAEQAQACgAD3/awAAAAAAAAAAAAAABQAAAAAAAAAA
AAAAAAAAAAMAmRkAAGsAAAAAAAAA/v/6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASU1HOlBv
d2VyU2hvdCBHMTAgSlBFRwAAAAAAAAAAAABGaXJtd2FyZSBWZXJzaW9uIDEuMDIAAABTY2llbmNl
VmlldwAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAAABbAgAAmwEAAAAAAAAAAAAAAAAAAEMBAAAAAAAA
wAAAAAAAAAAAAAAAAAAAAC7///9DAQAAIAEAAAUBAAAAAAAAAAAAAEv///+g////oP///+v////5
////AAAAAAAAAAAJAAAACgAAALb9//8W/v//5v3//0MBAADaAQAABQEAAAAAAAAAAAAAFv7//+b9
//8AAAAAAAAAAAEAAAACAAAABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ABQAAAAoAAAAKAAAAFQEAABJAgAAJgUAAEcDAACaAwAAgwIAAAcEAABHAwAABAAAACkAAADYAwAA
nQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGYEAACaAwAAzAQAAP8FAAAAAAAA2AMAAJ0CAADn
////YgQAAHQEAAC9CgAAYgQAAAAAAAAAAAAAAAAAAAEAAABDAQAA4AEAALb9//+TAgAABQEAAAIA
AABAAAAAaAEAAJcAAAAAAAAADgQAAAAAAAAAAAAAXwQAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAA
AFT+//8MBAAAFQQAABUEAAARBAAADgQAAAwEAAAHBAAABwQAABIEAAAOBAAA//8AAAAAAADABQAA
KAIAAFQBAACAAAAAbwQAAKkBAAAJAQAAYwAAAAAAAAAAAAAAAwAAAAMAAAADAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkAAAANAAAAG+uB52AABAAJAAkAIAqY
B2QAZAASABIAEgASABIAEgASABIAEgASABIAEgASABIAEgASABIAEgDu/wAAEgDu/wAAEgDu/wAA
EgDu/+7/7v8AAAAAAAASABIAEgAIAAAAAAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACAAAQAAAAIAAgACAAIAAAAAAAAAAAAAAAAAAAAAAAAAigABAAAABAAIAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAoAEAAAAAEAAIAAEAAQCAAuABAAAAAAAAAAAAAAgAgAEAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAoAAQAAAAAAAACIXEK3L+FUJVCJsJVgaq7+
SUkqAN4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAEAAgAEAAAAUjk4
AAIABwAEAAAAMDEwMAEQAwABAAAAIAoAAAIQAwABAAAAmAcAAAAAAAAAjScAJAEAAMCpHQDbAAAA
QBEAAEARAAAGAAMBAwABAAAABgAAABoBBQABAAAAPA0AABsBBQABAAAARA0AACgBAwABAAAAAgAA
AAECBAABAAAA9BMAAAICBAABAAAAEgoAAAAAAAC0AAAAAQAAALQAAAABAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9j/2wCEAAkGBggGBQkIBwgK
CQkLDRYPDQwMDRwTFRAWIR0jIiEcIB8kKTQsJCcxJx4fLT0tMTY3Ojo6Iio/RD44QjM3OTYBCQkJ
DAoMFAwMFA8KCgoPGhoKChoaTxoaGhoaT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09P
T09PT//AABEIAHgAoAMBIQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsB
AAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKCxAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEG
E1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVW
V1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLD
xMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6EQACAQIEBAMEBwUEBAABAncAAQID
EQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RF
RkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqy
s7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/
APFyKYRQAnQ5pMUAJijFABijFABijFABikxQAYoxQAYoxQAYoxQAYoxQBYNMNACEUlABRQAlGKAC
igApKAFpKACigAooAKKAJ2ppoAbRQAlFABRQAUlABRQAUUAFFABRQAUUATGmmgBKKAExRQAUlABR
QAUUAGKKAEooAKKACigCYimkUABFJigAxRQAmKMUAFFACUUAFFABRQAUUAFJQBYIpuKADFJigBMU
YoATFGKAEooAKKACkoAKKACigAoxQB0C+H5JFVlmgwRkZkXnnHHNV5NFmS1a4JAiXqzAjuBx69az
U7u3UpqxX+xFwTG4k6fd5/lTXs3jzuOCB0wc0+YViP7M5UNxg981I+mXSRGQwsFBwSfWndILEC27
t0AHGfmYD+dMMZB5x+dO4h0cDy8IAx5OAeeBmmFcdxRcACknGR+dGw4zx+dMBpowaAAj3FFABRtP
pQAEEUYoAv8AnXXIEk+RyQAagd25Bd+eoxSskF7kQypypI9xUjTzugRpZCo6KWJFGgCedLuz5j7v
XcaBPMowJHA/3jRZANeWSTh3ZuMcmmYpgHNP8ps4yvTP3hQA5LcvGWDLkH7vc/T86e9hcIATGeRk
AdaVx2IzayhlUxsC3TPenLZTtnETdCeRii6EQlSpwRgjtSmNggcqdpJAPY/5zTAbilGcYzQAuKXa
aANqHXGj3NvO84zjI3AYPJz9fzqF9VkLOZBFuYd4+hz1GOhqLPrrbYrT0vuN/tNk2RqsTLk8MvQ5
PXP1px1gNL5nlxK6sCrYJJx+PHSjl1v+AX6DDqShy+yHeWJBxyM857+tWBrt1tKokAV23FvIXr9c
VPJd3dx83QpvcxyyCVo0J5yDjH5VJK0JjUxrFs3DOeDn86dmu9haMrtIjAKyr8ucBdv86tWMEl9K
sNrA7ORgBAGbOfYe9Nuyu9EgWrsjbgsrawkVrxol8oNutflklPrnjA/E8Y6VR1vXE1TUHuIrWKGI
EBQIlIVR0HT0rKN5O+0Vt53Ldlp16kFuwvGmmNlH5PzH5Ivun2xj1FJBbyeR9ra0PkhwDthJGOM5
IPA5/WqV7tJ3a6XF2bViG6aG3faY1bcSVZouQMkeopyXlq9t5C20anduJKlmGeDj5sen+NaJvfR6
ENLbVCSfZJIY1ijQuD8x2sCfrzj8qaktrCVYQglQQRtyD74JNLWw7IvQanp6zZltUkAbeAIkXcOv
IwePbNag8QaGdOYJpNr9qPCZiyAPX68459KLW1106XC/p62OVN3FvRmXKgAEKoXt+tKTayW5Ik2t
u4Tbz9c/0ofMttfINCWRLV8CMeU55yzkkfkv+c1Zh0+xdXL3kAcPtCyhkDjn5g2PYdcdaTk0nZNt
bIEv+HKxk0/y2TLZ+UZXJz156irE+hT2QDTKvzKCvlyq2RxyME55NJOUV73V6A1d6DYbGxVFEtzu
ZuNqhhsb345H0NNGnq9wsKq2X6FiFX/9VNyaElct3ehmwkQSSw3DbQSkTbgPYsOM/QnH4VLLqd5H
YvaWkawKR8yQKBuHYk9T1Pes3abV+n2TTWK069SidOeOMSXpaCLPK/xt7gf41VlPnR+XCnlW6fMW
YYLfU9z7e9XGSlqvhT0fclq2j3ZXyZCEGVUHAUmlmdyojQsUHAweo+laEgwleKM7XPGAfTmpLkXQ
ZZZ1kRxgZIwenH6UrxvbS76BqJ5hn3OZisvXH94/4/4VGjuuME+39aACSWSTBkdiQAoLEnjFO3+Y
Twq/KehAqrCKpoH1oAnRiXDBmaQnqM5H0pZ5JLmUvNI8pHGXYk4pWV79Vsw8vwInMWz5C27PQjtU
0OoTQRqsDFCpyGHUHOeD2/8ArUNXVmGwxbmRWB8xuDkc96mi1LyxJut4ZC/98H5fpg0WQXEEs08q
qmBnptHrWlGLvRbYyS2jIzEqplyM8c4Ht/WplDmVldL7TGpqLV938KKNzqdxfXM091JveTrvz/Sk
aS5ktFXOIhl9ojxzxyTjmjljFJbJbId223u3uNFzLbDKOrhlIOQDjPY/5/Wo47uaMymJ9u9cMAMY
5HT0p2TFccLuRYwC2GXkNk5//X71HLdy3Fw007tI7feJNCit+vcLv/gAZ5U2KHGFGRt6VdbVnaxS
JshkYbcY2gDJ5GPUmk4318xp2K0t3LKMSuGA4AwOKhL5AUYwPYVSSQm29yI0lMQquyMGUkEdxSEk
nJOaACjpQAUUAWLK/uNPm822k2P64Bx789/eprjVZ7iXfI5cDJCtjAJABIAAA6UdLdHuLlV79Vsy
H7URwFGM5wefwp82oSSN8qpEpAG1FAH+eKhwTd3d+XQtSsrfiMluPMUkooZvQdB+dRNIW7AfTvVJ
WEwYlzk80DGKYi9ZX0NnC4+ywyuw+/KpJQ+3IHPvmq1xcPcTNI2FzxhRgAelIBscTSSBVGSegp00
EltM0UylHU4ZfQ0XV7dew7aX6EBpKYgooAKKACigAooAKKAFwaOlAChiM4OM1J5JKF15UAZP1pN2
AaqkgkdB15pUfbzjIpgPa4bzFdcKy45FBkEjbpGLMeppWsBCRTTTAKKACigAooAKKACigApaAEpQ
SOKAAnnil3ADHWgBCc0oNAAaaTQAUUAFFABRQAUUAFFAB1pxQgZI4oAbRQAUUALRQB//2ch9rbjh
dvOPXPp7U3zLz8haErpayY8r90xycs5JH5L/AJzVmHTrJ43Zr2AMH2hZQybxz8wbHt3x1pOTS6tr
ZAl93cr+Zp/lMmWz8o+UE59+oqxcaBPZIrSqMuMr5cisCOOQQTnk0ryive6vcHq9BkVlYrGvmXG9
2HCoGGxv9rjkfQ0xdOElyIUV8yH5SSFX9e1U5NCSuXbrQzYSqJJYbh9u4pESwHcgsOM/QnH4VJLq
d7HZPZ2kawKc5jt1AyPUnqep71k/eav0+yafCvXqUpNMlgXdqG+2jB+ZCD5jdeg/x9aqykyx+XFH
5VunzFmGC319T7e/1q1JS1Xwp/eS1bfdlbJlIQZVQcBCcUszuVEaFig4GD1H0/OtCRGErxRna7DG
AR25p86XUZWSVZEYYGW4PtSur20v2DXz9Rd5nLSGYrL1xj7x/wAf8KjV2GME57f1oBhLJJIVMjsx
A25Yk4GKXcZCeFX5SeCBTArGgfWmInjJLAgkyZ6gHIx6UTSPPIWlkaTGRljzilZXv1WzC/T8CNzE
F+Qtuz0I7VNDqE8MarAxQqchh1BBzwe3/wBahq6sw2GLcyIwPmNwcjnvU8WqtFHMvkQOZf4nTJT/
AHfSiyHcaJp55VVCBk8bRjrWpEbrRrHfJZusjMVVpSRn/9j/2wBDAAMCAgICAgMCAgIDAwMDBAYE
BAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQD
BAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ
EBD/wAARCAHgAoADASEAAhEBAxEB/8QAHQAAAgIDAQEBAAAAAAAAAAAAAAECBQMEBgcICf/EAEUQ
AAEDAwMCBQIEBQMCBgAEBwECAxEABCEFEjEGQQcTIlFhcYEIFDKRFSNCobFSwdHh8BYkM2Jy8QkX
GCVDNEWSorK1/8QAGgEBAQEBAQEBAAAAAAAAAAAAAAEDAgQFBv/EADURAAICAQMCAwcEAgICAwEA
AAABAhEDBCExEkETUWEFInGBkaHwFLHB0TLhI/EVQgYkUjP/2gAMAwEAAhEDEQA/APzIweJHFRVI
SOOKAiEiIUI+1Y1JkkgxQEVJGBBIHeoREQnM4oBKGeKjOCOT80AwRGIPv2qEdzxHNANUq9RI+1bu
jWdjqOqW1jqOqs6ZbPLCF3byHFtspPK1BtKlkD4ST8VYpN0yN0rRoqyr4n96FAAQBUKHAkHHGagY
Ax296gHAiSJzwKBHJqgI95oAg/WfmgCIgAH60cqz7c0AoMc/tQYAB70AwPifpRtHbMd+1AChMA8Y
OKikCP8AFAMgREUYAgJme9AIADmmR9OKAX0oAE0ADmY/apHEYoCJicCKIkwaAAI4oMmZ7d5oBcHH
eaZJJoAJIBImJpwOe9ALntj3oGcfegD680SYzNAKIxBpwZymTQCJIImjIAHINAAExEUEZnvzQDjE
Z/al7pFAPnHelJ96AZ744pAEdooB98jHcUoMdqAZJBilIHvHvQBiaBEZNAAGO3NEE/4oAjMRQQRz
QEx5QQoEKKyRt4gJzM/2/vWPJoA5xFBigGQDxSjgf4oBkyIPNA4zmKAWDQO5FAXJyCT2PtUSDiAJ
iqCBSrcIPAqBg8JIPzUAiMYlNRUIIJVzigIqSQCY49hUVYERMnGKAAghMwZ7mKR4McfNAIDHz7Cg
AkEd470AjI9WPpSJnB5OaAZA7DvSKZPEUAwCZkECogQSVDPxQBtKQaCnuBQCAEd+KBE8UAwIyI96
UAnHtQDIO2lHp4HvJNABHPsKEhIMyBQAe8E/FEAjHNAAHbj60gBGe3xQARJ+uKcAcY9s0AhIIimQ
TgD70AEEif2o2kD3NALkZ5+lIAHAyTQEoEccfFI9sk/agCCP6cDvRjv3oBxOKXJjnuKAOOTQJ5oA
APJHxSIMjmR2oBjJk5zQRACgYNAASYkAYoKR9T9KAWeSB9TRBEe9AP1JjB+tCQoEEgY+KgFChEd6
D7TIqgcnEj7UvkDmgA+80yZEyIoCInuMVIgAQO3xQAJyADJpCZgn5oAIIEmf3oBmKAIkyeKUGTia
AYHtzRwoEe3vQBGCeR7Uu8xigDsSRNPgYkj2oAgTEZ96IJSSSZoC7PBO6P8ASP8AasZAgqjMf9iq
wQ2wRCj81FW6SRPHFQEVDOKjtkErVEdxQCKTAzxkyagQds8/SgEoARjHNBEI++KAiYgJJnHaiDv9
8cUAH9YgGPrSIVA7TQAI5xzwaQIJ2kRFAH6ZAH7ikrBAPegCCBgSRmjbngkd4oBpn7DFAEqj4qAC
gDE4peo4/aqAgzAiKRyQeI96AIxunnt80AAnigAJB9/inB/SB80AhlXGBQBIn2oBbRj57U5GT34o
BGCYHtQCqRAoBgbvagiJG7PvUAbQB6p/ehQ7bY+ntVAv0/qyCKDJMkYoA5OTQEwSInsaAAJM5Ao2
yOYoBQAM/WaIJgUBIg7ex/4pKHBMyaANvMx+9BMCPfvQBAOATmlyZ7/NAMj1ff2xRBI+B7UADtBp
Ygkz/wAUADJkn/mngEyZHegDaZMyPvSKR/TzHbNAOADnilAmAaAZ5ImTNIA5EjFAMZACpogAfPxQ
Ec8e1PB/pg0AZByc/FGZg0Atsk9z70AK5PagGQcpAijPB4+tAIjgkdqcSrjmgCTzNIzERQFzykpG
CB/ekciVKBoCO4lUGD9OKicFWSCaoMcEgGYIqISNoJmZqAJOyQIPBPxUFQoyBzjmgFIIBSIjFL1R
ATjvNAM9pEkUifuPagEE8gRQQqYOY4qAX0kkY4oATwJn3iqBQSYPP1ogg4x3qAQBJkR9zTVhWIPG
KoDdKQCOaIHE0AiBkgYImmBgHnFALdk+w9qN3/tiB70AwnHpiQaUQMiTP71ABE4UfmjE4P8AeqAJ
kAmRHzSzHNQCHeZpkd+xqgQEmYxUp2q+SPeoCMfWO9PCucfWgEc5nFHPMVQMZ7T96JITzn60AjzB
7mjHIHxQB9gaPigGDAkgQPikVD2J+h4oAJMZH96CnEjIFAAk5M4xFChu9gTQAR2FIEEEESf2oAgi
KZ9pA+aAQEEzwakQO+QKAR4AkZoJk5GRQBt4MCfrT9IkiPpFAI95H2ig5zOY/egAJTyOxonvP2oB
HHb5oMzjNAERJImKIM5MCgHHY9ucUuJjk0A0yOO/akZBmBx2oB88Yx+9REZMUBJIk/FKCIIwKANu
ASDz3oMHlPNAXChyBmTFBCCBuAJHx3qggfSoCJOeMVBSSFcgSM/FQCICsjg1FQKeeDQEckcf/dQ9
UA7c/FAG4zOB9aid5GASBmgH3KlD6VCJIIHxQEiCkApgHvSylOf3OJoBEmIiSaQCQN2cYqAABJE9
6OxP/WaoDP6gMxSiCJH/AFoBpEGCkwMxFLEwMzQBieaCSZHtQCMEzHGKAB8g96gHA/04FG7+qIIz
zVAHgCKUE4AOO9ABFBjOTMUAoERP2pn/AEjtUAwDEbZzURgxBP1qgIAxAB/xQobRMCTQBk5OTFBJ
UYgmcZoAUIz7YpAmCoSM/wB6AkIHYzz9aUEgAxnIoAIHuePpQrnakfaKAIMxGPmmAJ/270BHaSI7
/wB6kQAefpigI/7U5kTMe00AZAmZpqQ4glC0lJHII4oCG0jmcVIgARJoACZExxUSPVx8/egHAJ9J
HvFKDyPpQEu05M0iAPv7UA0gAnaZHJogK4HGJoBE7TM/SiSUmBk0AkieZM/NMkyEq/4oBGBieTTk
KGUyR29qAEER3AGMURnJ5/xQCIEY96BIExkjFABEGIg0doIPNACgAqJ7c0DIj5oAPsfbFOZGBECg
Lc8HmJOfmngJgDnAkTVBCEmFHgD2rGpIkgn71AIwBt7JzJFRQNwlWIoBbT7Tg4isZzgdu1ABBEmR
nEcU4iAeYJzQEVSEiFGZ9qiQCf1ZiTioBpncSoCgiBJwJxVAiAZEGDSERlUUAYk7RQQRkRjPFABy
CScntQc5OP8AaoBJiaAkhQj/AD2qgCI7c0HCcjt7UAgAOBz3p54JA7UAxPOMfFRHJIPOKAcJPImM
k0oImARxUABP/t+KZgDdPPsKoADbkfePagpAwcA0BEcx+2KcHngH2oAKSFESJAmkYJMTFAI8CCfk
U0gTxQBknGaRnPegDng/WpYz7n+1ARMz2xTEck/3oBEGSSTEUQMGDntQC2kmU8zTEiYPagGCIgij
b9JoBbYPqE01LUrctSiVHJnM0AiO6uO2eamEEtKc3pABA2lWTM5A+3+KAiDHeSaFCYAHP9qAiTBn
29qe4GQOeaAOwjnuKFTmSZoACRH+RRJAnbH0oB8fHvmojHq70AzBwBx80+RPYUAsHJSSKQGZkYoB
wIJT/fvS745jmaAMnj/FB9PJ4oAG05Ko7ZoIIJAODQAEmYE++afHEg0BEgiPjvTAkSE8fFAXBBAI
ChmZPtQSqP1DiBVBASlOEg4ioKB95GMTUAoCfSCCZqO8gyJPIMCgEcEZINQXCRMxiPqagECDMYgc
+9RBMyJH07GgGCrBmTSKSM5TVAEj6/EUZIVKsjgRQCBx8AxxQoczGMUAGMZyB2FIBUyAQCO5oBAb
h3BHtQASv1KIP0oASJkTSzwRMigGkkCJx7e1A+exxQCSSeAIHuKFerJk/SgBJCRwD7UgEq/4qAcZ
xweaWczBHYmgGJOI5+KUA95A4oAwmMSP801HcSDJjtyKoIhXZWRPamoEz7HNAI8c4PNMAng0Asxj
En2qRChnigAnsftUTJhP70AGOPnEU1cmE0BGZI/UakB7gxQACCMiZxikYk4EUAK+owSKCY5OKACI
/p+Jokk5wOZoAIBTz9KNxxMRQDSkEgkDIqMnigHERiicYkigG4ouKBITwB6QBSgJiCM4oBDgzxRA
jbJz2oByc84pbiRjg/NAMxO4EntmkAkkRQBhJ94oPFAGQZJ7e9PBxH70Agmc/wD1SGP3oCU8mMe1
LAEg4OKAWR9KIB5NAPIgA/egY4iPk0AgSTsAig9hNAXEgTCSfc0p7QBPM1QRIxPHesZ2qO4Yn2ow
CgqACCr49qxkjkK49u1QCICIUoyRkZpA4JIx9KAQJGJzQCDKomgFKTG0n5pRIImPigBIKSJHf3oU
AMBUjsaAjtgxmO9MqEwFR9BUAuBBA+tGEkRMGqBAkHBxT5zI47VAR5HPIyAKaiTAGKoAZOcSKDEy
OBiaARJKSRkDmlMfqEiaAkcccHil7EjPegHGNpOT8UoEQY94qAIgTk0Scg/5qgAncBz759qQ7pkT
UAgVRt7jPEzTMcTz8YqgB2kEihM5nBoAPIGY7UgARkcfvQDIM/HNASFcCaACCBtzP+1MbcJ5+aAi
UwRifqKYAKSPnNARiR/g+1M7gTAwaAEmVFJH2mjaDmRFAIwD6RyDNODgczQBEiSYj5pcdxQDWCIj
2ogbQAPk4oBCPemJ4x9DQBlP9IP3pjk4GDEVAIBR4SfpNB9h+9UAAkiJz8VEwMA80BIBKhBB4gUg
QFYJoAgmVTgfNBGAdtABjiI+lIR780AyCk/2ikROSDE4xQABnjvRxxunjFANIjM8dqMlJUD/AGoB
SO4iKfEgqkc8UAjjIPbijaZkn9+1AXJHIHcz9KS4VgcD3NVgxk7SNojjg1AfqkkzP2qAe2IPBMmK
xECZEc5JFABSZV3+AOaXYhIBPsKAUHuM/SgzuExmKgAgkHPxE1HnJiKoEJyQeOIHNIoEAnHxQCUY
OQQJmhOQf96gGClIyRI+KRBAJJGfYUA4MHagHHFRwFcETzVAzkgACfimUgJk57/SoCI9ozj7UwMZ
EmqBEZx/mkU5AjP1oCRSCJB+tREn74FAAmOCIxQVGTiJ5EVANQ3AH7UYA9Q+04NUCIAGOT8Usntx
nmoAIIkbYn4k0x6hMmU/FUCJnjHtTxtlUD4oAMciTNEj9Md5zQClPGftRCpAM5FABA5P2NPgggwR
QC94UCRQQQMA/wCKAB3nEUH5xQAQmRt7CkcZEH6UADaBJxSyCDPegGcK4570CEkTz2oCW0e0R80l
dtvagEYAI+9PODwfaoBcGDz9KfCoB7zFUCicxA9qQJPYT9KAZgYV2oSJ+vegERCiScfSnKckfagE
rIA21IEYxkVEBqyP1CPmoBIJBNUDASZjNBJOQBj3oBbpIIx70CAI4PIoB+k4BMmlI5JGBQDkK9ya
MwAO+JoAhMc/34qIE5OYNAXSSQcjM8VFRBkqn4ANW9gYlkCR75E9qipJA/T9CKgF3BPHese6RtiZ
n9qAUgDJgxGO1EgHHbmoByZkZI4qIKhJJgH4oBQSZBIH+aRgATxxVAbhG1IIxmmSQIECT2qAh7A/
bvTkI7k/bNAMwcgyScg09iwjzChQQDtJ7AmYE/Y/tVBEwJKeZpSMKIEe1AMj0gjt/aoGdvpP96Ae
4EkAY7UKEYIJ+lQDCSk7QQDUVLUqSU96Ae48D/FAIJ9WfpQCAiTER3oGTgSYzRAaVAEmKWCDPPMV
QBzgCZoEkH6RzUAJMyVD6D3pHk4NUDGTgxS5UZMfWoAlPMf3on3BkVQBEjPagY7j/mgDODGKCrkc
ExQAYgCOPagAEkAd8UAA5JIEHFEAKMiaAUqGR+9GIPaKAE+8AfemBGT/AIoBGQQZ+aCRiQM0AyPg
R3oSJwBj5oBQDEcUQcGDj3oAJnMyDxTkiVEf3oBAmMH70CTnmgAmSIBzTgEwAcZkdqAjKlEmPrTC
QYBERjFAEwQIBpEmAI+aAYAHajbOYigEcGYNBJ2iIAoBe0CAKkNqjO4xQC9MjAJ+vzTI5BBBPuKA
WZmDj5pjiOM0AyBtx9qjHcHmgLgzBCcfFRkn9QyDFXcGNZhJlM5ieaj+qDjPeagF+gxEzniokhKi
Qr/pQBgZBBNRnsE8cCKARMQP+zQogCec8GgFmIT9jFIEknGYzQCgmVD2HNAAIJHbEzmoBkiSRzzU
YODOe4qgZKc7sfSg5GcUAEEAhKQaW7ICQMRM1AIkbs0YiBOf2oB9hvMkcUAnM8TQCO4Az9aO5iRP
zVA/TBkcfFIqAjgn39qgIkBMpUJPajHPf96oHCUgAk4NA9wKAQgiRM8E0ZwmagGqYyIjHNJPqx3j
kcUA4zCz9qjETKs0A9wAiAZwaAYyT3mKoCYM/bFIR/Uo/eoA9Qiexj60QRMAVQLvBEFVSCZyKAWJ
knnipYVgEH75oBE7Qecd6ScJAEYM0AHaTI+9GVcnigDmJGKRA5/YUAxMke4zQkEiKADCYJGKN39M
EigCROUwY70biRGCfeKAckfpERzUf1GTOagGByYxQPUPjjiqBwCTBEVD524oBxgHNBIHBHvQDBI4
5+aR5kj9qAJzkj29oojjMUAZGDjNG0QZoBcDgmeKcGIUR+9ABiMzjv8AFR3EHIxQEiAoyTA70EQY
AmgLiSUkA9+/aomUzwZ7VQY9smdpAPzxUBtOSMewqAiUpMAAwRSKABBkkdqAQ9IJTnAme1KVdjio
CMyDAI70wPSQo8f3qgaSMGBPEc1HbKoAx71AG0JSraSe4xUdpVyaoBXAkwB8c0CRERNQDKSE+nvx
SkCAMfIqgIAMGD7mkBC5zHE1AELBEg/akDJwOaAAFSZMz80ZxETQD27VSMxyKM8kwfY1QAMTJH+1
KcAASfYUASSmCnPNEDmMfFQBE5ImO4okp7Ae+aoFG4Ax/amfgEj3qARjdjI5pggGIwIkUApxJPOZ
ownKh/eqCJ7QkEEySKkhG8kSkGCeYqAW0iQKAkj/AGg1QM8hJNIk/BqAWCMiTTAyCCZFUBicKHq7
RQPUT/sKAIlYSSB3k0/UEkAYNQESok+xoTEz7e1UBtkEyAT2FCU5yY+poBHJJI+Jpng/vQApJMd/
ieKkSDj6UBGQsk8UCCOTzNACp3QB9BT243QYoBGOAfrmjgbSYigDmDIj5pCBByKAIJ7RQBj5oAxt
BgmKIxPtmKAUSZMfOKcAmRH3oBpIJ+KjIM/I70A5MxIikBtOQcd4oB++foKAk54oBYH6Z+9SIgTk
n4oC2MKBE4+e9QXERJHb61WCKjIwJge/eowRJAPHHsagFIxMcQKgskjdH/WgDAB3SSRUTCvkGoCP
CSB7YNSEgGTxHFUCgkdiJinhXb5oCJUZAHv2zSJzIE0AyT2n6UgmMlQ9/eoAJkAEZHvSIiSOO/xQ
AIIjjkR2oGFAn+/FUAoxwokfFIhMQJEDioATBUJwfipJHoJmCO9ARTkyoz25pmT6VAYqgCeEpEFN
L0hRMZJqAiSZxNP0jttwRVBL3zHxFRgAAHmZ4oABEkqIA4gZpmACoSVexNQEYMkxkf8ANMCARAk8
E0ASIEwPpQRiSR9IoBY4Vx2E01AckYj2qgQUACkJJJ7k8UpH6VYPNAB5jsMcU4CYkcZFQCJ7BPxT
MggifqO1UCJGIFAISqORQAeAQYzQNpyo8/2oAJEnGDSPvHNASIP9I7TUTJJnmgH6SIxPPNL0HgTF
AAPpApgZiQfaTUARGeZoG5R5iDzVAgYOeRwKcA54BE0AbSSY/cDvQpXOOcUAsTiR7UKG4xmTHzQC
2wMgUAED2FAPckSDPxmmZgxH2oBKiBtBml7YFAOTHImKNoSII/tQC9IwInuSaCSDJ9sfFAEE5/vR
B9wZoBmDgilyYmIoC2Ue/Gf3pEQmduI7mgMYJKCkyJ/eoqKP9J+KAiuUwCPUfbGKSdxE8J5J96AQ
KiY5B5peYOBH19qAYMxKcATio9yP0wOxmaAJURIIxg4pSZPz71ANSYGZBNRVg8gmKoGr0jKpxFEQ
ZBCTPPagIhWCdxj3+aYlJA7dqiAE4B4I+KACM7iD80AQMTEfNBAjAIx2oBQVCQc80uORMftQDCUn
ChSJ3EJgj4mqAIyUiTifilMHkQc/SoB4Bg+3FEQACMT2FABI9+KYV2yfpQCOBu4z7VGE5g/370BJ
QmIUZFNJV3OaoIpSkkTge1BHKjiePmgACIkikQJxz71KAT3MD3o2gQR/agEYGAMe9A+J+s1QPIMz
M4MGlBA25igAlIEj9qDyBiDzUAEiB7RmjakcGfqaoHu9XYmIpSIAMD5qANp2zz3pCM+/tVAwQCIE
0omI+mKgApg4P/SmU7v6jiqBAwZIkTipYEkd6AiJHYH5qXwRHzUAiVYSDS2kDckZJxVA5JIUcT7C
pCD+n7mgIp9SxlMnGaRJJMH4NAIATkmmNycUApzHvx8UzyCD+woBHAH0zROQZkmgAyDBAFA4GMUA
DOSftRIAzP0oBjcIHbkiggZTt9ooC1SUmZnHEUl7eeMGl7AxmBxkR2NKUqkAAY5oBEEEZEjmonaB
Egjk4qAW0bY7HnNI8FIkn4OaAEkklSuR2pEkKgEiRxQARkgDcD7U8AYgyIIoCBCSYnj71IJAIBMk
5gGgI4JKo+KIG6SRE0AADPaeI70ts55PINAHJMn/AK0ZOAP2qgUDBIH/ABT2z6gZqAUQYP0qRkD2
J70ApAB/wKiAcKJ/vFAMqSBxwf70EZ54ExQAUAepIJn5oKsbT3oBSoAEiaP1GM4oAg7YBz9OaDgY
Az70AjBIV7dqZ9OQcHIoBQlOTEgU9uD7D2HFUBiJVwKRjaQO/wDaoBAEjkED4mjsAYoBiADB+aWA
cGaABkSQSfiiNwOKoFAUCDyBFOAP1nHfE1ACk4HHOaICpEx3zQC7HnNMImYH/SqBEHBM5qZ2jIjN
QEVRxEUAEfAAwKADM7sTSCZVAB+TVAY78CiCSNuZ+aAcH6CiQTk4NAMAEHjHGaRSSOSe9AIc5yAc
iaR90mfpxQAER7THNPnPE+1AA28ASe5oj5wMUAhHvNKO4OY9qAkTIgT/AM0injGKABzM/FGUiAff
tQAnBB2/XFHHPegEruQfrUogyczwc1AWcH3/AE/tSJJTuiUgRHxQESBtA4nE/FQVtJkYkftQASog
KjJ7+1R2kTJBnEntQCISMAAFXzQBwpJwPtQBAGT80jA2yQo+0UAQU+kEEe3tSgAkJScUAidwkDH1
o2gAlUEjigDG4EiRxT9x78GgFv8AiYxSx3TiYyaADCsA8YoSIgETQDiAATioFRPbH+1AMjhEyKCR
BwSDQATwT+88UQJMzI96AUmRtEmKkRBlSo96oIzEqSJT2nFBhQzj5qAAQcA4FBKTnkgUASSNoUB/
vSVIOAZI+lANISADPPNRwSQmc+/egGDsGUif8UoyZBIJ4oAA3eozialgYwJPaqCIxk9570EYPzUA
JSdxwY5mgR/SfVVAAoBG7EUEYEzUApAMic0JMjbxVAz8kRRjCpJ+JoAESJUO1ECSAMxk81AISTM/
tTnP6SJ5oBKCYJnjH/WgE7hmfiKAkkZAkZMRUQDJG0xVAAzk4PeaBtM4Ajg1AAmM8H3o4OINAEDs
ftSIBIAOKAP0wfsKDt/1R9qoCIwkT/tTyfVJJ4oA/TJ4/vRIBOT8moBJiZgDGZoiQSPTVAAExBkj
mM0YIkgxQCJyeJpjI45yTQCiQSOKOePjNAP425oAGCOxoC0BG2eB796ir18ce/tQEFKEjECf3qOS
AR2NQAIgREnMVFRxJ4J4A4oAJST8x37UEwnufvzQBCSZJ+1JRVuAgj2M4oBFXYnnk0u5HAPc8mgA
hOO88RQUk/8AfagCQDxR/UYBkUAt0TAwr3FCQQc7iI96ADEQQc96WIEZ/wAUAyRkHj68Up3ek5x2
oBz6cE/X2pZBiTPeKAUg4B+xoyCZEJ7UACDERGORSUORk96AUY9Mx9eaCCRIyOMdqAACkwnuIoPx
mOKABhQ9PHFSjck5OKAXsOPrQoGZHJFAR2mSDye0U07pAiftQAEmIB/akDBmTgRQBlI2n6igTMzQ
BmZPahSiIkYPeKAEyTtkRQQSRnPAmlgNoyN2ffiKJT7k/NUBKZjbM0gTIAj5EUAT8Gkcdvg0BIkA
Skx8UDOIyfagEIySO2KYSoeoqAniaADESAZpeqYj6iOagAyTER9aBBPBE4PegACYO6BM8UDABJie
9UCIIEzPc09gHftjNQAQn0kTA5pFJ9qACFGMfSmmTgdjP3qgUZgEmaB29M1ABTP9M++aFKPIGPkU
AAbZJE/akcjcAR71QMAFQO3gf3oVCTEZ/wAUAZgiT+1IEJnaJFQDxBgT2oJ3RtMVQWpgCJz7RzSE
bSr34ipYMalBXJPxUQNw2kHMmJoBKAByrj4pEjIIn4/6UsCM7fSIA+KUKJAj2oAk+4Ex96e0YMGg
IkRyDIpBRBMcc84oCUQDNREcD6g0A/TyTBzmgQBBFAInsB25oE7hIwTQDicwIjilA3ScjtmgAEhM
gd84xUUqCjkQfrSwBITgH6mKNyTPBj2FAAiYGO80ogbwc1QCZ3wr2xTOeADFQCASMkgHGJoIjCf7
UAp2ZiMd6JkgYzmgATG0q78HvRG2IUc4xQDO7gwO00ioTPP1qgDBPpzjM0vkCCagD7nPP/SjaBmZ
JNABIA2kQSOaSTIgc9/mgHkjPOO/ekR/VznmgHIjGaUiPSmM0sEQYEgmTnFS2A5FAMzwT2xA5oSC
ZhPHvVAjhRxSAgnsKADgzE00wiZjPc0AEyfb70QCMj+9QC2mTIEdqP0K5nPtxQDgf3+9EpA5+1AR
xxnjHxUlAAAiYH96AiU855pkgT6Zx7UATInv7zRIVGPtRAJ2mYJpGCsDI+1UAT2TMnmntIzI+lQA
AAmFH6UCMAjB5qgIIxEjnilIIndxH2oBlO4DjiaU7vTgZ7UABJPJJApA5wkEUAzG4GT8UEQZBNQF
qImZ4/4pAwQkfcVQRI4BJJmahuIPOBnioBLgztAjtNIpJIjNUCgn6dzQqCAAcEZkZmoAAjJ4oA3G
ck/WgGfSTAk/7VH3Mc/GKARG0SpIA7UgCBIj3moA27vamCkGFQI9s1ewADlROOADUYmMRQDlIByZ
+KjC1KJxEcUA9hkTOaDAGM9jNOAIjtHOeYokyEgdu1AOdyZ7xBg1FPJ3AwMGgGE7pPtQSUgJnnig
EpBjBxNE54AJ4HzQBO1XqieOKiYInbQDg5iMyRQEKOSZMYigCUycYPFLAlMme00AzAAk/aaJkEyK
AiEyTHb96BuBExGe9UDMzJmPg0oE+rHagEcEAiB2zUoTux24qARgnHBpARM4AqgUCJE0yFGMCPmo
AjaJ7cUyDHxzQBABG76/NBUMgJoBciAnE8xQATHvPNUBEkqHIHFGQn5oAExj70ogwe3vUAQcxIEc
U8p5wKAQgiBEHk0FJABjn4qgAMcZ/ekJnI96gH6SIMn27UyIMj5oCIBAgnEYmnEYiT2oBfpn3+Ke
FjGPfNAM4zzUPT2EigJACJJ5xzSImRt+4oA9ORAB7GgDO0/9mqBwqCCCYpRA3KBEUABJOQM0AnKe
DQFspMzHPbvUYJ9Qk98ioCOSqeO5pJEmUAR3oCKgpKgf7e1RG4kwIJMmKlgRnb9MfWnwP0kSZmqg
HcLAED4qMiZHbvSwODMSDI5PNLKQATmoAMATJI+lKFAZSZ947VQOBAEmR/ekEnaQRxUAA4zmRNEA
YAGcmqBRB5mMRQoDd6YOKAYJiTPeolMplWJpyBFMdz6RRBjHMR80AFMCIGTQBwB98UAEyANs/M0i
CRn3oBlOMTH9qiIOQc+0U4Ayr0hGJPf2oBHJH3oCMqJI4+lAG6ACZNAPaTAwORQMCVD/AO6AR9Rm
fnNBBEEjt/agECriOBOe9MqkCIJniqAghJKe1IEcBUjuaAJCTAAnmaZJVxB71ALjMcU1JUQDIPvN
ARkgGfoABTBAG2BnIFABjcR8TxRwSSCAf++KoCCcg/GaRzzzQDSSRB7jOaNuNu75FAKY5I570DEj
Ax71APMEEc+x4pf+3d+/agApAEEj5FACknAIzn4oAkAyQDQTMwZntQCEpPNSIE+0ZBmgEQo8xn+1
PuPUeMjtVBFRySScHHfFOZ4P1xQCGSCKAQFcYJ71AClCRAFEDkfvVBIGJkTPNRJMgjMYgZoAVJj2
pEDmT9qAaSSmCckTTHwJA96gA+nAEYpYAIk++BVBbgAGYOO4PNRVATjmOalgx7RtkkTxSCUgCD+3
17VAIklQORPf3qIEnINANIHZP70hAIJMj2pYACeOf2oMScCD2BoAUDGFYAzNJQIg4PPFUCiRA5FB
CYxknv7VAIiZBA9PtimoZkREUBHnIEfepAgyTGMAkUBFQEzG6KQVKiQY+lVsACB+kzHf/mpYKYMD
2FECEQf0n4il3iM0AQMkYM4mn8GOP3qICwTMGf7UBUmJHOKoCCD+oGDSMZJH1zQCkCTA+JpgJ3Sr
ioCIGePoae3PMHgVQBkEbVT7AUREFUiacgAInilJg5JoBQc96ZhXwPYUAwQMBUe0UlHBmAR7UAGC
ckewxSiBOIAxmgGD84FLcFJjBIOaIDJJJxJFGSQBH3FAEcgk5HagpgTxOM0AtuIgR80DGQmZHvQC
iM4wKIEgEgH94ogSIT3IPFRAhRxE4FAPmAT96BtAhQzQAkCcnHekDHJ/+qAAkdqPTt55oAUP9PM0
kqIBx9aAYEjcM570wEqBOOaoFJ2kkTHFMHIkYHeoBKVIJFG0cTjiqBAbjHIE/SgxnI+agGAORJHe
iUwZkEnFUCJJgnOOBTkgBOeD9qgIlJSZnmgSBPfv/wA0A1GYkSPkVIgKA4wOaAtcq4zHxijACvY8
ioCJAGAJn+9Y0IEz/wDVABBKt0c0gkg9z2NANKQmRA+KiltJ/URHJjtRgW3BgSmPemoRI3cUoAkT
BBweaWQYiQJgGqCORGMUECDx8CoBEQf0wBiZp7ZV3BTg4pyBSTxjPFRCQOVGSKUB44KojmklsFWc
weKAlEDakCkEn+k5jJntQEVCRBPzJFMwZI4jNARMR6uRx3qRTtAx9qIACoxI55ioq/UTGMniqCJI
iYODmKckxj6CgDaMgZj3qKkkc0BJIBExwKRSUgknJ4ogIxMgCn+qSYgVACkkmTBg4iiAVZODniqA
xzP1FJQ3xBxQAEjsf70KHdYAn3HNAAAAjb9qZBUJwM0SBFIOQRiohRHGQe1KBICfifikd3scUA4g
8wfihKd0EESOJFUCIVtgAe4ppKfK4JVmR2+tQCgkQBHvNOArkgwe9ARiSRAEd6eDkE44oAEHmPrR
gq25/wCaoHnkxmo5Menvj3oBj33RiRSBIB9XInNQABGAZo2/c55oBDiOP96kESJ3fSgInBKTHv8A
WiMZ4+aAl6sgH25FCSCNsgGeTQCCBuwAAPepEiY5x78UBApEgn/FMJifvFUAFZ2EZmRTMQOR7/NA
NIB7ftS/p9WO1AIAnA+1G2ARg/WoC5KVbhgj55pQUiFeqPcVAQUBwDgewpK9IwRB4x/vQETtJBMf
U+9BTz6gP+KAPVA25+aUHcM8ZgZqARGYVMdqFlM+kEk+3aqCHqAHqJSDkfNPaJJHA4xUsB6QMT70
LABkdsmqBKBAI4mIIFIn24+s0AAAAbTnk0QoHgSMfagFtTn0kg5j4ojulIHfvNAKN2CPsOaRSUqw
iRzRgfAmTiKWCJMfaqgE7TKoOeagIPfIM5qWCXcyr6ClBUmBn3oAAyeCAajJkRA7VQMkD09hmBQp
OODI5NAIiTAIM8CgJxHBHagAyCSJP3pJEjEAice9ABBAkzg+1IQPf70Ax8j98UhznHxQDCIJClZ+
aWRB5+tAIkzP7xUhke0f3oBkwqO5qIEk9h7RQCiU4gwcYoBElJOSPagHABwSZoMQEjvk0BEEgSBA
IwRUsJHtPB9qAQlWEkimlKSOADPNEA2omQD+1QzNAMmRGwD6CmQFD9PHeqCISRndFOYBPJHvUAJC
lAiP3pg4KoE0AgQRng0JiSJzQCVBPODmTigAJEAiRgGgHHyDFISMnk1QACgQqg7gcnPtUAQYEgYF
GMd8R81QBGMGfpTgGABUARCu3Pc0EZmP27UAAkElFAz2Of2BoAk7pHzk9qIPGB96AvFJgbVA57xW
JTeCYBBqMCLeciT3kVEk7gmJA4zUAwnBHBjE5qCvQDu5GI5o0BgHgHIz70jO4lKTP7RV7AgQkjMF
XY5ppABkIPAyKgF/Udw+BigAxE1UAUDIxPHaowAiJE8GgApBJicDM0ifjioAAH37z7UJTGZxVAoB
kHH/ABQJ9xJ+M0BESMkmJo+SSP8AeiAFI7GO80BPowJng0oEfYpzQBKcn7RQCn34FBIBkjAxFABM
j0Y/tUcA8iZqgCDODMczT/8AiQfrzRAjBmRAPOaalEgIBzzjigEJnmZ4ppnJMj4qAW4ZViaRJOFA
gjiqB5gmZ9jUgBEhUke9ARSBuAg/NChJPBigDZIBnGBFOAnAHFEBLwYUDn/NRI3wSeMxQDV25A5m
oye2aoGCAqVA880EkjBigATxH+1KDJOB7CoAOUhRERiaMZEfQigGTtMEziKSioqzED/FAAIkpCSZ
7UyFSMkZ7UAJSDgwB2mkIBJ5oCQKoAUeO3zUCeSYI+KAcg/PaiNonmgAEk5GO/tQUwYPM4zQDAkS
OPmolYAiMjNUAMGZP7UziMznNQAfj96JxHM0AEpInIPPxQQmOfVVBEA8dge9SkySRx/aoBxtzuAn
igAZhOKAAruJEmlBJ54+aA6A5yUwaxlMSdpmIgVGCBRMSYVxnimgQtPp35GAP1fHvUsq5G+3Dykh
rywFfozj4zWIoIMmAeZPJoHyLaYkGZ9hxUQkzIn96EGsHBIgd8VEAGCkRHelgDBGMScz3qJQg5AO
PmgGJTJxE8TQY/TIg9xVAkpk880lbgZUD8UABO7tk8z2qKtvsTJ5oAKJE547U9pknHtPMRRAiUhI
gj9qCITgx25oCEH2Hem3tE8gUAAA+kZ9jUf6QeAeaAWySTzTCTykAAHk0oGMgAFO6MA/enhQBI9+
OaAiASkwYPcTTkHOI4zVAyVkYTTwJkfv2ogRUAM8kHigQqcZPvQCAIBBBBNS2zt3EY9zQAIn0f5x
RkHIxGJoCImcH9WeJzQduZORRAP1gmD96AAYE57mgFA4AE/PvTAmQDx2ijBEE4AUR2M0ygk8x7/N
AM5xu+ue1BQVDBwPc1QRKScJA2jgUx+nJ2Y/tUAjH6dpH0+tLG4A+80AzkzPeTFA9M7efkZoBSYE
rx8UwRg8zxQBt/pnHc+1InI7D396oDGZzGJmgfsPigCSZxMH3qQIORmgEfY/5pqUSQAOMiagIg+k
4xQY7cKH7UAxHJOT96NoAxmeM1QI5OOfagQTxPvAzUAwFzPsOJpCMyPrVAJBmQZj5pgndJPPPx96
AOOFTA7Ux/q2zjNARCQJgEe80yIOIyIqA6i3srq7dLDNu4tZIgBOeRWN21dZcKFsrQoQYV2BHP0z
XHUrq9zpxdWY1thK9oUFkgH0yeRMfbimi3cSUrxEiYIn9j9KWEiDm3cqEwSZ9zWNSSSlOzngj2o2
RidQULLZ2mP9KgR+4qChuJUIIoiDLSm20rKVBKsgkc/SgNFRCQlSt2Oai3K01yY1NyQQJ780bYEd
zzFVEEG1SNxM01JkbgcfXtVBEJxITPzQoGNwkD596AikE8H6VHbMSQVcxNAPYeQgKnJ+KFbQMR7i
gDZjKTt9hUdpWAJkAxMUAhA/qie9Hzn7CqBBQKM45iltJA3AwMGfegIqChPGc0D3Jk9vmgIFRJk+
37UQZOcD/NOQIQCc9sGgyACSB8zQASdp9+SRQFZPMR3qgZTAAOJGMUgqVcARgUAzII9UR2qKsiYn
OPmgHumODAj2mkYmQMHtQDE7SahESqKAnkqBKufmiMCPt80AipKjMxH9qRGJjn+9EBkkDgyO9A57
n6GgAiRPf6UAqJBg+n2oCJVAgTPuRQZ5jtigAiE4UI/vQCRBjkcHvQBuBPASfigxzE/XNABUJB2g
gCkTujvHFUDIPBnjil/VKif2qAJKyDEZHNBMn7e9AA24ncD/AIoggQJ47CqAIVuAKY96YKp4nHvQ
EQYBB5mpAbZG0GPaoBEKURiB8UyexJB+lABgmAM9z7UyBGNpn5zNALIOZ+tBIOPY+1UDyB/ekSkK
94oAAONszRuIOMg1AAxgwPmmQCRIkwDxVB7PoNjcas5c21tp1ou6cStS3VOKZbKPSUoAEEKJBAJM
En4mrFHSDlw+20nQjpziw642m5cVtW2FBO2N5KiXErSExkk5MY+VPJKEnFN/Q9keh05dyPSvhprv
U94xpXTnTz9w+7dLsVWiLpr8wpWwYLZ9QH6lb/0xifSZxq6N0rTXr9F+3c26rNpxflrcbV5u0xBy
kgEqCScESSAVDYeZZskpeHj577NfRhRxpdUirt9N1FLLRVoNrdIuwssOqYcS6hJAbBSElPbaUjMk
jGYNx014baX1J1BZtapqz9zo4QhVzcKT5DzTQgKHqCgmFApTkgxwJitXkhhud2cuXWkunjy7lBpv
he9qTuruNuFFnoySu5ug24pCUFwIbJKEqCdylJAmBnmeahOgv2ukFFxbsrfeVuSp0EFKEjaAkz7q
JOI9KYJyK9EpSSTfcwVPY27i/Zb063YGg2TzjHdtP6gBkH/Ukkg4zg8ZrDdaPZnTra8Zs20u3kNr
PnIhCxyQmJ7dpAgisoLwuZcs6dPejZsui27i8e065tFfmhZrdt21PIaV5qGw6S4HFp2o2BR3YmRE
4FcoNPCnww4tTQJhaynclAmO3NaQyuW5XFIyrtLNxxthxZbLILSVNoSd5lR3LIV7mAc+kD6VZ6h0
1olvpf5pjXlG5TcONONLt4SG0oTCwokSSokbQJAEzzF6pJ1QajJ+Q9P6Y0UJW9revOItlsOeSuyt
w6S+lEhKwtSChElMrg8naFRVBdWK7d9bRQ4jbulDghaSCRCh7iM0hklJ01Rw4pcGNmxdcTIWieIJ
iZ7Acmtx7QXyyl63umLhSlrT5TQWV7UpSd2UgEHcQACTKTIAgnVyS5IominT7vyg75C/LJCd0enc
RIE/SsqdKvACpTUtgEhcjbIEkAnBPwM1OpEUWzG7ZXCCgFtSyUlQ2HdCZI7fQ1BLW1BClFJSraUg
equkxQxZNuoStN02VkrltRKVJgAySfTnMQZkHHE6pCkJSOJEiDJ5/wClEQCFlRJHGZmokbNpUFAK
G4E5ntiqwR25ION3f3FSuA02vaw4paOylJ2k/aT/AJoCCGlPLLbKVLwTtAzHcx9M1DaozAmO1dAm
u3faShbjZCXU7kmOQTWQ2N22wX12i0tSE7ygwCeBPvg/tUtFowZOO/05qSWXMqQ0ZjmDS6ICW1mA
EmTkk0Lt3EqlSCD7xQAm2dUyXtsJSoJIPMmf+Kyu2zibNpw22zctXrgyr9OPaBn9zUtcHSRg2LwA
lUxOAcUFhwKyFAgTkVbRKYilSU/pgzQEqkAAgfShBBAEifmsmwlsq28EQZ45xFUGNQEEwJ4GaexR
Agd6gIzKgYI7U9pSeeOYoCMEHiYOKAmSVRE1QC4GTEe3agCRg0BFQJMEEECRNBG5Mq/xQAZAAiCK
z/lnfy/5r0BtShELTu7/ANMz2OY/yKlgFWjoQp3a2AkifWmfsJz9qgpstOqQUoXBIMKBTPEgg5oA
LDiWkvyjapRQBuEyPjmmlh0gGEAKBUJUAcCT9MfvSwTsLdi4vbe2u71Fow64lty4WlSkspJAKyEg
qIAJMAE4wKxONoQtYS5uCTAPEiuqVAhCpCjP+cU1GYgRH+agD9SvY/WjPA/xFAAkcnnP1o3QqTEz
NAHBgJMURBCT70AbdqiTg/tQRuIhQyJMUAwCfTM+4igYTMT2wKAABknHH2FExkZ780QCCO5g9hTE
dgCY9qoIwAScEH2qQ5M57UB9HNfiDvry8ShvRukdLYD7VykWvTNg2UKSqY3KZWYCSrbJPzMmfSOp
vHO71S5srHpvrux6jWy1as2we6Ms1LUUfoZiCHF7lrgbexyeT8DJ7PVKMk5bq7b/AH/PPseyLi6p
8Gjb/iOYR1Dq9vqnSXTmqNJsAyLlroxizunlhG1bai2kls4jd7yJAisumdbr6x1O00q8/C9a2xbC
zY34u7yz2252kbw4sIeSAUH+n9ZI2zXnyaaOCSnky9Fce9fbjc6T8VdMY2/meYW/S3jT1La39+9+
Vt9Ks7hbb7yX7dDTTm1xwMhwkgeltZSJiECP0prrelfCPWNOtTb3njH0ho98Hm0rsL55TVwgqQl1
Klr2lCYEfpUT6u4Jr3Ty4+noxY3JP0/lmUdPLGuptJ+rO+0bp9vw86T6i8IOotVtdX1TxEtVajom
taYy3dNKdQv/AMkBcSkoQ46l0LTtKso3JSZA+PHNf1c/mnXNUbQpXqLamxKyTkJhMAZ+McV9jJjg
1HanSTXkzwYW3lnvt2f2/gvOmvFrU9C1NGpP6dbXSg0WoV/LIBAiFASkggEKGcZJk1qXnWdtqT+4
W6m1qO/eQJSSIMkc9zMSZM189aJY59cX2PX4l7M6nUunulNO1dVnpXiZpGoshsi51HTbXUPJabU3
ClLC7dC9p3JbMA/q7g0kaZ0Iq/u48RNL2MFHkC6027bauAoJJICG1KQAMZzMQIMjOMs0n/8Az+6/
PU1Ucdf5G5d6b0aHmdRset+nXQVspfbWLrDqkhQWpPkypCCVBW2SSg59SRXLaxb6Zot262z1rp+q
NBa4csbNwocIlJjzEtrDahEAjg8AiK1g5t7xfzr/AGZyUVumRZudLvG7S6u+p9Pt3C6GylVtcTbA
lW53alJT/pV6T3gDAisuG9OebfY/8U6eAClRcLT5LygFCQfLknP9X+r9tPeUv8H9v7OXTXJit9VZ
sLa40+3vUqCl7g822ApRAIBkp3BJByARzkGAK6zR09E6nplnaOeIytEuEtqTci7tHXWgpO9Q2ONI
K9p/lgJ2/qU5O0AFWvQ57s4c3BbKzntWf0bzlptdeTcpQ4RvbYWlCkAjaUIUBEjsrMjMd841rQH1
oYeU4gHc48/6tzqlHdCvTO4EASmEnaMZJrjw3WxopRO5v9N8IdGYQnT/ABSt9UZWkANp0l9hY/mq
3eYFNq3DasEHeSNqwAfTNnonTHgV/DWLzW/HCxXdoX/Osf8Aw/dqQncqP5RKAIhKSVHaYMAGM+aP
6hreNP4mrljbSstPEzSPwsNum98OPFC8YQu1DDlqjR7lwG4b2gup80ghLgBwVGCVYAICfJfJ6M/K
XS3eprX82lklparB9SluJUCNpBAkj0ypIEAyATuq4JahK8kd9u6M59HCZz9laaFcOpRd65+X8x1K
FKVaqUlCFGCs7TPpGYAPxmp6ojp6zvru2sLhN2xbwLe58paQ/tIG7aogpCh6sz9BOPZ77ddjPajo
nOvehb+xtbHUfDe3tixtLjunXRaW9G4QVOpcMEK7HsPYVLWusvCu+aTbaV4f6tatKuvNeW5q7S3V
twQG0lNshKYJmdpPI9o8sNPng6WS1be/Pp5bL4G0ssJJVHfYodX17pjWNUedsek7PSbVxJS0hLzr
nlHaoBRIMnKkk4/pGIkGsDVmx5xGp2T5ZIU3/LdPmwf0iUjn/wB0cdq9cYyS952YNq9kYbrVU3H6
LFi3EJlLRWASkn1QVGDn/iM1iTeI2K3NesD0kLWZM8H1Yxj7D610kOTH+YeW8p8EJWoqMgADPOBj
vV3p3XfWui2Lml6X1bq9paPILbluzeLQ2pJ/p2gxFcZMUMq6ZpNep1DJPG7g6GrqHXNdVY2F1qK1
hnc2lTriUghSiTuUYnmPUTjHGK9E8WuktS07UANd1bpmyudi20jStQt30r8tLbexabZ1aUEwTuKQ
VkrUoq5rDLlWKcYqNt+SLGDyXNy4PKrm4vdPvH7YXvnBsuMqUlze2rsVD3GAQfhJ7CncdRaxc2LO
nv6vqDlvbkltty5WpCef0pJgfqP7n3r0dEZ02jhNx4NQ3d0ZJunjIhX8wzER/jFJd1cLCkquXlSO
CsnvJ/vn6110pbBtvkyHVNRUhKHL65KELLiAXDCVEAEjPJAA+grEbp8hIFy5CRgbuBgwP2H7UpBt
vkPzFySALhz0ggSo95x//kf3Nb7HUOrNae9p/wCfdDLh3bClKgTIPfIyBx7VJQUuQpNcGqu+UtwL
cbaUQkIjykgGBHbvHfmc81uW2rNK2299bteS0HVpDVsjeXFIgEqOSncEmCYEmB2o42thF09yL19p
6rb+QwUXCVpISphsoUNvqJVyMgQmCMkz74ndZvHrUWamrINhfmBSbNpK5j/WE7o+JipGD/8AYrdm
n5i1KCoSCAAISBUVOLKCkrO3B/b4+9aKjkgCdp9IGOaaFFOcyBzPFABUkkKc3D3UM/2x/mtoq0zE
puIJMw4MDcMfpzAn6kjiIqbg1yLeRt3qAEqmP1e1SQ3bltW55CSUyJB59hHvTdgG3kJQW3E8iZCA
ok9hJOOTxUfMSEKba3lO7cmQKoMUlRkqn2pqKiolazuJmTxQCTO4g5FHuPeqAlWSQM8TxSgCQcH3
NQDkgyCPmg4IBORkUA0ZJ3SPaBxTSlJP64BnJxQEyypJJKk7JiZBFZmrJb6lNsOJWpICgBPqMgQJ
HOe9ARetyNoeWUqXJJMQPUR2n2psstKQkquWAVGNqkmRzk4/39qj4BnCNORbrRLi3iUgEEBJ5kyR
jtj+9aa/JIHloWD8r/2iisAWv5ZJMKEekiJB4ioETkkmKoHPBjkc/FEJ3T7e9UC5j1cfFNfIAyfe
IqA9QV1L0VbOuGz8ObZaQobBdXb6ymF7oMKAOITxwPcmsJ8Qm9OuUv6D0zpdkGkw15jCXXAfLSgq
3QPV6SoKiUlSiCDXlWOb5m/kehZIx/xj9S+1b8Qfi1rNijSl9QWNhaoST5dla29tvkz61ISFKySc
kwSTiqp/xk661TR16Jrmu2l/p6Njqbe9Y8wBSAUp2ECQYUe4EV58eg0+J9ShcvN7v6sstRkk9nSf
ZcHLv9RLvA+05+XtLd9Yc8thg7AoAxtBOOY+9aTmopWhtCitRQI3JSEmJJIxzk8n/Ar3K6owtXZb
I6xUzoWo6Pa2qNt68wtD74S5cMpb3SlDm3ckK3ZCYmBM1zDr58nyZSQlRVO0bpwOYmMcVo5uaV9k
ZqKi3Xc1yB247049IIB9qiOjI1crYCg2TK0woAmY9sVbM9V37a0uXCTchLCLYIcdcCS2naQg7VAk
elOJjH0rlxT5Le1FhZeIWsWU+SxYDzPPS5vtkO7kOghaZcCjyVEGZSVEiDmuwf8AGTpNxLaG/B7p
5gflHmXPJfuUBTy2Q0HAA5gApSvbkFW6fSQkZzxdUJRjs33L1W05djmeouv9I16zatx0Npdm5bMi
2tlWxUhLaPMS4SQDK1T5g3LKjDhEwlMc2dStiq3UrSrZJZdWtam5l5JIISQolICYMQO5mcRMeKUI
9Lk2WUk3dHTaP4k2+nFa7voTpfUFK89QL1htKXHP6htIEJ5SiNg/0xiufXrVqt1p3+CWQCGS0tKQ
qFmSd+T+qCB7Y4qrC421Jlc00lRlv9d0S51U3+ndMW9nbeW2j8n5rjjZUlKQpRUo7vUUkkTgqMQI
AvbPxIsdM1qy1rTfDvpZn8mylo27ls5dMvkBQK3EXC3AVEKzAAlKTHMnic4dMpP9jm0pWkUDmv2i
tQdu2enrBppbxdbZ9a0tiZCcqkgCBmZHNWjXV3TTNi7bK6FsF3Ljail9y5dlDxU2QsJBggBCxsMi
HD3AivG2lUi9S7o27TrXpBN4m51Hwy0y5alwqYRdXDbY3NlIghe4bVELEqP6QOCZlqvVfhxe3DBt
PDtdk22y404hrU3FFxRdWtDhKwfUlCktnsQgGEkk1HCbaakWMorlGPS+pfDdOq6vear0Dcv2bzDg
062Z1NSPyz5A2qcVtlxAM+kbTkCe9Ydf6o6GunV/wLw9asrcsqQ2Hb951xKyuQsmQDA9Mbe5PsRj
4Wd5Orr93yo66sfTVblINS0AafetOdPKN1cNoTbvC6WBbKCgSrb/AFSncmCcSDyM0xIOBj7160mu
TJhgYk/HeKUqBjvXRBgpOADIpDCicEUBIJzzH1FRJGJJM844oCRWQoQeDmpLeUTBUVQeTUBEkAT2
9qiJJPJn25qgZTKoJMUAEHBNQATA29/eaDmIPPf3oAIjgc/5oExkHjigHyP0n2FNIJEAQU0BGBng
nig7jgn7VQKJIEUkqOSSJHzUAApAhQOaiQQeRHtVAKRJHqPyZp7QYBOZoBlKkmMyDEiBUVBJIhUg
f2pQAjvMEdiakQdszMzz2+aAiP05A+9Ig5HvzQEgkJOAc0picRHxzVAEngjntRtKgOYnNQEjgZP2
71BIEyB96AkTJzEDtUYJEknntQEmypCgpBUFjit271e/vVJXcujclCEAhCU+lIgDA9v371KV2CDo
dYtrZ4OsLCwVJSkgrRCj+rEj6dxHxWJ15151Ty9u5Uk7UgCT8UQF5rsKJzvEEkZHHHtxSkQNoEVQ
CpUr1Zgcz7UBKCFUA0oK1elJJH96SkExAj3oAKVExMg4mmQ0GzO/fICc4jM/7UBYF1yf1kT2moqK
gNwXKqlFsxneDlR+napMuobdQt1HmISQVIJgKA7YzUCdO2SvXWH7p24YtU27S1qKGUrKg2knCQTJ
IAxnOK19oGAR3AJFEtiyabbSoSlpmIn2onKiIyOKHJApPJjI5pECQdx9qtgCR34+KlIwcekUQAmP
VHyaApQ5PPFAIkgSAYo5AkwRkUApk9h3xQAEkzPHvmgHMDAPPHNJJSDgf/dASmYM98UpElUTHvQE
twKRJkntUY2yUp7zkUApKYEc5NBBPqkRx9KAjCR6jkzimuIxiM81QRIVzxnNOIx/2KAREAcDHM09
p2CTnkVAIDdMkfen8wPvVAAhOEnB4oTnG0nM1ARhWU559qmnelW6fUIM+1AEHZunJpAcqCpnk0Aw
FKIIIn2qQTMkDvk0AFCoKR75pgKjKR8k5oAxuESZ/wAVElSlRA70sCSmABHPzNTJj0pElIxEVUDG
rjcRJPY0lBOQEgkdqAEAyeZ+lIgkxHbmgABOQYHxNCTjANAGFEQJ+lESZj7HNAMc5+tRO2YSk55o
AgQCfalBzAoCSh8gg0o5yY5+KABKZKSBPb3oE/qgz2oCQTHIPq+aUmYHc5zQCgjIVjuKSdscTJoA
mFbeJ7VIiDEx/egGFpVhQkTNIJzgH3oCYz6Nw2n3pqSlRmc8CKoFtO0zwOcUEcbJk44wKgHtj3k8
0RtAKjInFAIDcMJn3+aCc5TwKAuFXKS2lAtmw4mUzHKe3/3W4/rwc8oN6LpbSm0bNyLed3pIJIUS
Cck8cwRkVxKLlTs6TrsTPVZJtCrQ9IKrQK9QtUpL07v1jhX6vb+ke1VtteWTD25y0JbK90SFbR9x
n745xR8UiJ07M93qzN44m4/I29u80iAGG0pQolalEkfRUD4AocvtHXpztmLBCXitC0XG1RXAC5T+
qACVJ7E+kfM3p25K5Ju6NZy40ktEM6UtLimygrcuNwCoHqACRGQcEkZpW91pjdk81c6Yp+63JU08
HihKUzlKkx6v3BE96b+ZNr2NV19p1ltDdslpadwUoKUSuTiQTGOMVhg7sTPxVXBGMpmQTgUKAGMG
KAWyAQkHimJUZGRFUEYjEwR+1P0kekf3qAMZ2895pkFPqJiB+9AEnhJJJ5pFMqkCAP3oAIEcHHBq
SQNvYT3oBAHenEpHPxQZCgOQcge9ARORtWIHE0uVYBxinIEkbZAHNS2kwOKAQ2hfMA+9IhP6Qk/J
BqgcBMgJn70J/SZTB9u9QCiJxE80D05IpQAAGSJAPOaZISkbSD9RVAyFTx+rinG0bSn3qAaUOOAh
KTgTMZohTc8iccUA0pABk88Eiavek7PpS8unbTq7UNQsW1o/k3Fowh7YvJ9aFKTuBwMKBHOeK4yO
ai3DdnUUm9zodR8JNXGm3Gu9Mapp3UenWja3nXbB/wDnNNpJ3LXbr2uhIAkqCSkf6q4UoUPSDkcj
vXOLKsi8n3R1kxvHXkxpSZE8cUBhUblDHY1pZmYikBQIURNRUIglPHaqBEJVkjnnM0lpXJ4ntFUD
VuAE47fNLbOPvNAIpJMgCD7ChKSe/wBZ9qgCCFYFEZOYE1QBBkwT/wAUsE5V7CaAiEiCZP71Kc4z
7ZoAUmTgYppQsyUjj2oBgAjHtSUkScRH+aAQMJjmeKDBM7ckd6AjITmDzimkQBgT3oAEdzxUkDEE
A/270AEYwODnjin7DiKAAQlJAEk4qQE54E/SgGmMerMTNNWOBRAEQe5SB/igpAICRx2oAUhSTkSD
3pBGZI5/xQHbJ8NOtLq6sLGy6Y1W4d1ZCl2CEWTpN2EglXlDbK42qBif0muZdtnWnAl23Wk/07hz
8104Si6aOYzjLhnR6X4X9ba42LjSenL19JEnayqR/b6f2rHeeGvXOnLm56YvEKTzKOPtWUmociOS
EnUXuU99pGsW6Rd32mvMJdUopUpralWcx+/atHyFkDbBJOPc0U1JWjq7Mam3P0rSoGfal5SwASDB
BIgciqtwCUrUSNsRP2oKSYSEwOJoCRt3ERuSUk5EjmeKTjK2lqStCgoCSCIIoWmSDD6my75aggmC
uMCagll11zYhtRXzAzOKWKb2ElC1cN5A7AzW1p2japqtymw07T7i5ulkhDLLSlrVGcJEk1UrdLkj
dK2YHbZ23d8pxtSFtkhSSIIPcH2NYylQMbYBxRAQQZjtHEVNKFKkJEn2qWAUytPII+aCJAEiOxom
ALKhyDtVn3pFqAIQT3+lARLZAKRGe9RKYBCZGIroESlUDEmnEg7SRQDAJkf1R3ppSVGB78E1ARIS
IkAUAkEknnNUAUqO08T3plKTKuTBmaAeIyD+9RA9zEcHsaUDqNH631HSdVsNVRb2zy7BsNttvtB1
G0dtqpFVVxrV1cXLlyShClwVBCQkHM8fUT9a46UdOTZn0bqC70h11VqltsXTC7V4pElTaxtV37if
it7qHXLK9TpI09opFhbuNkOISU7vzLziYGcbVowZyDzWLxPxFJHSn7tFC4tTrpdMFSzuJCQP7Crb
SLLTntO1V67bdW5b2yFslOA2svNpnEzIKhBgZnkAHSbcVsSO73Lbo676Ys7i9utZ6bvNXbRZXAat
vzfkoQ8pBS24tSYUoIJ37RG4pAOCar9O09q+aDyGmGgyseYt1avXuMJBjAGD/wA1nBT65W9tqOpO
PSqR6B4b9EaT1L1SnUtZ0Ynpo3YTqCbRxO62YUrhresnf/SkKOe6h+qnrF7orGh2/h1do0+yYsNQ
cfL6m2VPBagAQ482lTigBCSncEjZIBJM55MfV023tv8AQkMiV0ilu9O6X1PVUP3WqaE3c3BfS9sU
pu2Lh3KCyEBIQJUAkIhPoEgCSa/R+i9Cd1R221fqXSG2mkFTSk3AUh1yJQCdwhMwFGZAJMGIq+JK
EG6fwo1jGGWSTdWTZ6Z6SWLzTLbVbQ3BSyGLm5uEstlRPrA9cAgwJUSCkE4xD1Pw905jRv4vpfUW
mOL/AC6VO27uoW3mFZc2kNhKyo8E5AITnuJ1lkcd3fbsceGm6TOKtrEPvFhV4w36SrcpRiQJCZjk
kQDxPJjNdtpWldFs6dquhXz1rf376mk2erN3Cm2bMJ9ThKF7VObk44mR6ZkVo59D3VmfTa2ZoK8N
dRf0S216y1TSnmLp55ryzqlql5sNpBKltlzcgGcFQAPYnIG/a9A9O2Gk3txr2rXK9TZZbLVo0hlT
RUtSSiXQ9O0t7iSlB2kgETXMpPpUkI1e5n6a07obS7N+71bR7nVL+HbZLSrhtNmlS23E+ZuSrcS2
S2tOYUU5BBit/q7ofw30Irs27+9VcJadG9u7ZfZW4VuKacQpKRubLPlAhQSoLKuP0jzzz5U+lJPf
7bGuOGN7yf8A2cDq/SmpaTpFlrbyWxbX5Wlr1er0x274IyJGc5xVEAFEQOK9iexgnYFMGFA59qaQ
d+QIEVQTSOBGBXfdD9HdH690z1JquvdYt6Rf6VZoe060VbLc/PuqcSkthSRCISSqTzEVlllKMbgd
44qUqkcS+yhsqSlSVAExHetZaVD1RgD2mtLOBBBgKmfiKWMAR9DVAECYmOwEUgDxiaAkIHqIP096
ChUgiJ5Ao0CSUED1QcUwIVgiRmZpwCQbIIITA5OKYTKt0GPbvQCSkzhPb71l2ykiPT70BFLZiBHO
al5ZUZA+RigJBmMEYoU0N0AEHv8AFAfRjOq6FedLaNprmg65ePaYCy/qFzqryLLa7+haWfJC2W2l
Op3ELIUsjBCk1Rap091T1g02/wCS3ZW2kqVb6dau3Plt26Ny3lBttaVLSmCVmTxkkyK8v/kptSlb
a28nuq9TeWnxpR92v9novQvjTcdLdaaTpnWHUOmIsbFDburX/mXF8NRX5LSW2wpkpW35TSW0bUKS
nc36iqABoaX4teKXXusPX3T91otitAcSpLjyUhTGApyLxakFQHcGR6iYwa9Wvngz4kvO759Ph6ng
0+n8LN4qia3XvT/hcz1RpWna7rGsO3ltsTrrLGqWKrcvuFwqNu8khtCCgNkbQ4gbpJExXH3HTHTI
XqujWGlaI5q+orP5B5i+datLNhpR3vJU+PUle3ClOAbQ5iSgj5uLHnbWJNeXaq7cnuvFBKSjsbXQ
Pg2nxIvNK07UfEDRtOZ1e4NvZfmnVpLqk+WNhAKltg+YgBSkbSASCQhUUWqp8LNE6av+mr7R37/q
aw1BLTOo2l/ssnLNJUVny1I3LWo7QlUgbTwTFa4HljmyYMuNxikuidxab91tUna2fdc/AzyPqjGU
PPdVWxz2qJ6O0XU3rfp97UH9Lukza3V3ZtlSpQUqTnHpUojcIykGAQK9Pd6a/Dh09bM2fVfW3Ues
Ojcm9RpOm2jSGbkNJ8sNr85RcQMhSgmCQCJJNevCsbT8Z79qvf8Ao4yddLw/nZz+qax4a+Iaen9F
Vptt03/A9OTZLcs9PP8A+4KSVKL7qgSrzFSkGZEAkbRArYuvA/p+0ub68b1Q6nZ6PaIurwsut2qF
ILoZ/luLKkuAuKbG5G7BUogATXzs+oyYW4wjzbXevzsevFjWTfI9lRdLHgLYdM340fpy6s7pDT7D
ydUvvzy1L9RbW2i3CU4TA3LlO9aSCAlQrzbTV9Lv2Nw2jpm4u7a3uVOvXqGlNONtmEtJUuHEoCjO
Nv6jG41nosWpUW88rk/LZfJf7LncE0sa2Mmo+H11aN6dfXTjWjaZqV65btXdyyvYhbW3eFbQVEJ8
xMlKTJBjIIr0HwTuuqb2/OtdNabqWqahpDbvm3GmtLbcZC9qUuKdSFnarzHN25AG1MbjICfZPJm0
76oqpR7nnhGGZdMuHycf4t2Nrb9W3xtOitN0byXiLhs3dw+XXQo7yVOFPJVlKUpiBAA5w3/hde6d
pmj3Tl/oz99qaw4m2tvzL1yw04lJaK0oBCQAklIHqwuZgVzDP4kVJ9/Kvz9zpRS2jwVI6M0VrW12
N71DbIYS55f5sWlw20TEzK07kiZGUgyOIzXd6boX4e2W0aXqXUq23rgKC9QTZuO/lwCcpSHUhajC
QJEQSTXzfaOb2gq/Rxtd919OP6+J69LHBTeZ78f7O06h8LPwtXVnp7HQ/ilfrvLhhxF23qzaWkpd
Rnc2pkOSkgHC45GSZjF0f4CeEeu6eNdY6utdQaZuWG27JS3m/wAwkGHPMWEEsyrYEGCkhZkpIisN
FqtdPN4eqXTF8Ot9+2zkvPf596O9TiwKHVi3fx/6O+8QvAXwL07wkvbvpgW1z1J02+49f3FvdO7X
7VVwltCtjkgSA4UCE+kZKlAiuNvPCHww6G0/UV3jGj6vq2qMm40vSL/Ui69aWy1rQA4LRSd1yDsI
TKQEhSlJgiNYarV45uDXUm3T4pUvNb72edYlkVrb0+Z5zddD+HOuW+mu2IsbJ5p66Z1NLOq7WkqA
R5ZHmg7W0lRlQWsqAXEbRu896t6W0zpu/ct7PXtPvlBYWhu2JeS3n/01LUEyRjgEGe1e3TarLOax
zi36tfu9l9BkwKMXK1d+Zz6LJt9L1xcv+QpJ2JbQ2CSsRgiRAiTPumKvleHGvFTN0zY3T+n3QQtq
7ZShxCUKUnDqwrY2oBSdyVKG0kAxM17Z5446UnyYRxuS2NQ9IuM3DSbq6S4kFJuDaAPllspKiqAo
BRCQSQDAiCQcVm6Y0vp3UurdLseob1dho79401e3TLcllhSgFOQTyEyYntXWLIpy34/OxJwcI33J
dZ9P9L2Wthno3qFOq2F2t1Vv5ramnWG/NWhCH9wCQ4UJSs7SUgLTmZA0NO6XuL5bduFIQ47tWnzD
tSW5IUueSEkGQkE4Psa66q27nEU2rZl0Do/W+qPzD2i6S64xZJQq7eSkhm2QpYQlbi1HagFSkiVE
DNdrdeF/Q+lWly1qXiZp93qLmlW93p9vptu4425dOqANq+655YZWhJ3KMKRggKrCWaprHHn9tr3+
Jqsdwc/I84f0h5lO9amwgkgHeM9+3/fFZXNBvba3Re3dqEWyykAqdSlTgO71IByR6SNwBAMTyJ28
RHCi2ZXNFRuukh1lr8mjesLu0ku+sABshI3H1A47Aniuh1Pwl6p0bRP/ABHq2mnTtKcbZcbvH3Qt
t7zUb2wgoSd5UkKOONqgSCIrjJmWOurudwxvJbjwjMxoPQ+v6K0iy1JjStR09gm4RcPOuqvjvJUt
ADYSlQQoAI3Dd5ajMkBWCzv+gmOn1aPddNvPaiX1rTqX5wohJSlIQWwIgEKIM/1ZGKinOTaqqEox
STTKtFnpa1rQ9bJSlC9pWi4SSVEEJgGMTkxXrOn+EvQug+FFx4h9SdUu/mb+5NhpmkItUrcuv5Sl
edKblBDaFBvMKyRIIwfNqtU8TjCKtydcfM00+JZOqT4W5zmieHDmqWltqKPy9npl1/KXeIumi8U7
1Bc25dKlKkDAiEpCuCTXoVl+HnovSrJmx618QFaNrD6be4RYCyQ884hYJKRtfAbKQQSHggzgRBB2
yTcaUeX8e3yMJdST6Y386+p9T+EP4VrXovoG+e1jWdTvV6tcWtxoGkW1vsc1htRCm1PFtTqNn+hM
n1CeAJ+SvE/wg0jS7y7u9U1JzTdTuEvXCbFxtJcS6X8NPeoeX/KJIKQrcQnA3en4eL2pknqZRiri
uednva+lP5n1P0kPATfP8bfzZzVz4H6W9p2mXlp4h9PtvXml3F88zcuLaU2+0pX/AJdI2krUtIQU
qwCVwYiar+hfAvVerep9H0Z/UrS3t9Tu2bdy5bdS4W0q2lRCSRKkpPEiSInvX09T7SxaTA80358J
nkxaTJmyeHFeRY+IP4Y+vOitV1xl22YuLDRdQesnH03bIWvy9pJDe/ccLRxOSRMgxzeleBXiJrrf
5vSenr24tFvC3bcSws717d0AbZ4iTEZHvXOH2vpsuNT6v+zTJoMsXSX/AEYEeC/XNwbRVvornl3z
qmGHHT5aCtJAIUpUBMTkqgCCexqmuvDfrOxYVc3Gh3gbSCpRDKjCQJ3cfpjvxWq9qaVunNJ/FGb0
OerUW0Z7rw91Ra13GiC6u7D/APhPvWi2S4ABPp9QmTwFHAmlo/hj1T1DqlnoehWDl/qF24GW2EpI
K1mYCSoAEQOf+z6J6vFBNt7I88cbk0u7M914YeIenaXqV1ddOagzYaSpk3jq2lJbZLv/AKe4kQNw
4rb17p7qPqRem3iX7V38zYBxJN4lRbbQpTUOnAaI2CEqIMFJ4UCeY5MWVRzwdrs/jR24yx9UJLcq
+pOmOptNa07TdR1GyvEeSXWEW2pNXCWAVlJSrYohKvRO3mNp71uaz4P9YaH0tadXXTFm9ZXanBts
71q4dZ2L2EuobUVNgqwCoCTxXrg/E3vt39DztqLSXcpbbovqC5s7C6tbVt7+JXDltbMpfQXlOI2y
C3O4TuATIG4yEyQa2NS8OOstJfNtqGiutFLoYVKkkeaSobMH9UpUI5lKhyDUk+hJs7ScuCputH1L
TbkW1/ZPWzpShwIcTtKkKAUlQB5BSQQe4INek+H9vq73Q3VnTum6RcXT+smyQA0UEpDTinCSid5G
BlIIHeJE+XV4/Fgor/8AUfPtJPt+eZ1Caxvqfk/2OfvvDTrC2t7i9X01fli3UhLzv5dWxornYFKi
BMGJOYMVrX3hh1fY2Vjfvac2Uak2t5ppFy2p5CULKD5rYVuaJKTAWASCCBBBPrmvDvq7cnGP/lrp
78FRa9K9QX96dOsdGu7i6Slay0y0patqUlSjCZwEgknsAamvozqcOptk6BqBeOA1+WXuOP8ATE1z
1qursVxabTNG+0TUrF9VrdWjiXUYUAk4gTB9j/1rWFjdKQpxFu4UAwopQTBM4P7H9q6bS2IZWdL1
F9aWmLC4cUsgJShskk1m/hGpJYVcqsnUspX5RcKFBIVzE9j8UScuA3XJkt9Ev3mk3AZKWPM8suqw
gKidsnEwJr1TWfw6arpXTWg6mnqXQ7rVdeV5jenW+o2yy3bqVtbWpwOFIUpSVygwUgJJ/UBXlz5/
Ca2Ztiw+Je5Ydf8A4Uuv/D7Tul7zUlae451OwHGmkXrRLai44lIwoykhE7x6ZMTIrF07+ErxS6ht
7XUrZnSv4Rc3501OqI1NhxgXG0qDY2qKlLIHpSASoqSBkislrVKKai7fajeWilF7tUVf/wCnPryy
RqVxrlmmwtdPFy1+YStDzS7hlwtrbUtCilvIJ3KMEAETuE3PRP4U/ETryy29MpsL3VnNrjGmt3bR
W6wUslTm/dsBSbhlJQTunzJA8tUdLWQkrimyLRTb5N3R/wAIniXr+g2fUGi2iFWztq/c3Tt7/wCU
aYLbqmyhK3CPNmBCkykqJSCVCD0ulfgZ8TtX1m1t7MN/wu5W0EXTm1t8trQhQc/LKWHAj1gFSoCT
+opOK4euguxVpG+5zKfwjeLy9bRov8AYQ4tldx5rl8yhkNoVtMulWyd0JiZkgc4q7e/Bt1pYdU6z
oGsOlq00e3vlJv2GhcN3NzbNBRtm/LUoKXuUkKCSdiSVn0pJGy1UHB5P/VdzNaaTn0Hlehda9Yar
fXCtR6nvrxTbRLdo7fuNt3HYNJCCCc7SEiP0xjEWuidWWDydfbca1lSryzBtWRf+apu6SgFy4cBQ
dyAlLkp2jalQ9Upk+ZaTDhTWKCXwSXqdrNkddUmzf6A8RV9POnV33bdCtJ0+5YtGWFJO69dbX5d0
ptSSCUkNlRSnPlJ3GSSZ+G/V/U3Tl9qut3LS1W+taNf6e0q38poXTjg2JEr/APUSHFtlaUyraCMA
SM3p8fvUmrVf2bRzykoxu0jk9F6h6QvdS1C46zbdcecYuHLe5sglJRc+S4WRsKdu3zvK3H/SFACS
CK97qRfVV7e611XrDHnrOyGrFAdcUUKhYCQhGChKVSZhcgEivStPFTjl3tKlu+HV/Hhcnm8ROPRd
J7v5F1094v3HTWhu9OWWmsLsb0fmbtNwyl//AM0hLyG1ISQAlIDiML3wQSCAoprRvvE9q903StMP
S2m2Z095p9N201DzqgB5m9SYUpKlBJCQRtAjJgivSQcutNre9m93xvvxXbgzWRpv6Go/1XfM/wAI
2Oade2unuOXNpbmxltK3FArbXuSN4lKTEkZwRJre6113Vuq+qka9r2m2ANy4ygmwtxZ2z6wlPmDc
vCVcSeAZgAQK5WGPXHJbTV7Xtv5rz8jR5PdrbsZte69Vruuam/ZaFo+ltXzaHbi3WoKQotIEbVzO
4mSAmASqIjFZf/FjusXhbXrumuOOo/Jht5ha2Sy2olB3uepHpShKY9RiDEyeI6NdKxtt7c3v9SeM
4y6l9Dpx44dQ9OIau9P0DQkKt3G9MuEL022QtbVvG1DlsreCrCSXFJJ3AgElM1h1Lxk6YR0S9oej
9DaP52r3Nuu7uXt63UBhuNqWx6W07nISpCwo+WZCQoprHTezlghKKnJt97W29+XyNZ6lzknS27Ua
GseLeo9UvWHSL7NnqujsNN2Wlac6461a2SnQjzVNb1hLSypOVGQSSSTEmu6R8Rer/Da9sdf0jSv4
ZcaM4lxx63ccYef3/p8xQXJHpUBtAxNepQyqaySyy6tvLsq8vm/VHnqFNKCrf7uyPU3jj1j1f5yd
RtdMuVXVwHW1KsULcajakNplO0AhCJgSdokmTM7K51B1TOr6h0Fcvi6cuEllAebSlFqynz/LVuML
SCtavTDc4gekMmKMcfRGXT9P6NIT96+ks7bV9E6e6Cb6U1jpHQLbWLm7cumuok6o46sttt7vJWwj
zG1oUVJSk7QN6CCfSrbS6hq3RzdqhLWs27iXA3doaas/OdSooO5hxxaEBJC0BOErTDm4ExB8uPT5
VJtyck3a7UvL1S/k38THFdMlv9RXt54eP6whVnoF7bvPPLQzZuulu0Q2fK8hbiipbh3J81TkKGVJ
2kARWDRvEROiWtu1p/SVgpDTqv8AzS7VD7ryslKVFYUmQFR6QmRG4GBWy0+WcejLK+PT69t/kZeL
CErijMrrTRdSeZ1vWLNK9PZDNo/pKLkofvthUtTri0JEQVASYMHaknaSKPpu+1ld40nRUXSNT1Fz
8paXouywlCVDa4kKJCcpVBJVACjPYjqGGWJO3sq7fXv349K7nM8viS25fr9Dp3P/AATqTenXGlpX
oirO2Fypy9vPzC7taXQlY/kolBAG8BQBgKyRsB0ndL6SutMuuoLJ/ULlLrULYaSFP2V5nYXFKgrb
XtUqUcTB4TvnVqIxe6v1VLd/iL0429kzmtZbDOqWxuVhF8AfzqC0ppTTwWpJQsKAAUIBJGM+813P
WPiBf61qzWu9Ratfl5Tyb9rT0uOlpJdUolaFFUowhk+mSoEHcCMd5sTm4tdrJiydKa4J3PVHRfR1
xfI6BttQ1C9u2Et299fONLQm3eYIeQ42AZXCiAZSUmcSAanp3VrvT9jbavrjNu/d26f4clp5hlxZ
ZSNyHG0bQpsoB/Wo+oLCU+kKjzYsWVxU8qXW+29UayyY7qN9JxV31J0/Za8u76YsdQs7NF61cWy3
LlP5thDZMALSAkqO6SrZykQAJBsLLXOjLi1urm+fvf4u5bqm4umPzCXHi5MoAUnZKYBKwv8Aqx6h
Hpliy7SVdXftt6fMyhkgrT47Gnq2odOs6k/Y6Dr2qr051guKeNmGllwoStTZaSvaEeYI5gQDBitO
0t9GcsLt+/6ndZvbbY5YstsF0PKUBJUsH0QAPczAgZI66s6xp9Ccttr9d+3ZfU5axuW0tvgY16Mk
s2WzUWX7i+Ura0hKlONbVACQAZ3EqERPp4ggnct9AuNX1d3RLXXrfYNxS4+TbtrxJhKojPwD8Unm
cU5OD2v7enqSOPqaSfJbaL0LZ61rA6U03qrSV3j8EXTtwG2CoQPLSVAEqJUYzkDitXqPSHtK6juu
jl9V6VqFpplx5H55D6jbupTiUFQCikQYx3gc1FllJ28b8+30/NjueOOKTgpp9tuPj8DetbS9ZurN
jT9d6XcRp1yVpunSzsK1oCiVeYnc42lLcAEKAVMZXnn/AMipd41btO29tcNrQPMcdKEvFSipLoKg
AE7SnJ7Qe+Liz9fMWtr3/b4/AxeFY26d/M9V07wWZbWjWNd1HQDZ/wAKRqlpbWmpo3aiF3IZQ3O5
XlkLUUqB2naieTuOl4geG/V3STLWv9ROaLavPEpYsV6iw+6i32JDQSwVKVsCTAVkwAcESfl/+TjP
LFOMleyVO/xfY+j+jlGDaa8+Tn7bRbvpe70K9uU6TqrT6W71VvbXyllSSvLLgQqUKITtIHZXM8fT
Xgr0vqPi31BoNn0TasdMdWK1C8untUuH3d/kHy0hCVLKQoNIUr0p3LUJxiT6M/tHow+JjW74vZ7f
Hn4dzxrRTnkVy2XNbnr/AOJX8QPiH4T9IaP0P0jq+jaJZWV2rTLa3SWri+uGWAlKL1Y4bUpSFgiA
Y/8Aln5G6vuOsertUIZv3brXb+3W1c2MpufLkN+pKjIZJTtG1JKkBJBImB8v2VqIS0/6nWLpck3v
2S9O3O97n0NTjnGShh7bfU8rubHqBx/UOmr2/slK0xVwHNqm7hSy0glQQ4iSpMMwFJO0CMwc6PR+
t6/091Hp2saBePNXlrcoWyptRCtxxAj3Ej7kV96ePFmwyhJXGS+zR8+M548iae6/g9H8c+u+u9V8
U9c1a1uFNJ1W/eu7X8jcuOoWlxSglYVjeuOVlIWSnMGuB1y78RLG9ea1zVNRTdvOhl9tTpKlqQIg
jvACfrjmvLodPpcWKOycq71Ztmz55ylJbK+3B13SHiX4uM/wXU2ntQu9K6VfVcIQVLS2UKclaF7V
J3JUpUEbphUAiuo8Uur+petLHTdS1a71Kyudd0+Lq4eQQ9dXSWwC3Df6rdaUwiEAEqhRO1Shnk0+
h8eLio9V0/33o1x5dQ4tNuqOBHU/XSei1aBc6dqaNP0138sw6HXW0W7srX5cZG4jzTGD8wmDzVvr
fVFsm3Kbl0ofLdyncwVElvekZUPUP1SASkyAZIge7HDFFPe7fp33PI5S2pU0bOqa3rF9evWCdFbs
HGEtMFgIdSUutpCVSlRPrWpJKgeFTAAxXoXgj47dQ+HD9y03ord/+bZSCzcMFTBSlSlqc2ISFJcE
NlLqSFoLczGK5yYksaUJbqjXFl9+8i23RzPVfTukKQ91P0jrJ1OyuUqdctVpUzd2JKlAhaYIWnBh
SFHBG7bxVBoHWtz05fIS3bNvW11bG3vrW9Cyw8lYwpQSZO07Vj2UkGDxWsZSzRab37/3/JlkjHHN
Sjx2O313xtttS0pnpTpvonSbPQLRxK2m3bBp+9U4oALP5kJDhlQKgncAngQK4wda2ytVN61pTDVu
EJSsONeaVKCEgqKSdplSSqDj1EVtkUp1TqlXz8zOMox7d7PQtI6l8MOrNI0bStN0hjpzX9OSl1pa
wXWL++3JA3LguoQUJT6CVJCwohSAoiui6A8c/FLwh6/X1Ki30n+IPuXC3nnLC2dNyh8KC1JWlMOp
IUSCkkcdjnLRajNgm4Z9/eteq7XVDWabFqcfVjtOqfoLxV/GH4h+J7L1hrA0tiycumr1y2t7JLaX
3Gmg0hLm2CpIQnjifrXl2r+II1Xabd670lX5YsPotVqfbeUlpISsBwyjctMq9RicARB+prtZPVzW
RJKlVL0+O54tHpIaXH4Sdq739S28P+qeofDrq5GsdNjS9dNqLpFr+cskPthYalTqrd2CgJCpClp2
gpODBr0TQPxI+J2o9UM63quiaX1C7d2CLA2WotWzdu4lpSRKYSnygA0kQCCohUqIJSfl5f8A7Gny
YOOpLfuvge+CcJxnzX3PKdR69vNYTbWwu7fT3dOfdes0q022dTBWHf5lwlAW6dxXG8KwEpGDAxdK
9Z3Oga1Y9Q2XS+ka89ptrdM3TN7ZJuLN5LoWjzlNgApKQ6kpJyFISr4DBjWGr+fO/wDQzf8ANHZ1
8OxvdOeKOsdPsAXGouMKGoW907aoaCHHdijuV553FCkBCEgFJELVjndfdTeJ3WfUrV1daRrGuXtg
9qLOpq8qzT+UZ1d7aUp27SAoBDiAQZX5YMASB6o5ciXTCkv+/wCzJ48b3fJQOaF1ZaXWq3l1ZPai
y3c/lXG3Hw2+HHHFoCywr1pBWk/qSNqlIB5E21nrdg+z/E9Utbg37wetdq0IFvuDYQgpQhSYUncp
RJTEpQTgqnyTlHK9ue52oShvZhu9X1HT7S2vrpKL3T7dg2rVtqbaNyFuIWZShKwvaF7iFwQDE5gV
2PRfVHSmiDU9PsOtOq+nL1KlrQtu6QWVGEhCVtbErK0tKuUmMFRTkAknbD/x5ISh2fx+gyLxL8Tv
RvWPhQNd6kfs9P8AFa1b0VzUm7NjUNUX+WurjeAoOBhxQOEqJUN+1JTkztJ9P6J6S8YPDbxSu3tJ
6J07rMOrRpdv/GdN/wDLv2G1Fqy6HfM2soPnNJ/UCmU+1canRYs2CUsk+mTaqu/e/Lt+4w6nIptQ
4XL+BfdUdT2l51Q8vUehOhtOXotxZ2t0m4ubsaewkLK1MtMMuKV5ZcQ7uDaFJXJWYUUivQeqtf0T
xJ1rSL/pLrDTOmLXSdQY05STePuWb9xd3C3lXKLa4Hot5bZUoEjaQkEE5rOXsLPjhPFky3KF+W9d
Tf7Vx3Rvi9qQlJOKe9fel+zO91/xu8OvD+5ttK8U+jumtQv0t3rY162sZavHlFCkugIXtMg7idyc
uJwncSPlPxd8fb/qPqhrr/w6sNH6RtUX/k21tYXpYcDyW0o85aUrB2wowuADuUMwa+j4uB+zf0ku
pNUlVVzzxfwv5nl8HNj1bzJpp/H+9vU+U7xOiaRc3dtrlkpajapXY/w+5SpClrSFIUpZ3SgAyRzI
2+kyRm6Y6m6XGsC56sb1J6yCwXbWxDbarhHpQtG44bJb3jeEqMxgySPD0TlG0zRSi3uqLzXda8Pv
Juha9K9TaPqDN6m2Xcm/ChbWwQpItlNlIKlkI/VuQML9MQBzevXfQ63mXemHNcty0lwFVx5aytQc
JbUnZt2HZsCh6vUlSp9W1OeNZ696n8/9Gk3i7Wvz4lbplpZ3wcevrG8aZKHfy5s2CsOuoSCRKjEJ
CkqVnA+orZv7LpW9s23dAd1FldrZJcvvzhZAU75hTLQSQophTePUqd6jgSNnKaexkop8lpYK6N1I
M2WuX+oquUsqR59vbouFPEMkMgFSk7UpUltO2JAKju9KUCutU9JWFjbvfxrU2NVFy4l8MsNlpNqW
wElKwuS4SVgoIAAA9WYrldduL4O2oPds2tQ1Poh3V73TtMF45oSEn8iq4bLLoX5YT5hQla0pKiAp
SQo/pABAqfVOl9J2Tbdt0xrzF+HbZNy++5brY8pahuLDZUpW8JgDcQlRVIEpgnmcsikttvQJY+lu
9zjW1NoK1JdJI/Soe881aaDYao7fWD1vatpF3ceRbu3aUJt1rG0EKU7DYCd6SSrACgTArd8bmKW+
xs6+jpm2ubdfS713eh62Dly1cNbfyj+5XoSsE+akJCfWQmSojbiTWNazeW9ovTkqb/LOOh1TKkJV
6x3k5Htg8fWuYJte+V0nsdb1EPD61Om3ugaqi+ur1zzr1gMqQzbJcbQSyEuJAlKy4AoLMCPbcaG/
1HTNTvdR1BaW7UuXHntNILiiEKUf5SCZEAKH6uyOex4xeLKKc1T/AD85O2oR91O/Us9d6ga1vT72
8sbyx0y1Rc2/laUyhba3FJb2fmAlI8sK9MrIIO5Z2iJiu0bS3+oWtWvn+pbG0csbb8yE3jqw5eLU
4lBaaASdzh3lRmBtSok1F/xwdpuvvwWXvtJMVvo1ym+Ro1zasWV6XnmVvag55TaFBMFCt8JSpJnn
IJHxUdI6cOo2p1Z3UbC2smLlpm6UXUl5pK9x8xLMhTiQEknaDHpBjcJ0eRRXV2OYwcnRu6fo2lt9
OXPUetvpdDxdt9PYt7xoLLqQiS43laUAOJUCUgL2qSFSDFUzrVrp7u/TdNQj0NlC3HlFxtwNlJWh
SSmJWd4HaEjMGZHqm35B1FLzNZ3UbjUHD5/lpJQE5EYSkBIkfAj7596uLXprV77ppfUGm6de3Flp
ywb+6DCgzbKWoJQndMEqweAc94rqUo417xEnN7FbcpZ07UVfw+5dUygJ2l1ISpaVJEpIQpQzJBE8
c+1Xug3/AFFpWgamzo2rPWVvrbLlretLHltXTDSm3tgWTCiFpQdozITEzFcTUXH31yWFp7HPWtlq
Or3ItbG0uLm4cUSlttsrWqASYAzgCrpl3pNre7c6bfuNiyLaCm5QhQvCgQogpMthYV6QASCBuBzV
m23UHv8AlCFLeR2nQ/WHRVt1Lp9x1/YJv9EefQvULHSrRm3UbZbhcdbDu2UrBQjbAICSQCBINT1t
1FbP3N70909p7aNMcvV31gVhDt0y04iEteejKgUFO5JwCDgHcD4o4JeP1N+7XF9/y738j0+Injar
co76x6eubbTNJ6be1C4v7lA/O+fbIQj8zJCW2SJVtggSYlWYAApWLWlp0q/0q9dQ061DwK7dAdFw
khvYleVbIWpRSOdgMYmvU3k6eN7+1mCUb9CnfudOCW1RcXFy6Vm6WsBMndgJmcwJKu+6IxJy6XqT
NsHLbUGLd5q4YFv5jjRUq3T5gXvbAIhQgjOIUR3rWStUjNNJkz1BdWF/du6E+9asvlaQUHary1IU
gpJ5goWpKhwZNYtb1FrU7lty109i2Q2w00UW++FqQhIUs7iTuUQVHtJMAJgCxSXK3I22+djWYvXL
K5Rd6c49butub2loXC2yMpIUI9QMGRFWFwzp5AcsLy5fbMJWt23CPLWSeYKpwntzn2qv0IjNao3/
AMi7tJbXcNpW8pHl+WiSIUdpKZ55P6Tg13F9/wDk6u0tbjR9L1r815KTcWbl8khLgWZhwM+tJQM4
TBI/VXnyudJYj0Y1B31mE3dneOs3mhaNcaUu1tiSti5WpAX+gqTuAWhKp4JVlXIGK9Z8O/wodY9d
2TGva5bp0jp++UhbGuXqvLYXLgSpKSo+peT6UhSjtgDM183V67HoIrxHu9rr9z0Qwzz7Q4XY9G6Z
8I/BrwovF3us9Z6Zrd5pF/fafqVpeKQtg+Vyq2ZG1x5SU7iPMLKSspSkq5rlfFP8X3iAm+Y0bRbO
z09GlPODTnU6QmydQ2pYI8tAI8g7Q2JQAo7RJyZ+Zg0eb2jnc86qKXbv8Hv9qvZ+SXvllx6TFHpf
vPt3+a/P78m638ceteuBu1Boli0tlouGGm1qabKnlqClLUtS1QVo9RVJIG6ck+aK1a00y7U8xcPX
ZUp5t5bbimkOpIISUmAoAzJBGeK/TYodFRTtLY+POW7lwVd3erffTc2DTrJU0ErhwqKlbf5ipjAJ
kx2Biul07qC06P0Eu9P3pd127XC71LRSLJkAgoaUTJUrckle1JTsASck13ki5JRXz+Bzjl0PqKC4
U3avpu2Bc3jbjAQt15tTWx5TfrA2qM7SVQSfUBJAkgZbW0t/4zZ3r+kX69LDzYeQqSpW3b5qQUgH
vjuARnvVtRW+xyrbOm6Y6Q6k6vTZMNa+5abXSNl95yWbO2bTm4UuClLaZjHqkgAEkT1XWni4jSks
9H9MB5/QNNtFWrD90hly9U7tV/NLjjSiiXDu2pghEI3SN1fL1enx6/LHFJbR3tefbdU99733Pdgy
S0sXlT3ex5bpfVmv6Gu5XpfUV7aG9Qtm4LC1bnELQpCgriQUOLSROQSDg1b9Aafr3WfVGhdH2+vu
MC7uW7VnzrtbTTIUvdG6FBsSVGYIBJJ719PJHGoe9FNLft5V+2x4oSk5JJ0dp4jeILekdba/b9ML
Wxp7TI0yxXbIQj840gpQX7kKBK3XEBSlL/VvUTiSK0ujfGC83iw6i6p17TkKWzY29/ZeW67ZaepS
k3DYBCVrBbUQEBaEmVA4Vj5n/jsWbHHL0+9s9/rXw7HslqZQyON7LYtutOr7FnXtP1vpDrTUX3r6
5P55m3sbbTWVJSEyEt2q4SmXHUQYBCdwMLKUVniZrfT6epdZsre0btrnTtcXZ2yru3BUmyQ4vbvC
Ej1JgBW4LKgoBO0IhXpUHPJG1T70cScYxaTtdjkNQ67Qp7VLrQtJsdJGoPJQba3bDjIYBCtiQ6lS
h60JJ9eZjbE1m0/ru7GhXXSul9Naa21qGx2/uAyp15xLQ3Agk7UJT6lQlImTuKoEb5NNGa5aVp8+
Xx/0ZLO72S/7Kx3X7bUbNFu7piFXyFIat1NgNobaCidgQkepRUo+pRJ49q6a+8SLe3uH22+kGLG8
ubcW96pm5KUrcKoWpKEgIRubJBTBCVKUU7RCE9SxOS6bJHJT6mifWz/T9zco1PQuhRpVjpxRp1xZ
u3brzv5hAClKfXjKzvA2hAIQYAKVVZ6Z4leGmjX1xqV34U2OspfaYXZWtzdvNNWi0+h5KkoMOBSR
AVO4BKFEle4nJY8mTGk5+93a/hO/5NMuTH1uUY0uyFZdfdFaBot1Zu9A6Fd3+quhSvNW48bO1UEr
SGn0vHa5JhQKJABSSSSK6xd4/pum2et3Wi9H9T6JaMll42BWVlu4LoS9cKCUvpKXnFCHOSlAKVJ2
T55aeeO8jyPd7cUvol9zWGWLioKK259Tj+seofDZ8ITb6CTd2qVM3ItFpRaXDqFJS3sCUoUlPlhe
5ZSVKWrI5NUOi6QhN4nVVdE37unr8pjb5rkJdfbKmzvbTM7ZWBBkJ4Ir0Y4TxxTlLnzMssoZJe5E
ydRdT6WlzUdIHSbDLV4+XGb64W49dJaUoLSvetKVKKk7TuKUyCcCavr7rDoJXR+kaHd9LXTOqaba
sli8s3/Javtzri3S8hSZKxvCA4kwPLIIV+oPCyKumfrv8CKcLblE53TupOn9E6htdT1zp7TuprZb
O563Fy+0glaMJJEKCm5iRiU8qGTgsOt7exF8bS2uLNx2Py7rF2sKbSD+gzyNpiY7CuHp885ubye6
0vdaW1Pd36rYiy44pLp3879D0zT/ABz6bvdCsbPqvw4ZdZ05parV7SnmbN9SngGnnHnEoJXATLaC
AlJ53A5886b1rQrC7u9Udtbt9pLTzCW1XxaWkPIU3vSUxO3dkHCuCCJFaL9RG+mS2VLbh+fO/wDo
OWKSScd/jyvI66/1nXNP6faVd2esaxo2oJub/p4u6glT9klt2VvqCAqCQFBSFQMlREFKqw9NeIzv
SPTSHV2/UVs/r7Ttsq9TdOMtm0TDcMwQlwGHG17gQIxmaq8V5OtyXalXCXz7vfg5ksag4qPN9+bH
051r0k2XG+qUOuapbutqYuFtpetHCkhCUvwZLIBKyUpUVcEHBHo/gx4m+D3Ttt1Sjr/oK81dDlk8
xbarpj7hbsrlRR5C0oWQEiUOCVZO/AG2us3Vkh0yfe/9eZcPSsik/wA9S4648bvCbrjQek9Osuib
uwXoenqttWNvfLSq7eWpUXC3FJXsbSpSCoc+ogRyPIOvF9KpvVWvTa7htqxskKL5u0vi+eUUhKkB
AIaJSSrYpRKdqhg+mvLpoS09Y3uqr57fZ7nozyhmfUn+f6PJNxW2dy5Uk/6e0e//AHzUUqMlQBkC
K+kfPGsrCFbCJUIUVEHvyD/2a2n9Wcf0210s21oym2dW4H0MgOq3hIIUsZUBtkA8SY5NTbktljrh
uNQZ3M3em3LGlhNk1cWqG7fz05IV5ZSlxxRkytQKuAeBVXrFj/CtUudOS9cq8lWwl9hTKpxyg5H3
7e3FOpye4qjVbKylSUBKVI9XmFW0gDsM/P1xTTe3Is12guVpYccStxkKIClJBCVEcSApQB+TSr5F
m7daQ4jRWtYtLZ5LLZQxcPOOJKS+srUkIGDGxInmCDJEgVjtLq/ubRzQbK181V1cNOBKEFTilpC0
pCQPfee08fM8xqS3LTTNDcUpIQNwUmM8+/24q807UNZ6ctFXSNLCU6navW9vcPsE/wAtQLbhbn0k
wVpmDBMiFAEdWo0QoVqUYAMYnBrZv32X0MeRp6LXY2ApaVqPmq4KjJMZB4gUadohrbyDtj/cVvC9
s7lTz1/arccUyUoFuEMJbcAASogJgiBnAJJme5rVlXqbNs5bN9PuIZsQ5ev3GxTylpUG20hJhKIl
BJ/q3ZEiOZwDWdQRbuWRWEWq3g/+XClbA6ElIWBPICj+9cdKb3K/Q0nrm4uXlXD7i3VuEqUpRlRU
e5n5pJdWgrCVwHE7VY+f+grujkm4zcWq0h0AEoS4ACDhQBB/YiukuekHhoDvUepahbsvrvGEJt20
pKNrzZdC5R6UwAPRyJiBEVxObitlZ3GLka6laLZa2zp2r3q9S0uweLJesP5anmQsk+WVplO6VEFQ
MSJGIqCn7W6fb0XRdQuGbZ4oKnLxflpDkHcYSSAmY5k4GRMVzVpNrbn5lcl25Ks3RDyFrCPRCY2j
gY/7/erDUuoXNZ1l3Urq0ZaS/cecq3s0hhpIJyltCRtQPaBj5rpwTdnPVtRn07qy+0pN6LBjynHU
+W3cea4HrcbwolKkqAKiPSZBwpWATNUzrqQltaXCtQyRtwkz88/tRQUXa7hzbSRYJ1HV9TLbKVFZ
Zac8tKGwNjYBUoCBwBuPxmr/AKN6rvumdStdZsNbuLG90p1N3Yu2dukvfmEmU+rEJGcyeRg9sp4Y
uPQka48jjJSZv9XeJbutua2NF0K30rStXuEPLtW2wUtLClLCQqAeSqCcwAOE1yOmdRX+k3Iu2GbQ
nOHrdDiTiOFAg/8AOe1cYdIsWLw5Nvzfyo7zap5MnWklXp62bT/VnUOodTHq4FhWpm8N8XkWre3z
t+/ds27I3f0xHaIrCNYRp2oWV5Y6Y2l6yUhxSLttD6XXUwVb0KTtKSoH0kHBgzydViUUku2xl4rb
bZoB7e6p3yWUkq3BATgZ4+lb2ravda1qd1rD2nWlsu5cUtxFpbJZZBJJIShMJQPhIAHaK66afJym
3sYlWa73UE2tiwgF1SA2kOAzIESZiff2M8cVZdPh2zunX1aJb6iyGXNyHCQEykgKBSRkEhWD/SO0
zzO3GrplhtJOrR3fhDo9jf8AV9qevhq69Cv9lre/lNzi3GpTAKUqClJG0GAf6E19GeCn4JW+t9dT
qHVVy703oVy24tkPrB1ByNwAatRLiiSNsEAZ/f4ms9oLDmjGM1TpV3W/P+u74Po4dL1QuUXfJueM
LX4cvBxLLnh50a/e6tZJZZuH9cCnii7bfTvhgQ3BCVKhRUCBtEZJ8t66/GT4n610onpRd1bo8osr
sL5CFsXdgWlKhbBQQGSsGVBMg4zIkeL2fp4+1Lz5G3G9k64Vc/PdV6Hp1Ob9Iljju65+Jwnh/wCL
n8K6uX1deXVjp7rNupG1bTyk3C1MKbUo7SVFZ3KOcSvMACNDrXTunv4zcdQW2rXOo6e84y7bK1A+
Su4Sqd4Ugr8zYChYBHYDIJFfbUs+nksMd4fLn9+Pkj5yhiy3lf8Al/B57faiXLVywttReNq075qL
cyGytQAUoJkgHAE8kAfY02w0a4tbxV7rS7Z5LaPy7YY3JeUVDcFK3DaAJMwciMc17fejHZbnn2nL
dl5f2Oh6Z07a3uhas2p3Ukqsb1i4QhS2iNqvMSsiUpUpJHpAIT6So7jXLXriLJLNpbamLtpBS9CU
HYhxSUlQAVg5EExnYORXOGU5bzVMuSMY/wCLNRLN1cIUplpxaEn1FKSQME/bAP7V6L4UeF934h6/
faQu/TbPafpF7qC21KIcBZZWpLQTtUSorCBAH9USJkTVZ/0+NzStoYMXizUfM9R6e6b0qw6Q1zpX
pLrizZtml21/fr1BlTL2rLCFAJaQoQENKWoJSpSVK37yE4Sji+uPDronTV3WuNdV2xZTcWyHbVtS
QQXEbnC2UlcoCgpMZUJRuJO6vh4ddl/UqMcd9XNcLivT7n082mh4STlSSOLToOidQeWenrhpl2zt
gLlCt+19Qj1jccE7oIwBGOa+g/CHwY601LoR/rjSG9FvtReuLrTdOuHdRSzcWv8A5JG4g4AAaUlC
CtcNrP6Rkj6cpzzt4Gqkv2/3weCLhgrJyjHof4C/HvVdadHUHS7abW3U2HgdVtkLJdXsbO4qVtzK
/WAChCoPBrwW+6Bu9O6ittH1bW9L0/8AO71i6U6VstbSoQvyQopMoICQmcjsZr6KxZIYuuSpeXc8
viRnPp7+Zd6n0Xq7Gh6T1JplghWmtPIsHr1xweY7eLT5i0bTCiAkQPSQB3MisXjHoNxZ9Tualqdr
qD1xq5RqJuwSGX0PsNO7UlQKtyStW4lRyQIBBJ8WKdzjLzT/AHPY4XjbrijzRTahJ8tYSBMkVm2M
G3O1D6XQRtONp5n/AG/vXtuzyE39Lu7VLC3ktq/MtecjYsKO3cUwocpMpODBiDwQa1CCkrBQQsHB
nHeRH/fFWLUlsGqLzpnXf4ZcGyv7go0+8WlF4lTXnDbP6giU+pMkiCD2mCa3tN0bRta0Rdhp9s45
riLnzWFNuj+eztgtFCiPUFAFO2SrcRGBWM7hLqXzNIe/7rKq6ubJvR2dNRp5bu0uqcuLhZCiYwlK
IHpTBMiTJg44p2t4nTdTtn9CvbhYQhtxanbZMh3YCtGzcpK0btyc/qTkgTtrtJ1Ujm6exY2+lsK1
jVT1WGtKftGXFizdt1t+Y/IAZCUiW1ZJ9WBtg81buWeg3D0dLs6mm/8AIsxat2DxeZF05G/epaUK
SRIRtE+smFFMVn717cGiqrfJT9Q3mj6iG3tPeuLV2ztbe2cbvHS68+8EBLqkqCQlKARCUk4TtEkg
1ouWag5eIRd2F6GmEvF1t3ywkEokISraVqBVtKQDwojA3V3FuKVnEkm9jdv7jS9QTaXGk9OKRb6d
aMsv79yvOeMlbji0bclZISIHpSkEqIJVX3tlcaZetOKVbOq8tu42oQFoG5IVsUkiARwRxSO2zJV7
mxpLibWyvbm96e8+3vGFWtu9vcbSy8lTayoEGFKCRBSqRDkwDtIrFh5srZS9AWdpEwkgZE9jkCu0
1fJHwjE05cMuIWhawpKpG1UEfI/aul6kFkxZIRa6bqSmby5curC/vkFpx+1kowgKKDK0rkiYUkiT
mpJboLh2c9+cUVgvblmACSo7oHYH6Yq/u9Z0e/sm2bG0/hTlvbwva6pf51QdJSVY2hSUKSMAA+WS
fUrMlFvgsZJbM1LZ3VW7W5u7JL35aUMPOJwPVKkpP12KMf8AtntW6226+44mwccsxaFNykvFDbiF
FSU/+pgmCUxx74ya5dJsqtovvD/orozXdI1+/wCr+vWenH9NtS5YWqrJ24cv38w2nZhAxlSjjGDm
tfqnpLpDR9Dt7rQfEFvUtRUFfxHT/wAi9b+TlGzatYAdkqMiEkFBiRBOeTLkjkUVC157bfI1jjxy
x9XVv5HL3TenvXVqmwQtSEtNpeClAhbn9RTAEA9pk/NXnUnTV7a6nqrlp063Yacblttve8pbdr5q
lKbQHVRP6Fp3H/SriK0baScn8jGrdJHP3+lvWepnSn9QsC4wstF1l9LjWCfUHEyFCZyCau9A6P1r
r/UmtM0JrztVcDirp++1BllhagCoQ66UpBKRwVEkjHtSU1GPW+F+wUG30ooda0C80DV7vRNUNs3d
2Ly7d8NPpeTvRIMLbJSoSOQSPbFaSfMacbfCkAnIKSCRB9v+a7jJSVo54e5vamq6Nk0hm+de0pNy
/wDlA6pIUD6CpRbCjsJBRPYkQCdpiDOmJds2r1OpWwcX5ss+rekICSCfTHqkgAGZSZgQTFUVshuz
GiwuFWdxdGzeU20pKS8lB8tJVPpJ7EwY/wDice2fR9Yu9Lu0XLLFu+UNuNBu5ZS+3tWkpV6VggGF
GCMgwQQQDVdSCtGPVXHby/WV6U1ZuuKO5plKkJ3Ek4SSY5iBiAMVlY6c1G4cvLZ1tNq/p7Ti7hu6
dSysbOUhK4JX22CVEzirGnsmR7bmrZaW/dvKYS6yna2tyXXQhMJSVESTlRAwOSYAyahcW6W3y1br
cdED1FEE4ziT3q2De0u41du1udHa1RdlZXP899ClLDbym0LKAQkGVepQTI5X2EmtJJabaSoAblgp
c3EKHPYRjFc13Rbb2Z02ovs32mBrQ+nNlvp9sFm5aaBdUkuI/mXJEpIB9Awn9SZkkzzF3e3Fzdu3
biW0uvuKdUGm0tpCiSfSlIASJOAAAO1E1JhqibVlfrD1zbMPQwgLcWhJKW0qIAUT2BJA+pHvWvve
AUA8pSVRuAPNdckM1hdCzvre9DCH1MrS4WnUSlRCp2nOQYE8d6sGdY1ND95fWCWbJTpD58qG1Njz
AQlon1CFEYTmBPYmuXFN2W9qKraqCsjBM1YsWbaNJevrq28wOrDbLgfSNi0wVSiJMpPwPrEVW6QS
NZ11NuXGdPu3lMOJQXCU7AqACQUgmQFTH0BxxSDi0pWtFukIdG31ICiIIOCRg47e/wAxVXqQ2LnT
lm1Zvmrk3LjoJfQltY/LrKlhKFEiCSlO4bZEH3BAwMWF882t9Fo64hsBaiOEp949vmo2lyDKdQDX
ms+Wlxh1JQEOSQjPI49Q9/k+9a7rCkb3E7jblZQhZBAURmPrBGPmoubBcuXVv/DdN0Vi4t9m5T77
7TCkvJU5tSWlkxvCQgFPaVq9zU7/AEJek3jrzbX52yccfYt3Xh5alBGN6mwrcg5Bg9/eDXDl0uvM
1rq97yNZ1uytn7xi1bFy2uW7d12ULT6wQ5tCiASkRBKh6j3gib7us3SG9NunHdje3Y0pW1Ixgxxw
efY0tf8AtyTdL3Tq+jvCDq3rK9GnaBpxvrnaVlu1V5uxIElSigEAAAySQB3ivqLp78LHh90P0/pW
teNPXOlaV516izOnaXqbL9+46pKVeoKIQhKfMSFSfSUqkpgT+c9pe1JyyLS6VNz77Ljvy+a+B9PR
6VKsmTg9V8Q+rdL8POn2NM/Db0podnpxR+Yv9TW6nUL1hhKEO/zHgdueSEHaAmASCSflbxb8XvE6
3GlaZq+tr0xVnYF20Fvbm2eeQ4dpUpaYWvckH9ZIEKAiYPn9leyVkl+qy4pK7dyW3Lp7rlrl/TY1
1WseNeHCSfw+B4k7rb2rXrTWo6l5CXnAh19YUpKAT+oxKiOSYBP1ms+kMPXd3+Yt9QQ3b2zqd19d
p3MpQlxsBXlkErgqBKAFEpP6cGv0/SsK2Wx8lvxHuzT1LWjdXC32dO09KW7Ji3IS3sCS2ltHmJG7
K1FJKjmd6jA7U97qF/fOebeXTj7m1KZdWVGAIGT7AQK1jH/2Zw5diLTTakJ2qJWV7SI7V6d4eeD2
u9Y6RfdTaqsWGhaEypZeukFtt9aCVqtkL4DikB1SZwSjbIJFeXX6yGiwvLP5GunwvNLpiVXiR1T0
neWdj0p0dpzTWlaU84tm7WygXVyVobStbiwN20qb3pbJPl+YoAnk+duEJMpUTWukjkhiXicvdnGa
UZS93gyW9zdNNqtm3Vhla0qW3u9KlJnaSO5Eqj6mu1Z1t/pCzt7y0fcRrbzDts8hbQT+Xt1JTtKV
pIJK0LcCpn0kA8mus+NZV0Ph8/AYpdPveRyepam7cvFxrzGgUJK0lwncuBuV9yJrSTcrylZWUEyo
BRANbqKSpGbk3uzZsG1uqdSw2VqKJG0nGRJxjiecRXoPVPW2t9PWFp0dpGtrTb2DQbdASiVuKTDh
J2AkSSEkqVAAhUAGvNnxRzSjGS4dmuOXQmzln+vurHll1HUOphwj1bLhYTGewOAAo/vVEq9u1LDh
fcKgZkq4P+1epty/yZj8Dat9XuUuWp895QYcS4ELO9MiIwTB4rsvErq7WbzU2QdSum7d6xsblpDS
FtISs26QogKzAJcTiR7EiK8mXTwnljOSur+HbsejHmnCElF+Rwf8UvS06yu4Km3glCtxmUpyBWa2
1nUmW/LRcEN7doSQNsfT716PDjVUY9cj3XozqDw2f8NLOdTvrDxCRqKGLUt2zSrV1lO1bTiysZWH
ABtO1ISkEk5B8V1PUAfzdtdWFsXlOCHhIU2U4ISAdpBOeOeIrHHp/D2Um3z9+P4N8mXrinX55le5
duOpb81tmGkhsKS2lCiBJzAEnPJzXU6L1jbadot/pmnaSwxcXamXEXTh8x9otqOGlQCid0kz/QK6
zYnOqexxiyRg25Kzt+q9Q6E6i0HT9dsdO0i2c05gs3VtbWZt3lvKUfLDm55QWFArJcQDt2JBSJBP
lllqX8KdOo2inGblRcS2WnNpQkpI5mQMxEZEiaw00Mij05H/ACa6meOUlKCo29GvtP1K+CtbdaSU
oeedfunnD5ywlSkp9CVHcogJEiJUJIEkZdG6rt9FS4t3SLTUEuh5vyrnftSVo2pcQEkQpBkpJkSe
K3nilLZOv4MlkSptblXY3Fldao2rVFKYtluJDi207lNpJyoJJ9UZMSJiJFWib7phF3dJuLBd4hQU
GXwC3KpO0lAMBJBBiZBHMYLJDI1WN0/MkJQTuaNS3Vp5F8pvUHmAlCSwyWifOXuAIJBhMAqMmePm
rV7qXT3um7jTNSsLpzVnrhtxV2p3cFtttqSgEKBUCN3ZQTESkkA1XByavb+RGUV6o6Tw/wDFrQ+l
bPqCy1fw60PVUa3ow0xpTiVBdk+kJi6ZUSdrhKBv99yo2yI57qnq3R9fbtGbPRzp7No03bt26XVO
NtjaPMcTuMgrc3LKZIlRAgQKz/TyU1K7XPz45+Bs88Xi6K3/AOjmVhktLW3dpUUuFtKFAhW2P1e0
domfitu6XrSLVoO3b79lbLctLV7cpTIg71pbJwMrCoEfqB716L80eVehdXXQmtPdMN9bWHT9/b6C
tTNmLq4UlQduij1hJG07SoLIwYGCSQTWhqegs6S8qwutSadu2wtDqLfa40h1LpQU+YFbVDaN29JK
TIHuRzGb2XL+2x049zDZaojTrO4TbtvN37iglq7auCjYyULS62UjneFgc4AUIO7Gm8p+5Sq/uLzz
HFEfrXKlc5P7f4rpRp2Rvajp2kWRfvbx6ydu2C26i3t3bkpdbUoENrJQmFbCUkiBu4x2rW3f4Yyi
5ZbRdLvLR1tSbi3Q4lvcVoJTJPqAAIUQCDwMAnhy3o62XBm6bTca3f6Z01f6i/b2H5lRYgoSlp53
akqlZCUyUIBUSAAmZxXa6f070F1FqupHrrxOvLdWnuraL9wpV0q4CZP8opCiqTuAP6ZUCcGa8HtD
NqsEHLS41N9l6t/jPRghimv+aTSKPWNE8LA3c2/TWu6vdXn5sC1L7KW2vywSorW4SAdxOzaAIACp
7VVu27ltZq061uVIbccQtzY96XiAdsgKKfT6iJz6jW2DLneOPjqpNK0uE/KzLJHHFvw3aNV1pV0x
Z2L9s2G29/lLSyhtStyhJUsCV8Y3ExmIqOsdLtaXaabqA1G0dZ1IOehDgW4yUK2kOAcTgj398Gt4
y3pGbjas9hs/DLwMv9C0rWLLxAu9Pd8tQ1D+J2hQ276W0+ZapS0sLQl1ZSobi5Cd2wCYw2XQPhJb
M3lzpfjNZs3FrboUhNxp6gh1xbSFKQgqQMpIdSSQM+VE7lFHNOSal+fcdXTwjldf0fQ9EstV0m28
Qby6DV95CrZu2SWXrdE7HStDikbgSobcgSYUqTXD/wDkrfcu1urh1lKwCv8AKgCewnd8f5qQt3sV
qt2yzddbvQdR1a7ur25c9StiUrX+qPUveTOPbuPeoM3Op6hd3KbG1ccVqH/quuqWtTqt27K453cn
35q9NK3wiKTsvOmdd6x6OvHNP6adTbuaqyqyuR6HErQ4naUKKpAG0xJ4mcGDXQ2Gg9XWj2p6lrfS
l/qa7q1TaNXC7dhbbC1qTEBe8QEBYRt2mY7SD5c+r0+GS8SVNp1dm8MWTIvdRh6W0Hpp3UHU9Y6h
qNotCihKG7RDW5UYbATuJUVYgD9u2/1NpHQNvNtZ9NXNo0HUI/PXrDzaUQJUFpidxBERODXx5Zdf
k1qjFqOOrVO3L6/vR9Dp0sdPcrc78tkS1TqrpNywGlNKbTZoaFuhCUFtp1ICCQBAnKEkmPUobjkz
XHLsNOu3nv4Z0u7dhgBbymbdSg2DMEwMA19fDGWnxKWaVPl792fPyNZcj8Nbdiitbly1sryxtbi9
tW71hLVy0wrai4CXQsJcE5SClKo43JSYxIrmGbUuxcId8kyCGxKiYxE/Mf8AeK+jbaPKqOpXpHST
dp+fafQy6ox+UW44X25UoQr0bSQEyYP9SfkDDrdhol7pVlcaQhw3X8xu6bWokYV6ChO1ISIJn1Kk
gn08HCEpp+8d0uxzRtHmlFpyzcUViUGYAM98Qe/euhsrJsWduwtr8u6Eq3OEhck+4I+v9q7nLyZE
rZ6F4cfh3R11aq1N3qzTLZkNvOt2wuGVXDobQ4tct+YFogIGdpwoKiBVVqPR3T/RGqXNtf3dq42y
t5pK1tquN6FBSVbT5WwqSIIUYIJBEEY41PiQxKUFbfZP/aLicfEqRyuq6bo93rKrSwuwzZtjeh24
BCClKSSDCZ3EgR9R9oNdPXl47b6PpDL+qapeOhtDLTKluJAHoQ3CiVhQUP6f6RBOaQydEOrL2Vv+
Trp6nUS2Z6A013Y51Zrlp0+4vSXb+3QGnHjcrQFJQgwTtW44kj1QBkwBE19zpnThtLS5unG1fk3k
MPWlsotu3LMqUp0uqK0oXwgAJjAMGCTlizzyLZbdmazwKD9579/6NNHSV8LRzVFL/KtpQldslSFk
ukrA2hQG2QCVSYEA98Vq6gvXLm+dur6/cdurknevcSp2f1Ex+qe571rHJDI77rb+zOUZR4NvSenb
1N7Zfnby301m9cDari4UpLbQkSpwpSSAAZwCfivR+hurfCe31Wz1XxT03X+ofJKGXiw6lPmMNhKW
wHHCSAEjaAEjCEiYMDy51k1KrA6839tvXyNsXThvxPodbr34j/IN9aeGlmx01oV/b+UuysbZTSWU
qd8xbCnQrzHh2lZVCFkCK5xWudW+K+raQrWNct02qrpNoHW7dm0YQFESFqSEpHBMq7k9yZ+RH2dj
0lZc0eqa7/nmfQepeoXh43SOP1CyurzXbawu+qGLVN0Ap10ONpS0iShRUncAkwknaSCQQRyK5XWL
N3TNqNRKnFvshy3UFxCTwo8yK+7hz2owqrR8zJj3ck7MtmNJ0+0sn3W2769cL6XbO4aKW0IU2kNO
BxKwpSpUpUEAAoT+oKIGvqml67oiLVzUNJ/LtXTKbljc2drjSkhSVA9wQQfvW8U23JmMmo0kaV1d
jUrlLiLFpg+WApLLcJ9P9QHbAEz3k12OleDHXmtdC6h4kafoFw707pbqLe71BKR5TTi/0oJ/1GRj
5rqUlijbKl4ktjpOgOhdB6X1Z608WuldeZF/pJ1DSH22nEBIIOx8p2ytuRO7ghKh33Jo+vPFLqrr
a91TWbu6sWmFlFuqyaCUNQpG0KbanJ2tjcuCZgqO4yfk9EdbqW57xSVfFv69uf6PdJvTYVFKpN7n
m92+h18LbtUMAISkpRugkJAKvUSZJEntJwAIFZEOaZ/C3m3LW5N+XkKadDoDSWtqt6SjbJUTsIO4
AAEQZBH2HdbM+dabOstEWnh/Y2WvKukOdSuO72LbalxNkztUkqdSpJh4qIUiCCjZu5UkjkLi5/MS
SVJWpRkwAIxH35/tWeOLlJ5H+I7muioGtK1KBUsgERJ4irSw0mxvQoN3zMl1llBfeSwAXEqlRmfS
lQEqkY+sjZ2uDhFhodtc6Qh/qBPlPM2kNKS6wh5tRdSuNyFGDhKiDBgpnGJWg2ej6um7d1IL8zb5
bJF6xbDzFDa0T5nKAsgqjhIJkc1nTcrXoddkmU12jTUXT3kF9Nvs3MytK1kkSAoiB3zGR7VppV6s
d/jitTgypC/1qWAqcSDP1q8f0640fV7Fer2drftKaYuPJD5dbdbcSFJSpTa5SSDlO5KgcGCCK4b3
o6inyYbPT+lHrx9q76gubZgWj7jTgs/MJuE7vLaI3iErhI3iY3cYNU8swsbFLVHogwAZ7jvirFyf
KI6NjTw6t4KCXVNs/wAxzYJISCJPx2q56i1yz143F9d2rzmpqdQFXKVIQ2tpLe31NpT/AOoSAVL3
ZO4kEma5km5Jo6TXTRzYBMpE44qZQtKACDH3itDgt7RWjW+jKuhqNydTccW0m1S0EtoRCIWpc+rc
C6naAIgGTMVk1K20rULJrUdNSwxeXF2+lWn27bqkstekoIWtSirlQA5ASCSSaytpp1+eZ2kmqKZT
axACSAcTFRIQEhO47wqNsYj6+9aHBt6Pp7GqXRtn9TtdPSGnHPOuN+w7EKUEehKjuUQEjESoSQJI
11o2r270mPbNL3otbWbr7mnuMMIsrZ5laUw846+FJW5/qACRtHxntms1zrTd7bXTdzprDt0+tpz8
4p11TqAhJCkiV7SFkgmQSNo2lIkGz6XK47IkW0qZrWblr5Fwy7YOP3DiU+S4lwjyYMqO0fq9M+0c
1m0+wvdeurbTdOt3r7Ubl5FuzbttlSlgABKUwZJ7RHYVy9t2XnZGk8tKS4j8sltSlyCCfSM4E9sj
nOKglCyjd2MgSOff/auiF+7q7GiXWmah0nql9a3dqhq4K23jLNyMyhUJOD8YMgFQ9Rw6lp17Zafp
t/d3dq8jU2l3LKGrlDq0AOKbIcSkktqJbJ2qg7dqoggniKezktzt+SextdPXI1jWUMaja6a4w21d
Olt1SLRs/wApSiUqTt9YgFCTIKglMEHaae+/Im5f/KIeQxvV5AWsFQTJjdAgmI4gVI2p9Pavzcj3
VnR+HvUPSujX11cdYaPcaiyLdX5ZLNz5Km3zGxZIB3BJztOD7jmsF91E9aKdFpc2bgeUHUuLbS64
UmfSZEAjuB/evLk08smZuf8AjSqv7N45lDHUeSmveoNQvg24+40dgIAbZSjv3gCa3umep16RrFlr
D+nWN/8AkHUOi0vGd9u8EkHY4n+pJiCPavVHHGCSXYxc25dTHeawm+fuLoWmnsee4XChDKShBJmE
AiQnsB2r0jwp1Dw013qHStB6l0i20dh5aGr7Ul37jTW0ASspSkxJE9+fvXg1WnzOKlgydLXO12vL
0+R6tNkx9dZY2n8qLTxct/w/aF1pq1h0lfX+u6HbE/kbu2ccSHB5kBsBZmAM7icxxJrzNy701q3L
1v07eNNvEC23ajGJGVIgkg59vqYrz+z/ANdOPXqWknwq3+Z1nlpo7Qi2/O9jX17VbR+zt7a2sFWd
00lKHUhxTiVj1ErJVkH9IgYxXZ33hmi6sOn3F9fdKovuoGkOptlXIbVbFZIAuFGENZ9yAAZMDNer
UZpaaClGDlv25MsWOOVtWl8Tnr7pdjRernej3etrV/TWndtxf6e6XbYK2EkgpJSrumQTwa7K/wDC
Lo/Tktqs/GnQrkFQU2yl5tYJ5ynfHbMj4rP9Vm6I5I4X7yTa7p+T+BnKCU+jquu/Y6bxY8P+lvA7
UNE0B+5s+oDr1ra68vqCyeaWEMub0qaaZbVsEEEwpXISIAkGw8Lr/wADOpvF/p3StY0jqS/6Nt1F
VxpdzdsKcec8sKcUhyGktpKkbtoKTtSEzPPog3nipyhT4ruq2+pFBQdM9e/FX+G/wm029s9V8Ger
9P6et9RbSw302LtGo3ztybhSf5ZadcUBAGJA9OCSYHi2t+AHiv0tpjy9T6u1FhrT3i/dNP8AntpY
cbBgkTIKQT9JxXwNd7Uw+zcuPT6rFcpfB78Vv8vie3DgyZIucZVRxlpoPTZ05nWuq/FNGqWjKXXR
YtvuFxSgVKAQCoHcXHJyBlSj7muTf610C/vCNSsry7SWkMJuLpYddQB/Vk5/+MgcV9HDHPqm5xh4
fTsrW/rx24PO5LHOpPqTPVvETxR/D9o/QGmdJ+E/Sx1K+eUo6xqOqaZ+XdUEqbW35YQ6qJIUCCTg
dpri7Xxb0u7TZ272lsaallpxlTunW6G1raWFbkLSAlC/1HKwqBgVfZGgz4ISnr5dU3KT5tJX7tL4
Jc8b0Y66bye7p3SpfPz3/opdJtb5u1c1ZtKi0w5C0pWpKylUiCocJIURg8qGO42elNBvkXp1p/Rl
Xtqw2tS2Uvhta5G1KkyCVQtQPpBPpVxBI988sMdylscKEpqo8mtqVqL+3RfWtgpl1qRfLVcpV5zy
3FqCkIgKCQjakj1QQSSNwAxLUm30u2SoNSFlUyDkxzPcT+9RO6o7px5O68J1dBazeX9p1fqVlpy2
bcOsLecS2lwj9SSTzgcTXsbPgp+EjW7WyttO/EVbM6q5bW7jrN7ZFq3QtSUl1PnB4AbfVGDJgfNb
wwSy30tJ+p5nKSnxseWg6F4e9VXeo9JOJfVplw9bW13+bK27lrepCllvI2uNKiATySDxHRNdKP8A
jEnqzr6z1LR7DQ27lDV60u5bZIDjocDdqy5udBlIggcSJiRWUE3fX2NJNqpUcLa3Hgb0tfafcazp
Guasuzg3dl5Ytk3MOfpU8VkgFPO1IUJwcVx+reISrLrZ/qnoBu56babuzcae21cb37RIJ2JD8BRI
BiZ/xXk02LVTn155Jx3pL1e322PXLJHHHpitzT0vX25vr1y8H5p+3lALAdBXvSSCSQE+nfmFe0Z3
C96e0Swv9Kv9QuUh11m2W4hCWEqJc2koA+CrB+OK2y//AF49UV5IkbyvzPRPDzwD8RfEyzULbp24
s7PTgyxcO3WGkrcc2pWUkAo78AyU4zg+g+Jf4RNH8L9DtNfT4g2moNtF20vH/NQm2F82la1MtLKi
VekNjKQSpZEYmvi5faWWWfwtNByjvuk3a247ctJv8XsjgioqWR02eR9Sr0G0vre+0J9m6Km/KKHr
dClNqLaQ4tSVEpIJUoDaf6ZhOBXF65o4eLa7xFvZrBSssJtgypYVBCRAiSkyJxH2n6Gkk8UUpvcy
1CUpbC1Tpy80J0abf6b5bb4t30gPI3FpxIcQN2QCUKB++R2rd6Tc0VrT9Qt7nTrp555v8zZsfxAM
2nnMKKlC6SuPM/lpcASkpUSsQc7T6HJzg2n9jJQ6JU0VOvap02xo6LXQPOdvLkD888/bpKFSlC1e
WVEqQUr3JJH6gJkBW0crdvNvKDjNq2wkJSgJSVGSAAVEknJ5PaTgAQB6NPCUY++9zHLJOVR4Nvyr
BkWN4tpq4Q4Fedb71SmDGSMieRn+1WWjdP6p1bqdvpGnKdcCypLKXFKUG0gSe2BAplzxwYpZZ8JN
/QmLG8s1Fcs9Q6o/DHr3RhavLjqrQH7Ndgm8dvLV9xxq3K2ypDDsI3IcWUlCSobVEghW07qs7zxk
0rw08P2PDfo69R1Lp2qp/Pa1barbhLKboKIaLIadMKDcbjumVFMenPyMWuy+014eG4Jrd96a2qz6
U9OvZ87ypNrseV9X+InUvW1xp7VwUKTY2ibK1bQ2JbZBUUo3n1LACoG4kgADgADjrpxsMt+Xv80y
HJEAZwB+3PzEYk/W0+GOCCxp3R4tTnlqZvJIx2yXbi5ACVuLUoCMkk/712us9KXfhu/a3er3FqrV
FJcK9OWHEvWCigeWtcbYcBUSEyYKPUIIB6yZEpLH3Znjg2nPyOGunQ68VBRM4k1uaIjSnLlSNbuH
mLYW1wpCmUBS/ODSyymD/SXAgE9gSa3XBny9ybOvO2+h3GgotLR1i6ebuHHHLVBfQpAWAEOxvSkh
ZlIIBIEgwDWGzsbm8v2tIdi0WVkQ62oFKyMJIAJyQAMcn61KUd7Fto6Prq4t2EW2gNafa2lxpW9i
78lxDyrm6k+a6XUehSSrCQn0hKU8mVK49t9bJJSlJJSU+pIVgiO/B+azwp9G53krq2RAiTITmJM1
IqwkBtPpwSO/ya2MwCjtydxJzVzqzVtZ2+lXWm3j5uHLbzXgVJhp3zFgBBSSR6Qk+qDJMCIJ5lyk
dJbMpvLUQHSFAKJAxgkc5+9TacbDRa8glav693A9oiujkiG1qdQ23kqUAJ+tWB1nU7XTbzp9NyU2
10+26+ymNq3GwsJUT3jzFd+9RpPYqbXBoslkpX5pcC9v8vaBEz3+1SfuXbpafNUglCEtpCUBOEiB
xGfnk8nNO+5CVhduaddN3aWGFqRPofaS4kiIykgg4NdX4ZXPTFt1NbXnVfUmqaHZMkrXc6Wz5lyJ
BBDcqSATxJUBB78VlqHkWKTxK5VsuDTHTklJ0jrdN0Hofrjp/Vl6Xd3v/iLTn7JrS9MatgLe8YUQ
04s+sq84rLRIAg7lnERXn3VBtLnWr29tbJixbeeU4i1t0KS0xJktp3qUqE/pEknGSax00pN9E+Vz
9j0ajHCMIzg9n/DoqLe1evHxb2jS1uLO1KUglRPwBUijy1hp307J3GOTXrtcHjLS7trHUUNq6dsb
hlFvbNm6FxcoWVPYC1IASk7SchOSByTzVc03Y/l7lFw2/wDmYT5BbUAgGfVvkSccQeakX2fJWu5l
bGpaQ23qFtcO2yrpp1ttTL21Sm1AtuJVtO4BQKgQeQTyDWK1QpSlABzzlx5JCwkBUjJn4nuM1btW
KpmS90jUdMbs7zUbF1tm+QH7cuJKfOa3FO5J7iUqE/BrK3pZesfzaGbhC37gM2bSWysPf6wFe6Zb
xBnd279ZlLC0pKm6++/7bnMJRmri/wAX+zQbt7i5dDbDTjq4J2oSSYH0+KakuMny323ErBkpOD+1
S+xa7mxpyrdl0m6sy8lafT6inP8AvWxroBvFBrSDp4ASSyVKMHaJI3ZgnIn35PNcpPqu9i7UVB2k
7UGUzMnGKz2X5JZcRePLZQEEpKUb5X2HIj610/QhrOKiSDIV34qIUoeqeRmaoDzNxkn5jtW1+ZQt
pCUNJQpCSFKEyozgx2rlqwZ2Lu2Fo9b3FmHVuwW3fMILcdgOCD3kVktNU/KNnap5LmUBaXCPQUlK
kx8gx9Md6nSwdFpDY/gV5qDVgHVstBTKwqQlQUCreNpJG3dABGYM4g1Or6szcs29ym+fubt5BN0h
1gIQyrcYS2QolSdu3JCYJIgxJzUblZ0pbUY9Lu7c2V9av2TTvmoSUqUpSQ0oKwsAGCqCRmRBOK3L
PQG37RNw2TvLgSBJIOYxUnLoOoxUjO9p2r3qQtT4CAsMoTCiocwOOMGtpzp57p9wP6w65ZvBAWlL
soWoHghPJkVi862jHlnaxu7ZkX4l6tpL+n3nTzv5O60x8XDNyUy6FzMwqRAI4iuotvxaeNKNO1bR
NY6l/jGm62q7dvre8bA8559tTZcLje1yU7tyUhW3cASk8V58/sfSayUZ6mHVKPD8vgdrV5IJxg9m
eO/mXPMS6mPSZA7VO8u13l49eLbbbU64XChtO1KZMwB2FfU6d7PLZFawsnaPT7DtWxYG2F01+cCw
0FDd5YBVHxODVB+hXhP+KP8ACPovhrb2/VHgHZalf6ayi3fv3Glee8t131pUtGJ2Kd25STsmEyYq
Otep/Cvw80e8Y8Oeuel7ZrVW9z1s3at3Lyrd5G5KF7N43QRPrKkmQdvf4ntfSvVab/jj73Uk1fMe
P5vjbdns07jiy9V7V9zxHpzqPpd7TNff6v6a6dRdWds1e6e1ZqVNzvLRLKnG3/5f8pxSj6FQsFBA
MgcVo2h9Oa71Rdaq8tqy09i6LlvY7vNISFbkpUpW3cIMEwCR2rpyyaZzik30pJerrm+51GEcrj5s
peodWvdSvnVtW7Fk2Fq2tstYA9pUSY+9VFtZXLCVXltfFC0kJO3cFQocyDEdua9+JxhFI8uRNs2D
d9QK8kO6xcLDQV5PmOKIQkqkgSYEnJitvTNLdu3FNsn8qhPlrcS0+4rzFAHMTE8/ScVJzjC5IsYt
7M6tHTvSL+l2pt7fU13qhLyLlwKYnO4pETMjEnj3paz0d0vp/SWt63eH8zeoebYtv5/lqTBQSlCY
gkAmRHAxHfz+LNSST5r9ztQtNyON0O20W7uLVpWnoSpwhKwtLytgnKiEpz3Mewr6H8LPEHwQ8K+o
bb/xd0m9qOnjTUqacRbFfmXiltr3qStYEISkelSVJO9QjIVWGs0ubV5Fic6ju3x8kb6bLjwrrrf8
s9utfx1eGnQjLK+mtAtOsHdQY/MXFs/pv5G1trlbilONqSJLyBuG2SYKZEcV82a/a6L4qdUaYzpG
taPaX3WGqXDrumIfuwzpBWsEFwrRGwgn9ClkBBkzArrDifszSuFr3U91t7tLb6rft3GSUNVlXSuf
3vscunRtM6Wau7UWwcvXmbhgtPaeVhJKSgLSXRHCllKhkKAIyBGa/wCkNY0TRtP63uL15I8xDK21
vFy4GxKFturQR/LRtU2lMk5QR8V43r4tRcmn1vbf6fiPV+ma92n7puJHWXi9quoW62i2/dTqCLGx
aYtLQvNNgLecTKEI/lIWTtAJVwPUa5LW73qx0u6Y3ooU1fOuXLDYY9KSopKlMg4H6AkqGYSQTE1v
geGWbwLprf8APp9DPN4kIeLWzNnpTpFrUX1jUdOuXHngQ2jzQEpUCCshIyoBMjJAH6jIBBsutfDP
RkdY32k9M6XqDDDD3ksWF0v/AMyCd0lS/LAVtISFSEGVpAEAkezNqIYXfVWzf0PFjxSy20jptL/D
z1Dq2vPaw5oWn6SyHPzKLEPEW5bQVFTaVOFQWf5avQFqUewzXZP2/SXh3o+i3nSui9RaV1QnQLtm
/wDy1s67+euHC6lQQUmEMltQQqT+kKO0yJ/H6v25/wCT1ENJpZUm6dtK1W7re68tmfe0+h/S43my
rdfFnkPWvU/ix1JpqVa5pf8AC9Mcbbt0hvR02zS0NlYSd6GwVEFpySSSfLVMwa82vLVtttTYvEHa
f1pBhQzkSAY+1frtFpsOjh4eBbd97PjanNk1EuvIzUttPeurhphm6bKnFBtAJIzV7a+GXU171uvw
+sWWbrVk3arJQtn0PNFaVbVKDqSUFsQTvB27czGa90sijbZ5VBvg6XpQaR0FY6hrGpMqf6k0m8SL
FkwG7cpwp1ZiVn/RsUChSQozIrida1/Ueqbtx7ULsh15e9aniohxefUT3PyeTNeTFCU8sss+Oy/O
9m85KGNQj35K/UdA1XSlMJ1K1XbKumEXDQdQUFba/wBCxIEpUMhQkEd61FNOtbVrblJ7xgn/AJr3
XZ5S5udXtb63v0WfTdtbuXVwy+241JNulCFhTaR7KKgT/wDEVu9H6jZaZqL2s6kb/wDiDDJc01y1
uPJcavUqSWnSraokJMmBBMYUKznF9LSe5qpJyTapFWxe3bmsDUHLNu6dL28NKbBC1bpgpjIPtW5q
1wxrhLqenGbG8duXHnV26whsIUBCEtYSgJUFHH+qOwrrqUFRxvLcprmxcYeWhBlIEgBW6AexMc1Z
O9OdRt9NsdROaNdo0h65ctmLxVsQy4+EoLiEuHBUlJbJAmNw4nKWWMUup1YUW9kaFvp1w66EbEhR
BIkjgDNdxbaQ91J09pmltazp5btGrh55ly0Qy/bpSoqP8wpHmFW9SgAomEZ/SIyzzqpJXW/55mmO
N2m6s5+50DSQkbNaCcwR5Y9vlVNrpe1duPKRqiCQAf0pG4GOPV81x+pmo3KH59CvFG6Uj0rQvw9M
630i9rzOvOm/acUfIFvDTduAJdU4CTO47Y2gZB3dq5y86b0Do03Jfv8ATtWdtrlgodtXnG3Fs70q
U4yFISoGBG5QwDxXydF7bj7RzT08INdLps3yaTwYeI2ir8Rem9B03qBi56aefZ0bWWxf2JvEje1b
rURtXtkqKFBaCqJVsJAyK5K1Vp9pqIRfJN3apUUqLRKSpPumRg+0j7V92LlKG2zPLNKMjFeO2arh
StPaeQzPpS4sKVHyQBNRRuUggIUpSuABWiutzh87GeyubyyfS7ardZe/pLRIP9qvXdURr2nPN9Qa
peNPabbhOmNJa8xtUugqbUoqBbSApxYICpUIgTuHOy3XJU3VPgpEldu4h6zu3A4kTvRKSCfYzPFZ
16PqIa89TKtkBW9RA5+uaXFPfkJN8GFK7hhotNKhDikrPY4BAzzwo/FZ29Hvltfmrm3WhpaZbUQo
BzJHpMZyCPsaSko7vuEm9kRFmhbbq3QohqG0p80BYJmPScqGDMDEj3Eq00m8vrlliztnHFOrDaEo
SVFSzwkAZJJ7VVJUSjBcC52BD7q1BglsJUT6MnAB471iRCVJJBMD/V3rrqct2Sq2Mjd08gjydyVg
GFJkGIyMVt6jcaVchhen2b7S0sJS+HXw4Vvf1LHpEJJ4TmPc81Gndot7UZNOec0nVtNuta0t25tG
FNXBtXVKbD7G7cUpPISoTkDvNWPiB1teda9Zan1bcuXPm39yu4SX7hbziQT6QXFGVbRAkntW0Zw8
Jxrdtb+m9r88jipKV3tXByZ9uATNJaVpiZTiQCO3vWZ0Q5yTNIkkADmgATkAfWpFWwQDk80BLcqQ
qME0bjOYxmpQOwtOtVt6OrRLa3bbbFopCz3cUcT+1cfu3KISOa5jFR4IlRJKXCpKUzJ7V2PRXXg6
TUhq/wBM/NNMu/mWdrpQtt4AQoYIMEA8TIGay1OGWbH0xdPs+aNcU1CVtWj0S48dfDRcoa8JylKm
lBO6/AWw6XQrzEKSgSdsphYUM8GvPvEzxEX4gata3yrG2sW7awt7MtsIjzFNoALiyANy1GSSc9u1
fK9ney8+lyLJny9dX28/i39D16jVY8kXHHGjiQ77gVHkQe1fdPAMSJIBE8VJwtmC2lQAA5M57nig
FMSR3qSVEH1GKgMiXNqYnk4r1HRepbS20HTNFsNYYsXlNrXc6gorKrUq9QAKZyf04Eg981nkuk0K
tpF9p2g9IaNr+ha30b1AjqFD+mqudUTe2zbCLW42q8xBSrzN6EQDu2gqPA4re8GvHXpjwt1rqbrD
UenbHV9RuWnWLDTLqyZdYlxC0FZWAAkIlJhABMggiM/Fy4suvwTxtJTezvdV1fyj3Q6dNlU7uPp8
DyS76vNxceamwZCsmUEjJOSf3+KsLbVrZLVvdakEMrf9YUrIMGCSOea+i9P0QUYuzDxFOVs1L3qX
Sf5TdrbOqcS6pTz0jatBgAJSRg85+RxGbvozqzRBe3bN4VsG5QlDG4eneAf1EfJ9q5yaebxOuSxy
RUvQ1r646z0t3dvct21NFKFIQS24kK/WknCskwfmq680bqx+7avLy0vHHb8B9oLbA89KjAKADkY7
DtFeiEccfeXLMZzf+LO70/wU8R9RZsra06U1N25vARcIVpVykWYJASVq2ZGTkAxsPOK5i96L6o0l
ou6xot7YstLLbjlxaLQlCwY2mUYNcxyQltf3OV6EdKs1pLrjyTapbZcKi6koGEkwRjuBVtZ9M9R6
/ouq67a6O4rT9AaZVc3ikqAt2Vr2IVMgEKWpIBzWGacYvqb/AD85N8SlP3UcxZXdmdVS3dagtpoK
AL5ecABznBJj+9bd51JqujfmrLTNcsdTZvWAlbiULIbG79O1YA3ekGYOFczIrrLpoZvcnHb0OoZp
Y/eT3Oab1LWW7g3lvfuNvTJUhzbHuMcVfaNrnUeqakzc32s3ZXZI2tOJnc2CchJGRyf71pkxYk/E
6Va4ZlHJOui9mek9Naje3j1vpzeq3QesCbphveoi33K5SCYTJjjOQa9G6p6b8TNJ1hvT9R0u18/q
S0Y1R3U79AL5aU7uC0uElSd2wSZ3ESO5n8xrtTjx5bzLam/lyfc0mNvHUOWes+OH4gbXQvDXTunV
WKv/ABQblp1WmtWfl6ZbpSyhAudiVjete0CDwdyjzB+JerevPEjq7WL/AF3qDX9Quru/eL9ysuKG
5cRMDAwAI4gVn/8AF9DGWN6zUU+r/BJUowXCrzu7fce1dTOElgxvjnzbfqZen+uutdNsVqOvPPWP
ku2xtbpIuUJQ4laFlKHAUpMOrIUIIKiQQc1z2tWGo6Si2vNQZ/8A5zzFNpUMQlZSTI5ykj7Gv1qc
FKkuT40pTyR958Fs10c45ruiaY3fBs62xbPNF91pAT5oG4zuCUgK3RuIwBMTXsvhT0bbeElxceLH
WvXLOkXGnXl7pVrp+nravbh24bQkOJdRu8s25Q4pBBWd+QAUyawz5JuDhGNtrvx9fxmmPGk1NvZM
8u8VOqehNT1J1zoxnUVouDuW5dpbaCTOEhtuREd5GTxXIpS3Ya0qz1cWZaYbUlYbdS6nKJBSptUK
UCQRmN2DiRXPs/HqceljHVV11v03X35OdRLHLI3ivp9R6xrtunW7w6JcP32npWpuxVqDKQ8GEq/l
yASEmAMAkCSK6Xpu61LxHtNM8PtV16y0fSrC4vdRaU4nagPutJ3kkCVFQYbQmcDHGTXpzS8GDyVb
SMUuuVI3+k9dvOgLC7a0u10vVGdZafs71m7tkPJBLTraVoVG5CkJd3ApI9UEzArqvFzw50bo/pPR
lXPWdnqfUWtoZv0MJW28tvT/AMqgtFbqFKCDO5AaMKhAJCZArzLrnNSguXbfoq2+Ztsk4+R5h1p0
T1D4daynReqrE2N25ZW9+lqZ/lPsJeaUCCeULT+9VCdR05xNubu0fJbCt7nnql07pHMxiBivZTmk
1sYf4umev+Clux1yzqfTOidIaffai2yX2bRNil65dtkfzbhwPKBKS2lAUCoxAUDKSpJ5zxG8Q9UL
t70m5b9Ovo822Nw7a6LasFDtshTQS2tpIBQU5UUwHCApQkTXzNLjb1mXHlbdU1d9127c9vRHqlKs
KcTlL3qxOsam/duaZaWDdy4pwtWLCGW21qA/SEjCZAgcAFXE12+o3un+HunW2qpvNC6rc1/S3rVd
vcteYdPWo5UkTKXEiNqj3UrGJrfUvpy48XS31bWu1K7fldfUmB+7Kd8b15nDNu2b9s9qA0O3H5Z1
oKT+bCcq3EQhWSn0mYwJExIrq9M6v8PdH1YXQ026v3rS83sONwy262kYx+pIJHaDCjwaajTZssHG
M92q3Wxni1GNT3jx+fyet+L/AIs6fpim+lrfrBu+0HU0o1Vu20JzcxY+clLgtyp1AdV5ZOwpUpUE
cmM/M2udQX2u3rt7qF4t9x0iVrQndAEJyPiK50PsSPsXLkxQUadPbfdq3vbvsthPXfrcUZ00/Jmk
wtaXUF1Sij2+Ks+obnp29ct16HpjtgG7Rpt5tx7zPMfSkBbgMCApUq29pjPNfQ3u+xkmqdmPprTb
LVL9FrePKQ15bjjqwpKfLCRIPqPq+gz7TXd+f0N4datd2VwpWu37L6Qi7sX2nbFy3KQSjatsK3TH
qBHcR3rPPhyajFkjBpVXPrf9dnsaYpwxTjKSff7V/ZxY6lurTUzqtldraL7ocdZQhIASFSAJkH9q
6DpHWeitZKLPxMv9VZtW7svhem2jCnVBwjzJWYUTAwDIBniTXl1GnyKHXp0utVVt15b16dvM0hlj
KXTkfussOneidE6w6y/h3TNw+3oy7soTd36D/IaKvSt3ywY9IkwD3gYr3Hxm1j8KltoWkaF0z051
Kb6xddF/eNuMN/mVEJgJSkFLYBCsernvmvDrMubJnWLTy99L5b//AK7/AA9T26bFihCWTJ/i/r8v
5OJ8Sz+HC36b0K+8M+les7R64t1qvnNcu2nELWMJDJaQmRuSoFRHxAg1yPhhovhv1jdX7PX/AFkO
m0W9i7eNXSwp7846laUpYSlKSULO6ZONqVHmAfoQx5Zf4Tv4r68GE5YIuNx7dnX72bl5c+BOk9NW
ytMf1TUdfduXk3yLplAYbYSElvyliVFalBQOABjME1s9V9V+EFx4R9OaN0rpWp23UwuLl/XC49uZ
eVui3LSZxCDB+T3rPFp9V4nXln8lx+fyazy6SMXHGvPc4q+6c6Zs7VvVH79829wwVoabdbU+l4oO
1K2yQQkLgKMcZE4nl7izWhKlMq/MJCoKmwogH2yBXq02aWSNzVdvLj4/Y8WfHGD9x33MNnZOXilI
Q802oCf5roRP0JxXUad4bajqXTKuprbWNFLab78h+UVqLQuVL2FW5LRVuKIEboiSkAkmrn1McCuS
fyVnGPE8rpHLvh1pZaDqVwNkggwPioutokONJWGzAyZO4ATx8n9q9CM2ajTbj7qWWUFbi1BKQDyT
UVp2Sk4g595qkIkBIg0iCT9PagFMmTFGeYB+ooCXbBxTmcrkA1AZGipO1SI3A4JFSt1oS6FuNpWO
4VOaoOqserdL6e1vSte6Q0EN3NghClp1BSbltx8BMrCdqdo3AkCSRIzjPN3t1dag6p+6QC4tW5Sy
DKldySe5OTSSi59UTiEWt5Pcd+9av+ULTTfyykJhwpWVBZ9xPFYmHLRLTn5hlTjhTDcHaEnGTjPf
GK4SaVWdmJISZT5ck/3qzYttLQ2kXjaw5Ki4UuwFJ2jakDaYMg5mMjiJNldbAz6v0zc6faG+DK27
aGVJUvdkOthxIBKRMA5+o7ZrDo2hXuuXQtLGyuLpwtuO7GGy6oJbQVrUQMhISFKJ7AE9jXPiLptl
Sb2NfVbL8lcBiBhIiB/etTfEggcV0nashmtWXn3AGmfM8tJcWB2SkSo/SBXV6/c2Fpqb2oadY2zD
Dyi8y2LRQZDav0hAdUpRERG4k/JpJKUaJdNFRqXU2odQau7qVyLS2euG0NRa26LdsBCAlIShsJSJ
CRJAyZJkkmqcq2KU24gSJGTxUjFR2R03ZnNsw4yHUPAcyknKfb6jjOK1iFBsq9RQTAJ4+RNdENm0
sdQuWH7i1srh5u2CC8ptoqS2FKCUlRA9IKiAPckCt231XUNEdT5KHLZ8tAArRBDawFAgHsQZB4IV
NTnYFl1X4jdYda2+nW3UfUV3fM6RbC0smlq/l27M7tiEiAkEkkxySSc1h6Wd0vUOqdMZ6k1650zT
Xbhpu8vbdjznLW3KocWhvckKKUyQncJOJE11zVnU5OcnJ8s9U6Z/F94/eHFkxo/QnjP1CjT7YktN
OLPoO8wIWVYgAxMZiqzr78Wnj54n9Pv9LdceJWrappV1dC+etHnQG3HgZBUlIAIBEgcAiYqub7nP
Jw/WniR1h1/qDmr9Vam5d3tzsD1wUBKnQhISkGABhIAqnc6m1921Ni7rN65b+WlrylvqKNif0pgm
IECB2rHwoc13s6UnHhlf5izlZVzWZDjJGHFpjuRNaUclvoum6A9cNr1zULtm0dbuAn8s2lTheS3L
QO4gBJcKQo8hMkAmK7Twouel/wDxEzZ9cO3g0NtN3CLYpSoXBZPlFaiMJLiWweTExXi1jn4M3Dmn
XxNcCTyR6uLO16B1q2Hi1f22l2Fhotlf2YeYd1V9Pl2yG2ifNQ8psqyZUlSQJgSDGKPqbxm61Fxf
anpz7bekarauaQy3crRcrS2kI3FJVJSsSmFpggGEnmviYtBjz6vrze9UIp7bN29/Ltuj6ktTPFg/
49vedfDb+zh+oOqtcdsWdM1Jz/zNqfLedfcUt9Z3Eg7j/SkBKeTx+3KOalcAONfmFFLhyZz9K+/p
9PjwxqC2/OD5mXNLI7Z0nSHW2ndNaRrNledN2OrXGpWi7W3cugVCz3xLrYmN/pABIMSYg5rXR1Ro
19ojGj67oe9Vom4Wxd2joafcdXs2+aVJUFoRtMJASfUfVWksdu1scqaqqKdrXdQQtLrrwuShHloD
6fM2JBmBPGT29zWJd9dvIDblwpSRyAa6UEnZz1OqMbKWXFKLihgSBmVfAIH+ajC3F+SyzuKjgbZV
XRyZfyqE2f5pFyA6lYQpgyFSZO4fGAPqai+15bbCvziHCtBUUgKBbO4iDIGYAOJEEd5Aid8orSRd
dPaew49blTjbrrj5QbcE7ggbSFfQyR9qhddQMtvXDatOQpRVtS4FqG1IwIB496jVvk5vejQu9SvN
buFuXtw484oIQHHVlRQhICUifYAAfQCKrlelUJVIHtXaK3ZY6DrV1oV07dMXF4z5rDrClWj/AJSy
FoIAKoMpkjcnuJEiZGmu584qdf3LcV3+Z5rnpSbaLbqhNXDjLgdaJ9HqE5EzXVaZc/x63dRd2TF9
duXLFtaJ81KHQ4vdEJn1plIBxyU+ocKzyQX+Xc6g62LTWOoOkx0i/wBIXXh9ZWPUlveNpVqrT7oX
tQp4ONKbKiiVFxsFQAgMpjlRPBwu3cVtKZBIwZ+K7xqopXZJcidecfMLMnj6VAkARlJGZrQ5JpVb
qbErWHBJJUfSRiI+ea6bVWOiU6aLnQ7m6dc/L2vmouwEuJfKP5wSEmCjfO0nO2JgzWUutNUdLpp3
ycwstqSlTTYSUiFKk+oyTP8Agfap3V49evqeuA2FKMnY2lCfsEgAftWhyYEgCd2BWRpSAoHmIMe9
UHT9M9Z6x0lffxrp/UVWNyU+SvyCAdh+O/8A9V3HRlneeKl/dadrXXatLsrlxzUbt3UCssuvstLU
ICAQXVJKkpmJKoJE18vPpsWLK9ZGK62km/RPb7nswZJ5EtPe12bviX0R05ozbo0Pr13XNItkpVpS
Lp8W7zloSfUGZWGz5hWSjdOZg5NeQOKtFJBQlbUSJ3bgf+K20eV5VKlST8qv1X5yNZhWCajdjtbi
3b81bqFrHlqQkhOErPBP7Gtdp3e8gblIb3ZIMkfNetJ3Z5DKlS3XF7VqWkKISpRgkdqyFTqWi2ha
gk52zya6rzIYfy5cKUNyVqgJSOT7UPMuWpcadQttbatq0nBSocgjmRxFPQGDcpQOM8U07txPMCgM
TCZcT/MSmSBuPA+agslRJLkk5k1QKFASCKQwCAJJoACQQTkYpAEkZqAzIaK9sAGe0wTUrm3ctHVM
KKd6VFJ2qChg+4wfrVBkYaUtshStqDBweSK6XSNQ6UYuP/33pZm5YNs60Sy+42tLikObHY3QVJWp
B2/pIbAIyTWORSkvcdM6g4p+8rRSXGnLtkB9DDrba8oU4RkSQP8AFbukalpdpaXFvqWitXzj23yn
fzCm1sQSVbQMHdgZBjtnNdK2tzkeoXelXdmyxYaMiydbdWpx4vqdU6hQTtSRASAnaoyAJ354FUy2
QYlyeOK7QNlPksNg7VKUY45/eo3RbdLZQuFHIgiB7z+1T1BaudRP3miv6VqTjru5xhba/MWogNNL
QlMFe2AFJH6SQBggYO50n1zc9LWz9nsYfs70PNusLRuKQtsJJBOROASIMAic1lmwxzx6ZGuLK8Uu
pFfrWraZqF8xeFsuhNr5TraR5SfMEhJSZJgDafrI4zXPSZkT71pGPTFIyu9wJMSCcd/imHFqwSVA
D612Bgz6T34PAFKY470Blau1NoLCkJcbVkpI/bPNJLjikeUt0htJKwicSfYfYVKBlduFeSEIegKj
ckGMj3rZ/ONXjDj18+fzDTaENJKNxc4Tkn9ICR89gBEkKBoKenG0AewEUlKSVEoTA9uaoEFEHCiM
RUkqkjbHtmoC3sdHv9Vsbi6tUspRYNF93z7hDaQjA9O4jconG0So9gYNVSmXElJJSd4kbVAxmMxw
ccHNOCJ3sNJIUElPHJq8temNTUwxqN1p9zb6fcSW7txhQaIBgkKiFQcYPNcykoq2dJN8Gvr2iv8A
TmqLsLi4trhaEtuJUw8h1BStAWk7kEgGFCUzKTIMEEVsWWrJ2uENqS4twrCECUnHvMj9qzdZYWdL
3Jblj1lZ9U3tvY9Wa1oz9naasXfyD2xaWFobISW2gcbUHEDiYrlCVYClqI+BxTC49CUeBk6uq5ES
4oYVkRA+BWZmzQ9bu3C32mko/SlW6XDIkJgHgGcwMGtW6OC9sOhX9S6Ud6tY1jSm2Wbs2irVy5Cb
knZv3hHOzhO7uogVpK0ezTYm5TqDZU0wHlpAUqJUEwYGDJ7kDPORNmnCrXJmp9TpJlUnyVrCG0gy
YkiCa7EdG9Pf/l2erf8AxVa/xUah+SOkFtYe8rYSH90bSmQRAzWGbJLHXSrtpHpxQU7t1SKHRrLR
7hwtag9cpWSYDLRWdoEzA9s/tWDXNJvdA1e40u7sL2zftlbHGbthTT7Z/wDcg5Sc8Gu1NufSzPYv
dDurjUWTpugaFaNXUhSrsJUt9OGxhSiQgbkFW4AEbyJjFR6+6A1LofUWrO71LTr9TtqxdebY3AeQ
kOthexRHC0zCh2IIrJ54wyrE+WbdDnBzSpI5bc+0sLQ4W1RjaYIqBSuD6snNenYwLfpS60Oz1lNx
1Czeu2Pkuhbdo+GXCstqDcKIMAL2kiMgEYmRUrQlSz5YwM/auVfU32LtXqbyEWidHU2m0Uu7ceCg
8HsIbCSCnYO5JBknsI71XqScAGf810iGwy1auMOKeU8lwfoShuU/cyI/vWPatpW/7gg1L8wXGhdO
XXUn8Su7a8sLZOn2yrxxNzcpa8xIUkbWwoytUqHpEmAT2rU1RjRrf8qjSbu5fc8gG8LzSUJS/JlL
cKO5EbYUYJk4FcLJ1TcEuOTtwqPU+5XAQSR35qbyGAy2pt1SnSDvSUQE5xBnNaHBiMRnvWRJ3+gQ
mI+lUFxY6R1DqGg397Y6W5cabZ3DJu7hu3Cg04oLDYK4lO4BcJmDtJ7VSlKkqgp2yeIrhNNtIrTS
TYJB3FKU9oxTBIPH/NdkGCQSoDHv7Vc9La9rHTurM6no+5bzIV/L2lSVpKSFbh3EEzWWbHDLjeOf
DVHeOUoSUo8oy9S63ddRao/rD1uxbKdcKiy0RsbmTCU9k+wrQYtbjU2bt9LlsgWyPPWFKQ2VAqCY
QnG4yoHansCYgGucWNYMcYLhKizm8s3LzMa3lPMM21wEpbYbWlBbYSFKMlQ3EQVZMSokgccAUrRm
DBEE8bj2rUzNkMlKCqOMyPatR64Sp1IAgJ5jvVBsHyUtpKfSv2n9q1XVqcWSolROSSTk0AkjgjHu
YqRVAxkf5qg1jITHIBqPb4nmgHPoKSMEzPtUR/7jigETkROO1NK9pEgY+KAFq3KJEwO3xWRt8JUN
6YAPY5qAyO3SlqWhtZ2TgkQSPkdqkVLKACsCeRHFOAIJddWGGN7ilYAGZNdEnw06+S2H1dI6psUM
KNuqOSP9j+xp6HMpxjs2U+o297p9w5Y3dou0eQAlTbgIUPSOZ9+fvU9J1RjSjc/mbNm5D9q5bpC0
BWxSkwFpnhQMQaIvKMe+1KG1N3boWpxSVpKfShECDPvk4+PmtnqG5sLR1WiaTc2l7bWNw8W9Rat1
NLuknaASFerbCAUggEble9VcblKMuLP6pIFKTEzxQBumMR/vS3GcmaAJ9qmFA+3zQEgdpmCZ5mtx
/TFMaPa6qq8tVJuXXWgwh0F5vYEnctPZJ3+k99qvalWDDp7lk3f27up27txZodQp9pl0NrW3PqSl
RCgkkSAYMex4p3bli5cvrsm1tsqcUWULVuUlEnaCe5AioDXSAc+w/vQomQFRFUCTtB5GO1BUFZ2x
2oBzBOTSSoSBIFQG5ZuMLcQxe3S0W4XKilO4gfAnJra1VjQ2Lu9b0i+urphFzts3XbdLRdY9XrWk
KVsUfR6QSMnOMy3ZdqJI0DWRp7esuadcpsXHCyi4LSvLWtIBKQriQCCRM5FehdF6P1P1BqjHRuha
drL2j6w8w7c6ZaXcuOtt+okkp2giVKClJhMyRArBtZXUGn2+YlkWGLnPZLdv0PWbr8KWjdI2ur2H
WnVVmb5hm2uEtWoDj6itUBDRCwFJIWglRSDjGMnq+gfwu+HGm9HXXiP1Fcag2iwT+YtGl3bSvzRC
SoNoQWiFqIAHMCZIivsx9lqacM0623o/Kaj2/milk00eWqvufO3ir1vpHXXV911I2ytm0urpy4Gm
MtJYZtytaiUNJbSlCUwE/pA/VwYri7+xtLpbbOjMlXktJQ6pO4qeWSTuz7SEwI/TxyT8fDiWCHRF
7LZH6yU5ZHc92yrNjcpC1uMrQ02vy1qjCVmYB+cGj8suCncEpGCSY/74rW01aOSLbSispkhIHNLe
4UFsEgqORMSB71bsG/YdN3V5p9xqjFzbBNqEqWgvJDkEgYTyea6+y8HOtL3oFXiIEWydGbuU2hdN
0jcHVpUpKdk7pISTxXz9R7RxadpSTvq6eHzV/T1PXh0c83DXF8mt4d9Far1b1ejpC18ta3ApboL6
WQEpEk71kAQM54EnGaoeprHVbHXbxGqG4dukvHc447vUrJkqVJmfeaQ1kJ6uWmXKipceba5+Qlpp
RwLN2toVrrNxpuov32lo8tLifL2OJSv0YhJMZ4GYzRZavbJvvzmpNm4cQsKCFpSts4Mgp9pI+leh
4buUX7zRj1/+r4MF7aeZ5j1rarDbSfMWoSoITIAKj2EkDPc1VKCisEd62g9qM5cimDCgoH5pk7Z2
rgkRFdkL7o+90i21I2uthtFvcNuNm4LSnC0SkgHaDnP3EzmINI4Qp0q/QlSsAcAGr2OVfU/IslsW
KbNp6x1B0PqcUly32GEpAEKCu8ycR2rCblm3sHbdTbTq31pIX6gtoJnGMEK3d5PpHHfNW+UabLg1
EXSktlCCUg9+awlSiok574Fd8HJNOADtqBUR6cUBINlSDE/vxUQhWT3FAXvSfWvUfQ+qDV+mNTes
bxKVth1uJAWlSFYOMpUR96qbq5evrly7eO9xxRUoxFZrFBZHlXL2O3kk4qD4RiZecaVuQEE5HqSF
c/BoQFhZMSR8TWlb2cGZDQWsBIj3ntW/petav05duXehanc2TjrDtqtxlwoK2XUFtxBjlKkqUkjg
gkVJRUk4y4Km4u0aDhK0laj65JINQQvb6kHM+9UhuX2s3V68m4d8lKkstsAMMpaG1CQkYQAN0JBK
uSZJJJJMLbUHWVLbLyihUSCTBjIn3qKKSpFbsxOXSitW1ZgiPrWKQOYIHcV0QcHBCueKEk/6ZJNA
ZE5JEjkd8U14V/SCAIoDUkEbe9CuOJ96AU/sKQEQAM8UAHGDSORwMUACSJ4jmj0wSRH3oAgiQOKY
cUFSpI/agJtOFDgUhSkxwQc12Om+JPiDpjDbGm9da5ZMNJCUNsai8kISN2AAoAf+ov8A/vV7mqpO
L2ZGk+Tnde1vVde1J3V9d1O41G+udvnXFy8p1xe1ISmVKJJhIAGeABVYVqUDPv71Lvdl4FvPBJ+l
BzlI+1AHJj/PNBgH0jAoBDnjFPB4j6UAhM8UxzyDQElKEiE/OKFLO0ST7UAt3uRUftFAOY70Ezz7
0A/SIz9IpYgj9qAME4j/AIpgwYgZoA3EcTxFZmVpCpPaoD2Porqa+626csvDrVdfZsNK0ZT1202s
pSlW9Ki4slRgFKQrgFRkBIJMV9NWWpeFngMzeaF4W9faD1FrDrQYOpM7Up85DiZUlS8pbKVODaCQ
qAok4AexPZ+DT5MjeytyW/MpO2/v9j43/wAgyanPihgwq06U/SO/H03OM8Q+muqum/DPWPF7qTqz
R9TubxDWnWyG7oPOeYsbACkAFO1sE7pwQn3rh/CT8RGn6boVl034gXX5jS9DZU0wxucSt1sknYhS
TAVBj1ECAn2r6eoaWXpm9mtzx6fT/qdO3jj0uLXT8l6/FnhNu2rVdT/I6PZP3jry1eShCCpxYGf0
iewn9663WuhrnQumk65qFhcsu2jrdtfpfUhpbLznmKQjyyorVuQgK3bUgQQQcE/FlNRl03uz9Mt0
cQ9faetktBD4M7pkEH7H/vmumauuibbpzVba3t9Qury6u2Pya7hpDaRbI3lSjtUYWZQIyI3ZqyU1
VF2ZpW2n9OI0S+/OnUG9XW60bJCUpLHkwvzFOEiZny9sf+6e1Z2OiFvMsOXqrpvzlRPklIP0MGcV
482senTlKt3tvzsenHp1laSv1Oo0vwXutRuFadpRffdDYdWkrZBSjalSlEKhQCRJOOBUbbpbQOjr
l6+1vUX9Rs7VtwflGX0tlbqkKS2oKE/pWUq4zEYr5mP23+oyLDGNt87Pb5tU/ke1+zlii8nVVfDc
nothofQOkXWuavqFpc3+s6Sv+FNW9wh5TJdK2lqdSk/y1BIXCVZEgxkGuVVqN1rNv+Vt7dN0ttsJ
8zJVBgCZr1YYZMmbJqM3uq0l8Ev5bf2PPkqEI4oO3y/z4Ft09ob1pY6hqOqdLWl6GbdQSLlt7alS
vSlUtrABCiCJxP7VxVzpN1bvoReOgGcSSYE5r16bURyZJ9Mr8uPL85Ms2JwhG1RvO6e+1YOXnnOt
NPqCUogjzkyfUJwUgpI+v0MUkJaXKkghJwCa9eOXVZ5pKjbvEF21aDLDm4qJMpx9jWJsNW90Hkqa
2nltRVgx7xXaZyRv7/z3UeS2lsNDb6DM/eBWBVwtxaNxgIAAhPt/muuSJUXGndSa3p98/q2nXSLa
4fLhWtppDZAcSpK0pgDakpWoFKYEGIxVS49vHqAnOZqJVsdN2YVHEYiOajtnIxmeK6IZQAo88Z4o
8vO7k+1QE9pCCBIMcE81j/mFJ24jmPaiAIkqCgkGCDmCK27bTr2/Sp63t1FtKglSkjAJmJ9uD+1B
weg6F4OeLD9lb37fReqLsrpWy2dDCgi4JBgNqiFTBgd4rrm/ADrwMJuP4fdsOpbDq2FK2vNAgH1p
mR+oc+9VcWzPxIvg2umvDjp/SrHXNT68s/ztvYWyUpbNyplxpbiVeW4kyN0KSkFJn0rUeQK8O1W8
tHdReNh535RK1flw6sFYR/SFEYMD2rzxWXx5Nv3KVLun3+XBqq6V5hbXoabSogBQMkKQMgGRzzkC
sN7eechtDSUBWSYSP+K3IaJBJ3buTUoP9RJByaoGNoSQRzxRIAAPB5oBkASR9p7VIHBIMyewoCQT
BkfWKHCSUwfgGKA1fUQSCKU4FAImeO4zSPxmgDvEUQRMnJ5BoCImTFM9sQTQBJ5/tSwZJ70AxiKz
ou3EoLazuB/egMCzKjQSPYTxQCgn3pgDMjigAAnI7cUsHIPNAPiRH1+KWAZBNAHfOKBgcUAoMxUg
eIzjFABM8kUoE4JPagHieDx/ejcYjtQCPuKZiRgn3+tABAxBxQJIgCfvQDgAYGf7UTjmIoCaHFIM
gzOIrN5zjipcKue1Adv4e+Fet+JNh1DeaVr+i2DfT1g5qD7ep36bdVwlDa1lDIP/AKiyGyAn3KR3
rh1JU3KSoHE5HFKdWyJ26MjLrls6h5tz1IO5MV0HWvXfUfXnUD3UHVepu3l++lpDrzhJUoIQEJk/
CUgD4FL2oVvZk62uOj7y8sP/AAeHW7dGnsIuVP24ZUq6gl0wFrlIUYCpEpSPSKrP4iwkIt0voWht
I9QSUjj55jiaw6JUk9zVyXVaM3U3VlxrzWn2X5ezba0u3Nu241bIacdSVqXLigJWoFZAKiTAAmAA
JaXrG5pKL/qPUrcoUNgQSpCRCs8yDwMDucjvmtPGONRa6q8/UryycupOvgeisfiN8VumNNXoHTvi
1rR0u6tDbPW4QlSdixCk+pPcYJGSCRMGvKtX1i/v7gm41S5uUpjap1R/aJrx+z/ZGj9nuU8GJRct
3Xn/AB8jXPqsuZKMpXX58zQ/MvQFBwmDICsgGtjTtVvtMeNxZvONqPJSoiQDxivqyhGSqStHmTa3
R1HUnin1T1HcXrqTb2DGovF962smg0zMztSgYSgESEjArTc6x1HXddVrPVFo3rK12v5UIWS2EBLP
ltKT5cZbASQMglIkESDh+lwwnLJij0t29uFf9drNfHyOKhN2lS352NlvqzU7DRFaZ+atXbbASh1k
LWggqP8ALUcpHqJIEZVXHukqWXCf1GaafDHHKUo93+UczyOaSfYtNM112xurW4Q035ls4lxKljcC
QZ9STII9xGRT6m6juuptcvdcumLW3fvn3LhaLZhLLSVLJJCUIASkZwkAADAFaLGlLqOer3ekqiRt
xHz8mmkQpKomtTk2rvULi6YbYcX6GydoHGeTWoYgEd+aiVAiBMCYipSQc4kZIoDIgJwTwOZqSEk4
JkHtQGS6VDaUAfGOwrEG1rAInOPeT7UQM6LN4Ml5KJRO0/Bz/wAGu30/Tbrw7btNS6idvrK51Kza
1PSvyVy2fSV+hxZBJQfScEbscZrPIpyi/D5LFRbqXB9Rs/8A4mHj11D0fpnQFtpdhd32nMKbavEs
F24eSlCkha55UEnKu5EnNfPd7459Ti4tdY6d0220S+tmyhV7piSy64N24+YR+vMTPI5mulN30t7l
cItbIoPEHxY6i8RFHUNcQlTzjYaW6gbAraQRIGD3rgU5hJhPvXSJ6ETuTEKx9KRThQ4PPFUgRIGC
ZqSJ4MER7UAlwREx81sWRtU3TRvQ4pgLBdDcbymcxMiYnmowReeD7yndqWx2CUgAfbiolUqnuaAn
tUVESQPenBUQlJJAMiKoNQmIOcYikP07QP8ApQETGR8RTP6sE5FAIzM0jI+9AEEEHj5+KPqZigAE
574peqeaAYwdsH70jINAAzTEftQCIzIOKP7g8mgDsT+0UgTwO9ANPJBOO1B5jH/FAZnGFtNtuOFE
OpKkgKBIgxkAyn71hIJIEUAHmTxQBmY+1APJEYg0AJCiIIzxQBJPf6UTOOKADBGBzmlicn7UA4JM
TIoGMDH0oBEjvmKcexoBgn+0VkbE5UTEdqgNhNyAgJSozOYOKwrWVHdHxQEFOLJ5omTJgmgAqgwB
+1ZHXGChpLDa0rCClxSlghatxykQNo27RBnIJnMACCVpAKSgGRg+1MQrBjnkcVQSYcZQtKnWw4B/
SSYP7EGsbhSVkpJ+9TuBFYPCAIEGsjbyPLCVMpMGZJzFALc2EiEEqJPJx8f71e9NdT6r0f1Fb9Qd
PKYZurRW5kuMoeRO3aSUOApPJ5FcZILJFxlwzqEnCSkuUVWrXV1d3q3bx0LcUSokREnOAMd+1aZJ
OJn2rqEVGKUeCSbk7YpPCqI4J+9dEJY/1AxUioCFJwY/vUAgqFblc+0045MYOQJqgFRHApAQQTg+
/vUBMTM9prKJ2lUSB7CajA0tuXJI3BKECSSeKi88s7AkJHlpgbf80BsK1N91xC3DO1IBE4MYk/NX
Wp9R2Ov29zedRG+u9XPkt2z/AOYBbQwhO0NlG2TCQkAyIjg1z0LqUu4NCz1Viz01bVtZXH5lx0Fb
wehBbggo2xOcZngH3xs6zr+lXllbW2k6IvTXkpIuSHypLpJnAgQIMRWMsWSWSMlKknuq5VbfQ2jk
gotNb9vQo1KKwIASn2mRUdqh6sZxXp4MRpSVEITJUSAAO9Laudo/eKAkFqbQlopQQkyT7zGKjG5c
xHx2HxQDbIK07wdvcAwTW2NOvFtpKbdewgkQCZHNRtLkqTfBr+T5ZUlSVKSJGBUggKADalbhzPtV
sgbiPQVDtAOae71gACqDUCSJPNLBBzB96AX9MhIxUQBHMEUAbtxJ980t0cCaAfMjMClx89yaABGe
3eg8wMZ+1AKZIAOPmiJxHNAMfpOKJHEn96AM9+KMQCQPmgCDAEUZIGI+lAG0xBOKYEHOKAyPhr0B
Dqlqj1yMAzwM5/tWKMEkZ+KAifkk1IZMCf2oAEjO74zQe5/waAcmeIMe9RMGIwKAZE/amU++B8UB
EfX+1M7hjifagBJEwTiO9HBkEGBFAERn35qSVYJ+1AMkDIEj3NAURkfsKAUp7Hn4oJAwAKACqYHH
viknB7wKAZxPeKX0oCQkYxj3pEwYk49qAODtGTTBAEGgAEe1WF5qFo/ZWVra2CLdy2QoPvpWoquF
FRVJBJAgEJ9MSEgnJNRoFcSd0kx7UHaRB96oAE+/1oBjtNAPg4NOACJz2xQCEkg1lTJTgCfrzUBs
tWO+1XceYz6VBOwqIUZBMj4wP3Fai0kE+nAPaonZWqIBU4Eic/Wp+e6lMFRIPuK6IZCsbQGwIPv7
1Ax+kj781APsBOSM4rJZJt1XLSbpxbbJUN60ICylPeEkgE/Eio7rYq5M77iGQlDao9JCVJx3ifmt
MrWoyc0iGS9ODuGe3tU0JC4SVwU8H3FUghKTuBiDj3qKlnjb/agNiw9F0287at3KGVBbjbm7YpIO
QopIUAeMEUBtx242qVlxUTNS97LVmZgIt73YEJeDayIUTC4J7j3r0voTTm9Q1+xK0PKbUha1W26f
SEmRBx35r5ntTI8enlNeT+W3J7NFFPMk/Nfueg+N/QHh3oOqs33hygu6LeJebcXqrzSbkPBACill
B3ISFrVBjICcnNfO76WDdFKGy2sqIIJ9I+Kx9iaiepw9c22/VVdNrb5c9jT2jiWLJSSRpr2hwFKu
/PzNMJBUoFEJE5/77V9s+cakn9MzBqJk8igEqRyk/WiOTFAICRP7fSg8zuPFAKfTE0cZ4oAIIE49
oml3jv7zxQDBlQjMUEyJwDQAO6QeaEmDkcCgCDOc0EZgmgAnETRtPYUAD3JjtQeYAigARz2pnsQY
IoAAT3JppbK5jsCSPpQEcZ/2oPxgcUAuDk80ETwmfc0AxkZMRxQT2Ij/AHoAHPfPFMnckSAI+M0A
CD9BQREiRFAJIRMyYpgRjmc0AzJEdvpSM4IMj6UA8nIj5pYMx2oBRMkUYnOPmgCI7TTMDJ+xoABJ
70E/80AAgZ7mgTEniaAe4xAMTimNuU5oBTPBjvQRnJ5oAORAHOINA+tAAPtgT7U5I5P2oBznvU0k
7gR9agLGwvjZpJU0041IUptaQQSOPp3rDrF5b6herubK1btW1gfy0D0gxn7TNZqDU+pP5HfUumqN
EJG31AzTATtIUea1OCQgduBQlBncR8/WoA3GCSYk0inO2YFUEgmREnGK2bxdg88g2Fqu3QGkBaVu
+ZKwIUoGBAJkgdpiTXNO7XBU1W5rhKZmZ7cVIBO8EgpA5zVIWTlpbKtR5LaVOb1bXN+Vgeye3Iyf
apCxfZSzdPacplsw0hwAlBWkZkKnJ9v7Vk5Ncs0UXJ+6jp9E0FzVdLv9P0w27F8E3Fy5+Zfbt2yw
y0XFBKnFjcopBhsDcTAEkgDkWfPaufM8lJ2iYIkRtrjHLquzvJHpSaNZvd5kKO31TIwImvROgNR6
eXeNq1zVBaptmSkvf1RPb5gn/itJwUqsx6pRT6eTW6p6p0R7Vby10DzrizdcDjT7qQlxCtoKxIIm
TuH7VyV5pi22l3jd00sBUEeYN2eBHJrqMVDZHKcmve5K9KCpJx6v7Vk2zzJkAccV2U045kZFAI2k
SR2iKAiJCimf2FIkk4HzNAIkDjk0pBHIoBHI5pkQOTNAIyBMZFB5Gee9AORMAmkfYUAAyOKf1Jk0
AoyMU+ACZmgCRMmgSe+KACSBnvUTPsJFASEEZGOKR45FAMicbhB70cHAM+00AAzjII9qO8zJNALl
XJondCcUAu5jNPB4HHzQAAc9ozUoESOxoBAg4pmM5P7UAfpzH0NIHtQDOCAc/FGBkY70AgCRMCiZ
IBx2oAGP9qQHByT9KAZMyAIpj3zQCxwKZE5FAL9IH+Kcgd5FAAnlJ/6U+e5oA+BEUpPuaANwH1p7
iAAPeaARyP8AimKAMg4+0mpg7YAzQDV6jzSITACTn5qAmlJWNoBNZF2vkPqZuHAkIkEj1Z+KX2BA
ACSMzQSj6n4oCPpUncOeKU8CY+tATICQFSM81EbZgYPagGBJkYUKZB3ert3oDMglbwU24pKwUkbc
Z+KtlXOrWdnc6XqKVpbc8q68tyNyiZ2qE5MhZ/c1nNRlSZpjco20T0N+0VfNqvAWrUKlZmTtPIE9
/mtjqzXNCutUvnNF0hNq2+UeWCskohABPYEkgnjk1g8eV51JOopcebtftX3O1OCxtNb2cwvMAgie
aAoAA/717DAmCtY4EDE++ayAOI/lr3QeIFQG3Z2lk8Hw9d+WR+gkYP1mtmw6f1DUdrto15jYuW7Y
uE7UBxZO0bjwMc1nPKsabnwdRj1cFAUqACTzwaW0CZitTkXIhMEz3zSPOcjiBQEcTjHagkdqAQz7
UyqRjmgA44OMcUsTH/c0AZIiMUjM5NAOCIz9qBFABp8nt9aAXfOaBGJNABxEEx80/Tx3oAMfFB78
iKACIwDJ4oxHf39qAM/qgx70GD/zQAPc8UiAaAPmMe/tRn7c0ARmP2p+xkUAE9/fgUSBk/eKAWd3
c0+e8AUAGZwJ+3FLkxFASO2OeKUnCu9AEz/vROKAIx8UADhJ/tQBmZg++KYwO1AKMU4PfM96AXGT
+1MwTO0UAET27e1MDBIoBkGRI4GZoIzJiOKAQJKp+1CjzA4oATlWalIScpJoAztgwe9SCxzAxQHT
9Ko6VuWLqz11dzbXDiN9pdIcAbQtMn1Agkg7Qkf/ACPxVC8lpTq0he/JyDz8154PJ4klLjav6NJK
PSmue5FDUqCUEq3HAisTiFNuLbWCFIJSUxkH/mtk96MxIHpA7VIglcJBJGMCaoI7Z5TGa2F2N4xb
NXbto6lh8q8p1SCEr24O094kT9qWkDCFKzHvTVs2gboOPp9KAFBTTiYwYBEGn5sKKlEqPAJpyCZu
CEbQfn96xOObyg5JGCYogNcFIJJArGNpVkk5H0qg27S4ZTKVpkgzJPArcTqdt+hbO8EEEwK4km2d
J0ZbD+HOb03balYTB47Ca1ytLLRVbvLQsLCk7VREHHH2rndtp8DatiqM9u54owRnFanIsZgSKiRI
9poCJKQTgGBTmaAioZk96aRjM/FAET2ge9KAPmgD2nFAPsKAODPzRIAwBQBiZ96cZkUAhjA5okfv
QDBPtNBwPrQCIEf7UbiPegAcE0Z+nxQBBJOPk0SY5oB8mIikcg9qABgHNEgY5xmgGZHqH7mkfc8U
A5JHejjnBoAMz70hPtQDzn3og7ZmgAcAEH2oyDOD3+lAAgnmiBHegADBmf3p7oOOJoBTzijgbo+K
AP6aP6dpzQEkJK1hKR6jgVuPac81ZquR6kpX5ayMgHt++a5cqBpyO9TEKkTAroEnWFISmOV5Aq+6
H8O+uPEjUbnR+g+mb7W7yytV3r7FojetthJAU4R7AqSPqoDvUTsFjrPgz4p6Ho+hdQX3ReoK03qS
1Xe6Xc2gTdIuWUbd6gWSrbt3pkKggmCJmuOdtL1i3ZunrR5ti5Ciy4pshLm0wraeDBwY4qgxk8Ad
qFGgATEbvijI4FAZUOhLexSEkyDM5+lWty5aG2t2re1baBQCtQWVKWZOT7fQewrOSdqmVV3PSL6z
6J6N8O9M1e00xd91FcuOt3D7r6VsJSYLexsAKSoIJJkqyUnFeTtKDj25RkqJJ+a8OglPKp5Zt7tp
J9kj2ayEcXTjiu1v1bMSFq3DHJip29q7cOlsFKSBMqUEgD719HhWeI6S81PSL3pnTtPcSWb+yu3E
O+W2CnyChoBX/wAtyVkiYJM4qm1LW7/UmrS1u7tTzVg1+Xt07QlKG5JgAe5JJ7mvPp8coJqfm6+D
exrkkm/d8kaBSTE5n3FM5POeMV6TIzXghaJmdiR/asGCI/eouANYAKT3IH+KEmJkcjueaoG6UkJA
MADj2qJJEE8/egBJ5mCKeSZAGPY96AyIWpBwpQxkTQHVckkn60oECFHBiKiMHgAUBGMmRiowCTB4
/agAkmQeZoHH09qAXfj96UHiBPzQAqYzRkYOfagCcdopT2/zQEhjtmkefrQBJn6Ubu4oAkH/ACaD
B7xQDJkYJM0ADOMigEckBM/AoiRigHE9oj3pEiIOfoKAIJHf6U5B95jigF8zk0x9TQCOefuafeR2
oCI4px3GMdzQDGccn2pGaAZBB4iiO0igCTzzNEwcHE0As/q/enIiJ5oAmc+9MicAAJ9zQC+nb3ow
BBPzQBJ5+KATPM9qABjKoo3AgCPoaAEqKVBSTBGayKfeUCnzCQSMSYmKgID+/IFOSE89qoPrb8Lv
4e9L6m6MV4q22gdLeLV02h9jUOhP4u5Y6jYMTtTcIUDCnCNxShSQIIKVFeE/TvhL+Kb8HXhj0890
zbdNX/h7qvSts8hzSta0VSNSKkypbYdAUVuKJwFrSoyJA7QHzl4G/js0nwG6o6z0HSundW1vw41T
VbnUenLB1aLe50vzHSrywJWkNlKspB/UkKEFSp9J6F8bOjfxi/ib6f6HuemtO07wx6f0/UNTtunt
VZYR/E9ReaU2t1xoEoW6F3K1ICSSNq3JkmKD59/Eb+CzxY8I+sFo6f6cvOqtF1Ft/ULd/QNNuX0W
LKF+pt5ICy0EBSYUpRBTmZBA+cPjj2oBgEjFfV/4O+qehtfsOoOheqvA/oPXV9M9K6x1G1quoacX
by5dYhxDTqiYLY37cAGAM0AvDXpDp/8AEz0H4z65p/SPh50Lqtu70wnS1uKFhp+mpLlwH/LdXuLZ
dDQ3f6lQK9C6d8AOkOjXPw5dOdSad0d1Fea71PrDGtX2lOt3ttqLIKVNNrdAAcCAYg8EEUBxn4nm
td0fw9vbe86Z/DnbWb+otW7bvRTq3NYZIUVAx5pCUkNhKzt4Md6858Nul+nL78K/i11de6JZXGta
RqugtWF8toF+2Q68sOJQvlIUAJjmuYxjBVFFlJydsr/wo+FNt4s+MmnWGtWLt109oTLuv66htsul
dlbAKU1sTlRcX5bcDP8AMxxXv2q+GXhno34lfD/qDVPDRnSPD3xr0dVgjR9RsPLXomqLbDK2kIWB
5bjdx5CguBh5UYqkNbS/wv8AT2j/AIbuqujOpdLZX4uXJ1nX9HIZl9Nho921bvMonMO/z1ISP1hQ
InbV90b4V+H2m+O9r4LWfhp0xrmr9EeFb1zqTOoWrSmtQ6kWhl7c8pRSClPmNoBKhtCljcOaoNHr
fww0JrproS98Y/BboTw/651HrzS7HT9M6cuW1s6xpC3UB9Ttu288jYJjeVkkwMBUKl+J3pRPRmld
esaH0D+Gm00ayW9aWgsiodSMNKcDaFJbDsJuE7gT6YEExigLDxn/AA1+HHVt90rfeE+jWlt1N0pp
2hXnVXTjDASNQ0u4DajfNIH6ygqUl3H6cmITv5frTonwr8FNN8V/Gu48MND6nubfxIuuiunNEvkk
6XpiUsqfLrrDak7xt9IQSIhJEbpqLcFV+HnWfDPx68d9Lae8Cuh9CXZ9K6m5fWqUrOk3l4hG5p5T
DiiGEIwDCif1EqOI5P8AFExf6P01o2m3/SXgDZfnL5T6bvw5Wty8T5TZSW31F1QDSvNBiMqbGcZo
Pm0+xogcGM8YoAGSYjFTYb3FRPA/zQExEknOeP8ArQlQC0rUgwDkc0BBSffM1FXpMbQPoaADJGDG
ZikqYz96AiUxHfvSAOcfeKARgyT2FBgRBP7UAQYntRyc9uKAX17UHk+1AA+PpSA7CgJDEE5FH9UA
jNAKRgTFKTxQDkDn3oPJIOBQDkgmIBmkME4maAcZGKODB5H9qAABEgmaSTB7UAyAZpQPmKAOOBNA
g8xQB8xNAEz7e1ABMGcUzgY4+tAInPppwYzQD4Gc+xpYAknvQBPeOKIIwDNAHbbye1APtQDHwZNR
nuKAkFROPj6Uv0jjg0ACTmMij4oAyBPbinJIA7/5oBERzzwa3NG0q813V7LRLBKDc6hctWrO9QSn
zHFBKZUcASRmgP1m/Cp0Gj8IHhJf2Pjrq/QnTj97frvU6ijUwHn0FCQGXS4hG5SCn0htSwd+ADM/
JH/4hPjn4ReNPUvTLnhZqlvqq9JZuWtRv0aWphThUW/KSHnEpcdSIchMbQZIJ3UB8ixke/xWaxvr
zTL631LT7p22u7R1D7D7SilbTiVApUkjIIIBB+KA/R78HXTXi7+JDpNfiV1v+KPr9qzsdQd0x3SN
JeNorzG0oX6rggpUClxBhKJAMbgePjP8U/S3THRfjr1L0v0n0rrPTlnpzzbarDVroXLwcLaVF0Ob
1lSHQpLolaj/ADOYgADycggERBruvCvxO6h8Ib3Wde0fR7a6T1FoN908pV2hflhq4SlLi0FJErTt
Ecj3FAYtC8Qde6S8O+r/AAxb0dn8n1wvS7i5efQsPtizdccaLQkAhRdIMg8CIrsekPxF9b9EWnht
0/a9L6e654Z6te6npyH23Q7cvXagVIdSFDAxASAc96AweIHjZ031poWp9O234e+g+m9TvnUTqWms
3Sb1hxLqVq2+Y6pMq2lBBTwpXfNQ8JvHq+8IumOp+gNS8Oenup9K6kuLS4vrPXG34Qu3Ki3AbWgj
Kpz7CgOmH4m9VstB6i03wm6T6b8NL/qC1smrm56cVesXixb3ClpbYc8xRQtZdO4gjchsJnseZ1/8
Qvix1B0A34ZdeXmpa7eWuuNa7per6vdXL+qWD4QEeW04tRPlqGdpBAUZGagOt178Vvjdq3jton4h
9Q6caY1bp2xTYs2ibR9FkbcIcS4lYKt0LLzij6sEiOBXG9L+PnXGn+JXWviEzpVrqmtdfWGq6fet
LQ4pLaL4y4poJUCNgEJBkADjFUEtM/EH1bp3RfSnQOtaBp2rK6C6gb1nQb29Q6LywKXErXZhQUJY
UpElBEgxBG1IHT+JX4hbfxAc1tOufht6HseoepA6tzVWra8F6HnZ/nthTpBXukj0kT2oDA/+JDxX
vPGTQ/GbpzRxYaz05p9npBZtGHV277LDQbU08kkkhaZChIjkQQCN3S/xRdd6X1T1xqHUvQGh6/0/
1xfnVtd6Z1exccs0PKVKXmiTvaWDgLk8CZISRKorM1n+LDXNF6z0zrvp3wg6I0nSNE0q70G20iy0
5xq1LN1l3znUqDjqzk+pUZUQAVKJ4bxM8TNF656ZtbbR/AfpLo1IvEvjVNFYuUuPBKHEFkqccUkp
JVuIAmUDPNUh56jQdcebS61o1+6hxIUlSLZZSQRggxkVoqQ42tSVpKVAwUnkR2NABEGBxNZ1Etth
HBMg0BjbEmJ71MoUZhMDNAQMA8nPPtSJ/wBMgxwaASTzMxQQPaPvQCmBE4iozBiM0BEgjPf+1IT/
AFAZoAJTxQIIxkUAuMyTig8THHvQDMkGCY5NERkigAEE/emZ7g0Auf8AenAiMx/igFAHbmhMntMd
6AYIGI70CQZHIzFAKZ4ETQTIigAcY5owTzHYUA8kRxHtSVJ4oAmM4+9AMcCaABI5xijP2oAwBQeM
pj2xQDAAmTS3EnOfaaAZM5maIE+4JoA5zzPejKlRzJigEcY+c08R896ARMCAARTwMzjjmgA/SKJJ
EAwKAACQfbmgHHHH96AQmQR9KMHGBQDn3+1Zba5ftHm7q2fcZfZWHG3G1FKkKBkKSRkEGIIoD7q6
I6o/AB13rPR9j1H0R1l1Z1z1Y9p2n3buo6nfPpt7+4KG1B15y4bC0JcWZUEqwJA7V9Y9Vfgg/Dlr
3RWqdJaN4caRoNxf23ksara2/mXdo4I2OIWslRIIEifUJB5oD8jNf8PdSt/EXXfD7olN51c7o99e
WrL+m2K1rumrdSgt9LSNygjagqOSAnMxVKjp7XF3un2D2mPWruqKQm0N0nyG3tytgUFuQnbuwVTA
gycUB+jXhB+EH8U/4f8AQdO6m8KfFfSBq1y0l/W+j9WQtWmuvd0pdQVAr2hI3hKDIjftNeE/jn6Z
09xdn4j9VeGnVfQ3iPruoBnV7S8vP4hpV+2hmPPtLpO5Mp2tJ8vcnalQARAmgPkj2j3r69V0t4X9
T/g58IUeJnitcdEN2+r9QKtHGenndV/NKNynekhtxHl7QE5Mzu+KA9T1Pwn0nrb8Vfh9qKrhOqdJ
9BeGuh669d3CU2jd6lgLFmhXmna0XXfLJStX6QsE4Jqp8XuhNd1Px68AfxA6rpuk22p9S9VaJpHV
TOkXjV3asavb3bIQoONKUn+awEqCdxIDcHNAfNXiKQPxi9UDmfEy9/8A+qun+Mcj/wDU/wCI2P8A
+sr/AP8ARNAd5+Fd2+6Q8FPGDxc8P9NYvvEPptrTrfTXl2qbl7S7J9xSbi6ZbIPq2gyqDtCJPpKg
fRvC7rDqzxt8GbTrnxtSNS1TpTxC6Zt+j+orq3Si6u1P37abuzDiUjzEIblzM5OT6RAE/wAXvjTf
21z4j9Iab+LDVr143r+nK6IPRoaYS0t4Nu2358kyENqWd8SrZAgmR5N+EPxQ0Hw30jxCTrj3UnTf
8as7Czt+uNE0lN8vp9aXVqKHNwO1D+EmPUfLxkBSQPoix0vxB6X1nxC8aD1do/iX1rb+HOm6t0Nq
7ehoZdf09x9xDt6u0UkEXLSUBUncYWkEn9I8S8IPHDx18W/FTwlZ8Sb261vQrLru0VaatdaW2FJu
SpJVbpuktjASd3lBXcEiEpiUD0/pjqlvpDwx8VtTf8a9T8L0u+NN8wNX0/R16k4/Nu8fyxaQpJSl
W3funBaAjNU/gx4s6TY9ReOXXnVfVl14v6BZdNaVaXV7qOnmxc1KxcuWm3m/IWpRQUB51KZOSgGQ
Dig73pzwL6B6e8NOnunkazbdQeG/XHizo2q6NcrcB/NWDtqtKbZ7uFh1BZWME/BMDwvxX/EV+KS6
6/8AEXwxTZXH8Faa1DTH+l0aE2/a6dpbe5KXEths7UobCVh7iIVMRQHsPiH4ko6N6D8IbAfit1/w
1eX4WaBcI0Sw6Zd1Bq6JZWA+XkuJCFKKdm0gwGwe9fn1e3l3qN6/qF68p65uXVPPOKypa1GVKPyS
SaAxkifRyPjNImTyc0BIKwcYPagLIxmgJLO4BRB98VEwBxkZoASBtiM1GSkcc0AxgniKjjbuzB+K
AhnucUjkSYoABJHHAoHvANAGIPvRPqEfXNAAz2/an7Y/Y0Ah7YgZoweTQASJPagiZxQB8ZgdqYB5
P2FALHfmjt9aADj9WKJIGftQADn45oVGcSZ70ARIniPmjJxPHagGQDwP70iIUJIPzQCMz9KIMExx
QDBEiAaZjgEwfegAwcRSgAQZoB9p7DvR7jmgETIgJ+kUDjk4+aAcE896WAfmgHE/f/FIR3OaAZAi
RP7UxJAyPrQEUg8x2/tQBMzgUAD/ALxTPHHzFABMHIkfFPIH+1AZGLh63ebuLZ5bTrSgttaFFKkK
BkEEZBBGDX6g+Avjb1709+Cvq3xx8Q/E4dTauyxcp0xt59pxdgtP/l7Vp4oG7zVvKSs7yVFKkd5k
DL+AXwP0fwW6Hs/FXxGuLex6q8RXGrPSk3awhbVs4kuMsJn/APivbC4RzCWxAIIPp/4x/wAPujfi
H8PD07ZXFoz1vpLL+qdO73EpdeCNgeZIJnyllTSSrhK1NEnsQOL6N/FP1ho34PrfxUa6GX1N1F0S
5/AOq9OuL1VncWjtufKVcLltalKgsrWiEwHFmRsNfmH1l4o+IPiDY6bpXWPVmpatZaOt9WnMXVwp
1Np5xSVpbKySE+hAAJIASAIoDljujBwMV2C9S8UOqel+nvD5Nvq+paNppfvtEsGbEr2i4f8AKccb
KUblhb6fLmSN42iDigOl1XxB/ET1V0zedLX7vUV7o+oWVpp92wjSgEvWunKX5DSlIbCillQcxOCF
TkGtbonV/wAQHTfTK2ehrDqZGgW+oWnU5UxpCn7dm6tjvZvAstqCNvln1AgEIIMgEUB33VHjB+OH
ra0e6J6oX1zftuIa1NzT19N7Vlu3eQ6h4pSwFbEOttnd+mQAfasWt+NX41/FDpO+6f1W76z13QNV
ZQxdNtdPBTTzbiUOIG9tifUlbahBylaSMESB5l4c634w+G3Vumaz4anqHSdf1ELYsDZ2yy5ep3lC
20tlJD6d6IKYUNyYiRjtvEDr/wDFz4h6+1q3XiOtb2/6GuW7ryVaIq3Z0h9tIcS4u3baS00oJAVK
0AlPOKA891+w8SutmNW8XNe0PXNSs769U5qWv/w5YtFXS1SoKeQgNJUSf0yOeKvehvEfx38AbzU1
9H6nr/Sy0us22qWz9nLAccQpTSH2H0Kb3qQlZSFpkpCoxNAXt/15+KzUutmvGm8ueuRr1otOnN6y
jTnWm2Zc8sWyQlsNJSXF7PKAgqVG0k1c9XeKn4zuteq7BfVSutbjW+jH2tWt7JHT35f+Hu5Ldwu1
aZSgHCoWtGRuzE0BT9FeOP4n/D1OsHojXuoNNGu3X8e1Hy9KQvz3bhsui4O5owFtoUsEQkpSVDAJ
qm648afHfqQ3mq9edRao6nrLSGbN5+6sW2U6lpzNwpTewhtIUhLyF+tH9SVAnBFAQtF/iAuPDzTP
Duy0nq5/pLU9QGqaVZI0x5bNxdhpS/Mt1bJJ8sLXCDEBSo5Nd31B41/jc1boq56M6h1XrxehjZpl
0peiqbeWVEJSw7dBkPKKvMCdq3CVbwCDOQMvSHj/APjZ0/pvT9D6M1nrFWj6Np7FvaN2nT6Hm2LR
sKab9XkE7R5K0BROS2rMg141b9JeIXWWvagiz6T13VNWCzd37dtpzrryFOHdvWhCZSFFU8AZxQFb
qHTXUuktPv6noGpWjdsplD6n7RxsNKeQXGQokDaVoBUmf1JBIkVWjI+vvQDHaASKmnPAgfFAMk8E
g/WkruBwaAUhXJk8RSKjO0GgIkH6TmCKUhMnmgESSYAMVEhIyTNAAJFGMermgFJjjHtTmcx8UATH
JoHHMUA8jvSH/tOfrQARmc0Az/0oAB7e9PgwB8CgEQJgmKMcA4oAMGZp5JEAAUAsn5AoOMjP1oBi
DmCfcUs+85oA4PzR9fY0AAwaWc0A4BEg0do70AERgmaDJMn3zQASDgcUSZmaAOfrRMjIyTigCRji
nyMj7UAjBHpEUEGJFABxHJimJPA/agCMH1ZoNANPBFKQTzQBGZJ4+KOOSZ96AlsE/TkxW3YatqWm
Jcasrx1tp5TanmQqWntityA4gylYChICgRQHqPjF+Kfxi8ddF6f0LxB1q1fa6eecuWHbO2TbLeeU
EgOuBEI3JAISUpTG9XvVP0B+IDxT8PPEfSfFKz6ovNX1nR0KYbGsXL1227brSUrZXK9xbIUTAUIM
EQQDQGDxE8cfEPxL1jqHU9Y1b8hb9VXbV/qumaYFW1jcPtoCULUyFEKUAJlUknJJOa4EgRgyZ4FA
KAeTntXuPhl+JDSvDqz6VuleHz2pa50s1b6ezefxkM272nt62NWU2WPIUQ8XfMbDvmFIQsfy1FIN
AXmsfjN6h1ZjR7xPRlja61pjzNy9fNPgNXrrd8q5Wt1gNhJLoUUOQYWVLVHqKar7z8T2i6pp/Umk
3/hilNpqF0y7oTDF3ZOI0a2t7VNtbW4N1YvLIQhCCpxldu4o7juSVSAOpu/xuWmr9R3Gtaz4VlVh
c3F+/caRa6uwm0uxcXwuk+eHrN1SnE7G0KcbLaj5aVNllW7d5jrXj9qOpdMa109p2kXOmK1VHSiW
n2NSX/5U6LpqrKUDaCfOlLn6gUbAmV/qoDd1D8SGpax40ueLGq6Ap1i40p7RnNNbvQytq2fsl2z6
mH0NgMuqU688Fhsw44SQvO7f6r/FA/qnh674a9N9GJsdN8q2s2bnVbxGqXaLVq3eaILi2EfziX1K
DqA3sSlKEpAE0BV6L429KtdP9JaX1b0Dqus3HSDLdky2z1F+W028tE6gb3y7i0NusrUpalIUoOBJ
SEnZuSFVc9efiS6a8VtK1hnr/wAL7pGqa0vTLq7vNC6iVbIcu7Bu/aYdWm7YunFDyb5Lakl2T+XR
tUkHaAN27/GJrbnUmja1YdD6Y1aaZf3V69bvLQ7cPB+5deKW7oNpcYKUu7QpMwpIXH9NbfS34vbP
odOkaZ074ZuPaTof5MWY1XWk3l835Nzd3Cl/mPy6EeZ5l3LR8rY35eUOblSBge/GFqF50610/qvQ
bF0bPTbDSrK9N/Fy1b2+jO6eptaw1/MQp55y6SkgFCnHUgq37hT+Inj30T4q9Kt9N9Q+GX8F/wDD
Nmq16Sf0rUFuKYbDbLSGLsPSHEhLKVlTQaBcLivL3OrUAOn6a/GHo+gdN6H0894Ti8GnWDFheum+
sUi6S3pN3pwWAdPUVkovFK2XZumwE7EoSlRrW0L8Xlh002mw0bwwaasmn1XLKhe2rNy2VXtvcqbS
beyat0Nq8hSFJbYQYckFJB3AFx+LTQ9a03qRjqbwmbeu+qLbTGLtdleWQtmjYJu27csW15YXTbH8
m5Qg+XtIU0VIKN6hWDS/xM9AaZqHUWpjwl1R9/q2ytLbVkXWuadesBy3U0W1ss3elPNIH8tUhxLp
9QKVJKZIHmfWXi3r3WHQPSfh9eKfGn9J/mUslx8LL6XFjyguEJJLTf8ALSSTCcJ2jFcKYkyQIoAE
iYiptPLYVKVkH3oCRA5T/ftUVQTIAOaAiqTUcR80AGTnOKMDjMcUBEknjsaRyZoAUDEYijA/SDmg
CAPej5M4oBRz2p5+kUAf1Z7UcEiDigAzMzxSg4PHagHIHNM94kUAuCIok5P35oBgT6hiog+/2FAP
ng8dqJj24oA5/wB6QEZigGQPfFHGCM0ARjHfNMgA5oBJGAZNKBEgmaAZ57H70Z+vvQDED6x2pgA8
A80BE+0HFA5igHGMkUEAExQCGMA0Ce/egHnJHtmgYke/zQEeMTUhzgkUAEjAHvP1oEfT/mgHtmAA
ZJigBU88+9APkYP96cEEAyaAIIxAV9KiAIMCScUAtvIn/rTTCjGfaaACkDO44zSwCIoBx7j+1Ke4
+lABkED5oPsfegHGe32oSeP+aAiIn6d6kDMkf/dAAymDB7cUgSMnHzQEonMz3o24/wAUAoj4HfNM
FUCD9KAYM5GDRMmD9OKAiSQOCJ9qkM5OB7UAhHPtUlBQIAOOeaAyQQMyJM0oBVHzmgIKgCJ+DUYA
MzP+9AJZ9X1E0p7zQCJnAoJI4EzigCe5GDRnmgDcEn27YoySQKAM8EfFLHegBJn60TNAMiTHFAPa
KAX0ozk5+aAlO4cwIxSHIzigAATMz96JBoBGIkU+eKAMqEhMRijcR3/vQCxyKcn270ACe4pEgniJ
oB4gZoOeeaAJAP1+aZUfkfSgEdscGaAOwI+9APjvPao5AmYoBjGMz80R7/egDjGccUAk59+RQDJ7
zzQZIBkQaAJGccZ+lBBHBxQBj2inMe2KAMdgJ+KkIiD3oCSErJ3ESB3pqSCYAg/71AR2wcg0oKRI
xNAJRJk9hSCucCqAJjmRNIEDBoBztnk/WicQRP3oAJE98e1IkGgAQDFOPbPaaAIMQRA5mlJ45+BQ
Dkc5xT3Ddxj2oBSQCB3oSQDPb6UACPfHNMDkESD84oAJG2Rj2oBPtQATtIzJ7UwRnJn60AJyCT8U
BXZNAZVLk5Pt9airJg+/vQESTEHBNQJMUAjnAEmlweMUAEwc8D4omDQCIwMcUAx/1NAAE96MjvQD
BB5HxNA28c0Ao5+KBOaAYoj70ATjiPqKBnn6CgAgfftQYH6s/SgBUftSH6TKf2oBke4pA0ATFOMm
DwKARmKY7cfBoBboPv8AWnuEZH0oBTGYpnsKAAeQBz70QY45oB8fM0k/NAA4xxQdvE8UASaQBHE/
FAPnMc5oIzxFAGI+tEE0AAEAzFAwmSKACR7UwBMTOaAkBkSOfapAEnjn9qgN9q0ccT6USMSJrYTp
NyqCGTP0rKWRR5O4wb4NZ+wcYXC0RAnIrSUgp/prSMupWctVsyOYzUSDxFdEIgExj6UzA7GIyKAJ
BEUSeeKAkfYDjNQGcj2mgJEgg0oyFESBigAnsDj3oMnBJ/egA5/+qBFAAJ4AHFMAH6UAo7ZimEki
AI/3oAgjjIoAgcxNAHbj6RQDHOaAfaJinHMjg0B//9k=
"></img>
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[16]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">SoftLinked</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[16]:</div>
<div class="output_subarea output_pyout output_html rendered_html">
<img src="http://scienceview.berkeley.edu/view/images/newview.jpg"/>
</div>
</div>
</div>
</div>
</div>
</section>
</section>
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h3>Video</h3>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>And more exotic objects can also be displayed, as long as their representation supports
the IPython display protocol.</p>
<p>For example, videos hosted externally on YouTube are easy to load (and writing a similar wrapper for other
hosted content is trivial):</p>
</div>
</section><section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[17]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">YouTubeVideo</span>
<span class="c"># a talk about IPython at Sage Days at U. Washington, Seattle.</span>
<span class="c"># Video credit: William Stein.</span>
<span class="n">YouTubeVideo</span><span class="p">(</span><span class="s">&#39;1j_HxD4iLn8&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[17]:</div>
<div class="output_subarea output_pyout output_html rendered_html">
<iframe
width="400"
height="300"
src="http://www.youtube.com/embed/1j_HxD4iLn8"
frameborder="0"
allowfullscreen
></iframe>
</div>
</div>
</div>
</div>
</div>
</section>
</section>
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h2>Local Files</h2>
<p>The above examples embed images and video from the notebook filesystem in the output
areas of code cells. It is also possible to request these files directly in markdown cells
if they reside in the notebook directory via relative urls prefixed with <code>files/</code>:</p>
<pre><code>files/[subdirectory/]&lt;filename&gt;
</code></pre>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>For example, in the example notebook folder, we have the Python logo, addressed as:</p>
<pre><code>&lt;img src="files/python-logo.svg" /&gt;
</code></pre>
<p><img src="python-logo.svg" /></p>
</div>
</section>
</section>
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h3>External sites</h3>
<p>You can even embed an entire page from another site in an iframe; for example this is today's Wikipedia
page for mobile users:</p>
</div>
</section><section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[19]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">HTML</span><span class="p">(</span><span class="s">&#39;&lt;iframe src=http://en.mobile.wikipedia.org/?useformat=mobile width=700 height=350&gt;&lt;/iframe&gt;&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[19]:</div>
<div class="output_subarea output_pyout output_html rendered_html">
<iframe src=http://en.mobile.wikipedia.org/?useformat=mobile width=700 height=350></iframe>
</div>
</div>
</div>
</div>
</div>
</section>
</section>
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h3>Mathematics</h3>
<p>And we also support the display of mathematical expressions typeset in LaTeX, which is rendered
in the browser thanks to the <a href="http://mathjax.org">MathJax library</a>.<br />
</p>
<p>Note that this is <em>different</em> from the above examples. Above we were typing mathematical expressions
in Markdown cells (along with normal text) and letting the browser render them; now we are displaying
the output of a Python computation as a LaTeX expression wrapped by the <code>Math()</code> object so the browser
renders it. The <code>Math</code> object will add the needed LaTeX delimiters (<code>$$</code>) if they are not provided:</p>
</div>
</section><section>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[20]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">Math</span>
<span class="n">Math</span><span class="p">(</span><span class="s">r&#39;F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[20]:</div>
<div class="output_subarea output_pyout">
$$F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx$$
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>With the <code>Latex</code> class, you have to include the delimiters yourself. This allows you to use other LaTeX modes such as <code>eqnarray</code>:</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[21]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">Latex</span>
<span class="n">Latex</span><span class="p">(</span><span class="s">r&quot;&quot;&quot;\begin{eqnarray}</span>
<span class="s">\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\</span>
<span class="s">\end{eqnarray}&quot;&quot;&quot;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt">Out[21]:</div>
<div class="output_subarea output_pyout">
\begin{eqnarray}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\end{eqnarray}
</div>
</div>
</div>
</div>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Or you can enter latex directly with the <code>%%latex</code> cell magic:</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[22]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="o">%%</span><span class="k">latex</span>
\<span class="n">begin</span><span class="p">{</span><span class="n">aligned</span><span class="p">}</span>
\<span class="n">nabla</span> \<span class="n">times</span> \<span class="n">vec</span><span class="p">{</span>\<span class="n">mathbf</span><span class="p">{</span><span class="n">B</span><span class="p">}}</span> <span class="o">-</span>\<span class="p">,</span> \<span class="n">frac1c</span>\<span class="p">,</span> \<span class="n">frac</span><span class="p">{</span>\<span class="n">partial</span>\<span class="n">vec</span><span class="p">{</span>\<span class="n">mathbf</span><span class="p">{</span><span class="n">E</span><span class="p">}}}{</span>\<span class="n">partial</span> <span class="n">t</span><span class="p">}</span> <span class="o">&amp;</span> <span class="o">=</span> \<span class="n">frac</span><span class="p">{</span><span class="mi">4</span>\<span class="n">pi</span><span class="p">}{</span><span class="n">c</span><span class="p">}</span>\<span class="n">vec</span><span class="p">{</span>\<span class="n">mathbf</span><span class="p">{</span><span class="n">j</span><span class="p">}}</span> \\
\<span class="n">end</span><span class="p">{</span><span class="n">aligned</span><span class="p">}</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data">
\begin{aligned}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\end{aligned}
</div>
</div>
</div>
</div>
</div>
</section>
</section>
<section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h1>Loading external codes</h1>
<ul>
<li>Drag and drop a <code>.py</code> in the dashboard</li>
<li>Use <code>%load</code> with any local or remote url: <a href="http://matplotlib.sourceforge.net/gallery.html">the Matplotlib Gallery!</a></li>
</ul>
<p>In this notebook we've kept the output saved so you can see the result, but you should run the next
cell yourself (with an active internet connection).</p>
</div>
</section><section>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's make sure we have pylab again, in case we have restarted the kernel due to the crash demo above</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[23]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="o">%</span><span class="k">pylab</span> <span class="n">inline</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stdout">
<pre>
Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].
For more information, type &apos;help(pylab)&apos;.
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[24]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="o">%</span><span class="k">load</span> <span class="n">http</span><span class="p">:</span><span class="o">//</span><span class="n">matplotlib</span><span class="o">.</span><span class="n">sourceforge</span><span class="o">.</span><span class="n">net</span><span class="o">/</span><span class="n">mpl_examples</span><span class="o">/</span><span class="n">pylab_examples</span><span class="o">/</span><span class="n">integral_demo</span><span class="o">.</span><span class="n">py</span>
</pre></div>
</div>
</div>
</div>
</section>
</section>
<section>
<div class="text_cell_render border-box-sizing rendered_html">
<h1>
IPython rocks!
</h1>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Just my little contribution... I have a lot of work to do but this is an exciting beginning!</p>
<p>You can check <a href="https://github.com/ipython/nbconvert/pull/63">here</a> for more information about this PR.</p>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>And you can find me at:</p>
<ul>
<li><a href="https://twitter.com/damian_avila">@damian_avila</a></li>
<li><a href="http://www.oquanta.info">OQUANTA</a></li>
<li><a href="http://www.damian.oquanta.info">BLOG</a></li>
</ul>
</div>
</section>
</div></div>
<script src="reveal/lib/js/head.min.js"></script>
<script src="reveal/js/reveal.min.js"></script>
<script>
// Full list of configuration options available here: https://github.com/hakimel/reveal.js#configuration
Reveal.initialize({
controls: true,
progress: true,
history: true,
theme: Reveal.getQueryHash().theme || 'simple', // available themes are in /css/theme
transition: Reveal.getQueryHash().transition || 'linear', // default/cube/page/concave/zoom/linear/none
// Optional libraries used to extend on reveal.js
dependencies: [
{ src: 'reveal/lib/js/classList.js', condition: function() { return !document.body.classList; } },
{ src: 'reveal/plugin/markdown/showdown.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
{ src: 'reveal/plugin/markdown/markdown.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
{ src: 'reveal/plugin/highlight/highlight.js', async: true, callback: function() { hljs.initHighlightingOnLoad(); } },
{ src: 'reveal/plugin/zoom-js/zoom.js', async: true, condition: function() { return !!document.body.classList; } },
{ src: 'reveal/plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } },
{ src: 'https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=TeX-AMS_HTML', async: true },
{ src: 'js/revealmathjax.js', async: true}
]
});
</script>
<script>
Reveal.addEventListener( 'slidechanged', function( event ) {
MathJax.Hub.Rerender(event.currentSlide);
});
</script>
</body>
</html>