##// END OF EJS Templates
change %result and add %%px --out foo...
change %result and add %%px --out foo %result now only displays the last result, but accepts the display-formatting options. %%px --out=foo stores the AsyncResult object for the execution in the user_ns.

File last commit:

r6455:15863dc1
r7472:8df45e09
Show More
mcpricer.py
181 lines | 3.5 KiB | text/x-python | PythonLexer
Brian E. Granger
Reworking parallel examples as notebooks.
r4581 # <nbformat>2</nbformat>
# <markdowncell>
# # Parallel Monto-Carlo options pricing
# <markdowncell>
# ## Problem setup
# <codecell>
Thomas Kluyver
Update print syntax in parallel examples.
r6455 from __future__ import print_function
Brian E. Granger
Reworking parallel examples as notebooks.
r4581
import sys
import time
from IPython.parallel import Client
import numpy as np
MinRK
fix mcpricer example...
r5486 from mckernel import price_options
Brian E. Granger
Reworking parallel examples as notebooks.
r4581 from matplotlib import pyplot as plt
# <codecell>
cluster_profile = "default"
price = 100.0 # Initial price
rate = 0.05 # Interest rate
days = 260 # Days to expiration
paths = 10000 # Number of MC paths
MinRK
fix mcpricer example...
r5486 n_strikes = 6 # Number of strike values
Brian E. Granger
Reworking parallel examples as notebooks.
r4581 min_strike = 90.0 # Min strike price
max_strike = 110.0 # Max strike price
n_sigmas = 5 # Number of volatility values
min_sigma = 0.1 # Min volatility
max_sigma = 0.4 # Max volatility
# <codecell>
strike_vals = np.linspace(min_strike, max_strike, n_strikes)
sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas)
# <markdowncell>
# ## Parallel computation across strike prices and volatilities
# <markdowncell>
# The Client is used to setup the calculation and works with all engines.
# <codecell>
c = Client(profile=cluster_profile)
# <markdowncell>
Bernardo B. Marques
remove all trailling spaces
r4872 # A LoadBalancedView is an interface to the engines that provides dynamic load
Brian E. Granger
Reworking parallel examples as notebooks.
r4581 # balancing at the expense of not knowing which engine will execute the code.
# <codecell>
view = c.load_balanced_view()
# <codecell>
Thomas Kluyver
Update print syntax in parallel examples.
r6455 print("Strike prices: ", strike_vals)
print("Volatilities: ", sigma_vals)
Brian E. Granger
Reworking parallel examples as notebooks.
r4581
# <markdowncell>
# Submit tasks for each (strike, sigma) pair.
# <codecell>
t1 = time.time()
async_results = []
for strike in strike_vals:
for sigma in sigma_vals:
ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths)
async_results.append(ar)
# <codecell>
Thomas Kluyver
Update print syntax in parallel examples.
r6455 print("Submitted tasks: ", len(async_results))
Brian E. Granger
Reworking parallel examples as notebooks.
r4581
# <markdowncell>
# Block until all tasks are completed.
# <codecell>
c.wait(async_results)
t2 = time.time()
t = t2-t1
Thomas Kluyver
Update print syntax in parallel examples.
r6455 print("Parallel calculation completed, time = %s s" % t)
Brian E. Granger
Reworking parallel examples as notebooks.
r4581
# <markdowncell>
# ## Process and visualize results
# <markdowncell>
# Get the results using the `get` method:
# <codecell>
results = [ar.get() for ar in async_results]
# <markdowncell>
# Assemble the result into a structured NumPy array.
# <codecell>
prices = np.empty(n_strikes*n_sigmas,
dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)]
)
for i, price in enumerate(results):
prices[i] = tuple(price)
Bernardo B. Marques
remove all trailling spaces
r4872
Brian E. Granger
Reworking parallel examples as notebooks.
r4581 prices.shape = (n_strikes, n_sigmas)
# <markdowncell>
# Plot the value of the European call in (volatility, strike) space.
# <codecell>
MinRK
fix mcpricer example...
r5486 plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['ecall'])
Brian E. Granger
Reworking parallel examples as notebooks.
r4581 plt.axis('tight')
plt.colorbar()
plt.title('European Call')
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <markdowncell>
# Plot the value of the Asian call in (volatility, strike) space.
# <codecell>
MinRK
fix mcpricer example...
r5486 plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['acall'])
Brian E. Granger
Reworking parallel examples as notebooks.
r4581 plt.axis('tight')
plt.colorbar()
plt.title("Asian Call")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <markdowncell>
# Plot the value of the European put in (volatility, strike) space.
# <codecell>
MinRK
fix mcpricer example...
r5486 plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['eput'])
Brian E. Granger
Reworking parallel examples as notebooks.
r4581 plt.axis('tight')
plt.colorbar()
plt.title("European Put")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <markdowncell>
# Plot the value of the Asian put in (volatility, strike) space.
# <codecell>
MinRK
fix mcpricer example...
r5486 plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['aput'])
Brian E. Granger
Reworking parallel examples as notebooks.
r4581 plt.axis('tight')
plt.colorbar()
plt.title("Asian Put")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
MinRK
fix mcpricer example...
r5486 # <codecell>
plt.show()