##// END OF EJS Templates
Merge pull request #2728 from Carreau/shifttab...
Merge pull request #2728 from Carreau/shifttab also bind shift tab for tooltip + config This does not change the curent behavior, only add the shift+tab shortcut. Note that the shift tab shortcut has a slightly different behavior. You can select part of a line and pressing shift-tab will show you the tooltip only for the selection. This is disabled for multiline selection to still allow to unindent block of code, Keep in mind that the real real shortcut for indent unindent is Ctrl+] or [ . Select/tab is not really supported by codemirror. Finally the "tooltip_on_tab" behavior is globally configurable via IPython.config so that it could be easily switched to false. It can be overridden via js console for test purpose. IPython.config.tooltip_on_tab = true | false Take effect immediately, only on current notebook. or globally via custom.js var user_conf = {tooltip_on_tab:false | true}; $.extend(IPython.config, user_conf)

File last commit:

r7739:dff285da
r8971:99339d10 merge
Show More
sympy.ipynb
657 lines | 114.2 KiB | text/plain | TextLexer
Brian E. Granger
Converting notebooks to JSON format.
r4634 {
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "metadata": {
"name": "sympy"
Brian Granger
Updating example notebooks to v3 format.
r6035 },
"nbformat": 3,
MinRK
rebuild example notebooks...
r7739 "nbformat_minor": 0,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "worksheets": [
{
"cells": [
{
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "markdown",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "source": [
MinRK
rebuild example notebooks...
r7739 "# SymPy: Open Source Symbolic Mathematics\n",
"\n",
"This notebook uses the [SymPy](http://sympy.org) package to perform symbolic manipulations,\n",
"and combined with numpy and matplotlib, also displays numerical visualizations of symbolically\n",
"constructed expressions.\n",
"\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "We first load sympy printing and plotting support, as well as all of sympy:"
]
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
MinRK
rebuild example notebooks...
r7739 "%load_ext sympyprinting\n",
"%pylab inline\n",
"\n",
"from __future__ import division\n",
"import sympy as sym\n",
"from sympy import *\n",
"x, y, z = symbols(\"x y z\")\n",
"k, m, n = symbols(\"k m n\", integer=True)\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "f, g, h = map(Function, 'fgh')"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
Brian Granger
Updating example notebooks to v3 format.
r6035 "output_type": "stream",
"stream": "stdout",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
"Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
MinRK
regenerate example notebooks to remove transformed output
r5981 "For more information, type 'help(pylab)'."
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 ]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 1
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "markdown",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "source": [
"<h2>Elementary operations</h2>"
]
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"Rational(3,2)*pi + exp(I*x) / (x**2 + y)"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$\\frac{3}{2} \\pi + \\frac{e^{\\mathbf{\\imath} x}}{x^{2} + y}$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAFAAAAAlCAYAAADV/m7fAAAABHNCSVQICAgIfAhkiAAAA91JREFU\naIHt2luIVVUcx/HPjFNm2YxhZA0hk5HkJbtAWTReioIuUyFRmBZGE12wIoiUHoLpoXsRCRFBDyNS\nPmQWVg9RD0FRD5bagwRpdKUYGro4mSHk9PDfR7cnxzn7nL3P8cj5wmHWOrPP//8/e6/1X7+1/ocW\nNdHW6ADqxDm4AluxDb2Yi2FcjnuwqxrD7al2L27DA3gzcXi0sAun4yechHfRgS9xrypvXjk/YEXS\n7sdfmJiH4SOA47EeZ6BT3LxNYgD11GK4I9W+Bt8m7T8xoRbDRxhTxQA5FXfie/FdF+N3fFet4bFy\n4OvYjserNdxg7sbf+AcnYLAoRx1l/QtwHXbjhaKcFswTYga9gsm4vxFB3IUvMKkOvub5/4Oslqni\n4a/ActwkbmLhzMeQSLIwG6O4qg6+B9WYyFNcj89zslURJRkzjB34Oemfi71iFDYTOxwszY4RGq8w\nvVuaOt/geZEvjsUlWIhfy64/EauwUuipQzGKRfg472Ar4CusxcP4Rciw15KYCiGde96q4PqX8Rtu\nxQ3YLCTAgyJp7xEr36e5RpmNFxvo+7DcgqWp/hsOaMWParA7KL8cWHeyrH7rU+0pyWf/FSv1yXkG\n1UxUKx+W47OkPUuI1vFYKxancqbjIrFoldOvSRay0XFe5WzDhUn7WoyofqUbVNkUHi/GhrxKIzDL\nl18oRs2WpN8pxOpZ+DqDnayMF2M7VmOfSC3PFRjLQU6z8hA+FEFyQDuen0tE1dOHjXhayLCz6+E0\nfQPn4zE8ibfFFutQzMSaVH+zyId7iggwAzOEtCJ07cx6Op+Ml1L9m0Ve66qD70H5yJiJQujD++jO\nwWbFzBO548yk3ymSZF8dfK8R53R5sQCP5GivItrEFC4l6jniBs6qdyA10oVHGx0ErBN742ZjpThA\nmIQrM3zuvjyD6Mczmq9it0wUh4bFMf3cDJ8dyCuIPnEDiafYk5fhnLhUVA6fxY1ixG0UK3AtDIzx\n/gTcgVdFWiO2rft3R2kZswjT8J5I6ktwWo2B5Umn0HbrxGnPKqEcRlS2layGJXhH1FVmJ+9dhh9L\nF5Sm6QxRIy0//u6SU800B44TSmEvnsIfyd+sTBPHb+kU1YtPUv0RUVArybidYjbuFg9tp+atGSGm\nUGkvPiUHewOH+d9SbEj1t4viG6rbyjWKq8XI6RELxFYR/7KC/XaLnQ2hk7vFYQqaq3i+QPzG5RRx\ngHte0t+g9m3kYmMfCg+Jw+R9Qu4MiTJBixSrK7zuA9xeYBxHHXNEzadNSKgtQqjvp5mmcCNoF6v2\ndFwsfldTlGRq0aJFi6bjP9GM0XhICUQDAAAAAElFTkSuQmCC\n",
"prompt_number": 2,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
" \u2148\u22c5x \n",
"3\u22c5\u03c0 \u212f \n",
"\u2500\u2500\u2500 + \u2500\u2500\u2500\u2500\u2500\u2500\n",
" 2 2 \n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 " x + y"
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 2
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"exp(I*x).subs(x,pi).evalf()"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$-1.0$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAACsAAAASCAYAAADCKCelAAAABHNCSVQICAgIfAhkiAAAAU1JREFU\nSInt1csrBlEcxvGPWxKFhcsCK5QFJVlYsfJPsLKQjf8CG8qejVKWkhUbsRBZuWzct0okxQK5LGam\npmmU923evMpTp9N5njm/+c7MmXP4QyopQM0WbKM9j3mzuMEjKjCP+yzhIlVjGOf4zHFuGS4xHvOm\nsInSTOhi6sIaZrArd9gRvAgeOFJHWGcsC8DvtCR32ENspfhXWI0Gmb/iPFSOHlykZJcYigbFANsk\n+NGfUrJn1KOS4oBtDvvnlCzy6igO2Jew/0jJKuJZMcCe4fWbrBpvuCNY3JG6seDnB8UhJvIEjOsN\np4K1mVQNboW7Sxz2BAMZ3DwfHaM14ZWhF3uR8RvLoBVVCe8Igwm/H7WYKyTMuuCzNaZkfXjHRsKv\nFxzTkzFvAfuFAGzEjmBj/wzbAw4wGruuDdeYTqnRiWUshm0FDYWA/def1heszTze5axPeQAAAABJ\nRU5ErkJggg==\n",
"prompt_number": 4,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
"-1.00000000000000"
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 4
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": true,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"e = x + 2*y"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Brian Granger
Updating example notebooks to v3 format.
r6035 "outputs": [],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 5
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"srepr(e)"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
Brian Granger
Updating example notebooks to v3 format.
r6035 "output_type": "pyout",
"prompt_number": 6,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
regenerate example notebooks to remove transformed output
r5981 "Add(Symbol('x'), Mul(Integer(2), Symbol('y')))"
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 ]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 6
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"exp(pi * sqrt(163)).evalf(50)"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$262537412640768743.99999999999925007259719818568888$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAASCAYAAAC+a2xVAAAABHNCSVQICAgIfAhkiAAACXRJREFU\neJztnXusXUUVxn/tvRcrl1JAuSDclhJbC01pTAgiNCERAkIQYkrEpqAUUIEQlEchGm2sQHmUl0UN\nUjU5UAKWVqg8lMYEawAfrcqjvGoVKOAtINryrlCBP9YMd84+M3uv2WdujqeZLznJPTNrr7Xm27PW\nnjOPfSEjIyMjIyNjm8eowvepwBXAdsA44PfA94BNnmvHAxcC/wNeAV4HFgJv1NA3BCwHbgZeAmYB\nXzSfJx25KcBcYCuwj5G9BHjYkTkK+AnwkPHlv8C7Tv0a4Eee9mB09wGXBuoHgVXApEB9av60/g0a\nuxuNrj7gGuDfjkwsLxr/dga+CfSY9vYA3wWea8Oupr2afhDCIPB14MPAO8BrwA+Al7PcNiGXOudo\nYksrFxMLI9GOKv7qxGpVTtTeN00uibGr1aflD9LlxE7KfYApwP3ABEfBWvPZoyA7ADwNHGy+7wKs\nA86pqe+9wucN4NiCzGRgJTDWfB8FLAVeBaY5cud59Lmfo7yth72M3fmeun7gCOBvRocPqfnT+tcD\n/B34mlN2McLVaKcshheNfzsh/H/MKZsOPIYEYx27mvZq+4EPHwWeAL7slJ0G/IrmwW+W60651DlH\nG1upYzB1O7T8xcSqJidq7WpzidZujD4Nf5A2J3ZKrgm3O42xOBghYVGh/DbgbOf7ALAB+EpNfRuA\nxcbps/GP2uYhI6tjnLLZRt8lTtmPgb2REXaPUz4D+KFHr8Vio2t+oXxfYIWx8QDhTpaaP61/JyAj\n8X6nbLKRPcUpi+FF49+JwHc8fi4Ezq1p10Wovdp+4MMS4D80J+HdzLWzs1zXy6XOOdrYSh2Dqduh\n5U/rnzYnau1qc4nWrlYf6PiDtDmxU3JNeBGZwhjrlPUCW5CRgsUXgLeRUUUZtPpApmaqMBN4Hul8\nFrOQm36BU3ad59odgHuA7Ut0W13zS3xoEO5kqfnT+vcQcK/nmn8gndRCy4vWv6uB9cCHCuWXIlOP\nsXZdlLVX2w98GAJWe8pfRqb0slx3y6XOOdrYSh2Dqduh5a9OrDYI50StXW0u0dqN0bcqoMNF6pzY\nKbkmPAC8CexeKH8FWduwWAo8HlJSQx/oSPdhERIEUyvkrgMODNTtAPzU/N3OAz81fxr/epE1tus9\n161ERtdl8PGi9e94489SZMoRJCmsRUbisXYtYu6HhaYf7GT03eepW4MkpyzXvXKQNudoY2skYjBl\nO2L40/rnooE/J8bYrZNLQnZj9a0K6HCROid2Sq4JvbSOYCYYRXc6ZeuA3yGdYAFC/O20ToVo9QH8\nATjf6FuEbOrYO+SowTRkQ8zsCrkZNI+yi1gAfNz83c4DPzV/Gv/2NGVXea67zdQVR30WIV60/m0H\n/MbY2Ah8CbgLWV8rQ8r7Afp+APAM8musiOeNrd4s19VyKXOONrZGIgZT585n0PGn9c9Fg3BO1Nqt\nk0vK7Mbo0/CXOid2Sq4SlyHrpXY9qd98Xwuc6cjNRHaPhh5aIX0W65EdkBZnAI/SvCZm8TmjZyNw\nUmUL4C/A5wN1nwS+5Xxv54HvQ7v8Vfm3vym70GN7ianbLeCbj5dY//qRDTh2w8tdJfbK7FrE3I/Y\nfgCyDrkJGOOUTUR+ob2HrMtlue6V86FuztHGVuoYDKGd3FmXP41/DcI5McZubC4psxujr4q/kcqJ\nnZILYhJy7MBdA7AbLrYgU68Wo4EXgFsj9bnXu+hDprQuL9HXi4xq7kWOfPhwGDIF1heweQMyOrJI\n+cBvlz+Nf9NKfP65qdvVUxfiJfb+zkaO6RwNPGWufYrwztDU9wN0/cBiDDKin2d8GIvcnweRoN4+\ny3W1XBHt5BxtbKWOQR/azZ11+NP61yCcE2PsxuaSMrsx+qr4G6mc2Ck5L8Yg6ywLC+V9RtGjnmv+\ninTK4tn+Mn1l2AD8qULmEONPI1D/C+DGQN0ZwGcKZake+Cn40/jXh+wOnk8r7kQ2mvjuR4iXGP/m\nAHc79f3IueN3kTPDPqS+HxZV/cDFOOBk4FpkZ+sg0t71WW6bkLNoN+doYyt1DBaRKnfG8qf1r0F5\nTtTYnUN8LimzW0efi2I/SJ0TOyXnxSjgFuCiQP0Q/o0Y9yHE7BKp75fAHZ7yF2h+ycR45Gyhix2N\nzVdpHYn2ITfj+x7duyNrNUWkeOCn4C/Gv4dpPaoD8FtkrayIMl60/oGM3D/lkTsd6WjFXzWp7kds\nP9BgiOq1yizXPXKpco42tlLHoEWqdoQQ4k/rH8Qvc/rsxuaSKrtafVr+UufETsl5cTEyBeNijvP3\nEuRlCkWswf9Wnyp9Q8iGCBcDCJErzfcxyA7VrQxv6ILh6ZbXaV4nAtlwElpbOxGZBl7hfO428k+a\n7zM91zWo7twp+IvxbwmtQdsDbAZ+7bFTxovWv36kI/mOqYxCHrzFjS8p7kedflAFe176hCy3zcil\nyDmgj63UMWiRqh0+lPGn9Q/iH/hFu3VySZndGH0x/SBVTuyUnBcn47/JP3P+Pg54i+Ht/1bxZlqn\nVDX6FtM6K3AkQrp90cFo4J/I2o+7TnuskVvhsXGSqZvrqfNhIu3/wk/Nn8a/ucgudZeXTxvZwzx6\nqnjR+rea5pffWBxE61lhjd0iJtLa3th+ML4g91Vk57A74p1H6xnqLNedcpAu54A+tlLHIKRtRwx/\nWv8sGoRzotZubC6psqvVp+UvdU7slFwTDkVeiHBT4bMMOd/nYjlyPMGuXZyCjIBcQrT6piKk2Q0c\no5HR8s00b6iwRyeszQHkhRDP4j9reD5y404LNbiA6Ub+6hKZOwjvak3Nn9a/nZHXTJ7llC0G/hjQ\no+FF498xpmwfp2wQ+UVzeE27LkLt1faD/ZGNQfc4ZTORtUM7Gp6BzBhMKdjIct0plzrnaGMrdQym\nboeWP61/LspyotZubC6psqvVp+UP0ubETsk1bSbZRPhNQsWppXHIW832Rd49/BKyhvVsTX0HAKcy\n/A8W1iGbDrYWrjua4fPWk4BHkF2fvnWyzyKj4SPxb7iw2BFZy9kP+AgyPbIa2aW5AulQy5B3WNsj\nGJuRjnwtEoiQnj+tfwCfMPq3mO/9wDeAf3n0aXjR+jcdOUbXYz7vAFcCf65pF3Tt1fSDCchLNW4B\nvu2UL0Du5YDx+QJzfRFZrvvkRiLnaGMrZQyORDu0PGv80+bEGLuaXBJjV5ubtPylzomdksvIyMjI\nyMjIyMjIyMjIyMjIyMjIyMjI+P/H+4goW6CaW6G1AAAAAElFTkSuQmCC\n",
"prompt_number": 7,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
"262537412640768743.99999999999925007259719818568888"
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 7
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "markdown",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "source": [
"<h2>Algebra<h2>"
]
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
MinRK
rebuild example notebooks...
r7739 "eq = ((x+y)**2 * (x+1))\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "eq"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$\\left(x + 1\\right) \\left(x + y\\right)^{2}$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAHQAAAAbCAYAAACtOKuoAAAABHNCSVQICAgIfAhkiAAAA/tJREFU\naIHt2luoVFUcx/GPZp7Ek0bUKcrsImVmnlMhSUFmUhbhSxASkUQJBV3einrq9tCN0tDEkB4mouuT\nLxldKC0sDOqhyEq7GEFlGBVGZlb28N+Hs9yz9zkz4+wzh858YZi9Lnvt/3+tvX7rv9YMXf5XTOi0\nAV1aYgGuxGTMwT34uKMWdWmZXqxN0suwB9M7Y06XQ6Uf/2JWlp6GA1jaMYu6HBIThOQOLpdzxYDO\nGe6mS3FEtXY1zQx8WZDfI+wdrzyLxwcTEwsqLMZM/DlaFo3AVCzBW4ZkJmUfFuKc0TRqjLACP+CO\nsgq9eKFiI/oxqcG6c7ABD2KLkJYijsRWwwcGVatOM341wkjKs1QMKEzBKUWV7lf94lore3gD95UN\nKFyD20rKFuPGFp7ZDDWt+TUcDyhWnovFYB6ffa7FBUUNbMNhbTYqT001A9qreC82GqpDNQNapDyn\niW3KgdxnGgdLxDyhx//kGj0LNwgJmI6bhWYfg+NwN75trx8t8buw6Ux8nuTfiecK6nfSrz7cgvlY\nh1eSsltxlZDbPViF5XgyK/9aDPSIXIencnknY6Wh4OllfIrLMmP246amXKluhsImcYKSUqQ6nfbr\nMfES3YX3cmVb8WKSLlOeQtIo91j8liu/HfeKjSxx1LQXb2AXHhKdMVbY7uBOLVOdTvrVjx2iry/B\n90nZVJyHzUleqjwjkg5oj/o3ea2Y9oPMx2vZ9XfiDPHXRh40SuxxsBwNiM7L00m/fsIzOFEoQroc\nXCiWwXdy92wXa+eIpGvobvWR0jfJ9ezMiLcbaVgYPVCQPxPn46+CshX4sMH2izgdnyTpItWhs379\nmH0vE7NvY1LvIjEO23L355WnlHRAd+KMYeouzoxNNX8Wviqpf31Jfg33Zc9rN7NF0DBIkerk6ZRf\nl4uXaF+StxDvqo8V8spTSiq5W3CCoQ7oEdIzL0tfIaLHP7J0r/J9XyeYJNaa95O83WLWpowVv07C\nFzm7FqiXW8KHXY00mg7oXvHGnJ2lF4mDhlk4V0z5v7OyyaJTnmjkIW3i6Oy7r6R8rlgH9yd5O9Wr\nziJjw6/PhEwPsk6cZG0uqJtXnoYZwKvZ9VFiwV4jDn8Px2qsxyOiM1qhpvHwvk84uMPQBvoXfCC2\nWSkb1f/iMEWsoansjgW/iBn6Jp4WivC6CMTy5+uT8HNmZ0usFAt2VdS0/0RlmdjbFbFBcRDTbmpa\n92uiCJZWFZQN4PkW20X8zvaweLurYLU4f2wXPXhU+d9pUtWpkmb8WoOPkvRyERzNKKhbpDzjnqpV\np1l2iogYThVHjEsK6g2nPOOaqlWnWa7GS+J8dr3iX1RGUp4uXbp06dKlSxv5DwKJ3tRzwoGmAAAA\nAElFTkSuQmCC\n",
"prompt_number": 8,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
" 2\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "(x + 1)\u22c5(x + y) "
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 8
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"expand(eq)"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$x^{3} + 2 x^{2} y + x^{2} + x y^{2} + 2 x y + y^{2}$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAQ0AAAAbCAYAAABm6to6AAAABHNCSVQICAgIfAhkiAAABQhJREFU\neJzt3FmoVVUcx/GPF/FaWiY0SINlBqKWUUiiZNpgSPgimFA+lAhFgw9BUBBNZBSNRlRQQTuKiqDh\nQUMwaCACi6KBJposIpKCBqPRtIe1Lx5P9+reZ+199jnd9YXL2Wutff7r//uv5Tp7DVsSiUSiBGM6\n/N6pmIbJWIQH8GJVTjXAPJyDcZiJ6/Beox7FkfQkYqgl3l/jgvx6DX7FYKzRhpiI+1rSK7Edk5px\nJ5qkJxFDbfE+HhPy6xX4Xf8OGnOwE9Pz9IHYhWWNeRRH0pOIoSvxfgLXVGmwy4wRHseGpmqzhSDN\nbMyjOJKeRAy1xvtkXI+HsH8VBkswCxuxGW9gvbC+UgWP4c6KbPUCSU88dfa3XqeWeF+Et7Bf1YZH\nYAZew9Q8PRnv53+HR9peg9t0vkDcayQ98dTZ33qdyuI9D9uE3RPCKLwLSyNszsHYgvc+hwVteQty\nH+6J8GGZECTCAHhMhK2ilNFdlir11OlnUZrSU1d/q5I62qfSfw/ThZF3aOHzPPyJQyJsZiWc2oaP\ncUBL3lj8gQ86rH+REKAp+d/5mN+hrTJk6hmcqtaT6c4gOhJN6qmjv1VNptr22Wu8OxmdPhfmOGuF\nfdz5OA3fx3pakM9wkrB7sz3P26HzgetYbBC2mlrp1y29pKdaqu5vvc4+490+aMzCauEpYhIuxpU4\nGIfhanwlPLI1xSJB0E8teVOFraENbfcW0fOFPX9F9sWhuBRzhUNtG1vKLsNynFXCXhnq0FMHRftR\n0Vg2qafq/lZGdx0UqbtwvI/GXRjI008Lj19L8gr+FhY96yAT93h1K/6x59yzLj13CB3iKrzeVrYF\nT5WwlSmuu1/ap4yfVcayDJlm+1vVujPF9UTXPdByvVbYQt2Zp8cJh7Y2C/O6W4RA9BrH4XKss2cQ\n6tAzB5/iZ5yOb1vKJgjb0K+UtFmUfmmfon42GcsYYvtbk7orr3taW/ob3BzhYBkynY384/GmsC3U\nTh16puR1HiH80ixvKVsirKjPLmEvU1x3v7RPUT+rjmUZMs31tzp0Z4rpqaTu1jWNL1uuZ+SGXyrg\nSBkexYnD5E/FKfhrmLI1wjmQdsbgEWzCtcOU16Hnu/xzpfC+zQstZQvxAz4c5ntV6O6X9inqZ6ex\nLEMv9rcY3bF6ao35JcLqcOtJz+kj3FsFmfIj/zr/bbwLR7i3aj2b8Hxb3st4tqSdTGe/eP3QPhTz\ns6pYliHTfH+rUnemnJ6ouofWNAaF119PyNNLhb3p3/L0RGEe1yusFuaON7XlL8w/69ZzFD5pSQ8K\nh95ejbC5N/qlfTrxs9ux7IQ6+luTuqPqHpqeLMaNwjvzY4VRa0deNk4IyPpoV6vhDNwujJaPt+QP\n2r0ItVi9ej6y+1gxYetqvPoWsBbrj/ZZrLyf3Y5lWerqb03qjqp7aNDYIryteqYwL5orHOB6ED/i\nSWF/uRd4Bgdh1TBl6/LPuvVcIcxvH8Y7OFJYkX43wube6Jf26cTPbseyLHX1tyZ193rMC5Fp9phy\nDAPCAtPdHXw30x+6M93xMyaWZcj0VtxjdWc611O67oF939IVfhHO8vcD9+LtlvQq4c3HTl4f7hfd\ndflZZSzL0HTcq9ZdRk9TMR/VbMUN+fU04bHz7Kac6XO2Gp2x3Ko53dF1/1/+n4VusgLnCi/ojcP9\nwrwwUZ7RGssmdY/WmCcSiUQikUgkEolEIpEY5fwLmrvyxplDsPoAAAAASUVORK5CYII=\n",
"prompt_number": 9,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
" 3 2 2 2 2\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "x + 2\u22c5x \u22c5y + x + x\u22c5y + 2\u22c5x\u22c5y + y "
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 9
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
MinRK
rebuild example notebooks...
r7739 "a = 1/x + (x*sin(x) - 1)/x\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "a"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$\\frac{x \\operatorname{sin}\\left(x\\right) -1}{x} + \\frac{1}{x}$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAFwAAAAbCAYAAADxsuiMAAAABHNCSVQICAgIfAhkiAAAAolJREFU\naIHt2duLjVEYx/HPMONYaHIYFyYkF3KYQkiKuEEyLgwhh5kQV3Io/4C4JbmR2pMLKTXiSiTlAiHl\nmEPKFSlFKUY0LtaavGl2+52xZ+/X3vtbb3u9z177+a3D8z5rvWtT479kLh6XuxF/MQ7X0Zwl3foi\nibzE+iL5Kga7MR6rMKQKdDNDD6ZmSTcZ4UsxXUgPd9GElTiMt1iHKfiIblwVZnEnFuMknqERezEf\nxzAz/m4yDkWtmXiVQndk9FlxjEFHLG/AvVjuFAZgOB5E2wRcSdSdiPPYGG17MAyvsSnh/0ssNwiP\nXBrdSVjyD/3KbIT/EAYNFqErlnck6o3FE1xDe7TfQB1WCAMNF4RJGY6L0Tbfn0hdlCgX0oU1uIP9\nwpOQj/sJvWIyF8/xcxB8g4dYGMvjEvaRaMVtHE/Y9+E0RgvRC9uRS9Q5g4PCpG3V92KdT7e9j7pp\nKUaE5wbgI69u70q6Ggdipdl4FL/bImxv3uMXLuMc3iR8bBNSQFsUIuTgm4k6bULkb8ZnIV0U0u2l\nQQUxNH4uwxwhH99CS7y/JCyS9ZgmDH4jziZ8zBAi9yneRdsRnMDXeD8LI4R14Hn0/baA7reo24wX\n/ezXDmEiW2K7m4QFeSC0xrZ9LrFuUVmbst5yjBrEdqQhpzwLb9WSU8QBr8q3oXJSV+4GZIhOzOvD\n3owPwhb2bzqE3VW/6amyqz/kpEspqbR798O1SP93Uo1hLYeXmGIdz6al0AHZ/06m+lfooCqr5KTL\n4Znr3wjhFJHwFnq0HI0YAKekG7BM9y/fQVWlkIn+JQ+quoX1Y4hw7FoJpOpfKbeDu7BA+GOiHt/j\n1YVPJWzHYFHp/atRo0aNquc3S/HNyBXE+1kAAAAASUVORK5CYII=\n",
"prompt_number": 10,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
"x\u22c5sin(x) - 1 1\n",
"\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 + \u2500\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 " x x"
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 10
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"simplify(a)"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$\\operatorname{sin}\\left(x\\right)$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAADAAAAASCAYAAAAdZl26AAAABHNCSVQICAgIfAhkiAAAAnNJREFU\nSInt1VuojmkUB/Df3mO22cgph7Bz2kn5UCMXUqa5MG3JuFNuHAs55kJsZWaScOHQ1IxpXM0lI8lc\nKHMqKRGGpI2UiJkmJYfSyGHsuXjW63u8fV8T7ZLa/5vv+6/nWev5r+dZa7285/jgLf164w8043TX\nyXlzNL6lXz/8gzNdqKUb3XgXaKhhG4CteCTV+XPsjrUWrMRk7MPxzG82Fkj9sRgDMR+9MA1bcDLb\n34jP8HPwCViCnhFjBTZgEIaiPbQ9ws16CTXiKiYGb8U9fBJ8H/pgM05lfk34Pv5fxlGsUr2gdlwp\nnTUvYsEo7FUdKofQEQlOlS5xeaxtKgvOMR0jcSv4Q+zEObThBB5jJu5kfjOk223AcLzAd+iM9QYM\nKZ01LGLBWnyFl8Gb8AS/4m5oOBRrHaiogwlx6A18E8IKjJK+G2PjoLaSmGaptDpLfnAQv2S8Gesz\nPqa0/09sr6NxvFRqdbEMt0NIp1TzOXZIL1TrG7Je6pumzPah9JIbM9tw1ZKoJbBTeuVaaJZK+H9R\nwSWcz2w98De+CN5a8vkJv5dsc/EvRkgN2iI19rY6567E09hTID9nHNYUJL/F/biY8Q78KDV1gTZp\nIvyA/liarTVKzX6iJGhh2P7CIgyWXulFrPfEl5gUfBauxR5So78SHAmcq5VABUcyPgSfY1dma8F1\nqUbXqU4e+DiSKicwAr9JI7Ciekl3IplPpbHdGjFGZ8k1RXJfZ/Em42xB8u9ARcq+L55FkONSGRUY\ngAORxGGvz/W5Un9MCf8Cc7BaKsVvpalSiJuHY9J4vh9+7diDj/BAGgBF0lPi94JudKNr8B+fxX1B\n89kW1gAAAABJRU5ErkJggg==\n",
"prompt_number": 11,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
"sin(x)"
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 11
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
MinRK
rebuild example notebooks...
r7739 "eq = Eq(x**3 + 2*x**2 + 4*x + 8, 0)\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "eq"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$x^{3} + 2 x^{2} + 4 x + 8 = 0$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAALIAAAAZCAYAAACVUXRFAAAABHNCSVQICAgIfAhkiAAABSRJREFU\neJzt2nnsHVMUwPHPrz+UtlpNiKK6KJFaSkQsjajtD0sliFRCE0uF8I9dbN2oiCKI0NhfEZTYUoJY\n/7DE9gciSC2xhFhraS1Ff/44M/p+09f2zXtvOn0y32QyM3fu3HvOzJ1zzzl3qKj4H9DT4n37YCyG\nYxLm4dlOCVUCe+JQbIDxmIF3SpWoYq3wOY5PjqdhCQaWJ05bDMGNdedT8CuGlSNOxdpkJwxOjo/G\n77p3IE/AcoxLzoeiD5NLk6iiFO7FxWUL0QY9wrVI3awdxUAeX5pEFblp1UeG3XA4RuIM/NYRiZpj\nB1wlfNpheAWzsbgDbd+Nb3FOB9pqlXOxPq4oUYZGDMcF6BXPvRcz8UXB/Y4U7/tr/CyezbX4oZOd\nnIK3sFEnG10N2+MljErOh+PdZNuyzbanYa72PvB2GY2lmFWiDI3YBAuwRV3ZBLwnBlpR9OIjMc5S\n5uBpDGin4T3xjchaENaxDwe30eYErNdk3UcwMVM2MZHh+jZkmCwGMvFRjmmjrTz6ZLlF6DKrjf6b\nJY+cU3FJg/K5OLtjEq3McfjTipgMthPP6KS0oJUR/T0W4avkfBcsE1a5Vc7W/Fc9EXdg47qy14Wy\nB7XY/yRsjicwAkfqb3nykkefeo7C8230m5c8cu4mMlXZoP4fxWZ4zsPLYpZKWYRPdCAgP1L4cRdh\nobDS7VDTvAV8WfjjIzLlPwvfNi/biHRbX2Yb2kJbKTX5LfoQ3JYcry2LXNO8nFOEXAuEOweDhEtX\nVGC8nsgo3dzg2tP4sb5iPTvgRPHVDcOpYsBuKizWBfhMTO9lMUm89J/qykaJgfd4pm4z+nyiv3Uv\niwutObhr9v0UwaNi0WsK9sX5OEYExe8X1OfmIl5Z0uDaUvFBDcSf9QN5NE4WD2Y5HhDuwpkiG/Aq\nXhA+XJn8rf8ghtOFzPUDoVv0gV3Fy/p4NXXK1mcZjsCDOAR3CVfs7dXcc4dwSfJwJl5MjtNZd2mD\nemnZJiJm+4+r9bdMj+LN5HhrXJrcVAQ1rQdX24pBMDtT3i36DMB8kUpMaeRaFKFPTb7nfqxYBT1M\nzGR9yb6orMVOVu1m3Z9c2yx7YWzm/Etc3mnJVkFNawN5Q7whIucs3aLPadg/U9bo5RWhT03zcp4g\nLHDKYJHLXS7y+EWwvgjiZzW4tlDMEj3095E/rTveHluJqaqTzBdZjiyjsEciWJZpGmdEenAnnsL0\nBte7QZ8Rwu+d10Rf7ejTied+qlj4SlmKs/AhbhKW8bsm5WmWv/CBFcFlPUNEcN+3ugZOE1/CoLqy\ncauo2wlq8lvkOVYewCesou66qs9UPCPchHR7QrycD5Lzoxrc1yl9mpVzsLC8jVyXHvxi5RkDbhXu\nT55tUqaNu/FwpqxXxElPZjscKH5d3Dk5f0x/J36ImEaKoibfQD5R+IRZbk/23aZPPWOs7FoUpU9N\n83K+Ln5JyLK3WN0rinPFUnT9yvFe4hkdmBakrsV+Ilh6JykbI7IDRBAyA9cVKGweDhDr7k/hnrry\ngcJq0F36ZBma2bNu6HOZiEUWidmCCPJmiExDUdwulqdPxg1J2Ul4Dc+lldKB/Jr4i+1A4S/tjmtE\nKmcx7lNcfjIvD4kp7rgG1+Yk+27SJ2WosLSp1T1DWLsrRTqqbH0WJn3MFFN7r/Bhp1uRPSmCxWIF\nb7pwVQhXp9HsUDo17f3bsK5R0x361HSHnGukrb+HOsgv+KNsITpIt+jTLXJWVFRUVFRUVFRUVOTk\nX/JnRRiZjdxGAAAAAElFTkSuQmCC\n",
"prompt_number": 12,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
" 3 2 \n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "x + 2\u22c5x + 4\u22c5x + 8 = 0"
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 12
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"solve(eq, x)"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
Brian Granger
Updating example notebooks to v3 format.
r6035 "output_type": "pyout",
"prompt_number": 13,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
"[-2, -2\u22c5\u2148, 2\u22c5\u2148]"
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 13
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
MinRK
rebuild example notebooks...
r7739 "a, b = symbols('a b')\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "Sum(6*n**2 + 2**n, (n, a, b))"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$\\sum_{n=a}^{b} \\left(2^{n} + 6 n^{2}\\right)$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAHgAAAA4CAYAAAA2PDy+AAAABHNCSVQICAgIfAhkiAAABt1JREFU\neJztnHlsFUUcxz+v4MFRakulQDmUS61aMagVjBIoigo2kQASVEQgEK8oCgnEKyiHYkiQiAKS+Agm\nohJEA94HGg8UNVFUQDzwIIiiiEhAQPCP766773X73r7deS3V+SRN3uzOzvx2fnP85je/LVgsdXAr\n8CfQu6EFseSHQuBnoElDC2Kpm4IYz/YH3gT+NiSLJQ/EGX03AYeQgicCPwDbTQhlOTLYBFQ5v2uA\n5xpQFksdRJ2iOwMJ4H0n3QFoaUQii1GiKrgX8IEvfRHwRnxxLKZpGvG5r4FfnN/dgVOAq4xIZDFK\nVAV/AmwFxgEVQD+0J7ZYLBaLxWKx1MFG4HAe/x6ov1exBDECTxl70BYoG0cDJUBHJ//ZwEBgFvAR\ncmm6Zf4GNDcutSUnFuMp5FOgWczyjgdGAuucMifELM8Sk+bAF3hKXmio3KbANGC9ofIsMTgd2Iun\n5CsMlr0IqDZYniUi1+EpeBfQxVC5hcDVGe7HXRL+j0S2a5bjKXkdMqjyySRkpFlyYwFQGuXB44At\neEqea06mWkwAbs5j+Y2NKmSzzAJWApUZ8p4MvEbEAdgbOICn5MuiFJKFrsDreSi3sdISmO9LDwd2\nA0UZnrkfeDRqhVPxFPwr2vOaZBkwxHCZjZlK5D/o6qRbobYfnOGZlsB3QKcoFRYAr+Ip+W3MRVR2\nRzFdQeVVAKuBV1CQwVyg2He/BHW+5cCZyNqfBMwxJFsudAQeQ36EOWh6bRGxrASaohNO+lTU7tkc\nT7cA90Ssk7YosM5V8syoBQUI9UTA9ZNQR3J7ZDHaQ68H2jvXxqN1ZzPeVq4VsvrrkzbAt0AfJ12C\n4tYmGip/KeE67YXAj8QYfAPxXI+HnALj8jxScjrP4DWYSx+n7geddCFQDnzvy9MPeDemTJXkFhCx\ngtR3aIOmy3Ex5QAYC8zGG82ZOAG1z1lxKpyNN4p/IqJ57mM7iusKur4RKdGlKbAP+Nx3bRSQ9KUf\nRl9eFBGuUYJIosYKwzBgP9pxmGYwUjDIP5BNpgLUPkPdRBRuxwu6+4Z44ToFqIP8HnDvKzQ9+9ex\ng8BfyL/tUk2qBT4cTfnuwUm+GYpkDXqHOPQFypAN0ha4HGiX5ZlDSCedIXpM1gFgDVpnalCPiUop\nUnJQ4/RFlqH/Xie0xq7yXesGTPGlVwGDSI38zCc90UxWhdqjHM0ek5HiXS5FHrwiYDRqvxHIC3Uu\ncAfwlpO3C3qP9HDkTNskly9xFByVK1FUZfc4hTiUktuacR/6miJ9bTZNknBTdAskz3rgBt/1IcBO\n1PlAhuAC5/d65Li4Hm8JmYIOeEywGpgX9eELkIV6niFhEmhGGBkibze0HEwzVHcmkoRTcBnqoPtI\nHW0FaFQ/5aSr0TsmkB9heVo5U4EdkaVNZTOaDXKmBxq5ww0J4rIVuDtLnmORL3y24brrIkk4BR+F\nFPxZwL2PUYdMoLWzGbLODwPnp+VdBrwcTdQUmqIBM85NhKUUbWcewOuVplhL5uk+gRwILwJ3Gq57\nCXBGwPVOwDnIOk5nLIpUATXmNjQdp7MHTeHFTh7QV5l78T77AXWSizHjV+iC9PpOLg8dgxwOjxgQ\nIIjxZDaIplNbsaPzJItLkvDbpKXAhoDr65CHzs+z6FDATw1ax8tRW3cIK2QAg9DhEBBum5RAL7sL\nuDFGxX5akKqg1ajnBZ0DX4tM/3vTrqdPcQ3JStQZ/C7UBJqV/MosQDbMmrTnRznXtgLXkLoFzJWe\njjyhmYnWEpNfD87B2Yj7WEhtH2p/ZHg8nvb3NPCkQXmCSBJ+BIOMphl4VvEYNKr9Su9F8Pr7HjKy\nivE8dFEoRW7K9tkyuoxBLsBsm+uwJNB573Zqn1uWo3Wsq+/aTuoOv00f0aZJkpuCi5CCV+D5jdNP\ndWqQMZb+7oOBF9A7leUu6r8sJgcjtBpZzKfFqNClEL3cS0g5D9WRbyhHzofkSXJTcENThZwkocKd\nKpByB4QsvAlSYls0AivRNDQFfTe8n9TRl8mpMYZgv3R9Mw+9T2NhEanLQZ2UoWOvfH3ZYENm65Gg\nffBdyJm/KU91zs+exWKxWCwWi6Vx43pdSlDQeS+0We+BIgTbAbf58pegQ+xMYTAH0XHeAV8dE5FH\nqgxFBc5A/6nHUk/kMzJxOl5kYWvknYrzPzItEchXZOKJ6MjMDZrrh05TLPWEuw/ejQK6/IFrw5AD\nvQj4AzkpWqOg8rBT9AB07rnbuecGxxUTfH5qySNL0LGVyw60Bsf5Gv8Sp1zQadQG5KY0EStsCYE/\n+n0yCmhzQ2ArUJjMhyi2KApbULREGToD3oac4mtRULjFYrFYLBbLf5J/AJU7iOeJWdTXAAAAAElF\nTkSuQmCC\n",
"prompt_number": 14,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
" b \n",
" ___ \n",
" \u2572 \n",
" \u2572 \u239b n 2\u239e\n",
" \u2571 \u239d2 + 6\u22c5n \u23a0\n",
" \u2571 \n",
" \u203e\u203e\u203e \n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "n = a "
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 14
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "markdown",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "source": [
"<h2>Calculus</h2>"
]
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"limit((sin(x)-x)/x**3, x, 0)"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$- \\frac{1}{6}$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAABkAAAAeCAYAAADZ7LXbAAAABHNCSVQICAgIfAhkiAAAAPpJREFU\nSInt1aFKBFEUh/Gfq0WDCO6iguhoMwg2k6YFi7DRaBKMvoDZavYhDBaDLyBo2CfQJhgMgm6wjGHu\nLOOAgnIWXHa/cs+ce/n+3GHmXoaMOdxgpT4xFRRwhCbaaAQ5vyVHVm8OPHUc8j9DJoM8hzjBFtaw\niNsg96gxUak3cVHr/UQXx78N+St5gGNIiHhdJR1MYwazOA90o7hHzlKd4SMFhdHAE1YrvfXqgoib\ncQNLih3sYhtXeAhw9zlQfMY76Xker1guF0Scwm9pvE/jC3rYjwzpKnZSPdFzvAe4v3CNvVS38IyF\ncjLqP2niFI9Jfom7IPeYAfAJyood4uaM00cAAAAASUVORK5CYII=\n",
"prompt_number": 15,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
"-1/6"
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 15
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"(1/cos(x)).series(x, 0, 6)"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$1 + \\frac{1}{2} x^{2} + \\frac{5}{24} x^{4} + \\operatorname{\\mathcal{O}}\\left(x^{6}\\right)$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAAAfCAYAAABedqnDAAAABHNCSVQICAgIfAhkiAAABlFJREFU\neJzt3GvMHFUZwPFfi7y1UKgXqE15S0sxNUWp0Sj1AqnRCgQbRD8Yg6BoASURjZFCNVqaGEVLqsSo\nEIM6Bi+JftAQkqL9YBM04AcNKN7AS1WsGK+0WLRo64dn1h22s7uzszM7+5b5J5PZc/bcnrPznOec\n55xZWlqe5BzTdANqYh2uxHm4Gj/Fnxpt0WTYgQP4XdMNGZGn4p24p2T+1+IFOAvrB5RzLb5Xso7a\neRp24dQKylqET2fCb8B+LK6g7DJ8Hv/BY7gLa2qqZ71Q9FfUVH5dHIsEy0vm34Ab0s8rcRAn9kl7\nET5Ysp5auQLvw2EhxLisxSGcnoZPTMveWEHZZdiGpepVwsV4F3abe0pwLd5YMu987MWKTNyqIXnu\nwOtK1lc7VSnBPDEdmpeGn5uWXdcIPIxtE6hjMxaYe0rwdNyLp5TM3/lt1+NSfArnDsmzCndnI+b3\nSTiLX5ZsWNMcxvfTO2zBx/GzhtqzEFeJH+kTOK3i8i/ETvy74nJH5VihjNvS8KvxTTyMB3CjI6cp\nl+F2MV0sw/PS+yHchuvxdfH89uPXwnqs65fgeKFJD+g+RJOiKkuQZRO261qFJrgEM+nnDWLkq4pl\neHMmvFszlmAp7kzbMg+fw814Cd6Ln4vf90s9+XYJ50VZXpOWuzAT90e8Y0i+j+LWvC/WCM39iFhB\nj6MEa41u4qpWgo1CCYhOGqfsMvJ0yOZbKeQ8PT/pyLxVrKe2pNdefFY8HGUoI+cK/AKvSsObcUtP\nmpV4RMi+No2bwb/wjDINTTlFWIFFmbi9wuoO4m344bDCE+MpQWL0h65KJVgvFGBpel2Ml45RXqJc\n216Mf+qOVOcIOZeN0ZZB7DGeJUiMJufxYtr8pjT8QvxBvnfmY0L2zgO6XDVTuJ261uRk4SF71pA8\nZ+OvnUDZ0W2aWSU8AIt64ptwkf5K/PiPpeGXiSnA3orrmRXTjlPwfiH7HRXXkccW7MOXcRy+ILxU\n+3LS/ii9dx7QJfhHBW24VLg916RlbzR8T+hBYYFOwP5pUIK36I5eN4l57U056c4Q5n+BeKDfjmtw\nkhB+C34rFj4n1NngEfib2Bu4Es/GM/H6AvmKytrhIbwnvSbFcqF4l6Xh+XilzAjbw4H0vie9H6O7\nVsqjaB/8Be8ese0dC7RQ7CHlkpj8dGgQK4SHp+PN+hp+IjwQL8Lj4kGri0T1i/Z+NClroric14ln\nZJAnJstWT1wTnJaGT85JW3cfnIX/dsrv5yKdNq4W7q9DaXhGTDF2CdN3g+ioo4G5IuuZeFRYoaLp\n79edFj0sZFydk7buPlidqb8viemyBL2+9Yfw4QrLH0ZicpagSVkTxeW8Vyz6i5w/mxWeoMt74u8W\nU55e6u6DD8m4a8ddE3wRz8+JP1WYnIM5323CD0as5zeZz88RC8DvjFhGESYlzyAmIWsVch4Qi+Ez\n8OMh9W0Vh9qSnvidQsZe6u6D1WKTbiCJyViCwwWuXq4SC5vjMnFV+d37kahOnmmWNVHcEtwq2jzs\nQNr5wo2aN/dfjvsMXiBX3QcnCaX9f3lNrwnmFbgWiJHkzDTP+WIHsuNtWCSO4U4DReQ5WmS9WSjB\n9bigT5rL8QHh/ftzzve/F/P86zJxdffBdnwmU15fbhcCLilZUaK6OfR5aVsuEmfG79M1yzNCqBX5\nWSsjMZk1QdOyJkaT80bR3kfFFOtisSG4VRyj2G7wKE+4P+/RHd3r7IOX41t6lgHZwBJx+GiZ8GkT\n2+EP4pOOPPdRFevESDIjNjy26noQiMNwXxHb8geFi2yHOB7wd3zVE33mTTNMng478A18NxM312Td\nLBbIV4gXW84VBxXvEptYeaN/L4+IQ4Cb06vOPrhE7NOUPbA3EoliI8q0vQDTj0S18kzrCzCJyXnB\npoa61gT7hEtsGKvEwqdjCu8UD9I5NbWrLFXKs1h4Zpo62j2IonK2VMi0vQAzLkXkmasvwLRMiNvE\n/O9ooVeeC3VfBNmtVYKpoGkXaZZN4oWIa5puSEX0yrNM/KHA/Y21qCWXafnLlY1i7rxdnOybVc0x\n26bIk2eDUISz0+sCMS06JDxwLU9iqn4BpmmKyrNHOx1qEd6U/Y48PtDvf2OmnSLyzIoX7h/HtzX3\nVzAtLS0tLS0tLS0tLS0t+B+WXJxZxtS3TgAAAABJRU5ErkJggg==\n",
"prompt_number": 16,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
" 2 4 \n",
" x 5\u22c5x \u239b 6\u239e\n",
"1 + \u2500\u2500 + \u2500\u2500\u2500\u2500 + O\u239dx \u23a0\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 " 2 24 "
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 16
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"diff(cos(x**2)**2 / (1+x), x)"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$- 4 \\frac{x \\operatorname{sin}\\left(x^{2}\\right) \\operatorname{cos}\\left(x^{2}\\right)}{x + 1} - \\frac{\\operatorname{cos}^{2}\\left(x^{2}\\right)}{\\left(x + 1\\right)^{2}}$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAMIAAAAoCAYAAACsPiXVAAAABHNCSVQICAgIfAhkiAAABhBJREFU\neJzt3G2sHUUZwPEf5YIU29tGpVawpQgCGmluYhAiNMEQJJIgbwGNVktiFAOYkIi8BAgXDKBADMYY\nEpUg1ER5k7dPakT4IGLEaKgxolZFCWCjUahKgWL58OzhbE/PObt7z569d3vm/+XuzszOPM+zZ3Zm\nnpnnkkgk7DHfAjTEGvylRLlFuBj/x6u4MZd3ALbglZpl68ca7ZJ3FIbpkGeNybHJWFiFT5Ys+2Ec\nll3fg8NzeUtweY1yDaJt8o7KMB06jN0mi0pW3mbOx3dKln0HTsmuN+PQXN5/8DROr0+0vrRN3lEZ\npkOHSbNJ7azFBRXKvwFLs+sfYP+e/D3w9RrkGkTb5K2DIh0asUnbRoS1eKJC+ZPx4wrlX8JWrMPD\neKYnf4cYXldXqLMKbZO3Dop0aMQmbesIT+oOe2V4H35bsY1lOA7XDcj/M2Yq1lmWtslbF8N0aMQm\nbesILwklyrKv8BxUYT2+hMU4oU/+ZuF9GAdtk7cuhunQiE2mKjZQhQuxl5175TFiMbMWj2Eljs/K\n/ikrc7LwEmwRP/wHRYc9G0fjq3gW5+C9uEYsiFbhbfh8rr19+sg1TIajM3mvwp5ieO3ln3h7T9pn\nxVfoKWzH3bn0aWwT7r8LhVuvn45NylsXVfVmV92XGq5D22yyEwfiv5jNpU3jU9n1afh5dn2bUIRY\n6DyeXe+HB3LlV2AjzsRnsDf+gI/k6n++R45HxReligxFnCtedIerdTv7KWJeSnTQ/EfgrkzWQTo2\nJW9dVNWb4boPok022YVviEXJbC5tH/HjJYatS/o8NyV+3JvERshbsvSlwgBPi+FuqRja/pp79gPC\naHk24oiKMhTxFd3h9mDxdVmS3b8Ry/ukw334nME6NiFvXcxFb4brPohGbDKONcLpeKhP+ja8nF2f\noOsJWJ4rs10Md1fgKN1pzlZ8XBh1UVbX8T3tnCmG5mW6O+YP4ZCKMhSxCj/Nrj+IXwj/NDEK/rtP\n+mJdL8YgHZuQty7mojfDdR9EIzapuyMswUn4Xp+8Dwl/8Bq8B7/K2v9Ylr9azP1fFT/4W/DH3PPr\nxfB3lhhtejvCWfguPprlw704sYIMReyHv+N/2f0zopN2mBId8tme9Itwu5i6DdNx3PLWRVW9Nyl+\nv4NoxCZ7lny4LFfia/iXmBY9ovs1WCeGuBVZ2kx2fzdeFAacwkHCaG/CN3N1HyK+9r8Ri7MviKGx\n8/V5txg2H8dzWdq2rJ3t+FsJGYq4FjfjH9n977M6Dhfb+kfifvHiZ/AuHJvp9sUSOo5b3rqoqjfF\nug+iLTZ5nRlcmrvvXSPMF51DWKNyGM6ooZ4i2iZvE7TGJovEtGXvXNpC6QiJRCF1rRHOwbd1FzGJ\nRKvIb6gdIdyeZWMUfi18sSvF/PzmekVLjJm5vu/dkjoCc9Zjg3ChddhLeI+exO+E5+CeGtpK1MOo\n731HcZEE4dpKa4REaxjXWaPpnr+JRJOUDf8cG9P4ifDR7siE+BlObVqQxERTJvwzMWaW40cWdjDM\n7s4FYlcbrhcdI1Ej5xfkf1psKu4Q66RJY/ECabcoXDMxIrMly01iRzhRnD6dD1aIM2a9rLPzaYeB\ntC1CrS6OwSdwg9hyPw/fF8EeieqsECc6NzfQVr+p5xZxdil/XLsoXHPiGSWwY7ZkG5M2IlymHg/h\nKFPPKRGV1uE8sZ81KFxzl4cnjZdFsAdxJv7e7HpDT7m3ikVXfvPpWDuHDm4VEVmTzv54oYZ6igJ1\nOqdVr+2Tt12ccCCOZBeFayZy/FIcIaZcYMdsyXonbUT4Vs/9XKeesyXbG2Tf3oOfpZnENcKogR2J\nXcn/+KaF336jCJ29SPxDra3qDxDq5Tm8eS4PTuLUaCXeKTb5LhMHybbhjhrq3iAWaHCTCBy5qYZ6\nFzrLctfzOfVcLUJGE2OmjuCQ3ZE7B6Q3PfUcJEchkzg1GoUvz7cAC5RHhfuU+Zt67msE923dMcuJ\nyWSTcGv+0Ggxxcfpxrj3Y4PoZDMi9nml+AdfsvZvlaZGiXnm/brToLky16nngXaf+OxEIpFIJBKJ\nRCKRSCQWBq8BH7XPIH70GuoAAAAASUVORK5CYII=\n",
"prompt_number": 17,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
" 2 \n",
" \u239b 2\u239e \u239b 2\u239e \u239b 2\u239e\n",
" 4\u22c5x\u22c5sin\u239dx \u23a0\u22c5cos\u239dx \u23a0 cos \u239dx \u23a0\n",
"- \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 - \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n",
" x + 1 2\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 " (x + 1) "
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 17
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"integrate(x**2 * cos(x), (x, 0, pi/2))"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$-2 + \\frac{1}{4} \\pi^{2}$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAEwAAAAfCAYAAABNjStyAAAABHNCSVQICAgIfAhkiAAAArVJREFU\naIHt2UuojVEUwPHfRd7PgRK6ySNdQgaIcCUjr5HkMUAoQyUDA0oMRPIoAyaOmBmYEGFgIEIkjwgD\nIzGhkLwZ7A+f757rnu/Y373Hdf61u3vvb5+11ll37bXW16FOLho62oAaZBrmozuasA13OtSiyAzE\nBTRGkNUXh1LrpXiDARFk1wTrsQXfMCKCvIn4ilHJun8ie2EE2TVFLIc1CFfyR6oan8huiiC7BeNw\nRrge17Efg4pQVIZYDstyHHsLkGssLvuVRwbhbjKGFqEwQxEOW4vdCiqMpzAjszdD+CIHqpA3Ed1y\nnI/tsIWCw6BXZNngBR6iX2qvG97jfhXySvIZGdNhzYKzhiRjBab/eJjnv/gnnmAy+ghlGD7jAwZH\n0tEejMRpob1I87Ot6BJJUbOQq56n9hqFsnwtko5yrMLRZL4fG1s51w878FKIxnLjK4YlZxsy43Ux\n5v/OLnzRMrdVQkncvHECB4UO/jDWYZ4QTYuS+UzxAig3o/EW26v8fEk8hy3HstT6JLom80uRdPwV\nPXFDKMnVUlJMXzVQqOiE6ncvr4B00p+AIyrvO25jQ2avQcgp57C1AhnHMKnMfiOm4mOZZ2txs0Ib\ns6zE1WTehHdVyonGTi0dtboKOSVtR1hryTs9stzGlGS+QKjouRrTmElujVBpdmT2Z0XUkSZbycqN\nNLOFyL2VrPsL7cOYPEpj9WFzsUe4iidS+z0EJ9YCm3BRqNzwLPk7GY/a25hXWr8W2YirhJL8SX+v\n0Bq0xoPM8964gsU59dQkJfkc1iy8ns0pwJbf6LBGrQ1eC++hlTBAqLQPijOnc7FZyJWX/McRVimL\ncVZ4yW8X/mWHDRU699zd+t/Qte0jNcsSwWkzkzHfrzbmcQfa9c/wVDvksM7AcOzDJ5zXCX8Sq1On\nTp1YfAdxIoFGVphKVAAAAABJRU5ErkJggg==\n",
"prompt_number": 18,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
" 2\n",
" \u03c0 \n",
"-2 + \u2500\u2500\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 " 4 "
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 18
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
MinRK
rebuild example notebooks...
r7739 "eqn = Eq(Derivative(f(x),x,x) + 9*f(x), 1)\n",
"display(eqn)\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "dsolve(eqn, f(x))"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
"latex": [
"$$9 \\operatorname{f}\\left(x\\right) + \\frac{\\partial^{2}}{\\partial^{2} x} \\operatorname{f}\\left(x\\right) = 1$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAI4AAAAnCAYAAADZ7nAuAAAABHNCSVQICAgIfAhkiAAABX5JREFU\neJzt23msXGMYx/GPLrS2LmgtRbWoLV2oNlSThhCSUppIRIIgCKUICYkQRASpJZY/qglXrKlY/rFH\nLKmlliAiWmKXJmInQRX1x3Mmc2bunNnuzJ2Z2/NNTu4575z3nGd+9z3v+zzPeWYzOZUYhsvwH/7F\nss6ak9MrHIdpyf5j2KeDtnQlwzptQJcyBYuS/c+wdwdtyekhtsA2yf5z2LmDtnQlwzttQJfyL/7G\nfOHnPNNZc3K6lZ1xBU5UXL7H4MqOWZTTE4zBeBFJrU7almAkRuPIDtmV00OsErPPb/gBP+OAjlrU\nhYzotAFdyGp8jW07bUg3Uz5wJmGpmJ434HfcIZ68WuyJ67BORCVLWmdmWxmBazEL72J3fNeG+/Si\nPpPwsrA9k+3xMU5NtZ2Dp7FZjRtsLvIdZ2A5/sSWzdk66DyElSLC3FpEVKe0+B69ps9WOAqfYGOt\nk+/HT0qTghOTjifX6Htsct5UzMGhTRg7EKZrbtmdK+zeLzkufN89WmRXgU7r0wj74klcj9fUMXDW\n4a0K7T+Ip7IaN6tvOWsXfZjcRL+lWJs6vgKvtsCecjqtT7P0yRg4had0LHYS02k5X2BBjRvMUXnQ\ndTufC0eYeK2wBMe34T69qk8mhYHzC75STLOn2SnZRuCfss+WC2fyMKzBs/gUF4rcx3Opc/fD6cIx\nHCP8p0uFbzURl2McfhWDdTB4UbyTWil8jsVa+w/O0ucC4RKkNapHn68w0+BqVJM7Rc5iVKptski5\nb8SEjH5Tks8Xp9pOFI5mgd1xi6L/tBIfCeFmiwju7OSzy5qwvU9zS9VgUEkfSjVqRB+yNboH7ze4\nLahie586fJxReEOk2UeK2ecavCcijawoYHFy8SmptqVl5yxTOps9iXeS/V1FODw2OV6I/WsZW0af\n7h04lfShVKNG9KE5jZqhT8bASUdQf+FofCucuQuxQgyiz/FHxsVniixrYeocrX+5xl0iJ1RgtuIU\n/Q2uEsslMZXPqfJleo1yfeivUSP60AUalYewv+LeZCswHm9WucZMMeUVRuY4/QdZWrRp2AUvZVzv\na/2n9QL3YUaF9t2EkH9X+OxMkdjrFOX60F+jRvShukaDQq3cx17CMX6syjkzxNRa4BcxvWZxuPgH\nv55qm6oY0U1S+vSlOS2jvQ9X48sq96WO9XqAVEqUlutDdY1q6UO2RitEBrwRLsErDfYpGThniTzG\nwfg+aTtJjPwHM/pvJ572D1JtfyiNvrYQztwT+FAsh2sUn7itcT4uTo73wtuNfpE6ycqAt6vGuJI+\nlGrUqD5ka3RWS6yug/Q6+6Pw3jckx/NEOHhulf6F0V0uzDfYIdlfIJzsqcn5kxVF21ys37el+k43\n+DmPhXgcN+IQrasxztKHokYLNKYPg6fR+ORvv4g6PeM8joNwa3LicFEBt7a8U4pZwi8qF+YBEW4+\nKN42P4QjxBQ8Wzjfd4vw/2GRn4AD8bz2LynlTBGD5SbFGuM1Lbhulj4UNXpK/frQfo0m4FFR3FZ4\nublWOOS3J3YPmEdU938Giz4DC8fbVWPcLfq0nGZ+5XC2yIAS/lBLRuAA+U2kE+qlvFR0vXA254sy\ngnUDsKUb9ekKXhdizFU9TO9mKpWKtqrGeCjo0xYWibBvmXDoep1VooyiVTXGQ02fnAxuFvmhvMa4\nATbFmuOsUtFaNcbzRPQ1XSxBO4pI6FLxSiZniNNMqei24tUFnKDoF90nBlDOEKfZUtFRIhkHN4ja\nmJxNiFaUir4rwmxKSx1yhjAL8UKyv7fI19RTnnAMLhJJxvXCTxqG81pvYm9Q62cvQ43RIm0+RhSm\nXae+XMvp4lXAp2LQ/JVsT4h3fDk5OTk5OTk5OTk5myr/A6A8U1gkaI7IAAAAAElFTkSuQmCC\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
MinRK
rebuild example notebooks...
r7739 "\n",
" 2 \n",
" d \n",
"9\u22c5f(x) + \u2500\u2500\u2500(f(x)) = 1\n",
" 2 \n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 " dx "
]
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
"latex": [
"$$\\operatorname{f}\\left(x\\right) = C_{1} \\operatorname{sin}\\left(3 x\\right) + C_{2} \\operatorname{cos}\\left(3 x\\right) + \\frac{1}{9}$$"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAAeCAYAAAAl8At9AAAABHNCSVQICAgIfAhkiAAACFtJREFU\neJzt3HvQVVUZx/EPCBgKKIlgJiAgYoI0gYoYKTPh2CDiZYZqKgejAbKbjmVi3tJKy6jMZIqcqdex\nTBMdbWoKm+6hTYOalNLkkMpQlBYmVnax6I9n784++z2Xfc5747zs78yZ9+y19tr72eu39lrPetY6\nLyUlJSUlJSX7PAfju5iUzxjW/7aUlJQMMCsxDoswdIBtKSkp2YvYgyPziUV6iaNwBz6Ndb1rU59z\nNC7GXdiE+3E7pmAIbsVhvXSvA7EluV9PGa67WDNwCz6PH+BOvLrN60/AmHaN6wX6U5feJK/LYNKk\nMCOwDSuwHi/igAG1qBj7YQ1+j3dheiZvIn6IL+PXvXjPw/EznNzD6wzD1arreTo2YnRyPEQ0wN2Y\n1cY9hmOt/p8+DoQuvUVel8GgSU1PoRlnJgWn4UQ9b/D9wSQ8iKdwTJ1z5ojnurmfbGqF92N2Lu1K\n/EfokfIW8QzXtXmf1+KGNsvO1nrjHWy6DAZN2po+LMSfhbfwczzQ4k37m2HCJT0M89UfcR7GM/he\nP9lVlNGi492SS38MO7Erk/bf5O9f2rzXJhGBPqiNshfjiBbOH4y6dLomdWnWKZwoOoNO4Vph85VC\nsEY8IeaBexOnidE0zz1C8E2ZtPn4J77Zg/ttwfIelC/KYNSl0zWpSz13Yz0mY4Ho1b8jxLpQVNDG\nzLnH4u3YX/Rwq/EBseQxQcwhx+J5PNnrT1DhNbgUj4ugVTM+p3iPPhbXiGf4O/4t5n9Ew7hAuG/r\nRF2lLMZ5ol7Ox8vxZjEvPQlX4MeZ8xfi7gL2zMLbRKzn8VxeET2eTs79TWLXTQXu2S59qcvRwmWf\nJNrn31Q/y1RR39MwUrT3C3XvmBrpSzFdOkmT5eKZ4EYRy7mxSMGpYs5xbiZtGUZljieLVYnU4/i6\ncKtOw/GiclcleZc2uNeX8IsWPwtz17g8sXdlkYdrgaHYqhI8moY/4ZTkeJ2ok8tUjxoj8IXk+y9x\nrwiuDUnS1ujeeO7BzAa2LMHHRaOuNZq0okd6fjtTwi7FA1R9pcvx+J3oeNPjZ1TiXrOxA2ep1PlH\nsVm1h9xMXxrr0omatM25QsypmbT35c5ZqxJ9JRr+5uT7ROE2HpwcL9G4wfeUbwt75/bydReIESjt\nDA8RQaeROF10lMQ8+I5MudeLUWyIiMtsyF33MtH4smzEqwrYNEzsRvt+YkdKK3oQy6jtRPq7FG+A\nfaHLDDyLqzJpZ4oR71CxjL5TPG+WBYkt83Np9fRNKaJLJ2nSNtcKdyrtZUfiotw5U3LHO/CxOteb\nIVyovmKXiAaPbHaicDuLcqxoSNuEa/u6TN5kscw2VQSZTs/kvSKxZXZSPluO6EDuz6V9RXU0uxGn\nJNftyqS1oofEtp8UvF+WLsUbYF/ocqd46Q+sk387/qDaqyUGpj04J5PWSN+Uorp0iiZt8w38KHN8\nuGo3J88MUSGL6uSPFKNjX/GIGJGbcSiub/HaK7FdPN8eEUPIcp1YaqsVuL1IzFNHZNKGi3nzB3Pn\nXiHmmnkm6r5MOSaxZXdyvTzN9CC8nC82yL9V7anbLjH1qZWX9wh6W5ehwsPqapD/bJ38NaJO8i9q\nM31r6dLJmrTN0/hs5vgAfKTB+ReIyGt20820zPfpeE+dsrcIl6qVz6m5a3xGVHi3H3jkuEYEd7LU\n/XFIjpl4VMX9I9zGnSKyTvUzw326L7EtFaPnK0XwKV1KmivqIsvLhMf2Uu7aE8Tz/jU5J08zPYjG\nflaNss3oUnxUaleXeUna9cLlTl/A45Lr1eo8m+U/pnscJ0stfemuSydrsqfApyaHJJkrculXZ77v\nL+Z0xyXH94kKTRklGkTKYiF0X3ES/iFGg3qsTj5ZVgoPptZGjvVipMvyIdyWOT5DTB2OEJ1L1jUc\niudUOoyUDSodxSoRoU+5W/U69VARUHtEtQu+NLH53uS4VT2GC28w68EUpUvxTqEdXUap3lL/Rrwg\n6uUgUd/n1bjOLPFC1cpPO+JsPKGIvilZXTpdk7ZYpHZwaIVw84j58x6cLRr1o3goyRshdmZNzpRd\noxKf6CveIFz196oWa4aIEC+uVSihVqfwU9Uv9HixXp11G1erBIauEm5lyly14wkPio5orGpvjFjP\nzy8PXSI6m7T+xoulz+0qAbB29FimPbq01gBb1WW2eLHTUTR1y5ckx3eJeX6WxSKoN7xG/jHiJT4/\nV6aIvil5XTpdk7rUe0kvEUtJ44SLlDJCGP1VMSquE3OZf4kH+pRwm54TgbS0F56T/H24N4xuwgl4\nk/BKXhSu/ROJzY32SaRzzacyaTNFgx4jnvElIXy2tx+Lr4n15Q2q9x0sFfGGOUn5lCV4t3BTb8Yf\nc7acLRpXtr7OEKsZRHR9i3CvdyRpregxUYyo7W4n7sKHVddVM1rRZYjKxrk9QodfiaDgVjECrxUD\n1HYxcj8kdJDL350cfzK5RpYi+mbJ69KpmhwlBrPfCl3WajytQhhbZBPNYKKtH4fso3Tp37q6TbxM\nJfXpUkyTkcJrSqc0U4Sn+/8geTZavkplN94JurtnJSUpu0WcoD94h/Aq6gUWS4KimiwQK4lbk+Mn\nRYB0fq2THxAdwTzxE+B9jdJT2PtYIjoFYoQ7cuBMGTTME209uwLyvNhti2pP4RNirrcMb+0P60pK\nGnCqGMG+JX5deY7YEFbSMzaLnZ/pkv7JYgNefqPXPs1y8Y890qWk/K7Nkv5nqliCzK+fd8R/JuoA\nRuOd4gdcc8XmsiUNS5SUlAxqsquO48Rmq/EDZEtJSclewDaVX5NeLvd/Rffrd3NKSkoGmhfExrD0\np9s3abC9uaSkpKSkpKSkpKSkpKSkpKQI/wMAw3NBVNU8+QAAAABJRU5ErkJggg==\n",
"prompt_number": 19,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "text": [
"f(x) = C\u2081\u22c5sin(3\u22c5x) + C\u2082\u22c5cos(3\u22c5x) + 1/9"
]
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 19
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "markdown",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "source": [
MinRK
rebuild example notebooks...
r7739 "# Illustrating Taylor series\n",
"\n",
"We will define a function to compute the Taylor series expansions of a symbolically defined expression at\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "various orders and visualize all the approximations together with the original function"
]
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": true,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
MinRK
rebuild example notebooks...
r7739 "# You can change the default figure size to be a bit larger if you want,\n",
"# uncomment the next line for that:\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "#plt.rc('figure', figsize=(10, 6))"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Brian Granger
Updating example notebooks to v3 format.
r6035 "outputs": [],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 20
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": true,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
MinRK
rebuild example notebooks...
r7739 "def plot_taylor_approximations(func, x0=None, orders=(2, 4), xrange=(0,1), yrange=None, npts=200):\n",
" \"\"\"Plot the Taylor series approximations to a function at various orders.\n",
"\n",
" Parameters\n",
" ----------\n",
" func : a sympy function\n",
" x0 : float\n",
" Origin of the Taylor series expansion. If not given, x0=xrange[0].\n",
" orders : list\n",
" List of integers with the orders of Taylor series to show. Default is (2, 4).\n",
" xrange : 2-tuple or array.\n",
" Either an (xmin, xmax) tuple indicating the x range for the plot (default is (0, 1)),\n",
" or the actual array of values to use.\n",
" yrange : 2-tuple\n",
" (ymin, ymax) tuple indicating the y range for the plot. If not given,\n",
" the full range of values will be automatically used. \n",
" npts : int\n",
" Number of points to sample the x range with. Default is 200.\n",
" \"\"\"\n",
" if not callable(func):\n",
" raise ValueError('func must be callable')\n",
" if isinstance(xrange, (list, tuple)):\n",
" x = np.linspace(float(xrange[0]), float(xrange[1]), npts)\n",
" else:\n",
" x = xrange\n",
" if x0 is None: x0 = x[0]\n",
" xs = sym.Symbol('x')\n",
" # Make a numpy-callable form of the original function for plotting\n",
" fx = func(xs)\n",
" f = sym.lambdify(xs, fx, modules=['numpy'])\n",
" # We could use latex(fx) instead of str(), but matploblib gets confused\n",
" # with some of the (valid) latex constructs sympy emits. So we play it safe.\n",
" plot(x, f(x), label=str(fx), lw=2)\n",
" # Build the Taylor approximations, plotting as we go\n",
" apps = {}\n",
" for order in orders:\n",
" app = fx.series(xs, x0, n=order).removeO()\n",
" apps[order] = app\n",
" # Must be careful here: if the approximation is a constant, we can't\n",
" # blindly use lambdify as it won't do the right thing. In that case, \n",
" # evaluate the number as a float and fill the y array with that value.\n",
" if isinstance(app, sym.numbers.Number):\n",
" y = np.zeros_like(x)\n",
" y.fill(app.evalf())\n",
" else:\n",
" fa = sym.lambdify(xs, app, modules=['numpy'])\n",
" y = fa(x)\n",
" tex = sym.latex(app).replace('$', '')\n",
" plot(x, y, label=r'$n=%s:\\, %s$' % (order, tex) )\n",
" \n",
" # Plot refinements\n",
" if yrange is not None:\n",
" plt.ylim(*yrange)\n",
" grid()\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 " legend(loc='best').get_frame().set_alpha(0.8)"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Brian Granger
Updating example notebooks to v3 format.
r6035 "outputs": [],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 21
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "markdown",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "source": [
"With this function defined, we can now use it for any sympy function or expression"
]
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"plot_taylor_approximations(sin, 0, [2, 4, 6], (0, 2*pi), (-2,2))"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
Brian Granger
Updating example notebooks to v3 format.
r6035 "output_type": "display_data",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD3CAYAAAAT+Z8iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYVMfXx79LUSwIIihEQaQoqCBF0CQWNBEVbIm996Bv\n7DEFTX62aNTYIrEkJvbegwXFwoJYQBFLFESRZgFBpffdef8YISJt+70X5vM8+8S7d3bmuzfLuXPP\nnDlHRAghYDAYDEaNRYtrAQwGg8FQL8zQMxgMRg2HGXoGg8Go4TBDz2AwGDUcZugZDAajhsMMPYPB\nYNRwlDL0SUlJ6NGjB9q1awcPDw/s37+/wna+vr6wsrKCq6sroqOjlRmSwWAwGHIiUiaOPjk5GcnJ\nyXByckJaWhrc3d1x9+5d6Ovrl7YJDw/HvHnz4O/vj/Pnz2Pfvn04ffq0SsQzGAwGo3qUmtGbmprC\nyckJAGBsbIx27drh1q1bZdqEhYVhyJAhMDIywsiRIxEVFaXMkAwGg8GQEx1VdfTkyRM8ePAA7u7u\nZd4PDw/H2LFjS49NTEwQGxsLa2vrMu1EIpGqpDAYDEatojrHjEoWY7OysjB8+HCsX78eDRo0KCfg\nQxGVGfWStkJ8jR8/nnMN8r5ORJ2A2RozDB45mHMtte3av/8aPnYsDK9cgUQq5VxLbbz+QtcvC0ob\n+qKiIgwePBhjx47FwIEDy53v1KkTHj58WHqcmpoKKysrZYdlKMmNZzcw9dRU+I/0R8M6DbmWU6tJ\nKSzEJ40aQYs91TLUhFKGnhCCyZMno3379pgzZ06FbTp16oRjx47h9evX2L9/P+zt7ZUZkrdYWlpy\nLUFmnrx5gi8OfYGdA3ei40cdBaW9IoSuP79pU3QxMOBahsII/foLXb8sKOWjv3r1Kvbu3QtHR0c4\nOzsDAFasWIHExEQAgI+PD9zd3dGlSxd07NgRRkZG2Lt3r/KqeYiHhwfXEmQiNScVfff1xRKPJfBu\n7Q1AONorQ+j637Zvj66GhlzLUBihX3+h65cFpQx9ly5dIJVKq223cuVKrFy5UpmhGCogtygX/Q70\nw/B2w/GV61dcy2EAyJZIEJ+Xh47vhSQzGKpGZVE3DH4jkUow6tgotGnSBst6LONaTo2hZ8+eyMzM\nVPjz+VIpmuTmosuePSpUpVny8/Ohp6fHtQyFEYr+Ro0a4fLlywp9VqkNU6pEJBLJvILMkA9CCGYG\nzER0WjTOjj6LOtp1uJZUY+jYsWO5vSPy8KKgAFIALerWVZ0oRo2kst+aLLaTzehrAWuurUFIQgiu\nTLzCjDzPyJJI0KwO+3/CUC8sqZmKEIvFXEuokAP3D8Av3A9nR5+FgV7FkR181S4rQtUvJQQ5EgmQ\nm8u1FKXIysriWoJSCF2/LLAZfQ0mOD4Ys8/NxqVxl9CiUQuu5TA+IE8qRV0tLWjLENDAYCgDm9Gr\nCL6FaD1MfYhhR4fhwOADcGjmUGVbvmmXF6Hqz5ZI0FBbu0wSQHXzyy+/YOrUqTK3j4uLg6OjY5Vt\nSvR7e3sjODhYKX1coMnrzxVsRl8DeZH1Al77vLCm1xp8ZvUZ13IYlZBZXIwmuroaHdPX11eu9qtX\nr8b06dNlavv1119j5cqV6N69uyLSGGqEzehVBF/8xFkFWfDe742vXL/C2A5jq/8A+KNdUYSoX0oI\nsiUS6Gtr89ZH/OrVKxw9ehTjxo2rsl2J/j59+iAmJgb37t3ThDyVwdfrr0qYoa9BFEmKMOTIELg3\nd4dvF/lmbgzNkiuRoK6WFnS11Pcn+Pfff+Pjjz+GgYEB7OzscPnyZSxevLg0m2x8fDy0tLRw/Phx\n2Nvbw9HRsczO9atXr8La2ro0UWFsbCyaNGmCyMhIAMCLFy9gYmKCq1evAgC0tLTg5uaGoKAgtX0n\nhmIwQ68iuPYTE0Lgc9oHulq62OS1Sa60z1xrVxYh6s98N5sH1OMjTktLw+LFi7F7925kZGQgMDAQ\nlpaWFf4uDh8+jMDAQKxZswZTpkxBfn4+ACA6Oho2Njal7aytrbFq1SqMGTMGeXl5mDhxIiZOnIg+\nffqUtrGxsSmTxFAI1AYfPTP0NYSlwUtx/9V9HBxyEDpabOmFD4hElb+a69WFRT29Ktu8/5J/bBHy\n8vIQExODoqIiWFhYwMrKqsKNNd999x3Mzc3h6ekJS0vL0gXVZ8+ewczMrEzbKVOmwMbGBu7u7khJ\nScHy5cvLnG/evDkSEhLkF8xQK8zQqwgu/cTbI7dj191dOD3ytEIph4Xo434foetXB02aNMGePXuw\nfv16mJmZYc6cOUhNTa2wbUmVOAAwMzPD8+fPAQAtW7bEixcvyrWfMmUKHjx4gJkzZ0JXV7eMj/vZ\ns2eCywbJfPQM3nP+yXksuLQAAaMD0KxhM67lMN6DkIpfb4uKEZ2TW3qcmZlVaduSlyL07dsXFy9e\nxMOHDxEXF4fVq1fL5dKzt7dHbGxsmfeys7MxZ84cTJkyBYsWLcLbt2/LnH/y5EmNTUUuZJihVxFc\n+IkjX0Zi7ImxODbsGNoYt1G4HyH6uN9HaPqziovR6J1/HlCPjzgmJgaXL19GQUEB6tSpg7p168o8\nTol7p3PnzoiLi0NOTk7pudmzZ8Pd3R1//vknvL29MW3atNJ+CSGIiIhAjx49VP591Anz0TN4S0J6\nAvof6I/N3pvxqcWnXMthyEGmRAJ9HfWuoxQUFMDX1xcmJibo2LEjDA0NS4sDvT+rr2iGX/KeiYkJ\nhg4dil27dgEA/vnnHwQGBmLLli0AgHXr1uH27ds4cOAAACAgIACtW7eudoMVgwMIT+CRFIUICgrS\n2Fhvct8Q+9/tyfrr61XSnya1qwMu9bu6usrVvlAiIbczM4lUKi19LzMzU9WyVEZ8fDxxcHCosk2J\nfi8vLxIcHKwJWSqFz9f/fSr7rcliO1l4hsAoKC7AF4e+QG+b3pjTueLyjQz+UjKbl8dXziUtW7aU\neQPUmTNn1KyGoSgsH72AkBIpRh8fjSJJEQ4PPQwtEfO8cY28+ejj8vLQQFsbTVlqYoacKJOPXilL\nMWnSJDRr1gwODhUnzRKLxTAwMICzszOcnZ3x888/KzNcrcf3ki8SMxKx54s9zMgLEEIIMiQSGKjZ\nP89gfIhS1mLixIk4d+5clW26d++OyMhIREZG4scff1RmOF6j7ljuTeGbcDL6JPxH+KOebj2V9i30\nOHSh6M+RSKArEqHuB2kPhB7HzfTzH6UMfdeuXdG4ceMq2zB3jPL8E/0Pll9ZjnOjz6FJ/SZcy2Eo\nSDqbzTM4Qq3P/yKRCNeuXYOTkxPmzZtXbvNFTUJdsdxhz8Iw5dQU+I/0R6vGrdQyhtDi0D9EKPoz\nioth+F78fAlCj+Nm+vmPWqcXLi4uSEpKgq6uLnbt2oXZs2fj9OnTlbafMGFC6fZpQ0NDODk5lf4R\nlzye16bj55nPMf/xfOwYuAPZMdkQx4h5pY8d/0fJ43+J0fjw+E1GBgoLCtCgfn2Z2rNjdvzhcUmy\nObFYjJ07dwKA7OkmlI3tjIuLI+3bt6+2nVQqJU2bNiX5+fkVnleBFE5RdSz3q+xXxGajDdl6c6tK\n+60IFkevOLLG0acUFJCnubkVnhNKHHdlMP2aQZk4erW6blJSUkp99KdOnYKjoyPq1q2rziFrBLlF\nueh/oD+GtRsGn44+XMthqID04mIYMv88gyOU+uWNHDkSwcHBSEtLg7m5OZYsWYKioiIAgI+PD44e\nPYotW7ZAR0cHjo6OWLt2rUpE8xFV+YklUglGHRsF2ya2+LmHZsJRheLjrgy+65e8qyZlXa/iaCmh\n+4iZfv7DNkzxCEIIZp2bhYepDxEwOgB1tNmmGr4jy4apt0VFSC0qQut3/nmhsnfvXjx+/BhPnz7F\nqFGj0LdvX64l1So42zDF+A9VxHKvvb4WwfHBOD7suEaNvFDi0CuD7/qrc9sIIY77yZMnePv2LZYs\nWYL169djzJgxePXqFQBh6K8KoeuXBWboecLBfw9iY9hGnB19FgZ6BlzLYagIKSFILy5GY4H75x88\neIDVq1cDAIyNjWFlZYWwsDCOVTFkRdi/Ph6hjJ84OD4YswJm4eK4i2jRqIXqRMkI333c1cFn/RnF\nxaivrV1lEXAufcRPnz7Ftm3bKj3fuXNnDBw4EF5eXggICABAXYwvX76Eubk5gP/0Ozg4YNeuXXBx\ncVG/cBVSG3z0zNBzzMPUhxh2dBgODD4Ax2Ysj3dN401xMYw4ms1HREQgKCgIxcXFaN++PaRSKU6e\nPInt27eXtrGyssIvv/xSbV+6urpo3749AJqlsmPHjmVKEALAsmXL0Lp160r78Pf3h7a2NkJCQtC6\ndWsEBQXhxx9/hJ2dnYLfkCErbDFWRYjFYrlnli+yXuCTvz/Bsh7LMLbDWPUIkwFFtPMJLvVXtRgr\nIQQ6S1XjHSWL5P/bOHfuHOrUqQM/Pz+cOHEChBDY2NgotUM9PT0dkydPxq5du9CwIa1PnJWVVe2s\nODExEYWFhbCxsYGzszOCgoIQGhqKnj17oj7Hi9Sy6OcDyizGshk9R2QVZMF7vzemukzl1Mgz1EdG\ncTEefZtTbbSNugxNnz594Ovri7Fj6e/r+vXrcHNzK9NGVtcNQF02K1euxF9//YWGDRsiISEBLVu2\nlEmLhYUFALq3xsDAAIaGhujXr58iX4uhAGxGzwFFkiL0P9AfFgYW+KPfH4IpQsEoT1Uz+id5eTDU\n1oYxh7nnO3fujPPnz8PAwADTpk3D0KFDUVRUhD59+sjd18aNG/Hpp5+iefPmiImJASEE3bt3Lz1/\n4sQJeHp6okGDBuU+Gx0djfz8fERGRiIuLg5Lly7F2bNn4eXlpdT3q02wGb2AIIRg2plp0NbSxmbv\nzczI11AkhCCzuBiWHO4Ez83NhaGhIQwMaBSXqakpUlJSYG9vL3dfoaGhmDt3bqlBEYlESExMLNNm\n6dKlsLa2rrBmbGBgIF6/fg0LCwvk5+fj1KlTpbN8hvphM3oVIaufeGnwUvg/8od4ghgN6zRUvzAZ\nYD56xalslvW6qAhviopgK4P/WSg+4spg+jUDm9ELhB2RO7Dzzk5cm3yNN0aeoR5eFxWhia4u1zIY\nDABsw5TKqG5GGRgbiB8u/YCzo8/CtKGpZkTJiJBn8wD/9BdIpciVSmXeJCWE2WRVMP38h83oNcCd\n5DsYc3wMjg8/DjtjFjNc00krKoKRjg602PoLgyewGb2KqCzfSmJGIvrt74dNXpvQxaKLZkXJCN9z\nxVQHn/QTQpBWVARjOdw2Qs+1wvTzH2bo1cjbvLfou68vvvn4GwxtN5RrOQwNkCGRoI5IhPoVlAxk\nMLiCRd2oiYLiAvTe2xtOpk7Y0GcD13IYauLDSIgneXkw0NaGCYex84yaCUtTzDOkRIqJ/0xEk/pN\nsNaz5hZbYZSlUCpFVnExjFi0DYNnMEOvIt73Ey+4tAAJGQnY+8VeaGvx/xGeTz5uReCL/tdFRWis\nqwttORdhhe4jZvr5D4u6UTGbwjfhRPQJXJ10FfV0Ky4dx6h5SAnBq6Ii2FZSLpDB4BKlZvSTJk1C\ns2bN4ODgUGkbX19fWFlZwdXVFdHR0coMx2s8PDzg/8gfy68sR8DoABjXN+ZakszwLQ5dXvig/21x\nMfS0tBRahBV6HDfTz3+UMvQTJ07EuXPnKj0fHh6OK1eu4NatW5g/fz7mz5+vzHC8JuxZGCb7T8Y/\nI/6BVWMrruUwNAghBMmFhTBlC7BKkZ6ejm3btmH58uUyfyYhIQFHjhzBkiVLEBERoUZ1wkYpQ9+1\na1c0bty40vNhYWEYMmQIjIyMMHLkSERFRSkzHG+JfRMLrxVe2DFwB9yau1X/ATnIzATi4oDISCAo\nCLh4ieBiEMHFYCnu3CF48QIoLFRuDL74uBWFa/2ZEgkAoJGCIZVC9xGrSr+hoSE8PT1RXFws82eu\nXr2KJk2aoF27doiJiVFoXKFff1lQq48+PDy8NBc2AJiYmCA2NhbW1tbqHFajpOakou++vpjQYQL6\ntVY8v3ZWFhARAVyJLEbQiyzEFuYipU4uCozzgCaFgEERfdWRAhIRUAzgNQGeawO5OtDNqgODgrow\n09JDe4N66G3bEP3bN4BRXbYMo25SCgvRrE6dWpOJNDw8HJcuXYKvry/XUjBq1CjExcUhMDAQS5cu\n5VoOb1GrFSCElIvvrOqPYcKECbC0tARA7+5OTk6l/teSWRufjvOL87EkYQmGtB0CT23PMlkUq/v8\n5ctiREcDCW8+xYmkt3iccQ5olQN0aw9oNQRC/wVS66IOPoMRqYM6GdfRSEsHJo17QCoR4fVrMbJy\nCHLxMV7nF6NI9xLSDIuQ1sYV91tm48CNM4BZPhrYdIaTlgEcMx6gZ3N9DOnVq5weDw8PXlxPRY+5\n1F9ICPKkUujm5SErP7/U31syS5TlWF9fX672XB43aNAA//vf/+Dq6lqa9VGV+kuQ5/OtWrWCp6cn\nFixYgDVr1lTZfvfu3fj6668Fef3z8/MB0N/ezp07AaDUXlaH0hum4uPj0b9/f9y/f7/cOT8/PxQX\nF2Pu3LkAAGtr60rLmAltw5REKsGQI0PQQLcB9nyxR6bZHCHA7dvA38cKceBlKtKdXgE22cB9A2hF\nGMGu0BBdmjeAu6sI9vaAlRXQrBlQXdcSCZCQADx6BERHA+HhwPXrQEISoTcPhwzAMR3a7m9hqqWH\noS2aYJylMZwaNqw1s1B1YdmhA66Hh8OMw7zzmuTQoUNISkpCTk4OFi1apPL+4+PjsWvXLpn7Xrhw\nIUaPHo2CggKsWbMG+/btq7L9kiVL1KJbE/A2TXGnTp0wb948jBs3DufPn1eo4AEfIYRg7vm5yMjP\nwKEhhyASiarMiZ6TA+zdT7A65DWetnsBfJIJXG8Cq0B9zBCn4rNm99HGJgV136YAGVmAWAu4og00\nbAi0aAGYmwO2toCTE1DBgp+2Nr0pWFkBffv+9/7z5yKcO9cQZ840xIV1zZGdS/C8bSZ+++Q1/vR6\nAJNGWvjKqhmsHz3CcE9PNV0t9cNVPvoHOTnIl0rRVMlFWC7zoctTSjA1NRXa2towMTFBTk5OaZsS\n/Q4ODti1axdcXFwU0pKVlYWDBw8iPDwc9+7dq7CAyYcMHDgQT548wfXr17FgwQKFx63pkTdKGfqR\nI0ciODgYaWlpMDc3x5IlS1BUVAQA8PHxgbu7O7p06YKOHTvCyMgIe/fuVYlorll3fR0ux11G6KRQ\n1NGu/I/81Stg5e/F2PzsBQo8n6POx0Dvc/FYtPskXFOCoUsKIerQAWjWBqhrCnToAOjrA1IpnaZn\nZQHPngF37tCp+uPH1Nh37w4MHUr/XcWMvHlzYPJk+srLA06fFmHPHgMEbDdA7p+tkNA+E2uGpiC/\nYQw2GzfFjBYfYZCxMXS12D46WVgcH49G2tpyb5DSFBEREQgKCkJxcTHat28PqVSKkydPYvv27aVt\nrKys8Msvv8jU3/Hjx/HVV19h9+7dFZ5ftmwZWrdurbBefX19/PDDD/jhhx/KnfP394e2tjZCQkLQ\nunVrBAUF4ccff4S7uzsAYMCAAQqPW90YdnbCzzjLct3IyaF/D2H+hfm4NukazA3MK2zz8iXwv7WF\n2JH9DNK+z2AXloqfz+xE3/hw1PHqBW2v3tRYm5tX75d5n6ws4OZNIDAQOHwY0NEBRo8Gpk8HmjaV\nuZuUFGDbNmDzZqoVOlIYD3yNxpOeIdcwH9Obf4SvzMxYvpYqiMjKQv/792E2axYiKqkZyzXnzp1D\nnTp14OfnhxMnToAQAhsbm0rdp1Vx48YN6OnpwcnJCTt37kRCQoLcLpDVq1cjLy+vwnPjx4+v1N+c\nmJiIwsJC2NjYwNnZGUFBQQgNDUXPnj1Rv5oKXlFRUWVuTKGhoejS5b8ssl27doWXl5dSY2gKZVw3\nzNDLQUhCCIYcHoKL4y7CsVn5x8rMTODndcVY/zwJ6BePz4LvYfXRrTDt8AmazhtDjbuqZsuE0DCd\nbduo0R82DJg/n7p4ZKSwEDhyBFi+HCiJfP2oazba+D5HpH4qhpqY4AcLC1ix3Z5lIISg5927GNm0\nKf4cMKDS4uAA5LuRVz2oQh/z9fWFm5sbvvzyS1y7dg0bN27EwYMHS8/L6rrx8/NDbm4uABrSmJeX\nh5kzZ6pkJl2CVgV/GyKRCJJ34aspKSkYPny4UuG01fnoVTGGulDG0IPwBB5JqZCHrx6Spr82JYFP\nAsudk0gImTf/Mmk4KonoHb1IvH1Xk6vWn5Kkn/4gJCdH/eJSUghZtIgQY2NCZs8m5M0buT5+6VIQ\nOXSIkLZtCaEWhRCXHoVkYshT0iQ0lIx9+JBEaeJ7KEhQUJBGx/NPTSVtw8JIkVRKXF1dle4vMzNT\nBaoqplOnTiQ9PZ0QQoiPjw+5ePEiCQgIUKrPRYsWkcWLF5cel+g/fvw4yc7OVqrvioiKiiKRkZFk\n+/bt5KeffiKEEHLmzBmF+npfdwmZmZkqHUNdVPZbk8V2MmesDLzMegmv/V5Y/flq9LLuVebc7duA\nw/B0bCWRsHMLwO6lv2O1UTt8EhOCFku/AjTx2Ne0KbB4MfDwIZCfD9jZ0Zm+jLNALS36QHD3LvDn\nnzTS53aQLnZ0a4V+BzrBAvXRLTISwx88wKN3s7raSr5UirmxsVhjbQ0dnvrmS8jNzYWhoSEMDAwA\nAKampkhJSUGzZs0U7vPw4cM4cuQIjh49iiNHjpQ5t3TpUoXcQu8TEBCA4OBgbNy4sfS9wMBAnDhx\nAlKpFPn5+Th16hSaN2+u1DgfookxOEXVdx1F4ZGUMmTmZxLnrc5kWfCyMu/n5REy44ci0mT+VWJ8\n+B+yutcEIp7/D5FKpBwpfY/ISEJcXQnx8iIkOVnuj2dmEuLrS4iuLp3dm5gQ8vf+YrIiPoEYh4aS\nqdHR5Fl+vhqE858lcXFk0P37pceqmNEzKGKxmFy9elWtY6xatUqt/asTNqNXE0WSIgw7OgyuH7li\nYdeFpe/fvAk4jUjEXudA9Cs+jV93voLPob/Q/dcBEGnxYJbn5EQD6Z2d6b9Pn5br4/r6wIoVNNin\na1cgNRWYPEobkd9a4LqNOxrr6MDx5k388PQp3r6LsqoNPM7Nxcbnz7HBxoZrKTWSc+fOITY2FseO\nHVObj/y7775TS798hxn6SiCEYPqZ6RBBhC3eWyASiVBYCPywRILhB84ja2Q4pm8Kx8y+32DCmSm4\nffcK15LLoqsL/PwzXW2dPp2uuFbiyqnsj6ptWyA4mHqBGjakXXVz1kWPx9a46+aG10VFaB0ejlWJ\nich7t2DGBZpYOJMSgsmPHuHHli3RUk9PpX0LPdeKqvRnZmbC3d0dgwcPxubNm1XSpywI/frLAjP0\nlfBzyM+ITI7E4aGHoaOlg9hY4JOhidhhcxrOurcw63RT/HRuMVw9m3AttWq6dAHCwoB//gHGjqU+\nfDkQiYApU6j/vksXGo7Zty+wfE5d/GbeBlecnRGWmQm78HDsSU6GlOeRU4ry+/PnkAKYWZP8tjzD\n0dERUqkUAKDNau6qFhW7kRSGR1LIjsgdxHKDJXmZ9ZIQQsjRY1JiNyaIGB87Sb7+fBW5cp6/ESiV\nkptLyPDhhHz8MSFv3yrURXExIatW/ee7d3AgJCaGnruSnk46RUQQ55s3yUU5o374zt2sLGIcGkpi\nKog8Yj561ZGdnU02bNhA9u/fT27cuMG1HN6hjI+exdF/QGBsIMaeGIvgCcGwamSHOQsKcNnwFOob\npcPjjDkW7e+Nd0EMwoMQYO5cIDSUbroyMlKom7t3aZROTAzQqBGwaxcwaBB1dx1NTcUPT5/Crn59\nrLa2RrsGDVT8JTRLjkQCt4gI/GBhgXGmpuXOVxbbzGCoGlYcXEXcTb6LMcfH4OjQo2iYb4fPhsbi\nH+czaPvqKaakeWHt6cqNPB83WJRDJALWrwc++wzo0YOuskJ+7R060AXpwYPpJrEvvgC+/x6QSEQY\n2rQpHrq7o5eREXrcuYOpjx7hZUGBGr7Mf6jr2hNCMDE6Gp0aNarQyKsKofuImX7+wwz9OxIzEuG9\n3xu/e/0OvVddMWimGA8nPkCPvSn4dtg3+L//faSyTY6cIhIBK1cCAwdSY//mjULdNGpEF2fXrKFJ\n1VavBnr3pt3V1dLCnBYt8MidRui0v3kTi+LikM3hgq0iLE9MREJ+PrYokb+FweADzHUDID0/HV22\nd8Ek50n4KGku1lw8hlQPCTx2NcHafZ/DWDjlX+Vj/ny6UBsYCCiR5iAkBBg+HEhOBlq3ptGc72di\niM/Px8KnTxGUno7FlpaYZGbG+81GO5OTsTg+HtecnfFRFSmImeuGoSmY60YJCooL8MWhL/BZq8/w\n5vx0rIzeB9I+HV+c64Btp2qwkQfoNNzCAhg1CpCjfNuHdOtGc+B36ED99p0707DMEiz19LCvbVv4\nOzjgwKtXcLx5E6dfv+bFmkxFHH+3zhDg4FClkWcwhEKtNvRSIsUk/0kwqNMYrw58h0MfnYRxbjrG\n5gzG+l12FaV+rxRB+Og/REsL2LED4qQkYOZMhRNnATQR55UrQL9+1H3TqxddpH2fjvr6uNyhA1ZZ\nWeHb2Fj0vHsXESrwj6ry2h959Qr/9/gxAhwcYK+hhWSh+4iZfv5Tqw39wssL8SQtDgWHlyDYOwz2\nIemY88k0zPFtXDP88bJQpw6wdCm10n/8oVRX+vrAyZPAnDlAUREwYQKwZEnZ+4dIJEJ/Y2Pcd3PD\niKZN0e/+fYyJikJcJelrNcnGZ88w58kTnHN0hHMNL0TBqGWoJMBTBWhayubwzcRqvS3x6HeZmBw7\nQfr3203u3NGoBH7x+DFNahMaqpLuNm8mREuLxtt//TXN8FkRmUVF5H9PnxKjK1fI6IcPyb2sLJWM\nLw+5xcVkSnQ0sQ8LI3F5eXJ9lsXRMzQFy3UjJ/6P/LE4aBmaB6/A/clZ6PSHCL9tHIsOHbhWxiE2\nNsCOHTRA/sULpbubPh04ehSoWxfYtIkuAxQWlm+nr6ODJa1aIbZzZ7Rv0ACe9+7B+949hKSna8SH\nH5GVhU6SvH9aAAAgAElEQVS3byNbIkGYiwssVZzegMHgA7XO0Ic/D8f445PR+s5iPBqjja5bG+Hv\nPQPRqpVy/QrSR/+OUu3e3tRCDxlCfS9K8sUXwLlz1KVz6BD132dnV9zWUEcHP1hYIK5zZww0NsaU\nR4/Q4dYt/P78OdKrWShW5Nq/LirCrMeP4XXvHr63sMB+e3vo66i1hHKlCN1HzPTzH6UNfUhICOzt\n7WFraws/P79y58ViMQwMDODs7AxnZ2f8/PPPyg6pMLFvYuG1ZyAcnixA/IDG8Nhpid1HPOSpwlfz\nWbCABsmr6P+ThwcgFgMmJsCFC3Sv1tu3lbfX09LCVx99hGh3d2ywscHVjAxY3riBL//9F/tTUpCp\nRHQQAMTl5eHb2FjYhoVBQgj+dXPD6GbNIKo1izL8ID09Hdu2bcPy5csV7iMhIQFubm7w8fHBy5cv\n1T5+QkICjhw5giVLliAiIkJeudyirN/IycmJBAcHk/j4eNKmTRuSmppa5nxQUBDp379/tf2oQEqV\npOakkharbEnXr1eQlnsPkjFDoklBgVqHFC4vXhDSrJnK/PWE0Jw4lpbUZ+/sTEhamuyffV1YSHa8\nfEn63btH9ENCSNfbt8mC2FgS8Po1ScrPJxJp5TUA8iUSEpaRQVYnJJCut28T49BQMvfxY5Igpy++\nMpiPXnHi4+MrrPgkz+efPHmisfH37dtHLl26RI4cOUL279+v8LiKooyPXqln1YyMDABAt27dAACe\nnp4ICwuDt7f3hzcTZYZRmryiPHTbOgCtUkbiuZslepxxw7YDVuDoSZ3/mJnRCJwxY2hSehUk97G1\npRurevYEIiPpptyLF2WraW6kq4sJpqaYYGqKbIkE1zMyEJKRgZWJiYjOzUVmcTGs6tWDgbY26mpp\nQVckwuviYjwvKMDroiLY16+PTw0M8J2FBXo1boy6qqrbW8vIzc3FgQMHUL9+fbx48QLz5s3j/Eno\nwoULuHXrFhwcHNC2bVu1jjVq1CjExcUhMDAQS5cuVetYKkeZO8yFCxfIiBEjSo+3bNlCfvzxxzJt\nxGIxMTIyIh06dCBz586t9A6spJRKKZYUk483DCJdf/Alrf/aS76akECKi1U/jqbrlqqSSrX7+BAy\nZoxKx3r+nJA2bejMvm1bQl6+VL7PMxcvkjtZWeRKejq5+OYNOZuWRsIyMsiz/HxSVMVsXxXwvWas\nKlm4cCGJj48nhBDStm3b0n8rql/ZGb1EIiFSqZRIpVIyfvx4hceXV//169eJr69vte1+//13uTVV\nBWczellwcXFBUlISdHV1sWvXLsyePRunK6l4NGHCBFhaWgIADA0N4eTkBA8PDwD/LbjJc0wIwfro\nE9B53RoJhYDLybrY8o8FtLQU66+q4zt37qi0P14cDxoEjxkzgFOnIH4XV66K/oODgc6dxXj4EOje\n3QOXLwOPHyveX31tbbx9tzX8s/fOPwbQXM3Xq4SSBT39d9epph1HRUUhPDy8dI3t+PHjMHov+6ki\n/b+/CKrI57du3QpPT080bdoUIpEIWVlZah1/6dKlmDhxIurWrYvY2Nhqx3v+/LlS3+/D4/x3tSTE\nYjF27twJAKX2sjqUynWTkZEBDw8PREZGAgBmzpyJPn36lHPdlEAIgampKRITE1H3g63l6sh147Nz\nLaKeJiGthQt63+uDdX5Na89GKFVx+TIwfjzw4AFdpFURqal09+zduzQ/TnAwoMYEkWpD6Llunj59\nim3btlV6vnPnzhg4cCCOHz+Ow4cPw8vLC69evYKxsTEmTJhQpq2DgwN27doFFxeXasfNysrCpk2b\ncOXKFfzyyy9wdHRUSHtUVBTu3buHUaNGoWXLljJ/VpHxw8PDkZycjOvXr2PMmDFo165dle2XLFmC\nRYsWyaypOpTJdaN0UjNnZ2f89ttvsLCwQJ8+fRAaGgrj9xLEpKSklN5x/f394efnhwsXLigkVh4W\nHzmMoPuXkdyyC3rd/Bx+W0yZkVeUyZNp0rPff1dpt2/eUJ/93btAu3Y0OkdouYX4bOgjIiIQFBSE\n4uJitG/fHlKpFCdPnsT27dvl7mvlypXYu3cv/v33XwBA165dsX37dti+l73u5MmT+Pzzz9GwYUOV\nfQcA8Pf3h7a2NkJCQtC6dWsEBQXhxx9/hJ2dnUrHUfV4VRl6RcZQxtAr7brZsGEDfHx8UFRUhFmz\nZsHY2Bh/vNtK7+Pjg6NHj2LLli3Q0dGBo6Mj1q5dq+yQ1bL59BUE3T2H5zaf4fMrHti4Tf1GXiwW\nlz7WC41qtf/6K9C+Pd319MknKhvXyIiGXHbvTh8YPD2BS5eAxo3l60fI1x5AGReAKklNTYWLiwv8\n/Pzwww8/gBCCuXPnKtRXgwYN4ODgUHpsYWGBwMBA2NraluofNGiQqqSXkpiYiLZt28LGxgY//vgj\nfH190axZM1hYWFT5udWrVyOvkrQa48ePL+PyeP/6JyQkKDQeQN1bu3fvLj0ODQ0tdbcA9Obo5eWl\n8HdSBqUNfffu3REVFVXmPR8fn9J/f/311/j666+VHUZmDl2OwqHr25Bk1xceF7pg887mYEEWSmJk\nBPz2GzB1Ko3C0dVVWdcmJtS4d+tGo3H69KHGX4VeIk4RqWgjHVHgRtanTx/4+vpi7NixAIDr16/D\nzc2tTBtZXTft2rXDlStXSt/X0tJC/fr1ZdaipcAfoUgkguRdDYOUlBQYGBjA0NAQ/fr1q/az3333\nnUJ6SsaUdzwAsLe3xy+//FJ6XNmMvsSgKzKGwqhkOVgFqELK+asvSdfvxxKLvQfIuJFxaomuqbVI\npYR4ehKybp1auk9M/C/OvksXQrKz1TKMyuF7HH2nTp1Ieno6IYQQHx8fcvHiRRIQECB3P/n5+aRb\nt26lx926dSMJCQll2hw/fpxkq/h/XFRUFImMjCTbt28nP/30EyGEkDNnzqh0DHWNV1lEkaJj8Drq\nRlPcupeNn499jzg3b3Q90RF/7bUEKySvQkQiYMMGOvUePVq2AHg5MDen677dutGStgMG0AImStRD\nqfXk5ubC0NAQBu/2QZiamiIlJQX29vZy91W3bl0sXboUy5YtQ4MGDTBv3rxyroalS5fC2tq6woXN\n9PR0HD58GKmpqVi4cCEeP36M+/fv4/79++jfvz9sbW3x999/o0GDBnBxcYGrqysAIDAwEK9fv4aF\nhQXy8/Nx6tQplbk4AgICUL9+fdy9exezZs1S+3glaGKMclR7K9AQykh5HFtEusyYSEwPHyFDv4ji\nZMdrjYyjr4g5cwiZOlVtWh49IsTUlM7svb0JKSys/jNcXvvaFEdfGbLqfz9uft26dSQsLIxkZmaS\nESNGkE2bNpGwsDBSVFRERo0apU65hBC6v+fq1auEEPVd/1WrVqm0v1qdvTI5mWDcL7MQ3bM/3HZZ\nYtc++QqGMORk0SLA3x+4fVst3bduTXfMGhkBZ84AU6YAUqlahmJwyNy5c+Hu7o6kpCS0atUKUVFR\nMDMzg46ODt4oWMdYHs6dO4fY2FgcO3aszNqDKqlunUCTCNrQp6cDQ75fgBhvT7j+1Qh79nXk7FFf\nyFEfcmk3NASWLQNmz1aqIlVVtGsHnD0LNGgA7N4NfPtt1UMJ+doDUEvEjSZRVD8hBCdOnMDChQtR\nr149aL/ztWoirUJmZibc3d0xePDg0s1HNRnBGvrcXGDg1+vwaJA7nP+WYPeOz1SRkoUhC5MmARkZ\nwKlTahuiUyfg+HEa4LNuHbBqldqGYmgI8sHd+tSpU5g5cyYSExPRrl07pKSkID8/v8w+HHXh6OgI\n6btHRe1asJgnSENfVAQM+mofYr60gOP+t/jr98GcpxquEfnoZUVbG1ixgqY0fhf+pg48PYE9e+g6\nsK8v8NdfFbcT8rUHhJ8PXRb9WVlZOHjwIMLDw3Hv3j2cOHECy5Ytw+DBg3Hs2DF8+eWXSE5Oxv79\n+zFv3jy1ax4zZgwCAwNx4MABfPXVV2ofj3NUulqgBLJKkUgI+XJiIDE/sI/0GPMbefhQzcJkpNYs\nxpYglRLy6aeE7Nqlcj0f8vvvdHFWS4uQY8fKn2eLsdzC9GsGZRZjlU6BoCpkTYEwbe49XHa6hRY3\nUrFq0vf4YP8HQ5OEhtJUxo8e0ZqBamTxYlpovE4dWrWqRw+1DiczfE6BwKhZKJMCQVCum+W/vkSY\nrRhm0Snw/fJbZuS5pksXmhrhXcoLdbJoEfD117Tu7MCBagv6YTBqJIIx9Lv35eKMdDvqZhVhst18\n9OrFL+lC9hMrpX3FCvrKyVGZnooQiYCNG4Hhw4GsLJoq4ckTek7I1x6oHT56PiN0/bLAL2tZCUFB\nBNsfrEBOIyMMKJ6KceNVl2uFoSSOjkDXrhqZ1Wtp0XDLXr1omuO+fel/GQxG1fDeR//vv8DMLQuQ\n2NkOvW94YNPvFizdMN+4cwfw8gJiYzWSsyAri2a8jIwE3N2BoCBAjvxaKoX56Bmaosb66JOSgBm/\nLkN0D2e4nG0Hv43MyPMSJyegY0fg7781Mpy+Pt0127IlEB4OjBgBFBdrZGgGQ5Dw1tCnpwPjvtmE\nB1+0R4e9DbB7uyuvk5QJ2U+sEu0//UR3NRUUKN+XDJiZAQEBNHf9qVNizJihto26akfoPmKmn//w\nMntlQQEwbOpR/DvKDA67MrB/+wSWxZDvuLnR3AW7d9O89RrA3p5uzu3Rgy4RWFjQPVyapFGjRujY\nsaNSfeTn50NPT09FijQP068ZGilRpIF3PnqpFBg64Qpu9H+B1iefY+eKeZCjFCSDS0JDgXHjgJgY\nQEdzc4jjx4EhQ+iMftcuKoHBqC0I0kc/Y95j3PvsCdpcjsGG75iRFxRdugDNmwPHjml02C+/pAWw\nAFreNjBQo8MzGLxHaUMfEhICe3t72Nraws/Pr8I2vr6+sLKygqurK6Kjoyvta+XqN7jW+hw+evQM\nCwYvRIcOyqrTHLXeR1/CN98Aa9dq1GEuFosxcyYwfz5dlB08mAYCCQUh/3YApl8IKG3oZ8+ejT/+\n+AMXL17Epk2bkJaWVuZ8eHg4rly5glu3bmH+/PmYP39+pX35S/9Avaw8TLb7Hp9/zruHDYYs9O8P\nvH1L3TgaZtUqGoGTnU1j7BMSNC6BweAlSvnoMzIy4OHhgcjISADArFmz0Lt3b3h7e5e28fPzg0Qi\nwZw5cwAA1tbWiI2NLS9EJILj5t8x7O0oLFzQWFFJDD6weTP1n5w8qfGhCwqokQ8KAuzsgKtXaRET\nBkNVFBcDr14BH33EtRKK2n30N2/ehJ2dXelx27ZtcePGjTJtwsPD0bZt29JjExOTCg09AHzyoA8W\n+DIjL3gmTACuXaOLshqmbl26ONu+PRAdTfPi5OdrXAajhkIIzbnk6ko37AkFtYdGEELK3W0qqyCT\nm7UMS5ZYAgAMDQ3h5ORUWj2oxI/G1+MNGzYISu/7x+/7KFXSf/36EPfpA3z7LTz++Ufj+g0NgZ9+\nEuPrr4HQUA+MGQP83/+JoaXFj+tdnX6u9TD9lbe/etUDf/4J1KkjxtWrgLMzN3pLqmJZWlpCJpTJ\nj5yenk6cnJxKj2fMmEFOnz5dps3GjRvJunXrSo+trKwq7EtJKZxT6/LRV0dyMiGGhoS8fq36vj+g\nMv337hFiYEBz2c+cSVPo8xEh/3YIqT36d+6kvyWRiJDjx9WrSR5ksZ1KW1cnJycSHBxM4uLiSJs2\nbUhqamqZ82FhYeTTTz8laWlpZN++fcTb21thsQyBMWYMIWvWcCohKIiQOnXoH+iqVZxKYQiY8+cJ\n0dGhvyM/P67VlEUjhl4sFhM7OztibW1NfvvtN0IIIVu3biVbt24tbfP9998TS0tL4uLiQh5WUhKK\nGfoayPXrhFhb07JgHHLoEP0DBQjZs4dTKQwBcvs2IQ0b0t/Pt99yraY8GjH0qkLohl7Ij69q0y6V\nEuLsTEhAgHr6f4cs+tevp3+oOjqEBAaqVY7cCPm3Q0jN1h8fT4ipKf3tjBzJ+ZylQmSxnSxYnaE+\nRCIaorBpE9dKMGcO3ctVXEx30gopYoLBDW/e0AI3yck0n9KOHbQmghDhXa4bRg0jN5dmG7t5E2jV\nilMpUikwejRw8CBgagpcvw7IGrTAqF3k59MCN6GhNFT3yhXA0JBrVRUjyFw3jBpG/fo0y5gGKlBV\nh5YWsHMnnZ0lJ9PZ2uvXXKti8A2pFBg7lhr55s1pOmy+GnlZYYZeRbwfiys01K79//4P2L5dbTuX\n5NFfty5w4gTg4AA8ekQzNuTmqkWWzAj5twPULP2EAPPmAUePAo0aUSPfogV32lQFM/QM9WNjQ2vL\nvts8xTUGBvQP2Nycum9GjmQVqhiUdetoJlRdXZrBw8GBa0WqgfnoGZrhwAG6msWjHMIPH9LMym/f\nAj4+wJYtYKUqazF79vxXy2DfPmDUKG71yArz0TP4wxdfALdvA/HxXCsppW1bwN+funP++ANYsYJr\nRQyuOHsWmDiR/nvdOuEYeVlhhl5FCNlPqRHtenrUR7Jjh8q7VkZ/ly7A/v10Jv/jj3SxVtMI+bcD\nCF//pk1iDBkCSCTADz8Ac+dyrUj1MEPP0BxTplBDL5FwraQMX34JbNxI/z1lCvXfM2oHDx5Q456X\nB0yaVHOf6piPnqFZOnYEli8HevfmWkk5fH2BlStpROiFC8Ann3CtiKFOEhKATz8Fnj8HBgygFTA1\nWOpYZTAfPYN/TJ4M/PUX1yoqZMUK6qfNzQW8vIC7d7lWxFAXqamApyc18l270k10QjTyssIMvYoQ\nsp9So9pHjqTT5Q9KTiqDqvSLRMCff9J144wM+tDx5IlKuq4SIf92AOHpz84GvL1pXRxHR+C778So\nV49rVeqFGXqGZjE0pLX+Dh/mWkmF6OjQxdnPPgNSUoDPP6ezPkbNoLCQrsmUZOQ4dw5o2JBrVeqH\n+egZmufMGeqnv3aNayWVkp1NjXxYGGBvD4SEAMbGXKtiKENxMTB8OC012bQprSdsY8O1KuVhPnoG\nP/H0BGJjNeMXUZCGDWlsdbt2QFQU9dlnZXGtiqEoEgkwfjw18gYGdCZfE4y8rDBDryKE5qd8H41r\n19WlU6t9+1TSnbr0GxnRjbytWtFH/QED1JMXR8i/HYD/+qVSYNo06pJr2JAaeWfn/87zXb8qYIae\nwQ1jx9I95zx31330EXDxImBmBojFwMCBNOaaIQwIobUI/voLqFcPOH0a6NyZa1Wah/noGdxACGBn\nB+zaJYi/vOhowMODLtD26UMzYOrpca2KURWE0L0Rq1YBdeoAp05Rr2FNg/noGfxFJPpvVi8A7OyA\nS5cAExP66D9kCI3gYPCXn3+mRl5HBzhypGYaeVlR2NBnZWVh4MCBsLCwwKBBg5CdnV1hO0tLSzg6\nOsLZ2Rnu7u4KC+U7QvbzcaZ99GgaZqmkxdSU/nbtqBvHyIgGDg0fDhQVKd+vkH87AD/1r1wJ/O9/\ntNjM3r10faUy+Khf1Shs6Lds2QILCws8fvwYLVq0wNatWytsJxKJIBaLERkZifDwcIWFMmogrVoB\ntrZ0qiwQHB2psTc0pPnKR45UjbFnqI5ly6jLRiSi9W6GD+daEQ9QtPL44MGDSWRkJCGEkIiICDJk\nyJAK21laWpK0tLRq+1NCCkPIbNhAyPjxXKuQm5s3CTEwIAQgZNgwQgoLuVbEkEoJWbSI/j/R0iJk\n926uFWkGWWynwtkdbt68CTs7OwCAnZ1dpbN1kUiEnj17olWrVpg0aRIGVPEMNWHCBFi+q9ZsaGgI\nJycneHh4APjv8Yod17DjIUOAJUsgvnAB0NXlXo+Mx9nZYvzyC/D99x44fBh49kyMRYsAT09+6Ktt\nx0FBYuzYAezZ4wEtLcDXVwxzcwDghz5VHovFYux8l0/bUtbq9lXdBT7//HPSvn37cq9//vmHmJub\nk7y8PEIIITk5OcTCwqLCPl68eEEIIeThw4fE2tqavHz5UuG7Ep8JCgriWoLCcK69a1dC/P0V/jiX\n+sPDCWncmM4ie/UiJCdH/j44v/5KwrV+qZSQ77+n/w+0tQk5eFC+z3OtX1lksZ1V+ugvXLiA+/fv\nl3sNGDAAbm5uiIqKAgBERUXBzc2twj7MzMwAAPb29hgwYABOnTol2x2IUXsYPhw4dIhrFQrh5kbj\n65s2pbna+vQBMjO5VlV7kEiA6dP/i645eJD55CtC4Tj61atXIykpCatXr8b8+fPRqlUrzJ8/v0yb\n3NxcSCQS6OvrIzU1FR4eHjh37hzM6TNVWSEsjr72kpxM4xdfvoRQ0whGR/+XAM3dnRYvMTLiWlXN\nprCQ1ng9dIiWgzxyBOjfn2tVmketcfTTp09HYmIi2rRpg+fPn2PatGkAgBcvXsDb2xsAkJycjK5d\nu8LJyQkjRozAN998U6GRZ9RyTE0BFxcaoC5Q7OyAK1cAS0sgPJyWKExM5FpVzSUnh4ZMHjoENGoE\nnD9fO428zKjZfSQzPJKiEEL28/FC+9athAwfrtBHeaH/HUlJhLRvT/3FH31EyL171X+GT/oVQdP6\n37wh5OOP6TU2MSEkIkK5/oR+/WWxnWxnLIMffPkl9XeoI2uYBmnRgs7su3UDXryg1YuCg7lWVXN4\n+hT4+GPg+nXAwgIIDaUPg4yqYbluGPzhs8+AGTNoiSeBk58PjBlD65DWqUN3Zw4dyrUqYXP9Ok0q\nl5oKODjQ3cnME8xy3TCExpdf0mxhNQA9Peo/njGDLhoOG0Z3bLK5jGIcOQL06EGNfO/edCbPjLzs\nMEOvIko2NAgR3mgfNIhO0+TMKcAb/R+grQ1s3Aj8+ivdjv+//wEjRpT3TvFVv6yoUz8hNG/NsGFA\nQQHw1Vc0C2WjRqobQ+jXXxaYoWfwh+bNadmfGuTUFomA+fOpcdLXpzncunYFnj3jWhn/yc6mMfG+\nvvR49Wpg61Zat4YhH8xHz+AXK1fSuMTNm7lWonIePqQhgbGxQLNmwNGjNAyTUZ6YGLpU8/AhvUHu\n2lUjlm7UAvPRM4THF1/QtJBSKddKVE7btrTYeI8etICJhwe9r9XAr6oU//xDdxw/fEj3J4SHMyOv\nLMzQqwgh+/l4pb1NG5oDWI6U1rzSXw1NmtDNPd9/T7fv+/oCH38sRmoq18oUR1XXv6AA+PZbulST\nmQkMHkx/Bu9yJ6oNIf1+FIUZegb/qEHRNxWhq0tn8mfOUMMfHg44OdWopQm5efAA6NQJWLOGLmKv\nWkUjbfT1uVZWM2A+egb/iIig4SkxMXQ1swbz7BktXhIaSr/q7NnA8uVA/fpcK9MMhACbNtGZfH4+\nYGVF9xx8/DHXyoQD89EzhImLC32Of/iQayVqp0ULICgI+OknWvZuwwZaxSokhGtl6ichAfDyAmbO\npEZ+0iTgzh1m5NUBM/QqQsh+Pt5pF4lohqrTp2Vqzjv9chIaKsbSpXSh1sGBRuV07w7MmkVDDPmO\nvNdfIqE3tHbtaB47IyO6g/jvv7lx1Qj99yMLzNAz+Em/fjIb+pqCqytw6xad3WtrA35+dCHywIGa\ns6P22jXqi587l2agHDYM+PdfuizDUB/MR8/gJ/n5tJpHXBxdsaxl3L4N+PhQww/QTVbr1gEdO3Kr\nS1ESE2mk0cGD9LhFC7pVgqUWVh7mo2cIFz09oGdPmtGyFuLiQl05f/0FmJjQjJhubsCQIcC7wm6C\nIDkZmDMHaN2aGnk9PfrEEhXFjLwmYYZeRQjZz8db7TK6b3irX0Yq06+lBUyeTIOPvvuOGsljx4D2\n7WmkTmSkZnVWRkX6nz2jqR+srIDffqNr6yNG0EpcS5cCDRtqXmdlCP33IwvM0DP4i7c33V0kZ5Kz\nmoahIY0rj40Fpk2jN4CDB+ms39OT5tEpLuZaJV1HCA8HRo8GWrUC1q4F8vLoBqi7d+laQ8uWXKus\nnTAfPYPfuLnRbFY9enCthDckJQHr1wN//kkXNAGaD27iRJoDv00bzep59YrGvu/YQRdWAbqYPHQo\nndW7umpWT21DrT76I0eOoF27dtDW1sbt27crbRcSEgJ7e3vY2trCz89P0eEYtZX+/emUlVGKuTld\nmE1KovdAW1talPznn2mUjoMDsGQJnV1LJKofnxDg8WOqoVs3wMwM+OYbauSbNKHG/elTOoNnRp4n\nKFqnMCoqijx69Ih4eHiQiCqKNjo5OZHg4GASHx9P2rRpQ1JTUytsp4QUXiDkupO81h4RQYitbZVN\neK1fBpTVL5USEhREyPjxhBga0lqqJS8DA0IGDCBk+XJCzpwh5Nkz2l4eXr0i5PJlQn77jZb1NTMr\nO4a2dhDp14+QY8cIKShQ6qtwgtB/P7LYTh1FbxB2MmQaysjIAAB069YNAODp6YmwsDB4e3srOiyj\ntuHsTP0TMTE0dINRDpGIZsL08KDVrC5fpqmCLl2ifn1/f/oqQU+P1ls1N6eblRo0oC+plC6a5ufT\nSk4vX9K6t2/elB/T2Bj4/HNa2k9fny6nMPiLwoZeFm7evFnmhtC2bVvcuHGjUkM/YcIEWFpaAgAM\nDQ3h5OQEDw8PAP+tjPP1uOQ9vuiR59jDw4NXesod9+kDsZ8fMHiwMPVXc6xq/X36AHp6YowcCbRq\n5YHgYODUKTGePAESEjzw9i0QEyNGTAwA0M8D4nf/LX+srw+Ym4thaQkMGOCBbt2A5GTxuxuMBwB2\n/TV5LBaLsXPnTgAotZfVUeVibK9evZCcnFzu/RUrVqD/uyDYHj16YO3atXCpoBT7xYsX8ffff+PA\ngQMAgK1bt+L58+dYtmxZeSFsMZZRGUeO0JW+s2e5VlIjyMyk/v2kJCAjgz4w5eTQaJ66denL2Jj6\n3s3M6L61Gp5bTtDIZDuV9Q95VOGjT09PJ05OTqXHM2bMIKdPn66wrQqkcIqQ/Xy81/7mDSH6+oTk\n5VV4mvf6q4Hp5xah65fFdqokjp5UcjcxMDAAQCNv4uPjceHCBXTq1EkVQzJqE40b01CSK1e4VsJg\nCFljJ2UAAAtSSURBVBKF4+hPnDiBWbNmIS0tDQYGBnB2dkZAQABevHiBqVOn4syZMwCA4OBgTJs2\nDUVFRZg1axZmzZpVsRDmumFUxbJlQHo63YXDYDBKkcV2sg1TDGFw8yYwYQItRcRgMEphSc00SMmq\nuBARhHZXV7oFMzGx3ClB6K8Cpp9bhK5fFpihZwgDLS2a2OX8ea6VMBiCg7luGMJhzx7g5EmawpHB\nYABgPnpGTSMlhWbsSk0FdHW5VsNg8ALmo9cgQvbzCUZ7s2Y0wXlYWJm3BaO/Eph+bhG6fllghp4h\nLHr1oklcGAyGzDDXDUNYXLhAc/CGhnKthMHgBcxHz6h55OXRIqovXgCNGnGthsHgHOaj1yBC9vMJ\nSnu9ekCnTkBISOlbgtJfAUw/twhdvywwQ88QHp9/Dly8yLUKBkMwMNcNQ3jcvEkLpJYUKGUwajHM\nR8+omUgk1E//4AFNmM5g1GKYj16DCNnPJzjt2tpAjx6lYZaC0/8BTD+3CF2/LDBDzxAmzE/PYMgM\nc90whMnjx3RWn5TE6twxajXMdcOoudjYUBfOo0dcK2EweA8z9CpCyH4+QWoXieiMXiwWpv73YPq5\nRej6ZYEZeoZw6dEDCAriWgWDwXsU9tEfOXIEixcvRnR0NG7evAkXF5cK21laWqJRo0bQ1taGrq4u\nwsPDKxbCfPQMeYmPp7tkk5OZn55Ra5HFduoo2rmDgwNOnDgBHx+fakWIxWIYGRkpOhSDUTGWlkD9\n+kB0NGBvz7UaBoO3KOy6sbOzQ+vWrWVqWxtm6kL28wlZO3r0gPiPP7hWoRSCvv5g+oWA2n30IpEI\nPXv2xKBBg+Dv76/u4Ri1DQ8P4M4drlUwGLymStdNr169kJycXO79FStWoH///jINcPXqVZiZmSEq\nKgr9+/eHu7s7TE1NK2w7YcIEWFpaAgAMDQ3h5OQEDw8PAP/ddfl6XPIeX/TIc+zh4cErPXLrnz8f\n4qAgQCTihR659Qv9+jP9Gj0Wi8XYuXMnAJTay+pQesNUjx49sHbt2koXY99n3rx5sLe3x9SpU8sL\nYYuxDEWxtgb8/YF27bhWwmBoHI1tmKpskNzcXGRlZQEAUlNTcf78efTp00cVQ/KOkjuuEBGydgAQ\nt2kDCPg7CP76M/28R2FDf+LECZibm+PGjRvw9vZG3759AQAvXryAt7c3ACA5ORldu3aFk5MTRowY\ngW+++Qbm5uaqUc5glODsLGhDz2CoG5brhiF8kpIAFxcgJQXQYnsAGbULluuGUTswNwcMDICHD7lW\nwmDwEmboVYSQ/XxC1g6809+tG3DlCtdSFKJGXH8BI3T9ssAMPaNm0LWrYA09g6FumI+eUTN48oRu\nnmL56Rm1DOajZ9QerK1pLdn4eK6VMBi8gxl6FSFkP5+QtQPv9ItEgnXf1IjrL2CErl8WmKFn1BwE\naugZDHXDfPSMmsOdO8CIETRtMYNRS5DFdjJDz6g5SCRAkyZATAzQtCnXahgMjcAWYzWIkP18QtYO\nvKdfWxv45BMgNJRTPfJSY66/QBG6fllghp5Rs2B+egajHMx1w6hZhIYCc+YAt25xrYTB0AjMR8+o\nfRQUUD/9y5eAvj7XahgMtcN89BpEyH4+IWsHPtBfty7NZHn9Omd65KVGXX8BInT9ssAMPaPm8emn\ngjL0DIa6Ya4bRs3j1Cng99+B8+e5VsJgqB3mo2fUTtLSABsb4PVrGnLJYNRgmI9egwjZzydk7UAF\n+o2NgWbNBFOIpMZdf4EhdP2yoLCh//bbb2Fvbw8XFxfMmTMHeXl5FbYLCQmBvb09bG1t4efnp7BQ\nvnPnzh2uJSiMkLUDlej/5BPg2jXNi1GAGnn9BYTQ9cuCwobe09MTDx48wK1bt5CTk4P9+/dX2G72\n7Nn4448/cPHiRWzatAlpaWkKi+Uz6enpXEtQGCFrByrRLyBDXyOvv4AQun5ZUNjQ9+rVC1paWtDS\n0kLv3r0RHBxcrk1GRgYAoFu3bmjZsiU8PT0RFhamuFoGQ1YEZOgZDHWjEh/9tm3b0L9//3Lv37x5\nE3Z2dqXHbdu2xY0bN1QxJO+IF3DBCyFrByrRb29PF2VfvdK4HnmpkddfQAhdvyxUGXXTq1cvJCcn\nl3t/xYoVpYZ96dKluHfvHo4ePVqu3cWLF/H333/jwIEDAICtW7fi+fPnWLZsWXkhrPwbg8FgKER1\nUTc6VZ28cOFClR/euXMnzp8/j0uXLlV43s3NDd9++23p8YMHD9CnTx+FhDIYDAZDMRR23Zw7dw6/\n/vor/P39oaenV2EbAwMDADTyJj4+HhcuXECnTp0UHZLBYDAYCqDwhilbW1sUFhbCyMgIAPDxxx9j\n8+bNePHiBaZOnYozZ84AAIKDgzFt2jQUFRVh1qxZmDVrlurUMxgMBqNaON8ZGxISAh8fHxQXF2PW\nrFmYOXMml3LkYtKkSThz5gyaNm2K+/fvcy1HbpKSkjBu3Di8evUKJiYm+OqrrzBq1CiuZclEfn4+\nunfvjoKCAujp6WH48OGYO3cu17LkRiKRoGPHjmjRogVOnTrFtRy5sLS0RKNGjaCtrQ1dXV2Eh4dz\nLUkucnJy8H//93+4fv06dHR0sH37dnTu3JlrWTLx6NEjjBgxovT46dOnWLZsWaUTac4NvbOzM377\n7Te0bNkSvXv3RmhoKIyNjbmUJDNXrlxBw4YNMW7cOEEa+uTkZCQnJ8PJyQlpaWlwd3fH3bt3oS+Q\n9L65ubmoX78+CgoK4OrqipMnT8LGxoZrWXKxbt06REREICsrC/7+/lzLkYtWrVohIiKi9KleaMyf\nPx/16tXDwoULoaOjg5ycnFJ3s5CQSqVo3rw5wsPDYW5uXmEbTlMgCD3OvmvXrmjcuDHXMhTG1NQU\nTk5OAABjY2O0a9cOtwRUsKN+/foAgOzsbBQXF6Nu3bocK5KPZ8+e4ezZs5gyZYpggxGEqhugUYEL\nFiyAnp4edHR0BGnkAfo9rK2tKzXyAMeGvjbF2fOdJ0+e4MGDB3B3d+daisxIpVJ06NABzZo1w4wZ\nM6r8ofORuXPn4tdff4WWljBTTolEIvTs2RODBg0S3NPIs2fPkJ+fj+nTp6NTp05YtWoV8vPzuZal\nEAcPHqzW5SrMXxhDpWRlZWH48OFYv349GjRowLUcmdHS0sLdu3fx5MkTbN68GZGRkVxLkpnTp0+j\nadOmcHZ2Fuys+OrVq7h79y5++eUXzJs3r8I9N3wlPz8fMTExGDx4MMRiMR48eIDDhw9zLUtuCgsL\ncerUKQwdOrTKdpwaejc3N0RHR5ceP3jwQDCLITWFoqIiDB48GGPHjsXAgQO5lqMQlpaW8PLyEpTb\n79q1a/D390erVq0wcuRIXL58GePGjeNallyYmZkBAOzt7TFgwABBLSbb2NigTZs26N+/P+rVq4eR\nI0ciICCAa1lyExAQAFdXV5iYmFTZjlNDz+LsuYUQgsmTJ6N9+/aYM2cO13LkIi0trTQZ1evXrxEY\nGCioG9WKFSuQlJSEuLg4HDx4ED179sTu3bu5liUzubm5yMrKAgCkpqbi/PnzlW6G5Cu2trYICwuD\nVCrFmTP/364d2koIRFEYXgwNoEhwa1DcQeEJweGhDiqhAEhQVPCCnYQOcBiKIOPPlrBvXvJyk8n5\n9BW/Ombm59U0jXaSt23bXsMwfD+EMmst8jzH+/3GNE3aOV76vkeapojjGFmWYVkW7SQvx3EgiiKI\nCIwxMMZg33ftrF85zxNlWaIoCrRti3VdtZP+zFqLruu0M7zc9w0RgYigrmvM86yd5O26LlRVBRHB\nOI5wzmkneXHOIUkSPM/z9Vb9eyUREf0vPsYSEQWOQ09EFDgOPRFR4Dj0RESB49ATEQWOQ09EFLgP\nfgk2a5wJG34AAAAASUVORK5CYII=\n"
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 22
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
"plot_taylor_approximations(cos, 0, [2, 4, 6], (0, 2*pi), (-2,2))"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
Brian Granger
Updating example notebooks to v3 format.
r6035 "output_type": "display_data",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD3CAYAAAAT+Z8iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlYVVX3xz+As6g4z4qKCioKDjgn8aqZRppW6lsWamZp\nzjY4/MqhNK1soExfy6kcShMnckwQR0BFRRxBSZzBiRmBu39/HKFQhjty7oH9eR6e2Pfuc/aX3XXd\nfdZeey0bIYRAIpFIJEUWW7UFSCQSicSySEMvkUgkRRxp6CUSiaSIIw29RCKRFHGkoZdIJJIijjT0\nEolEUsQxydDHxMTw7LPP0rJlSzw9PVm7dm2u/aZNm0bjxo1p164d58+fN2VIiUQikRiIjSlx9Ldu\n3eLWrVu4ubkRFxeHh4cHp06dokKFCtl9QkJCmDx5Mlu3bmXXrl2sWbOG7du3m0W8RCKRSArGpBV9\nrVq1cHNzA6BatWq0bNmSY8eO5egTHBzMyy+/TJUqVRg6dCjnzp0zZUiJRCKRGEgJc90oMjKSiIgI\nPDw8crweEhLCsGHDstvVq1cnKiqKJk2a5OhnY2NjLikSiURSrCjIMWOWzdiEhAQGDx7M119/Tfny\n5Z8S8KSIvIx6Vl8t/rz55puqayiO2q1Ff7/Tp/GLjdWsfq3Pf3HWrw8mG/r09HQGDRrEsGHD6N+/\n/1Pvd+zYkbNnz2a3Y2Njady4sanDSiRWxcnERNzs7dWWIZHkikmGXgjByJEjadWqFRMnTsy1T8eO\nHfnjjz+4e/cua9euxcXFxZQhrRZHR0e1JRiNlrWD+vpjHz0iMTOThqVLG3W92vpNReq3fkzy0R86\ndIhff/2V1q1b4+7uDsC8efO4evUqAKNHj8bDw4Nu3brRvn17qlSpwq+//mq6aivE09NTbQlGo2Xt\noL7+U0lJtClf3uh9JrX1m4rUb/2YZOi7deuGTqcrsN/nn3/O559/bspQEonVIt02EmtHnoyVSExE\nGnqJtWPSgSlzYmNjo/cOskRiTbQKDeUXZ2fc/3VQUCIpLPSxnXJFL5GYQKpOR1RKCi2eCCuWSKwJ\naejNRGBgoNoSjEbL2kFd/RFJSTQtW5bStsb/U5Lzry5a168P0tBLJCYg/fMSLSB99BKJCbx36RKN\nypRhSv36akuRFFOkj14isTAnEhJoJzdhJVaONPRmQst+Pi1rB/X0ZwjBqcRE2proupHzry5a168P\n0tBLJEZyNimJ+mXKULGE2ZLASiQWQfroJRIjWX7zJvsePODXIpq/SaINpI9eIrEgxxMSaC/98xIN\nIA29mdCyn0/L2kE9/cfMZOjl/KuL1vXrgzT0EokRPNLpCE9KkjH0Ek0gffQSiRGEJSTw+rlzRDxR\nOlMiKWykj14isRDHExOlf16iGaShNxNa9vNpWTuoo99c/nmQ8682WtevD9LQSyRGYE5DL5FYGumj\nl0gMJE2no/LBg8R17Uo5Ozu15UiKORb30Y8YMYKaNWvi6uqa6/uBgYFUqlQJd3d33N3d+fTTT00Z\nTiKxCs4kJeFUtqw08hLNYJKhHz58ODt37sy3T48ePQgLCyMsLIyZM2eaMpxVo2U/n5a1Q+HrN7fb\nRs6/umhdvz6YZOi7d+9O5cqV8+0j3TGSokaozFgp0Rgm++ijo6Px9vYmPDz8qff279/PwIEDqV+/\nPl5eXowdO5YmTZrkLkT66CUawTU0lJXOztLYS6wCfWynRdPutW3blpiYGEqWLMmqVauYMGEC27dv\nz7O/j48Pjo6OADg4OODm5oanpyfwz+OVbMu2mu223bpxJTWV+6GhBNraqq5HtotfOzAwkJUrVwJk\n28sCESZy5coV0apVqwL76XQ6UaNGDZGamprr+2aQoioBAQFqSzAaLWsXonD177l3T3Q/ccKs95Tz\nry5a16+P7bRoHP3t27ezHym2bdtG69atKV26tCWHlEgsytH4eDpVrKi2DInEIEzy0Q8dOpT9+/cT\nFxdHzZo1mT17Nunp6QCMHj2aH374gR9//JESJUrQunVrpk6dSuvWrXMXIn30Eg3wQng4I2rVYmD1\n6mpLkUgA/WynPDAlkeiJEILqhw9zun176sgnU4mVIJOaFSJZmyVaRMvaofD0R6akUN7W1uxGXs6/\numhdvz5IQy+R6In0z0u0inTdSCR6MvbiRZzKlmVS/fpqS5FIspGuG4nEjByJj6dzpUpqy5BIDEYa\nejOhZT+flrVD4ehPyszkQnIy7hYoHSjnX120rl8fpKGXSPTgeEICrvb2lLaV/2Qk2kP66CUSPVhw\n9Sq3Hj3iaycntaVIJDmQPnqJxEwckRE3Eg0jDb2Z0LKfT8vawfL6dUJw8OFDultoI1bOv7poXb8+\nSEMvkRTAueRkKtnZydOwEs0iffQSSQEsuXGD4Ph4Vjg7qy1FInkK6aOXSMxA0IMHFnPbSCSFgTT0\nZkLLfj4tawfL6hdCcMCC/nmQ8682WtevD9LQSyT58HdaGhlC4FS2rNpSJBKjkT56iSQfVt+6xfa7\nd/m9ZUu1pUgkuSJ99BKJiVjabSORFAbS0JsJLfv5tKwdLKs/6MEDujs4WOz+IOdfbbSuXx+koZdI\n8uD2o0fcTk/HtXx5taVIJCZhko9+xIgR+Pv7U6NGDcLDw3PtM23aNH777TcqV67MmjVrcM4jFln6\n6CXWxh+xsSy/eRP/POocSyTWgMV99MOHD2fnzp15vh8SEsKBAwc4duwYU6dOZerUqaYMJ5EUKoXh\ntpFICgOTDH337t2pXLlynu8HBwfz8ssvU6VKFYYOHcq5c+fyvd/Ro3D6NNy8CZmZpigrfLTs59Oy\ndrCc/oAHD/AsBEMv519dCtKfmQk3bsCpU3DkCOzbB/7+cP9+4egzByUsefOQkBCGDRuW3a5evTpR\nUVE0adIk1/7vBS2nRJqOkg+gRFwJSiWVpyJ1aFC/Ja5tHOjYEZydwcbGkqolErjz6BFX09JoX6GC\n2lIkhYROB2fPQkiIsuA8fRouXcp74Xn4MHTuXPg6jcGihl4I8ZTvyCYfKx39y4eUcSiHnU1ZSpZ3\noGzDJsR06M6fdeMpf/gQ1YP/pnKV+1wVJ4m5cR1sAMesix//V832KivTY0h7lZXpMbRtbv333aBy\nO0r+1d0yep9sy/lXt/2k/odAQ6BH3tefOxdA586ewD9PBZ6elm8HBgaycuVKRY5jlqD8MfnAVHR0\nNN7e3rluxvr6+pKRkcGkSZMAaNKkCVFRUbkLeWJDITUVrl2Dc+fg1MkMLp49x61HZ0luHk+UexVK\nPcqkYVASVeJa8FyvDvx3qC0y3FliLkZduECr8uWZUK+e2lIkZubePVi7Fn77DQ4dgn9bwLp1oVs3\ncHMDV1dwcVFes+bEpfpsxlp0Rd+xY0cmT57MG2+8wa5du3BxcdH72jJlwMlJ+fH2LgG4IoQrFy/C\nX3/pOPBXCHccznDGO4oTJa+ydnw6je2e5Z1RtVV5nAoMDMz+9tUaWtYOltH/1/37TCwkIy/n3/II\nAUFBsGQJ+PlBWpryeunS0LZtIMOHe+LlBY0bF03XsEmGfujQoezfv5+4uDjq16/P7NmzSU9PB2D0\n6NF4eHjQrVs32rdvT5UqVfj1119NEmtjA82bQ/PmtowZ04kHDzqxZYuOHb8f5E6Ts2z1PEbEnntU\nWeDGGJ82eHuDnZ1JQ0qKIZdTUkjR6WhRrpzaUiQmkpEBf/wBX34Jx44pr9nYQO/e4OMDL7wAx4+D\nlX9PmUyRyXUTFQUrFsdxMmYL4QPsKX83g8p7nJgwzIOXB9kgazpL9GXZjRsEPnjAmhYt1JYiMZLM\nTFi3DmbNUmwDQPXq8O67MHIkNGigqjyzoo/tLDKGPovERFi5NJnAwI2ED7TFJtGOKntb8/G7LenT\nxwxCJUWeIWfP0rtyZUbUrq22FImBCAFbtsCMGUoEDUDTpjB1KgwbBkUxCWmxTGpmbw/vTSnHuk1v\nMDVhAG57Erj5ajiTTv7Gc0NjuXjRMuNqOZZYy9rBvPp1QrDv/n3+k8/5EHMj5988hIdDz57w0kuK\nkXd0hBUrlN/ffjtvI28t+i1JkTP0WZQsCaPG27Pit7eZGPks7qeuEjrkKC9++ycTp6eTnKy2Qok1\nciYpiYolStCwTBm1pUj0JDERJkxQImX27YMqVcDXFy5cUPzwJSwacqINipzrJi9u3wbfcUFEOB7i\nYPtWVFnrzI/jm+LlZbEhJRrk65gYLqSksKRZM7WlSPRg714YNQqio8HWVvHBz5mjGPviQrH00RdE\n6KFHrJ/pi9/IOqRfqkyPe14smV8Ke3uLDy3RAH1Pn2Z4rVq8UqOG2lIk+fDwoeJ3/+knpe3uDsuX\nK6v64kax9NEXRIeupZi/awofHmnE8zcD2e65l1avXyc01LT7atnPp2XtYD79KZmZHHj4kJ6F6J8H\nOf+GsncvtGypGPlSpeCzzyA42Hgjr/X514diZ+hB+XCM/qETE0f9Hx8uCuTRkKM8v+YocxZkai6Z\nmsR8BD54gLu9PZVLllRbiiQXMjJg5kwlBv76dejUCcLCYPp0ZU9OkjfFznXzJKmp8Osrq/B3v0ZA\nIw+cdnZmyyJ76tYtdCkSlRl/6RJ1Spfmo6IUZF1EuHYNhg6FgwcVX/zHHytGXx6IlK4bvShTBt7a\n9iaTa3vzyW8rOTf0MC2m3ODgQbWVSQoTIQT+d+/Stzjt4mkEf39o00Yx8nXqKJE1n3wijbwhFHtD\nn0X3d1vz+qJv+HXmUir0Pcp//M7w9Q869H3I0LKfT8vawTz6L6WkkCaEKmUD5fznjhDw6adKmoJ7\n9+D55+HkSejRo+BrDUHr868P0tD/i+otquMdso5Vvnvp6rCPDwnh1TFppKSorUxiaf68d4/nq1TJ\nN422pPBISoIhQ+D//k/JTTNvHmzfrqQxkBhOsffR54oQnBzyGWtK3ubrAa/gtL4NAb6VkCfiiy69\nT53i3Tp1eElaEtW5ehX691dW7xUqKCmFX3hBbVXWi/TRG4uNDW6/zWS8Uxt++WoeUa+F4TrhNhER\naguTWILEzEyOxMcXatoDSe4cOQLt2ytG3slJCZuURt50pKHPh/qz3qLv2LHs+3AqiQPP0e7rv9mz\nN/dvTi37+bSsHUzXv+/+fTwqVKCiSmfli/v8Z7FlC3h5QWyskrMmOFgp/GFptD7/+iANfQFUet0b\nj6/mcXLS25T0uMxzey+wbIVObVkSM/LnvXv0rVpVbRnFmiVLYOBAJdx51CjYsaN4pTGwNNJHrye6\nfYHceXkYraesIrZMVaanteTTaSWKZDWa4oROCOodOUKAmxvNZaGRQkcIZcP1s8+U9uzZ/2zASvRD\n+ujNiK2XJ7W2refywqHUuXafeVVP8e60R3qHX0qsk5CEBCqXKCGNvApkZMCIEYqRt7NTUhp8/LE0\n8pZAGnpD6NoVe791RC5/lfqhySxtEcbg8alkZGjbz6dl7WCa/k2xsQxUOdKmOM7/o0cweDCsXAnl\nyin++ZEjzS5NL7Q+//pgsqEPCgrCxcWFpk2b4uvr+9T7gYGBVKpUCXd3d9zd3fn0009NHVJdvLwo\nu34Vl/54mYY7dGzoFsbz7yTxuFSuREMIIdgUF8fAatXUllKsSEmBAQNg0yaoVElJUtavn9qqijjC\nRNzc3MT+/ftFdHS0aN68uYiNjc3xfkBAgPD29i7wPmaQUrj88YdIq1pb1Ot/SvDHIeExLF4kJakt\nSmIIpxMSRMMjR4ROp1NbSrEhPl6IHj2EACGqVRPixAm1FWkffWynSSv6hw8fAvDMM8/QsGFDevfu\nTXBwcG5fJqYMY50MHEip2TO4dPIV6iyrTchLp+k+Op6kJLWFSfQlazUvT8MWDvfvQ69esH8/1K6t\n/NfdXW1VxQOTDH1oaCjOzs7Z7RYtWnD06NEcfWxsbDh8+DBubm5MnjyZqKyS7EWBsWMpM+QlLt16\nDYf5tzgxMJxu7zzUnLHXuo/SWP3W4J+H4jH/WUY+OBgaNoQDB6BFC8tr0wetz78+WPyESNu2bYmJ\niaFkyZKsWrWKCRMmsH379lz7+vj44OjoCICDgwNubm54enoC//zPsLr2vHmUixnGh8dmM3/eHE7O\nOEOX0S35/LWTlC1rBfpkO9f22l27iLl0ic7t21uFnqLcfvgQOncO5MIFaNLEk4AAiIoKJCbGOvRp\nrR0YGMjKlSsBsu1lQZgUR//w4UM8PT0JCwsDYNy4cfTp04d+eeysCCGoVasWV69epXTp0jmFWHkc\nfb6kpcHzz/Ogbkuc7szm7rvnaPVHSw4vdqBCBbXFSXLjy5gYLiUns7R5c7WlFGni4+G55+DoUWjU\nSHHX1K+vtqqihcXj6CtVqgQokTfR0dHs2bOHjh075uhz+/btbBHbtm2jdevWTxl5zVO6NPj54RAW\nwNku66n2YwvODIqg67j7JCerLU6SGxutxG1TlElIUFILHz2quGsCAqSRVwuTwyu/+eYbRo8eTc+e\nPRkzZgzVqlVj6dKlLF26FICNGzfi6uqKm5sbGzdu5KuvvjJZtDUSGBYGmzdTY/FsTvqEU+37loQP\nOMszk+6Rlqa2uvzJeizUKobqj0xJ4UpKitUkMSuK85+YqIRMHj6sGPeAAMXYWyNan399MNlH36NH\nD86dO5fjtdGjR2f/PnbsWMaOHWvqMNrAyQl++YW6bw7myJpg2s9qyfHJEXhNakngtw6yrqWVsO72\nbV6tUYMSMtrGIiQlKRknDxyAunUVI9+okdqqijcy140l+PJLWLeO8MUH6PJBGomTztIzwJWdiyrK\n8mcqI4TAJTSUlc7OdKpYUW05RY60NHjxRdi9+58QyqZN1VZVtJG5btRiyhRwccH1u1Hs+8KBst86\ns9cznIEfJaCTiS9V5URiIuk6HR3lLrnZyciA115TjHyNGspKXhp560AaejORw89nYwPLlsH583Q4\n+DW75lSl1OJmbO0czuszk6wuEZrWfZSG6F9z+zb/rVnTqg5JFYX5FwJGj4Y//lDSGuzeDVoJaNL6\n/OuDNPSWomxZJZnHggV0L3mU7R9Ux+5/TVjnfop358lQHDXIFIL1d+7wWs2aakspUggBU6fC8uXK\nx97fH9q0UVuV5N9IH72l2bwZJk6EsDC2HaxM/6U3EcOi+fiuO7PHlFFbXbHir/v3+SAqiuOPD0lJ\nzMOnnyo55EuWhG3blLh5SeEhffTWwIABSqXjkSPxfkGw8tXasL4BcyqdxHedlcddFjHW3L4tV/Nm\n5vvvFSNvawtr1kgjb61IQ28m8vXzLVyolLb/4QfeeAO+6FoXttVhfPop1u18VGga80LrPkp99Cdk\nZOAXF8fQGjUsL8hAtDr/a9bAuHEAgSxdCq+8orYi49Dq/BuCNPSFQenS8NtvMGcOnDjB1KnwfoMG\nsK8Gr904zZ6jMpm9pVl35w7POjhQu6idylaJ3bvBx0f5/Z134K23VJUjKQDpoy9Mfv8dpk+HsDCE\nfQV8hgtWl4uiRJt4jnRrTfuWFs8xV2xpf/w4nzZqRB9ZcdpkTpyAHj2U069Tp8IXX6itqHijj+2U\nhr6weeut7PDL9HQY8JLgT+eLlG6cQni/1jRtKB+yzM2JhAQGRkQQ1bEjdlYUVqlFLl+Gzp3hzh0l\nZn71asU/L1EPuRlbiOjt51u0SKmdtn07JUvCht9t6Hy0GWm3StF2SwS34gr/RJXWfZQF6V928yYj\na9WyWiOvlfmPjVU2W+/cgZ49lXBKW1vt6M8LrevXB2noC5uKFWHVKnj7bYiLo1w58N9mQ4vNziQm\nQqs154lPLAZPNoVEUmYmv925w4jatdWWommy8tdERoKbm3IwqlQptVVJ9EW6btTi/ffhyhXYsAFs\nbLh+HTr1yOTamHDqlyhL1LvNKFnSOlegWmL5zZtsiYtji6ur2lI0S0aGEiXs7w+OjnDkCNSqpbYq\nSRbSdWPNzJ0L588rMWooWf72bLej8letiCmRRNufotDpitEXnwUQQrDkxg1G1amjthTNkpXawN8f\nqlaFnTulkdci0tCbCYP9fGXKwC+/wOTJEBMDgLMz+G8sQZlZrpwpeZ9nV/5tfqG5oHUfZV76D8XH\ncz8jg+etPNLGmuf/k0/+SW2wfXvu+WusWb8+aF2/PkhDrybu7jB+vBKJ8/jRq3Nn+O2nkth82Iag\nErd5+bcYlUVql0UxMUyqV89qN2GtnaVLlQdPW1vlGEinTmorkhiL9NGrTXo6eHgoK/thw7JfXrYM\n3p6RCt+d5N2KDVjcV7ofDCEyJYXOJ04Q3akT5WURAIPZvBkGDQKdTvksygNR1ov00WuBkiXhp5+U\nkyd37mS/PGoUzBpbBqa04cfkaGYF3cnnJpIn+ebaNd6uXVsaeSM4dAiGDlWM/KxZ0sgXBUw29EFB\nQbi4uNC0aVN8fX1z7TNt2jQaN25Mu3btOH/+vKlDWiUm+fnatYM33oBJk3K8/PHH8PYLZeH9Nsy5\nG8kPYXGmicwDrfson9R/Lz2dtbdv817duuoIMhBrmv/z58HbG1JTlcXGxx8XfI016TcGrevXB5MN\n/YQJE1i6dCl79+7lhx9+IC4upzEKCQnhwIEDHDt2jKlTpzJ16lRThyyazJ4NR4/Cn39mv2RjAz/8\nAP3blEdMa8X4mAv8dvG+iiK1wdIbN3ixWjWZ18ZAbt2CPn3g/n3F2C9erHwGJdrHJB/9w4cP8fT0\nJCwsDIDx48fz3HPP0a9fv+w+vr6+ZGZmMnHiRACaNGlCVFTU00KKq4/+3+zdCyNHwpkz8K9Sdykp\nyknEw0kPsJsbwY62rvSqK+ud5kZyZiZNgoPZ3bo1rvb2asvRDAkJSv6asDDo2BH27YNy5dRWJdEH\ni/voQ0NDcXZ2zm63aNGCo0eP5ugTEhJCixYtstvVq1fP1dBLUKy5lxfMnJnj5bJllYIOLo8cyPzU\nmX5h4YTcTVRJpHWz+MYNulWqJI28AaSnKymGw8LAyUn5rEkjX7SweLpEIcRT3zZ51ev08fHB0dER\nAAcHB9zc3PD09AT+8aNZa/ubb74xj96vvoKWLQl0dgYXl+z3T58O5JNPYPJkT2582ZTufVaytLUT\nPn37mKz/3z5Ka5lPY/QnZ2byRZky7HNzsyp9+upXY/wePTwZPRp27QqkUiXYudOT6tW1o1/r82+s\n3pUrVwJk28sCESbw4MED4ebmlt1+7733xPbt23P0+e6778SiRYuy240bN871XiZKUZ2AgADz3WzV\nKiHatxciI+Opt06fFqJSJSHoc0PY+x8Wl5NTTB7OrNpVIEv/vOhoMTQiQl0xRqDm/H/8sRAgRLly\nQgQHG3ePovL50Sr62E6Traubm5vYv3+/uHLlimjevLmIjY3N8X5wcLDo2rWriIuLE2vWrBH9+vUz\nWmyxQacTomtXIZYuzfXtgAAhSpUSgoExosqfR8WN1NTC1WeFPEhPF9UPHhTnk5LUlqIZli1TjLyt\nrRDbtqmtRmIshWLoAwMDhbOzs2jSpIn49ttvhRBCLFmyRCxZsiS7z4cffigcHR1F27ZtxdmzZ40W\nW6w4eVKIGjWEiIvL9e3ffxfCxkYIXosWdXeFiNhHjwpZoHUx+8oV8UYeny3J0/j7C2Fnpxj6f/1T\nlWiQQjH05kLrht4ij3/jxgnx9tt5vv3dd0KATtiMihKN/goRd9LSjBpG64+uG3fvFlUPHhSRyclq\nSzGKwp7/0FDFVQNCzJhh+v20/vnRun59bKc8GWvNzJkDW7dCaGiub48bBx99ZINY1oiY36vR+cgp\n7jxSv9h4YfO/Gzd4q3ZtmpQtq7YUq+fyZejXD5KTlTN6c+eqrUhSGMhcN9bOqlXKqamjR3Ot2SaE\nUqR59WpB2THR1B0ay0EPN2qWKh5VIY48fMgrZ89y3sMDe5nuIF/i4qBLF7h0CXr1UrJRFpOPSZFG\n5ropCgwbpuTD+fnnXN+2sVFS5Tz3nA0pixsRt7EG3Y+d5FYxWNnrhGBcZCQLGjeWRr4AkpOV066X\nLikVojZulEa+OCFX9GYiMDAwO+bV7Jw8qZxNv3ABKlXKtUtiIjz7LBw7BrU/iKb8gNv85d6GBmXK\nFHh7i2q3ID/dvMmKmzf59OFDnn32WbXlZOPl5UV8fLze/VNTUymjx/8nU4iNVYx9iRJK4RBzfi8W\nhn5LohX9FStWZN++fU+9ro/ttPiBKYkZcHNTHKvz5sGCBbl2sbdXqgB16QJRCx1pVsKO7oSxu00b\nmhfBY463Hj1i5pUr/OnqSvzx42rLyUF8fDzHjh3Tu39CQgIV/pXywpwIAVevKobezk4pbmPurQxL\n6i8MtKK/ffv2Rl8rV/Ra4cYNcHVVluyNGuXZLSpKMfZ37kCnWTeJ7nUFf1dX2mrgg6wvQghePHMG\nN3t75uYzF2rRvn17gwy9Jbl5E65fV1x8zZrlSKEk0Rh5fa6kj74oUacOTJwIH32Ub7cmTZQEmOXL\nw9FZtel4pCl9Tp9m/4MHhSTU8iy/dYvraWn8X8OGakuxamJjFSMPytpAGvniizT0ZuLf+TIsxpQp\ncPiw8pMP7drBpk2KP3bL1Oq8fK4Fr0RE4Bcbm2v/QtFuJq6kpPDR5cusdnGh1OMoJC3pz42EhASz\n3/P+ffj7ccnhBg3AkmVzLaG/MNG6fn2Qhl5LlCun+OknTVLK/+RD795KUWeAH0dVZuLN1oyLjGTh\n1auadZGl63S8ef48H9SvT6vy5dWWY7XExyvx8qA8CNaoYbmxfvnll+wU5PmRkpJCkyZNDNqklpgP\naejNRKFFrbz2GmRmwvr1BXYdNuyfvdtZ/63AVyltWXvnDqMuXuTRv74otBJxMyUqCns7OybXr5/j\nda3ozwtzbgQmJUFkpLIJW6MG1K5ttls/hRCChQsXMmXKlAL7li1blkGDBvHjjz9aTpCRaGEj1lSk\nodcatrawaJHiq09JKbD7++/DhAlKzvFRA0qz2M6d248e0ef0ae6npxeCYPPw882b7L5/n7UtWmAn\nyx7lSmqqEiev0ymumvr1LVshatu2bVStWjVHvYn8GDNmDN9++y0ZGRmWEyXJFWnozUSh+omfeQba\nt4fvvy/ZBdqRAAAgAElEQVSwq42N8r3w6qtKFaFBfe34xr4Vbezt6XjiBGeSkqzex3344UOmXb7M\nllatcCjxdESwtesvCHP4iB89gosXISMDKlYER8fcjXxcXByLFi3C1dWVatWqMW7cOAC2bt1Kr169\ncHV1ZcmSJSQnJ2dfM3nyZJydnalcuTIeHh7EPt7r+euvv+jcuXO2/t9++43GjRtnt3fs2EHt2rW5\ne/cuoORO1+l0REREmPz3mhPpo5dYL599Bl98AXpE09jawurVyoGqW7eg3/M2zHBwYmbDhjx78iR7\n7ltvHdqLycm8HBHBSmfnInMewMYm50/FihWeek3fH1CM+6VLirEvX16JvMolWwYAI0eO5OTJk/j5\n+XHjxg2GDBlCQEAA48aN48MPP2TTpk1s3LiRhQsXAuDv709YWBiHDh3i3r17LF26NPtw0YULF2jS\npEn2vQcPHkyXLl0YP348d+/e5a233uLnn3+matWq2X2cnJw4e/asZSZWkjeWyKZmDFYkRTuMGCHE\n9Ol6d3/wQIjWrZWshZ06CZGUJMSphATR9OhRMfrCBZGUS6ETNfk7JUU0PHJE/HTjhtpSDKJdu3b5\nvq940M3zk5EhxNmzSkbK8HAh8stW/eDBA1GuXDkR90Tq6/Hjx4tp06Zlt/fs2SNat24thBBiy5Yt\nom3btiI0NPSp+7Vo0UL4+/s/NUaDBg2Eq6ureOedd566ZvDgweLzzz/Pd34kuZPX50of2ylX9Frm\nk09gyRLlVIweVKoEO3ZAw4ZKjrTBg6FFGXtC27UjISMD92PHCLWSqIiolBSeOXmSyfXqMdKSO4oq\nYC4zn5mpbLwmJSnpkJo2Vf6bF4cOHaJhw4Y5VtgAhw8fpl27dtntdu3aER4eTkJCAv369WPEiBEM\nHz6cxo0b88UXX6B7vJHfsGFDrmcF6j+mUqVKvPzyy5w5cybXTdpr167RUJ5/KHSkoTcTqviJGzSA\nN9+ETz/V+5I6dWDnTmWzbvt2JVXt8aCDrGnRgjmNGtEvPJxZ0dGkFRC+aUmOJyTQ4+RJpjdowPh6\n9QrsXxx99DqdYuQTEhTj3rw5lC6d/zVdunTh77//zvaZZ9G1a9ccJy6PHTuGq6srFSpUwM7OjrFj\nxxIeHo6/vz8//vgjO3fuBMDFxYWoqKgc+k+ePMmKFSv473//m+3//zeRkZG4uLgY/PdaEumjl1g/\n06YpoZZRUXpf4uysnJ61t4d165QQzMxMGFyjBmHt23MiIYE2x47xlwq++w137tDn9Gm+b9qUt+vU\nKfTxtYBOp8TJx8crh+KaNQN9cnI5ODjQq1cvJk+eTGRkJKmpqRw+fJj+/fuzbt069u3bR2RkJF98\n8QUvvfQSoHyJhoeHk5mZib29Pba2ttjb2wNK8rbg4ODs+6empvL6668zf/58li9fzvXr13OEU0ZH\nR2NjY6N3lI7EjJjbj2QsViRFe8yeLcRrrxl82YEDQpQvrzgCRo4UIjPzn/e2xMaKhkeOiCEREYVS\nuSkpI0OMvXhRND5yRByPj7f4eJakIB+9Keh0QkRGKj75EyeUfRZDiIuLEwsXLhTNmzcX1apVExMm\nTBA6nU5s2rRJ/Oc//xEtW7YU33//vUh6fON169aJ5s2bC3t7e+Hu7i7mzp2b436urq4i4nFB9okT\nJ4q+fftmv3fq1ClRpUoVERkZKYQQ4v333xcLFiww4a8v3pjio5dJzYoCCQmKg3bXLmjTxqBLAwOh\nb18lJP+dd2Dx4n+iOZIyM/kqJobvrl9nYLVqzGzYUK+0x4ay59493r10iY4VKvBDs2a5hlBqCUsl\nNRMCoqPh7l0lqqZ5cyXKRk3WrFnDgQMHWLJkSb79UlNTadmyJSdPniwWB5QsgSpJzRISEujfvz8N\nGjRgwIABJCYm5trP0dGR1q1b4+7ujoeHh7HDWT2q+okrVIDp02HGDIMv9fSEuXMDKV1a2dedMEEx\nKADl7ez42NGRCx4eVC1ZkjbHjjHk7FmCHjwwy5dycHw8/U6f5t1Ll/jGyYk1LVoYZeSLg48+K91w\nlpFv2lR9Iw/w2muv8cUXXxTYr0yZMkRFRVmlkZc++nz48ccfadCgAZcuXaJevXp5fqPb2NgQGBhI\nWFgYISEhRguVFMDo0XDqFBgxx+3awebNSsUhX1+YOvUfYw9QtWRJ5jduzJVOnehasSKjL16kZWgo\nMy5f5mh8PDoDjH7so0f8fPMmXU+c4NWICJ6vWpWIDh144YlIEMk/CKEkKIuNVZ62nJxkJkqJYRjt\nunn55ZeZOXMmbm5unDhxgvnz57Nhw4an+jVq1Ihjx449FdL1lBDpujGdxYuV6iP+/kZdvn07DByo\npEuYPBm+/DL305VCCI7Ex7P17l22373LrUePcLO3x7V8eVqUK0elEiUob2dHaVtb4jMyuJ6Wxvnk\nZI7GxxOZkkLPypV5o1Yt+lapQsm8TvZoGHO6bv7trsky8nkUGZMUcUxx3RjtDA0NDcXZ2RkAZ2fn\nPFfrNjY2eHl50ahRI0aMGMGLL76Y5z19fHxwdHQElAgBNze37IRVWY/nsp1Pu2lTPMPDITiYwMd5\ncAy53t4efv/dk1dfhUWLAomMBD8/T2xtc/a3sbHhUVgYfYDPPT25npbGr7t2cTklhSNt2pCQmcnV\no0dJF4KGnTpRu1QpbE+dYni5crz1/POUsbUlMDCQQ2rPlwXbWe6ALFeFMW0hIC6uAvfugY1NAvXq\nQaVKxt9PtrXdTk1NBZTP2sqVKwGy7WWB5LdT27NnT9GqVaunfrZs2SLq168vUlJShBBCJCUliQYN\nGuR6jxuPTzWePXtWNGnSRNy8edPonWNrJiAgQG0JCosXC/H88wZd8qR2f38hSpdWonF8fJTTl9aM\n1cz9YwyNuonPJcpIpxMiKkqJrjl+XAhrDkTKTb+W0Ip+i52M3bNnD+Hh4U/9vPjii3To0IFz584B\ncO7cOTp06JDrPWo/PtXo4uLCiy++yLZt2/T7BpIYx4gREBGhHH01kr59Fe9PuXKwcqWSGVlDiS41\nj06nHIu4d0/ZeJUlACWmYrSDtGPHjixfvpyUlBSWL19Op06dnuqTnJyc/QgSGxvLrl276NOnj/Fq\nrRiryYleurQSgTNrlt6X5Kb9P/9RojUrVIDffoOXX9YrK7IqWM3cG8m/I1GyEpQ9eKAU827WTDnY\nZs1YYySNIWhdvz4Ybejfffddrl69SvPmzbl+/TrvvPMOADdu3KBfv34A3Lp1i+7du+Pm5saQIUOY\nMmUK9Z8oGiGxAMOHw7lzcOSISbfp1g3++gsqV4atW5WqVVac6FLzpKcrqYaz0ho4O1u/kZdoA3lg\nykwEBgZa18ryf/+DP/5QluUFUJD2iAjo0weuXYOWLZVcOXqkoCk0rG3uDY26SUhIoFSpCly8CGlp\nykNZs2YF566xFhISEjS9KtaKflUOTEmsHB8fuHDB5FU9KMb98GFo0UIx+l26gEwpbj5SU+H8ecXI\nly2rrOS1YuQl2kAaejNhTStKQDn99NFHSjHxAtBHe/36cOAAdO0KMTGKWycoyAw6zYDVzb0B3L8P\nMTEVSE9X9kOaN88/1bC18euvv/Lll18ybNgwduzYYdQ9Dh48qFeBcUuhhdW8qUhDX5Tx8YHjx5UT\ns2agShXYswf691cMVM+e8PPPZrl1sUMIuH1bia7R6aBqVSWtgZbS/ERGRnL//n1mz57N119/zeuv\nv86dO3cMuseiRYvw9fXl4cOHFlIpAWnozYZV5lspU0Y54vr55/l2M0R72bKK63/yZGXz8K23lN/V\nrPdslXOfD1l5a2JilHa1agk4OuZd/s9aiYiIYOHChSQkJFCtWjUaN26cI22xPkyePJm+fftaSKF+\nFIdcNxpaP0iMYvRoaNxYidlr2tQst7Szg6++Unz2774LX3+tBPmsXy+P5xdEerqSSz4hQUlp4Oio\neNlySzWhFpcvX2bZsmV5vt+pUyf69+9P3759s901Qghu3rz5VFSdq6srq1atom3btnneT8tBGFpB\nRt0UB2bNguvXIZ9/vMYSFASDBkFcnOJf3rABXF3NPoymyCs6IjFRcdWkp0MHf/NYdvGJYf9mjh8/\nTkBAABkZGbRq1QqdTsfmzZtZvny5STq2b9/OTz/9xObNm3O8vnnzZnr27JldrCQ3Vq1aRWBgICtW\nrDBJQ1FHlVw3Eg0xbpyymv/kE7PHRT7zjJIws39/CA+Hjh3hhx+UUH6JghBK5smYGOX38uUhbZqg\nVKnC1xIbG0vbtm3x9fXlo48+QgjBpEmTTLrngwcPWLFiBb/++utT7w0YMKDA6+UCz/JIQ28mrC2W\nOwdVqyqW96uvFD/LE5iqvVEjJePCe+/BihVKFob9+xWDXxg506157jMzlRTD9+4p7Ro1lO/af/vj\nCzOOu0+fPkybNo1hw4YBcOTIkafSl+jrugHFSM+ZM4effvoJe3t7/v77b4OLf9uo7LfSShy9KUhD\nX1yYPFnxqUyfDtWrm/325crB8uXKCn/MGFi1CkJDFb99cXXlJCTAlSvw6JFi2Bs2VL5z1SYgIICP\nPvoIgNWrVzNq1Ch27tyZnZ6kcePGzJ8/X697+fr6MmDAANLS0ggKCkIIkcPQ+/n50bt3b8rn840v\nV/SWR2P7/NaLta4os6lbF155Bb777qm3zKndx0dx5Tg7K4eq2rWDzz6zbFSOtc29EMop4gsXFCNf\nrhy4uORt5AtzNZmcnIyDgwOVHu+a16pVi9u3b1OzZk2D73Xw4EEmTZqEp6cnderU4dlnn8XJySlH\nnzlz5hCVT+H6b775hiVLlrBnzx5mzJhBfHy8wTpMpaiv5kFuxhYvoqIUJ3p0tMWTqCQmwvvvK+UJ\nAdq3VzJhtmxp0WFV58wZeO659mzZomya1aoFdepoL3RSYn3IFAhWgCZiuZs0gWefVXws/8IS2u3t\n4ccflQNWDRrAsWPQti3Mn6+scs2JNcx9SoriFXN3V/6+UqWUKKQn/fG5ofU4bqnf+pGGvrgxdaqy\nIVtIJ5x69lSicUaNUgzg9OnQurXyBVAUEAL+/FPZh5g/X9l8rVBBeXIpBh4BiUaQht5MWJufOE86\ndlSWmZs2Zb9kae0VKyrJNHfvVrIyXrigpDweOFD53VTUmvvwcHjuOejXT/GKtWoFhw4pqSLs7PS/\nj9Z9xFK/9SMNfXFk6lSl8nch74n06qUYx88/V8Iu/fyUle/bbyvnubRCVJQSrermpjyZVKqkRK6e\nOAGdO6utTiJ5GmnozYQ1+In1xttbKWF04ABQuNpLlYIPP1QKbLz9tvLasmXK9sE770BkpOH3LCz9\nFy8qZwSaN1c2lm1slLMDkZFK9KqxWSe17iOW+q0faeiLI7a2MGWKsqpXiTp1YOlSJb/9K68o/vul\nSxUj+uqrEBBQ6A8cuSIE7N0LL7ygaMs6pT98uOJ28vWFatXU1SiRFIQMryyupKQoGbX271eC3lXm\n/HlYuBB++eWffeLmzWHkSBg8WIncKUyuXIHVqxU9WWHgZcrA668rTyRPhIvnwNAKUxKJPqgSXrlh\nwwZatmyJnZ0dJ06cyLNfUFAQLi4uNG3aFF9fX2OHk5ibsmWVI6yLFqmtBFC+a5YvVwzsxx8rK/4L\nF+CDD5QTpZ07Kw8gp09bZqUvhJK2f+5c8PBQEn7OmqUY+bp14dNPlVw1y5blb+QlEqtEGMm5c+fE\nhQsXhKenpzh+/Hie/dzc3MT+/ftFdHS0aN68uYiNjc21nwlSrIKAgAC1JRhObKwQlSuLgE2b1Fby\nFOnpQmzeLMSrrwpRrpwQiilWfmrUUF5fuFCIvXuF2Lw5QOh0+t9bpxPi2jUhdu8WYsECIV58UYhq\n1XKOUbasEK+9JsSuXUJkZBimvV27dgb1j4+PN2wAK0PqLxzy+lzpYzuNznXjrMfjflbVmGeeeQaA\n3r17ExwcTL9+/YwdVmJOqlVT/CKbN8NLL6mtJgclSigZMfv3h6Qk8PdX4tX37IEbN+D335WfLMqX\nVzxRdesqUTAVKyoPLenpyk9yslLR6c4dZWWe20n72rWVUElvbyX+v1y5QvtzJXnw4MEDNmzYwJ07\nd5gxY4Ze11y6dIkzZ85w+vRpvL29882FX1ywaFKz0NDQHF8ILVq04OjRo3kaeh8fHxwdHQFwcHDA\nzc0tO0Y6K7LCWttZr1mLHr3b48bh6eVF4J49ULKk+npyaZcvDzVqBOLjAytWeHL+PKxYEcilS3Dr\nlidnz3oSHx9IRARERCjXQ+Dj/+berlgxkIYNoUsXT7p0gRIlAqldG5591jz6syI5smK082tXqFDB\noP7W1rakfgcHB3r37s3SpUtzZJnM7/rt27fj5ubGqFGjmDp1KmvXri0S85+amgoon7WVK1cCZNvL\ngsh3M7ZXr17cunXrqdfnzZuHt7c3AM8++yxfffVVrt+ae/fu5eeff2bdunUALFmyhOvXrzN37tyn\nhcjNWPXo3RuGDVN+NMqDB0oKnxs3lKyR8fHKfnPJkspPmTJQs6byU6eOZSNliuNmbEhICH/99RfT\npk0z+73//vtvVq5cySeffGLQdWfPnmXNmjV89tlnJo1/8OBBNm7cyDfffGPSfUzFYoVH9ph4Tr1D\nhw68//772e2IiIjsVKhFDWvOiV4QgV5eeH77rRJSYk017fQka+7d3JRDTFpD6/nQHz58yMcff0yX\nLl3UlpIDPz8/vdw9X331FVOmTMn1vUWLFhEcHEw5jfvxzBJHn9e3SVYq1KCgIKKjo9mzZw8dO3Y0\nx5ASc+LhAQ8fwpEjaiuRaBA/Pz969uxpsSdyY+67detWxo0bx9WrVwvse/fu3Tzfs4bi5ebAaB+9\nn58f48ePJy4ujn79+uHu7s6OHTu4ceMGo0aNwt/fH1DyTY8ePZr09HTGjx9PtSJ6ukSrq3kATy8v\npdzgt9+Cla3K9EHLcw/Wl2vFkApTsbGx2NvbY2NjQ1JS0lN99SkOnh8JCQmsX7+ekJAQTp8+TevW\nrQu8xs/Pj3nz5uHr60uPHj2YOXNmvv1Lly6d7/tFwaUsD0xJFOLjlbCV06fNXle2uGHNPnpzFwdf\nunQpb7/9NqtXryY6OvopP7o+xcGNZevWrdjZ2REUFESzZs0ICAhg5syZekUE/pvZs2fn6/+3luLl\nsji4FaBpH32W9mHDYPFimDdPbUkGoeW5h8L10ZuzOPjRo0fp2LEjiYmJeRqagoqDL1y4kJSUlFzf\ne/PNN/OMKrl69SotWrTAycmJmTNnMm3aNGrWrEkDPY5Qnzt3jtWrV2e39+/fnx3RAtC9e/cc7pqi\nsACVhl7yD++9B127wv/9nxKELrEc/9r0NsnEG2iEzFkcPDQ0lOTkZNLS0jh27BgpKSls3bqVF198\nUW89H3zwQb7v2+ZStcXGxobMzEwAbt++TaVKlXBwcOCFF17Qa0wXF5ccNXGnT5/OvHwWN2oXLzcH\n0tCbCS2vKLO1N22qbMyuXaskmdEImpx7FVeJ5ioOPm7cuOzfZ82ahY2NzVNGXp/i4Pmh0+lyff38\n+fOkpqYSFhaWfSDzzz//NGrjtDj46GX2SklOxo9XNmWLwIdb8jTmLA6exe+//86GDRvYuHEjGzZs\nyPFeQcXBC+LSpUts2rSJ2bNn58iptXv3bvz8/NDpdKSmprJt2zbq1q1r9Dh5YQ3Fy82CqfkXzIUV\nSTEKTea6eUwO7ZmZQjRrJsSBA6rpMRRrm3uZ68Z8LFq0SAQHB4v4+HgxdOhQi4wxZ84ci9zX3KiS\n60ZSRLG1hXffVSp7d+umthpJMSdro/js2bM0atTIImNMnDjRIve1JmR4peRp7t+HRo2Ukko1aqit\nRnNYc3ilVvnss8+YNGmS5k+omoIq+eglRZjKlWHQIPj5Z7WVSCQGnXKV5I409GZCUzVjnyBX7WPG\nwJIl8DiMzZrR8tyD9muWWlK/n58fc+fOZdCgQWzcuNEiY2h9/vVB+ugludOunZLqcccOpWCqRKIC\nL730Ei9ZWa0ELSJX9GZCk7Hcj8lT+5gxyklZK0fLcw/Wl+vGUKR+60caekneDB4MISFw+bLaSiQS\niQlIQ28mtOwnzlN72bLg4wNLlxamHIPR8tyD9n3EUr/1Iw29JH9Gj4YVK+BfSZ8kEom2kIbeTGjZ\nT5yv9qZNwd0dnjjabk1oee5B+z5iqd/6kYZeUjCjR8P//qe2ColEYiTS0JsJLfuJC9Tu7Q2XLsG5\nc4Wix1C0PPegfR+x1G/9SEMvKZiSJZVN2Z9+UluJRCIxAqMN/YYNG2jZsiV2dnY50oc+iaOjI61b\nt8bd3R0PDw9jh7N6tOwn1kv7W2/BL79AWprF9RiKlucetO8jlvqtH6MNvaurK35+ftlJ//PCxsaG\nwMBAwsLCCAkJMXY4ido4OYGrK2zerLYSSRHjwYMHLFu2jM8++8zoe0yZMqVQxr106RJ+fn5P5ce3\ndow29M7OzjRr1kyvvsUhK6WW/cR6ax81CvIpMacWWp570L6P2FT9Dg4O9O7dm4yMDKOuj4qK4uTJ\nk0aPm5SUpPc127dvp27dukyePJkvv/zS4DHVwuI+ehsbG7y8vBgwYABbt2619HASS/LSS3DqFJhQ\nMUhStEhOTmb16tWsW7eOr776SpVF3d9//61XUXBzMGnSJDw8PIiJiTFLfvyDBw8WSj78fJOa9erV\ni1u3bj31+rx58/D29tZrgEOHDlG7dm3OnTuHt7c3Hh4e1KpVK9e+Pj4+2VXfHRwccHNzy/a/Zq3a\nrLWd9Zq16DGk7enpqX//N96An34i8LnntKm/kNpZq9ws/29+7QoVKhjU35raCxYsYNSoUVSpUgUP\nDw9efvllGjZsaPD9EhMTSfvX/o++10dERODh4cHy5ctJSEgwWD8oNWMN1bt+/XrGjx9foN7Vq1cz\nduzYXN///vvvOXnyJOXKldNr/NTHhxYDAwNZuXIlQLa9LBBTy1t5enqK48eP69V30qRJ4n//+1+u\n75lBiqQwOHtWiFq1hHj0SG0lVouhpQS1ytWrV8Xzzz+f3b527ZrR97py5YqYNWuWwdetW7dObN68\nWXh5eYl9+/YVyrhbtmwRDx8+FOfOnSuwb0H3XrlypfDx8dFrXNVLCYo8HteSk5PJzMykQoUKxMbG\nsmvXruzSYEWNf6/mtYZB2l1clI3Z7dsVV44VoOW5B3KsRK2By5cvsyyfvZhOnTrRv39/QkNDqVix\nIv/73/+Ij4+nWrVq+Pj45Ojr6urKqlWraNu2bZ73S0hIYP369YSEhHD69Glat26tt9YhQ4Zw+fJl\nUlJSsle8+pI17uHDh/Ue18/Pj3nz5uHr60uPHj2YOXOmQWM+SV6209wYbej9/PwYP348cXFx9OvX\nD3d3d3bs2MGNGzcYNWoU/v7+3Lp1i4EDBwJQtWpVpkyZQv369c0mXqISWZuyVmLoJfpz/PhxAgIC\nyMjIoFWrVuh0OjZv3szy5cuz+zRu3Jj58+cXeK+LFy9y5swZli1bRoUKFejevTtdu3aladOm2X3m\nzp1bYNBGhQoV+Oijj/joo4/y7LN161bs7OwICgqiWbNmBAQEMHPmTJydnWncuDGHDx/W46/Pfdyx\nY8c+9UWb13jmzo9vY2NjtnvlO44orK+UApA1YzVESgrUq6dszNarp7Yaq8Oaa8bu3LmTUqVK4evr\ni5+fH0IInJyciDJig93X15fDhw+zbt06AF577TW6dOnC2LFjzar56tWrPHr0CCcnJ9zd3QkICODg\nwYN4eXnlW0N24cKFpKSk5Prem2++mad/29jxAM6dO8fq1auz2wcPHqRbt27Z7e7du9O3b9/s9sqV\nK9m/fz8rVqzI975gWs1YWWFKYjhly8Irr8Dq1TB9utpqNImNmUJChYEuqz59+jBt2jSGDRsGwJEj\nR+jQoUOOPvq6blq2bMmBAweyX7e1tTWoeLetbcFBfzY2NmQ+Lmd5+/ZtKlWqhIODAy/oUfXsgw8+\nMHh8U8YDcHFxyfE0NHv2bD755JM8+xfWil4aejOhZT+xUdqHD4fXX4dp06CQPqx5ocW5/7eBLmwf\nfUBAQLabZPXq1YwaNYqdO3fSp08fQH/XTdeuXZk9e3a2/qtXr/Kf//wnRx8/Pz969+5N+fLln7pe\np9Pppff8+fOkpqYSFhaWfUDzzz//zLEyNoas8Z+cf0uNlxuF5cWQuW4kxuHhoeTAOXRIbSUSA0hO\nTsbBwYFKlSoBUKtWLW7fvk3NmjUNvlfp0qWZM2cOCxYsYNGiRUyePPmpePY5c+bk6Ra6dOkSmzZt\neuqU6eTJk3P02717N35+fuh0OlJTU9m2bRt169Y1WG9e48+fPz/H+JYa70m++eYblixZwp49e5gx\nYwbx8fFmHyMbveJ6CgErkiLRl4ULhRg+XG0VVkdxCa80lUWLFong4GARHx8vhg4dKoQQIjIyUnh5\neak2vrlZsGCB2e6lenilpJgybJgSbvndd2Bvr7YaicbICrU+e/Zs9inTwj7l+uT45qagfYLCQrpu\nzISW860Yrb1WLejWDTZuNKseQ9Hy3EPxznUjhMDPz4/p06dz9OhRVTLcrl+/nhkzZhT6uIWJNPQS\n0xg+XKkpK5EYwbZt2xg3bhxXr14lOjqav/76i6tXrxIQEFAo42/dupXRo0dz9erVQhlPLaShNxNa\ni/r4NyZpf+EFpfKUionOtDz3oP186Mbq9/PzY+7cuQwaNIg//viDIUOG4OrqatQpV1PG9/HxYaPK\nT6WWRh6YkpjOxIlQoQLMnau2EqvAmg9MSbSLKQem5IreTGjZT2yy9uHDYdUqeHzQpLDR8txD8fbR\nWwNa168P0tBLTKdNG6heHfbtU1uJRCLJBWnozYSW/cRm0e7jo6zqVUDLcw/F10dvLWhdvz5IQy8x\nD0OGKKmLi8FjsESiNaShNxNa9hObRXv16tC9O2zaZPq9DETLcw/a9xFL/daPNPQS8/HGG/DLL2qr\nkDljR7YAAAaNSURBVEgkTyDDKyXmIzUV6tSB06eLdZ56GV4psQQyH73EOihTBgYNgrVrwUpyfKhB\nxYoVad++vdoyJEWMihUrGn2tXNGbCS3mRM/CrNqDgmDMGAgPL7Q89Vqee5D61Ubr+i16YOr999/H\nxcWFtm3bMnHixDxLdgUFBeHi4kLTpk3x9fU1djir5+TJk2pLMBqzau/WDZKSoBDnQ8tzD1K/2mhd\nvz4Ybeh79+5NREQEx44dIykpibVr1+bab8KECSxdupS9e/fyww8/EBcXZ7RYa+bBgwdqSzAas2q3\ntVUqTxXipqyW5x6kfrXRun59MNrQ9+rVC1tbW2xtbXnuuefYv3//U30ePnwIwDPPPEPDhg3p3bs3\nwcHBxquVaINhw2DdOsjIUFuJRCLBTOGVy5Ytw9vb+6nXQ0NDcXZ2zm63aNGCo0ePmmNIqyM6Olpt\nCUZjdu3NmkHDhrB3r3nvmwdannuQ+tVG6/r1Id/N2F69enHr1q2nXp83b162YZ8zZw6nT5/ONc3n\n3r17+fnnn1m3bh0AS5Ys4fr168zNJcthYVVDl0gkkqKGSeGVe/bsyffilStXsmvXLv76669c3+/Q\noQPvv/9+djsiIiK70ryhQiUSiURiHEa7bnbu3MkXX3zB1q1bKVOmTK59sirNBwUFER0dzZ49e+jY\nsaOxQ0okEonECIyOo2/atCmPHj2iSpUqAHTu3JnFixdz48YNRo0ahb+/PwD79+/nnXfeIT09nfHj\nxzN+/HjzqZdIJBJJgah+YCooKIjRo0eTkZHB+PHjGTdunJpyDGLEiBH4+/tTo0YNwsPD1ZZjMDEx\nMbzxxhvcuXOH6tWr8/bbb/Pf//5XbVl6kZqaSo8ePUhLS6NMmTIMHjyYSZMmqS3LYDIzM2nfvj31\n6tVj27ZtassxCEdHRypWrIidnR0lS5YkJCREbUkGkZSUxJgxYzhy5AglSpRg+fLldOrUSW1ZenHh\nwgWGDBmS3b58+TJz587NcyGtuqF3d3fn22+/pWHDhjz33HMcPHiQatWqqSlJbw4cOIC9vT1vvPGG\nJg39rVu3uHXrFm5ubsTFxeHh4cGpU6c0k587OTmZcuXKkZaWRrt27di8eTNOTk5qyzKIRYsWcfz4\ncRISEti6davacgyiUaNGHD9+PPupXmtMnTqVsmXLMmPGDEqUKEFSUlK2u1lL6HQ66tatS0hICPXr\n18+1j6rZK7UeZ9+9e3cqV66stgyjqVWrFm5ubgBUq1aNli1baioZV7ly5QBITEwkIyOD0qVLq6zI\nMK5du8aff/7JW2+9pdlgBK3qBiUqcPr06ZQpU4YSJUpo0siD8nc0adIkTyMPKhv64hRnb+1ERkYS\nERGBh4eH2lL0RqfT0aZNG2rWrMl7772X7wfdGpk0aRJffPEFtrbazBZuY2ODl5cXAwYM0NzTyLVr\n10hNTeXdd9+lY8eOLFiwgNTUVLVlGcX69esLdLlq8xMmMSsJCQkMHjyYr7/+mvLly6stR29sbW05\ndeoUkZGRLF68mLCwMLUl6c327dupUaMG7u7uml0VHzp0iFOnTjF//nwmT56c65kbayU1NZWLFy8y\naNAgAgMDiYiI4Pfff1dblsE8evSIbdu28corr+TbT1VD36FDB86fP5/djoiI0MxmSFEhPT2dQYMG\nMWzYMPr376+2HKNwdHSkb9++mnL7HT58mK1bt9KoUSOGDh3Kvn37eOONN9SWZRC1a9cGwMXFhRdf\nfFFTm8lOTk40b94cb29vypYty9ChQ9mxY4fasgxmx44dtGvXjurVq+fbT1VDL+Ps1UUIwciRI2nV\nqhUTJ05UW45BxMXFZSejunv3Lrt379bUF9W8efOIiYnhypUrrF+/Hi8vL1avXq22LL1JTk7OLsEX\nGxvLrl278jwMaa00bdqU4OBgdDod/v7+9OzZU21JBrNu3TqGDh1acEehMoGBgcLZ2Vk0adJEfPvt\nt2rLMYghQ4aI2rVri1KlSol69eqJ5cuXqy3JIA4cOCBsbGxEmzZthJubm3BzcxM7duxQW5ZenD59\nWri7u4vWrVuL3r17i1WrVqktyWgCAwOFt7e32jIM4vLly6JNmzaiTZs2wsvLS/z8889qSzKYCxcu\niI4dO4o2bdqIKVOmiMTERLUlGURiYqKoWrWqiI+PL7Cv6uGVEolEIrEscjNWIpFIijjS0EskEkkR\nRxp6iUQiKeJIQy+RSCRFHGnoJRKJpIgjDb1EIpEUcf4fHp45JFSi2CAAAAAASUVORK5CYII=\n"
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 23
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "markdown",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "source": [
MinRK
rebuild example notebooks...
r7739 "This shows easily how a Taylor series is useless beyond its convergence radius, illustrated by \n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "a simple function that has singularities on the real axis:"
]
Brian Granger
Updating example notebooks to v3 format.
r6035 },
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 {
Brian Granger
Updating example notebooks to v3 format.
r6035 "cell_type": "code",
"collapsed": false,
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "input": [
MinRK
rebuild example notebooks...
r7739 "# For an expression made from elementary functions, we must first make it into\n",
"# a callable function, the simplest way is to use the Python lambda construct.\n",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "plot_taylor_approximations(lambda x: 1/cos(x), 0, [2,4,6], (0, 2*pi), (-5,5))"
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
"language": "python",
MinRK
rebuild example notebooks...
r7739 "metadata": {},
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "outputs": [
{
Brian Granger
Updating example notebooks to v3 format.
r6035 "output_type": "display_data",
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAADzCAYAAACfSk39AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlcVFX/xz8DiIggqCioKIvigqjgnqUiueVGai5YLtli\nTztauZZZLlm5PWRPPuaSmfFzw9wVH5lMTQSXNDUVN1ARQQQGYYCZOb8/joOgA3PvzJ259+B5v17z\nulzm3nM+Xg/fOfM5y1dFCCHgcDgcDnM4yC2Aw+FwOJbBAziHw+EwCg/gHA6Hwyg8gHM4HA6j8ADO\n4XA4jOJk6wpUKpWtq+BwOJwqiblJgnbpgRNCmH2NHz/eqvsXLiQACKZMqfia+fPpNdOmCS/3QHY2\nOiQn21y/TV6XLoHUqwdy5Aib+kW8lKD/1Vdp+1q1quJrXnmFXrN2rbK0s/7srXkJgVsoNubuXXqs\nX1/acjdnZmJEvXrSFmoP8vOBYcOAOXOAbt3kVsN5iLF9Gtsrhw14ADeDv7+/VffbIoDrCcHWzEy8\nJCCAW6tfUggBXnsN6NgReOstQbcoSr8FsKLfVABnRXtFsK5fCDb3wFknPDzcqvttEcAP5eSgUfXq\naFqjhtlrrdUvKYsWAVeuAIcPAwLHRhSl3wJY0W8qgLOivSJY1y8EHsBtjC0COJP2ycGDwLffAseP\nAy4ucqvhPAa3UNiEWyg25s4devT2lqY8PSHYkpUlyD5RDKmpwMsvAxs2AE2ayK2GYwJj+0xPl1cH\nRxw8gJvBmq9hxcU0gDs4AA0aSKPnSG4ufJydEeTqKuh62b9GPngAREYCH30ERESIvl12/VbCin7j\n52pa2qPfsaK9IljXLwQewG3IrVt03K5RI8BJIrNqE0v2icEAjBsHtGsHTJ4stxpOJdSrB1SvDmRn\n089cDhvwAG4GtVpt8b2pqfQo1DUwN/VTRwg2ZWZipIgAbo1+q/n8c/oVZMUKwYOWjyOrfglQgn4h\nU4pVKqBxY/qzsReuBO3WwLp+IfAAbkOMAdz4h1ERQmPbgfv34e/iItg+kZXYWGDdOiAujnbtOLJj\nrp0ZOxrGdstRPnwWihms8dGMPRmpxu1+vnMHr4gcDZXFB0xKAt57DzhwwOrpN6z7mCzpf7wHzpJ2\nU7CuXwi8B25DhPbAhaDR6bArOxujlO5/37oFDB0KrFxJvW8OM/AeOHvwAG4Ge3rglbEtKwvdPTxQ\nz9lZ1H129QELC4EXXwTeeYceJYB1H5Ml/Y8HcJa0m4J1/ULgAdyGSGmh/JyRIdo+sSsGAzB+PNCi\nBTBtmtxqOBbwuIXCUT7cAzeDNT6aVBbK7aIiJGk02BYSIvpeu/mAU6fSGSfx8RbPODEF6z4mS/of\n74GzpN0UrOsXAg/gNiI3F8jLA1xdgTp1rCsr9u5dvOjlBVdHR2nESc333wM7dgBHj/IZJwxTtgdO\niKSfwxwbwS0UM1jqoxm/hjZubN0fAiEEP925g7EW2ic29wF37ADmzgV277b+k8oErPuYLOl3cwNq\n1wa0WiAriy3tpmBdvxCsDuB6vR5hYWEYPHiwFHqqDJYMYJpacJGk0UCj1yPc01MaYVKSnAxMnAhs\n2wYEBsqthlMBAnMDAOAzUVjD6gC+bNkyBAcHV9nUaZb6aNev06OQAF7Zo/sxPR2vN2gABwufr818\nwOvX6R4nK1cCnTvbpg6w72MqSb+QJuTnR4/XrilLuyWwrl8IVgXwmzdvYvfu3Xj99dcFpwB6Wrh4\nkR6bN7e8jHy9HpsyM/Gqj480oqTi/n1gwADgk08kmy7IUQZBQfR46ZK8OjjCsCqAR0dH45tvvoGD\nQ9W10i310Yx/AC1aWF537N276OnpiQZWDAxK7gMa53r37Qt88IG0ZZuAdR+TNf3G9nrpEnvaH4d1\n/UKweBbKzp07Ub9+fYSFhZl9UBMmTChNb+Tp6YnQ0NDSrzfGe5V6fvr0aYvuv3iRnufkqKFWV379\n1asA8OT7K2/fxtBbt6DOyrK7fpPnOh3UvXsDLi4IX7zY+vLsrV+GcyXop3vSC7u+oICeG9uv3M/v\naTpXq9VYu3YtABHp4IiFTJ8+nfj6+hJ/f3/i4+NDXF1dydixY5+4zooqmEWrJUSlIsTBgZCiIvPX\nf/UVIQAhn3zy6Hd/aTTE9+hRojMYbCdUDAYDIa++Ski/fsL+URzFMH48bV9r1pi/Nj2dXlunjq1V\nccwhJHZa7H3Mnz8faWlpuHbtGmJjYxEREYF169ZZWlyVIiWFjvwHBADO4la+l/Jjejom+vjAUSmD\nw1OnAufPA1u2WP6P4igeb2/A3Z3uC56VJbcajjkkM6+r6iwU41ccMVjrf2t0OvySkYHXJEjjY4n+\nJ/jmG2DnTmDXLqBmTevLE4Ek+mWENf0q1aOB99hYtaxarIW1Z28JkgTwnj17Yvv27VIUVSWwdgbK\nTxkZ6FW7NpooIfnv2rXA8uXA/v1A3bpyq+HYAWPHg++Jonz4UnozGAcbxGBND9xACGJu3sSP1kxf\nKYMl+kv57Tdg+nRArQZ8fSXRIxar9CsAFvUbOx4ODuFyyrAaFp+9WHgAtwHGHrjYGEwIsC87GzUd\nHfGch4f0wsSwbx/wxht0ibxEHyYceRC7RMP4321sxxzlUnUncEuEWB+NEODCBfqz0LhXdvhg2a1b\neN/XV7IxBYt8wIQEYOxYukS+Y0dJdFgK6z6mkvQLbVLGdpucrLaZFnugpGdvK3gAl5jUVLpQ0csL\nEDsGea9mAU7n52O0lWnIrOLIEWDkSGDjRqBbN/l0cGQjOBhwcqIeOM9Qr2x4ADeDWB/t1Cl6DAsT\nvwvhSf+beLNBA7g4SPffIkr/8eM0HdovvwAK8Q9Z9zFZ1F+9Og3iQDjOnJFbjeWw+OzFwgO4xDxc\neIewMJE3ehTjnwZ38a+GDSXXJIjTp4HBg4HVq+kyec5TjbH9GtszR5nwAG4GsT6asQceGiqyouG3\n0CK9vlX7nphCkP5z54AXXqCJGQYNkrR+a2Hdx2RVP22/6tL2zCKsPnsx8AAuMWUtFKFoHXTAkNvo\nfE2C9PViOXMG6NMHWLQIGD7c/vVzFImx/bIcwJ8GeAA3gxgf7d49OvDj6vpoW04hHPO+DSTVhmdB\nDfECzVCp/pMnqV2yZAkwZozkdUsB6z4mq/ppDzwcZ88COp3caiyD1WcvBh7AJcToF7ZtCwhNX1mo\n1+Ow901ggwSp68WQlPTINhk1yr51cxSPhwfdy6eoCPjnH7nVcCqCB3AziPHRkpLosX174eWvuXMH\nvg/cgWtuohdcCMGk/j//BAYOBH78ERg2TPpKJYR1H1MJ+i1tV40bqwHQyUksooRnb2t4AJeQw4fp\n8dlnhV1fZDDg67Q0RKTbsfd96BBNhbZuHZ11wnlqEDutNSSEHo8ckV4LRxp4ADeDUB/NYHjU0J97\nTljZK9PT0drVFX4PbLdsvpz+gwfpQOWGDUD//jarU0pY9zFZ1j9hQjiARx0T1mD52QuFB3CJOH8e\nyMkBGjcWlsj4gV6PeTduYG5AgO3FAUBcHDB6NLB5M9C7t33q5DBNaCgdkL90Cbh7V241HFPwAG4G\noT6asfct1D6JuXUL3T08EObubpkwgajVamDVKuCdd4C9e4GePW1an9Sw7mOyrP/IETW6dKE/Hz0q\nrxZLYPnZC4UHcIkwfs0UYp/k6HRYlJaGL2zd+yYE+PVXYO5cuiWsmNFVDgeP2jOrNkpVh28nawYh\nPhohdGwQEBbAF6WlYXDdumjp6mqdOHOiPv4Y4UeO0L++Ro1sV5cNYd3HZFl/eHg4iovpz8b2zRIs\nP3uh8AAuARcv0l0IvbwejdxXxM2iInx/6xZO2HKbVp0OeP11al4eOgTUqWO7ujhVmmefpSlQk5Np\njkwvL7kVccrCLRQzCPHR9u6lx379zC/gmXb1Kt5q2BD+tkqXlp9PdxTMyADi46FmeTs5sO9jsqxf\nrVajZk2gRw/6hS4+Xm5F4mD52QuFB3AJ2LOHHs3NzPszNxcJ9+9jup+fbYTcvk0HKevXp+nQ7JyA\nmFM1MbZrYzvnKAcewM1gzkcrKAB+/50ukujXr+LrDITgg5QUfBUYCLcKuulWrcQ8cwbo2hV46SW6\nwtLZGQD7PiDXbz2Wtiuj9hdeoOf79tH1DqyghGdva3gAtxK1mu4X0aEDUK9exdf9nJEBFYCXvb2f\neM/q7Gn79tG53V9/TZMQS5SOjVO1sLRZtGpF1zfcvct3J1QaPICbwZyPFhdHjwMHVnxNjk6HGVev\nYllQEBykDq4rVgDjxz9aqPMYrPuAXL98GLWrVI/a99at8ukRC8vPXig8gFtBScmjBj1iRMXXfXLl\nCiK9vNC1Vi3pKtfrgY8/BhYvptMEha4g4nAswNi+N2600urjSAqfRmiGyny0//0PyM6m+QNbtzZ9\nze85OdiTnY2/O3WSTlR2NhAVRYP40aNA3boVXsq6D8j1y0dZ7cax8ZQUaqOwsCaM5WcvFN4Dt4KN\nG+mxou20tQYD3rh4Ed8FBcHDSaLPyrNngc6dgTZt6PzFSoI3hyMVjo50fBx41O458sMDuBkq8tEK\nCszbJ19ev452bm6IlGr1w+bNQEQEMGcO8O23gIAPBdZ9QK5fPh7Xbuyo/Por/fKndFh+9kLhFoqF\nbN4M5ObSznCrVk++n5iXhx/T03FaihWXej3w2WfA+vV0xgkL3185VY7nnqNZeq5do4t6GNmRuErD\ne+BmqMhH++9/6fGNN558T6PT4eULF/B98+bWZ5nPyqKJF44coSl/RAZv1n1Arl8+Htfu4EB3aAAe\ntX8lw/KzFwoP4BZw/jyNp25uJmfu4cOUFPT08MDwyiaGm+CJ0f0//qABu00b2uWpX99y0ZynFiln\njbz6KvXDd+wA7tyRrlyOZfAAbgZTPlpMDD2OGUODeFm2ZGbiUG4ulolIS//E1HCDAZg/n5rrP/wA\nLFwIVKsmTvhDWPcBuX7pELsEwZT2Bg2AIUPofmn/+Y80umyFkp69reABXCQZGcCaNfTnDz8s/97V\nwkK8fekS1rdqVeFyebPcvUvXLu/eTbeAGzDAOsEcjsRER9Pjd98BDx7Iq+VphwdwMzzuo333HV06\nHxlZfvCyQK/HsHPnMMvPD10sXLDTNE1NLZMOHegafV9fi3UbYd0H5PrloyLtzz1Ht93JzgZWr7av\nJjGw/OyFwgO4CHJyaAAHgE8+efR7QgjevHQJbWrWxLsWJE5wLNHia3yMV3ZH0Y2o5s8XNEWQw5ED\nlepR+//mG0CrlVfP0wwP4GYo66MtXEiDeEQE0K3bo2u+u3ULfz94gBXNm0Ml1mg8fRovL+uEpriC\nb8eekXxuFus+INcvH5Vpj4wE2rYF0tKU64Wz/OyFYlUAT0tLQ69evdC6dWuEh4djw4YNUulSHLdv\nA8uW0Z+/+urR7/fcu4d5qanY2ro1XMX43jod7Wn36YPk8I8xHFvwwFXcrBUORy4cHGjzBYB584C8\nPHn1PLUQK0hPTyenTp0ihBCSmZlJAgICSF5eXrlrrKxCMYwbRwhAyLBhj353Ii+PeB0+TI7k5Igr\n7PJlQp55hpCICEJu3CDffkvLnjxZWs0cDiGEvPwybV8//yxtuQYDIc89R8v+6CNpy+YIi51W9cB9\nfHwQGhoKAPDy8kLr1q2RnJwswceKsjh0CFi3DqhenW65DQDXtVoMPnsWK5o3RzcPD2EF6XTUNOza\nla5Ljo8HmjSxnXAOx4aoVMCSJfS4dCnw999yK3r6kMwDT0lJwblz59C5c2epilQE8fFqvP02/Xn6\ndKBpU+BucTFeOHMGU5s0wTChi3WSkoBOnWjQTkwEPviAfg+1Maz7gFy/fAjR3rEj8NZbtG/y1lvK\n2iOF5WcvFEmmOmg0GowaNQpLlixBTRN5GCdMmAB/f38AgKenJ0JDQ0un+BgfslLPFyw4jXPngKCg\ncEydCmyLj8fkK1fwSr9+eN/X13x5u3cDq1cj/PBh4NtvoW7UCEhLQ3jTpqXXX7kCAOEgRHr9p0+f\nlvX5cf3y66crJm1X/gsvAHFx4ThyBHj3XTVGjVLO82fpXK1WY+3atQBQGi/NYq1PU1xcTPr06UOW\nLFlisY+jVNRqQlQqQhwcCPnzT0KyiotJ2+PHyYwrV4jBYDBfwPbthDRpQsiECYRkZVV42aJF1EeM\njpZQPIfzkDFjaPtav952dezcSetwdibk9Gnb1fM0ISR2WvUdnhCC1157DSEhIfjw8WWJjJOeTvc5\nIYRaJ4Hti9H7r7/wQt26mBsQUPl0wYsX6QrKjz6iyzbXrOH7dnOqNAMHAm++CRQX033Dc3LkVvR0\nYFUAP3LkCNavX4+DBw8iLCwMYWFh2Lt3r1TaZKOoiG5DcucOEBqqxtiphXj21CkMqVsXCyoL3rm5\nwJQpNL3Z88/T5AsREfYV/xjGr2iswvXLh1jtS5YA7drRrD3jxsnvh7P87IVilQf+3HPPwWAwSKVF\nERgMwIQJdLfBRo2Al6cWoNfZU/jM3x9vNWxo+iadjq4pnj2b9rzPnQNMZJ/ncKoyrq7Ali10YHPH\nDtqXWbpUblVVG74SswyEAJMnA7GxgLs78FFcFhY29sB3QUGmgzchtMW2bk1v2rEDWLVKUcHbOFjC\nKly/fFiivWlTYNs2wNmZLnz74gv5kiCz/OyFwjfceAghdH+HZcsAJ2eCIXHXsVh3B7vbtEEnU5tT\nqdXA1KnU9Pv3v4G+fcXv18nhVEF69gR++gl4+WX6pbSoCJg7l/952ALeAweNwePH0zSTjrVLELbz\nb6TWyUFShw54cPJk+YvVaqBXL+C11+hc7hMngH79FNs6WfcBuX75sEb76NHAhg00+cP8+cDHH9u/\nJ87ysxfKUx/Ac3Opbf3zz0D1btnw3JyM7gE1cKBdO3g7O9OLCAEOHqRdizfeoCb5P//QjA4OT/0j\n5HBMMmoUzWBfrRqwaBHtkfP9w6XlqbZQ/v6bNrLzV/Rw/ega3AZl4pe2LdG7dm16gV6P8Hv36NaD\n2dnArFlAVJTNtnq1RQ+FdR+Q67ceS9uVFNqHDQPi4ujf2a+/0vH9rVupV25rlPDsbc1T2X0kBFi+\nnI6Wn3e/h2rrk9B7RDHOd+tIg/eDB3Tj7+bNadfh449pIsyxY20SvBXqvnCqGHK1s4EDgePHgaAg\n4MwZ+ne3caN8g5tViacugF+7BgwaBLz7pRZF086h1swUbO7WHL91Dkbda9foNBQ/PyAhAfj5Z6jn\nz6fdCEtTpMkM6z4g1y8fUmoPDqbbAQ0eTBf5jBpF/6xu35asiidg+dkL5akJ4IWFwOefAy07l2C3\nXwpUK5MxonNN3OnTDkP+TAB69wa6d6fzn44fp9MDy2Zt4HA4VuHhQacY/vADnaa7bRudgbt0KZ2p\nwhFPlQ/gRUU0Y0izDiWYk3oNxT8eR1CIHmedXbAxfhlq+PnRFjRxIpCaSrM1BAaW3s+6j8b1ywvL\n+m2h3cEBmDSJeuEDBtDeeHQ00LIl8Msv0q7eZPnZC6XKBvDcXDqn2++ZQrx9LgW3v0pE44AsHPwj\nCZe+H47Wb40AatUCDh8G/viDziipXl1u2RzOU0HjxsDOnXTtW+vWwPXrwCuv0ED+/fdAQYHcCtmg\nSgVwQoCTJ4E33jKg/tAsfFh0BlmfHcfzzsdwbvYs3IgZiF6aC7RLfuUKMGcOHVmpBNZ9NK5fXljW\nb2vtKhUdj/rrL7rfW0AA3UflnXdogI+OpoOelsLysxcK89MICQEuXAD+byPB2uN5uN38Fhz6ZaBR\n62y8v+83jF16GHVeGgzV0jnAc88xOxjJ4VRVHB3p0opXXqFTDr/9lg5DLV1KX+3bAyNHAkOH0olh\nnEeoHu47a7sKVCpIXUVWFt1savtBHfbcvgND0xTkdy6GV24uxiXsRfjZbIT06oL6Y/vR7dEUvthm\nyRI6+eXDD+nPHI6UjBlD52D/8gv9WekQAiQnA2vX0tWcZbembdWK7loRHg706AHUqSOXStsjJHYq\nvgeen08XPZ4+DRxILsTFzH+grX8L2uBi3O3riu5nz6Jd0i20+tMdoc93QsjSJXCqY2LvEg6HwwQq\nFc0+2KkTXYaxezedsbJjB/22feECHd9SqYC2benuzWFhtK8WEgLUqCH3v8B+yB7AS0pojzot7dHr\nemoB0m6n4J7uJrS1c6D11yOjqRuKX3BE2wvX0eBcARrsdkNzn2B0mPA2wj6uaTNnRK1W22002xbf\nheyp3xZw/dZjabtSgnYXFzpffNgwGiuOHKHbEanVwJ9/Uv/8r78eXe/gALRoQYe2nJ3V6N49HAEB\nNHd4vXqAlxedKVxVsEsAHzMqCXpDCQxEBz0pQQkpRLFjIXTViqCroYPBQ4/C+irk1nNBZtNaKGpV\nDX43M+F9XYM6qSrUSnJDj9O10apDO3TqPQTtptD9FaoKfCUmxx6w3s6qVaPWifEzpbCQ5gc/fpwG\n8dOnaTIsYy8dADZvfrIcDw8ayN3caG/d+HJxoR8AYWHAjBn2+ldZh1088BZr/gtHXQkcDXo46kvg\nXFQA5yINHIs1gO4BiC4XRbq70CATWQ53kemcB+uSvXE4HI7lkNnyr/NXjAe+sPYbcHamn6DVqtHp\n17Vr05e7u+LHGG3O0qV0ytQHH/AMJhzpiYqi+UY2bKA/P80YDHRQNCuLbnlUWEhfBQV00R8hisrH\nYha7BPDISHvUYhuU4ANaA9cvLyzrZ1k7YFq/gwOduVJVZq885X1fDofDYRcewM3Acg8E4PrlhmX9\nLGsH2NcvBB7AORwOh1F4ADcD6/spcP3ywrJ+lrUD7OsXAg/gCoJnKOHYAt6uqi48gJvBHj6aLRdY\nsO4Dcv3SIbadKUm7JbCuXwg8gHM4HA6j8ABuBtZ9NK5fXljWz7J2gH39QuABnMPhcBiFB3AzsO6j\ncf3ywrJ+lrUD7OsXAg/gHA6Hwyg8gJuBdR+N65cXlvWzrB1gX78QeADncDgcRuEB3Ays+2hcv7yw\nrJ9l7QD7+oXAA7iC4CvmOLaAt6uqi9UB/NChQ2jVqhWCgoIQExMjhSZFYQ8fzZYrMVn3Abl+6RDb\nzpSk3RJY1y8EqwP4Bx98gBUrVuDAgQNYvnw5srKypNDF4XA4HDNYFcBzc3MBAD169ICfnx/69u2L\nxMRESYQpBdZ9NK5fXljWz7J2gH39QrAqgCclJaFly5al58HBwTh27JjVojgcDodjHrvkxJwwYQL8\n/f0BAJ6enggNDS39dDT6VEo9X7p0qc31Xr4MAOzqt+U512/9+d27gCXtq6yHrJTnWZX1q9VqrF27\nFgBK46VZiBXk5OSQ0NDQ0vN3332X7Ny5s9w1VlYhOwkJCTavY9kyQgBC3ntP+rLtod+WcP3WM3Ik\nbV+xseLuU4J2a2Bdv5DYaZWF4uHhAYDORLl+/Tri4+PRpUsXa4pUHMZPSlbh+uWFZf0sawfY1y8E\nqy2UpUuXYtKkSSgpKcH7778PLy8vKXRxOBwOxwxWTyPs2bMnLly4gJSUFLz//vtSaFIUZX00W2OL\nBRf21G8LuH7rsbRdKUG7NbCuXwh8JaYCsOVCHg7HCG9nVQ8ewM3Auo/G9csLy/pZ1g6wr18IPIBz\nOBwOo9hlHrgpIiIikJeXJ1f1gtFqtXBxcbFpHRoN4OUF7NoF/PmntGXbQ78tsVR/rVq1cPDgQRso\nEodarWa2J8iydoB9/UKQLYDn5eUhOTlZruoFo9Fo4O7ubtM6MjKAtDSgfn2gSRNpy7aHfltiqf6O\nHTvaQA2Hoyy4hWIGloMfwPXLDcs9QJa1A+zrFwIP4BwOh8MoPICbQaPRyC3BKrh+eWF5LjLL2gH2\n9QuBB3CF8fzzzwvaknfjxo149dVX7aCIw+EoFR7AH+O7775Dx44d4eLigldfffUJD3bBggWYOXOm\nTeo+eTIRGo1G0H4yw4YNg1qtxs2bNyu9jnUPmXX9SvBhLV2JqQTt1sC6fiHwAP4YjRo1wqeffoqJ\nEyeafH/37t0YOHCgpHUaV8j98MNCvPPOO4LucXJywvjx47FkyRJJtXCqLnwlZtWDB/DHGDp0KCIj\nI1G3bl0A5T3Y+/fv49KlS3jmmWcAACdOnMC//vUv1K9fH82aNcO+ffsAANnZ2Vi4cCGCgoLw0ksv\n4ffffy8t4/z58xg2bBjq168PHx8fTJkypfS9P/9MQNeuXUvPBw4ciI8++qj0fPTo0XjttddKz7t2\n7Wp2rjPrHjLr+ln2YVnWDrCvXwiyzQM3h1S9BUu/PhITN+7btw+9e/eGSqVCZmYmwsPDsWjRIixa\ntAg5OTmlwSY6OhparRYJCQk4fvw4hg0bhpMnT8LPzw+zZ89Gr1698H//938oKSnB2bNnAQBZWenI\nz89DQEBAaX2rV69G27ZtMXDgQNy+fRvJycn466+/St9v2rQpLl68aNk/kMPhMI9iA7jcqB5+gpT1\nYHft2oUBAwYAADZv3oznn38eb775JgDA1dUVAKDX67Fr1y4cPXoUvr6+8PX1xdatW7F161ZER0fD\nYDAgNTUV2dnZ8Pb2RpcuXXD3LpCRkQZPzzpwdnYurc/b2xv/+c9/MG7cOGi1Wvz222+oWbNm6fu+\nvr7QarXIyMiAt7e3yX8H6x4y6/pZ9mFZ1g6wr18IirVQaA4R61+W11/+ZoPBgAMHDqB///4A6Nez\nZ5999on7Lly4gKKiIjRv3rz0dx06dMAff/wBAFiyZAkKCgoQEhKC/v37l9orPj5+yMnJRnFxcbny\nBg0aBL1ej5YtW6Jbt27l3rt58yZcXFwqDN4cDqdqo9gALjfGHrjRFklKSoKfn1+pN96rVy8cPnz4\niftatmyJ6tWrl7M2kpOT0aNHDwBAkyZNsHz5cty5cwcjR45EVFQUDAYD6tb1Rq1anrh27Vq58mbO\nnIng4GCkp6cjNja23HspKSnlPihMwbqHnJengV4PlJQAxcWAVgsUFtKXVktfRUX0Pb3eNnuqWwPL\nPizL2gH29QuBWyiPodfrUVJSAp1OB71ej6KiItSoUQO7d+/GoEGDSq976aWXMHXqVKxatQqjR49G\nTk4O8vOzOxBtAAAfRklEQVTz0aJFCwwcOBCzZ8/GokWLkJSUhL1792LevHkAgPXr16Nfv36oXbs2\natasCTc3t9Iyu3WLwLFjx9CiRQsANFXd2rVrcebMGVy5cgVDhw5Fjx490LBhQwBAYmIinn/+eTs+\nHWnR6WgALi6mL2Mg1ukevfR6cWWqVICjI3DrFtCtG9CoEdCwIT02aQI0bw60aAGUcaI4HGZREVOj\ndVJWoFKZHBDs2LGjIjez+vzzz/HFF1+U+93s2bOxc+dOrFixAu3bty/9fXJyMlasWIG4uDjUqVMH\ny5cvR58+fXDv3j3897//xapVq9C2bVu8++67iIiIAACMHTsW+/fvh06nQ7du3TBlyhQEB4cjNRVI\nT0/G3LnvIDExEXl5eWjXrh0WLlyIkSNHAgCmTZuGU6dOYd++fdDpdGjevDn++OMPNGrUyH4PyAII\nocH5wQOgoOBRD7qkRNj9Dg70pVI9OhrLNTYtg6F8D/yFFzoiK6vi9tW4MdCyJRAaCnTpQl++vlb8\nIxXMiBHA5s3Axo30Zw4bVBQ7y13DA7h57t69i7CwMNy6dctG5QOpqUC9esDrr/fB3LlzzS7m2bRp\nE/bs2YPVq1fbRJM1EEJ71hoNfeXnmw7WDg6Aiwvg7AxUr06Pzs5AtWq0F+3kRF9iZiQZA3mnTh0R\nE5OMW7dQ+rp+Hbh4Ebh82bSeRo2Arl2B3r2Bfv2AMhOCmOall4AtW3gAZw0hAZxbKGbQaDTIzc3F\n4sWL7VJffHy8oOtGjBiBEQL+Gu21nSwhNFDfvw/k5FArpCxOToCbG+DqCtSoQV/Vq5sPzmL1G3vr\nTk5A9+6mr9HpgGvXgPPngRMngGPHgOPHaZDfsoW+ACAoCBg6lAbAjh0tm9qqpD2pxepXknZLYF2/\nEHgAF0BQUBCCgoLklqFICguBe/eA7OzyQdvJCahVC3B3p4HbxUU5KwGdnGhwDgoCIiPp7wwG2jv/\n4w8gPh44cID21L/+mr78/YEJE4CJE6n9wuEoAW6hKICyFoqfn9xqzEMIkJtLdZdNquTsDNSpA3h6\n0kFCOQO2te1LpwOOHqXe8ebNQHo6/b2DA9C/PzB5MhARoZwPpcowWiibNtGfOWwgxELh0wg5giGE\n9rTPnQNSUmjwdnCg6eBatADatKEDgW5ubAS2ynByAnr0AP79b+DmTdojHzWK/n73buqTd+0KbNum\nvKmLnKcHHsDNwPo8aqn05+RQz/jqVTpA6exMg3XbttRecHe3TdBWwvN3cACefx6IjaU++dy59EPr\n+HHqkT/zTMW5TFmei8yydoB9/ULgAZxTKUVFtLedkkL97mrVqM0TEgL4+NAe6dOElxcwcyZw4waw\nbBl9BomJdM55VNQjq4XDsQc8gJuB9b04LNVPCE22fO4c7X07ONDBuzZtqFfvYKeWo9Tn7+oKvP8+\ncOkSMGMGnVETGwu0bk2PRlieBcGydoB9/ULgAZzzBDod7XGnpdHZGbVr0x63t7f9AjcruLsD8+bR\nGSz9+9NplFFR1C+/f19udZyqDv9zNIMSPFhrEKs/P5963bm5dDFN06b0VWaTRLvCyvP386ODmytW\n0Bk4GzfSQc6ff1bLLc1iWPeQWdcvBB7AOaVkZ9OeZHExDULBwbT3zRGGSgW8+SZw5gwd3L10CXj7\nbTqDRU74LJmqCw/gZpDCg12/fj1mz56NsWPHYs+ePRaVcfjwYXz44Yei7xOqPzOTzjAhhHrcLVpQ\nX1dulOqBV0ZgIHDkCF0klJ8fjv79gZ9+kluV+FlCrHvIrOsXwlM2h8D+pKSk4P79+5gzZw6ysrLQ\nokULXLhwAfXr1xdcxuLFi5GYmFiaNEJq7tyhc50BunNfgwbsz+OWGzc3YOtWOmPlq6/oKs6iItpD\n53CkgvfAzWCtB3vu3Dl8/fXXAAAvLy8EBgYiMTFRVBmTJ08uzQQkFnP6MzIeBe8mTWgAV1LwZsUD\nN4WDA9CvnxrffEPPJ00CfvlFXk1iYN1DZl2/EHgP3EKuXr2KlStXVvh+165dERkZiQEDBpTaJoQQ\npKeno/Fjm2n07NkGM2f+hHr12psqqvReqbl3j840AehiHC8vyavgAPjoI2pNffIJ7Yl7edHdDjkc\na1F0AFfNsb4rSGaLD3wnTpxAQkICdDodQkJCYDAYsG3btnJbtwYGBmLBggVmy6pWrRpCQkIA0Jya\nHTt2RGhoaLlrpk37Ek2aVJ5ZR2Vht7giDzk/n26vCtAVlUoN3ix64GUx+rAffwxkZdGNsUaOpIt/\nWraUV5s5WPeQWdcvBEUHcEuCrxRkZmaiffv2iImJwbRp00AIQXR0tFVl5uTkYM2aNVi/fv0T773w\nwotITa38fil74CUlwJUrjwYsfXwkK5pTCQsW0Oe+ZQswZAiQnEx3bORwLMXiAP7xxx9j586dqFGj\nBnr06IEFCxagRo0aUmqTjf79+2P69OkYO3YsNBoNzp49i06dOpW7RqiFAtDg+9VXX+HHH3+Em5sb\nbty4AT+R2w5a2gN/fD9tQuhe2CUldKBN6Vuj2ms/c1tRdk9qBwc6G+XyZTrV8O23gZ9/VtaYQ1lY\n30+bdf1CsDiA9+3bFwsXLgQATJo0CRs2bMBrr70mmTC5SUhIwLRp0wAA69atwxtvvIG9e/eWZqUX\naqEAQExMDEaMGIGioiIcOnQIhJByAXz37jg0bdoXQMWJGqXqgWdk0F0EnZzodDe+stK+GBf5dOhA\nBzT79QPGjpVbFYdVLP7z7dOnDxwcHODg4IB+/frh999/l1KXrBQUFMDT0xMeHh5wd3eHj48PMjIy\n4O3tLbqsw4cPIzo6Gp06dULDhg3Rq1cvNGvWrNw1ixZ9gZs3r1RYxtKlS/HDDz8gPj4eM2fORF7Z\nTbjNULb3qtXS3fQAOmgp1+pKMbDc+wZM+7AtWgAxMfTnDz6g0zhtiaWf/az3XlnXLwRJEjr069cP\nr7/+uskUXzyhg3nskdCBELrKMj8fqFu36uR7rAilty9CgAEDgL17aZKFTZtsV9ewYUBcHPXehw2z\nXT0cabE6J2afPn1wx0T3YP78+Rg8eDAA4IsvvoC7u3ul+RknTJgAf39/AICnp2e5WRjGeb7GnpbS\nzjMyMuDq6mrT+rRaALCt/uJid+TnA46OmofL45XxfG31/I0Y5wIbe2P2Pl+6dClCQ0NNvv/DD0DL\nlmps3gzEx4ejTx/b6MnMBADx95edRy3X87PmnDX9arUaa9euBYDSeGkWYgVr1qwh3bp1I4WFhRVe\nU1EVHTp0sKZqu5GXl2fzOjIyCElKIuT6denLzsvLIzodIadP0zoyM6Wvw5ZY+vyV0r4SEhIqfX/B\nAkIAQkJCCCkpsY2GoUNpHVu2iLvPnHalw7p+IeHZYg987969+Oabb7B9+3a4uLhYWoziYd2DdXd3\nR0YGnXXi6krtE5Zg/fmb82E//JCOR/z9N1BmmYEiYN1DZl2/ECwO4O+99x7y8/PRu3dvhIWF4e23\n35ZSF0cidDo68wSgC3aUOmXtacXFBXg4mQtz59L9UjgcoVgcwC9fvowbN27g1KlTOHXqFL7//nsp\ndSkGlvfiAIC0NA30epp4gMVFI6w/fyH7cbz0Ek2YkZYGPLRAFQHre4mwrl8IfBZwFUavf5QVpmFD\nebVwKsbBAfj0U/rz/PnU7uJwhMADuBlY9mDv3QMMBne4udEeOIuw/PwB4T7sSy/RvVFSU+mUPyXA\nuofMun4h8ABeRSGEzi8HABFbj3NkwsEBeO89+rNxkQ+HYw4ewM3Aqgebl0dXXjo5aZhOi8bq8zci\nxocdN46OUxw+DJw8KZ0GS5fqse4hs65fCDyAK5ycnBysXLkS8+bNE3T95cuXERcXh88+m4N//jkJ\nT08+84QV3NyAiRPpz//5j/Tl83ZQ9eAB3Axye7Cenp7o27cvdDqdoOt37twJb+9GGD58Mtav/xaN\nGrHtIcv9/K1FrA/7xhv0uGkTUFgovR4xsO4hs65fCDyA25Hjx48L3sHQUqKjo9GsWWfcuZOGgIAA\nVKtmfZmWJlTmiCc4GOjYEcjNBXbskFsNR+nwAG4GqTxYg8GAzz77DCV2mCOWlQWo1XGYOXOmIP3L\nly+v8L3FixcjJiYGubm5UkoUzNPkgRsZN44e162TVotYWPeQWdcvBB7A7cSmTZvQu3dvi/b1FnOP\nVgvs3bsdUVHvIS/PTJqfh2RlZVX4njUJlTmWMXo03a997176YczhVISiU6opgYo8WDEZeTIzM+Ho\n6Ih69erhwYMHT1xbWVJjjUaD2NhYHD9+HGfOnEHbtm0r1fvLL1uxatUCbN0ag/79e2LWrFmVXi8E\nSz50pOJp88ABuq1wRASwfz+wcydNhCwHrHvIrOsXAg/gJpAyqTEAbN26FW+++SbWVfCduLKkxu7u\n7pg2bVppdqCybN++HY6Ojjh06BCaN2+OhIQEjBnzKX76KQlNm0Ky6YOWpnPjWM6LL9IA/ttv8gVw\njvLhAdwEZZMav/POO3Bzc7M4qfGxY8fQpUuXSjdnF5LU+HFSU1MRHByMZs2aYdasWZg+fTrq1vVG\nrVqNoVI92vfEVE7JCxculPswOXz4MLR0U3IAQPfu3cvZJnL2wKtSTkwxDBlCc2bu309no8iRbpb1\nnJKs6xeCsgO4FD0/C4JP2aTGAPDnn39anNQ4KSkJBQUF2LdvH44cOYLCwkJs374dQ4YMESTVwUTS\nSpVKBb1eD4AmPPDw8ICnpyeefXYQbtygwdvRseJ/X6tWrcp9e5gzZw5mz55d4fW8B25/GjWis1GS\nk4EDB4CH+VMsQsbPX46NUXYAl7HlGZMau7u7W5XU+D3j+mgAn3/+OVQq1RPBu7KkxgaDwWS5//zz\nD7RaLU6dOoUePXoAAH77bTdCQwfA0/PRdVL0XrkHbjnW9AAjI2kA37HDugBuROznMOu9V9b1C4HP\nQjFB2aTGAKxKamxk48aN2LRpEzZv3oxNjyVArCyp8eXLl7F161bMmTMHJ8usr96/fz/i4uJgMBig\n1WqxffsOuLs3AiDttrHWJFTmWMfDvgIOHpRXB0fB2DQnEOEp1YRw9y5Nd3bt2pPvLV68mCQmJpK8\nvDwSFRVVYRn5+bSMM2fK/16I/oULF4pUbD+qekq1ytDpCPHwoOnQrEm3FxlJy4iLE3cf6ynJWNcv\nJDzzHrjCiY6ORufOnZGWRldWVoSxY2yJ4/DJJ59YqI5jSxwdAaMLkJAgqxSOQuEB3AxK8WDj4ujK\nyoowLlh83D5Rin5LYV2/tT5sr170KIeNwrqHzLp+IfAAzgDbt2/He++9h9QK5hoaDEB+Pv2Z8XjH\neYyICHr83//4bBLOk/AAbga59+KIi4vDl19+ieHDh2Pz5s0mrykooEHcxQVPbF4lt35rYV2/tftx\ntG5NV2bevg1cMT3ObTNY30uEdf1CUPY0Qg6GDh2KoUOHVnqNcXW+m5sdBHHsioMD0LUrnUqYlAQ0\naya3Io6S4D1wM7DgwRoDeM0np5Ezob8yWNcvhQ/buTM9JiZaXZQoWPeQWdcvBB7AqwCVBXAO+xgD\n+PHjlt3PvfOqCw/gZlC6B6vTAUVF9Ku2qf0ylK7fHKzrl8KH7diRHk+eBKzZTl7sSkzWPWTW9QuB\nB3DGMfa+XV15zsOqSp06QFAQ/aA+e1ZuNRwlwQO4GZTuwZqzT5Su3xys65fKh+3ShR4ttVEsgXUP\nmXX9QuABnHG4//10YNwMMylJXh0cZcEDuBmU7sEaM5dXtF+00vWbg3X9Uvmw7drR499/S1KcIFj3\nkFnXLwQewBlGrweKi6n3Xb263Go4tqR1a3o8f54u2uJwAB7AzaJkD9aYRMfFhc5CMYWS9QuBdf1S\n+bBeXoC3N90yQWz2Jkth3UNmXb8QeABnhBs3bqBTp06YNGkS0tPTAZi3Tx5nypQpVmnIycnBypUr\nMW/ePMH3XL58GXFxcU/sZ84Rj7EXfu6cvDo4yoEHcDMoyYONjY3FihUr0KBBAwDCArhR/5UrV3D6\n9Gmr6vf09ETfvn2h0+kE37Nz5040atQIkydPxrfffiu6TiU9f0uQ0ocNCaFHsQHc0oU8rHvIrOsX\nAt8LxQ4UFBTg119/haurK27fvo3JkydblGcyPj4eycnJaNOmDYKDg0sDuIuL+Xtv3LiBJk2aiK7T\nWozJoM+fP1/pfuZCOXz4MDZv3oylS5daXRZrGHvglg5k8nUCVQ/eAzeDFB7s/Pnz0bt3b0RFRWH1\n6tUVbgtbGY0bN8akSZMwcuRIfP311wCE9cDd3d1x7NgxdDauxxbA8uXLReszh7n9zCuqu+zzX7x4\nMWJiYpCbmyu5PlshpQ9raQ/cUlj3kFnXLwSrA/iiRYvg4OCA7OxsKfRUOdLS0nDy5En4+fkBoLks\njT+LYfny5Thz5gzu3LkDZ2dn6HR0WbWQGSjXr1/H//73P6SmpiJBQGqXrKysCt8jFnwfN7efudC6\nJ0+ejAEDBoiuv6oQHEyP58/TGUgcjlUWSlpaGuLj4y0KSKyg0WhM9sKvXr2KlStXVnhf165dERkZ\niaSkJNSqVQvr1q3D3bt34eXlhQkTJpS7tmfPNpgx4yc891z7CssbOHAgLly4gN27d2PmzJnlZqBU\n9tVYo9Fg9OjRuHr1KgoLC6E13mgBGo0GsbGxOH78OM6cOYO2bduavScuLg7z589HTEwMevbsiVmz\nZomus+zzt+QDRE7UarVkPUFPT6BRI+DWLeDGDSAwUJJiK0RK7XLAun4hWBXAJ0+ejK+//hqRkZFS\n6VEEJ06cQEJCAnQ6HZo2bYrq1atj27ZtWL16dek1gYGBWLBggdmyLl26hL///huxsbEAgO7du+PZ\nZ59FUFBQ6TVTp36JJk2aV1pOYGAgAgMDMXDgQADAvXv092X97+3bt8PR0RGHDh1C8+bNkZCQgOjo\naHTo0AGBgYE4evSo0EdgEnd3d0ybNg3Tpk174j1Tdc+aNUvQfuZisGTsoCrRrBkN4Fev2j6Ac5SP\nxQH8t99+g6+vr6BeGGtkZmaiffv2iImJwbRp00AIKR2ME0vNmjXRpk2b0vMmTZpg//795QL4gAEv\n4sYNceUWFdGj0T5JTU1FcHAwmjVrhlmzZmH69Onw9vZGq1atzJZ14cIFrFu3rvT88OHD5Xrq3bt3\nr9S6qKhuIYOmYutmrQcudQ8wMBD4/XcawG0N671X1vULodIA3qdPH9y5c+eJ38+bNw8LFizA/v37\nS39X2R/WhAkT4O/vD4BORQsNDS19zzhNzPg1uey5SoJpQHkdOlRYfkXnzz77LObPn4+xY8dCo9Eg\nMTERnR5uRmG8PjMzEytXrkRxcTEAwNnZGQBKz3v06IHIyEgEBASU8531ej0cyqy60Wg0D+0Q03oc\nKlqhUwaVSgX9Q1P0ypUrcHNzg6enJwYNGgSNRlPOhjD17/X19S39NqHRaLBgwQLMnz+/3PUVaVGp\nVMjJyYG7uzsyMjLg5uYGR0dHDBo0SNDz9vX1xYwZM0rPZ8yYgenTp5e7vqz+oqIilJTZU7Wi8o0Y\np5IZ/5hZP1ep6PnVq8Lvp8MKytDPzys+V6vVWLt2LQCUxkuzEAs4e/YsqV+/PvH39yf+/v7EycmJ\n+Pn5kYyMjCeuraiKDh06WFK13ejSpQvJyckheXl5ZNKkSeTAgQNkz549osvRarWkR48epec9evQg\nN27cKHfNmjVbyaFD+eTaNeHlXrhASFISIbm5xvML5NSpU2T16tXk008/JYQQsmvXLpKXlyda8+ef\nfy7q+orqtoTH635c/5o1a8iECRPMlqOU9pWQkCBpeb/8QghAyIgRwu8ZPJje89tv4uqSWru9YV2/\nkPBskYUSEhKCjIyM0vOAgACcOHECderUsaQ4xVFQUABPT094eHhAo9HAx8cHGRkZguyIx6levTq+\n+OILfPnll6hZsyYmT578hLWwaNEXmDGjKRo3ftKOunz5Ms6ePYuzZ89i8ODBaN+eDnTOmzcZH3yw\nuNRC2b9/P+7du4cmTZpAq9Vix44dks/7rkiLPeoGgKVLlyI2NhY3b97EzJkzMXXqVNSqVUvyepSM\n0fe2h4XCYQApPikCAgLIvXv3RH2KKKWHpATu3qW9aVM98MWLF5PExESSl5dHoqKiCCGEXLqUQjp1\niiBJSYTo9dLrWbhwocnfm9Jir7rFUlXb1507tDddu7bwewYNsqwHzpEXIeFZkpWYV3l3wGaYWsl4\n5coNeHs3gbNzxZtYWcMnn3wiWIu96uZQ6ten2Zfu36ev2rWF3/uUT+CpkvCVmGZQwl4chBDExcVh\nxowZOHbsGNq0oasqhWwhawv9QldVSoESnr81SL0fh0r1yEa5dk3Sop+A9b1EWNcvBB7AGWDHjh2l\nKxmNqyozMlJx8qT5VZVSI2ZVJcc2cB+cY4QHcDPIvR91XFwcvvzySwwfPhxbtmzB6NGjERjYBlpt\nIQwG86sqpdRfVsvmzZslK7cy5H7+1mKLucj2CuCsz6NmXb8Q+G6ECsfUSkYfn0CsXn3U7ivxpF5V\nybEM3gPnGOE9cDMo0YN9uFYID9cOVYoS9YuBdf228GGNMzRv3pS86HKw7iGzrl8IPIAziHEhYrVq\n8urgyMPDfB54mJiJ8xTDA7gZlObBEiIugCtNv1hY128LH7ZhQ3q8fVvyosvBuofMun4h8ADOGMZs\nZk5OtpkDzlE+3t50OmFGxqP2UBmM7f/FEQEPAWZQmgcr1j5Rmn6xsK7fFj5stWpAvXo0MN+9K/w+\nsQt5WPeQWdcvBB7AGcM4gMn976cbe9koHGXDA7gZlObBiu2BK02/WFjXbysf1hjAbTmQybqHzLp+\nIcg2D7xWrVro2LGjXNUrivx8mmHHzQ2oW7fya3NzgZwcwMODptjimKaq71JonInCe+BPOUrYUUvJ\n2GNP4R9/pLvFTZxo/tq33qLXxsQIK5v1PZG5ftN8+iltB599Zv7agQPptTt2iKuDP3t5ERI7uYVi\nhtOnT8stoRzGHpfxK7Q5lKZfLFy/aexhofBnr3x4ADdDTk6O3BLKYQzgxq/Q5lCafrFw/aaxh4XC\nn73y4QGcMYw9LqE9cE7VxB49cI7y4QHcDNevX7dbXeYWXOj1gDHHtI+PsDLtqd8WcP2mscc0Qv7s\nlY/qoVluuwp4GhAOh8OxCHPh2ebTCG38+cDhcDhPLdxC4XA4HEbhAZzD4XAYxWYB/NChQ2jVqhWC\ngoIQExNjq2pswsSJE+Ht7Y02bdrILcUi0tLS0KtXL7Ru3Rrh4eHYsGGD3JJEodVq0aVLF4SGhqJr\n165YsmSJ3JJEo9frERYWhsGDB8stRTT+/v5o27YtwsLC0LlzZ7nliObBgwcYP348mjdvjuDgYBw7\ndkxuSYK5ePEiwsLCSl8eHh7497//XfENtlpFFBoaSn7//Xdy/fp10qJFC5KZmWmrqiTn0KFD5OTJ\nkyQkJERuKRaRnp5OTp06RQghJDMzkwQEBJC8vDyZVYnjwYMHhBBCtFotad26Nbl8+bLMisSxaNEi\nMmbMGDJ48GC5pYjG39+f3Lt3T24ZFjNlyhQya9YsUlhYSEpKSkhOTo7ckixCr9cTHx8fkpqaWuE1\nNumB5+bmAgB69OgBPz8/9O3bF4mJibaoyiZ0794dtWvXlluGxfj4+CA0NBQA4OXlhdatWyM5OVlm\nVeJwdXUFAOTn50On06F69eoyKxLOzZs3sXv3brz++uvMDuKzqhsADhw4gBkzZsDFxQVOTk7w8PCQ\nW5JFHDhwAE2bNkXjxo0rvMYmATwpKQktW7YsPWfta0xVIiUlBefOnWPuq7DBYEC7du3g7e2Nd999\nt9JGrDSio6PxzTffwIHRjBsqlQoRERF48cUXsX37drnliOLmzZvQarX417/+hS5dumDhwoXQarVy\ny7KI2NhYjBkzptJr2GxhHEFoNBqMGjUKS5YsQc2aNeWWIwoHBwf89ddfSElJwffff49Tp07JLUkQ\nO3fuRP369REWFsZsL/bIkSP466+/sGDBAkyePBl3jKvHGECr1eLSpUsYPnw41Go1zp07h40bN8ot\nSzTFxcXYsWMHRowYUel1NgngnTp1wj///FN6fu7cOXTt2tUWVXEqoKSkBMOHD8fYsWMRGRkptxyL\n8ff3x4ABA5ix4I4ePYrt27cjICAAUVFROHjwIMaNGye3LFE0eLjRSqtWrTBkyBDs2LFDZkXCadas\nGVq0aIHBgwejRo0aiIqKwp49e+SWJZo9e/agQ4cOqFevXqXX2SSAGz2nQ4cO4fr164iPj0eXLl1s\nURXHBIQQvPbaawgJCcGHH34otxzRZGVllW5EdO/ePezfv5+ZD6H58+cjLS0N165dQ2xsLCIiIrBu\n3Tq5ZQmmoKCgNI1dZmYm9u3bh/79+8usShxBQUFITEyEwWDArl270Lt3b7kliebXX39FVFSU+Qtt\nNYKqVqtJy5YtSdOmTcmyZctsVY1NGD16NGnQoAFxdnYmvr6+ZPXq1XJLEsUff/xBVCoVadeuHQkN\nDSWhoaFkz549cssSzJkzZ0hYWBhp27Yt6du3L/npp5/klmQRarWauVkoV69eJe3atSPt2rUjERER\nZNWqVXJLEs3FixdJly5dSLt27ciUKVNIfn6+3JJEkZ+fT+rWrSto5pjN90LhcDgcjm3gg5gcDofD\nKDyAczgcDqPwAM7hcDiMwgM4h8PhMAoP4BwOh8MoPIBzOBwOo/w/BtqQ95lWglQAAAAASUVORK5C\nYII=\n"
}
Brian Granger
Updating example notebooks to v3 format.
r6035 ],
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 "prompt_number": 24
}
MinRK
rebuild example notebooks...
r7739 ],
"metadata": {}
Fernando Perez
Update sympy notebook with lambdify/Taylor series support.
r5783 }
]
Brian E. Granger
Converting notebooks to JSON format.
r4634 }