wavesolver.py
267 lines
| 10.4 KiB
| text/x-python
|
PythonLexer
MinRK
|
r3656 | #!/usr/bin/env python | ||
""" | ||||
A simple WaveSolver class for evolving the wave equation in 2D. | ||||
This works in parallel by using a RectPartitioner object. | ||||
Authors | ||||
------- | ||||
* Xing Cai | ||||
* Min Ragan-Kelley | ||||
""" | ||||
import time | ||||
from numpy import exp, zeros, newaxis, sqrt, arange | ||||
def iseq(start=0, stop=None, inc=1): | ||||
""" | ||||
Generate integers from start to (and including!) stop, | ||||
with increment of inc. Alternative to range/xrange. | ||||
""" | ||||
if stop is None: # allow isequence(3) to be 0, 1, 2, 3 | ||||
# take 1st arg as stop, start as 0, and inc=1 | ||||
stop = start; start = 0; inc = 1 | ||||
return arange(start, stop+inc, inc) | ||||
class WaveSolver(object): | ||||
""" | ||||
Solve the 2D wave equation u_tt = u_xx + u_yy + f(x,y,t) with | ||||
u = bc(x,y,t) on the boundary and initial condition du/dt = 0. | ||||
Parallelization by using a RectPartitioner object 'partitioner' | ||||
nx and ny are the total number of global grid cells in the x and y | ||||
directions. The global grid points are numbered as (0,0), (1,0), (2,0), | ||||
..., (nx,0), (0,1), (1,1), ..., (nx, ny). | ||||
dt is the time step. If dt<=0, an optimal time step is used. | ||||
tstop is the stop time for the simulation. | ||||
I, f are functions: I(x,y), f(x,y,t) | ||||
Bernardo B. Marques
|
r4872 | |||
MinRK
|
r3656 | user_action: function of (u, x, y, t) called at each time | ||
level (x and y are one-dimensional coordinate vectors). | ||||
This function allows the calling code to plot the solution, | ||||
compute errors, etc. | ||||
implementation: a dictionary specifying how the initial | ||||
condition ('ic'), the scheme over inner points ('inner'), | ||||
and the boundary conditions ('bc') are to be implemented. | ||||
Normally, values are legal: 'scalar' or 'vectorized'. | ||||
'scalar' means straight loops over grid points, while | ||||
'vectorized' means special NumPy vectorized operations. | ||||
If a key in the implementation dictionary is missing, it | ||||
defaults in this function to 'scalar' (the safest strategy). | ||||
Note that if 'vectorized' is specified, the functions I, f, | ||||
and bc must work in vectorized mode. It is always recommended | ||||
to first run the 'scalar' mode and then compare 'vectorized' | ||||
results with the 'scalar' results to check that I, f, and bc | ||||
work. | ||||
verbose: true if a message at each time step is written, | ||||
false implies no output during the simulation. | ||||
final_test: true means the discrete L2-norm of the final solution is | ||||
to be computed. | ||||
""" | ||||
Bernardo B. Marques
|
r4872 | |||
MinRK
|
r3656 | def __init__(self, I, f, c, bc, Lx, Ly, partitioner=None, dt=-1, | ||
Bernardo B. Marques
|
r4872 | user_action=None, | ||
MinRK
|
r3656 | implementation={'ic': 'vectorized', # or 'scalar' | ||
'inner': 'vectorized', | ||||
'bc': 'vectorized'}): | ||||
Bernardo B. Marques
|
r4872 | |||
MinRK
|
r3656 | nx = partitioner.global_num_cells[0] # number of global cells in x dir | ||
ny = partitioner.global_num_cells[1] # number of global cells in y dir | ||||
dx = Lx/float(nx) | ||||
dy = Ly/float(ny) | ||||
loc_nx, loc_ny = partitioner.get_num_loc_cells() | ||||
nx = loc_nx; ny = loc_ny # now use loc_nx and loc_ny instead | ||||
lo_ix0 = partitioner.subd_lo_ix[0] | ||||
lo_ix1 = partitioner.subd_lo_ix[1] | ||||
hi_ix0 = partitioner.subd_hi_ix[0] | ||||
hi_ix1 = partitioner.subd_hi_ix[1] | ||||
x = iseq(dx*lo_ix0, dx*hi_ix0, dx) # local grid points in x dir | ||||
y = iseq(dy*lo_ix1, dy*hi_ix1, dy) # local grid points in y dir | ||||
self.x = x | ||||
self.y = y | ||||
xv = x[:,newaxis] # for vectorized expressions with f(xv,yv) | ||||
yv = y[newaxis,:] # -- " -- | ||||
if dt <= 0: | ||||
dt = (1/float(c))*(1/sqrt(1/dx**2 + 1/dy**2)) # max time step | ||||
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2; dt2 = dt**2 # help variables | ||||
u = zeros((nx+1,ny+1)) # solution array | ||||
u_1 = u.copy() # solution at t-dt | ||||
u_2 = u.copy() # solution at t-2*dt | ||||
# preserve for self.solve | ||||
implementation=dict(implementation) # copy | ||||
if 'ic' not in implementation: | ||||
implementation['ic'] = 'scalar' | ||||
if 'bc' not in implementation: | ||||
implementation['bc'] = 'scalar' | ||||
if 'inner' not in implementation: | ||||
implementation['inner'] = 'scalar' | ||||
self.implementation = implementation | ||||
self.Lx = Lx | ||||
self.Ly = Ly | ||||
self.I=I | ||||
self.f=f | ||||
self.c=c | ||||
self.bc=bc | ||||
self.user_action = user_action | ||||
self.partitioner=partitioner | ||||
# set initial condition (pointwise - allows straight if-tests in I(x,y)): | ||||
t=0.0 | ||||
if implementation['ic'] == 'scalar': | ||||
for i in xrange(0,nx+1): | ||||
for j in xrange(0,ny+1): | ||||
u_1[i,j] = I(x[i], y[j]) | ||||
for i in xrange(1,nx): | ||||
for j in xrange(1,ny): | ||||
u_2[i,j] = u_1[i,j] + \ | ||||
0.5*Cx2*(u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]) + \ | ||||
0.5*Cy2*(u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]) + \ | ||||
Bernardo B. Marques
|
r4872 | dt2*f(x[i], y[j], 0.0) | ||
MinRK
|
r3656 | |||
# boundary values of u_2 (equals u(t=dt) due to du/dt=0) | ||||
i = 0 | ||||
for j in xrange(0,ny+1): | ||||
u_2[i,j] = bc(x[i], y[j], t+dt) | ||||
j = 0 | ||||
for i in xrange(0,nx+1): | ||||
u_2[i,j] = bc(x[i], y[j], t+dt) | ||||
i = nx | ||||
for j in xrange(0,ny+1): | ||||
u_2[i,j] = bc(x[i], y[j], t+dt) | ||||
j = ny | ||||
for i in xrange(0,nx+1): | ||||
u_2[i,j] = bc(x[i], y[j], t+dt) | ||||
elif implementation['ic'] == 'vectorized': | ||||
u_1 = I(xv,yv) | ||||
u_2[1:nx,1:ny] = u_1[1:nx,1:ny] + \ | ||||
0.5*Cx2*(u_1[0:nx-1,1:ny] - 2*u_1[1:nx,1:ny] + u_1[2:nx+1,1:ny]) + \ | ||||
0.5*Cy2*(u_1[1:nx,0:ny-1] - 2*u_1[1:nx,1:ny] + u_1[1:nx,2:ny+1]) + \ | ||||
dt2*(f(xv[1:nx,1:ny], yv[1:nx,1:ny], 0.0)) | ||||
# boundary values (t=dt): | ||||
i = 0; u_2[i,:] = bc(x[i], y, t+dt) | ||||
j = 0; u_2[:,j] = bc(x, y[j], t+dt) | ||||
i = nx; u_2[i,:] = bc(x[i], y, t+dt) | ||||
j = ny; u_2[:,j] = bc(x, y[j], t+dt) | ||||
if user_action is not None: | ||||
user_action(u_1, x, y, t) # allow user to plot etc. | ||||
# print list(self.us[2][2]) | ||||
self.us = (u,u_1,u_2) | ||||
Bernardo B. Marques
|
r4872 | |||
MinRK
|
r3656 | def solve(self, tstop, dt=-1, user_action=None, verbose=False, final_test=False): | ||
t0=time.time() | ||||
f=self.f | ||||
c=self.c | ||||
bc=self.bc | ||||
partitioner = self.partitioner | ||||
implementation = self.implementation | ||||
nx = partitioner.global_num_cells[0] # number of global cells in x dir | ||||
ny = partitioner.global_num_cells[1] # number of global cells in y dir | ||||
dx = self.Lx/float(nx) | ||||
dy = self.Ly/float(ny) | ||||
loc_nx, loc_ny = partitioner.get_num_loc_cells() | ||||
nx = loc_nx; ny = loc_ny # now use loc_nx and loc_ny instead | ||||
x = self.x | ||||
y = self.y | ||||
xv = x[:,newaxis] # for vectorized expressions with f(xv,yv) | ||||
yv = y[newaxis,:] # -- " -- | ||||
if dt <= 0: | ||||
dt = (1/float(c))*(1/sqrt(1/dx**2 + 1/dy**2)) # max time step | ||||
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2; dt2 = dt**2 # help variables | ||||
# id for the four possible neighbor subdomains | ||||
lower_x_neigh = partitioner.lower_neighbors[0] | ||||
upper_x_neigh = partitioner.upper_neighbors[0] | ||||
lower_y_neigh = partitioner.lower_neighbors[1] | ||||
upper_y_neigh = partitioner.upper_neighbors[1] | ||||
u,u_1,u_2 = self.us | ||||
# u_1 = self.u_1 | ||||
Bernardo B. Marques
|
r4872 | |||
MinRK
|
r3656 | t = 0.0 | ||
while t <= tstop: | ||||
t_old = t; t += dt | ||||
if verbose: | ||||
print 'solving (%s version) at t=%g' % \ | ||||
(implementation['inner'], t) | ||||
# update all inner points: | ||||
if implementation['inner'] == 'scalar': | ||||
for i in xrange(1, nx): | ||||
for j in xrange(1, ny): | ||||
u[i,j] = - u_2[i,j] + 2*u_1[i,j] + \ | ||||
Cx2*(u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]) + \ | ||||
Cy2*(u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]) + \ | ||||
dt2*f(x[i], y[j], t_old) | ||||
elif implementation['inner'] == 'vectorized': | ||||
u[1:nx,1:ny] = - u_2[1:nx,1:ny] + 2*u_1[1:nx,1:ny] + \ | ||||
Cx2*(u_1[0:nx-1,1:ny] - 2*u_1[1:nx,1:ny] + u_1[2:nx+1,1:ny]) + \ | ||||
Cy2*(u_1[1:nx,0:ny-1] - 2*u_1[1:nx,1:ny] + u_1[1:nx,2:ny+1]) + \ | ||||
dt2*f(xv[1:nx,1:ny], yv[1:nx,1:ny], t_old) | ||||
Bernardo B. Marques
|
r4872 | |||
MinRK
|
r3656 | # insert boundary conditions (if there's no neighbor): | ||
if lower_x_neigh < 0: | ||||
if implementation['bc'] == 'scalar': | ||||
i = 0 | ||||
for j in xrange(0, ny+1): | ||||
u[i,j] = bc(x[i], y[j], t) | ||||
elif implementation['bc'] == 'vectorized': | ||||
u[0,:] = bc(x[0], y, t) | ||||
if upper_x_neigh < 0: | ||||
if implementation['bc'] == 'scalar': | ||||
i = nx | ||||
for j in xrange(0, ny+1): | ||||
u[i,j] = bc(x[i], y[j], t) | ||||
elif implementation['bc'] == 'vectorized': | ||||
u[nx,:] = bc(x[nx], y, t) | ||||
if lower_y_neigh < 0: | ||||
if implementation['bc'] == 'scalar': | ||||
j = 0 | ||||
for i in xrange(0, nx+1): | ||||
u[i,j] = bc(x[i], y[j], t) | ||||
elif implementation['bc'] == 'vectorized': | ||||
u[:,0] = bc(x, y[0], t) | ||||
if upper_y_neigh < 0: | ||||
if implementation['bc'] == 'scalar': | ||||
j = ny | ||||
for i in xrange(0, nx+1): | ||||
u[i,j] = bc(x[i], y[j], t) | ||||
elif implementation['bc'] == 'vectorized': | ||||
u[:,ny] = bc(x, y[ny], t) | ||||
# communication | ||||
partitioner.update_internal_boundary (u) | ||||
if user_action is not None: | ||||
user_action(u, x, y, t) | ||||
# update data structures for next step | ||||
u_2, u_1, u = u_1, u, u_2 | ||||
t1 = time.time() | ||||
print 'my_id=%2d, dt=%g, %s version, slice_copy=%s, net Wtime=%g'\ | ||||
%(partitioner.my_id,dt,implementation['inner'],\ | ||||
partitioner.slice_copy,t1-t0) | ||||
# save the us | ||||
self.us = u,u_1,u_2 | ||||
# check final results; compute discrete L2-norm of the solution | ||||
if final_test: | ||||
loc_res = 0.0 | ||||
for i in iseq(start=1, stop=nx-1): | ||||
for j in iseq(start=1, stop=ny-1): | ||||
loc_res += u_1[i,j]**2 | ||||
return loc_res | ||||
return dt | ||||