##// END OF EJS Templates
Merge branch 'rm-default-old-config'
Merge branch 'rm-default-old-config'

File last commit:

r3636:154798bf
r4182:b1b1749b merge
Show More
pidigits.py
157 lines | 4.0 KiB | text/x-python | PythonLexer
MinRK
update parallel demos for newparallel
r3621 """Compute statistics on the digits of pi.
This uses precomputed digits of pi from the website
of Professor Yasumasa Kanada at the University of
Tokoyo: http://www.super-computing.org/
Currently, there are only functions to read the
.txt (non-compressed, non-binary) files, but adding
support for compression and binary files would be
straightforward.
This focuses on computing the number of times that
all 1, 2, n digits sequences occur in the digits of pi.
If the digits of pi are truly random, these frequencies
should be equal.
"""
# Import statements
MinRK
Client -> HasTraits, update examples with API tweaks
r3636 from __future__ import division, with_statement
MinRK
remove kernel examples already ported to newparallel
r3675
MinRK
update parallel demos for newparallel
r3621 import numpy as np
from matplotlib import pyplot as plt
# Top-level functions
MinRK
remove kernel examples already ported to newparallel
r3675 def fetch_pi_file(filename):
"""This will download a segment of pi from super-computing.org
if the file is not already present.
"""
import os, urllib
ftpdir="ftp://pi.super-computing.org/.2/pi200m/"
if os.path.exists(filename):
# we already have it
return
else:
# download it
urllib.urlretrieve(ftpdir+filename,filename)
MinRK
update parallel demos for newparallel
r3621 def compute_one_digit_freqs(filename):
"""
Read digits of pi from a file and compute the 1 digit frequencies.
"""
d = txt_file_to_digits(filename)
freqs = one_digit_freqs(d)
return freqs
def compute_two_digit_freqs(filename):
"""
Read digits of pi from a file and compute the 2 digit frequencies.
"""
d = txt_file_to_digits(filename)
freqs = two_digit_freqs(d)
return freqs
def reduce_freqs(freqlist):
"""
Add up a list of freq counts to get the total counts.
"""
allfreqs = np.zeros_like(freqlist[0])
for f in freqlist:
allfreqs += f
return allfreqs
def compute_n_digit_freqs(filename, n):
"""
Read digits of pi from a file and compute the n digit frequencies.
"""
d = txt_file_to_digits(filename)
freqs = n_digit_freqs(d, n)
return freqs
# Read digits from a txt file
def txt_file_to_digits(filename, the_type=str):
"""
Yield the digits of pi read from a .txt file.
"""
with open(filename, 'r') as f:
for line in f.readlines():
for c in line:
if c != '\n' and c!= ' ':
yield the_type(c)
# Actual counting functions
def one_digit_freqs(digits, normalize=False):
"""
Consume digits of pi and compute 1 digit freq. counts.
"""
freqs = np.zeros(10, dtype='i4')
for d in digits:
freqs[int(d)] += 1
if normalize:
freqs = freqs/freqs.sum()
return freqs
def two_digit_freqs(digits, normalize=False):
"""
Consume digits of pi and compute 2 digits freq. counts.
"""
freqs = np.zeros(100, dtype='i4')
last = digits.next()
this = digits.next()
for d in digits:
index = int(last + this)
freqs[index] += 1
last = this
this = d
if normalize:
freqs = freqs/freqs.sum()
return freqs
def n_digit_freqs(digits, n, normalize=False):
"""
Consume digits of pi and compute n digits freq. counts.
This should only be used for 1-6 digits.
"""
freqs = np.zeros(pow(10,n), dtype='i4')
current = np.zeros(n, dtype=int)
for i in range(n):
current[i] = digits.next()
for d in digits:
index = int(''.join(map(str, current)))
freqs[index] += 1
current[0:-1] = current[1:]
current[-1] = d
if normalize:
freqs = freqs/freqs.sum()
return freqs
# Plotting functions
def plot_two_digit_freqs(f2):
"""
Plot two digits frequency counts using matplotlib.
"""
f2_copy = f2.copy()
f2_copy.shape = (10,10)
ax = plt.matshow(f2_copy)
plt.colorbar()
for i in range(10):
for j in range(10):
plt.text(i-0.2, j+0.2, str(j)+str(i))
plt.ylabel('First digit')
plt.xlabel('Second digit')
return ax
def plot_one_digit_freqs(f1):
"""
Plot one digit frequency counts using matplotlib.
"""
ax = plt.plot(f1,'bo-')
plt.title('Single digit counts in pi')
plt.xlabel('Digit')
plt.ylabel('Count')
return ax