##// END OF EJS Templates
update default config files with new app namespace
update default config files with new app namespace

File last commit:

r3668:9634efdf
r3995:b5eb8e42
Show More
parallelwave-mpi.py
205 lines | 6.6 KiB | text/x-python | PythonLexer
MinRK
Add wave2D example
r3656 #!/usr/bin/env python
"""
A simple python program of solving a 2D wave equation in parallel.
Domain partitioning and inter-processor communication
are done by an object of class MPIRectPartitioner2D
(which is a subclass of RectPartitioner2D and uses MPI via mpi4py)
An example of running the program is (8 processors, 4x2 partition,
400x100 grid cells)::
$ ipclusterz start --profile mpi -n 8 # start 8 engines (assuming mpi profile has been configured)
$ ./parallelwave-mpi.py --grid 400 100 --partition 4 2 --profile mpi
See also parallelwave-mpi, which runs the same program, but uses MPI
(via mpi4py) for the inter-engine communication.
Authors
-------
* Xing Cai
* Min Ragan-Kelley
"""
import sys
import time
from numpy import exp, zeros, newaxis, sqrt
from IPython.external import argparse
MinRK
SGE test related fixes...
r3668 from IPython.parallel import Client, Reference
MinRK
Add wave2D example
r3656
MinRK
update API after sagedays29...
r3664 def setup_partitioner(index, num_procs, gnum_cells, parts):
MinRK
Add wave2D example
r3656 """create a partitioner in the engine namespace"""
MinRK
update API after sagedays29...
r3664 global partitioner
MinRK
Add wave2D example
r3656 p = MPIRectPartitioner2D(my_id=index, num_procs=num_procs)
p.redim(global_num_cells=gnum_cells, num_parts=parts)
p.prepare_communication()
# put the partitioner into the global namespace:
MinRK
update API after sagedays29...
r3664 partitioner=p
MinRK
Add wave2D example
r3656
MinRK
update API after sagedays29...
r3664 def setup_solver(*args, **kwargs):
MinRK
Add wave2D example
r3656 """create a WaveSolver in the engine namespace"""
MinRK
update API after sagedays29...
r3664 global solver
solver = WaveSolver(*args, **kwargs)
MinRK
Add wave2D example
r3656
def wave_saver(u, x, y, t):
"""save the wave log"""
global u_hist
global t_hist
t_hist.append(t)
u_hist.append(1.0*u)
# main program:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
paa = parser.add_argument
paa('--grid', '-g',
type=int, nargs=2, default=[100,100], dest='grid',
help="Cells in the grid, e.g. --grid 100 200")
paa('--partition', '-p',
type=int, nargs=2, default=None,
help="Process partition grid, e.g. --partition 4 2 for 4x2")
paa('-c',
type=float, default=1.,
help="Wave speed (I think)")
paa('-Ly',
type=float, default=1.,
help="system size (in y)")
paa('-Lx',
type=float, default=1.,
help="system size (in x)")
paa('-t', '--tstop',
type=float, default=1.,
help="Time units to run")
paa('--profile',
type=unicode, default=u'default',
help="Specify the ipcluster profile for the client to connect to.")
paa('--save',
action='store_true',
help="Add this flag to save the time/wave history during the run.")
paa('--scalar',
action='store_true',
help="Also run with scalar interior implementation, to see vector speedup.")
ns = parser.parse_args()
# set up arguments
grid = ns.grid
partition = ns.partition
Lx = ns.Lx
Ly = ns.Ly
c = ns.c
tstop = ns.tstop
if ns.save:
user_action = wave_saver
else:
user_action = None
num_cells = 1.0*(grid[0]-1)*(grid[1]-1)
final_test = True
# create the Client
rc = Client(profile=ns.profile)
num_procs = len(rc.ids)
if partition is None:
partition = [1,num_procs]
assert partition[0]*partition[1] == num_procs, "can't map partition %s to %i engines"%(partition, num_procs)
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view = rc[:]
print "Running %s system on %s processes until %f"%(grid, partition, tstop)
MinRK
Add wave2D example
r3656 # functions defining initial/boundary/source conditions
def I(x,y):
from numpy import exp
return 1.5*exp(-100*((x-0.5)**2+(y-0.5)**2))
def f(x,y,t):
return 0.0
# from numpy import exp,sin
# return 10*exp(-(x - sin(100*t))**2)
def bc(x,y,t):
return 0.0
# initial imports, setup rank
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view.execute('\n'.join([
MinRK
Add wave2D example
r3656 "from mpi4py import MPI",
"import numpy",
"mpi = MPI.COMM_WORLD",
"my_id = MPI.COMM_WORLD.Get_rank()"]), block=True)
# initialize t_hist/u_hist for saving the state at each step (optional)
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view['t_hist'] = []
view['u_hist'] = []
MinRK
Add wave2D example
r3656
# set vector/scalar implementation details
impl = {}
impl['ic'] = 'vectorized'
impl['inner'] = 'scalar'
impl['bc'] = 'vectorized'
# execute some files so that the classes we need will be defined on the engines:
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view.run('RectPartitioner.py')
view.run('wavesolver.py')
MinRK
Add wave2D example
r3656 # setup remote partitioner
# note that Reference means that the argument passed to setup_partitioner will be the
# object named 'my_id' in the engine's namespace
MinRK
update API after sagedays29...
r3664 view.apply_sync(setup_partitioner, Reference('my_id'), num_procs, grid, partition)
MinRK
Add wave2D example
r3656 # wait for initial communication to complete
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view.execute('mpi.barrier()')
MinRK
Add wave2D example
r3656 # setup remote solvers
MinRK
update API after sagedays29...
r3664 view.apply_sync(setup_solver, I,f,c,bc,Lx,Ly,partitioner=Reference('partitioner'), dt=0,implementation=impl)
MinRK
Add wave2D example
r3656
# lambda for calling solver.solve:
_solve = lambda *args, **kwargs: solver.solve(*args, **kwargs)
if ns.scalar:
impl['inner'] = 'scalar'
# run first with element-wise Python operations for each cell
t0 = time.time()
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 ar = view.apply_async(_solve, tstop, dt=0, verbose=True, final_test=final_test, user_action=user_action)
MinRK
Add wave2D example
r3656 if final_test:
# this sum is performed element-wise as results finish
s = sum(ar)
# the L2 norm (RMS) of the result:
norm = sqrt(s/num_cells)
else:
norm = -1
t1 = time.time()
print 'scalar inner-version, Wtime=%g, norm=%g'%(t1-t0, norm)
impl['inner'] = 'vectorized'
# setup new solvers
MinRK
update API after sagedays29...
r3664 view.apply_sync(setup_solver, I,f,c,bc,Lx,Ly,partitioner=Reference('partitioner'), dt=0,implementation=impl)
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view.execute('mpi.barrier()')
MinRK
Add wave2D example
r3656
# run again with numpy vectorized inner-implementation
t0 = time.time()
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 ar = view.apply_async(_solve, tstop, dt=0, verbose=True, final_test=final_test)#, user_action=wave_saver)
MinRK
Add wave2D example
r3656 if final_test:
# this sum is performed element-wise as results finish
s = sum(ar)
# the L2 norm (RMS) of the result:
norm = sqrt(s/num_cells)
else:
norm = -1
t1 = time.time()
print 'vector inner-version, Wtime=%g, norm=%g'%(t1-t0, norm)
# if ns.save is True, then u_hist stores the history of u as a list
# If the partion scheme is Nx1, then u can be reconstructed via 'gather':
if ns.save and partition[-1] == 1:
import pylab
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view.execute('u_last=u_hist[-1]')
MinRK
Add wave2D example
r3656 # map mpi IDs to IPython IDs, which may not match
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 ranks = view['my_id']
MinRK
Add wave2D example
r3656 targets = range(len(ranks))
for idx in range(len(ranks)):
targets[idx] = ranks.index(idx)
u_last = rc[targets].gather('u_last', block=True)
pylab.pcolor(u_last)
pylab.show()