##// END OF EJS Templates
better flush iopub with AsyncResults...
better flush iopub with AsyncResults requesting metadata (e.g. ar.data or ar.stdout) will result in flushing iopub if the outputs are incomplete, so separate wait(0) need not be called. This also applies the workaround discussed in #2215

File last commit:

r7975:a7460c21
r8140:c0973b13
Show More
test_serialize.py
168 lines | 5.3 KiB | text/x-python | PythonLexer
MinRK
better serialization for parallel code...
r7967 """test serialization tools"""
#-------------------------------------------------------------------------------
# Copyright (C) 2011 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# Imports
#-------------------------------------------------------------------------------
import pickle
import nose.tools as nt
# from unittest import TestCaes
from IPython.zmq.serialize import serialize_object, unserialize_object
from IPython.testing import decorators as dec
from IPython.utils.pickleutil import CannedArray
MinRK
update serialize tests
r7972 #-------------------------------------------------------------------------------
# Globals and Utilities
#-------------------------------------------------------------------------------
MinRK
better serialization for parallel code...
r7967 def roundtrip(obj):
"""roundtrip an object through serialization"""
bufs = serialize_object(obj)
obj2, remainder = unserialize_object(bufs)
nt.assert_equals(remainder, [])
return obj2
class C(object):
"""dummy class for """
def __init__(self, **kwargs):
for key,value in kwargs.iteritems():
setattr(self, key, value)
MinRK
update serialize tests
r7972 SHAPES = ((100,), (1024,10), (10,8,6,5), (), (0,))
DTYPES = ('uint8', 'float64', 'int32', [('g', 'float32')], '|S10')
#-------------------------------------------------------------------------------
# Tests
#-------------------------------------------------------------------------------
MinRK
better serialization for parallel code...
r7967 @dec.parametric
def test_roundtrip_simple():
for obj in [
'hello',
dict(a='b', b=10),
[1,2,'hi'],
(b'123', 'hello'),
]:
obj2 = roundtrip(obj)
yield nt.assert_equals(obj, obj2)
@dec.parametric
def test_roundtrip_nested():
for obj in [
dict(a=range(5), b={1:b'hello'}),
[range(5),[range(3),(1,[b'whoda'])]],
]:
obj2 = roundtrip(obj)
yield nt.assert_equals(obj, obj2)
@dec.parametric
def test_roundtrip_buffered():
for obj in [
dict(a=b"x"*1025),
b"hello"*500,
[b"hello"*501, 1,2,3]
]:
bufs = serialize_object(obj)
yield nt.assert_equals(len(bufs), 2)
obj2, remainder = unserialize_object(bufs)
yield nt.assert_equals(remainder, [])
yield nt.assert_equals(obj, obj2)
MinRK
update serialize tests
r7972 def _scrub_nan(A):
"""scrub nans out of empty arrays
since nan != nan
"""
import numpy
if A.dtype.fields and A.shape:
for field in A.dtype.fields.keys():
try:
A[field][numpy.isnan(A[field])] = 0
MinRK
catch NotImplementedError when using isnan in test...
r7975 except (TypeError, NotImplementedError):
MinRK
update serialize tests
r7972 # e.g. str dtype
pass
MinRK
better serialization for parallel code...
r7967 @dec.parametric
@dec.skip_without('numpy')
def test_numpy():
import numpy
from numpy.testing.utils import assert_array_equal
MinRK
update serialize tests
r7972 for shape in SHAPES:
for dtype in DTYPES:
A = numpy.empty(shape, dtype=dtype)
_scrub_nan(A)
bufs = serialize_object(A)
B, r = unserialize_object(bufs)
yield nt.assert_equals(r, [])
yield nt.assert_equals(A.shape, B.shape)
yield nt.assert_equals(A.dtype, B.dtype)
yield assert_array_equal(A,B)
@dec.parametric
@dec.skip_without('numpy')
def test_recarray():
import numpy
from numpy.testing.utils import assert_array_equal
for shape in SHAPES:
for dtype in [
[('f', float), ('s', '|S10')],
[('n', int), ('s', '|S1'), ('u', 'uint32')],
]:
MinRK
better serialization for parallel code...
r7967 A = numpy.empty(shape, dtype=dtype)
MinRK
update serialize tests
r7972 _scrub_nan(A)
MinRK
better serialization for parallel code...
r7967 bufs = serialize_object(A)
B, r = unserialize_object(bufs)
yield nt.assert_equals(r, [])
MinRK
update serialize tests
r7972 yield nt.assert_equals(A.shape, B.shape)
yield nt.assert_equals(A.dtype, B.dtype)
MinRK
better serialization for parallel code...
r7967 yield assert_array_equal(A,B)
@dec.parametric
@dec.skip_without('numpy')
def test_numpy_in_seq():
import numpy
from numpy.testing.utils import assert_array_equal
MinRK
update serialize tests
r7972 for shape in SHAPES:
for dtype in DTYPES:
MinRK
better serialization for parallel code...
r7967 A = numpy.empty(shape, dtype=dtype)
MinRK
update serialize tests
r7972 _scrub_nan(A)
MinRK
better serialization for parallel code...
r7967 bufs = serialize_object((A,1,2,b'hello'))
canned = pickle.loads(bufs[0])
yield nt.assert_true(canned[0], CannedArray)
tup, r = unserialize_object(bufs)
B = tup[0]
yield nt.assert_equals(r, [])
MinRK
update serialize tests
r7972 yield nt.assert_equals(A.shape, B.shape)
yield nt.assert_equals(A.dtype, B.dtype)
MinRK
better serialization for parallel code...
r7967 yield assert_array_equal(A,B)
@dec.parametric
@dec.skip_without('numpy')
def test_numpy_in_dict():
import numpy
from numpy.testing.utils import assert_array_equal
MinRK
update serialize tests
r7972 for shape in SHAPES:
for dtype in DTYPES:
MinRK
better serialization for parallel code...
r7967 A = numpy.empty(shape, dtype=dtype)
MinRK
update serialize tests
r7972 _scrub_nan(A)
MinRK
better serialization for parallel code...
r7967 bufs = serialize_object(dict(a=A,b=1,c=range(20)))
canned = pickle.loads(bufs[0])
yield nt.assert_true(canned['a'], CannedArray)
d, r = unserialize_object(bufs)
B = d['a']
yield nt.assert_equals(r, [])
MinRK
update serialize tests
r7972 yield nt.assert_equals(A.shape, B.shape)
yield nt.assert_equals(A.dtype, B.dtype)
MinRK
better serialization for parallel code...
r7967 yield assert_array_equal(A,B)