##// END OF EJS Templates
Merge pull request #1771 from mwhansen/configurable-interactivity...
Merge pull request #1771 from mwhansen/configurable-interactivity Make default value of interactivity passed to run_ast_nodes configurable. This allows users to select if they want all nodes in a cell (groups of lines that can be run as a single statement) to produce output via `sys.displayhook` instead of our default policy, where only the last node is run in this way.

File last commit:

r4910:0dc49390
r7063:ca7a4ec5 merge
Show More
phistogram.py
40 lines | 1.2 KiB | text/x-python | PythonLexer
MinRK
updates to docs and examples
r3670 """Parallel histogram function"""
import numpy
MinRK
update a few parallel examples...
r4184 from IPython.parallel import Reference
MinRK
updates to docs and examples
r3670
MinRK
remove kernel examples already ported to newparallel
r3675 def phistogram(view, a, bins=10, rng=None, normed=False):
MinRK
updates to docs and examples
r3670 """Compute the histogram of a remote array a.
MinRK
remove kernel examples already ported to newparallel
r3675 Parameters
----------
view
IPython DirectView instance
MinRK
updates to docs and examples
r3670 a : str
String name of the remote array
bins : int
Number of histogram bins
rng : (float, float)
Tuple of min, max of the range to histogram
normed : boolean
Should the histogram counts be normalized to 1
"""
MinRK
remove kernel examples already ported to newparallel
r3675 nengines = len(view.targets)
# view.push(dict(bins=bins, rng=rng))
with view.sync_imports():
import numpy
rets = view.apply_sync(lambda a, b, rng: numpy.histogram(a,b,rng), Reference(a), bins, rng)
hists = [ r[0] for r in rets ]
lower_edges = [ r[1] for r in rets ]
# view.execute('hist, lower_edges = numpy.histogram(%s, bins, rng)' % a)
lower_edges = view.pull('lower_edges', targets=0)
hist_array = numpy.array(hists).reshape(nengines, -1)
# hist_array.shape = (nengines,-1)
MinRK
updates to docs and examples
r3670 total_hist = numpy.sum(hist_array, 0)
if normed:
total_hist = total_hist/numpy.sum(total_hist,dtype=float)
return total_hist, lower_edges