leo_bridge_demo.leo
363 lines
| 11.4 KiB
| text/plain
|
TextLexer
Ville M. Vainio
|
r994 | <?xml version="1.0" encoding="utf-8"?> | ||
<?xml-stylesheet ekr_test?> | ||||
<leo_file> | ||||
<leo_header file_format="2" tnodes="0" max_tnode_index="0" clone_windows="0"/> | ||||
<globals body_outline_ratio="0.5"> | ||||
Ville M. Vainio
|
r1005 | <global_window_position top="165" left="26" height="621" width="1280"/> | ||
Ville M. Vainio
|
r994 | <global_log_window_position top="0" left="0" height="0" width="0"/> | ||
</globals> | ||||
<preferences/> | ||||
<find_panel_settings/> | ||||
<vnodes> | ||||
<v t="vivainio.20080218184525"><vh>@chapters</vh></v> | ||||
Ville M. Vainio
|
r998 | <v t="vivainio.20080218184540" a="E"><vh>@ipy-startup</vh> | ||
Ville M. Vainio
|
r1005 | <v t="vivainio.20080218184613.1"><vh>b</vh></v> | ||
<v t="vivainio.20080218200031"><vh>Some classes P</vh> | ||||
Ville M. Vainio
|
r994 | <v t="vivainio.20080218190816"><vh>File-like access</vh></v> | ||
Ville M. Vainio
|
r995 | <v t="vivainio.20080218200106"><vh>csv data</vh></v> | ||
Ville M. Vainio
|
r998 | <v t="vivainio.20080219225120"><vh>String list</vh></v> | ||
Ville M. Vainio
|
r999 | <v t="vivainio.20080219230342"><vh>slist to leo</vh></v> | ||
Ville M. Vainio
|
r994 | </v> | ||
</v> | ||||
Ville M. Vainio
|
r998 | <v t="vivainio.20080218195413"><vh>Class tests</vh> | ||
Ville M. Vainio
|
r994 | <v t="vivainio.20080218200509"><vh>csvr</vh></v> | ||
<v t="vivainio.20080218191007"><vh>tempfile</vh></v> | ||||
<v t="vivainio.20080218195413.1"><vh>rfile</vh></v> | ||||
Ville M. Vainio
|
r998 | <v t="vivainio.20080219225804"><vh>strlist</vh></v> | ||
Ville M. Vainio
|
r994 | </v> | ||
Ville M. Vainio
|
r999 | <v t="vivainio.20080218201219"><vh>Direct variables</vh> | ||
Ville M. Vainio
|
r1005 | <v t="vivainio.20080222201226"><vh>NewHeadline</vh></v> | ||
<v t="vivainio.20080218201219.2"><vh>bar</vh></v> | ||||
Ville M. Vainio
|
r995 | </v> | ||
Ville M. Vainio
|
r1005 | <v t="vivainio.20080222193236" a="E"><vh>Docs</vh> | ||
<v t="vivainio.20080222193236.1" a="TV"><vh>Quick intro</vh></v> | ||||
</v> | ||||
<v t="vivainio.20080222202211"><vh>test stuff</vh></v> | ||||
<v t="vivainio.20080222202211.1"><vh>spam</vh></v> | ||||
<v t="vivainio.20080222202211.2"><vh>NewHeadline</vh></v> | ||||
Ville M. Vainio
|
r994 | </vnodes> | ||
<tnodes> | ||||
Ville M. Vainio
|
r995 | <t tx="vivainio.20080218184525">?</t> | ||
Ville M. Vainio
|
r999 | <t tx="vivainio.20080218184540">?Direct children of this node will be pushed at ipython bridge startup | ||
Ville M. Vainio
|
r994 | |||
Ville M. Vainio
|
r999 | This node itself will *not* be pushed</t> | ||
Ville M. Vainio
|
r994 | <t tx="vivainio.20080218184613.1">print "world"</t> | ||
Ville M. Vainio
|
r998 | <t tx="vivainio.20080218190816">def rfile(body,n): | ||
Ville M. Vainio
|
r994 | """ @cl rfile | ||
produces a StringIO (file like obj of the rest of the body) """ | ||||
import StringIO | ||||
return StringIO.StringIO(body) | ||||
Ville M. Vainio
|
r998 | def tmpfile(body,n): | ||
Ville M. Vainio
|
r994 | """ @cl tmpfile | ||
Produces a temporary file, with node body as contents | ||||
""" | ||||
import tempfile | ||||
h, fname = tempfile.mkstemp() | ||||
f = open(fname,'w') | ||||
f.write(body) | ||||
f.close() | ||||
return fname | ||||
</t> | ||||
<t tx="vivainio.20080218191007">@cl tmpfile | ||||
Hello</t> | ||||
Ville M. Vainio
|
r996 | <t tx="vivainio.20080218195413">?</t> | ||
Ville M. Vainio
|
r994 | <t tx="vivainio.20080218195413.1">@cl rfile | ||
These | ||||
lines | ||||
should | ||||
be | ||||
readable </t> | ||||
Ville M. Vainio
|
r999 | <t tx="vivainio.20080218200031">@others</t> | ||
Ville M. Vainio
|
r998 | <t tx="vivainio.20080218200106">def csvdata(body,n): | ||
Ville M. Vainio
|
r994 | import csv | ||
d = csv.Sniffer().sniff(body) | ||||
reader = csv.reader(body.splitlines(), dialect = d) | ||||
return reader</t> | ||||
<t tx="vivainio.20080218200509">@cl csvdata | ||||
a,b,b | ||||
1,2,2</t> | ||||
Ville M. Vainio
|
r995 | <t tx="vivainio.20080218201219"></t> | ||
Ville M. Vainio
|
r998 | <t tx="vivainio.20080218201219.2">@cl | ||
"hello world"</t> | ||||
<t tx="vivainio.20080219225120">import IPython.genutils | ||||
def slist(body,n): | ||||
return IPython.genutils.SList(body.splitlines()) | ||||
</t> | ||||
<t tx="vivainio.20080219225804">@cl slist | ||||
hello | ||||
world | ||||
on | ||||
many | ||||
lines | ||||
</t> | ||||
Ville M. Vainio
|
r999 | <t tx="vivainio.20080219230342">import ipy_leo | ||
@ipy_leo.format_for_leo.when_type(IPython.genutils.SList) | ||||
Ville M. Vainio
|
r998 | def format_slist(obj): | ||
return "@cl slist\n" + obj.n | ||||
</t> | ||||
Ville M. Vainio
|
r1005 | <t tx="vivainio.20080222193236"></t> | ||
<t tx="vivainio.20080222193236.1">@wrap | ||||
@nocolor | ||||
Introduction | ||||
============ | ||||
The purpose of ILeo, or leo-ipython bridge, is being a two-way communication | ||||
channel between Leo and IPython. The level of integration is much deeper than | ||||
conventional integration in IDEs; most notably, you are able to store *data* in | ||||
Leo nodes, in addition to mere program code. The possibilities of this are | ||||
endless, and this degree of integration has not been seen previously in the python | ||||
world. | ||||
IPython users are accustomed to using things like %edit to produce non-trivial | ||||
functions/classes (i.e. something that they don't want to enter directly on the | ||||
interactive prompt, but creating a proper script/module involves too much | ||||
overhead). In ILeo, this task consists just going to the Leo window, creating a node | ||||
and writing the code there, and pressing alt+I (push-to-ipython). | ||||
Obviously, you can save the Leo document as usual - this is a great advantage | ||||
of ILeo over using %edit, you can save your experimental scripts all at one | ||||
time, without having to organize them into script/module files (before you | ||||
really want to, of course!) | ||||
Installation | ||||
============ | ||||
You need the latest version of Leo, and the development version of IPython (ILeo | ||||
will be incorporated to IPython 0.8.3. | ||||
You can get IPython from Launchpad by installing bzr and doing | ||||
bzr branch lp:ipython | ||||
and running "setup.py install". | ||||
You need to enable the 'ipython.py' plugin in Leo: | ||||
- Help -> Open LeoSettings.leo | ||||
- Edit @settings-->Plugins-->@enabled-plugins, add/uncomment 'ipython.py' | ||||
- Restart Leo. Be sure that you have the console window open (start leo.py from console, or double-click leo.py on windows) | ||||
- Press alt+5 OR alt-x start-ipython to launch IPython in the console that | ||||
started leo. You can start entering IPython commands normally, and Leo will keep | ||||
running in the same time. | ||||
Accessing IPython from Leo | ||||
========================== | ||||
IPython code | ||||
------------ | ||||
Just enter IPython commands on a Leo node and press alt-I to execute | ||||
push-to-ipython to execute the script in IPython. 'commands' is interpreted | ||||
loosely here - you can enter function and class definitions, in addition to the | ||||
things you would usually enter at IPython prompt - calculations, system commands etc. | ||||
Everything that would be legal to enter on IPython prompt is legal to execute | ||||
from ILeo. | ||||
Results will be shows in Leo log window for convenience, in addition to the console. | ||||
Suppose that a node had the following contents: | ||||
{{{ | ||||
1+2 | ||||
print "hello" | ||||
3+4 | ||||
def f(x): | ||||
return x.upper() | ||||
f('hello world') | ||||
}}} | ||||
If you press alt+I on that done, you will see the following in Leo log window (IPython tab): | ||||
{{{ | ||||
In: 1+2 | ||||
<2> 3 | ||||
In: 3+4 | ||||
<4> 7 | ||||
In: f('hello world') | ||||
<6> 'HELLO WORLD' | ||||
}}} | ||||
(numbers like <6> mean IPython output history indices). | ||||
Plain Python code | ||||
----------------- | ||||
If the headline of the node ends with capital P, alt-I will not run the code | ||||
through IPython translation mechanism but use the direct python 'exec' statement | ||||
(in IPython user namespace) to execute the code. It wont be shown in IPython | ||||
history, and sometimes it is safer (and more efficient) to execute things as | ||||
plain Python statements. Large class definitions are good candidates for P | ||||
nodes. | ||||
Accessing Leo nodes from IPython | ||||
================================ | ||||
The real fun starts when you start entering text to leo nodes, and are using | ||||
that as data (input/output) for your IPython work. | ||||
Accessing Leo nodes happens through the variable 'wb' (short for "WorkBook") | ||||
that exist in the IPython user namespace. Nodes that are directly accessible are | ||||
the ones that have simple names which could also be Python variable names; | ||||
'foo_1' will be accessible directly from IPython, whereas 'my scripts' will not. | ||||
If you want to access a node with arbitrary headline, add a child node '@a foo' | ||||
(@a stands for 'anchor'). Then, the parent of '@a foo' is accessible through | ||||
'wb.foo'. | ||||
You can see what nodes are accessible be entering (in IPython) wb.<TAB>. Example: | ||||
[C:leo/src]|12> wb. | ||||
wb.b wb.tempfile wb.rfile wb.NewHeadline | ||||
wb.bar wb.Docs wb.strlist wb.csvr | ||||
Suppose that we had a node with headline 'spam' and body: | ||||
['12',2222+32] | ||||
we can access it from IPython (or from scripts entered into other Leo nodes!) by doing: | ||||
C:leo/src]|19> wb.spam.v | ||||
<19> ['12', 2254] | ||||
'v' attribute stands for 'value', which means the node contents will be run | ||||
through 'eval' and everything you would be able to enter into IPython prompt | ||||
will be converted to objects. This mechanism can be extended far beyond direct | ||||
evaluation (see '@cl definitions'). | ||||
'v' attribute also has a setter, i.e. you can do: | ||||
wb.spam.v = "mystring" | ||||
Which will result in the node 'spam' having the following text: | ||||
'mystring' | ||||
What assignment to 'v' does can be configured through generic functions | ||||
(simplegeneric module, will be explained later). | ||||
Besides v, you can set the body text directly through wb.spam.b = | ||||
"some\nstring", headline by wb.spam.h = 'new_headline' (obviously you must | ||||
access the node through wb.new_headline from that point onwards), and access the | ||||
contents as string list (IPython SList) through 'wb.spam.l'. | ||||
If you do 'wb.foo.v = 12' when node named 'foo' does not exist, the node titled | ||||
'foo' will be automatically created and assigned body 12. | ||||
@cl definitions | ||||
=============== | ||||
If the first line in the body text is of the form '@cl sometext', IPython will | ||||
will evaluate 'sometext' and call the result with the rest of the body when you | ||||
do 'wb.foo.v'. An example is in place here. Suppose that we have defined a class | ||||
(I use the term class in a non-python sense here) | ||||
{{{ | ||||
def rfile(body,n): | ||||
""" @cl rfile | ||||
produces a StringIO (file like obj) of the rest of the body """ | ||||
import StringIO | ||||
return StringIO.StringIO(body) | ||||
}}} | ||||
Now, let's say you node 'spam' with text | ||||
{{{ | ||||
@cl rfile | ||||
hello | ||||
world | ||||
and whatever | ||||
}}} | ||||
Now, on IPython, we can do this: | ||||
{{{ | ||||
[C:leo/src]|22> f = wb.spam.v | ||||
[C:leo/src]|23> f | ||||
<23> <StringIO.StringIO instance at 0x04E7E490> | ||||
[C:leo/src]|24> f.readline() | ||||
<24> u'hello\n' | ||||
[C:leo/src]|25> f.readline() | ||||
<25> u'world\n' | ||||
[C:leo/src]|26> f.readline() | ||||
<26> u'and whatever' | ||||
[C:leo/src]|27> f.readline() | ||||
<27> u'' | ||||
}}} | ||||
You should declare new @cl types to make ILeo as convenient your problem domain as possible. For example, a "@cl etree" could return the elementtree object for xml content, or | ||||
Special node types | ||||
================== | ||||
@ipy-startup | ||||
------------ | ||||
If this node exist, the *direct children* of this will be pushed to IPython when | ||||
ILeo is started (you press alt+5). Use it to push your own @cl definitions etc. | ||||
The contents of of the node itself will be ignored. | ||||
@ipy-results | ||||
------------ | ||||
When you create a new node (wb.foo.v = 'stuff'), the node foo will be created as | ||||
a child of this node. If @ipy-results does not exist, the new node will be created after the currently selected node. | ||||
@a nodes | ||||
-------- | ||||
You can attach these as children of existing nodes to provide a way to access | ||||
nodes with arbitrary headlines, or to provide aliases to other nodes. If | ||||
multiple @a nodes are attached as children of a node, all the names can be used | ||||
to access the same object. | ||||
Acknowledgements & History | ||||
========================== | ||||
This idea got started when I (Ville) saw this post by Edward Ream (the author of | ||||
Leo) on IPython developer mailing list: | ||||
http://lists.ipython.scipy.org/pipermail/ipython-dev/2008-January/003551.html | ||||
I was using FreeMind as mind mapping software, and so I had an immediate use | ||||
case for Leo (which, incidentally, is superior to FreeMind as mind mapper). The | ||||
wheels started rolling, I got obsessed with the power of this concept | ||||
(everything clicked together), and Edwards excitement paralleled mine. | ||||
Everything was mind-bogglingly easy/trivial, something that is typical of all | ||||
revolutionary technologies (think Python here). | ||||
The discussion that "built" ILeo is here: | ||||
http://sourceforge.net/forum/forum.php?thread_id=1911662&forum_id=10226 | ||||
</t> | ||||
<t tx="vivainio.20080222201226">1+2 | ||||
print "hello" | ||||
3+4 | ||||
def f(x): | ||||
return x.upper() | ||||
f('hello world')</t> | ||||
<t tx="vivainio.20080222202211"></t> | ||||
<t tx="vivainio.20080222202211.1">@cl rfile | ||||
hello | ||||
world | ||||
and whatever</t> | ||||
<t tx="vivainio.20080222202211.2"></t> | ||||
Ville M. Vainio
|
r994 | </tnodes> | ||
</leo_file> | ||||