##// END OF EJS Templates
ipcluster subcommands had inaccurate 'App' suffix in docs
ipcluster subcommands had inaccurate 'App' suffix in docs

File last commit:

r3668:9634efdf
r4064:f0b584c0
Show More
parallelwave.py
208 lines | 6.7 KiB | text/x-python | PythonLexer
MinRK
Add wave2D example
r3656 #!/usr/bin/env python
"""
A simple python program of solving a 2D wave equation in parallel.
Domain partitioning and inter-processor communication
are done by an object of class ZMQRectPartitioner2D
(which is a subclass of RectPartitioner2D and uses 0MQ via pyzmq)
An example of running the program is (8 processors, 4x2 partition,
200x200 grid cells)::
$ ipclusterz start -n 8 # start 8 engines
$ ./parallelwave.py --grid 200 200 --partition 4 2
See also parallelwave-mpi, which runs the same program, but uses MPI
(via mpi4py) for the inter-engine communication.
Authors
-------
* Xing Cai
* Min Ragan-Kelley
"""
#
import sys
import time
from numpy import exp, zeros, newaxis, sqrt
from IPython.external import argparse
MinRK
SGE test related fixes...
r3668 from IPython.parallel import Client, Reference
MinRK
Add wave2D example
r3656
MinRK
update API after sagedays29...
r3664 def setup_partitioner(comm, addrs, index, num_procs, gnum_cells, parts):
MinRK
Add wave2D example
r3656 """create a partitioner in the engine namespace"""
MinRK
update API after sagedays29...
r3664 global partitioner
MinRK
Add wave2D example
r3656 p = ZMQRectPartitioner2D(comm, addrs, my_id=index, num_procs=num_procs)
p.redim(global_num_cells=gnum_cells, num_parts=parts)
p.prepare_communication()
# put the partitioner into the global namespace:
MinRK
update API after sagedays29...
r3664 partitioner=p
MinRK
Add wave2D example
r3656
MinRK
update API after sagedays29...
r3664 def setup_solver(*args, **kwargs):
MinRK
Add wave2D example
r3656 """create a WaveSolver in the engine namespace."""
MinRK
update API after sagedays29...
r3664 global solver
solver = WaveSolver(*args, **kwargs)
MinRK
Add wave2D example
r3656
def wave_saver(u, x, y, t):
"""save the wave state for each timestep."""
global u_hist
global t_hist
t_hist.append(t)
u_hist.append(1.0*u)
# main program:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
paa = parser.add_argument
paa('--grid', '-g',
type=int, nargs=2, default=[100,100], dest='grid',
help="Cells in the grid, e.g. --grid 100 200")
paa('--partition', '-p',
type=int, nargs=2, default=None,
help="Process partition grid, e.g. --partition 4 2 for 4x2")
paa('-c',
type=float, default=1.,
help="Wave speed (I think)")
paa('-Ly',
type=float, default=1.,
help="system size (in y)")
paa('-Lx',
type=float, default=1.,
help="system size (in x)")
paa('-t', '--tstop',
type=float, default=1.,
help="Time units to run")
paa('--profile',
type=unicode, default=u'default',
help="Specify the ipcluster profile for the client to connect to.")
paa('--save',
action='store_true',
help="Add this flag to save the time/wave history during the run.")
paa('--scalar',
action='store_true',
help="Also run with scalar interior implementation, to see vector speedup.")
ns = parser.parse_args()
# set up arguments
grid = ns.grid
partition = ns.partition
Lx = ns.Lx
Ly = ns.Ly
c = ns.c
tstop = ns.tstop
if ns.save:
user_action = wave_saver
else:
user_action = None
num_cells = 1.0*(grid[0]-1)*(grid[1]-1)
final_test = True
# create the Client
rc = Client(profile=ns.profile)
num_procs = len(rc.ids)
if partition is None:
partition = [num_procs,1]
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 else:
num_procs = min(num_procs, partition[0]*partition[1])
MinRK
Add wave2D example
r3656
assert partition[0]*partition[1] == num_procs, "can't map partition %s to %i engines"%(partition, num_procs)
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 # construct the View:
view = rc[:num_procs]
print "Running %s system on %s processes until %f"%(grid, partition, tstop)
MinRK
Add wave2D example
r3656 # functions defining initial/boundary/source conditions
def I(x,y):
from numpy import exp
return 1.5*exp(-100*((x-0.5)**2+(y-0.5)**2))
def f(x,y,t):
return 0.0
# from numpy import exp,sin
# return 10*exp(-(x - sin(100*t))**2)
def bc(x,y,t):
return 0.0
# initialize t_hist/u_hist for saving the state at each step (optional)
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view['t_hist'] = []
view['u_hist'] = []
MinRK
Add wave2D example
r3656
# set vector/scalar implementation details
impl = {}
impl['ic'] = 'vectorized'
impl['inner'] = 'scalar'
impl['bc'] = 'vectorized'
# execute some files so that the classes we need will be defined on the engines:
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view.execute('import numpy')
view.run('communicator.py')
view.run('RectPartitioner.py')
view.run('wavesolver.py')
MinRK
Add wave2D example
r3656
# scatter engine IDs
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view.scatter('my_id', range(num_procs), flatten=True)
MinRK
Add wave2D example
r3656
# create the engine connectors
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view.execute('com = EngineCommunicator()')
MinRK
Add wave2D example
r3656
# gather the connection information into a single dict
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 ar = view.apply_async(lambda : com.info)
MinRK
Add wave2D example
r3656 peers = ar.get_dict()
# print peers
# this is a dict, keyed by engine ID, of the connection info for the EngineCommunicators
# setup remote partitioner
# note that Reference means that the argument passed to setup_partitioner will be the
# object named 'com' in the engine's namespace
MinRK
update API after sagedays29...
r3664 view.apply_sync(setup_partitioner, Reference('com'), peers, Reference('my_id'), num_procs, grid, partition)
MinRK
Add wave2D example
r3656 time.sleep(1)
# convenience lambda to call solver.solve:
_solve = lambda *args, **kwargs: solver.solve(*args, **kwargs)
if ns.scalar:
impl['inner'] = 'scalar'
# setup remote solvers
MinRK
update API after sagedays29...
r3664 view.apply_sync(setup_solver, I,f,c,bc,Lx,Ly, partitioner=Reference('partitioner'), dt=0,implementation=impl)
MinRK
Add wave2D example
r3656
# run first with element-wise Python operations for each cell
t0 = time.time()
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 ar = view.apply_async(_solve, tstop, dt=0, verbose=True, final_test=final_test, user_action=user_action)
MinRK
Add wave2D example
r3656 if final_test:
# this sum is performed element-wise as results finish
s = sum(ar)
# the L2 norm (RMS) of the result:
norm = sqrt(s/num_cells)
else:
norm = -1
t1 = time.time()
print 'scalar inner-version, Wtime=%g, norm=%g'%(t1-t0, norm)
# run again with faster numpy-vectorized inner implementation:
impl['inner'] = 'vectorized'
# setup remote solvers
MinRK
update API after sagedays29...
r3664 view.apply_sync(setup_solver, I,f,c,bc,Lx,Ly,partitioner=Reference('partitioner'), dt=0,implementation=impl)
MinRK
Add wave2D example
r3656
t0 = time.time()
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 ar = view.apply_async(_solve, tstop, dt=0, verbose=True, final_test=final_test)#, user_action=wave_saver)
MinRK
Add wave2D example
r3656 if final_test:
# this sum is performed element-wise as results finish
s = sum(ar)
# the L2 norm (RMS) of the result:
norm = sqrt(s/num_cells)
else:
norm = -1
t1 = time.time()
print 'vector inner-version, Wtime=%g, norm=%g'%(t1-t0, norm)
# if ns.save is True, then u_hist stores the history of u as a list
# If the partion scheme is Nx1, then u can be reconstructed via 'gather':
if ns.save and partition[-1] == 1:
import pylab
MinRK
wave2d example using single view, instead of repeated 'rc[:]'
r3662 view.execute('u_last=u_hist[-1]')
u_last = view.gather('u_last', block=True)
MinRK
Add wave2D example
r3656 pylab.pcolor(u_last)
pylab.show()