SymPy Examples.ipynb
684 lines
| 150.7 KiB
| text/plain
|
TextLexer
Brian E. Granger
|
r4634 | { | |
Fernando Perez
|
r5783 | "metadata": { | |
MinRK
|
r11536 | "name": "" | |
Brian Granger
|
r6035 | }, | |
"nbformat": 3, | |||
MinRK
|
r7739 | "nbformat_minor": 0, | |
Fernando Perez
|
r5783 | "worksheets": [ | |
{ | |||
"cells": [ | |||
{ | |||
Brian Granger
|
r6035 | "cell_type": "markdown", | |
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "source": [ | |
MinRK
|
r7739 | "# SymPy: Open Source Symbolic Mathematics\n", | |
"\n", | |||
"This notebook uses the [SymPy](http://sympy.org) package to perform symbolic manipulations,\n", | |||
"and combined with numpy and matplotlib, also displays numerical visualizations of symbolically\n", | |||
"constructed expressions.\n", | |||
"\n", | |||
MinRK
|
r11536 | "We first load sympy printing extensions, as well as all of sympy:" | |
Fernando Perez
|
r5783 | ] | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
MinRK
|
r11536 | "from IPython.display import display\n", | |
"\n", | |||
"from sympy.interactive import printing\n", | |||
"printing.init_printing()\n", | |||
MinRK
|
r7739 | "\n", | |
"from __future__ import division\n", | |||
"import sympy as sym\n", | |||
"from sympy import *\n", | |||
"x, y, z = symbols(\"x y z\")\n", | |||
"k, m, n = symbols(\"k m n\", integer=True)\n", | |||
Fernando Perez
|
r5783 | "f, g, h = map(Function, 'fgh')" | |
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
MinRK
|
r11536 | "outputs": [], | |
Fernando Perez
|
r5783 | "prompt_number": 1 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "markdown", | |
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "source": [ | |
"<h2>Elementary operations</h2>" | |||
] | |||
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"Rational(3,2)*pi + exp(I*x) / (x**2 + y)" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
MinRK
|
r11536 | "$$\\frac{3 \\pi}{2} + \\frac{e^{i x}}{x^{2} + y}$$" | |
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAHAAAAAzBAMAAAC9ApG6AAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAIom7VJlmdt1E7xDN\nMqsI8sYEAAACkUlEQVRIDe1WTWjTUBz/Ne2atFnaMmToTt2gOvyAwlQQQXdQdhHWMYaXiT3pNQqz\ngmLnSfTiGKgn6fDk1yGKsJNtDwoeAqsgeFxviiJ2Mr8oGtsmL/m/9KWUnXYwh77fZ96/KWkC9Hss\n9Bv05976hW3L79UhLbz/QuYbGjtIWCDc18SVRPWm54dymM57NAiFXiyiNkiD8iaSi0Fxood1IJki\nQuwRKlXCg2DlJbCOGmf3MypOSaHGONJc8TVQtCzrOydS8rwwg/Ko+mG5YBBZG89BOjA1fIF+AeID\nsesY4gRG9tbeYVTmx2deex2ZVM9Q7uL4EyCboFO4Vgd8On9JYIZSCG9Cqyt8mLK/lLg42UT4Bwby\nScFJndA3N0xBPAtlAxUjuURVDj8AZE7okGge0zouI57u9hzlKtQZgXln7ghwGIngonz6nKC3HSQ1\ntcUpIvr/onMFWncwOxq25F4cpgtX/wWUTPPNU9PM+fV+uLtjP2Ga8RczhwxqB2NfUUolqsFh6viK\nSkrboDbFobmJmsd9xfhS6Ldn8qgMiXixPO8i0vQJLv0MPHZJN1B0W3vWZT0EvpJZ/X7GEab8BtaM\nXsVoLrDYMm4bXacDVq/tuqhjGfdtz9lRzegYYfGY6L9TTUdvKFXt1YmjXFGKrKDItlGyDJFVMqRm\nJBW3rAZX3DFQxQSLzTJAVxWD3PmcUY24jp9OTq7TgoeTuov3m+Yt02w9SoGSof1x9JNoPXsEx3oN\nhiezn2Me8oqtajnIgmLEKEIWFI8hXLeLO8cyH23EfZYmj2OYKGzHWZTytrxmWb9IgMFyYXW3k+hI\nrFjec1YwH2sJVlYE5gVuD+mu7SWqKrmXeuT9lqK337K2cMQK7XeQf8mMtG+0mjYiAAAAAElFTkSu\nQmCC\n", | |
Brian Granger
|
r6035 | "prompt_number": 2, | |
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r7739 | " \u2148\u22c5x \n", | |
"3\u22c5\u03c0 \u212f \n", | |||
"\u2500\u2500\u2500 + \u2500\u2500\u2500\u2500\u2500\u2500\n", | |||
" 2 2 \n", | |||
Fernando Perez
|
r5783 | " x + y" | |
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
Fernando Perez
|
r5783 | "prompt_number": 2 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"exp(I*x).subs(x,pi).evalf()" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
"$$-1.0$$" | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAACkAAAAPBAMAAACLu/vuAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEM3dMiK7mat272aJ\nVER1AWP9AAAAiklEQVQYGWNggANFMIuxZroDXIiBIewjmMN0gdEUISpWARHdxcBwCCHKwAkRzWBg\nuC+AEIaK/mBgeH8BXZTxO1B0Aroo6x8GBv8DOESFjEFAhQFqGyNQLaYJDEBz72PYxmDGwLAf02Wz\nGBiKEJaBzZVXYGC+wLgEIcre9bmbgbmBgfHkDAeEKAoLAGTVKXybU7YXAAAAAElFTkSuQmCC\n", | |
"prompt_number": 3, | |||
Fernando Perez
|
r5783 | "text": [ | |
"-1.00000000000000" | |||
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 3 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": true, | |||
Fernando Perez
|
r5783 | "input": [ | |
"e = x + 2*y" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Brian Granger
|
r6035 | "outputs": [], | |
MinRK
|
r11536 | "prompt_number": 4 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"srepr(e)" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "prompt_number": 5, | |
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r11536 | "\"Add(Symbol('x'), Mul(Integer(2), Symbol('y')))\"" | |
Fernando Perez
|
r5783 | ] | |
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 5 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"exp(pi * sqrt(163)).evalf(50)" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
"$$262537412640768743.99999999999925007259719818568888$$" | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAAPBAMAAACYf5HCAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAIpm7MhCriUTv3c12\nVGZoascqAAAGD0lEQVRIDe1W328UVRg9+2N2t93d2RUfDJrIUpBifKBK8FdiuuFBEn3oBBMJP5Ld\noDZBsd0UwkZtZGPig9GEEsSABqmS8GJMGxHwAaESlRhI3Bijb3b0QUMkLJWUFvpjPd93p3vHt/0D\nnLRnv7nnft937pm5M4NI1/oikBzeCxOd8zbWcE/1KcRPdlerAOIFwmkENKqXOB0bAaf7YhHP7KxW\nK5qNHZfWtnJIR6p76pwo0/IGsHl4JULQDhPStHl4dbjpf5iVrc4UqnVVDpD2YKL0d/G1ZpnmXNSa\nyLkyVAOeR3IWzld4yEQ43pxHpIBJ3202m7e4js4e4O7pYCK216LjHDzBDnXnEzQ4qazZKCBRX8oh\nvQzZRU7EVj9y0IDzMZbnLbTFqDrVhK+xLR9qahktGXQWodpR5SDSSxtEGDqazQmzTHOugwpR4FXg\nJeAo0hWsNxHO7s4js4DcaDQPlLmOH3rw3BpW14k4ixhtyRwCrgJvYCWQMNlZH5HxIEfoH+u4Izbs\nAl4wkBhBosdCW0zQlJrcESTHQ00toyWjqlaFakeV4zwy6EEjpPd9wysny9RzC/gNuA/4EBgsNljE\nRLry1BGUxpO8h4q8uf+WZdMGnehOydJw/yngUWDSqwB7odnJHjijQY7Q79ScOZlK2O8p5MaRnLbQ\nFqNNVVOsjOx0qKlltGTQWYRqM5XDi+HBRAnREhKqagWwB9gGXPBowxMySSNtyZNJn/Ae/5PpwAal\nYyMcAipcJzfMgTqQmoBmp256SZ+U5AgNsymcm9TytkCt1IPMrIW2GKspV0ZqIdTUMloy6EwbtG4t\nkEMbTKQ2WKE6aJgDG/CmyMWYN7fpYs1EGLjGJxHwhQANwO9LNjAe83JfDvPR4uZPwfmHNkwAMdqv\n2YOLWo05QvNIFwQ/4t3gK3Twbli00BbDAmOeaioVkJoPNbWMluSpqJW7QZvByKENJkpcv1gMC1Va\nIdH8y2cmUjPOnI9jGgEbsKKG+OsFniZ9PnYnrA2pGZTOo6OOHTiFyAzQVwGdDLKjzdNBjtDApk8J\n9IC32YRC8gbS8xbaYkSd0bSigviMbcrKS4yWNGrVBm0GI0ds0CjmRWbDQnXQzFk3x0nyKnCaHh5k\nLC8FXt9RwmtFoMTfJKwNpEvTiB5Gxdrg3ECQ/cezt2smR2hJfV8wPZHd7yvgHH5dDEFbTEtT2AY2\n5dFSq3VVrdpgmhk5YoOJgCfDQnVQwV194YiUWwV5pjdqGvE8Ko/BjsPAZf7+HLKBE3OjcGezRa7T\n4VXipsiMB9luGQ2TozRTcZQagGvf7q8bcK9sWoCFthhRxyM6VarIprBNQ2q1pKpVG7RuIIc2BBGw\nLq/L1HML+BPubQrNlHU7NXyNEtzAs5E8Ygv6ceBUrA0ykfvQXdwCudx8NkzW9ZJwMzb8Dg9xk2Po\nu4DeuqyAm1PsUEhw68JCG4w0VU25ArILoaZWbVDyBH+NDdIskEMbTPQKt2fNCtVBw/Da9VHoT4jk\n+Qjl3SAR1xmdzk0jtgiH74Jsf//gB7zmIl9ovinc2V/6+2/vli+ohodSGfKmaNRkBw1ojqG5z3p9\njvE404J0maGFNpiWps4euNOhplatKSlqWzac0S0yoC9MI4wOrPOsUB1UkA2W8OVbOZOf5LPBRPym\n6hzv6EHnFOK83jx4ojboRL66oyMcPMTPKvDLE30F+XxgdkceeHgphzT/xjiEq/n4lAH3IPryFtpi\ntKlqyoyA36+2qWW0ZNBZrpd2NHLku8FElPlZSKgOGuYgn4Z53FsdehmxinPMRJECy7g+JieQNTbk\nAht0Ih7D1joXd5Nu1R0+AydZX7NTp+G2ckhfR3aeH2G47G33DWROO+dhoS1Gm6omfI6txVBTy2jJ\nQK3YoB2NHLHBRMtAt6xQHTTMux6u8W3WbPLJMbSmGETL9j0AvNX1OL8f5R2KZO8tP7rrzkBAJ7te\n5OCeJu//4e+LwHIxRbLxdPfapRyhU12raugsIymlFDDEkRC0wxh1qmnLFXa2TUOM1lW1KtQ0Uzlr\njp/0A2HdO72wUKUV4juHKOv/Qxz4F/nKkQHS8LrfAAAAAElFTkSuQmCC\n", | |
"prompt_number": 6, | |||
Fernando Perez
|
r5783 | "text": [ | |
"262537412640768743.99999999999925007259719818568888" | |||
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 6 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "markdown", | |
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "source": [ | |
"<h2>Algebra<h2>" | |||
] | |||
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
MinRK
|
r7739 | "eq = ((x+y)**2 * (x+1))\n", | |
Fernando Perez
|
r5783 | "eq" | |
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
"$$\\left(x + 1\\right) \\left(x + y\\right)^{2}$$" | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAIoAAAAbBAMAAABRkwqxAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAMmYiu80QdonvRN2Z\nVKvu110NAAACD0lEQVQ4Ea2UvS8EQRiHf3fr9va+uP/ANvqNqFRCQiPumlX4SDYRoeI6JMJFohPR\nINH4aEgUSlGQa0QjohMRCYVER0iu0PC+88HNZkWxppjZ+b3PPDs7kywQu630B7EdcLzmcnxLzku8\nx7dkdqyP+BagUP8PS67yH5YVkiRc6iJbsijjhBtZplAQyRo9dUQjqQB4lKVfCC4ycYBdYFCiod4q\nBUBKhtGEqBGRGL3vRboqUdWPydHufwmgaiZhe4081TKfn6/IGCluNLNIFnuNZyZRqGiCR0kAh40h\nTAtGuWgSpkUSAF/TxELnrHqFsRdRDBHaMnkBa0MuJ0M3bauaPM6V+bXhvbRxZBLaUr1F+hUQBHAK\nOIFTL3i8IGy548gklMW6PkdTFyAIYIv2ghTNZTO/qJVDk1AWG5tooVMQhGAg5sQv+/6J748IH9+R\nZMiiCcf3h9d9v0ZBto7W4reF9kvPRQQ8hr9IXI9J6HPJlzFHvLpAOrtCsIh0wI6wRZ9uA6EtTQ8Y\nIF6d7ipwdF1Cu3CELZecmoS25Luyb1QUhNjS1MzEkss8NX26V9tnLjDEEW26gdAW+3mef5SCAHLq\nipmnpi1iYq3xYBLaAuTLgCToF1ETC3S3px94dCrcm0TW5Qx4wvSOJmjaw1l0G5dxJHGMPqoq4te/\nFAvU8si/1P588YegT3N5QVRLejL9m/gCd/R8g+k5mUIAAAAASUVORK5CYII=\n", | |
"prompt_number": 7, | |||
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r7739 | " 2\n", | |
Fernando Perez
|
r5783 | "(x + 1)\u22c5(x + y) " | |
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 7 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"expand(eq)" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
"$$x^{3} + 2 x^{2} y + x^{2} + x y^{2} + 2 x y + y^{2}$$" | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAASgAAAAYBAMAAAC7JH0zAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHarIkSJZt3NVLsy\nme8Q6PJIAAADSUlEQVRIDZ2WPUwUURSF7yw7u+v+4AQSShwwocO/GCOV0xiNhRIKKxPWxWi1kU4b\nG2JjJbFytQATK4y6SkmM21qBdgSNaGKijYLxL8Rknffuu3Pvm9kZE7Z4777znXNmdpgAAPhpzHhm\nSm6FjddJkZRM2HyR3koF8Z0ztdlaO06j8yWYiObEkAULQd98IvAfQWRq9eJWqvsmrAa7gqWg+iM1\nmAKsTC39O32Cc5MpFQBZsH8y/zM1mAKszHAnxaXkp94uYXk7I5iCODNwJ8Wi5bndwpKflezNRCb+\nouffrXQoVFijqceeCZuxgGyNoegoMtWdSNXDIBSi9+GGjexTFizGv41stWuiE2eGO/nfKDsB7ocB\nvhqjW3c7ZlQbOVCKoC0jPA8XcCAoWhGolSAqUQZKQfEDamUf988AJzo4vlp6JF90csSgLWtYvbf0\nDF0ERSsCtRLUCmeg2pgJtBY5Frzopr51u8hsB54iaFUj6+92t+yMaEWgViuJmYH9J8f8no7bnjN6\ndKqhmdP04Sw+L+pgqB22PPQG8ubZK0owHKmVHQRZcerFudK8rtULOQDcXzAE1/1bWi6UN+EgusjB\n0AqiXH8COfOUFKWMaGUHQVYKXmG7HOhavZADoNSGi3DVe6jlM+Fv/BV0kYOhFdRyfnEdKm30q5Uy\n3CocBgrFgT0iLOMbAB7cN8Vevw/fcaYLMNS6JTvwEfb6JhtuBAGoVTgMFArIcKHVuvul1VpTbblD\najU3AjDtVf+GZ+lgmJTdbVjtqILwIzPcahwCykwY9jCt1ug7PYZ8AOGNOMjWIbeJU+RgqIAthz/t\nA2jXawS5lR0EheIdhFyPm6quQS54EL6sI9i9DBX96PjqAioLVaMcmpcxqFeCopUdBFmZXnwJp3rE\nT19uHnd3Klv5WYQbMG0m0yGhsthyre2aPxE6TtcVrewgyMrg6MAVczUrvtDt/nGOjIxd0yrAYON9\ngKPpkFABW3aOjcv/7+i6opUdBFnBC/FKDlZoWjdDiiMuh28If+JQE3IwJIWDOLnysTHsm3fon4YU\nhy1PwL5JToMNNWAHQVZEMmss+RU/i8fZHDyPS7Fz0pFUYpH40R19G5cyz1PjnUwOkHREyj9nXAiY\nJhQ2HQAAAABJRU5ErkJggg==\n", | |
"prompt_number": 8, | |||
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r7739 | " 3 2 2 2 2\n", | |
Fernando Perez
|
r5783 | "x + 2\u22c5x \u22c5y + x + x\u22c5y + 2\u22c5x\u22c5y + y " | |
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 8 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
MinRK
|
r7739 | "a = 1/x + (x*sin(x) - 1)/x\n", | |
Fernando Perez
|
r5783 | "a" | |
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
MinRK
|
r11536 | "$$\\frac{1}{x} \\left(x \\sin{\\left (x \\right )} - 1\\right) + \\frac{1}{x}$$" | |
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAALYAAAAqBAMAAADserwPAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAzRAiu5mrdu/dZkSJ\nVDL+6OvUAAAClElEQVRIDe2VP2gTURzHv3dJG5Nc0ouTImoKYh1EbuggChoQKbikix2lm+Jg4mJB\nCo0dXBx0UhzEE3ft6mQWFerSTdyy6SKRggUnfX9+937v5XIg8sYctPf9fb+/97mXl+MXADgs/nxf\nQVsRl/d9g4FSV7FPrflnh1d7et8V/2xga8bOvQ2zM8kdyew9yR8Jncncrd+3ddhMpzQpK0tqo2kd\nb/Lm2uOnqeMuO9X3PpcmucMeKTFE50c5N2eINusaD7kwScCeVmqIxpNurq4McxYZnLDSkR6im9QX\nJkWEQ/+QhIOJ1WqIniGzYR2j2/fOLS+NTG0lx42phWIHe7ooZn8QDUv3Lm6Kh3/7crfUXW8eubFx\nU66yEintS7GjVW0Vs68B4bD2rBoj7KCK8jqCFVxOxDJO8EpTzH/FrsW6Lma/AKJ2tN9IUN9GJNnl\nARZSsYwTfBWlfSl244m2Jtl/1CWzR2LfCDpSvlxJFDvGQt9NxjJefC6vE1IqdvOnlIBhM1QHkg3N\nwtmTvxS7Y9hZoti0QN6YHbVaRx+0WqtWyFJ8cmA8QhulBG935JkQmxNYr4xaqdj1gjNhtvjGGu0t\nVNpoDDGfWmxO/ve7/Ai83+vignjENsqJ2HS2b05wnffC+56jgzDnPdEE+XFPbyztpkB99/7nZu/g\nXO/gR/eh6OMEx9xleogGO9otZlcTdx1XnJQG7LI6T7KYXaNPxmsyxUnUzzz7/omKemq7jr7iVHZh\nkkXbzXQYZ6r4bn4Bci0mMQ+xW8qFh8ldpZS1q7KkNpXy2m22Khp9luNBaiiNPg88C0FQGn1W4EES\nNBt9HoiMMFA1Rtn3owiqRp8fIlMUlEYfuz4UQWn0+SAyg6A0+tj3oTT0L/PptALfJ9DTAAAAAElF\nTkSuQmCC\n", | |
"prompt_number": 9, | |||
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r7739 | "x\u22c5sin(x) - 1 1\n", | |
"\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 + \u2500\n", | |||
Fernando Perez
|
r5783 | " x x" | |
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 9 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"simplify(a)" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
MinRK
|
r11536 | "$$\\sin{\\left (x \\right )}$$" | |
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAADcAAAAVBAMAAAAQkWtIAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAMnZUzRC73UTviSKZ\nZqszMyTAAAABLElEQVQoFZWRvUvDUBRHTzRpa2NFxdUSKl0qSBcFdcnUOZOgk4MIIkgGN5fgpqOr\nDiI66yQUEfInqIvgB1TBSYSoIH6g8b0kfYndvEPeeffc/Lgk8K8aTqbPk1PbSl835xPu649B+0yl\n7rTZbkN61hSmpFrbimZjMgdUp+Aq1OtoIxX7+IehncExS/SLPhiVx/W9CGfAZQUalvklZO4M5ri0\nVqFks+GwK+USfAuZr8MBh840dLvk30aRcgFehOzxwKEhCC3A2A99KRdTGZOUJ5TeM1LGoj1jgFh8\nCp4yUi403hVQjRaadFiWmUlssUXhNReYYqbXZ/PiyiuHD+XwbuKjFWUZ99XarQjXPfH4W2vq2lSk\n4EaR+EidlTtKOobdqUD9bDWVnTlNLtfwC1XgR6gJ3g8BAAAAAElFTkSuQmCC\n", | |
"prompt_number": 10, | |||
Fernando Perez
|
r5783 | "text": [ | |
"sin(x)" | |||
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 10 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
MinRK
|
r7739 | "eq = Eq(x**3 + 2*x**2 + 4*x + 8, 0)\n", | |
Fernando Perez
|
r5783 | "eq" | |
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
"$$x^{3} + 2 x^{2} + 4 x + 8 = 0$$" | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAMcAAAAWBAMAAACGSZV/AAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHarIkSJZt3NVLsy\nme8Q6PJIAAACtUlEQVRIDZVUzWsTQRx906S7m3STLlXEU9k20ptVrCdB3IMiHoTiQRGExhSsRUrr\nB35cNKiIUpDiyShiFEEQoSleleYfkAYEQRRU1IPgIbF+YKnGmZ35TTabbiBzmN+b935v3sxmN4Ac\nuXFHodYy9SJaa+2OZlIzqVKUanixuSitIz6VNatRBsuzf0RpHfKpyNOmR+M/O9wsqr2/HKUAyVq0\n1onSd6tNt+W2ETuRwj/8/rfPtX1KIwJ2hVCwssGp0eCaY/Z6c7lB2SsNLMStmCaD2bqjVWrqVosU\nsCPEJ4rsKlH95fhviZnn15iD9AfJ4CCOKLReVQw3hSgPHgP7qEPVi8AkUZZnfpQ46fo1nUdsVTL2\nnScLEuGhqvELTSHKgxPARtVB5Rkw76iFnRv3JFSGRE2HpOv1qmqjECOxZsjYAiZUJ5VlYKwI9GX2\nDLnE8ddVY6sW1vRNzvAQNrj9QE76yBOrn51p7CQQ+8tDXLCsedmaa0hk4GI2rFEIc3nIBpx3b0if\n9rz/4whmsiDGPY7iv4ClLAzHqCU9IcmhDZht0SjEAA85imnnUbPHfHf/C+0jqwphwhAYOoR/OGGN\nQp4Kj4O7ZCPPaZj//KuQAMZvwh8X0CsmOYxC4fbXQqEiVhkxBTTxEG76D4Fl5cG+iw4EPPwFXSr6\npJ74bzIvqKUyP5UedKpkBbvDmrpJcmRk1ycX9iq/qj+Uh1WB2Axnjl8X44rQZoFLDpLOFnStEfIS\n2BTW6HEB6RIedFUx4GfoN/Iz0ONJiuZh4I14ixexlyhe1ani1469yoe1RkhvqXulpxoXx254cNjB\nKcno2Sqyb8C6wb4J1esrKiRRr9fzYU2HGIvLJ7cNDJ1TeykP7J2tf5C5TFknakAGTQQBffFBjuO2\nnlCvv+wOXivccChMyHVbD2/5D+LqohDLQZpLAAAAAElFTkSuQmCC\n", | |
"prompt_number": 11, | |||
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r7739 | " 3 2 \n", | |
Fernando Perez
|
r5783 | "x + 2\u22c5x + 4\u22c5x + 8 = 0" | |
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 11 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"solve(eq, x)" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
MinRK
|
r11536 | "latex": [ | |
"$$\\begin{bmatrix}-2, & - 2 i, & 2 i\\end{bmatrix}$$" | |||
], | |||
"metadata": {}, | |||
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAIwAAAAZBAMAAAARRdv9AAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAu90iEM0ymauJRO92\nVGY8RUeYAAABnUlEQVQ4Ec2Vr0/DQBzFH+uNbd0GA4FCdE1ImFoDAgykhgQMEATBbQ67CQICMQga\n5hYUeMQIFrMEg0DMIdmfQMgggUDKtd2196MVZJBw5t593/fz+s21STFpWhhy6WYJxpAZHr74BzEL\n9amY0bT9iSqQLki2DxwB/DSkgYtLqXFwXEXmg8b0RJf4wKkYk7aRvRYb2ekEuGU63EOAnyZrIP0W\nNvHqBjir8gVPhwAfk+zHxlTsqJgQ4GPoExJ95ZGsULbXDpkO90SftDri3VCz3Qw7RKW/o3klltxT\nu5nR6X1K0xTVxkElUdC6e6pbxFJq048hWyZdM1UgVZAaV1zH3KbVOgg+JdcD7PGOPM290scKuQaQ\nVy/OBZ5sKSZfwzzjpP0RmpVsUEBYHrBDpJhd4E5oCw6jNeSsja78AlyAfGXEGK10fmCQ14DlxNx5\n6xhtrSe6HqA/L4sxScdxDJRtDmey4jgvGHmA6PrAdEeM8RndYmzUHuNK3w0lx6LooBbjqjHrARIl\nYlw1phdFB7UYV40JiJ+I/xZj/sZ/avYbjdhWy3er6JMAAAAASUVORK5CYII=\n", | |
"prompt_number": 12, | |||
Fernando Perez
|
r5783 | "text": [ | |
"[-2, -2\u22c5\u2148, 2\u22c5\u2148]" | |||
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 12 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
MinRK
|
r7739 | "a, b = symbols('a b')\n", | |
Fernando Perez
|
r5783 | "Sum(6*n**2 + 2**n, (n, a, b))" | |
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
"$$\\sum_{n=a}^{b} \\left(2^{n} + 6 n^{2}\\right)$$" | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAIMAAAA9BAMAAAB8c8dQAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMARM2JmVQidqsQ3btm\n7zKsjR9xAAADaklEQVRIDe1WT0gUURz+jTs7uzM7My5E4KFy2RI7SEoKHQraasFDkXtIuuV2KKiL\ngoYSCEsQUkEuHioD2Q26CMkuFUgYZFQQhLYgFQbpdIigy7pFmqFN7+/MDlsu01w6+A7v973v9/2+\nefPmzZsBIE2I0uilb/NSTGsbvFsse7YQVgbSHk0C44GYR4tQjxrxaKGFxZRHi9q0lvBooaRfeXQA\n/UiLV4vN+v9oBZpNu624mVfbQ/5mdpkGKRw9/XJx3YWFLxmMMHnQzPJCNcd2+UfObBCVpL4MASrI\n/bCEYoRAPW8xfwdaWCqBkCKCojltCY8TVMNu8vlsf8xKVQL/KsABQqumferRibUz+dM1eFtZaTFK\nD4BCr/bkp8USICF3KT5lSDezgKCztfYanMCnPjvsxswYZ0n0oeEt8JUg2CMUHBmAkTBbLwAVyUBa\nIgLB/O4Q4tPnCsAH0AwxZtDUDabYCaE8g1tgB0L36OjgeprRJBTR6D3AsNENylaDZk7SoNrLpjd0\nPkLkUZqoMSMU0H4GheY0sqiDAF1xAGYRKlhCzTSX0GCQEvLiNyuDwGE6yJVPjVnU7tl3CIT9Z/uH\neEE9U3WZYU6hOEWw4LBlFpkm0BJiaBIySVZQNCgQzXnG4LCbYCVfRvEbyayCOP9JiUC3wbLd/OK5\n8kveJVm2TkzJbyQLaimdCcNrxkN3gnuNcwpFMotAymb2RqMT0eguRGgRUNegC+ASz1qzGExyCkVi\ncQKkcs5+ImoJr/eazAqKTCX8YgQJ11CvxyDAkoRjFujNEgswB/5VH6EB+BMp8hsiPH7U51vbrjIR\nCcwCHsBYAr3kvsgsy+JNhJr8jkbWY2N0HDpePm7hi18HIQvSJL8o350ph4UWdgzJgFtUZBopc9+Z\nEFucYzzaVkkRRqangc9+on7M64W/6P9AqylCziSt3AuCLlvjqkAxsKTsibITZqRqpSV4RpC1RUHu\niBHGTwPBG3dSHuflOa46M8y+StDJqWpRTGNFzdcoaRPou+jYCtXK7XyH/Uk1V2x6E22ugMcVUI99\n7uMWcvuAwbGLqNZPa8kg3uJNcNvAX2TX7dxFqOV1cfjiuh4XDMF2XvcGBjh0FRcgrpMbaZSX4fGo\nq1oqRn86d06xugW9NP0PFkIKenld3YU+Dl04/QbUjN3mqICk3wAAAABJRU5ErkJggg==\n", | |
"prompt_number": 13, | |||
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r7739 | " b \n", | |
" ___ \n", | |||
" \u2572 \n", | |||
" \u2572 \u239b n 2\u239e\n", | |||
" \u2571 \u239d2 + 6\u22c5n \u23a0\n", | |||
" \u2571 \n", | |||
" \u203e\u203e\u203e \n", | |||
Fernando Perez
|
r5783 | "n = a " | |
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 13 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "markdown", | |
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "source": [ | |
"<h2>Calculus</h2>" | |||
] | |||
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"limit((sin(x)-x)/x**3, x, 0)" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
"$$- \\frac{1}{6}$$" | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAB0AAAAqBAMAAAC9wk0pAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEM3dMiK7mat272aJ\nRFQidGHIAAAAiUlEQVQoFWNgQAAmAQQbyGLNR+Ezpvej8BkY5g9ufsV6iw0oHhoQjpAxCKgwMPwH\ngQ+0dMOZOQ7IxgtdYFdA5uswsCUg8bm/InGATLYFqHx+lZO1yCLy2gxcD5AE5D8ysC9E4vMbMHD/\nReJzKTBw/0biA81HkecD6l+AJM+QwyD1AJnPU97CwAAAnlQjKf5L1GYAAAAASUVORK5CYII=\n", | |
"prompt_number": 14, | |||
Fernando Perez
|
r5783 | "text": [ | |
"-1/6" | |||
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 14 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"(1/cos(x)).series(x, 0, 6)" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
MinRK
|
r11536 | "$$1 + \\frac{x^{2}}{2} + \\frac{5 x^{4}}{24} + \\mathcal{O}\\left(x^{6}\\right)$$" | |
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAM4AAAAwBAMAAACrqVieAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAzRAiu5mrdu/dZlSJ\nRDLkM64aAAAEAUlEQVRYCbVXT2hcRRz+9m12N8m+t+kWPXgoDirGQ6ALtpdCyR71YpaS9lTNSrER\nT0sk7aVgqvZUStM/Ug8iD7SCvbi0ag8eXP/UogjNwSp4MCkoeGsaNVpLu/5m3sy8mfcvTfc5kDe/\n7/vm9/t25s3MboC05k7vSZMCvpkt36/6FV7MHFpdy5TvWzyDm42swRM5+ZzA5FKWz1xOPsDnLMOn\ndjE3n3Mxm8Jc7XlJuk5ePm4r5jPc73ck+V5uPudjNih886oknU5ePl7PW4k6lTVR3bv3L1+jQYIb\nn33MovmhD1Ac+P04hw/8dBUn+/2oDcoX5lcQyHh/vRvTN0dM4MPOqcSUIVa8i3Q5MSed/BLX2KU0\n+VlkymlpSTzDQ0l0wM00MuVYonvVj3Ga+FtHdkA367UlIE22BwdoW3EhiRZc7R6cRPEoMMOQKhs5\nNfo4vFXaTgedII4+L1ZWMRclBW4Bp5AuGzm/yni4S8GPhhCG3p2h1aIfYiPaidE3MmRj5FYZj12e\nZ3B9Q9GhMzt35IJGVlDc/xLLkHH9sW9viQUrqaWabHmLwGleRVlbFR8IVNo//DJzl6dOMllgexdE\nzBPasSapwbtZ73VUbvE6V1SxsSX8S7bAE/uUj9NQYrR/PErYWMml9lO0aOK2Oq5GFHw+nxGfdp7y\nqao1VWN0f1lHiYGSl9k06Y8yoKZqwmtWtwClZp4+b6FLPlP0N7pAj6Cdv8LIYyFHH++eqPwMPUs0\nB4wf2n1ELpFH88tt3UrBYh0ji6Em4PRGz41wP2p0g+TnM7QqSvJ9XWgDLnPXqg1O0XcikbH5jPV1\nE5mAetGGIobYckHMRyzZSIvmg0JTmHCfO8rHrdcfOVqvkx5tX9Trb9frD0dphUO5LN7PZIMUPh9g\nrMOfvCXOJ5DMp5qPyRmxlN114pxtXAh8bq6AcUTv5w81HwKDnh+n79PtssTrlptUjr2GCuMIyHW/\n4aP1S9cPiLr8vCx3p7BLIHGeSi/ffiVAg84H3tTtF4JS/PM/eXj8O1/68PtAN9Nn5/Rzmg/3G6ek\n8luKLOkThkxhQe8IAp6vRactfgco/LMK6D1L5WxIwZAVu18FQb+d2VihMsPwggJWL5XKmxYbA7/b\nzAc21Gh4EcFp0IwKpLIr45cXH1ruqgTRv2uhENDRTvGRSm8DH2dLWIy2W89EdjwS3Io2KRApo40N\nfPCJmbjDBJF4uRchNCRlPOsXqxhYNRduj86NB2fjlGRI6W3ok5odEayTZWmkVFdy8zlk1TYBKRPI\ny6fawtNm8TDmyqcHD/4zG1IDRHStqP94I1WkssE5jSSlweI73+9bTBSV8meiulmyQF/LyT5S+bov\nL/nNVv6/x/8HW/gXypJ/ihwAAAAASUVORK5CYII=\n", | |
"prompt_number": 15, | |||
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r7739 | " 2 4 \n", | |
" x 5\u22c5x \u239b 6\u239e\n", | |||
"1 + \u2500\u2500 + \u2500\u2500\u2500\u2500 + O\u239dx \u23a0\n", | |||
Fernando Perez
|
r5783 | " 2 24 " | |
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 15 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"diff(cos(x**2)**2 / (1+x), x)" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
MinRK
|
r11536 | "$$- \\frac{4 x \\cos{\\left (x^{2} \\right )}}{x + 1} \\sin{\\left (x^{2} \\right )} - \\frac{\\cos^{2}{\\left (x^{2} \\right )}}{\\left(x + 1\\right)^{2}}$$" | |
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAASoAAAA4BAMAAAC4fag4AAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEM3dMpm7du8iZolU\nq0RaI+fpAAAF+klEQVRoBcVYXYgbVRQ+k0w2v5sNfWiVIqap1heFWpV1fVqKqAh1tz7UhyJEQdEH\nafogW1mLRRQpaM2Ly+qDG3+K1iLEQiltQSNorbiwq/hbrOZBUCzSFLf1pz/xnPszc+9k5s5MNq0H\ndu75zs93T++9Mzm9AHHl4COluCkB8fktmz2e2Nx2mzPk68NlqHnY+oOH4Sue2D/3XWLmZN3+B/7o\nrwxP1hhM1Jmpf+41gjLTzl6CfMMzQV9wD8y1WaKR254MJk+5m1Y4A3BzcGQcz0KJos3cySrF+Msc\ny2e+JBb4pH9UXOsoSzBz76gGsx50XaTOuXAZWn6SJRu5s29Wg2d40XHliCrZcPAylL0818idT1QD\nZ7DxLAk5Bb/gUahKuIyx2CyOY7qZex9WZU398OshjLS2Hm3B6qkPwX56qow4twsfq3a+Pl2zb5x/\nCCBNOL7otBvnj9FpNXJbNaxqNbxV24CRsy17tz0GQ7WVAOsRp8pYaTM3mixnut0OQNFdO/RGFp32\n5W6XMo3cecCqPoCPSp9jZAUKS8km2Eu/laCJeKgKkC/lzxTqCFDsJT7GfHppWbqR+xOqqgTrKNI6\ni4+JFsD55LmnyJBYRCMFCMEvaR/SQ8s4TNxWk0/6F0UW6bnQBjhnHehOop6kB4zU6EmSvcDHeM8e\nWpZu4i6cPPnzSzXaGktZq7OvQo6Whf49uHrjuJhMwtaqtx2gNGetJC3jCuHOVOHjdAe2Y2wFoJCZ\nhOKlLwBOIKbMQukZSIuq8BfaKE47oEd5aZk3hHukWrww1Mk2MHa2AYft5yDRPF6CxxEPVwFOt7bB\na6iTBL2D93E3UDuQFroyeGmZy8yd33bxje+2T79HodY303V45ehPcOqd/W3E9H26ZmrVkQbqJOwb\nw1X1aVcFonagyHZddffQMmdEbo2IA+/aBHzbE2KDMQnbgSM+RD6miNw+mbBHNyZqOhboAdc6ii+u\nW6Nr99GicfskwlbdeK0zof2C68m6X3xqB9L4F0UCuUOT79Ej3negfd5RQXQmZKB2INtxXSYtkNuU\nxHzDLS3kVg1JkHGCeDtwh3SYx0jcvhRWWTXnmipy9ImSVHk7sEVC82iVVX8Atxri6p+6KsCMC7J3\nuvq7jsrbgR0ONitB3OYs8hZaSsxmrlPzNXMRNj5/984aWe7HP9mhET7trB2hYPHjDo4O87Dm6wmA\ndbUs+wV6FBNkh0a5+Lv5PwhrvrCqxwD+pelvwj/ZoREW/90jNaasuIXkOhjpxpQOfiap+cKqHgZg\nDdBtOLfo0FgVcy0crLU0wYZxVCPPgbH9C2u+sCrcOVYVrZVQmdb/WrH0Ph+s+fJWxTs0xiiuEeKw\n+zdmcRiANV9KVd9ituzQiCjqO6hMGtCYKRGhKmu+cPvkDuL3yenQKNn9foVSyQDnnkYa4o/UfG3q\nfrmp+/WxvxcxHdfGkh0asUX8tqsTO/c0qtGkrzE5mS/T1kNu0GE0tBDx08vZZtw2JYg+1dQ8VniG\nFs8BNmYR5Goes/LB8DnsXRpfjna1R+7tsUjD26Qo3ZC0+42fCWM6vCr4USNIjmuQg2zVx4gmPB/D\n4zhSYxZB4lS1QuPbryEBlNZedbPzUcZ3mN/TqC5XZ9cvHMapqjDpUoD/qkwrEfhzVOeQnw/0iXsa\nLUgCfv3CUZyqYF4y4JgqKcBRdzsaKYWagOx8XAUg7mm0IAnU65dYVUmCwLG4XnPpVSVamtML1OuX\nwVZFr5jSGOpVhb5/4vrlQKVye6VyPVUd5R30/ut68VBDawz1qnLl3gTNMuFcvwx2rZItrTHUqyro\n26sVhEC9fhlsVfSjpDSGelV2x1uIhtXrl8FXJRvDfKWy9tlKBU+aOB8hVanXL6Kq1Pd/ntAq7w/Q\nDoqrOyLQ16po3kFKkCLXSuLljXTalcZQryr0tLtz/+6qA9Dyi1pjqFeVYps5gFniUuAmqY2hrIqf\nj0Q7Lt2g4sc0IlkVN85qvisJ9mqTFRsqPKSCK6oP1QOns8qBrsvt8O9v2KyGgi93Vc7leO9E+xzT\nfxAXF9fGMlsTAAAAAElFTkSuQmCC\n", | |
"prompt_number": 16, | |||
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r11536 | " \u239b 2\u239e \u239b 2\u239e 2\u239b 2\u239e\n", | |
MinRK
|
r7739 | " 4\u22c5x\u22c5sin\u239dx \u23a0\u22c5cos\u239dx \u23a0 cos \u239dx \u23a0\n", | |
"- \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 - \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n", | |||
" x + 1 2\n", | |||
Fernando Perez
|
r5783 | " (x + 1) " | |
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 16 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"integrate(x**2 * cos(x), (x, 0, pi/2))" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
MinRK
|
r11536 | "$$-2 + \\frac{\\pi^{2}}{4}$$" | |
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAEwAAAAwBAMAAABJWYGiAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEM3dMiKZu6uJRO92\nVGZ6zyUAAAABVUlEQVQ4EY3SMUvDQBgG4C8mkVyTmODkpkRX6eAPsH9ACLhLprrWRTetuHRrBw24\ndXBx1UVwCYiTg4s4KQShuyKKupwXrq1Rr5f3W3LcPffe8eWIKivdDisNEYudBYCZsfUGMLdvfwGM\nyH+BmJlBLIXUTAKxUzoBnLX8uKVnt5zzd5fzZy1jhw8b17GWFItrdOQ1KpUALQf561bbRMKm8wBJ\nmw+DPhB3RW4PYLvk/GV2c6cB7Jwjhry+faJLmWbEmtRzoq481c80rB5CTCSsyl5q04hqn/KwCma2\nNGx2paglITalonGaeJSjGi6Jj9cuxiyKFs+iKCnGyronWzZsnKZiVkIewNaP0wO5XZtW5/wVYD8X\n+Z0mLqOuWl6eH3WzPKcY3wybrlgqTdlPEGNTEBtAzMggxghidxAzehDzO53uRVbqz8ShCzWEAoix\nvY984kn/Fr4Bq5lS2/Bs4I0AAAAASUVORK5CYII=\n", | |
"prompt_number": 17, | |||
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r7739 | " 2\n", | |
" \u03c0 \n", | |||
"-2 + \u2500\u2500\n", | |||
Fernando Perez
|
r5783 | " 4 " | |
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 17 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
MinRK
|
r7739 | "eqn = Eq(Derivative(f(x),x,x) + 9*f(x), 1)\n", | |
"display(eqn)\n", | |||
Fernando Perez
|
r5783 | "dsolve(eqn, f(x))" | |
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
"latex": [ | |||
MinRK
|
r11536 | "$$9 f{\\left (x \\right )} + \\frac{d^{2}}{d x^{2}} f{\\left (x \\right )} = 1$$" | |
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "display_data", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAL4AAAAvBAMAAACvYG1IAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEJmJdiLvZqu7zURU\nMt3PQnSBAAADkklEQVRYCbVWTWjTYBh+07RNm/6FOcdEsBUcOC/WMRFFZ2d3EETMaU48TMQhImgR\nRS+O4uYET50HES/LhiCKh4qieJBVdKAwaEFE8LKCm1QP0qHiYZ31fb/8rF1DbNS8kLw/3/M8+fLl\nTb4A2DS+c6NNhj34drhuj2ATvQBzsk2KLfhpGMzaItgG5yXblGYJgZsxgPlm0X+Bi+SAx0s4ZtMS\nnHNMHIV7IBAPFJy7whR8mH3j1PP1jByswNlq1anpP5H9i05poy53ElyKg/quRQjHHdT3ZiCadVA/\nGoc8ONU7OO9oDm4HZeduQEwIJf4f5d9r/MsmOtzonoEDjXUrCqFbujvIcZvQeTIUovkKqrc+t+yT\nrSmTrKv7aVF9uysAoqQLKnpg5UfyOUvKEXwdfcfAR7OOPswCJA01PVprVBoDbmm9GcUArtuM+hEF\neHrr81QeMsbatOiVUWkMgmWsNVJWgG4UjmbAvYSlHjwCRWNMzKmhlT6PcBOKoQGk78X5/wS4dOYK\nsK2J67v6uFsNCWihL4yVYmaUen2+DOJ3LNHhTwGsgeHEFwBBUWEW+hBJmFB23SebYmyaP9yBlzh/\nzzKG4RzANtgrzQAEi5ijWekPFkwpKpHOTF/oe4udyZ6VF1tIgns0FKJnh6brR6r1RsPUEiYUoqnG\n9LFF8Tb4IpYIrK6Uqo/3+km/VxpZZdQSqyl1EE1fTOM64sHWB0LLwK30hT7/Op6W3DKj9HwlKzEI\n6QtD7IfSm8AKPd8X7jL0/uH5dt2QiH/CnEJDqpG+e5K7ixnbOfg0BCr+sgcv44qpELP587JPwVGO\nXhsTikqkM1ufrk5adfxxYovCjfYmL2IoUhHNTD8sh37gUIC6D9+v1RSiMXON/bqmxztZsKCn0K9F\ntfrPjqtFb9bDpp6htJGiMWtdME1rBDX/fvgKM3uqeeawj1UL4tRfiylKVn4XdYqGqXXh8SJL/bJW\n5RQtqHVsQVghnAD4vIGF1hSNLuBGQWbsLwZLAzDHF/WsC4PzHSyzpugE3R/Wggt6odaLMS0T9IBy\nS4pGaMYNdM/loHX/0WQCHsHzZhi2MIEhmJC4uDAfVkIPZsdtcZsBt6VgC/ASvxiUvdVquRmKLcxW\nCT7ih0nM2GI1Dz6lfg9oT3HCuG+4ReB3da7gzC8oVwG/MhOUDoFbcmL+uI0Op+PTuQmj3//zVdqT\n70az7X2tO1K2hH8DDpT5LbY9x+oAAAAASUVORK5CYII=\n", | |
Fernando Perez
|
r5783 | "text": [ | |
MinRK
|
r7739 | " 2 \n", | |
" d \n", | |||
"9\u22c5f(x) + \u2500\u2500\u2500(f(x)) = 1\n", | |||
" 2 \n", | |||
Fernando Perez
|
r5783 | " dx " | |
] | |||
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
"latex": [ | |||
MinRK
|
r11536 | "$$f{\\left (x \\right )} = C_{1} \\sin{\\left (3 x \\right )} + C_{2} \\cos{\\left (3 x \\right )} + \\frac{1}{9}$$" | |
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "pyout", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAUMAAAAqBAMAAADbkSQSAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEJl2IquJVETdZu8y\nu83OyatpAAAFHklEQVRYCe1YXWgcVRT+JjuZ/ZvdDKkWRWuXYAWR4tbY+CCSoRQRQ0mtP0gtuG01\nGMV2tVoRkSwKBY1g1AYR0Q5WBItItHkoWu2itA8iZi0tiqLZ6kNV6Jo0bRM1NZ5z596Z2dmkGMnD\ngDkwc75z7v3O/fb+ZVog0pa1Ii2PxOmjUZeoHb036hKBzkWJC7DTF2dxASZxcS8uxCQuzuL/cha/\nkL/6vXn+esUTtPmSTScwWqocCFy44tCgI1DrdTb0imxvLksQcNpNd27UC17C3O9B5uk9DxdlYhZy\niOszGa0Dbu75RuU2KdDo7+orwv/qqTZ2uNFB/BrHy5vnPMi8NYj/qRJVBTwf4np5AU5Az6HPkcls\nfWMg0qYuATq8hI9UatlLhK61VVjnqXdnEX+onCJrqveFuIgVEJtEy4BkU+jaRdJ7Lj5GcNgLL/OQ\nAr9bhPpVVO+J11/S/lZJRY7nZeZCXKRtJA5geVX21YYk2CG954wBIEGPtGxRIembJhl85mf1Lz3s\n8vyFVmQlsYHrMRk8JyJvoXFStoYlpu4ZzMHIAVr7Hc9uhYCyq+u6hfzL3cC8ob267iy++vDz1XnK\nMA/I5sJkJbGOC+2qniKWtj8ArkK8LUzGT8CS1bd0UDk3BsIS0UKNGQdYinfzbwKpKvO21diIDWxn\nLWRmhV7LgAEcB07l9TMUMg9HXg6RASVRcbcctahjV9EcNncjkxdVgO8oZ/bS7yukXklWgfcpZmuQ\n2F0GkkVgM7Zbj1H1AdHNf+2hdjJzBTf0WyiwxO8BPsbMo7k8GCYriZJr2M1V6ldDfDpZgDktqgCv\nMhkPlQ3LGI/bwJMinkViHzWkS4CFU9zFHON3wA4JbLnak+evB0v8EZigPPPIPrZCZCVRcpO2SXOu\nnaauI/SjzokqwAFBTn+gIVthOCJiX+IMG8vppccdigdtlLiHs/GyK1HbNpNjiT/4EtcCozSuTzZq\ntV8/rdVyRJPcdEmfojPJXfpKwHlRRUjUbWToOPJmkxJpi70utxjnhNGA7oKZ09DU4e59jW2QO4gb\nsUnugLVITQUk8kLPWBh1aPV8MvUVQ/pcxMcDs3haVBEL3TKODO2YkTItojzh/iwKefzaTw9v+0di\nY1iljgs3SOsuENgsJe4ENgYkMu8Tmiw7RFYSFRdJ1lyjIukcElOiijgu6QqSZ+JWJ2Ikca7jotES\nwFiPxGRmTKcRm3IUB41vvUepgDhHT1k4xqssF5p42If4RJisJCque590ObjPPIhsQVQB7qcJcdCX\nf7E4iltpyDY57I7g8IQTtAR8dWu3r+rYRzBboledtR7fUKKEkLhr7zulwzO3HZ7Z9PRfJI+v7kTb\nylKYrCRCclM5rqht6LCxpuducBWK+ep+pu1bXNy+5EGH8C/0sIUlGhXO7uaXsC4Fwr7hNuIOPk90\nV2RPoiyyCy9IFHRJOxhBH5KhJ7F165WUejzrcMNb/BJGf2Bmt7iqEGz2eSKryAkn2AnmySe+rku4\nQSpXlzTyMnxeeu0jdNnAG5eKOENQmFaVIOz0q8+qEoEmjydyc5HT7vUW4LnwWF3mirqIguYhNFeA\nvTyV9H9QBIXVjymTczuP91/I/EkbsHrB1NBShcEnRRqfKLa3Xfev34onCPMl8w3iWcr2oATLK4jx\nfRNhS9Ms8pdAhM0YQ3YiwvpY2s/YGfFZRKr9iPjkj/RMNgdOdESFZtdHVJiUlRrGiB1tibET2m/R\nVkj/JFxZAv4ByMpfji3f9pUAAAAASUVORK5CYII=\n", | |
"prompt_number": 18, | |||
Fernando Perez
|
r5783 | "text": [ | |
"f(x) = C\u2081\u22c5sin(3\u22c5x) + C\u2082\u22c5cos(3\u22c5x) + 1/9" | |||
] | |||
} | |||
Brian Granger
|
r6035 | ], | |
MinRK
|
r11536 | "prompt_number": 18 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "markdown", | |
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "source": [ | |
MinRK
|
r7739 | "# Illustrating Taylor series\n", | |
"\n", | |||
"We will define a function to compute the Taylor series expansions of a symbolically defined expression at\n", | |||
Fernando Perez
|
r5783 | "various orders and visualize all the approximations together with the original function" | |
] | |||
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
MinRK
|
r11536 | "collapsed": false, | |
"input": [ | |||
"%matplotlib inline\n", | |||
"import numpy as np\n", | |||
"import matplotlib.pyplot as plt" | |||
], | |||
"language": "python", | |||
"metadata": {}, | |||
"outputs": [], | |||
"prompt_number": 19 | |||
}, | |||
{ | |||
"cell_type": "code", | |||
Brian Granger
|
r6035 | "collapsed": true, | |
Fernando Perez
|
r5783 | "input": [ | |
MinRK
|
r7739 | "# You can change the default figure size to be a bit larger if you want,\n", | |
"# uncomment the next line for that:\n", | |||
Fernando Perez
|
r5783 | "#plt.rc('figure', figsize=(10, 6))" | |
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Brian Granger
|
r6035 | "outputs": [], | |
Fernando Perez
|
r5783 | "prompt_number": 20 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": true, | |||
Fernando Perez
|
r5783 | "input": [ | |
MinRK
|
r7739 | "def plot_taylor_approximations(func, x0=None, orders=(2, 4), xrange=(0,1), yrange=None, npts=200):\n", | |
" \"\"\"Plot the Taylor series approximations to a function at various orders.\n", | |||
"\n", | |||
" Parameters\n", | |||
" ----------\n", | |||
" func : a sympy function\n", | |||
" x0 : float\n", | |||
" Origin of the Taylor series expansion. If not given, x0=xrange[0].\n", | |||
" orders : list\n", | |||
" List of integers with the orders of Taylor series to show. Default is (2, 4).\n", | |||
" xrange : 2-tuple or array.\n", | |||
" Either an (xmin, xmax) tuple indicating the x range for the plot (default is (0, 1)),\n", | |||
" or the actual array of values to use.\n", | |||
" yrange : 2-tuple\n", | |||
" (ymin, ymax) tuple indicating the y range for the plot. If not given,\n", | |||
" the full range of values will be automatically used. \n", | |||
" npts : int\n", | |||
" Number of points to sample the x range with. Default is 200.\n", | |||
" \"\"\"\n", | |||
" if not callable(func):\n", | |||
" raise ValueError('func must be callable')\n", | |||
" if isinstance(xrange, (list, tuple)):\n", | |||
" x = np.linspace(float(xrange[0]), float(xrange[1]), npts)\n", | |||
" else:\n", | |||
" x = xrange\n", | |||
" if x0 is None: x0 = x[0]\n", | |||
" xs = sym.Symbol('x')\n", | |||
" # Make a numpy-callable form of the original function for plotting\n", | |||
" fx = func(xs)\n", | |||
" f = sym.lambdify(xs, fx, modules=['numpy'])\n", | |||
" # We could use latex(fx) instead of str(), but matploblib gets confused\n", | |||
" # with some of the (valid) latex constructs sympy emits. So we play it safe.\n", | |||
MinRK
|
r11536 | " plt.plot(x, f(x), label=str(fx), lw=2)\n", | |
MinRK
|
r7739 | " # Build the Taylor approximations, plotting as we go\n", | |
" apps = {}\n", | |||
" for order in orders:\n", | |||
" app = fx.series(xs, x0, n=order).removeO()\n", | |||
" apps[order] = app\n", | |||
" # Must be careful here: if the approximation is a constant, we can't\n", | |||
" # blindly use lambdify as it won't do the right thing. In that case, \n", | |||
" # evaluate the number as a float and fill the y array with that value.\n", | |||
" if isinstance(app, sym.numbers.Number):\n", | |||
" y = np.zeros_like(x)\n", | |||
" y.fill(app.evalf())\n", | |||
" else:\n", | |||
" fa = sym.lambdify(xs, app, modules=['numpy'])\n", | |||
" y = fa(x)\n", | |||
" tex = sym.latex(app).replace('$', '')\n", | |||
MinRK
|
r11536 | " plt.plot(x, y, label=r'$n=%s:\\, %s$' % (order, tex) )\n", | |
MinRK
|
r7739 | " \n", | |
" # Plot refinements\n", | |||
" if yrange is not None:\n", | |||
" plt.ylim(*yrange)\n", | |||
MinRK
|
r11536 | " plt.grid()\n", | |
" plt.legend(loc='best').get_frame().set_alpha(0.8)" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Brian Granger
|
r6035 | "outputs": [], | |
Fernando Perez
|
r5783 | "prompt_number": 21 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "markdown", | |
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "source": [ | |
"With this function defined, we can now use it for any sympy function or expression" | |||
] | |||
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"plot_taylor_approximations(sin, 0, [2, 4, 6], (0, 2*pi), (-2,2))" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "display_data", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAF9CAYAAADcGsb5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6wPHvTHoljVBDSEggBEISShDpvUgTEEFF0AVs\nrLruKmJvK+ha0FVExYIKqKDSFBASBEILkIRASCCBFEpID+llZu7vD5b8RFqSmclMJu/nefZZ78yd\nc19ebsI755x7jkpRFAUhhBBCCGFwalMHIIQQQghhqaTQEkIIIYQwEim0hBBCCCGMRAotIYQQQggj\nkUJLCCGEEMJIpNASQgghhDASKbSEEEIIIYzEWp8P//bbb0RHR2NtbU2bNm2YN28e1tb/3+SePXvY\ntm0barUaPz8/HnjgAb0DFkIIIYRoKhrco1VaWkpmZib//ve/ee2113BxcSEmJqb2/ZycHCIjI3n9\n9ddr34+KijJI0EIIIYQQTUGDCy1nZ2cefvhhVCoVAFVVVbRs2bL2/fj4eAYNGlT7/ogRIzhy5Iie\n4QohhBBCNB0GmaP1yy+/4OjoSGBgYO1rpaWluLq61h67urpSXFxsiMsJIYQQQjQJes3R0ul0fPnl\nl7Ru3Zo777zzqvdcXFyuKqyKi4uvKrz+KjIyUp9QhBBCCCEa1fDhw295ToMLrcrKSj7++GMGDhxI\nRETENe+HhYWxbNkyhgwZglqtZseOHfTq1eumbfbs2bOh4TR7H3/8MY899pipw2hSzqYVsHF1PFPu\n78nPG1dJ/vQg91/DXcnd698/xISI+wnz72/qkJoUuff0I/lruNjY2Dqd1+BCKyoqitTUVEpLS9my\nZQsAQ4cO5ezZs0yYMIGWLVsydOhQXnzxRaysrPD19WXatGkNvZy4hQ4dOpg6hCYl+0IxG1fHM/7u\nUNr4uEn+9CT5a7gOHTqg0daQmpVI53Y9TB1OkyP3nn4kf8bX4EJr3LhxjBs37qbnDBo0iEGDBjX0\nEkIYRWFeGT+vPMLIycH4BniaOhwhOHMxiTYevjjauZg6FCGEgek1R0uYj8zMTFOH0CSUXKpk7VeH\n6T8igM7dWte+LvnTj+Sv4TIzM9F559O1fbipQ2mS5N7Tj+TP+GRleNFsVJRXs+6rw4T19aFHHx9T\nhyNEreSzcQRJoSWERZJCy0KMGDHC1CGYteoqDT+vPIJ/UEsiBvlf877kTz+Sv4YbNnwYp84flUKr\ngeTe04/kz/hk6NBCdOnSxdQhmC2NRseGVXF4tXJh0OjO1z1H8qcfyV/DObiraeHkSQsnD1OH0iTd\n7N5TFIXCwkK0Wm3t4tniap6enuTl5Zk6DLOjKAoATk5OODo66tWWFFoWIjo6mgEDBpg6DLOj0yn8\ntjYBWztrRk4KvuEvW8mffiR/DffrrnUE+UhvVkPd7N4rLCzE0dERe3v7Ro6q6SgpKcHFRR7CuB5F\nUbh06RLV1dW4ubk1uB0ZOhQWS1EUdmxIpLK8hjvuDkVtJbe7MD/nilPo3qGPqcOwSFqtVoos0WAq\nlQo3Nzdqamr0akf+5bEQ0ptwrejfU8jJKmHyfeFYW9/8Vpf86Ufy1zA6nZac8gyCfW6+mLO4sZvd\nezJceGvSm3Vr+t5HUmgJi3RoTxqpJ7KZMrsXtnYyQi7MU3rOKdycPHFz9jJ1KEIII5FCy0JER0eb\nOgSzcfzIOeL2ZzLtwT44OtnW6TOSP/1I/homMfMwHjbtTB1Gkyb3nn5KSkpMHYLFk0JLWJSUE9ns\n+T2FaQ/2xqWFzM0Q5u1E5mHauQaaOgxhASoqKvR6XxiPFFoWQubIQObpfH7/JZEp9/fEw8upXp+V\n/OlH8ld/Gm0NyefimTLqXlOH0qRZ6r134sQJ3n333Tqf/9hjj/HHH3/c8P2FCxeyefPma16XOVrG\nJ5NXhEW4eO4Sm74/ysR7wmjVroWpwxHiltKyk2nZog2uju6mDkWYoeDgYIKDg+t07qFDh8jPz2fI\nkCE3POcf//gH99xzD+PHjzdQhKKupNCyEM15HaP83FJ++TaW0VO64+PXsEUfm3P+DEHyV3+JmYfp\n1qG35E5P9cnfqBVxRo7mar/PbZz10VauXMkTTzxx03P8/PwICgpi79699O/fv/Z1WUfL+GToUDRp\nxUUV/PTVYQaO7kxAV29ThyNEnV0ptISoqqpiwYIFjB8/nuHDh7N06VL27t3LggULAPjuu+9YsGAB\nDz30EJMmTWLIkCHs3Lmz9vOHDh1i8ODBAMydO5e33noLgPLycgYPHkxsbCwAd9xxx02HF4VxSI+W\nhWiO34jLy6pZ9+Vhet7eke499Xtyqznmz5Akf/VTraki5XwCT0xcjHOgq6nDadLqc+81Vg9Tfe3c\nuZPy8nI2b95MRUUFu3btuup9tVrNli1b2L59O/7+/iQnJ3P//fcTExNDSUkJdnZ2WFlZAfDf//6X\nsWPH0qdPH9avX8/s2bPp2bMnAJ07d+bXX3+9qm3pzTI+6dESTVJ1lYafvj5M5+6t6D2go6nDEaJe\nTp0/Snsvf5ztpcgS0KNHDxITE3n66afZunUrAwYMqN1r74oxY8bg7+8PQFBQEGVlZQCUlpbi7Oxc\ne56DgwPffPMNjzzyCMXFxTz44IO17zk5OclyDiYghZaFaE5ryWhqtPzybSyt27Wg/0jDPBrfnPJn\nDJK/+klIP0iPjrcBkjt9WUL+2rZty549e5gwYQJxcXGMGDHimuUY/lxMAdjY2ADg5uZGUVHRVe9F\nR0cTEhJCYmIiOTk5ta8XFRXh7n71wxdSeBmfFFqiSdFpdWz+4SiOzrYMn3jjTaKFMGfH0g8Q0rGv\nqcMQZiIpKYk9e/YwaNAgXnrpJRRFIT8/v06fdXBwQFEUSktLAYiNjWXFihV8++23PPXUU8yePbt2\nr76jR4/So0cPo/05xPVJoWUhmsMcGUVR+H19IpoaHeOm9UCtNlyR1RzyZ0ySv7orLi/kYuE5AtuG\nAJI7fVlC/lxcXPjkk08YPnw4Y8aM4e6778bHx6f2i6RKpbrmS+Wfj4cMGcKmTZvIy8vjscce49NP\nP8XBwYGZM2cSEhLCM888A8CGDRsYOXLkNdcWxqVS/joQbCKRkZG1E/aE+CtFUdi15STnM4qY/rfe\n2NjKcxyiadqX9DvRJ37jmalLTR2KxcvLy8PLy/L3kUxJSWH27Nns3r0ba+vr/248ePAgixcvZv36\n9Y0cXdN3o/soNjaW4cOH3/Lz0qNlISxhnsLNxOxOIz0ljymzexqlyLL0/Bmb5K/ujmUcvGrYUHKn\nH8kfBAYGMmLECOLibrxO2Pfff8+SJUuueV3maBmfdAsIs3c05iwJMWeZ+VBfHBzrtkm0EOZIURQS\n0g4wvs99pg5FWJjXXnvtpu+///77jRSJ+Cvp0bIQljBP4XpOHr/I/qhUpj3YG2dX420Sban5ayyS\nv7rJKsxAUXS09ehY+5rkTj+SP/3IHC3jk0JLmK30lDwiN55gyuxeuHvWb5NoIcxRQtrlpw3laVkh\nmg8ptCyEpc1TyDpbxK8/JjDxnnC82xh/UUdLy19jk/zVTXzaPsL9+1/1muROP5I//cgcLeOTQkuY\nnbzsEn75Npax00Jo39H91h8Qogmorqnk5Ll4Qv63UKkQonmQQstCWMo8hUuFFfz09RGGjAvCv0vL\nRruupeTPVCR/t3bi7BF8vTvjZH/1nBjJnX4kf/qROVrGJ4WWMBtlJVWs/fIQEYP8CA5ra+pwhDCo\n+DP7CPvLsKEQwvJJoWUhmvo8harKGn76+jDBYW0J7+fb6Ndv6vkzNcnfrcWdiSbM7/ZrXpfc6Ufy\npx+Zo2V8so6WMLmaGi2/fBNLu47u9BvWydThCGFwWQWZVNdU4uvd2dShiGbm119/JSMjg/T0dCor\nK1m8eDFOTvIUd2OSHi0L0VTnKWi1OjaticfFzZ5hd3Q12WPvTTV/5kLyd3PxZ/YS6t//uve35E4/\nkr8by8zMJCMjg0cffZS3336bwsJCXnrppavOkTlaxieFljAZRaew7afjoMCYqSGoDLhJtBDmJD5t\n7zXLOghhbImJibzxxhtUVVUBMHDgQPbt22fiqJofGTq0ENHR0U3qm52iKOz8LZlLhRVMe6A3Vlam\nrfmbWv7MjeTvxiqryzl1PoEnJi6+7vuSO/1YSv7S09PZtm0biYmJTJw4kaysLOLi4pg/fz5BQUG1\n5+Xk5LB8+fKbtjVmzBgiIiIYOXIkW7duxc7ODoDz58/j7+9/1bklJSXMnj2bSZMmMXv27Bu2GR0d\nzblz5zhy5AhDhw7l7NmzpKWlXXf/RHE1KbSESRzYeZqzaQXcPTcCG1srU4cjhNEkpB8koE13HO1k\niMYcvPPc1ka71r/eHFPnc6Ojo7n//vsJCgri8ccfZ8SIEVRVVREVFXVVoeXt7X3N8N+NWFtb06NH\nDwCKi4vZtGkTP/zwwzXnLViwgMDAwBu2U1RUREFBATNmzCAjI4P4+HjGjRtHWVlZnf98zZkUWhai\nKX2jizuQSWLcBWbO74u9g42pwwGaVv7MkeTvxo6k7qJXwKAbvi+5009981ef4qcxTZo0iYMHDzJ0\n6FACAgIASEhIYMKECXq3rSgKzz33HB9//PE1BZWLiwvDhg276edtbW0ZP348AHFxcTz99NOEhYUR\nFhamd2zNgV6FlkajYfXq1SQlJbF48bXd4q+88gqKoqBWXx4WmjVr1jXdlqJ5STp6gYN/nGbm/L44\nudiZOhwhjEqn0xJ7eg/T+s83dSjCzLm4uLB371769788l0+j0RAdHc1bb71FcXExrq6XtyLLzs7m\n008/vWlbo0ePpm/fvrXHS5cuZd68eYSGhnLmzJl6/zvs6OhYG1NCQgLh4eHA5WFHmUx/a3oVWmvW\nrKF79+4kJSVd932VSsWiRYtqx4eF8TSFeQpnTuay89dkpj/YhxYejqYO5ypNIX/mTPJ3fSkXjuHu\n3JKWLW68AK/kTj+WlL+9e/fyzjvvALBv3z5CQ0PJzc0lOTmZUaNGAdCqVas6Dx0CfPfdd3Tv3p3W\nrVuTnZ3N1q1befTRR2vfLykpITY2Fh8fnxsWYFu2bCEvLw8fHx98fHxQq9VkZGSQmprK8OHD9fgT\nNw96FVqzZs0CYO3atdd938rKirfffpvS0lLCw8OZMWOGPpcTTdj5jEK2rDvGnbPC8Wot34BE83Ak\ndTe9AwebOgzRBCiKQllZGcHBwQC0adMGJycndu7cedNJ6jdz8OBBnnrqKbRabe1r8+bNu+a8zz77\njJEjR96w0CooKCAlJQUbGxsiIiJYtWoVNjY2TJ8+vUFxNTcqRVEUfRtZtGjRdYcOa2pqsLGxQafT\nsWzZMm677TZ69+593TYiIyPp2bOnvqEIM5SbVcLarw4xdloP/Dp7mTocIRrNUyum8tj41+nUOtjU\noTRLeXl5eHnJ7xyhnxvdR7GxsXXq0TPqM/U2NpcnOqvVavr160d6evpNz//zVgrR0dFybAHHRfnl\n/LTyMG0DVJzPSTZ5PHIsx411vGn7z1RUl+HXKsgs4mnOxyUlJVdtNSPHclyf4+zs7JveX7ditB6t\noqIifv/9d6ZPn45Op+PTTz+lf//+tY+a/pX0aOknOtr85imUFley5rODRAzyJzTCx9Th3JQ55q8p\nkfxda1PMN2QXnmPu6Oduep7kTj83y5/0aN2aTGi/NX17tAy+vMOqVauYMGECbm5uaLVannvuOayt\nrYmIiLhhkSUsT2VFDeu+OkxI7/ZmX2QJYQwHT0YyfcDDpg5DCGFiBunRMgTp0bIcNdUa1n55mLYd\n3Bg8tovJ9i8UwlTyS7JZ+NVMlj+2DWsr81grrjmSHi3TO3r0KBUVFcTFxfHII4+YOpwGMes5WqL5\n0Wp0bFwdj7uXE4PHSJElmqeYU1H0ChgoRZZo9pKSkggPDycjI8PUoZiMFFoWoj4T84xFp1PYsu4Y\nVlZqRt/ZrUltEm0O+WvKJH9XO3gykojOdVtfSHKnH8mffv486dsYZsyYwYEDBxg7dqxRr2POpNAS\nBqEoClGbkygrqWL8jFDUJt4kWghTKSrNIzM3hZCOfW99shAWbunSpQwePPiWq9lbMtnr0EKY+qml\nfTtSycosYvrcCKxtmt4m0abOX1Mn+ft/h1L/INx/ALbWddsRQ3KnH8mffgz5xGF+fj5Hjx7l8OHD\nBAcHs337dqZPn05MTAyhoaEGu05TI4WW0NuRvekkH8ti5vy+2NnLLSWat5iTUYwIm2rqMIS4ik6n\nY9KkSWzatMlo16isrGTYsGFs2LCBBQsWMGjQoNo9GiMiIox2XXMn4zsWwlTzFBJjz3M4Op27HuyD\no3PT3dNS5nnoR/J3WXF5IacvJhLqd3udPyO504/kr27Wrl3Lvn37rnndkHO0XF1d0el0lJSU4Ojo\nSFFRUYPayc7OZvPmzQaLy9Sk+0E02OmkHHZtPcndcyNwdXMwdThCmNyBkzsI9x+Ava38PAjzcfr0\naTw8PIx+nffee4+goCD8/PyIjIykY8eODWqnurra6JP0G5MUWhaisecpnE0rYOvPx5kyuxee3s6N\nem1jkHke+pH8XbYvaRvjI2bV6zOSO/1YSv7S09PZtm0biYmJTJw4kaysLOLi4pg/fz5BQUG15+Xk\n5LB8+fKbtjVmzJjaoTqdTkdUVNR1N5OGy3O0pkyZwqRJkxq8efUVL7/8sl6fr6vo6GjOnTvHkSNH\nGDp0KGfPniUtLY0lS5Y0yvXrSwotUW/ZF4rZuDqe8XeH0qZ9C1OHI4RZyCu+yLm8M4R27GfqUEQT\nFB0dzf33309QUBCPP/44I0aMoKqqiqioqKsKLW9vb1566aU6t/vzzz8zbdq0m56zYMECAgMDGxy7\nod1sHfWioiIKCgqYMWMGGRkZxMfHM27cOMrKyhoxwvqRQstCNNZ+aQV5Zfy88ggjJwfjG+Bp9Os1\nFtlvTj+SP9ifvJ0+nYdiY21br89J7vRT3/xtbV33+XP6GnPx2jlRNzJp0iQOHjzI0KFDCQgIACAh\nIYEJEyY0+Pqpqam4u7vj7u5+w3NKSkoYNmzYLdv64IMPyMnJue57KpWKRYsW4eTk1KA4/9pLV1xc\nzLlz50hJSal97Y477qBXr17Y2toyfvx4AOLi4nj66acJCwsjLCysQdduDFJoiToruVTJuq8OM2Bk\nIJ27tTZ1OEKYlf1J27hnyOOmDkPcQn2Kn8bk4uLC3r176d+/PwAajYbo6GjeeustiouLa5/ey87O\nvuWaVKNHj6Zv375ER0dz6dIljh8/TmVlJQAffvghEydOrPf8qSeeeOKW53h61v3Lt0qlIi8vD7i2\nl+7s2bNER0czc+bMaz7n6OgIXM5PQkIC4eHhgHlvji2FloUw9jfiivJq1n11mLC+HQjp3d6o1zIF\n6VHQT3PPX1ZBJvmlOQT79Kr3Z5t77vRlSfnbu3cv77zzDgD79u0jNDSU3NxckpOTGTVqFACtWrWq\n89DhnDlzav87MzOTt99+m8cfv/rLgIuLC7t27cLHxwd/f3+94s/Pz9fr83WxZcsW8vLy8PHxwcfH\nB7VaTUZGBqmpqXXad9AUZHkHcUvVVRp++voInYJaEjHIz9ThCGF29iZtpV+XkajVTW+xXmEeFEWh\nrKyM4OBgANq0aYOTkxM7d+6sLbIaKiEhgSVLlqBSqXjuueeu2Xfws88+Y/fu3Xpd43pWr15NVFQU\nzz77rMHaLCgoICUlhYsXLxIREcGqVas4ePCg2RZZACrlZrPOGlFkZCQ9e/Y0dRhNlrHmeWg0On75\n5giubg6MurObxW4SLfNk9NOc86coCk98PpknJi6mU+vgen++OefOEG6Wv7y8PLy8vBo5oqbFWENu\nu3bt4vz589xzzz31/uyFCxfYv38/U6eax8K/N7qPYmNj61TgSY+WuCGdTuG3H49iZ2fNyMmWW2QJ\noY/kc/HYWtni36qrqUMRwmxs3bqVgoICDh06xFdffVWvz7Zt29ZsiixDkELLQhj6G7GiKGxfn0hl\nhYZxd4eiVlt2kSU9CvppzvnbnbiZQd3HN/iLSHPOnSFI/vRjrAnkGo2Gzp0706dPHw4cOEBubq5R\nrtMUSKElrmvP7ynkXixh8n3hWFvLbSLE9VTVVBBzKooB3caZOhQhzEpISAg6nQ4ArVZr4mhMS/4F\ntRCG3O/r0J40Tp/IZuqcXtjaNY8HU2W/NP001/wdSvmDgDbd8HBu2eA2mmvuDEXypx9jbXUzffp0\n4uPj2bhxIyNHjqRly4b/jDR1zeNfUVFnxw6fI25/JjMf6ouDY/0WXhSiudl9fDODuzd8QUkhLJW9\nvb1BnzZsyqRHy0IYYp5CSmI20dtTmPZgb1xa2BsgqqZD5nnopznmL684izMXk+gTOESvdppj7gxJ\n8qcfc13k05JIoSUAyDydz+/rE5lyf088vBq2jYIQzckfxzZye9fR2No0ry8lQoj6kULLQugzTyHr\n3CU2fX+UifeE0apd89wkWuZ56Ke55U+r07AzYQPDQ+/Uu63mljtDk/zpx1hztMT/k0KrmcvPLeWX\nb44wekp3fPw8TB2OEE3C0TP7cXduia93Z1OHIoQwc1JoWYiGzFMoLqrgp68OM3hMFwK6ehshqqZD\n5nnop7nlLzLhF4P0ZkHzy52hSf70o+8crU2bNrFo0SIOHTpkoIiudvToUQ4cOMAnn3xilPYbgxRa\nzVR5WTXrvjxMr/4d6daznanDEaLJKCjJIflcHP2C9Nt/TghL4O3tzeLFi+nTp49R2k9KSiI8PPya\n/RmbEim0LER95ilUVWr46avDdA5pTa/+HY0XVBMi8zz005zytzNhA/26jMTe1tEg7TWn3BmD5E8/\n+s7R8vf3JyUlhU2bNhkooqvNmDGDAwcOMHbsWKO03xik0GpmNDVa1n8XS+v2Leg/IsDU4QjRpGi0\nNeyIX8eonneZOhQhzEJkZCSBgYHExcUZpf2lS5cyePBgPv30U6O03xhkwVILUZd5Cjqtjs3fH8XR\n2ZbhE4Nlk+g/kXke+mku+Ys5FUUbj450aBlosDabS+6MRfKnn/rM0crPz+fo0aMcPnyY4OBgtm/f\nzoMPPkh8fDw9evTQK47rtf3BBx/Qu3dvYmJiCA0N1at9U5JCq5lQdArbfklEo9ExYWaYxW8SLYQx\nbI39gfF97jN1GELUmUaj4YMPPsDV1RWdTkefPn3o2bNng9qqrKxk2LBhbNiwgQULFjBo0CBcXV0B\nCAsL0yvO67UN/19IR0RE6NW+KcnQoYW42TwFRVHYtfUkhXllTLo3DCvZJPoaMs9DP80hf2cuJlFQ\nkk2vgEEGbbc55M6YJH839+KLLxIREcG8efMoKytj9erVV71fnzlaV4q1kpISHB0dKSoqMlichmo7\nOzubzZs3GywuQ5AerWYgZtcZ0lPyuHteBDa28lcuRENsi/2ekeF3YaWWnyHRNJw/f56dO3eyePFi\nAObNm4dWq21we++99x5BQUH4+fkRGRlJx44dDRSp4dqurq42u0VY5TeGhbjRPIWjMWdJOHRONom+\nBZnnoR9Lz19RWT6HU3axdOg/DN62pefO2Cwlf+np6Wzbto3ExEQmTpxIVlYWcXFxzJ8/n6CgoNrz\ncnJyWL58+U3bGjNmDBEREezcuZOWLVuyfv16ysvLOXHiBM8888xV57q4uDBlyhQmTZrE7Nmzb9ru\nyy+/3PA/4C0Ys+0/i46O5ty5cxw5coShQ4dy9uxZ0tLSWLJkidGuKYWWBTt57CL7o1K5e14Ezq6y\nH5sQDbUt9gdu7zoaFwc3U4ci9DTj7V6Ndq3vnzlS53Ojo6O5//77CQoK4vHHH2fEiBFUVVURFRV1\nVaHl7e3NSy+9VKc2c3JySE5OZvjw4bi4uPDtt9/y8ssv8/7771913oIFCwgMNNwDHqakKMoN3ysq\nKqKgoIAZM2aQkZFBfHw848aNo6yszKgxSaFlIaKjo6/6ZpeekkfkphPc9UAf3D1lk+hb+Wv+RP1Y\ncv4qq8vZEf8Tr9/3tVHat+TcNYb65q8+xU9jmjRpEgcPHmTo0KEEBFxeeichIYEJEyY0uE0nJyf8\n/Pxqnyxs27Ytb7zxxlWFVklJCcOGDdMv+Fv44IMPyMnJue57KpWKRYsW4eTUsH+n/trDV1xczLlz\n50hJSal97Y477qBXr17Y2toyfvx4AOLi4nj66acJCwvTeyL/rUihZYEuZBbx648JTL4vnJZt9Nte\nQYjmLiphPd069Ka1u4+pQxEWzMXFhb1799K/f3/g8tOC0dHRvPXWWxQXF9c+3ZednX3LNaVGjx5N\n3759CQkJYe3atbWvq1QqNBpNvWPz9PSs92euXC8vL48nnnjCoNe40i5c28N39uxZoqOjmTlz5jWf\nc3S8vMiwRqMhISGB8PBw4HKxqe9WRDejV6Gl0WhYvXo1SUlJtZPt/mzPnj1s27YNtVqNn58fDzzw\ngD6XEzdx5Rtd3sUS1n8Xy9hpIbTzdTdxVE2H9Cjox1Lzp9HW8NvhVfxj0ttGu4al5q6xWFL+9u7d\nyzvvvAPAvn37CA0NJTc3l+TkZEaNurzlU6tWreo8dBgREUFZWVltIXHy5EmmTJly1TkuLi7s2rUL\nHx8f/P39r9tOfn6+Hn+qummMa2zZsoW8vDx8fHzw8fFBrVaTkZFBamoqw4cPN9p19Sq01qxZQ/fu\n3UlKSrrmvZycHCIjI3n99ddRqVSsW7eOqKgoo3dRNmeXCspZ9/Vhho4Lwr9LS1OHI0STd+DkDrxb\ntKdTm26mDkVYOEVRKCsrIzg4GIA2bdrg5OTEzp07bzlJ/Uasra358MMPWbJkCa1bt+bixYu8+uqr\n15z32WefMXLkyBsWWsXFxSQkJPDJJ5+watUqTp8+zbFjxygoKECtVjNnzhxKSkpYtmwZvXv3JjMz\nU++OldWrV9O6dWt+//13g01ULygoICUlBRsbGyIiIli1ahU2NjZMnz7dIO3fiF6F1qxZswCu6pq8\nIj4+nkGDBtWuPj5ixAg+//xzKbSMJCpyN2fioe9gf7qGtTV1OE2OzJPRjyXmT6fT8sv+L7h/2D+N\neh1LzF1BQhvgAAAgAElEQVRjspT8qVQqdu3aVXscGBjIRx99pHe7ffr0uemGzyUlJaxateqmbbi6\nujJgwADefvtyz+7WrVsJCgpi8uTJjBgxgvvuu481a9YQFhbG8OHDmTNnDlOnTq0d7qyvK3kYNmxY\nvWsGKysrbG2v/4T9vffe26B49GW0OVqlpaV06NCh9tjV1ZXi4mJjXa5Zq6yoITmmkrC+/oT38zVp\nLFqdQk5pNeculXOhMIesoovkXsqmsDSHssoCNNoKdNpKtP/7H0oNarUVapUVVlbWWKmtsbGyxdmh\nBW6O7ni6uNPK1QsfDy98W/ri4eKNWiULrgrjO3AyEgdbJ3p0vM3UoQhhVh577DHg8ppVLi4uWFtb\nc+bMGW677fLPire3N6dPn66dA1VfW7dupV27dhw6dIjjx4/Xq3esbdu2TJ06tUHXNRajFVouLi5X\nFVZ/nsx3I3/+ZnJltV85vvlx34h+/PJNLK4eVmhtsoCARrt+hRZcOnYjPjOV+JRYiisvUF2dhUpz\nHrUuD0XljE7thk7tjk7tgU7tiqLyRFHZoajswcoWRWUD6FApWtDpQKdFVVODqqIUdV4hKiUTta4U\nlVKMtS4XtVKGg0Nr7K3c8HLwYnjvoXRq3ZUzSedQq9QN/vNcec3Uf59N9djS8rdnz27WxH/A/Due\nQ6VSGfV6AwYMMPmftykf3yx/V5ZFuLKA5ZUJz3L8/8cuLi51Pv+KK8erV6/mP//5DyUlJVRWVmJl\nZQVc3k6nqqrqmvPrGl9FRQU+Pj706dOHFStWMGTIELy8vEyWr+zsbJKTk6+5v65Mrr8VlXKzRSfq\naNGiRddMhs/NzWXZsmW8+OKLqNVq1q1bh4eHxw27ASMjIxu8/1JzpdXq2PBdHPYONoydFoLKyPsX\n5pRWc+RcAYfOJJB64SilJSew1qSiqBzRWrVHa9UWrVV7nJ19ae/hi5ezA+4ONrg7WuPhYEMLe2ts\nrVVYq1XYqNXYWKlQqaBKo6NSo7v8/zU6Squ15JfXkFtWQ25pNXllNVwsraZKowOlCittLmpdLlba\ni9gpZ7HXZaLTFtHWM4Cu7boR3KEnwT69cHWUhwFEwxw4uYNNB7/hjVkrZfP1JiwvLw8vLy9Th2Ex\nJk6cyMaNGwHYsWMHQUFBVFZW4u/vz8qVK+nQoQPDhw9n5syZfPbZZw1+ku+bb77B29ubMWPGMHfu\nXBYvXkzLlqabd3yj+yg2NrZOk+gN3qO1atUqJkyYQMuWLRk6dCgvvvgiVlZW+Pr6Mm3aNENfrtlS\ndApbfzoGwOip3dm7b6/B5ylodQpJOWXsSjnNoZTdFF86jE1NClqrVmisA1EcbsfH+2G6tWuPr7s9\nvm72+LjZ42RrZdA4AHSKwsWSatIKKkgr8CWtoJJTeeVkl1ZzCVDpyimsOMuZlHT2nf6BqvJX8W7R\nlhDf3nTz7U133wgcbG+8ToulzPMwFUvKn07R8fO+z5kxaEGjFFmWlDtTkPzppy5LG5SVlbFx40Yu\nXLjA1q1b0Wq1vP3223h6emJtbc2PP/7ItGnTWL58OYqiMHDgQL2WS5g+fTpLly6lurqakSNHmrTI\nMgSD9GgZgvRo1Z2iKERtTiLnQgnTHuiNja2VwX7ZaHUKxy6WsikhnoQzUSgVcah1hdTYdAeHcLr7\n9iW0nTfdWjnTydMBWyvTzpfKKa3m2MVSErIu/+988f+6qxUtttpM2jukY69NouhSMl3ah9E7YBA9\nAwbh6dLqqnbkl7V+LCl/e09sZcuRNbx+39dSaDUBN8uf9GjdmrHXkLIE+vZoSaHVBO2LSiUlMZu7\n50Zg72BjkDbPFFTw24nT7E3cSk3pXtS6Eqrs+tDCLYJ+gT3p28GdkNbOWKNQlVdIVVYuNYXF1JSU\noi2rQNFoUbRaVDbWWNnbYeXkgK2nO7aebti38cbKwc4gcd5Kdkk1+zMvsS+jiISsUnT/u7utlAq6\ntkjDRUngfPYhvFq04fagUdzedRRerm0aJTZh/jTaGp76YhoPj3mR4A69TR2O0JMUWsIQzG7oUBhX\n3P4MTsRdYOb8vnoXWVUaHVGpefx0aBsFeZFYa05TYxOGk+dMRnTrxwDbGlwunKNkfxSlX57mQPJp\nytPPY9PCBfs2LbHxcMPa1QlrR0dUNlaorKzQVdegq6pGU1pOTX4RVbkFVGXnYePRAic/H1yCO+HS\nPRC38G44de5o8B6DVi62TO7WksndWlJcqeHQuWJ2nSkk5iwcLw4GgnF1m4F/y4ukZsew8eC9tPfy\np3/wGG7rMkL2smvmIo/+TFsPXymyhBAGIz1aTUhS/AV2bzvFjPl9aeHucNV79Rl+yC6p5peEM0Qm\nrIeySHRqd1ROwxjiGUKf7PPYHTtOQfQR1Ha2uHTthEvXTjgH+ePStRNOnTqgtrv+GiU3omi1VF7I\npex0BiUnTlN8/BRFh46hKa/A47YwWg7vh9fwfti3Mt43z8KKGqJSC9l2Kp/0wsra13u3tSfUI51j\niT9xoTSFkI63MTz0Trr7RsgyEvVgCcNfFdVlPPn5nTx310f4endutOtaQu5MSYYO9SNDh7cmPVrN\nxJmTuez8LZnpD/a5psiqq9S8cr4+cITE0z9hU30EjU0onZS7GHEmH/uD21GqfsV+QC88B0fQ5flH\ncfBpbZDYVVZWOPi0xsGnNV5D+ta+XnE+m4K9seTu2Efyqx/hHOhLmztH0nricOxaehjk2le4O9gw\nNcSbKd1bkppfwa/JeUSmFHD4QiWHL7Smpe0j3DXMC7vqg6z+40PKq0oZ2mMyQ0Im4O7ctCdiirrZ\nHPMtIb4RjVpkCeMyk34E0cTpex9Jj1YTcC69kA2r4rhzVk/adqj/0FZyThlf7j9IStoP2NScxKam\nN4MzHPGLScDe2ZE2d46k1R2Dce7sZ7JH2XU1GvJ3xZC1fjs52/fhOaAXPrMm4TmoDyq1cXqWiis1\n/Jacx4YTeeSX1wDg6WjD3T286eqWw67E9RxM3kEPv36M630PgW1DjBKHML3cS1ksWnkvS+askjl7\nFiQ3NxcvLy9ZokM0mE6nIz8//7pPPspkeAuRk1XMuq8OM+6uHnQMrF8XeOLFUlbs3UtG5o9Ya9Lw\nzOvMyD0FuNVoaT9lFG0mj8A5yN/sfglpSsq48PPvnP1mPbrqavwevZe2U0bVe8iyztfTKexJK+TH\nhBxO51cAlwuuGaGtGNzRjn1Jm9ka+wOuDm6M7TWTvl2GY21lmIcQhHl4f8NCOngFMLX/PFOHIgyo\nvLyc6upq3Nxk7qWoP51OR25uLh4eHtjYXPs7XwotC1CUX873nx9k6LgguvS4+bfsP89TyCysZNme\nGE6dXolNdRo+me0YFHmRVn3C6TR3Gp4Dexutl8iQFEWhYO8Rznz0HaUn0+j0xGza3zMBta3hi5zo\n6Gj69+/PvoxLfBt7kTMFlwsuL0cb7uvZmpEBbhxNi2bLkTVkFWQyrvc9jAibir1t3VYGtnRNeZ5R\nYuYhlm95jXcfXIutjX2jX78p584c3Cp/RUVF1NTUmN0XSnORnZ1Nq1atbn1iM3OlNHJzc7tukQUy\nR6vJKy2uZO1Xh+g3LOCWRdYV+eU1fHEgkf3HVmJXeZigk570O2BDx7v7ErB9Kg4+TWtIRKVS4Tmg\nN54DenMpLolTb31K2rLVBC56iDaTRxj8F6dKpaJ/Rzf6+bZg/58KrqXRZ1mfmMv8vj15ccYQ0rNP\nsuHgV2z49GtG97ybMT3vxtmhhUFjEY1Dq9Pw9Y53uG/IkyYpsoTxSW/WzSUnJ9OtWzdTh2HRpEfL\nDFWUV/PD5zF0DW1D3yGdbnl+lUbH6th0Nh36DtvS32mf5sptBxSC58+mywN3NtoaVo2hYF8cya98\niNrejq6vP0mL0CCjXUunKOxOK+KLmAtkl1YD0Ke9C/P6tqOjuwNZBRlsOLiSQyk7GRoyiTv63CsT\n55uYTTHfkJB+kOfu+kh6PIQQ9SJDh01UTbWGtV8epm0HNwaP7XLLX/7704v4KPJntLnf4n3Bir4H\nrOk+ew7d/3YnVvaWU2D9maLVcv6H3zi1+FPaTB5B4LPzsXYy3hBetUbH+hO5rI67SHmNDrUKJnT1\nYk7vtjjZWpFXnMXmQ9+xJ/E3+gWNYmLE/Xi7tTNaPMIwsgvP8sJ3c3hj1kpaubU3dThCiCamroWW\n+U/UaUa0Gh0bVsXj7uV0yyLrYkkVz27cw/s/PoJtxlcM/VXFzE4PMnPPRkIfm2GxRRZcXi6i/T0T\nGPDHd9RcKmHvkPvI2xWjV5tXdmO/HltrNdN7tOLr6cFMDL78QMKGE3n8be0J/jhTiKdLa+YMf5r3\n/vYTzvYuPP/t/azY9ib5Jdl6xdSU3Cx/5khRFD7//U0m9p1t8iKrqeXO3Ej+9CP5Mz6Zo2UmdDqF\n39YlYG2jZvSd3W5YZGl0CqtjM9gY/Rl25TvpddCaoIDJuL0YSr9RIxo5atOy9XSjx4cvkvfHQY7/\n401ajRtM5+cfNdpQqZuDDQtu92FckBcfRp/lRE4Zb0al83t7Fxbc7kNbVw9mDFrAHX3uY1PMtyz8\naiYDuo1lct8HcHOWRRPNye7EzZRWFjOu9z2mDkUIYeFk6NAMKIrCjg0nKMgrY+rsXljbWF33vNS8\ncpZs3UpFxoe0yagmuKQ3Y157hraBMuxRXVjMiYX/ofRkGmGfvY5zFz+jXk+nKGw9mc8Xhy5QUqXF\n1krFfT3bcFeIN1bqy0VyUVk+Gw9+ze7jvzKsx2TGR8zC1dHdqHGJW8srzuK5b2bx3F0f07FVF1OH\nI4Roouo6dGj1yiuvvGL8cG4tLS2NNm2a1lNxhrJ3Ryrn0guYOqc3tnbXdjJWa3V8FXOaFb+8hip3\nHeEx7oyds4TxC+fi4ulqgojNj5WDHa3GD8XKwY6jj72KfWsvXIIDjHY9lUpFoJcjozt7UFSpISWv\ngrgLJRw+V0z3Vs60cLDG3taRUL/b6R88huMZMXzx+2Iqa8rxaxWEjbXlDu2aM52i491fnmZgt3Hc\nFtS8eoCFEIaVlZWFv7//Lc+TOVomdmRvOqeOXWTqnN7Y2V9bZJ3MLePhb3/kjx0P4HcylqFVM3nk\nx3VEjO5z1Xkyzn65+Gk/YzwRaz8k9d0vObHoXXQ1mjp9tqH5c3Ow4enBviwe04mWTjaczC3nkfXJ\nrE3IRqu73Fns6dKKv41axJv3f0t+cTZPfn4nm2K+obqm8hatNx1N5f779dAqdIqGCRH3mzqUWk0l\nd+ZK8qcfyZ/xSaFlQomx5zkcnc60B3vj6HT1qudancLKw+m89tmT6NLeo0dCO+5e8C1z3nwCBwta\nrsEYXIID6Lf1C8ozL3DknqeoLiw2+jV7tXfls6ldGd3ZgxqtwucxF/jn5hTOX/r/YsrbrR2PjHuF\nl2d+TsqFYzz5+Z1Exv+MRltj9PgEpF1MYuPBr3l03Guo1dcfnhdCCEOTOVomkpqUw++/HOfuuRF4\nejtf9d7Fkire2BxJ8am3aH22hqAuj3DPk/dgf4O5W+L6FK2Wk28sI2frHnqtfg8nv8aZyxZz9hLv\n7zlLfnkN9tZqFtzenpGBHtc84JCadZzvd39MXnEW0wc8wm1BI1Gr5LuPMZRWFvPcyvuYOfjv9Asa\naepwhBAWQNbRMmNn0wrYuDqeqbN70br91SuK70jJY+VP76Gq3k7gyY6MeeY/9AntaJpALcTZbzeQ\n+p8VhK98C7fw4Ea5ZkmVho/2nWPn6UIAhnZy5/H+PjjZXlssH0s/yJrdH6HTaZkx6DFC/W6XxTMN\nSKfoeOfnp/B2a8ec4U+bOhwhhIWQdbTMVPb5S2xcHc+EGaFXFVnl1Vpe23KI776dRYvsSMI09/H4\nitV1LrJknP3GfGZNott/nuHIff8iN3L/dc8xdP5c7Kx5dogv/xrUAXtrNTtPF/LIL8kk5ZRdc25I\nx778e9Y3TLl9Lt9Evcdr38/n5PmjBo3H2Mz5/ttw4GtKKoq4b8iTpg7lusw5d02B5E8/kj/jk3W0\nGlFBXhk/fxPLqMnd6NDJs/b19IIK/v3DaqpyP8Mn04P+s1cwdkh36dUwIO/RA+m50o24Oc8SvORf\ntB4/1OjXVKlUjOrsSXArJxZHpZOSX8E/Np3igd5tuauHN+o//f2qVCoiOg+jV8Ag9iT+xocbn8PX\nO5C7Bz6Gr3eg0WO1VDGnotget5bXZ32NtZXhNyMXQohbkaHDRlJyqZI1nx6k37BOhPT+/7lC207l\nsmbNq6A7SMeCwTzwyqv4ejqZMFLLVnzsFEfu/SddXl5A26mjG+26NVodXx3OYt2xHAD6dWjB04M7\n4Hyd5TwAqjVV7Ij/iQ0Hv6aHb1+mDXjI5CuYNzWnL55gydq/s+iuj/Bv3dXU4QghLIyso2VGysuq\nWbsihtC+PoT38wUubwT9XuRRdm94FOfiNII7/Isnn38CL2d5otCY7Fp50nJYPxL+/hq2nu64djPe\nWlt/ZqVW0au9K4Fejhw6W8yZggr2pBcR0toZD8dre1qs1NYEtg1hRNgULhRk8Pm2N8grvohfqyDs\nbY23r6OlyL10gTd/fIy5oxfR3bfPrT8ghBD1JOtomYnqKg0/rzxCp67e9Bl4ebXyiyVVPLViNYl7\nH8Irx4qxM77liUfvwt664X8dMs5ed85d/Ojz44ecemMZWeu3A42Xv9s6tODjyV0I8HTgQnE1T2w8\nxe+n8m94voOtE9P6z+fdv63D2sqGf305ne93f0RZZUmjxFtX5nT/FZTm8sYPjzCx72z6BBp/iFhf\n5pS7pkjypx/Jn/FJoWVEGo2O9d/F4d3GhYGjOwMQf6GEF5a+Smn2UtoV3s68N39k3G2BMh+rkTl3\n7kjv798n6cUPuPjrH4167Taudrw/oTNjunhSrVV4Z3cmH0RnUqPV3fAzro7u3D/sKZbMWc2l8kKe\n/HwyGw5+TVVNRSNGbv6Kywt584dHGRIyiTG9Zpg6HCGEkDlaxqLTKWxeEw8qGD8jDJUKfj52ga1r\nngLS8PF6mKcW3H/DOTqicVxKOMmRmU8R+umreA7o3ejX33oyn//uO0uNViGktRMvDvfDzeHWk7bP\n56fxY/RyTp0/ypTb5zI0ZFKzn+x9qayAxWsX0MOvHzMHLZAvL0IIo5I5WiakKArb1ydSXlbNxHvC\n0QLvbj1MzK+P4lBWTK9B7/L47AmyAKkZsG/lRYvwrsTPfxHPAb2wb+3VqNcP8HKkd3sXYs4Wk15Y\nye60IkLbuFx33tafuTq60y9oJF3bh7Mt9kd+2f8Frg7utPfyb5YFRn5JNq9//zB9Og/l7oGPNssc\nCCEal8zRMqE9206Re7GESfeGU1ytZeEXP5B0cAGuRW5Mfuh75k7qh5XasP8QyDh7w3nc3hOrv00k\ndtbTlKefa/Trd2npxEeTutClpSPZpdU8uekUe9KK6vTZTm268fzdy5g3+gW2HFnDopX3Enc6msbu\nqDbl/Xc+P41XVs9lWI/JTB/wSJMrsuRnVz+SP/1I/oxPCi0Di9mdxunkXKbO6cWFshqe++Ad8rPe\npWXpAB5+7TuGdWtr6hDFdVhHdKfTUw9w5L5/NcreiH/l6WTDu3cEMiLAnSqNjtcj0/guNqvOBVN3\n3z68ft/XTL19Pt/9sZQXv5vD4dRd6JQbz/uyBEfT9vPqmnlMu30+4yNmmTocIYS4hszRMqBjh8+x\nf+dpZs7vS9KlKr5c/ixV1odp4zCbp598CPc6zL0RppX86n+5FJ9En++XorazvfUHDExRFH46nsOK\nmAvoFBgZ6MGTA3ywsar7dyKdTktMyk7WH/gKjbaGybc9QL+gkVipLWc+oKIo/HZ4NZtivuHJSUsI\nah9u6pCEEM2M7HXYyE4lXiRyYxJ3z4tg14VCtn33dxTVBToGvcBTs+7ATo+lG0TjUXQ64uc+j7WL\nE92XPm+yYagDmZf4d1Q6VRodoW2ceWmEHy71fHBCURQS0g+w/sCX5Bdnc0efexnUfTwOtk17Qdzi\n8kKWb3mVS2UFPDlpCS1bSC+xEKLxyV6HjSgjNZ/t608weVZPVh9NZeuqWdhUFxAxfDkL54xvlCJL\nxtn1cyV/KrWakI9eovh4Chmf/2iyeG7r0IL3xgfi4WjN0axSntx4iqziqnq1oVKpCPXrx8szP+ex\nO17jROYR/r58At9EvUd2kWHnojXW/Rd7eg+LVt5LO08/Xr33C4sosuRnVz+SP/1I/ozPcsYSTCTr\n3CU2/3CUcXeH8tm+I2QefR6Xci/GPPQpY7o3/X8EmiNrRwd6fr2EA3fMxznIH69BpllZPNDLkQ8n\nduHFbadJK6zk8Y2neG2UP129698j1aV9GF3ah5F7KYvf437khW9n07ldKKPC7yLENwK12ryfgC0q\nzWNl1DucuZjEI+NeobtvhKlDEkKIOpGhQz3k55Tyw4oYBk8IZuXBPeSc/Q9uRV2Zs/C/hLV1NXV4\nQk8F++KIn/8C/baswMHHdEuPlFVr+XdUGofPlWBnpeKF4X707dBCrzYrqyvYc+JXdh5dz6XyAgZ2\nu4PB3SfQxqODgaI2jIrqMn499B3bYn9keOidTOk3F1sbe1OHJYQQMkfL2IqLKljz6UHCBvuzet8W\nioo/x6N8AH9/djH+Hg6mDk8YSNryNVzcEEnfDZ+gtjXdwwwancIH0ZlsO1WAWgX/HOTLyEAPg7Sd\nkZPCruOb2HtiC63dOzCg21h6BQzGw7mlQdpviJKKInbE/8zW2O/p4duXuwY8jLdbO5PFI4QQfyUL\nlhpReWkVP6yIwb9nO77ftZriqlV4KneycNHL+LiZ5tt2dHQ0HTqYV29EU3Kj/Ln16k7O73spOX4K\nryF9TRDZZWqVin4dWlCjUzh+sYx9GZewt1bTrZWz3m27OXkS6tePsb1m0sLRnaNp+/gm6j0OndpJ\ncUURzvYtcHFwu+mDAYa4/xRF4dSFBH7Z/wUrtr2Jq6M7c0ctYkT4NJzsLbeHWH529SP504/kr+Hq\numCpzNGqp6pKDT99fQSvTl78HLWMMuvdtHKex/N//xst7CWdlkalUhHywQvsGzkbj37heI8eaNJY\n/tanLe4O1iw/cJ7PYy5QVKlhbp+2Bnk60trKht6BQ+gdOASNtoaks7EcSvmDN398DLVaTZd2YXRu\nF0qXdqF0aBlgkHld1ZoqTp6L52jaPg6l/IGV2pqB3cbxzt/W4m7CHjUhhDAUvYYON27cyKFDhwDo\n2bMnd95551Xvv/LKKyiKglp9+am7WbNm3bD6awpDh5oaLT99fQSNgw17j35Ald0J2nVYyHMPTJbt\ndCxc4aFjxD3wLP22fIGDT2tTh0NkagHv7MpA+7+1tp4a2MHguw1coSgKWYUZnDx3lJPnj3Lq/FEK\nS/Pwa9WFdp5+tPP0w6tFGzydvWnh5ImDnRN2Ng6oVZd/7ms01ZRVFlNaWUxecRbZRec5n3+G01kn\nOJd/Gt+WnQn1u53wTgPwaxXU5FZ2F0I0T3UdOmxwF0xSUhJpaWm8/vrrAHzyySccO3aMkJCQ2nNU\nKhWLFi3Czs6uoZcxGzqtjk3fH6VEpyE27k00Ntl0CXmLp+4agrWR/oET5sO9Twh+j9zD0YdfImL9\nMtQ2pu29HB7ggaudNa9FprE9pYDiKg3PD/PD3ghLiahUKtp6dKStR0eG9pgEXF7LKj3nJOfz0zif\nn0ZC+gEKSnK4VJZPeXUZ1TWVACgoWKmtcbJ3wdm+BZ6urWnVoh1tPHzpFzQav1ZdsLd1NHjMQghh\nLhrco7V69Wp69OhB9+7dATh16hT79+9n9uzZtee88cYbKIpCaWkp4eHhzJgx44btmXOPlqJT2Prz\ncc6czycxczGKqpzw0R8yb0SY2Xz7jo6OZsCAAaYOo8mqS/4UnY7YWc/g3MWPLi891kiR3VxyThnP\nbztNSZWW4FZOvD7Kv94LmxrCX/OnU3SgKKBSoUJlNj8n5kh+dvUj+dOP5K/hjN6jVVJSgouLS+2x\nq6srly5duuqchQsXYmNjg06nY9myZRw+fJjevXvfsM0//4VfWUTN1Mf9+/fnjy0nOZaURtqlD1Ar\nOgbe9RU+movs3bvX5PFdOT527JhZ5KupHtc1fxEfvsC+UQ+Q5emAdWhns4j//fGdeWpDIieyy3jm\nt1QWj+nE8SMHTZq/fXv3mSwfcizHcizHjXHs6Fi33ni9erRCQkJqhwpPnTrFvn37mDNnznXPP3Lk\nCGlpaUybNu2675trj9aBnafZty+ZlKL/oNbYMGLWCu7s6WvqsIQJ5f1xkOP/WkL/qG+xcdX/qT9D\nyCmtZuFvqZwvrsLXzZ4l4wLwdJS9NYUQwliMvgVPz549iYqKqj2OioqiV69etcdFRUX8+OPlLUx0\nOh0xMTF07ty5oZczifgDmUTvTODkpSVY1zgwfu5KKbIEXkP64jX0Nk6+8l9Th1LL29mWd8cH4utu\nT0ZRJf/anEJOabWpwxJCiGavwYVWUFAQHTt25IUXXuCFF17A29ubkJAQVq1aRXFxMW5ubmi1Wp57\n7jleeeUVfHx86NGjhyFjN6qkhCy2bdpPStV/sK12Z8qjKxnbzXy31LnSlSkapr75C3p5Afl7DpMb\nud9IEdWfh6MN79wRSCdPB84XV/HPzSn13h+xoeT+azjJnX4kf/qR/BmftT4fnjRpEpMmTbrqtXvv\nvbf2v2fOnMnMmTP1uYRJnD6Zy4bVOzit/hj7qvbMfPJzbu/obuqwhBmxdnai+/uLOPb4G/SP+gYb\nN/NYULOFvTVvjwvg+a2nSc4t55+bU3hrXIDJFtIVQojmTrbg+Yuz6YWs+vgXUmw/xak8kNlPfUwv\nH/32lROW68Sid9GUldPjwxdNHcpVyqu1vPj7GY5dLMXN3pq3xgXgJ1tDCSGEwRh9jpYluphVzOqP\nfyLFbjlOld15aOFyKbLETXV+4RGKYhLI2bbH1KFcxdHWin+P6UTPdi4UVWr4168ppOSVmzosIYRo\ndqUNVWQAACAASURBVKTQ+p+8vFK+fv9HTtp/hlNlOAue/S/dWpvHE2V1IePs+mlo/qydHOm+9HkS\nF/6H6sJiA0elH3trNa+N9KdvB1dKqrQ881sqp3KNU2zJ/ddwkjv9SP70I/kzPim0gKKiCla88wOn\n7D7DuSKcBc++T+eWslq1qBuP28JoNXYwp978xNShXMPWWs1Lw/0Y0LEFZdVant2Syinp2RJCiEbT\n7OdolZZW8d83V5FitRyninD+/uz7dPaSIkvUT82lEqIH3Uv4l2/i1qu7qcO5hkan8GZUGtHpl3C2\ntWLJuAC5z4UQQg8yR6sOyitq+O+SNZeLrMqeUmSJBrNp4UKXlxeQuPA/6DQaU4dzDWu1iueG+dG/\nYwtKq7Us2pIqc7aEEKIRNNtCq7JawwdLVpGiWoZTZU8eX/heky6yZJxdP4bIX5s7R2Lj5srZr382\nQESGZ61W8dzQjtzu24KSqsvDiIYqtuT+azjJnX4kf/qR/Blfsyy0qmu0vLdkNSm6ZThX9uLxhe8R\n2ISLLGEeVCoVwYv/Rer7X1N5MdfU4VyXjZWa54ddXWylSs+WEEIYTbObo1Wj1fH2kjWcqVyKU2Vv\n/r7wXSmyhEGdWvwpFRnnCV3+mqlDuaEarY5/R6WzL+MSLnZWvD0ugE6e8nMghBB1JXO0rkOrU3jn\nvZ85U/EBTpW9eFyKLGEEnZ6YTdGRRPJ2xZg6lBu60rPVr0OL2qUfzhRUmDosIYSwOM2m0NIpCu98\nvJkzhW/jVNGdBc+8R4AFFVkyzq4fQ+bPytGerm8+xYlF76KrMt+NnW2s1LwwvCO3/W+drYW/pZJZ\nVNmgtuT+azjJnX4kf/qR/Blfsyi0FEXh/RU7OH3hDRwrOvPQMx/KOlnCqLxH9scpwJeMFWtNHcpN\nXS62/OjT3oVLlRoW/pbKhUbaiFoIIZoDi5+jpSgKH6zaQ/KxhdhV+TD7X5/Ts71sqyOMryw1gwOT\nHmHg7tXYerqZOpybqtToeHHbaY5mldLK2ZZ3xwfi7Wxr6rCEEMJsyRwtLhdZn/wcw6mjz2JX1Zp7\n/vGZFFmi0TgF+NJm0ghS3/3S1KHckr21mldH+tPV25Hs0mqe+S2V/PIaU4clhBBNnkUXWl9uSeDE\n/n9iU+3JXU98QV9f8+5V0IeMs+vHWPkL+OeDZG3YQVlqhlHaNyRHWyv+PboTAZ4OXCiu4tnfUimq\nqFuxJfdfw0nu9CP504/kz/gsttD6NvIE8Tv+jlWNC5MWfMkAPw9ThySaIVtPN/wfvZeTry8zdSh1\n4mxnzeKxAfi625NRVMmiracpqTK/le6FEKKpsMg5Wmv3phC9bh6KYsPYed8wtlsbg7QrRENoK6uI\nHngPIR88j8ftjb+fZ0MUlNfwz80pnC+uIqilI0vGBuBoa2XqsIQQwmw02zlaG4+cZd+PD6NDzcgH\nvpIiS5iclb0dnV94hORX/oui05k6nDrxcLThrXEBtHK2JTm3nJe2n6FS0zRiF0IIc2JRhdbWY+f5\nY+Xf0FhpGHjPF0wIbW/qkBqNjLPrx9j5az1xOGobGy6s22bU6xiSt7Mtb48LwNPRhoSsUl7dfoZq\n7fWLLbn/Gk5ypx/Jn37+r737DoyqTNsGfk1LJpPeCyEkIYFQQi8xhkgoShEUdXcti+CrvioulkVQ\n2otRKZaVxRVQ1EU/sa4NRAKCAUlAEUnogRRSICG9t0mmfH9EoiwBkjmZnHNmrt8/uyeZzNxenMA9\n57nnOczP+mym0UrNrsCeTf8LvUMTxt65CX8eHSZ2SUTtFAoF+j8/H1lr3oax0bJNQcUQ6OaIl6dF\nwF2rxpHCOqz8IQ8GkySmDYiIZMEmZrSOFtbi49UPoE53ESNueRsPT4zu5uqIukf6Q0vgMXwQwh6/\nT+xSuuRcZRMWfpeFOr0R48M98ez4PlApFWKXRUQkGruZ0Tpb2oBP1jyOatcL6Hfj63howmCxSyK6\nqoiFDyF348cw1DeIXUqXhHs5YdWUvtBplNh3rgrrf7oAibxHIyKSNFk3WgVVzfj3ymdQ7n4WoYNf\nxJMzx0KhsM932VxnF6an8nPtHw7v+NHIf0fat+bpSH9fZyTeHA6NSoHtGeXY/OvF9u/x/LMcsxOG\n+QnD/KxPto1WcZ0e619ajlL3X9ErZDEW3TMZSjttskheIhb8D/Le+QytNXVil9JlQwNdsXxCGJQK\n4NNjJfj8eInYJRERSZosZ7QqG1vx8osrUeK4HQEeTyDxb3+Fo1q2PSPZoRNPrYQ2yA+Rix4WuxSL\n/JBdiZf3te12/1Rcb0yL8hG5IiKinmWzM1r1egNeeeVfKHbcDn+HuVg+7z42WSQ7ff/+AAo2f4mW\nimqxS7HIxAgv/C22bfuUdannsf9clcgVERFJk6w6lOZWI1b9czOK8TF8zXdi8dOPwJm7VQPgOrtQ\nPZ2fLiQIATMmIHfDxz36ut1p5kBfzBkZCDOAVcm5OHy+VuySZIm/u8IwP2GYn/XJptFqNZqw6q3/\n4GLj2/BunoxFCxfAw0kjdllEFgt/cg4ufLQV+rJKsUux2L3D/HHnYD+YoMALe87hVHG92CUREUmK\nLGa0jCYzVm/egdy85+HRGIOn/+9VBLtre7hCou53eulaKFRKDHjhSbFLsZjZbMbrKQXYlVkJZwcV\nXpsegb7eOrHLIiKyKpuZ0TKbzVj7nxTk57wAj9poPLb4ZTZZZDPCn5iNos93oPlimdilWEyhUOCp\nuBDEhbqjocWIxUk5KKyRz+73RETWJOlGy2w2Y+OONGSnPQu3+j6Yu/gNRPjwnXJHuM4ujFj5af19\n0Osv05G7Ub6zWgDw08EDeC4hFCN6uaK62YBnk7JR1tAidlmywN9dYZifMMzP+iTdaG3Zfwan9j4J\nXZMv/rTgbUQHuIhdElG3C33kbhR9vkO2n0C8xEGlxIpJYRjgp0NpfSueS8pGdVOr2GUREYlKsjNa\n36QVIPnD+6E0OWDGvC2Y2N9PxOqIrOvk31fDMdAXkQsfErsUwer0BjyzPQu5Vc2I9HHCK9Mi+elg\nIrI5sp7R2nOmBD++/xAABSbMfY9NFtm8sMfvQ8H7X8nuHogdcXVUY9XUCAS5OSCrvAn/9/056A0m\nscsiIhKF5Bqtg7mVSFr/EFocGjHmzrcwc3hvsUuSBa6zCyN2fs59Q+AdOwLnP9wmah2W+u/8vHUa\nrJkaAW+dBieK6/FSci4MJklcPJccsc89uWN+wjA/61ML+eFt27bh8OHDAIARI0Zg1qxZl30/JSUF\nu3btglKpRFhYGB544IFrPt+J4np8/fqjaNCVY9iE9fhrXH8h5RHJSvgT9+PI7GfQ53/uhNLRQexy\nBAtwdcTqqX2xYHsWDhXU4rUf87FofB/ek5SI7Irq+eeff96SH8zIyMCRI0ewePFiTJgwAfv27YNW\nq4W/vz8AoLS0FJ9//jkSExMxYcIE5OTkoLi4GGFhYR0+X25uLj56cwWqXbLRf+SrmD9jLBT8C7nT\nQkJCxC5B1qSQn6O/Nyr2H4aptRXuQ6LELqdLrpafh5MGQwNdsDenClkVTajTGzA62I2/238ghXNP\nzpifMNbKz2w22/zv+cWLFxEeHn7dx1m8dJienn7ZENjEiRORlpbWfnz06FHEx8e3Bz1p0iQcOXLk\nms9Z6XYKIf1W4Kk742z+D4ioI+Hz70fu+o9gNhrFLqXbRPk5I3FyODRKBbaeLseHacVil0REVnT8\nYj2e3p7FTx3/xuKlw7q6Ori6urYfu7m5oaampv24vr7+sk7Zzc0NtbXXvheah+s8PDd7ClRKRfu6\ncVxcHADw+DrHGzduRHR0tGTqkduxVPK78cYb4eDjiX2vvQXNjUNFr6e78mvIPYZZgSp8UaTFlvRi\nlBbmI8bLIJn6xTz+44yMFOqR2zHzk1Z+2eWNWJqUCb1JgW8zyjF7RKCk/nu781in69y+nhZv7/Dx\nxx8jOjoa0dHRAIDMzEwcPHgQc+fOBQDs3r0bKpUKEyZMAABUV1fjnXfewcKFCzt8vh9++AEDo4dC\nq+HHwC2RmprafhJQ10kpv9LdB5C1ZhNi97wvmyu7nc1vV2YF/rG/AADwTHwIbu7nbe3SJE9K554c\nMT9hujO/wppmPP1tFqqbDbgpzAPPJYRCpZTH32GWsPr2DiNGjEBycnL7cXJyMkaOHNl+PGzYMKSk\npMBkavtY9549ey77fkfYZFmOf9EII6X8fCfFwmwyoXzvIbFL6bTO5ndLP288MrYXAOD1lAIcyJP3\nJq3dQUrnnhwxP2G6K7+yhhY8l5SD6mYDRvZyxaLxfWy6yeoKi4fhfXx8UFJSgi1btiA5ORkREREY\nP348PvroI4SGhsLLywtKpRLvvPMOfvzxR2i1Wtx5551Xfb7c3FwEBgZa+t9BZDMUCgVUTlpc+Hgb\ngu6aInY53W6gvzOMJjOOFzfgYF4NBvk7I8DVUeyyiMhCtc0GPLsjG4W1egzw0+GlW/rCUW37F046\nOwwv2Z3hqWt4+VwYqeVn0rdg36g7MOaLf8Glf8ef1JWSruZnNpux/qcL2Ha6HE4aJV6ZFoH+vs5W\nrFC6pHbuyQ3zE0Zofo0tRjyblI2zZY3o46nFP6ZHwk2r7sYKpUvWO8MT2TulowNC5sxC/nv/EbsU\nq1AoFJh3QzAm9PVEU6sJS3fmIL+qSeyyiKgLWgwmJO7JxdmyRvi7OGDNlAi7abK6gle0iCRKX1aJ\nlLh7EP/T53Dwche7HKswmMxI3H0Oh87XwkenweszIrmMSCQDRpMZL/6Qi4P5NfB0UuP1W/uhl7t9\n/e7yihaRzDn6esF/SjzOb9kqdilWo1YqsGxiGKIDXFDe2IrnknJQxb13iCTNZDbj9ZQCHMyvgYuD\nCqunRthdk9UVbLRsxB/3QqGuk2p+fR7+Ewo2fwlTq0HsUq5JSH6OaiVeuDkcEd5OKKrVY3FSDur1\n0v7v7U5SPffkgvkJ09X8zGYz3vq5ELuzKuGoVuKlW/oi3MvJStXZBjZaRBLmNrgfnMN6o3j7XrFL\nsSpnBxVWTemLYHdHnKtswvLvz6HZYBK7LCL6L1vSi/HNqTJolAo8PzkMA/3t80MsXcEZLSKJK9m5\nH+f++QFikt6VzQamliqtb8HT32airKEVo4Nd8fzkcGhUfD9IJAVfnSzFWz8XQqkAlk0IQ1yYh9gl\niYozWkQ2wm/yjWipqkX1kZNil2J1fi4OWD01Au5aNQ5fqMMrP+bDaJLEe0Eiu7YrswJv/VwIAPj7\nuBC7b7K6go2WjeCcgjBSzk+hUiH04T8hf9PnYpdyVd2ZX4iHFiun9IVOo8SP56rx5sHzkMiFd6uQ\n8rknB8xPmM7kl5pbjbUpbbfOejSmF2+d1UVstIhkoNfd01GRchhNF4rFLqVH9PPR4YWbw6FRKfDd\nmQps/vWi2CUR2aUjhbVYvTcPJjMwe0QA7hjsJ3ZJssMZLSKZyFj+T6ictOi35FGxS+kxP+fX4Pk9\n52AyAw+NCcKfh/iLXRKR3Thd0oBnk7KhN5hw+yBfPBbTy+bnRLuCM1pENqb3/bNw4ZPtMLXYzz5T\nMX3csfCmPgCAd38pQtKZcpErIrIP5yqbsGxXDvQGEyZHeuFRNlkWY6NlIzinIIwc8nOJ7AOXyFCU\n7NwvdilXsGZ+EyO88PgNwQCAdQfOY39uldVeSwxyOPekjPkJ01F+hTV6LE7KRn2LEbF93PH3cSFQ\nssmyGBstIhnpPed2nP/gG7HL6HG3DfLFnJGBMJmBNXvzcfh8rdglEdmksoYWPJeUjaomA4YHuWJJ\nQihUSjZZQnBGi0hGTC2t2DdyFsZ8tR4ukX3ELqdHmc1mvH2oEF+dLIODSoGVU/piaKCr2GUR2Yzq\nplY88102CqqbEeWrw8vTIuCkUYldlmRxRovIBikdNAi+51ac/9D+rmopFAo8MrYXpvX3RovRjOW7\nzuF0SYPYZRHZhDq9Ac8l5aCguhmhnlq8dEtfNlndhI2WjeCcgjByyi/4rzNR9MVOGJv0YpfSrqfy\nUygUmH9jb0yM8ESzwYSlu3KQVd7YI69tLXI696SI+QmTmpqKhhYjluzMwbnKJgS7O2LN1Ai4adVi\nl2Yz2GgRyYwuJAjuwweieNsPYpciCpVSgWfi+2BcqAcaWoxYnJSNvMomscsikqUWE7B8Vw7OljUi\nwNUBL0+LgJdOI3ZZNoWNlo2Ii4sTuwRZk1t+IfffjoIPvha7jHY9nZ9KqcBzCX0wtrcbavVGPJuU\njQs1zT1aQ3eR27knNczPcnqDCTvr/XGypAG+zhq8Mi0Cvs4OYpdlc9hoEcmQ76RY6EvKUXsiU+xS\nRKNRKbF8YhiGB7miqsmAZ3dko7hOOsupRFLWYjThhT25OFpUDy8nNV6ZFoEAV0exy7JJbLRsBOcU\nhJFbfgqVCsH3zZTMULxY+TmolUicHIbB/s4oa2jFoh3ZKG9oEaUWS8nt3JMa5td1BpMZq/fm4fCF\nWuhUZqyZFoFe7lqxy7JZbLSIZCr43ltxcesPMNTb9yfvtBoVXrylL/r76lBc14Jnd2Sjqsl+ds8n\n6gqjyYxX9uXjQF4NXBxU+GvvZoR6Ooldlk3jPlpEMpb+4BJ4x49GyJxZYpciutpmAxbtyMK5ymaE\neWrx6vRIfnKK6A9MZjNe31+A77MqodMosWZqBKL8nMUuS7a4jxaRHQi+51YUfvqd2GVIgptWjTVT\nI9DbwxG5Vc1YsjMHDS1GscsikgSz2Yz1By/g+6xKOKqVeOmWvmyyeggbLRvBOQVh5Jqf9/gxaL5Y\nivqzuaLWIZX8PJw0eHlqBAJdHZBZ3ojFSdmSb7akkp1cMb/ru3RXhW8zyqFRKfDC5HAMDnABwPx6\nAhstIhlTqtUIumsKLnzGq1qX+Dg74JVpkfB3ccCZskYs2Sn9ZovIWsxmM947XISvTpZBrVRgxaQw\nDO/FW1f1JM5oEclcQ3Y+Ds16HOPTvoFSw5mkS4rr9Fj4XTZK6lswwE+HVVMi4OzAW4qQ/bjUZH1+\nvBQqBbBsYhhuDPUQuyybwRktIjvhHNEHutBeKE/+SexSJCXA1RGvTo+An4sGGaWNWLozB428skV2\nwmw24102WZLARstGcJ1dGLnn1+vu6bgg4lC8VPMLcHXEa9Mj4eeiwenSBizZJb1mS6rZyQXzu9Kl\nJus/nWiymJ/1sdEisgGBMyei8kAa9OWVYpciOQGujnh1WiR8nTU4XdKApRJstoi6S1eaLOoZnNEi\nshHHn3gRboMiEfrI3WKXIkkXa/V45rsslDW0YrC/M166pS90nNkiG2I2m/HuL0X4zwk2WT2BM1pE\ndib4t+VDibx3kpxAN0e8Or3tytbJkgYs28V9tsh2sMmSLjZaNoLr7MLYQn6eMcNgbGhC7bEzPf7a\ncskvyM0Rr0z7vdl6Likbtc0GUWuSS3ZSxfzamqxNh35vspZP6nyTxfysj40WkY1QKJXodfd07hR/\nHb3cHfGPW9v22Tpb1ohFO7JRzXsjkkyZzGa8efACvjz5e5MV24dXsqSEM1pENqTpQjEO3vwAxqd9\nA5XWUexyJK2soe0G1Bdq9Ajx0OLlaRHw1mnELouo04wmM15PKcDurEpoVAr838QwjA1xF7ssu8EZ\nLSI75BQcALfB/VC6K0XsUiTP19kBr02PRB9PLQqqm7FgexZK61vELouoU1qNJqzam4fdWZXQqpVY\neUtfNlkSZXGjlZ+fjxUrViAxMRGrV69GfX39FY/Zt28fnnzySSQmJiIxMRFfffWVoGLp6rjOLowt\n5Rf0p6ko+mJXj76mXPPz0mnw2vRIRHg7oahWjwXbs1BUq+/RGuSanVTYY356gwmJe3KRklsNZwcV\nVk/ti2FBlt1Wxx7z62kW36/j7bffxsKFC+Hp6YnTp09j8+bNmD9//hWPmzp1KqZMmSKoSCLqPP+p\n45Cx9HW0VFTDwZuzGtfjrlXjlWkRWLorBxmljViwPQsvT4tAiIdW7NKIrtDUasSK3edwtKgebo4q\nrJ4agUgfndhl0TVYdEWrsLAQgYGB8PT0BAAMHDgQxcXFHT42OTkZy5cvx8qVK1FRUWF5pXRNcXFx\nYpcga7aUn9rFGb4TYlD8bXKPvabc83NxVGP1lAhEB7igorEVC7ZnIaeiqUdeW+7Zic2e8qvXG7A4\nKQdHi+rhpVPjtVsjBTdZ9pSfWK55Rau6uhrr1q274uuDBg2Cm5vb5U+kVsNoNEKl+n0DwNjYWIwf\nPx4AcOzYMbz//vtYsGDBVV8vNTW1/Q/90uVMHvOYx10/rorqjZL3v0DI3DskUY9cjldOicXzu88h\nrbAOT23NwMqpkRgS6CqZ+nhsv8cNBmBrlQ+yK5rgrjbh3oBahHo6SaY+ezzW6TrX5Fr0qcOioiJ8\n+eWXly0VLlmyBKtWrbrmzy1evBirV6/u8Hv81KEwqam/N6nUdbaWn6nVgL3DZiJ253tw6h1o9dez\npfxajCa8vC8fKbnV0KgUWJIQatWNH20pOzHYQ37FdXosTspBYa3+t73gIuDn4tAtz20P+VmLVT91\nGBQUhOLiYlRVVQEAMjIyEBQUdMXjvvjiC5SXlwMATp482eFjiKj7KTVqBMxIQNFX34tdiuw4qJRY\nkhCKGQN80Go048UfcpF0plzssshO5VQ04altmSis1aOvtxNevzWy25os6hkW76OVl5eH9957DyqV\nCg4ODnjiiSfg4uKCtLQ0tLS0ICYmBqdOncLHH38MBwcHuLu748EHH4Sra8efjOAVLaLuVfXLcZx6\n5mXc+OMWKBQKscuRHbPZjC3pxfgwrW3+9IFRgbh7qD+zpB5ztKgOz+8+h8ZWE4YFuWDFpHA48/6c\nktHZK1rcsJTIRpnNZuwfcxeGb14Nt8H9xC5Htr49XYY3D16AGcDtg3zxaEwvKNlskZXtP1eFl/fl\no9Vkxk1hHlg4vg8cVNz6Ukq4YamduTScR5axxfwUCgUC77i5R5YPbTG/S2YM9MXSCaHQKBX45lRZ\n2z9+RlO3Pb8tZ9cTbDG/rafKsDI5D60mM24f5IvFE0Kt1mTZYn5Sw0aLyIYF3XEzLn69G2ajUexS\nZC0+3BMrp/SFk0aJvTlVWP79OTS0MFPqXmazGZt/LcL6n9quoP7P6CA8xiuosselQyIbd2DSHEQl\nPgHvG0eKXYrsZZU3YsnOHNQ0GxDmqcWLt/TlYDJ1i1ajCW8cOI9dmZVQKoC/jwvBzf28xS6LroFL\nh0QEAAi64xZc/JKfPuwOkT46vDGzH3q7OyK3qhlPbDuLrPJGscsimavTG7B0Vw52ZVbCUaVA4uRw\nNlk2hI2WjeA6uzC2nF/grMkoSfoRxmbr3cPPlvP7b4Fujlg7ox+GBLqgstGABduz8HNBjcXPZ0/Z\nWYPc8yuq1eOpbZk4WlQPTyc1Xp0e2aM3h5Z7fnLARovIxmkDfeE6MBJlP/wkdik2w02rxqopfTEp\nwhPNBhOe330O35wqE7sskpmTxfV4YutZnK/RI8xTi3/d1h9Rfs5il0XdjDNaRHbg/JatqNj/K4Zt\nelHsUmzKf++1desAHzwW0wsafgyfriM5uxL/2F+AVpMZo4PdsGRCKPfIkhnOaBFRO/+pN6F8788w\nNjaLXYpNUSgUmD0iEM+O7wONSoHtGeV4LikH1U2tYpdGEmU0mfHuL4VY89seWTMH+uCFm7kRqS1j\no2UjuM4ujK3n5+DtAfcRg6y2fGjr+V3PxAgv/GN6JLx0apworsf8rZk4V9nUqZ+19+yEklN+dXoD\n/u/7HHx+vBRKBfD4DcH4W2xvqJTibd8gp/zkio0WkZ0ImJGA4m+TxS7DZkX5OWP9bVHo76tDSX0L\nntqWidTcarHLIonIr2rC/K2ZOHyhDu5aNV6eFoHbBvmKXRb1AM5oEdmJlopq7I/5ExKOfQuVTit2\nOTarxWDCP1MLsCe7CgDwlyF+mDsqSNSrFiSug/nVeHlfPppaTejr7YQVk8IQ4OoodlkkEGe0iOgy\n1l4+pDYOaiUW3tQHj4ztBaUC+Ox4KZ5LykYV57bsjtFkxnu/FOL53bloajXhpnAPrJ3Rj02WnWGj\nZSO4zi6MveRnreVDe8mvsxQKBe6M9sMr0yLh5aTGsYv1eOzrMzhVXH/FY5mdMFLNr6KhFYt2ZOGz\n3+axHhodhCUJodCqpfXPrlTzsyXS+hMnIqvipw971pBAF6yfFYXoAGdUNhrwzHdZ+PJEKSQysUFW\ncrSoDo99fQYnihvgpVPjlWmR+PNQfyh4z0K7xBktIjtz+C9Pofdfb0PAjASxS7EbBpMZmw8X4T8n\nSgEAY0PcsGBcCDycNCJXRt3JaDLj02Ml+DDtIkxmYFiQCxYnhMKTf842iTNaRNQhfvqw56mVCjw8\nthdWTAqDq6MKhwpq8ejXZ5BeWCd2adRNSutbsGhHFj440tZk3TvMH6unRLDJIjZatoLr7MLYU37W\nWD60p/yEuDHUAxv/sJT4XFI2Er86BINJEgsLsiSFc2/fuSo88tVvS4VObbdnkssnTaWQn61jo0Vk\nZ/jpQ3H5uTjglWmRuH9EABQK4EClA57+NhMF1Zybk5uGFiNe/TEfq5Lz0NBixA0h7njrjiiMCnYT\nuzSSEM5oEdkh3vtQGk4V12P1vjyU1rdCo1LggVGBmDXITxZXQuzd0aI6vJ5SgOK6FjiqFHgkJhjT\no7w58G5HOKNFRFfFTx9Kw6AAF7x9xwDc0s8LrUYzNh0qwjPfZaGwhn8uUtXYYsQbB85j0Y5sFNe1\noK+3E9bfHoVbB/iwyaIOsdGyEVxnF8be8uvu5UN7y687pf/yExbE98FLt4TDW6fBqZIGPPrVGXx9\nshRGzm5dV0+ee79eqMX/fpWB7RnlUCsVmDMyEG/M7IcQT/neaYG/u9bHRovITgXcmoCSHfvELoN+\nM6a3OzbdGYVJEZ7QG83Y+HMhntyWiczyRrFLs3s1zQb8Y38+luzMQWl9K/r56LD+9v64b3gAaTi0\njQAAFvhJREFUNCr+M0rXxhktIjulL61Ayrh7MeHEdigd+BF0KfkpvwZvHjyPsoZWKBXAzIG+mDMy\nEM4OKrFLsysmsxlJZyvw78NFqNMboVEpcP+IQNwVzTk66vyMlroHaiEiCXL084ZLZB9UHkiDT8JY\nscuhP7ihjzuGBbngw7RifHWyFN+cKsP+3Co8FhOM+DAPzgL1gMyyRvzr4HmcLWu7ojg8yBV/iw1G\nbw/5LhOSOHjN00ZwnV0Ye83Pf+pNKNm5X/Dz2Gt+3eFq2TlpVPjfsb2w/vYoDPDTobLRgJXJeViw\nPQtnyxp6uErp6u5zr7qpFW8cOI/5W8/ibFkjvHUaLJ0QijVT+9pkk8XfXetjo0Vkx/ymxqN0ZwrM\nJpPYpdBV9PV2wtoZ/fBkXG+4a9U4WdKA+VszsWZvHkrrW8Quz2Y0txrxUXox5nx+GtszyqFUAH+K\n9sN7dw3ATeGevIpIFuOMFpGdS42/D4PXLobHyMFil0LX0dBixKdHi/HVyTK0msxwUClwx2A//GmI\nH1wdOQliCaPJjO8zK/BB2kVUNhoAAGN7u+HBMUEI9XQSuTqSMs5oEVGn+E2LR0nSfjZaMuDsoMKD\nY3ph+gAf/PvwRew7V4VPj5Vg2+kyzBrshzsG+7Lh6iSjyYz9uVX4KL2kfVf+fj46PDQmCMOCXEWu\njmwJlw5tBNfZhbHn/PynxKNU4JyWPecnlCXZBbg6YsmEUKyb2Q8jglzR2GrCR+nFmP3pKfy/IxdR\npzdYoVJp6mp+BpMZuzIr8NAXGVi9Nx8F1c0IcHXAkoRQvHFbP7trsvi7a31860Nk59yGRsHQ0IT6\nzDy49AsVuxzqggF+zlgzLQIni+uxJa0YaUV12JLe9knFKf29cfsgXwS4OopdpiQ0txqxO6sSnx8v\nRclvs22Brg64e6g/JkV6cT8sshrOaBERTi/+BxwDfdH3ifvFLoUEOPFbw5VeVAcAUCqA2D7uuGOw\nHwb5O9vlQPfFWj22nS7HrswK1LcYAQC9PRxx77AAjA/35H5YZDHOaBFRp/lPuwmZq95ioyVz0QEu\neHlaBDLLG/HNyVLsO1eN1LwapObVINLHCVP7++CmcA+bn+MymsxIK6zDttNl+OV8LS5dTRjgp8Od\ng/1wY6gHGyzqMbxWaiO4zi6MvefnGTMMjbnn0XyxzKKft/f8hLBGdv18dFg0PhQf/mUQ7h3mD3et\nGlnlTXjjwHnc/fFJrErOw68Xam3iXoqX8jObzcipaMSmQ4W479OTWLorB4fO10KtUuDmSC+8eVt/\nrJvZH/G8inUZ/u5an22/rSGiTlFq1PCdFIvSnSkIeeAOscuhbuLtrMHcUUG4Z1gADuRV4/vMSqQX\n1WHfuSrsO1cFb50GN4a644Y+7hgS4CK7OSWz2YwyvQKfHi3GDzlVyK9qbv9ekJsjpvTzwpT+3vBw\n4i2mSDyc0SIiAEDxd/tw/v99g9Gf/VPsUsiKSutbsDurEruzKlBU+/uGp84OKozp7dZ2+59AF8k2\nJy0GE45drMeh8zU4VFDbPtgOAO5aNcaHe2BihBf6++rsciaNek6PzGilp6djw4YNWLFiBYKDg6/4\nfnl5OTZu3AjTb7tOz5s3D76+vkJekoisxCdhLE48+RJaq2uh8XATuxyyEj8XB9w3PAD3DvNHZnkj\nfsqvwYH8GuRXNWNvThX25lQBAEI8tBgS6IIhAS6IDnCBt7M4jVdtswEZpQ04VdKA06UNOFvaAL3x\n9+sD7lo1xvR2w7gwD4wKdoOay4IkMRY3WmfOnEFaWhqGDBmCq10U27RpE+bMmYOQkBAUFRXh7bff\nxrJlyywulq4uNTUVcXFxYpchW8wPUOuc4BU7AmV7DiLorild+lnmZzmxslMoFOjv64z+vs6YOyoI\nhTV6/FRQjV/O1yKjpAEF1c0oqG7G9oxyAICHVo0wLyeEeWkR7uWEUE8n+Llo4K5Vd8uVI73BhAs1\nehRUN6GgWo+CqmbkVTXhfI3+isdGeDthTG83xIS4o+xsOsaNixb8+vaKv7vWZ3GjFRUVhaioKGzY\nsKHD7+v1euj1eoSEhAAAgoKCoFQq0dDQAGdnZ0tfloisyH/KOJR+f6DLjRbJXy93R9wV7Y+7ov3R\najQhs7wRJy7W43hxPU6XNKC62YD0orr2rSMu0agU8HXWwMfZAT46DZw0SmjVKmg1SmjVSjiqFTCa\ngFajCa0mM1qNZrQYTahuMqCyqRVVjW3/W6c3dliXRqVAfx8dBvk7Y6C/Cwb6O8Nd+/s/XeWZVo2F\nSLBrNlrV1dVYt27dFV9PSEhAfHz8NZ+4oaEBrq6X77Dr5uaG2tpaNlpWwHckwjC/Nj4Tb8CZxDdh\najVAqen8+zDmZzkpZqdRKTHI3wWD/F1wN9qGzkvrW5Fb2YTcqiacq2xCQVUzyhpaUd9iRFFty2Xz\nXpZQKoBebo7o7aFFH08tQjy06O2hRZin9ppD+lLMT06Yn/Vd829SDw8PrFixwqIndnZ2Rl3d5e98\namtr4e7uftWf+eMlzEsfOeUxj3ncs8e60F5I+fdHUA3qK4l6eCz+8YEDB9qPY/q4t33fv+24qdWI\nXft/Rp1BgcDwKDS1GpGRlYNWswJ+QcFoMZhQcvEiVAozwvqEQK1UoPB8HnQqIGboQHjqNMg6fgQ6\nFTBu3PDfX78Y6Bchjf9+HvO4o2OdTofOEPypww0bNmDGjBno3bv3Fd9bvXo17rvvvvYZrc2bN2Pp\n0qUdPg8/dShMairX2YVgfr/Lfu09GBoaEbVifqd/hvlZjtkJw/yEYX6W69Gd4f84CJmWloaWlhbE\nxMTg4Ycfxvr16wG0XXqeN29ed7wcEVmR76RYHJ//QpcaLSIi6hj30SKiy5hNJuwdOhNjt70F57Bg\nscshIpKkzl7Rktc2wERkdQqlEr6TYlG256DYpRARyR4bLRtxaTiPLMP8Luc3+cYuNVrMz3LMThjm\nJwzzsz42WkR0Be/4Uaj+9SQM9Q1il0JEJGuc0SKiDh3+y1MImTML/tNuErsUIiLJ4YwWEQniNzkW\npbsPiF0GEZGssdGyEVxnF4b5XenSQLz5t5vCXwvzsxyzE4b5CcP8rI+NFhF1SBcaDI2HK2qPnxW7\nFCIi2eKMFhFd1ZkX3oRa54SIZx4UuxQiIknhjBYRCeY3iXNaRERCsNGyEVxnF4b5dcxj9BA05hWi\nuaT8mo9jfpZjdsIwP2GYn/Wx0SKiq1Jq1PAZP5a7xBMRWYgzWkR0TYWfJ6F0VwqGv7dK7FKIiCSD\nM1pE1C18xo9BReoRmFoNYpdCRCQ7bLRsBNfZhWF+V+fo5w2n3gGoSTt11ccwP8sxO2GYnzDMz/rY\naBHRdfkmxKB83yGxyyAikh3OaBHRdVUeTMOZF95E7M5/i10KEZEkcEaLiLqNx6hoNOacR0tFtdil\nEBHJChstG8F1dmGY37UpHTTwih2B8v2HO/w+87McsxOG+QnD/KyPjRYRdYpPwliU7/1Z7DKIiGSF\nM1pE1CmN+YX4+dZHkHBsGxRKvkcjIvvGGS0i6la6Pr2gdnVG3elssUshIpINNlo2guvswjC/zvEZ\nP7bDbR6Yn+WYnTDMTxjmZ31stIio03wmjEV5MvfTIiLqLM5oEVGnGRqbsDd6BhKObYXaxVnscoiI\nRMMZLSLqdmqdE9yHD0DlgTSxSyEikgU2WjaC6+zCML/O802IQfney5cPmZ/lmJ0wzE8Y5md9bLSI\nqEt8EsaibC/ntIiIOoMzWkTUJWazGfuG3YYx32yAc1iw2OUQEYmCM1pEZBUKhaJtmwfuEk9EdF1s\ntGwE19mFYX5d45MwBuX7fmk/Zn6WY3bCMD9hmJ/1sdEioi7zihuJqp+PwmQwiF0KEZGksdGyEXFx\ncWKXIGvMr2scfbzgFByA2mNnADA/IZidMMxPGOZnfWy0iMgi3vGjULH/V7HLICKSNDZaNoLr7MIw\nv67zHjcaFSmHATA/IZidMMxPGOZnfWy0iMginjFDUXP0DAyNTWKXQkQkWWohP5yeno4NGzZgxYoV\nCA6+cj+dffv24euvv4aXlxcAIDo6GnfccYeQl6Sr4Dq7MMyv69TOOrgN6YfqQ8cRl8D8LMVzTxjm\nJwzzsz6LG60zZ84gLS0NQ4YMwbX2PJ06dSqmTJli6csQkYR5jxuN8pTD8EkYK3YpRESSZPHSYVRU\nFB588EGoVKprPi45ORnLly/HypUrUVFRYenL0XVwnV0Y5mcZ73GjUJnyK/MTgNkJw/yEYX7Wd80r\nWtXV1Vi3bt0VX09ISEB8fPx1nzw2Nhbjx48HABw7dgzvv/8+FixYYFmlRCQ57sMHojGvEI61DWKX\nQkQkSddstDw8PLBixQqLn9zBwaH9/w8dOhSffvrpNR+fmpravl58qcvmceeOmR/zE+vYM2YYak9m\nI9XNWRL1yO04Li5OUvXI7Zj5MT+xjnU6HTpD8E2lN2zYgBkzZqB3795XfO+LL77A+PHj4ePjg5Mn\nT2Lv3r2YP39+h8/Dm0oTyVPeps9Qn5WHwa8+K3YpREQ9pkdvKq1QKC574Z9/brvZ7IABA7B27Vok\nJiZiz549mDt3bne8HHXgUodNlmF+lvOOH4XC71PELkO2eO4Jw/yEYX7Wpxb6BPPmzbvs+I9XpQYN\nGoSVK1cKfQkikjCX/uGAvgWNBUXQhQSJXQ4RkaRww1Ib8cdZI+o65mc5hUKBgAmxqEjh7XgswXNP\nGOYnDPOzPjZaRCQY73tIRNQxNlo2guvswjA/Yc45mlGR+ivMJpPYpcgOzz1hmJ8wzM/62GgRkWBK\nX09o3F1Rl5EjdilERJIieHuH7sLtHYjk7dRzr0LXJxhhj90jdilERFbXo9s7EBF5x41CRSrntIiI\n/oiNlo3gOrswzE+Y1NRUeMUMQ/Uvx2EyGMQuR1Z47gnD/IRhftbHRouIuoWDjye0vfxRdyJL7FKI\niCSDM1pE1G1OL3kdTr38Efb4fWKXQkRkVZzRIqIe5xU7HJUH08Uug4hIMtho2QiuswvD/IS5lJ/X\nDcNR9csxzml1Ac89YZifMMzP+thoEVG3cfD2gDY4ALUnMsUuhYhIEjijRUTd6vTStdAG+SL88b+K\nXQoRkdVwRouIRME5LSKi37HRshFcZxeG+Qnzx/y4n1bX8NwThvkJw/ysj40WEXUrzmkREf2OM1pE\n1O1OL10LbaAPwv82W+xSiIisgjNaRCQazmkREbVho2UjuM4uDPMT5r/za9tP6zhMrZzTuh6ee8Iw\nP2GYn/Wx0SKibufg5Q5dSBBqT5wVuxQiIlFxRouIrCJj2Vo4BnBOi4hsE2e0iEhUXrEjOKdFRHaP\njZaN4Dq7MMxPmI7y84wZxjmtTuC5JwzzE4b5WR8bLSKyivY5reNnxC6FiEg0nNEiIqvJWLYWjv4+\nCJ/POS0isi2c0SIi0XnFjkDlT5zTIiL7xUbLRnCdXRjmJ8zV8vMcMwTVv56E2Wjs4Yrkg+eeMMxP\nGOZnfWy0iMhqHHw84ejvjbrTOWKXQkQkCs5oEZFVnXxmDVyjwtHnoT+LXQoRUbfhjBYRSYLn2GGo\nPHRM7DKIiETBRstGcJ1dGOYnzLXy84oZiqqfj0EiF88lh+eeMMxPGOZnfWy0iMiqtMEBUGrUaMy9\nIHYpREQ9jjNaRGR1xx5bAe/40Qi+51axSyEi6hac0bIzZ8+eFbsEWWN+wlwvP8+xbcuHdCWee8Iw\nP2GYn/Wx0bIRe/bsEbsEWWN+wlwvP8+Yoag6dLSHqpEXnnvCMD9hmJ/1qS39wby8PGzevBlKpRJm\nsxlz585FaGjoZY8pLy/Hxo0bYTKZAADz5s2Dr6+voIKJSH5c+oWhtaYOzSXl0Pr7iF0OEVGPsbjR\nSklJwaOPPorAwEBcuHABH374IRYvXnzZYzZt2oQ5c+YgJCQERUVFePvtt7Fs2TLBRdOVQkJCxC5B\n1pifMNfLT6FUwmP0EFQdOobAmdefabAnPPeEYX7CMD/rs3jpcPbs2QgMDAQANDc3w8fn8neper0e\ner2+/Q8xKCgISqUSDQ0NAsolIrny4pwWEdmha17Rqq6uxrp16674ekJCAuLj4wEAubm5+OSTT/D0\n009f9piGhga4urpe9jU3NzfU1tbC2dlZaN30XwoKCsQuQdaYnzCdyc8zZiiKFr3aA9XIC889YZif\nMMzP+gRt75Ceno7vv/8e8+fPh06nu+x7er0eq1atQmJiYvvXVq1ahaeeeuqKxwJt2zsQERERyUVn\ntneweEZrz549yMrKwoIFC6BWX/k0jo6O0Gq1KCgoaJ/RMpvNHTZZnS2WiIiISE4suqLV2NiIBx98\nEFFRUe1f8/Lywvz585GWloaWlhbExMSgvLwc69evBwCYzWbMmzcPfn5+3Vc9ERERkYRJZmd4IiIi\nIlvDDUuJiIiIrISNFhEREZGVsNEiIiIishI2WkRERERWYvH2Dt1p27ZtOHz4MABgxIgRmDVrlsgV\nyYvBYMDHH3+MjIwMrF69WuxyZGXHjh1ITU2FWq1GYGAgHn744Q63K6GOffDBBzh79iw0Gg3GjBmD\n6dOni12S7FzaczAiIgKzZ88WuxxZeeKJJ+Dt7d1+PH/+fHh5eYlYkbyUlpbiww8/xNNPPw2lktdd\nOuvo0aPYunVr+/GFCxewcOFC9OvXr8PHi/4vSkZGBnJzc/Hiiy8CADZu3IgTJ04gOjpa5Mrk45NP\nPsHgwYORkZEhdimyUl9fj4KCAqxcuRIKhQJbtmzBL7/8gtjYWLFLk4Xm5mYMGjQIc+bMAQAkJiZi\n3LhxcHNzE7kyedmyZQsSEhJw/vx5sUuRHWdnZ6xYsULsMmTJZDJh+/btePzxx9lkddGwYcMwbNgw\nAG1vlF566SVERkZe9fGip5uenn7ZZqUTJ05EWlqaiBXJz+zZszFixAixy5AdFxcXPProo1AoFADa\nfmF8fX1Frko+tFotRo0aBaBtb71LX6POS0pKwvDhw7m/oIVaW1vx4osvYtGiRdi5c6fY5cjK1q1b\nkZ+fj3Xr1mHv3r1ilyNb3333HSZPntz+70hHRL+iVVdXd9k9Ed3c3FBTUyNiRWSPvv76a+h0umu+\nK6GOvf/++0hJScF9990HBwcHscuRjYyMDNTW1mLq1Kk4deqU2OXI0urVq6HRaNDa2oo1a9YgKioK\noaGhYpcleaWlpSgoKGi/Gvjmm2/C398fAwcOFLkyeWlsbMSRI0fw0ksvXfNxol/RcnV1RW1tbftx\nbW0tlx6ox5hMJrz77rvQaDS45557xC5HlubOnYuNGzfiyJEjyMvLE7sc2Th69Cjy8vLw6quv4rPP\nPsOvv/6Kbdu2iV2WrGg0mvb/HT16NPLz80WuSB7S0tIwevRoKJVKKJVKxMXF4fTp02KXJTvfffcd\npkyZcs2rWYAEGq0RI0YgOTm5/Tg5ORkjR44UsSKyF83NzVi7di2GDBmCW2+9VexyZCcnJ6f9QywO\nDg5wd3e/7E0TXds999yDZ599FgsXLsTdd9+NUaNGYebMmWKXJRsXLlzA9u3bAbR9ICg9PR0REREi\nVyUPrq6uOH78ePtxeno6QkJCRKxIfurr65Geno64uLjrPlb0pcOoqCicPXsWy5YtA9DWeHEQnnpC\ncnIysrOzUV9fj6SkJABAQkIC4uPjRa5MHgICArBt27b2f+z69++PIUOGiFyVfF3vXTFdLiAgAIWF\nhVi2bBmUSiVuvvlm9OrVS+yyZCE2NhY5OTlYtmwZFAoFBg8ejDFjxohdlqx8++23mDZtWqd+b3mv\nQyIiIiIrEX3pkIiIiMhWsdEiIiIishI2WkRERERWwkaLiIiIyErYaBERERFZCRstIiIiIitho0VE\nRERkJWy0iIiIiKzk/wMTwbog9cTfIgAAAABJRU5ErkJggg==\n", | |
"text": [ | |||
"<matplotlib.figure.Figure at 0x108046710>" | |||
] | |||
Fernando Perez
|
r5783 | } | |
Brian Granger
|
r6035 | ], | |
Fernando Perez
|
r5783 | "prompt_number": 22 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
"plot_taylor_approximations(cos, 0, [2, 4, 6], (0, 2*pi), (-2,2))" | |||
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "display_data", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAF9CAYAAADcGsb5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FOXaBvB7W3qvJKQ3Sggl9CpViiKiHtSjHHtFAUWk\nd+kqHFT8rFgAUUAFpZMAEkBa6AnpIQlppPey5fsD5YDUZHZ3dmfv33V56WRnZx5vJuHJvO++I9Pp\ndDoQERERkd7JxS6AiIiISKrYaBEREREZCBstIiIiIgNho0VERERkIGy0iIiIiAyEjRYRERGRgbDR\nIiIiIjIQpZA3b9++HXFxcVAqlfDx8cFLL70EpfJ/hzx48CB27doFuVyO4OBgPPfcc4ILJiIiIjIX\nzb6jVVVVhaysLCxcuBDz58+Ho6Mjjh07du31wsJCxMTEYMGCBddej42N1UvRREREROag2Y2Wg4MD\nXn31VchkMgBAfX09PD09r71++vRp9OvX79rrgwcPxsmTJwWWS0RERGQ+9DJH65dffoGdnR3Cw8Ov\nfa2qqgpOTk7Xtp2cnFBRUaGP0xERERGZBUFztLRaLb7++mu0aNECo0ePvuE1R0fHGxqrioqKGxqv\nf4qJiRFSChEREZFRDRo06K77NLvRqqurwyeffIK+ffuiW7duN73esWNHrF69Gv3794dcLsfevXvR\nuXPnOx4zOjq6ueVYvE8++QTjxo0TuwyzxfyEkXJ+7655Aq8Mn43QFm0NcnwpZ2cMzE8Y5td88fHx\n97Rfsxut2NhYpKamoqqqCjt27AAADBgwANnZ2Rg5ciQ8PT0xYMAAzJo1CwqFAoGBgXjssceaezq6\ni4CAALFLMGvMTxip5tegrkd+aTb8PUINdg6pZmcszE8Y5md4zW60RowYgREjRtxxn379+qFfv37N\nPQURkaiyrqTAxy0AVkprsUshIjPFBUslIisrS+wSzBrzE0aq+WUUXESwdxuDnkOq2RkL8xOG+Rke\nGy0iotu42mi1FrsMIjJjbLQkYvDgwWKXYNaYnzBSzS8z3/CNllSzMxbmJwzzMzw2WhLRqlUrsUsw\na8xPGCnmp9Y0Iqc4A4Fe4XffWQApZmdMzE8Y5md4bLQkIi4uTuwSzBrzE0aK+WUXpcHLpSWsVbYG\nPY8UszMm5icM8zM8NlpERLeQyflZRKQHbLQkok+fPmKXYNaYnzBSzC89P9EojZYUszMm5icM8zM8\nNlpERLdgjKUdiEj62GhJBMfZhWF+wkgtP41WjeyiVAR5Rxj8XFLLztiYnzDMz/DYaBER/UNucSbc\nHLxha2UvdilEZObYaEkEx9mFYX7CSC2/9IJEBLcwzkR4qWVnbMxPGOZneGy0iIj+gfOziEhf2GhJ\nBMfZhWF+wkgtP2Mu7SC17IyN+QnD/AyPjRYR0XW0Wg0yC5IR5M0Vs4lIODZaEsFxdmGYnzBSyi+3\n5BKc7d3gYONklPNJKTsxMD9hmJ/hsdEiIrpOat55hPm0E7sMIpIINloSwXF2YZifMFLKLzXvglEb\nLSllJwbmJwzzMzw2WkRE10nNO49Qn0ixyyAiiWCjJREcZxeG+QkjlfwaGuuQW5xp1InwUslOLMxP\nGOZneGy0iIj+klFwEX7uwbBSWotdChFJBBstieA4uzDMTxip5JeadwFhvsadCC+V7MTC/IRhfobH\nRouI6C9p+Rc4P4uI9IqNlkRwnF0Y5ieMVPJLzTX+0g5SyU4szE8Y5md4bLSIiABU1JSiqq4cPm6B\nYpdCRBLCRksiOM4uDPMTRgr5peadR2iLSMhlxv2xKIXsxMT8hGF+hsdGi4gIQFoe52cRkf6x0ZII\njrMLw/yEkUJ+Vx+9Y/xGSwrZiYn5CcP8DI+NFhFZPJ1Oh1Te0SIiA2CjJREcZxeG+Qlj7vkVlOXA\nRmUHVwdPo5/b3LMTG/MThvkZHhstIrJ4qXnnjb5QKRFZBplOp9OJXQQAxMTEIDo6WuwyiMgCfROz\nHO6O3hjZ7T9il0JEZiI+Ph6DBg266368o0VEFk+MhUqJyDKw0ZIIjrMLw/yEMef81JpGZBelIti7\ntSjnN+fsTAHzE4b5GR4bLSKyaJcKk+Ht4gcbKzuxSyEiCWKjJRFcC0UY5ieMOeeXmndB1GFDc87O\nFDA/YZif4SmFvFmtVmP9+vVITEzE4sWLb3p97ty50Ol0kMuv9nNjx45FSEiIkFMSEelVWt4FtPLr\nKHYZRCRRgu5o/fDDD2jX7va/CcpkMkyfPh1z5szBnDlz2GQZEMfZhWF+wphzfldXhBfvjpY5Z2cK\nmJ8wzM/wBN3RGjt2LABg48aNt3xdoVBg2bJlqKqqQqdOnfDEE08IOR0RkV5V11WipLIQfh7BYpdC\nRBIlqNG6mylTpkClUkGr1WL16tU4ceIEunTpYshTWiyOswvD/IQx1/xScs8i1KctFHKD/ii8I3PN\nzlQwP2GYn+EZ9KeLSqUCAMjlcvTs2RMZGRl3bLTi4uKu/aH/fTuT29zmNrcNtZ2jPYNWLTuaTD3c\n5ja3zWfbzu7ePqmsl5Xhp02bdtNk+LKyMuzevRtjxoyBVqvFZ599ht69e6N9+/a3PAZXhhcmLu5/\nTSo1HfMTxlzzm//Dy3io+7PoGNJLtBrMNTtTwfyEYX7Nd68rwyv1feJ169Zh5MiRcHFxgUajwfTp\n06FUKtGtW7fbNllERMam1jQiLT8BES2jxC6FiCSMzzokIouUmncen+9cgGXP/Sh2KURkhvisQyKi\nO0jKOYOIllw/i4gMi42WRPw9OY+ah/kJY475JV8+g9YmsFCpOWZnSpifMMzP8NhoEZHF0el0SLp8\nBq1adhC7FCKSODZaEsFPjQjD/IQxt/wKyy9DJpPBw8lH7FLMLjtTw/yEYX6Gx0aLiCxOUs5ptGrZ\nATKZTOxSiEji2GhJBMfZhWF+wphbfleHDcWfnwWYX3amhvkJw/wMj40WEVmcpMtnEOHH+VlEZHhs\ntCSC4+zCMD9hzCm/qroKFJXnIdAzXOxSAJhXdqaI+QnD/AyPjRYRWZSUy1cfJK1UqMQuhYgsABst\nieA4uzDMTxhzyi/p8hm0MoH1s/5mTtmZIuYnDPMzPDZaRGRRkk1oIjwRSR8bLYngOLswzE8Yc8nv\n7wdJh/u2E7uUa8wlO1PF/IRhfobHRouILEZGwUV4u/jBztpR7FKIyEKw0ZIIjrMLw/yEMZf8kk3w\nsTvmkp2pYn7CMD/DY6NFRBbD1CbCE5H0sdGSCI6zC8P8hDGH/Ez1QdLmkJ0pY37CMD/DY6NFRBah\noCwHCpnCJB4kTUSWg42WRHCcXRjmJ4w55JeQdQJtAzqb3IOkzSE7U8b8hGF+hsdGi4gswoWsE2jr\n31nsMojIwrDRkgiOswvD/IQx9fx0Oh0Ssk8iMqCL2KXcxNSzM3XMTxjmZ3hstIhI8vJLsyCXyeHl\n4id2KURkYdhoSQTH2YVhfsKYen4JWSfRNqCLyc3PAkw/O1PH/IRhfobHRouIJO9CNudnEZE42GhJ\nBMfZhWF+wphyfjqdDglZpjk/CzDt7MwB8xOG+RkeGy0ikrTckkwoFUp4OvuKXQoRWSA2WhLBcXZh\nmJ8wppzf3582NMX5WYBpZ2cOmJ8wzM/w2GgRkaQlZJ1AW3/THDYkIuljoyURHGcXhvkJY6r5/T0/\nq22A6U6EN9XszAXzE4b5GR4bLSKSrMvFGbBS2XB+FhGJho2WRHCcXRjmJ4yp5meqq8Ffz1SzMxfM\nTxjmZ3hstIhIsi5knUBbE2+0iEja2GhJBMfZhWF+wphifjqdDonZJ01+oVJTzM6cMD9hmJ/hsdEi\nIknKKUqDrZU9PJxaiF0KEVkwNloSwXF2YZifMKaYX0L2SbMYNjTF7MwJ8xOG+RkeGy0ikqQLWSdM\nfiI8EUmfTKfT6Zr7ZrVajfXr1yMxMRGLFy++6fWDBw9i165dkMvlCA4OxnPPPXfbY8XExCA6Orq5\npRARXaPVafHKx0Ow9Nkf4OboJXY5RCRB8fHxGDRo0F33E3RH64cffkC7du1u+VphYSFiYmKwYMEC\nzJ8/H46OjoiNjRVyOiKie5J9JRX2Nk5ssohIdIIarbFjx972LtTp06fRr1+/a88XGzx4ME6ePCnk\ndHQHHGcXhvkJY2r5nc08iqjAbmKXcU9MLTtzw/yEYX6GpzTUgauqqhAQEHBt28nJCRUVFXd8zzvz\n5kKusoXCyhZKKzuobB3g5B0IT19/eDjZwt1OBQ87FXydrGGl5PQyIrq1c5l/YnDHx8Qug0hSaho0\nyK2oR3FN4w3/lNepUa/WokGju/pvtRb1Gh1e69ES3QOcxS5bdAZrtBwdHW9orCoqKuDk5HTH92hK\nDqBRroFGroVWoYFaoUVdngbq8zrY1MphW6eCdb0N7BrdYA1fqFRBkNuFQi63NtT/hln5c/tOsUsw\na8xPGFPJT4tGnHeOh/zMYPyhM42a7sZUsjNXzE8YofnZ//XPP1V0urq0yt93zf5es0sq23Z2dneK\n5RpBk+H/Nm3atJsmw1+5cgWrV6/GrFmzIJfLsWnTJri5uWHgwIG3PEZMTAycA1ujXq1Dg0aLBo0W\ntY1alNY2orC4FMXZaagquISa0iw0VF0CZIWot61Ejb0adlUqWNd6QGHXBt5tByCqYxdE+TgiyNXm\n2tAlEVmG85eO4ceDq7Hg6W/ELoXILGi0OqQU1eBCQTXO5VfhQkE1yuvUN+2nksvg62QNTwcV3O2u\n/uNmp4KLrRI2SgWslTJYK+RQKeSwVsrgZquCnZVChP8j47jXyfB6v6O1bt06jBw5Ep6enhgwYABm\nzZoFhUKBwMBAPPbYnW/lh7rfrjv0AtDq2laDWovs8npcKq1FWu4VZJ87gtLMP6GpOY2U5P1ISQZ2\nVrpBadseQT0fRZ8ObdDRx1HSw41xcXFc4VcA5ieMKeV3NvMoooK6i13GPTOl7MwR82ue6gYNTuRU\nYOuJVGTWW6OyXnPD6262SrT1tkewmy0CXW0Q5GqLlk7WUMh586Kp9NJoXX8366mnnrr23/369UO/\nfv30cYobWCnlCHW3Rai7LQaGuQH9WkGrewaXSutwLrcC5+OPIf9CDDQ1p3DqVCySDtpBoWsFz7YP\non/ffugV6AJrCTddRJbsXOaf+M/Ad8Qug8jkVNar8UdGGQ6ml+FsfhXUWh2utgEa+DpZIaqFA6Ja\nOKBdCwf4OFpxREhP9DJ0qA/6XkdLp9MhtbgWhy7mICF2E2qLj6DKOR9KtQoqbXsE9X4Ww7q0Q7sW\n9pDzYiKShIqaUkz4/GF88eZeKBUqscshEp1aq8OJnArsTSnBkaxyNGqu/pUvlwGR3vboEeCMHgHO\n8HexEblS8yPa0KGpkMlkCPewQ3ifCKDPdBRWNeBQWhGO/rYO1Vf24typN5B20AVKp77oOexZPBjp\nCxdb/mAmMmfnLx1HG/9ObLLI4uVX1uO3xCLsSS5B2V/zrWQAon0dMTDMFT0CnOFkI9kWwKRYTMpe\nDlYY3cEXoztMRlbZm9h9PAmJu9egrmQP9mz7HQc3RSG43yv4V/f2CHW3FbvcJuM8BWGYnzCmkt+5\nS0cRFWg+87MA08nOXDG//9HpdDibX4VfL1zBkUvl0P41XhXgYoMh4W4YGOYKT3urG97D/AzPYhqt\n6wW42ODFIR2gHbwC8TkV2L75Z5QU/ogLJ8ch/UBLOLR+CmMGDUV3fyeOUROZCZ1Oh7MZRzCy21ix\nSyEyKrVWh9jUEvx8vhDpJXUAAKVchgGhLhjV1hOtPO34d5mIJDtHq6kul9fj191/In3//6HUNRVy\nrTOsA8bi38NGoWegM+dxEZm47KI0LNs8Eate3sq/VMgiNGq0iEktxQ+n85FX2QAAcLFRYmRbDzzQ\n2gNudhxCNySLn6PVVC2drTHuX/ehelQfbD+aghM/Lkdx1sf4+ovv8X3A03hyyEPoG+zKhovIRJ1O\nP4wOwb3YZJHkNWi02JNcgg1nClBQdbXB8nO2xhMdvNE/1BVWCn6q3pTwT+Mf7K0U+Fff1pi/8guM\nGP49vEoCocn8BN+uGYPXv1qP+Mt3foyQWPi8KmGYnzCmkN+ZjMPoGNJL7DKazBSyM2eWlJ9Wp8O+\ntBK8sDER/z2UjYKqBvi7WGNq/0B88Wgb3B/h3uQmy5LyEwvvaN2GtVKOR/q2xoM9v8COQ0k4vnYp\n8nQr8dFnP8Gj40SM698DQW7mN2meSIrqGmqQmnsekaO7iF0KkUGczavE50dzkVxUAwAIdLHBU9Et\n0DfIhYuImjjO0bpH9Wotft56BIm/LkJmWCG0sihE9ZqIF3u2gTvHwYlEdTL1D2w/sQ6znvhM7FKI\n9Cq7rA5fHc/F4UvlAAA3OyWe7eyLIeFubLBExjlaematlOPJR3qjdNgv2Pjpj8g68wXOyV7Cm6eH\n4tEhr+Lhdj686IlEcibj6vwsIqmoU2ux/lQ+Np0rhFqrg41SjjHtvfBYlBdsVNJ9fqAUcY5WE7na\nWeHlSWPx8vLf0LlwOLwyduOXLU/j1fW/4GJhtWh1cZxdGOYnjJj56XQ6nE43z/lZAK89oaSY35+X\nyvHSpkRsOFMAtVaHYa3csWZMWzwd7aP3JkuK+Zka3tFqpgBvZ7y1ai4O7nsERz6ahQTNUszN2Y7O\n3cfjlZ5tueIukZHkl2ahUdMAf48wsUshEqSgsgGrj+TgSNbVYcIQN1tM6OOPNl72IldGQnCOlh7U\n1jdi86KvkJryPVLa6aBxewJvDB2LPsGuYpdGJHnbjq/D5ZIMvDx0ptilEDWLVqfD74lF+PJYLurU\nWtip5Himsw8eauvJKSkmjHO0jMjWWoWn572K1PPDsGf6LJxquwEf/XQYMR0m4a3+nXh3i8iA4tMO\nYniXJ8Uug6hZ8ivr8cEfWTiTVwUA6Bvsgtd7+MHdnh+ykgrO0dKjsHZBePmXb/Cg3bNofzwHF09N\nxIvffoq4jFKDn5vj7MIwP2HEyq+mvhJpeRfQLqCbKOfXB157wphrflqdDlsTruDlzRdxJq8KzjZK\nzBwUhFmDgo3aZJlrfuaEt1r0TKFQ4KHZLyPyaG/snzINh3tvwsrNRxDb7i1MGhgNeyt+WoRIX85m\nHkUrv46wseKadmQ+rlQ3YPmBSzide/Uu1n0hLnijlz+cOfohSZyjZUCN1bXY+dYynCrfh4RoDRQe\nz2H6g2MQ6e0gdmlEkvDp9jkIaRGJodFjxC6F6J7EZZRhRVwWKus1cLZRYnxvf/QNdhG7LGqGe52j\nxaFDA1LZ22Lk53Pw2L9m4P5fVZDlfYeZP0zHmmPp0GhNor8lMltarQan0g8hOrSP2KUQ3VVdowYr\nD2ZhfkwGKus16ObvhC8ebc0mywKw0TKCto8NwaPffY1HtnnC91Iath8Yh/GbdiG/sl5v5+A4uzDM\nTxgx8kvLT4CznTs8nX2Nfm594rUnjDnkl1pUg3G/JmF7UjFUChle7+mHBfeHwMVW/Anv5pCfuWOj\nZSTO4UF4aO+3eKy4PbodkqMocxHeWPtfHLlUJnZpRGYpPu0gOvFuFpkw3V/LNkzYmozs8noEutrg\n41Gt8HCkJ2QyLttgKThHy8h0Oh0urv4Bp7/6Br89pkKdrQ+Gdn8XL/YI53opRE3w7pon8PyQKWjt\n10nsUohuUteowcq4bMSmXf3U+YNtPPBK95awVvL+hlRwjpaJkslkaDPu3xjy0WI8uVYD16I67D08\nHm//vAeltY1il0dkFgrKclBeXYwI3/Zil0J0k6yyOry5NRmxaaWwVsoxtX8gxvf2Z5NlofinLhKP\n3p0x8LfP8cTuOoSlBSAvYyFeW/sZzuZVNut4HGcXhvkJY+z8TqQcQHRYP8jl5r9cCq89YUwtvwPp\npXhzSxIuldbB38UaH4+KwMAwN7HLui1Ty0+K2GiJyD40APft/BIP5Mhx39FwaMp3Yu5PM7DlfK7Y\npRGZtJOpB9A1rL/YZRBdo9Hq8NWxy1gYm4naRi3uC3HBRw+1QqAr13izdJyjZQK09Q049/ZipJxP\nxo8PWkEnr0L3TjMw8b72UCnYCxNdr6KmFBM+fxifjdsFK5WN2OUQobpBg8X7MnEsuwJyGfBqj5YY\n1ZYT3qWOc7TMiNzaCu0/no2OIwfi+R/KoNSG4fjJd/DW5p0o47wtohucSo9DVFA3NllkErLL6jB+\nSxKOZVfAyVqBJcPD8HCkF5ssuoaNlomQyWQIe+cFRE74D174/jyc8AAKLy3Fa+u+QEpRzV3fz3F2\nYZifMMbM70TKfnQJu89o5zM0XnvCiJnfsewKvLklCdnl9Qh2tcHHD7dCR19H0eppDl5/hsdGy8QE\nPDMa7d6biCe+2YtQ2TNQl/2GqT8sQFxGsdilEYmuvrEW5y8d5/pZJLpfLxRi9u401DRq0TfIBSsf\nikALR2uxyyITxDlaJqpo31GcGTcPCS+NxX7d79DJrPF4/zkY0zGAt6TJYh1P2YedJzdg1hOfiV0K\nWSiNVof/+zMHWxKKAABjo1vgqU4tIOfPZYvDOVpmzmNAd3T+fhkiv1qLx2UPQSt3xMbYCfhg32k+\nJ5Es1rGkWHRvNVjsMshC1TZqMHdPOrYkFEEll2FK/0CMjfZhk0V3xEbLhLl0boeum1bB85t1eEPZ\nD2qb7jgaPxlTtsSgukFzw74cZxeG+QljjPwa1Q2ITzuIruH9DX4uY+K1J4yx8rtS3YC3f0/B0ewK\nOForsGREGAaZ8PpY94rXn+Gx0TJxjq1D0eWnlVB8/i2m27QBnJ9CVup7GP/jBhRX8xOJZDnOXzoG\nf89QuDp4il0KWZiMklpM2JKMtOJatHSyxqqHIhDVwkHssshMcI6WmahKzsTxMePh+daLeF8hR03e\nh1C5Poql/3oBfs78mDtJ3//tmIcAz3CM6PJvsUshC3Iuvwqzd6ejukGDdt72mDskBE42SrHLIhPA\nOVoS4xARhK4bP8KVlV9hhk4Lj6A5aCj7DW+vfx8XC6vELo/IoNSaRpxIOYBuEQPELoUsyOFLZZi2\nIxXVDRr0DnLGkuFhbLKoydhomRGH8EB02/QRLq/4GpPrKxDSaiG0NScxY8McfLPzkNjlmTXOUxDG\n0PklZJ9EC1d/eDj5GPQ8YuC1J4yh8ttxsQjz92agQaPDiNbumDkwGFYSfCg0rz/Dk95VI3H2oQHo\nunEVMpd/gfGaUkR3XASoC7E1cQ12J+WJXR6RQRxNikH3Vne/RU8klE6nw/pT+VgRlw2t7uryDRN6\n+0Mh5ycLqXkEzdHaunUrjh8/DgCIjo7G6NGjb3h97ty50Ol0kMuv9nNjx45FSEjILY/FOVpNU5mQ\niuNjJiBy5Qz8Yu+LXUeXQa4txmP9F+HJ6FCxyyPSG7WmEa9/OhzvPf0tvFxail0OSdj1a2TJALzR\nyw8j2/LDF3Rr9zpHq9mDzYmJicjIyMCCBQsAAJ9++inOnTuHqKioa/vIZDJMmzYN1tZcLVffHNuG\nIfq7ZYgf+y7GfLEAbgNmYd2BVdi8byJKqhbg9b4duLApScKFrBPwdvFjk0UG1aDRYvn+SziQUXZ1\njawBgegX7Cp2WSQBzR46PHXq1A2d3KBBgxAfH3/DPgqFAsuWLcOUKVOwYcOG5ldJt+QSHYkOn8/H\n6ZdmwTt+H94cPhmN1r2x/9hkLN59mAubNgHnKQhjyPwOJ+5Cr9ZDDXZ8sfHaE0Yf+dWptZi9Ox0H\nMspgp5Jj4bBQi2myeP0ZXrMbrcrKSjg6/u/hmU5OTigvL79hnylTpmDWrFlYvHgxioqKcOLEiTse\n8/o/8Li4OG7fw7Z7785ot3I6qt77EqpjMZgx6nU02o/G6bOzMGHdz9eaLVOp11S3z507Z1L1mNu2\nofJrVDfgROoByCucTOr/l9vS2a5u0OCNH+MRf7kSLjZKfPBgOKrSz5hMfdw2/e27afYcrfXr1yMq\nKuraUGFycjIOHz6MZ5999pb7nzx5EhkZGXjsscdu+TrnaAmT+8seJC/4BN23/h9SFPaYs3UjVBXf\nIST8XSwYOQwqBT/3QObneMo+7DixAbOf5LMNSf8q6tSYsSsNSVdq4GGnwtIRYfB34bqEdG8Mvo5W\ndHQ0YmNjr23Hxsaic+fO17bLysrw008/AQC0Wi2OHTuGiIiI5p6O7sJ39BAEvvw4Tv57EtrY6rBo\n9OPQuLyE9JSlePfnLahXa8UukajJDifuRq8294tdBklQWW0j3t2eiqQrNfB2sMKHI8PZZJFBNLvR\nat26NYKCgjBz5kzMnDkTXl5eiIqKwrp161BRUQEXFxdoNBpMnz4dc+fOhb+/P9q3b6/P2uk6cXFx\nCH71Sbj374b4Z6cgwkmJZY+Mhs5tPC5n/hdvb/wBtY2aux/IQjXlNjDdzBD51TXU4kzGYXSLGKj3\nY5sSXnvCNCe/4upGTNqWgvSSWvg5W+PDkeFo4WiZH9ri9Wd4SiFvHjVqFEaNGnXD15566qlr//3k\nk0/iySefFHIKaqLWc9/EmVfn4NybC9Dhs/l4/5ERmLLFCldyVmDihjp8MOYZOFgL+mMnMooTqfsR\n0bIDnOwsY1IyGUdBZQOm7EhBbkUDgl1tsGREGFxtVWKXRRLGZx1KkKauHieefAtOUa3QZv4EXC6v\nx7tb96OhYDmc3B/Gh0++Cmc+RoJM3OKNb6Jv5Aj0aTtc7FJIIi6X1+Hd7am4Ut2ICA87LBoWykfq\nULPxWYcWTGFjjeg1S1B84DgyP9uAls7WWDF6AGx9ZqKi+DeMX7sCZbWNYpdJdFtlVUVIzT2HruH9\nxS6FJCKrrA6Tfk/BlepGRHrbY+kIPreQjIONlkT8c5xd5eKEzuveR8bq9SjccwheDlZYMbo3nPxm\no6ZsH8av+4DN1nU4T0EYfed3KHEXuoTfB2uVrV6Pa4p47QlzL/llldVh8rYUlNSq0dHXAYuHhcLe\nSmGE6kwfrz/DY6MlYbZ+LdDxq4U4P3ERKi+mwd1OhQ9GdYOT30zUlh3E+LXL2WyRSTqYsB19Ix8Q\nuwySgL+brNJaNaJ9HTH//lDYqNhkkfGw0ZKIPn363PLrrl2i0Hr+eMSPfRf1RSVwsVXhg1Fd4eQ3\nEzUVRzBuGyH3AAAgAElEQVR+7RKU1jQYuVrTc7v86N7oM7/sojRUVJegrX/nu+8sAbz2hLlTfv9s\nsubeHwIbJf/aux6vP8PjFWcBfB8dCt/HhuLU89OhrW/4q9nqAme/GaipOI4Jaxez2SKTcfDCdvRu\nOwxyOe86UPNd32R1YpNFIuJVJxF3G2cPm/wirL3ccH7yUuh0OrjYqvD+Q53h7DcTNZWnMGHtQotu\ntjhPQRh95afVahB3YTv6WdCwIa89YW6VX1ZZHd69rsmaxybrtnj9GR6vPAshk8sRtWoWqi6mI2P1\nOgCAq60K7z/UCS5+01FTeRYTvp9v0c0Wie9s5lG4OnjC3zNM7FLITP3dZP098Z1NFomN62hZmLrc\nQhwZ/iKiVs2Ex33dAACltY14Z+sZlOcshp1DK/x37Fy42lmJXClZopVbpiAysCuGdLz1M1GJ7uSf\nTdb8+0PZZJHBcB0tuiUbXy90+HQezr4xHzVZuQD+vrPVAc5+01BTlYwJ389GOT+NSEZWUVOKs5l/\nolfroWKXQmbocnk93t3OJotMD69CiWjKOLtbr04IeXMsTj0/DZqaOgD/a7ac/KaiujoNE76bicp6\ny2m2OE9BGH3kdyhxJ6JD+8LexlEPFZkPXnvCxMXFXXusTkmNGu192GQ1Ba8/w+OVaKECXxoDh4hg\nXJiyDH+PHrvaqrDswfaw95mCyupMjP92OqobLKfZIvHodDrsO7sF/aNG3X1noutUNsowZUcKCqsa\n0dbLHgs4J4tMDK9GiWjqWigymQzt3p+KyoQ0ZH296drXPeytsOzBKFh7T0ZFVRYmfDcTdY0afZdr\ncriWjDBC88souIjahmq0DbCMtbOux2uv+cpqG7Gp2BW5FQ0I97DFwmGhsOVipE3C68/w2GhZMIWd\nDTp9vQhpK75ByZ+nr329haM1lj/YDirPSSitSMf472ahXi39ZovEs/fMZgxs/zDkMv5IontTUafG\n1B1pyC6rR5CrDRYPC+Njdcgk8aeaRDR3nN0usCWiVs3CmdfmoL6o5NrXWzrbYOmDUZB7vIOSsiRM\n/H4u1Bqtvso1OZynIIyQ/Grqq3D04l70j3pIjxWZD157TVfdoMGMXWlIL6mFu5WWD4gWgNef4bHR\nIngO7IGWY0bg7Lj50Gn/10wFutpi8YgoaN0n40rJBby1dr6kmy0Sx6GEHWgX1B2uDp5il0JmoK5R\ng5m70pB0pQYtHK0w1r8OrrYqscsiui02WhIhdJw9bPIL0DY0IP2/3934dQ87LBoRhUa3ScgrOoN3\nflgIjVZ6zRbnKQjT3Px0Oh32nN6MwR0e0XNF5oPX3r2rV2sxe086LhRUw9NehWUjwjBiQG+xyzJr\nvP4Mj40WAQDkSiU6fDoPWWs2o+Rw/A2vtfayx4JhHVDvMgk5BScwZcNSaCXYbJHxpeadR4O6DpGB\nXcUuhUxco0aLBTEZOJ1bBTdbJZaNCEMLR2uxyyK6KzZaEqGPcXabFp6IWjUTZ8bNQ/2Vkhtea+/j\ngLnD2qPO+R1k5h3BjI0fwkQeKqAXnKcgTHPz23t6EwZ1eNSiJ8Hz2rs7jVaHRfsycSy7Ak7WCiwZ\nEYaWzjYAmJ9QzM/wLPenG92SR//uaPn4CJwdNw86zY2fNOzc0gkzh7RHjdMkpOQcwJzNK0WqkqSg\noqYUJ1IO4L52D4pdCpkwrU6H5Qcu4VBmORysFFgyPAxBrrZil0V0z9hoSYQ+x9nD3nkBOrUa6au+\nv+m1HoHOmDq4PaqdJiExcy8WbvlIb+cVE+cpCNOc/GLO/IJurQbByc7VABWZD157t6fT6fDJ4RzE\nppXCViXHomGhCPOwu2Ef5icM8zM8Nlp0E7lSifar5+LS15tQeuLcTa/3C3bFxPuiUOH0Dk6n7MD7\n2z4VoUoyZ2pNI/ac2ohh0Y+LXQqZsG9P5uG3xCKoFDLMGxKC1l72YpdE1GRstCRC3+PsNi08Ebns\nXZx9fR7UldU3vT40wh2v9IpEhdM7OJq4BR/v+kKv5zc2zlMQpqn5HU/Zjxau/gj0ijBQReaD196t\nbTpXgPWnCyCXATMGBqGj762fgcn8hGF+hsdGi27Le3g/uN/XFQnT3r/l64+088JTndug0nEy/ji3\nGV/ErDFyhWSudp7cgGGdnxC7DDJRO5OK8fnRXADApH6B6BXoInJFRM3HRksiDDXO3nreeJSfTkTu\nz7tv+frY6BYYGdUKFY7vYM+pDfj2wM3zuswB5ykI05T80vMTUVyZj85h/QxYkfngtXejgxllWBmX\nBQB4vWdLDAl3u+P+zE8Y5md4bLTojpR2tujw6XwkzlqJmqzcm16XyWR4rWdLDGodjgrHSdh+/Hts\nOLRBhErJXGw7vhZDo5+AQs5HptCNTl6uwJJ9mdDqrv4S93Ckl9glEQnGRksiDDnO7hQVgZBxT+Ps\nuHnQqtU3vS6XyfB23wD0CAlDueMk/PrnV9j850aD1WMInKcgzL3md6U8D2cyjmBQh9EGrsh88Nq7\nKrGwGvP2ZKBRq8PDkZ54ulOLe3of8xOG+RkeGy26J0GvPgGFrQ3SV357y9cVchmmDwhCe/8QlDlM\nwsZDn+O3E5uNWySZvO0n1mFA+1Gws3YQuxQyIRkltZi5Kw11ai2GhLvh1R4tIZPJxC6LSC9kOhNZ\n3jsmJgbR0dFil0F3UJd3BYcHP4vO6z+Ac4fWt9ynpkGDKTtSkZKfDteqD/DMgDcwLPphI1dKpqiq\nrgITPh+F5c/9CDdHDgnRVXkV9Xjrt2SU1KrRM8AZswcHQyFnk0WmLz4+HoMGDbrrfryjRffMxscT\nrRdMwLk3F0BTV3/LfeysFFg4NBT+HkEodZiE7/Z/gj2ntxq5UjJFe05tQufQfmyy6Jri6kZM2ZGK\nklo1Ovg4YMbAIDZZJDlstCTCWOPsPqOHwD4iEKnLvrztPk42SiwZFgYvlwCU2L+Fb2JXYd/Z341S\nX3NxnoIwd8uvobEOu+J/xIPdnjZSRebDUq+9ijo1pu5MRX5lA1p52mHekBBYKZv+V5Kl5qcvzM/w\n2GhRk8hkMkQumYzczbtQevTMbfdzt1dhyfAwuDj4o9j+bXy5dyUOnN9mxErJlMSe/RVhPu0Q4Bku\ndilkAmobNZi5Kw2XSusQ6GKD94aGws5KIXZZRAbBOVrULAU7/kDSvI/QK+ZbKO3tbrtfZkktJm1L\nQXVNNjxqVuCV+yehb+RwI1ZKYmtUN2DiFw/j7YeXI9QnUuxySGQNGi1m7UrHqdxKeDtYYcXIcHjY\nW4ldFlGTcY4WGZT38H5w6dYeyQtW33G/IDdbLBwaCitrPxTbTsQXez7AoYSdRqqSTMEfF7bBzyOE\nTRZBo9Vhyb5MnMqthKutEkuGh7HJIsljoyURYoyzt1kwEYV7DqHowLE77tfayx7zhoRAbuWHKzYT\n8fnu93E48dYrzYuF8xSEuV1+ak0jtvy5Bo/0fNHIFZkPS7n2tDodVsZlIS6zHA5WCiwaFoaWztaC\nj2sp+RkK8zM8QUszb926FcePHwcAREdHY/ToGxchPHjwIHbt2gW5XI7g4GA899xzQk5HJkbl7Ih2\nH0zF+bcXo8/+tVA62t92304tHTF9YBAWxOhQiAn4fPcyyGQy9Gw9xIgVk7EdStgJDycftPLrKHYp\nJCKdTofPj17GruQSWCtkWDA0BKHutmKXRWQUirlz585tzhsTExNx8uRJTJs2DQMHDsT+/fthY2MD\nb29vAEBhYSF++uknzJs3DwMHDkRaWhry8/MRHBx8y+NlZGTAx8en2f8jli4gIECU89oF+aHyYjpK\nD5+C5+Bed9w3wMUGXg5WOJStQ428DZKSPkQLV1/4eYQYqdo71CZSflJxq/zUmkas2PIunh00GZ7O\n/N6+HUu49tafLsCGMwVQymWYd38IOvo66u3YlpCfITG/5svLy0NIyN3//mr20OGpU6dumAQ2aNAg\nxMfHX9s+ffo0+vXrd21138GDB+PkyZPNPR2ZsNZz30TBzj9QcuT0Xfe9P8Idr/ZoCY3SH4U2b+Lz\nXUtwNCnGCFWSse07twW+boFo499J7FJIRFsTruDbk3mQAZjaPxBd/JzELonIqJrdaFVWVsLR8X+/\nlTg5OaG8vPzadlVVFZycnG54vaKi4o7HvH6sOC4ujttN2P70009FO7/K2RGy/4zA8ddnQ1Nbf9f9\nH2nnhX7uDWhUBODKX83Wt1tWW2x+Utj+Z377D8Riw/7VGNPnNZOoz5S3//5vU6lHn9uxqSX4+HAO\nAOCBFvXoF+LK/Exsm/kJ376bZi/vsH79ekRFRSEqKgoAkJycjMOHD+PZZ58FAOzZswcKhQIDBw4E\nAJSVleGLL77A5MmTb3k8Lu8gTFxcHPr06SNqDadfngVbfx+0mvX6XffV6XRYfSQHWxKKYKvLhkft\nKrwybAa6RQwwQqU3M4X8zNk/89t2fC0u5pzCpNEfiFiVeZDqtfdnVjnm7kmHVge82NUXYzp4G+Q8\nUs3PWJhf8xl8eYfo6GjExsZe246NjUXnzp2vbXfs2BEHDx6EVqsFAOzdu/eG10m/TOEbpc2it3D5\nx20oP514131lMhle6+mHgaGuqJX5o8xhPD7ftUi0TyOaQn7m7Pr8auorsfXYd/hXn1dFrMh8SPHa\nO5tXifdiMqDVAY938DZYkwVIMz9jYn6G1+zJ8B4eHigoKMDatWsRGxuLsLAw9O/fH+vWrUNQUBDc\n3Nwgl8vxxRdf4MCBA7CxscGjjz562+NxMrz5U9rZwtrLHUkLVsPv3yMhU9x5pWeZTIYegc5IK65B\nepkNFHZRSLy4As52rgj0ijBS1aRvmw59DlcHTwzq8IjYpZAIUopqMH1nGurUOoxo7Y7XerS8NleX\nSErudTI8V4aXCFO5/avT6RD/9GQ4d45E2Nv3tpxHvVqLGbvScDavCt42RbAv/wBj+ryCgR1G3/3N\nemIq+Zmrv/MrqsjD1G+ewrLnNvDh0fdIStdeVlkdJv2egvI6Ne4LccHU/oZ/SLSU8hMD82s+rgxP\nopDJZGi7bDIuffkTqlMv3dN7rJVyzBsSgnAPWxTUeUDtNgWbDn+JXfE/Gbha0rcf/1iN+6P/xSbL\nAhVWNWDajlSU16nR1c8R794XaPAmi8gc8I4WGUTm5z+icFccum5adc/DBmW1jZi0LQXZZfWIcKmC\nrHgZhkU/jge6Pm3gakkf0vMTsWzzRKx46WfYWt1+8VqSnrLaRrz9ewpyyusR6W2PxcPDYKPk7/Ek\nbbyjRaIKeP5RqCsqkbvx3p9r6GKrwuJhYfByUCG5zAHWLWZg96lN+PXPNQaslPRBq9Pim73L8Hjf\n19hkWZjqBg2m70xDTnk9QtxsseD+EDZZRNfhd4NENGVND2OQK5WIXD4FSQs+QUNJ+d3f8BcvByss\nGR4GFxslzl6xhrP/LPxx/ndsjPs/GPLmq6nlZ26++mUlNFoN7ot6SOxSzI45X3t1ai1m705DanEt\nfJ2ssXh4KByslUatwZzzMwXMz/DYaJHBOHdsgxYPDULSgk+a9D4/ZxssHh4KO5Ucf16WwztkDk6k\nHMC3se9Dq9MaqFpqruq6Shy59BueHzIFchl/pFgKtVaH92IycC6/Gh52KiwdHgZXW5XYZRGZHP5U\nlAhT/dRIxNSXUbT/6D09nud6oe52eG9oKKwVMsSkaxAYMRcZ+Yn4dNscqDWNeq/TVPMzB5sOfYYe\nbQYi1CdS7FLMkjlee1qdDssPXMKx7Ao4WSuwZHgYvB2tRKnFHPMzJczP8NhokUEpHe3RZsFEXJiy\nDNqGpjVI7Vo4YNbgEChkwK+JNQhvPRtVdRVY8eu7aGisM1DF1BQZ+Yk4nLgLT/R7Q+xSyEh0Oh0+\nOZyDfWmlsFXJsWhYGAJcbcQui8hksdGSCFMeZ/d+oD/sAlsiY/W6Jr+3m78TpgwIggzAd6dK0abN\nNNhY2WHRxjdQU1+ptxpNOT9TpdY04rOdC/BU/wk4G39B7HLMlrlde9+ezMNviUVQKWSYf38IIjzt\nRK3H3PIzNczP8NhokcHJZDK0XTQJmZ9tQE1WbpPf3z/EFeN7+wMAPjmSh8g2byHQKwLzf3gFZdXF\n+i6X7tG2E+vgaOeKvpEPiF0KGcmmcwVYf7oAchkwc2AwOvg4il0SkcnjOlpkNGkrvkH5mUREf7O0\nWe/fcKYAXx/PhUIGzB0SjOzsnxCXsAMzxnwCT2dfPVdLd5Jfmo1Za5/FwrHfwculpdjlkBHsTCrG\nhwezAABT+gdiUJibyBURiYvraJHJCXrtSVQlZeBKzJFmvf/x9l74V3svaHTAgphMtAr9N4ZFP465\n619EdlGanqul29FqNVi9fQ5G93yBTZaFOJhRhpVxV5us13v6sckiagI2WhJhDuPsChtrtHnvLSTO\nXAFtfUOT3y+TyfBiV18Mb+WOBo0Os3alISzwITx535t4b8OruJB1vNm1mUN+pmLrse+gUqgwrPMT\n177G/JrP1LM7ebkCS/ZlQqsD/hPdAg9Heopd0g1MPT9Tx/wMj40WGZXnoJ5waBWMjE/XN+v9MpkM\n43v7o1+wC2oatZi2Mw1BLQdg/EOLsGrrdBy8sF3PFdP1MguSsO34Wrw2Yi7XzLIA5/KrMHd3Ohq1\nOoyO9MRTnVqIXRKR2eEcLTK62uw8HB76PHrtWgNb/+b94G7UaDF7dzpOXq6Ep70KK0ZGoL4uG8s2\nTcDADqPxcI/n7/kZi3RvGhrrMP37/+Ch7s+gHyfAS97FwmpM3ZGKmkYthka44a2+AZDze4roGs7R\nIpNl6++DwBf+hYtzVzX7GCqFHHMGB6Otlz2uVDdi6o5UONgHYP7Ta3A0ORZf7HrPIAubWrJvYpYj\n0DMcfduOELsUMrD0klrM2JWGmkYtBoS6YmIfNllEzcVGSyLMbZw9eNxTqDifgqL9R5t9DBuVAguG\nhiDEzQY55fWYsj0VcqUr5j75BUqrirB00wRU1d7bcxbNLT9jO3hhOxKzT+HFodNveaeQ+TWfqWWX\nVVaHKdtTUVmvQa9AZ0y+LxAKuek2WaaWn7lhfobHRotEcXVi/EQkzFjR5BXjr+dorcSS4WEIcLFB\nZmkdpu1IhVpnhXce+QABXuGYufYZXC7O0GPlludycQa+i/0AE0ctha2VvdjlkAHlVVz9haW8To0u\nfo6YPjAIShNusojMAedokahO/PtteNzXDUGvPHH3ne+guLoRk7alILeiHq097bBkeBjsrBTYf24r\n1h9YhddHzEPHkN56qtpyVNdVYtbaZzGy21gMaP+w2OWQARVWNWDS7ykoqGpAVAsHLBwWChslfxcn\nuh3O0SKz0HrueKSt+g4NRaWCjuNur8KyEWHwdrDCxSs1mLU7DXWNGvSPegiTRn+Az3bMx+/HvoeJ\n/F5hFrRaDVb9Nh1RQd3ZZElcae3VeY4FVQ1o7WmHBfeHsMki0hN+J0mEuY6zO0QEwXf0EKQs/1Lw\nsbwcrLBsRBg87FQ4l1+NuXsy0KDWolXLDlgw9hvEJezAJ9tmoa6h9qb3mmt+hvTDHx9DrWnE2AFv\n3XVf5td8YmdXUafGlO2pyCmvR6i7LRYOC4WdlULUmppC7PzMHfMzPDZaJLrQSS+gYNt+VCakCj6W\nj5M1lo4Ig6utEvG5lVgQk4FGjRYeTj6Y99RXUMiVmPn9fzhv6y72nNqI4yn7MHHUEigVKrHLIQOp\nbtBg2s5UZJbWIdDFBouHhcLRWil2WUSSwjlaZBIurdmMgm370XXjKr2sf5VZUot3tqWgol6D3kHO\nmDEw+Nqk3n1nt2D9gVV4dtBk9G47TPC5pOZY8j6s2bMEc5/6Ct4ufmKXQwZS16jBtJ1puFBQDV8n\nK3zwYATc7dhUE90rztEis+I/dhQaCktQuPOgXo4X5GaLJcPD4GClwKHMcizbfwka7dXfKQa0H4UZ\nY1bjp7hP8fWeJWhUN/1xQFKVmB2PL3cvxLuPrmSTJWF1ai1m7U7HhYJqeNqrsHR4OJssIgNhoyUR\n5j7OLlcq0Xr+eCTN+6hZz0G8lTAPOywaFgo7lRz700ux4mAWtH/dwA3yboXFz6xFaVURZq17Dlt3\nb9LLOc1ZUs5prNjyLsaPXITgFm2a9F5zv/7EZOzs6tRazN6dhjN5VXCzU179EImjlVFr0Cdee8Iw\nP8Njo0Umw6N/d9iHB+HSlxv1dszWXvZYMDQU1ko5dqeU4OPDOdc+eWhn7Yi3H16OIR0exc/nV2HH\nyR+g1Wn1dm5zkpJ7Dh/8+g7GPbAA7QK7iV0OGUi9Wos5u9NxOvdqk7V8RDhaOtuIXRaRpHGOFpmU\n6rQs/DnyFfT5Yx2sPdz0dtxTlysxc3caGjU6jGzjgXG9/G54pEh+aTY+/n0mbK0d8NrwOXBz9NLb\nuU1dQtZJrNw6Ba8Nn4tOoX3ELocMpF6txZw96Yi/XAk3WyWWPRCOABc2WUTNxTlaZJbsQwPgM/p+\npH2wRq/H7dTSEfOGhEClkOG3xCJ8fDjn2jAiALRw9ce8p75Ca7+OmPrtvxGXsMMi1tw6lhyLlVun\nYPzIxWyyJKxBrcXcv5osV1sllo1gk0VkLGy0JEJK4+xhbz+HvC17UZ2WpdfjdvFzwvwhIbBSyPB7\nYhFWHcq+1mzFxcVBIVfi0V4vYcqj/8XWo99i0cY3UFCardcaTMnuUxuxZs9STHvsI7QL7CroWFK6\n/ozN0Nk1qLWYuzcdJy9XwsXm6pysAFfpNFm89oRhfobHRotMjpW7C4Jf/zeSF36q92N39nPCvPuv\nNlvbLxZjVVz2DXe2ACDUJxKL/vM92gd1x8y1z+KXI19BrWn+8xhNjVrTiC93LcLu+J8w999fNnni\nO5mPBrUW8/am40ROJZxtlFj2QBgCXW3FLovIonCOFpkkTW09DvZ9Au0/ngO3Hh31fvz4yxWYvTsd\nDRodhrdyx4Q+/jfM2frblfI8rNm7FAVlOXh+yBREBgi78yO24soCfPTbdNjbOGPcA/NhZ+0gdklk\nIA1qLebHZOBYdgWcbZRYPiIMQW5ssoj0hXO0yKwpbK0RMfUVJM372CBzpaJbOmHB/aGwVsiwI6kY\nK29xZwsAPJ19MPmRFXi87+v4bMcCLN00AZcKU/RejzEcS96H6d8+jfZBPTFp9PtssiSs7q+J78ey\nK+BkrcAyNllEomGjJRFSHGf3eeR+6DQa5G+NMcjxO7V0vLr0g0KGnUnFN6yzdT2ZTIZuEQPx4Yub\n0SG4JxZtHIdPts3GlfJcg9Slb1W15fi/HfOxdv9KvPPIh3ik14uQy/T7rS/F689Y9J1dbaMGs3al\n/W9O1gPhCJZwk8VrTxjmZ3hstMhkyeRytJrzBpIX/p/eFjH9p46+V5stpUyHXckleP/A/1aQ/yel\nQoVhnZ/Aihd/hpezL6Z9+zTW7F2Gooo8g9QmlE6nQ1zCDrzz9RhYq2yw5Jl1CPeNErssMqDqBg2m\n7bi6GKm7nQrvPxiOEAk3WUTmgHO0yOSdHDsZbr2jEfzqkwY7x5m8SszalY46tRZ9g1wwdUAgVIo7\n/x5SVl2MbcfXYt/ZLegU2gcjOj9pMhPLE7JOYP2Bj6DWqvHCkKlssCxARZ0a03emIbmoBl4OKiwb\nEQ5fJ2uxyyKSrHudo8VGi0xeVVIGjj4yDv0ObYDKxclg50koqMaMXWmobtCgq58jZg0OgY3y7jd9\nq+oqsPf0Zuw5tQnujl4Y3OkxdAsfCBsr495J0Ol0OJv5J34/9j0KynLweN/X0bPN/XofJiTTU1bb\niKk7UpFeUgdfJyssHR5u1o/VITIHBm+0Ll26hK+//hpyuRxWVlZ488034eBw4+Ta/fv345dffoGb\n29UVvqOiovDII4/c8nhstISJi4tDnz7SXXDy/NuLYeXhiojprxrk+H/nl1pUg2k701Bep0Z7HwfM\nHxICOyvFPR1Do1XjZOpBxJ79BcmXz6BreH/0aDUEkYFdYaU03J2FippSHErYidizv0ImAx7sOha9\n2gyFUmG8hwRL/fozJKHZFVc3YsqOVGSV1cHfxRpLh4fBw95ymixee8Iwv+a710ZL2dwTfPbZZ5g8\neTJcXV2RkJCANWvW4M0337xpv+HDh2PYsGHNPQ0RACB00vM4PPgZBDz/KGxaeBrsPGEedvjggXBM\n2ZGKs3lVmLIjFQuHhsLJ5u7fKgq5Et0iBqBbxACUVRXhUOIubDn6DT76fQbaBXZDu8BuiAzoAl+3\nIMhusZTEvdLpdCgsy8HpjMOIT4tDSu5ZdA67D88MegeRAV0EHZvMS2FVA97dnorcinoEu9pgyYgw\nuNoar8Emortr1h2ty5cv4+eff76hsZoxYwYWLlx4w3779+/H9u3bYW1tDRsbG7z66qtwd3e/5TF5\nR4vu5uL8j6GprkXk0skGP1deRT2m7EhFfmWD4L/AyqtLcCbzCBKyTuDCpeOoqa9CkHdrBHpFwNvF\nD94ufnB18IC9jRPsrB3+GuqTob6xFtX1FaioKUVh2WUUlOUgsyAJqfkXIIcMHUJ6oWNIb3QI7glb\nK3v9BkAmL6usDtN2pOJKdSPC3W2xeHjYPf1CQET6oZehw7KyMvz3v/+96euRkZGorq7GM888c+1r\nc+bMwezZs6FQ/G+YpaGhAVZWV29hnzlzBnv37sWkSZNuea6YmBjU1NRcu4X590dOuc3tv7d1ldVo\nmLQSPX7/HKdyLxn8fBWNMmwudkV2WT3crbR42r8ODwzoLfj45dUl+D12M4prcmHrokRBWQ7yruSg\nTl0Nja4ROuig0aihlFvBxdEdjrbOkDVYwdnGA707D0SYTyQSz6RCJpOZ1J8Pt423/eOew1ifY4Na\njQxtve3xoFMhbBSmUx+3uW0J23Z2doabo5Wbm4vNmzffcEdr+vTpWLRo0R3fN23aNCxevPiWr/GO\nljBxcZYxzp628htUJqaj42fz9Xrc2+VXVtuIaTvTkFZcC28HKywaFgp/Poz3JpZy/RlCU7M7ebkC\n8xXe7jQAACAASURBVPZkoE6tRXd/J8wYFHxPH9qQKl57wjC/5jPoyvC+vr7Iz89HaWkpACAxMRG+\nvr437bdp0yYUFRUBAM6fP3/LfYiaIvDlx1H652mUn00yyvlcbFVYNiIMbbzsUFDVgLd+S8bFwmqj\nnJvonw6kl15bhmRwmCvmDLm3T8YSkXia/anDzMxMfPXVV1AoFLCyssL48ePh4OCA+Ph4NDQ0oEeP\nHrhw4QLWr18PKysrODs744UXXoCjo+Mtj8c7WnSvstb8jMLdB9HlhxVGO2ddowbvxWbiWHYFrBUy\nzBgUjB4BzkY7P9HWhCv45HAOdAAebeeFl7r73vL5nERkHFxHiyRL29CIg33/jXYfToV7785GO69G\nq8PKuCzsSi6BXAZM7BOAYa1u/eEOIn3R6XRYeyof38fnAwBe6OqLMe29+OlSIpHxodIW5u/JeZZA\nbqVC+JSXkPzep3p74PS95KeQy/B23wD8u6M3tDrgw4NZWHcq3yAPvTY3lnT96dudstNodfjkSA6+\nj8+HXAa83TcAj3fwZpN1HV57wjA/w2OjRWbJ5+HB0NY34Mpu4/6QkMlkeLaLL97o5QcZgG9P5uGj\nwzm3fT4iUXPVqbVYEJOBrQlFUClkmDUomHdQicwQhw7JbBXs/AOpy79Crz1rIJMb/3eGuIwyLN6f\niUaNDr2DnDG1fxCsOTGZ9KC0thGzd6cj6UoNHKwUmDskGO19bj2/lYjEwaFDkjyvoX0hUylQ8Pt+\nUc7fJ9gFS4aHwcFKgUOZ5ZiyPRVltY2i1ELSkVVWhwlbk5F0pQbeDlZYOTKCTRaRGWOjJRGWOM4u\nk8kQ/u7LSHn/S+g0GkHHam5+US0c8OHIcHjaq5BQWI03tyQjs7RWUC3myBKvP325PruzeZWYuDUZ\n+ZUNaOVph1WjIhDgynXb7oTXnjDMz/DYaJFZ8xjQHSpnR+T9ule0GoJcbfHRqFZo5Xl1ra2JW5Nx\nIqdCtHrIPO1OLsbUHWmoatCgV6Azlj8QzucWEkkA52iR2Ss+dBIX3lmKPgfXQ65UilZHvVqL5Qcu\n4Y+MMshlwOs9/fBQW8M9AJukQaPV4ctjudh8vhAAMDrSEy93bwmFnJ8sJDJlnKNFFsO9d2fY+Hoj\nd+NOUeuwVsoxfWDQteUfPj6cg48PZ0PNTyTSbVQ3aDB7dxo2ny+EQgZM6OOP13r6sckikhA2WhJh\n6ePs4VNeQtqHX0Pb0LzJ6PrKT/7X8g/v3hcIlVyGrQlFFjFJ3tKvv+a4XF6H8VuTcDynEk7WCiwd\nEYYHWnuIXZbZ4bUnDPMzPDZaJAmu3drDPjwIOet/E7sUAMDgcDe8/2A43OyUOJdfhXG/JiG5qEbs\nsshEnMipwPitycguq4eXtRYfP9yKnywkkijO0SLJKD+diPjnpqLfkZ+gsLEWuxwAQHFNIxbszUBC\nYTVUChkm9gnAkHA3scsikWh1OvxwugDfncyDDkDPAGdM6R8IOyuF2KURURNxjhZZHOeObeDULsJk\n7moBgLudCsseCMOI1u5o1Oiw/MAlfHI4B40ardilkZFV1qsxZ3c6vj2ZBwB4prMP5gwJZpNFJHFs\ntCSC4+xXhU16HukffQ9tfUOT3mfI/KwUckzsE4AJffyhlMuwJeEK3v49BfmV9QY7p7Hx+ruz1KIa\njPs1CUezK+BorcDCYaF4qlMLyGUyZicQ8xOG+RkeGy2SFOeObeDUNhw5638Xu5SbPNDaAx8+GA5v\nByskXanB678k4cilcrHLIgPS6XTYdrEIE3+7ughpuIctPnm4Fbr4OYldGhEZCedokeSUnUrA6Rem\no9+RnyC3thK7nJtU1Knx/h+X8GfW1UVNH4vywvNdfaHkR/olpapejZVx2fgjowwAMLyVO8b19IMV\nn4dJJAmco0UWy6VTWzi0DkHOD6Z3VwsAnGyUmDckBC9394VcBmw6V4i3fkvG5XLpDCVauoSCarz2\nSxL+yCiDnUqOqf0D8VbfADZZRBaI3/USwXH2GzV1rpax85PJZHgsyhsfPHj1OYlJV2rw2i//396d\nx0VVr38A/5xhlWHYVwVEXBpRcceuCwqiYgqU2qJexeyHlaltv/RluVzLstQ0KnG53aumZbiUC5qW\ngClgZAGCCC4ou7KKA4MMy8zvD3J+IoswZ86cOcPzfr163XtmDt/zzOMozznnOd9vFk5fK4eeXGTu\nFPr+NWlUqvBD6l28E30dxdV16OdggcjnpAjo0/aTppQ7dih/7FD+uEeFFjFINsMHQty3JwqjTvEd\nSrsGOFtixwwpJnjZorZBiS0X8vBhzG3cr23gOzTSSUUyBZafuoH//nkHSlXTLeGtwX3R3Uo/phoh\nhPCDerSIwbp3KR2XX18Dv8SDEJnq/+K8MTcr8FVCPmrqlbCzMMa743pipDs1Teu7pob3cuxKKkRt\ngxK23Yzxrl9P+NKfHSEGjXq0SJdnO3IQxF4eKDyo31e1HprYxw47Z/THIBcxKmoa8MGZbGz6LRcy\nurqlt0qq67DydDa+TMhHbYMSE7xs8e+Z/anIIoSoUaFlIOg+e+v6vLsQtyK+hbK+/WJFX/LnLDHF\nxmf64n98u8PUiMGvNyqw6Egm4v9+ck1f6Uv+dEX597QNi45kIrmwaa3CDwI88X6AJ6zMjTs1VlfL\nnbZR/tih/HGPCi1i0GxHDUY3d1fc+fEM36F0mJGIwQs+ztgxQ4qBzmJUPGjAhzG38VHMbdwz8MWp\nhSCn4gHeib6BiPim27z/8LDGrpn9Md7Llu/QCCF6iHq0iMErO38Jme9/jrG/fQfGSFjLnShVKkRn\nluE/l4rwoF4JsakRwoa7Iri/A4xo3i2dqm1Q4vuUuziUVoxGFWDXzRiv/8MNfr1swDD0Z0FIV0M9\nWoT8zX7cCBhLLFF88je+Q+k0EcMgxNsRu2b0x0g3K8jrGhF5sQBvHM1C+t1qvsPrElQqFS7m3ser\nRzLxw+ViKFVAcH8HfDOr6SoWFVmEkPZQoWUg6D572xiGQe+3wpAdsbfNOar0PX/OElOsn+KFf03q\nBWdLU9yqqMW70TfwaVwOyuX8307U9/xp6lbFA6z4+SbW/noLd6rq4GVnji9C+mHpGHdYmnWuF6st\nhpo7XaH8sUP54x4VWqRLcJw0BiqlEqUxiXyHojGGYTC6pw2+mdUf84a5wMSIQWz2PSw4dBV7/iyC\nvK6R7xANxr0H9fjiQh4W/5SF1KJqSMyM8PrTPfD1s1L0dxLzHR4hRECoR4t0GXeO/orcbw5h1Imd\nBnG7545MgZ1JhUj8e2FqKzMjzBnqgun9HWBqROdQmpDXNeKnKyU4nF6CmnoljBgg2NsR/xzq0umn\nCQkhhq2jPVr0LwfpMlyCA3Bj4zeoSEyG/ZjhfIfDmquVGf41yQsZxdX4zx9FuFIsx47fC/HTlVLM\nG+aCgD52tFB1B9XUNeLY1VIcTi9BlaLpyuAodyuEj+oBDxtznqMjhAgZnfYaCLrP/mSMkRG8ls7D\nrYhvW7wn5PwNcLbE59P74sNJXuhpY47i6jpsPp+Hlw9exYmrpahrUHIeg1Dz96C+EQfTihF28Cp2\n/3kHVYpGDHKxxOZpffDRlN46KbKEmjt9Qfljh/LHPcFc0aqpqYFcLgcAg7jto222trYoKyvjOwze\nqVQqGBkZwda29afBus+cgpuf/weVKVdhM9Sbhwi5wTAMnu5pjZHuVoi5WYEfLhej4L4CXyUW4LuU\nu5g5yAnTpA6wMBXW9BZcKZXX4VhGKU5llaP67942b2cxwoa5Ykh3S/o3hhCiNYLo0aqsbJoV29ra\nmv4BJE9UW1uLmpoa2NnZtfp+7n8Po/y3Sxi29zMdR6Y7jUoVEnIqceByMbLLHwAALExEmNTXHsHe\nDl32dtiNshocSS/Bb7fuofHvf/kGOIsxd6gLhveQ0L8vhJAOM6gerfr6ejg6OvIdBhEIc3NzVFVV\ntfm+2+xg3PpiL6qysiGR9tZhZLpjJGLg52WLcb1scKlAhh9Si3GlWI5jV0tx7GophnS3RHB/R/yj\np7XB93HJ6xrx2617OHO9HJklNQAAEQOM97LBzIFOkNJThIQQDgmi0KKzzCerqqqCRCLhOwy90d53\nxqibGTxemYWc7QcwKGIVgKY+hbFjx+oqPJ1hGAa+7tbwdbdGdnkNTmSWIebmPaQWVSO1qBq23Ywx\n3ssWAb1t8ZSjhcZ/1/QtfyqVCul35ThzvRznb1dC8XefmoWJCFOfcsCzAxzhLDHlOcom+pY7oaH8\nsUP5454gCi1CtM0j7Dmcf/p51BaVwLy7E9/h6ERvewu8NdYD/zOyO87erMCJq2XIv6/A0YxSHM0o\nhavEFP69bTHByxY9bc0Fd4LTqFThSnE14m/fR2JuJUofmcjVx9USQf3sMbaXDcyN6RkgQojuCKJH\nq6ysDA4ODjqOiAhZR74zWWu/BEQMpGuX6igq/aJSqXC9rAZx2fdwLvseKh40qN9zFJtgpLsVRrpZ\nYWh3id420Vc+qEfanWpcKpDhYu59yBT/P2mro9gEgX3tMLmvPXpYm/EYJSHEEOmkRyslJQWRkZFY\nu3Yt3NzcWrxfVlaG7du3Q6lsumy/ePFi6rXqpOrqalhaWrb5fk1NDSwsLHQYkeHoGf4CEgPD0Put\nBTCx7nq3XRmGwVOOYjzlKEa4bw+k3alGbHYFkvJkKJXX41RWOU5llcNYxKC/kxjeThbo7yxGfycx\nbLuZ6DxelUqFigcNyCqRI7WoGpfvVCHnXm2zfXpYmWFsLxuM6WmNfo4WEAnsqhwhxPBoXGhlZWUh\nOTkZPj4+ba4ft2vXLoSFhcHDwwNFRUXYuXMnVq1apXGwXY1cLkdQUBBOnjwJa2vrFu+rVCpMnToV\n33//PaysrKhHq5O6ubnAcdIY5H97FEVDe3XpPgUjEYOhPSQY2kMCpUqFm+UPcClfhkv5MmSWyJF+\nt7rZItYuElP0c7CAu4053KzNUH47C9PHj9LKlS+VSoX7tQ0oqa5Hwf1aZFc8wK3yB8guf4DK2oZm\n+5oaMfB2FmOIqwSjPa3R00Z4tzypR4Ydyh87lD/uaVxoSaVSSKVSREZGtvq+QqGAQqGAh4cHAKB7\n9+4QiUSQy+UQi+kpn47497//jZCQkFaLLKDpisSrr76KTZs24aOPPtJxdIah1+K5+POlt2G89W2+\nQ9EbIoZBPwcL9HOwwNyhLpDVNuBqsRyZpXJcLZbjWmkN7lbV4W5V3SM/1Q3ffJsGa3Nj2HQzho35\n3/91M4bY1AjGIgZGD//7uxCqqW/Eg3olauoaUVOvhEzRgJLqOpRU16GusfWTN7GpEfrYd4OPqyUG\nu1pC6iiGKfVcEUL0WLuFVmVlJSIiIlq87u/vDz8/v3YHlsvlLa6wWFlZQSaTsS60Jn+TwurnNfHL\n/wzV+TGjoqJw+vTpdvd5/vnnsWXLFhgb03MNmpD07w3JwL5wvtP2dBBdnZW5MZ7uaY2nezYV/I1K\nFXLu1SLn3gPkV9Yi/74CBZW1KJQpcL+2AfdrG5DL8pgSMyM4WZrCRWIKL7tu8LLrht723eBsaSq4\nK1ZPQlcT2KH8sUP54167v51tbGywdu1ajQYWi8Ut5jKSyWRtXp0Bml/CfLgswMPth2PxdXvs8eO3\ntV1UVIQPP/wQ9+7dQ1VVFYKCgvDee+9hw4YNSExMhJmZGYyNjbFkyRKMHDkSEokE27Ztw7Fjx6BU\nKtG7d2989dVXuHbtGpydnWFtbQ2ZTIbAwEB8+OGHCAoKQlZWFhYsWIAjR46gR48eGDt2LM6dO4ex\nY8c+Mb6usl1cXIysrKw2v0+Pbnu9MReXlqxDjrsNxv19AtHe/l1920jE4E7mXzADsOCR95VOwMDh\no3C/tgHxl1Igb2Tg7NEb1XWNyMnNg1IFdO/hhgalCkVFRTATqdCvtycsTIyQf+sGuhkBE0YNgZPY\nFMl/XGxx/JsFgIsefH7apm3apm0AHe6PZv3UYWRkJIKDg+Hu7t7ivQ0bNmDu3LnqHq3du3fjgw8+\naHUcQ3jqsLq6GgEBAYiMjMSIESMAAD///DN+//131NfX45NPPgEA5OXlYdasWThw4AAcHR0xevRo\npKeng2EYnDp1CoGBgYiNjcX58+fVP3P9+nXMmTMHhw4dQnh4OLZs2QIfHx8ATX8GSqUSS5Ys4eeD\n66HOfGdUKhV+HfcSBn/wBpyntn+llrSO+jw0R7ljh/LHDuVPczqdGf7RS/nJycmoq6vD008/jfDw\ncGzbtg1A0y+zxYsXa+NweispKQkDBgxQF1kAMHXqVLz33nv4448/1K95eHhgzpw5OHjwIFauXAkv\nLy8sXLgQEyZMQGBgIExNTSGXy5s9bdivXz+sWrUKfn5+WLNmjbrIApqu4hQWFurmQxoghmFgGjoe\nt7/eD6egcQZ3a4oQQgh/WBdajxdPj16VcnBw0PjWo1C19Uv64RQXj26LRE1NvMePH0dqaiouXLiA\n0NBQ/Pe//4WNjY16jceHfv31V4wfPx5nzpzBK6+8ov75yspKuLq6cvBpuo7x77yKC0deQuUfabAd\nNZjvcASHzog1R7ljh/LHDuWPe/S4jhaNGjUKV65cQUpKU7O+SqXCiRMnMHPmTHz88cfqaTByc3MR\nFRWFF198EZWVlfjuu+8wZMgQLF26FKNHj0ZmZia8vb2RmpqqHnvXrl0QiUTYv38/XFxc8K9//Uv9\nXmpqKgYNGqTTz2poGCMjeL4+B7e2fcd3KIQQQgwIFVpaZGlpif3792Pz5s0ICQlBUFAQLl++jA8+\n+AA2NjZ45plnEBISgrfffhtff/01PD09YWFhgUuXLmHcuHEICgpCXV0dQkJC4OrqCoVCgdzcXCQm\nJuLAgQPYtGkTAODzzz9HQkICDh8+DJlMhvT0dPTubZiLI+tKfHw8erzwDO6nXEXVtVt8hyM4D5tD\nSedR7tih/LFD+eMezQmgZf369cN337W8KrJixQqsWLGixeumpqb44osvWh3rlVdewZYtWxAREYG4\nuDj162ZmZoiJiQHQVHQ9//zz6tuIRHNG3czQc+Es5EQewKCI1h/aIIQQQjqDfjvrsblz56K4uBhy\nubzV9xsaGnDx4kUsXbqUZoVn6WGfgvuCGSg+fR61RSU8RyQs1OehOcodO5Q/dih/3KNCS48ZGRnh\nhx9+aHOCV2NjYxw+fBjm5uY6jsxwmdpaoccLU5HzzUG+QyGEEGIAqNAyEI9PDks659E+Bc9FL6Lw\nQDQa5DU8RiQs1OehOcodO5Q/dih/3KNCi5DHdHN3hd2YYSj84STfoRBCCBE4KrQMBPVosfN4n4Jn\n+IvI/fdBqB6b/4y0jvo8NEe5Y4fyxw7lj3tUaBHSChtfHxjbSFD6awLfoRBCCBEwKrQMBPVosfN4\nnwLDMPBc9BJydkbxFJGwUJ+H5ih37FD+2KH8cY8KLULa4BIcAPntfMiuXOc7FEIIIQJFhZaBoB4t\ndlrrUxCZGKPnwlnI/TdN9fAk1OehOcodO5Q/dih/3KNCSyBOnjyJyMhILF++HMuWLWtzEtOOKC4u\nRlhYmBajM1xu/wxF8ekLUJSU8x0KIYQQAaJCSwDy8vKQm5uLxYsXY+PGjbh37x7WrFnTbJ+O9mjt\n3bsXERERuHz5MhehClZbfQqmtlZwfTYQeXt+1HFEwkJ9Hpqj3LFD+WOH8sc9KrQEICMjA+vXr4dC\noQAAjBs3DomJiRqNFRYWhtdff12b4Rk8z/AXkP/tUTQ+UPAdCiGEEIGhRaW1LCcnB2fOnEFGRgZC\nQkJw584dpKSkYNGiRZBKper9SkpKsGPHjnbHCgoKgq+vLyZNmoTTp0/DzMwMAFBYWAgvL69m+0ok\nEsyYMQOhoaFPvC2oUqk0/HSGq70+BXGfnrAe3B93fvoFbnOCdRiVcFCfh+Yod+xQ/tih/HFPsIXW\n5vdP6/R4//tJUIf2i4+Px/z58yGVSrFs2TIEBgZCoVAgNja2WaHl5OTU4vZfW4yNjeHj4wMAkMlk\nOHHiBKKiWk47sGTJEvTt27dDY5LO6fnqi8haHYEes6eDYRi+wyGEECIQgi20Olr46FpoaCiSkpLg\n7++PPn36AADS0tIQHMz+SohKpcL777+Pbdu2tSioqqqqEBAQwPoYXVV8fHy7Z3b240YADFB+/hIc\nxvvqMDJheFL+SNsod+xQ/tih/HFPsIWWvpJIJEhISMCYMWMAAA0NDYiPj8dnn30GmUwGKysrAE1P\n/u3cubPdsaZMmYJRo0apt7/44guEh4dj8ODBuHXrVovbh4Q7TROYvoicXVFUaBFCCOkwKrQ4kJCQ\ngM2bNwMAEhMTMXjwYJSWliIrKwuTJ08GADg7O3f41iEA7N+/HwMHDoSLiwuKi4tx+vRpLF68WP2+\nRCLBb7/9Bnd3dyrANNCRMzrXGZNx/ZMdqL6RC8u+PXUQlXDQGbHmKHfsUP7Yofxxj5461DKVSgW5\nXA5vb28AgKurK8RiMeLi4tRFVmclJSXhnXfewUsvvQRvb294e3sjLy+vxX67du3C+fPn2x0rKioK\n69evR2lpKVavXo2EBFrLr6OMzM3gHvYccr+hCUwJIYR0DKPSk0fQYmJiMGzYsFbfKysrg4ODg44j\nEpaqqiqaHf4Rnf3OdLRPQVFSjgvj5sDv90MwtbViE6JBoT4PzVHu2KH8sUP501xycjImTpz4xP3o\nihYhnWDmZA+nKWNReCCa71AIIYQIABVaBoKuZrHTmTM6j5dnIm/Pj1A1NnIYkbDQGbHmKHfsUP7Y\nofxxjwotQjrJZqg3TO2sURr7O9+hEEII0XNUaBmIjq51qKmkpCScO3cOR44c4fQ4fOnsel8eC2ch\n77+HOYpGeGi9NM1R7tih/LFD+eMeFVqkQzIyMjBhwgSkpaXxHYpecAkJgCz9OuTZLZ/+JIQQQh6i\nQstAcN2jtXDhQpSUlMDNzY3T4/Cls30KRuZmcJsTjLy9P3EUkbBQn4fmKHfsUP7Yofxxjwot0iFK\npRJxcXGYPXs236HoDff5z6Lo0M9okNfwHQohhBA9RYWWgdBmj1Z5eTliY2OxceNGREdH480338RX\nX32F1NRU7NmzR2vH0Sea9Cl0c3OB3T+G4s6RXziISFioz0NzlDt2KH/sUP64R0vwCIxSqURoaChO\nnDjB2TFqa2sREBCAY8eOYcmSJfDz81Ov0ahtxcXFWL58Ofbu3cvJ+FzzeHkmMld/Abd5oWAYhu9w\nCCGE6Bm6oiUwhw4dQmJiYovXtdmjZWVlBaVSiaqqKlhYWKCyslKjcYqLixEd3fbEnnv37kVERAQu\nX76saahao2mfgt3Y4VA1NuLexVQtRyQs1OehOcodO5Q/dih/3KNCS0Cys7NhZ2fH+XG2bNmCQ4cO\noVevXoiJiUF9fb1G49TV1bV7SzMsLAyvv/66pmHqBYZhmqZ62G2Y014QQghhh24dallOTg7OnDmD\njIwMhISE4M6dO0hJScGiRYsglUrV+5WUlGDHjh3tjhUUFARfX18ATbcMY2NjER4e3uq+VVVVCAsL\nQ2hoKMLCwlh9hrVr17L6+c7Qk6U2Wa331eP5INz8bBdq75TC3NVRy5EJA62XpjnKHTuUP3Yof9yj\nQkvL4uPjMX/+fEilUixbtgyBgYFQKBSIjY1tVmg5OTlhzZo1HR73xx9/xKxZs9rdZ8mSJejbt6/G\nsWubvhRRXDO2FMN1xhTk7zuKvstbL4QJIYR0TawKrZSUFERGRmLt2rWtzq907tw5/PTTT+rbXYMG\nDcKMGTPYHFLttMtorYzTUUF3W/ZFtSY0NBRJSUnw9/dHnz59AABpaWkIDg7W+Ng3b96Era0tbG1t\n29xHIpEgICDgiWNFRESgpKSk1fcYhsHKlSshFos1ivPxq3QymQwFBQW4ceOG+rVp06Zh+PDhGo3P\nJbZndB4vz8QfM95A7zfDIDIz1VJUwkFnxJqj3LFD+WOH8sc9jQutrKwsJCcnw8fHp90rF1OnTkVQ\nUJCmh2lTRwsfXZNIJEhISMCYMWMAAA0NDYiPj8dnn30GmUymfnqvuLgYO3fubHesKVOmYNSoUYiP\nj8f9+/dx5coV1NbWAgC+/PJLhISEwNPTs1Pxvfnmm0/cx97evsPjMQyDsrIyAC2v0uXn5yM+Pr5L\nzL1l2bcnJFIv3D15Dt1nTOY7HEIIIXpC40JLKpVCKpUiMjKy3f1iY2ORkJAAc3NzvPbaa536JS5U\nCQkJ2Lx5MwAgMTERgwcPRmlpKbKysjB5ctMvYWdn5w7fOlywYIH6/+fl5WHjxo1YtmxZs32qqqqQ\nnJwMd3d3eHl5sYq/vLyc1c8LkTb6FDwWzsLtyO+6ZKFFfR6ao9yxQ/ljh/LHvXYLrcrKSkRERLR4\n3d/fH35+fk8cfPTo0ZgwYQIA4PLly9izZw/effddzSIVCJVKBblcDm9vbwCAq6srxGIx4uLiWDep\np6WlYceOHWAYBu+//z5effVV9OzZU/3+rl27MGnSJNaF1qOys7ORnp6OiooKiESiZkUfW1FRUYiJ\niUFpaSlWr16NoKAg9ZVAIXKcNBqZq7fifto1WPs8xXc4hBBC9ACjYtmxHBkZieDgYLi7uz9x35Ur\nV2LDhg2tvhcTE4Oamhp1Zf1wttqxY8eirKwMZmZmAP5/vqiH0wbQNrfb3377LaRSKXx9fRESEoKz\nZ8/CyMioQz9/9+5dpKWlYebMmTqPPyMjA/fu3Wv1+8TldveU25Dfysf9mX46OR5t0zZt0zZt87Nt\nYWGBiRMn4kk4LbQOHz6MCRMmwMHBAVeuXEFcXByWLl3a6jgxMTEYNmxYq++VlZXBwcGBTZiEpbq6\nOrzwwgs4evQo36F0CF/fGUVZBS6MmY3xfxyGiTW3C30TQgjhT3JycocKLa1MWPro0iPJycn4/fff\nAQD9+/fH1q1bsW7dOpw9e1art51Ic9pc67A1u3fvVvedGSJtrfdl5mAHR/9RKDp8WivjCQWtZILH\nHAAAD4xJREFUl6Y5yh07lD92KH/cYz2P1uLFi5ttP3pVasCAAfj444/ZHoLw7OzZs5g2bRoePHgA\npVIJkYgWFGiP+/xncXXlFngsnEXrHxJCSBdHE5YaCG2udfio6OhobNq0Cfb29jA2NsbBgwc5OQ7f\ntPnUje0/hkLV2IDKS+mw9fXR2rj6jJ5a0hzljh3KHzuUP+5RoUXaNX36dEyfPp3vMASFYRi4z3sW\n+d/+1GUKLUIIIa2je0AGguseLUOn7T6F7i88g5JfE1FXcV+r4+or6vPQHOWOHcofO5Q/7lGhRQgH\nTG2t4DR5DAoPnuI7FEIIITyiQstAcNWj1VVw0afgPu9Z5O871iUW16Y+D81R7tih/LFD+eMeFVqE\ncMRm5CCIjI1RkZjMdyiEEEJ4QoWWgWDTo3Xz5k38+OOPWowGSEpKwrlz53DkyBGtjssVLvoUGIaB\ne9izyP/2mNbH1jfU56E5yh07lD92KH/co0KL4OrVq1AoFFodMyMjAxMmTEBaWppWxxWa7jOnoOxc\nEhRlFXyHQgghhAdUaBkITXu0rly5ggEDBmg5GmDhwoUoKSmBm5ub1sfmAld9CibWEjg/Mx6FP5zk\nZHx9QX0emqPcsUP5Y4fyxz0qtLq40tJSZGRkICcnR6vjKpVKxMXFYfbs2VodV4jc5z+L/H3HoVIq\n+Q6FEEKIjlGhZSA60qNVXl6O2NhYbNy4EdHR0XjzzTfh7++P+vp6VFdXa3Tc1sYEgK+++gqpqanY\ns2ePRuPqGpd9CtZD+sNYYoHy85c4OwbfqM9Dc5Q7dih/7FD+uEczwwtEQ0MDIiIiYGVlBaVSiZEj\nRzZbV7IjamtrERAQgGPHjmHJkiXw8/MDAMycORMzZ87UKK62xnxYcGlbcXExli9fjr1793IyPhcY\nhoHH/OeQv+8YHCaM4jscQgghOkRXtARi9erV8PX1RXh4OORyOb7//vtm73ekR+thkVZVVQULCwtU\nVlayjkubYxYXFyM6OrrN9/fu3YuIiAhcvnxZ42O0hes+BdcZk1Ae/xdq75Zyehy+UJ+H5ih37FD+\n2KH8cY+uaAlAYWEh4uLisGHDBgBAeHg4GhsbOz3Oli1bIJVK0atXL8TExMDT05N1bNocs66urt1b\noGFhYcjPz8epU8Kbbd3YUgyXkAAUHjiJ3m8v4DscQgghOkKFlpbl5OTgzJkzyMjIQEhICO7cuYOU\nlBQsWrQIUqlUvV9JSQl27NjR7lhBQUHw9fVFXFwcHB0dcfToUdTU1ODq1atYvnx5s32rqqoQFhaG\n0NBQhIWFtTre2rVr2X9AHYzZHq5mWY+Pj+f8zM5j/nNIfnkFvJbNA2NkxOmxdE0X+TNUlDt2KH/s\nUP64J9hC66WNw3V6vB+W/9Wh/eLj4zF//nxIpVIsW7YMgYGBUCgUiI2NbVZoOTk5Yc2aNR0as6Sk\nBFlZWZg4cSIkEgn27duHtWvXYuvWrc32W7JkCfr27dvxD6VnDH2pGqtB/WDmYIeyuCQ4Bo7mOxxC\nCCE6INhCq6OFj66FhoYiKSkJ/v7+6NOnDwAgLS0NwcHBGo8pFovRq1cvdR9W9+7dsX79+maFlkQi\nQUBAALvgHxMREYGSkpJW32MYBitXroRYLNZ4/Mev6slkMhQUFODGjRvq16ZNm4bhw7kvqnV1Ruc2\nNwQFB6INrtCiM2LNUe7YofyxQ/njnmALLX0lkUiQkJCAMWPGAGh6WjA+Ph6fffYZZDIZrKysADQ1\nfu/cubPdsaZMmYJRo0Zh0KBBOHTokPp1hmHQ0NDQ6djs7e07vC/DMCgrK9PqmI+P+/hVvfz8fMTH\nxxv03Fuuzwbi2kfboCitgJmjHd/hEEII4RgVWhxISEjA5s2bAQCJiYkYPHgwSktLkZWVhcmTJwMA\nnJ2dO3zr0NfXF3K5HFVVVZBIJLh27RpmzJjRbJ+qqiokJyfD3d0dXl5erY5TXl7O4lO1josx+aCr\nPgVjiRjOU8ej6NBp9Fo8h/Pj6Qr1eWiOcscO5Y8dyh/3qNDSMpVKBblcDm9vbwCAq6srxGIx4uLi\n2mxSfxJjY2N8+eWX+PTTT+Hi4oK7d+9i3bp1LfbbtWsXJk2a1GahlZ2djfT0dFRUVEAkEmHBggUA\ngGvXruGXX37B0qVLNYrvSeNrS1RUFGJiYlBaWorVq1cjKChIfeVQSNzmTMeV//0Unq/PBsMwfIdD\nCCGEQ4xKTzqQY2Ji2pyAs6ysDA4ODjqOyPBs27YNUqkUEydORGBgIM6cOQMA2Lp1KxobG7FixQqt\nj2/UiafrioqKcPHiRY0nT32UPn9nVCoV4sfNxsAt78PW14fvcAghhGggOTkZEydOfOJ+dEWrC3nj\njTcANM1XJZFIYGRkhAsXLsDX1xcXL17U6viWlpadKrKApiZ/bRRZ+o5hGLjNDkbB9yeo0CKEEANH\nM8MbiI6sdfjQ7t27sWnTJuTk5MDV1bXTBVFHxn/YoyYUul7vq/sLU1H883k0VMl1elyu0HppmqPc\nsUP5Y4fyxz0qtLqYs2fPYtq0aVCpVEhPT8f169dx8eJF3LhxA/n5+VodX6lUaiFiw2TmaAe70UNx\n59hZvkMhhBDCIbp1aCA6stZhdHQ0Nm3aBHt7exgbG+PgwYOoqalBamoq6urqWDdmtza+UPDx1I3b\nnGBkb90D93+G6vzY2kZPLWmOcscO5Y8dyh/3qBmeGCQhfGeUDQ34bcQMjPhhKyTS3nyHQwghpBM6\n2gxPtw4NRGd6tEhLfPQpiIyN0ePFaSj4Plrnx9Y26vPQHOWOHcofO5Q/7lGhRQiP3GZPQ9GRM1Aq\n6vgOhRBCCAeo0DIQHenRIm3jq0/BwtMNkqe8UHJG2GeV1OehOcodO5Q/dih/3KNCixCeuc0NRsGB\nE3yHQQghhAOCKLT0pF9fr1GPVnOd/c7w2afg/MwE3E/NxIP8u7zFwBb1eWiOcscO5Y8dyh/3BFFo\nmZiYoLKykgou0iG1tbVan4SVS0bdzOAaGojCqJN8h0IIIUTLBDG9AwDU1NRALm+aRZsW4iVtUalU\nMDIygq2traC+J7L060h+eQXGJx0GI6AikRBCuiqDW+vQwsICFhYWfIeht65du4annnqK7zAEi+/8\nWQ3qB1Nba5Rf+BMOE0bxFoem+M6fkFHu2KH8sUP5454gbh2SJzt7lpZyYUMf8tdjTrBg59TSh/wJ\nFeWOHcofO5Q/7ml8RSsnJwe7d++GSCSCSqXCggUL4Onp2WyfsrIybN++Xb3m3eLFi+Ho6MgqYEIM\nVffnJuHGJztQd08GU1srvsMhhBCiBRoXWhcuXMBrr70GV1dXFBQUYN++fVi5cmWzfXbt2oWwsDB4\neHigqKgIO3fuxKpVq1gHTVry8PDgOwRB04f8mdhYwcH/adw9dhYeC2bwHU6n6EP+hIpyxw7ljx3K\nH/c0vnU4b948uLq6Amh6yuvxdeUUCgUUCoX6D7F79+4QiUTqhnZCSEs9XpiKwqhTfIdBCCFES9q9\nolVZWYmIiIgWr/v7+8PPzw8AcPv2bRw4cABvv/12s33kcnmL2cqtrKwgk8kgFovZxk0ek5eXx3cI\ngqYv+bOf4Isr72xA9fUcWPbz5DucDtOX/AkR5Y4dyh87lD/usZreISUlBb/88guWLl3a4olAhUKB\nTz75BOvWrVO/9sknn+Ctt95q9enBmJgYTcMghBBCCNE5Tqd3OHv2LG7cuIF3330XxsYthzEzM4O5\nuTny8vLUPVoqlarNKRo6EiwhhBBCiJBodEWrpqYGr7zyCqRSqfo1Ozs7LF26FMnJyairq8PTTz+N\nsrIybNu2DUDTRJKLFy+Gk5OT9qInhBBCCNFjejMzPCGEEEKIoaEJSwkhhBBCOEKFFiGEEEIIR6jQ\nIoQQQgjhCBVahBBCCCEc0Xh6B206fvw4Ll26BAAYNmwYnnvuOZ4jEpaGhgZ8//33yMzMxIYNG/gO\nR1BOnTqF+Ph4GBsbw9XVFeHh4a1OV0Jat3fvXly7dg0mJibw9fXFtGnT+A5JcB7OOdinTx/MmzeP\n73AEZdmyZbC3t1dvL126FHZ2djxGJCwlJSXYt28f3n77bYhEdN2lo1JTU3Hs2DH1dkFBAd577z30\n69ev1f15/42SmZmJ27dv46OPPgIAbN++Henp6Rg0aBDPkQnHgQMHMHDgQGRmZvIdiqBUV1cjLy8P\nH3/8MRiGwf79+/HHH39g9OjRfIcmCLW1tRgwYADCwsIAAOvWrcO4ceNgZUULYnfG/v374e/vj/z8\nfL5DERyxWIy1a9fyHYYgKZVKREdH44033qAiq5OGDBmCIUOGAGg6UVq/fj369u3b5v68ZzclJaXZ\nZKUTJ05EcnIyjxEJz7x58zBs2DC+wxAcS0tLvPbaa2AYBkDTXxhHR0eeoxIOc3NzjBgxAkDT3HoP\nXyMd9/PPP2Po0KE0v6CG6uvr8dFHH2H58uU4ffo03+EIyrFjx5Cbm4uIiAjExcXxHY5gnTx5EpMm\nTVL/HmkN71e0qqqqmq2JaGVlhfv37/MYEemKfvrpJ1hYWLR7VkJat2fPHly4cAFz586Fqakp3+EI\nRmZmJmQyGaZOnYqMjAy+wxGkDRs2wMTEBPX19fj0008hlUrh6enJd1h6r6SkBHl5eeqrgV9//TWc\nnZ3h7e3Nc2TCUlNTg7/++gvr169vdz/er2hJJBLIZDL1tkwmo1sPRGeUSiW++eYbmJiYYPbs2XyH\nI0gLFizA9u3b8ddffyEnJ4fvcAQjNTUVOTk52LRpE6KiovDnn3/i+PHjfIclKCYmJur/HTlyJHJz\nc3mOSBiSk5MxcuRIiEQiiEQijB07FlevXuU7LME5efIkgoKC2r2aBehBoTVs2DDExsaqt2NjYzF8\n+HAeIyJdRW1tLbZu3QofHx9Mnz6d73AEJzs7W/0Qi6mpKaytrZudNJH2zZ49GytWrMB7772Hl156\nCSNGjEBISAjfYQlGQUEBoqOjATQ9EJSSkoI+ffrwHJUwSCQSpKWlqbdTUlLg4eHBY0TCU11djZSU\nFIwdO/aJ+/J+61AqleLatWtYtWoVgKbCixrhiS7Exsbi5s2bqK6uxs8//wwA8Pf3h5+fH8+RCYOL\niwuOHz+u/mX31FNPwcfHh+eohOtJZ8WkORcXFxQWFmLVqlUQiUSYPHkyevTowXdYgjB69GhkZ2dj\n1apVYBgGAwcOhK+vL99hCcqJEyfwzDPPdOjvLa11SAghhBDCEd5vHRJCCCGEGCoqtAghhBBCOEKF\nFiGEEEIIR6jQIoQQQgjhCBVahBBCCCEcoUKLEEIIIYQjVGgRQgghhHCECi1CCCGEEI78Hxxwhf4d\nutgUAAAAAElFTkSuQmCC\n", | |
"text": [ | |||
"<matplotlib.figure.Figure at 0x107e1a050>" | |||
] | |||
Fernando Perez
|
r5783 | } | |
Brian Granger
|
r6035 | ], | |
Fernando Perez
|
r5783 | "prompt_number": 23 | |
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "markdown", | |
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "source": [ | |
MinRK
|
r7739 | "This shows easily how a Taylor series is useless beyond its convergence radius, illustrated by \n", | |
Fernando Perez
|
r5783 | "a simple function that has singularities on the real axis:" | |
] | |||
Brian Granger
|
r6035 | }, | |
Fernando Perez
|
r5783 | { | |
Brian Granger
|
r6035 | "cell_type": "code", | |
"collapsed": false, | |||
Fernando Perez
|
r5783 | "input": [ | |
MinRK
|
r7739 | "# For an expression made from elementary functions, we must first make it into\n", | |
"# a callable function, the simplest way is to use the Python lambda construct.\n", | |||
Fernando Perez
|
r5783 | "plot_taylor_approximations(lambda x: 1/cos(x), 0, [2,4,6], (0, 2*pi), (-5,5))" | |
Brian Granger
|
r6035 | ], | |
"language": "python", | |||
MinRK
|
r7739 | "metadata": {}, | |
Fernando Perez
|
r5783 | "outputs": [ | |
{ | |||
MinRK
|
r11536 | "metadata": {}, | |
Brian Granger
|
r6035 | "output_type": "display_data", | |
MinRK
|
r11536 | "png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAF4CAYAAACb9ceDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FNX+BvB3W7LZ9J4ACaGFUIUgTYolgIK9YO/t4rVg\nu+JVEVHRK/bOT1Gv4rVXsNERAgiB0CEQSEJCet8km+3z+yMkoEJIZnZ2drLv53l8cJPNzOHl7Oa7\n55w5oxEEQQARERERdZhW6QYQERERqQ0LKCIiIqJOYgFFRERE1EksoIiIiIg6iQUUERERUSexgCIi\nIiLqJL03TrJy5UpvnIaIiIjIIzIyMtr9vlcKKABIT0/31qm6nLfffht333231873xNJD2FxkxtzJ\nvTG2Z3infvZfP+diR2kj5k/ri2HdQj3SHofTjrveOQ8v3PI5okPjO/3z3s7PlzTsO4SsK+5D+qcv\nImL4QFHH8Of8pPKH7OatysfveXV47OwUnNUnslM/O3vpIWxq573GH/KTE/MTLzs7+5TP4RSeCiQn\nJ3v1fLXNDgBAZJDX6ut27cjfgKTYPqKKJ8D7+fkKe1Utsm98BGnPzBRdPAH+m58nMLv2RRx9j2l9\nz/kr5icN85MXCyj6m7pmJ4Bjb25KW79vKc4YcK7SzVAVt92Bbbc/hsTLpqDbZVOUbg7RCUUGGQAA\ntUffc4jUhAWUChQWFnrtXIIgtBVQrW9uSrLaLdietwGjU9ufi26PN/PzBYIgYO+jL8EQEYZ+s+6Q\nfDx/y8+TmF37Wke5604yAsX8pGF+8vKNIQbyGY12FxxuASaDFoF65evrLQd/R/8epyHM1Lm1Ff7s\n8MKvUbdtL8YsWQCNVvl/Q6KT4QgUqRkLKBWYNGmS185V2zZ9p/zoEwBs2LcUZ6RJm4LyZn5Kq1q9\nCflvLsKYn9+DPiTYI8f0p/w8jdm179gaqBMXUMxPGuYnL348VYH+/ft77Vx1PrSAvLG5HvuKtuH0\nfmdJOo4381NSY+5h7LznaZz23jMISkr02HH9JT85MLv2nWoKj/lJw/zkxQJKBTIzM712rtq29U/K\nF1CbD6zC0JTRMAWGSDqON/NTir2qFluvfxj9n/wnosYM8+ix/SE/uTC79p1qCo/5ScP85MUCiv6k\n2tI6AqX8FB6vvusYl9WG7FseReIlk9D9qvOVbg75G0H8j4YE6qDXatBod8HqdHuuTURewAJKBcaP\nH++1c1U02gEAcSEBXjvnidQ2VqKgPAfDe4+TfCxv5udtgtuNXTPnwdgt3iNX3J1IV85Pbn6Vnabz\nP6LVaBAb3PJhrfW953h+lZ8MmJ+8WEDRn5QffROLD1W2gPojZwVG9D0TAQajou3wdbnz34e1uAxD\nXnucV9yRKrV+WDtRAUXky/iOqwLenMeuaDhaQCk8ArV+3284Y4BnNoDsqusAir/8GaXfr0D6f1+A\nLihQtvN01fy8gdmdWsLRD2vlJyigmJ80zE9eyq8UJp9S7gNTeOV1R1BedwSDe45SrA2+rmZDNvY/\n8w5Gffc2AmK4RxapF0egSK04AqUC3prHtjpcMNtcMGg1il6Ft3b3Txg34DzodZ5ZyN7V1gE0HTyM\n7XfOxmkL5iIkNUX283W1/LyJ2Z1a62h3eQPXQHka85MXCyhq0zr6FBsSAK1GxIpQD3ALbqzd/RPO\nHHKhIuf3dfbqOmy9/mGkPn4XosefrnRziCTjCBSpFQsoFfDWPHbbAnIFp+/2Fm6ByRiKXvFpHjtm\nV1kH4Gq2IfvmWUi48Bz0uOYCr523q+SnBGZ3am0jUFwD5XHMT14soKhN6xC6klfgrdm1GGcNvkix\n8/sqweXCzrufQlCPBPT79z+Ubg6Rx8QEG6BByx50TreETaWIvIwFlAp4ax67woMjUIKI90GLrQHZ\nh9Zh3MDzJJ//eGpfByAIAvY98Roc5kZFtitQe35K8ofspJY8Bp0W0SYD3AJQ1fTnUSh/yE9OzE9e\nLKCoTXljyy7kUq7Ak7J0auO+5RjccxTCTLyq7Hj5b3+K2k07MPzD56ENVHZ7CaKTkbJqMq6drQyI\nfBULKBXw1jz2sREoZW7jsma3PNN3al4HUPLtUhT+9zuM+N/LMIRJuyegWGrOT2nMrmMSTnIlHvOT\nhvnJi/tAURsl94Aqrs5HZX0pTus91uvn9lXV67YgZ84bGPntmzAmxirdHCLZ8Eo8UiMWUCrgjXls\nh8uNGosDWg0QE+z9Aur33T9hwqBp0Gk93yXVuA7AvCcXO2bMwbCF8xDav7eibVFjfr6C2XXMya7E\nY37SMD95cQqPAACVTQ4IaLkiRq/17h5QLrcT6/b8jLOG8Oo7AGguKkP2Df/CwOcfQtTYYUo3h0h2\nx0agHAq3hKjjWECpgDfmscsVvAfezvw/EB0aj+7RvWQ5vprWAdhrzdhy3YNImXENEi46R+nmAFBX\nfr6G2XXMsREo25++zvykYX7yYgFFAJRd/7Rm9xKOPgFwWpqRfcPDiM0Yi5Q7r1K6OUReE3f0wpXK\nRgfcYvZAIVIACygV8MY8tif3gOqMhuY67Cr4A2cMmCLbOdSwDsBtd2D77Y8juE9P9H/yHqWb8ydq\nyM9XMbuOMRp0CDfq4XALqLU4277O/KRhfvJiAUUAPD8CJXRwe721u3/CiD4TYQoM9ch51Uhwu7Fr\n5rPQGgwY9PIsaBS6DyGRGJ4aL2odheJeUKQWLKBUwBvz2J4agdJ0Yjs9t+DG8u3fYEr6lZLOeSq+\nvA6gdZdxa1klTlvwNLR637sw1pfz83X+lJ3Usj8hJBDAn7cy8Kf85MD85OV779akiLYbCXvxPni7\nCjbBGBCMvomDvXZOX3Po5Q9Ru3kHRn33NnRBgUo3h0gxce3cVJjIF0kegbLZbJgzZw4WLVrkifbQ\nCcg9j213uVHRaIdWA8R5cQ+oZdu+xpRhV8g+ZeWr6wAOf/QtSr5ditM/f1WxXcY7wlfzUwNm13GJ\nYS3vPcXmY1fiMT9pmJ+8JBdQn376Kc4++2xPtIUUUmK2wS0ACaGBCNB7Z1a3sr4U+49sxxkDPHvj\nYLUo+X458t74BKd/+RoCY6OUbg6R4pIjjACAojqrwi0h6hhJvy1//fVXDB8+HHFxcZ5qD52A3PPY\nhUffsJIivDeFtHLHd5gwaBqMAUGyn8vX1gFUrvoDObNfw+mfvwJTcjelm3NKvpafmjC7jksKbymg\nCuusEI5uZcD8pGF+8hJdQO3btw9msxnp6eltnZ3UqaiuZci89ROg3BxOO1bv+hGTh1/hlfP5kpqN\n27Hz3qcx/KP/IDStj9LNIfIZUSY9TAYtGmwu1Fudp/4BIoWJLqC2b9+OgoICvPjii/jyyy+xZcsW\nLF68+KTPP74SzszM5ONOPG79mlzH35pbBODYJ0BPtHf37t0n/f6iJe8iVB+NblEpsvx9vJ1fRx/X\nbduL7bc/Dt3d07HHVq94ezr6uPVrvtIeNT0eP368T7VHjsdVVVU4ntjjaTQaJB39EPfzuiwA/pEf\n+59vP26PRvDA8NHevXuxdetW3HDDDSf8/sqVK5Geni71NCSTu7/PQW51M167MBUD44MlHWvWLwex\nraQB/5naB+ndw074nKc+uw3TTr8Oo1J941Yl3mDek4stV92Pwa89hrhJ45RuDpHHPLMyH+vy6/DE\nOSmY2DtS0rFe/P0wlufWYOb4JJyfFuOhFhJ1XnZ2NjIyMtp9jsdWDHPzP/l0tBoWwy0IKKxvmcLz\n5Bqok1XlhytyUVFXghF9J3rsXKciZ34d0XigAFuveRADn3tIlcWT0vmpmV9k58EVHEl/WUjuF/nJ\niPnJS++JgwwcOBADBw70xKHIy6qaHLA53YgM0iM0UHp3OFUZvXz7N8g47TLotB7pej7PUnAEW66+\nH6mP3+UzNwcmkoUHPkMnH/0QxyvxSA24E7kKyLmXx7Er8ORfQG6xNWJjzjKcc9olsp/reErthdJc\nXI6s6TPR+74b0f2qaYq0wRO4l4x4zK5zjl2J1zIqzvykYX7yYgHl51o/6XnjCrw1uxZjaMoYRIbE\nyn4updkqqpE1/T4k33oFkm++TOnmEKlCYlgg9FoNyhvtsDrdSjeHqF0soFRAznnsthGocHn3gHK5\nnfhly/9wwagTX2ggJ2+vA7DX1CPrypnodvm56HXXNV49txy4jkI8Ztc5eq0G3cJa3ouO1FmZn0TM\nT14soPxcUdsCcnlHoP7IWYG48O7ok9C118q1FE/3IXbSGejz4C1KN4dIdVovZimq5zoo8m0soFRA\n1jVQtfJP4QmCgJ+yFuGCkd4ffQK8tw7AXmvGlqtmImbiKKQ+fleXuTKV6yjEY3ad1/peVFhnY34S\nMT95sYDyY2arE3VWJwL1WsQEG2Q7z96iLbA5rBjWR32X8HeUvdaMLVfeh6gJpyN19j+7TPFE5G2t\nC8l5JR75OhZQKiDXPHbrEHlyeCC0Mv7C/2nzp7hw1A3QapTpbnKvA2gdeYoaPwL9Z9/d5YonrqMQ\nj9l13rERKK6Bkor5yYsFlB9rvQeeLOufjm6uV1R1CPnlORg3cKrnz+EDHHVHi6czhqP/k/d0ueKJ\n6FQET+6kCaDH0QtaiuttcPM2q+TDWECpgFzz2IeqLQCAlKggzx30L/XDz1mf4tz0KxGgl/cqv/bI\nlZ+jzoysq+5H1Njh6D/n3i5bPHEdhXj+lJ3GEztpAjAF6BAfEgCHW0DyoBEeOaa/8qf+pwQWUH4s\nt6oZANAvxoMF1HFqGyuRlbsGk4ZdLsvxleSob0DW1fcjcvRp6P9U1y2eiJSQGmMCAByosijcEqKT\nYwGlAnLMY7vcQtsIVL9ok8ePDwC/bf0C4wdORWhQhCzH7yhP52evNSPrqpmIHDkUaXPv6/LFE9dR\niMfsxGn9ULd21yGFW6Ju7H/yYgHlp4rqrLC5BMSHBCDM6Pn70tkdFqza+QOmnX6tx4+tJHtVLbKu\nuBdRY4Yh7emZXb54IlJCv6MjUKVW/ooi38XeqQJyzGO3Do23DpV72vaDSzC450jER/SQ5fid4an8\nrOVV2HTZ3YibMq5Lr3n6K66jEI/ZidNaQFU4DHBxJblo7H/yYgHlp2Rd/yTYkLXvS1w29nbPH1sh\nzUfKsPmSf6Lb5eei36w7/aZ4IlJCmFGP+JAA2Jxu7khOPosFlArIMY+d27r+SYYRKKN1DXrEDkVS\nbF+PH1sMqflZCo5g86V3I/mWy9Fn5k0eapV6cB2FeMxOvNYPd60f9qjz2P/kxQLKD7UsIG8dgfJs\nAeV2W2G0LsUZQ2706HGV0ph7GJsvuwe9770BKXdepXRziPxG63tTLq/EIx/l+dXD5HGenscuqrfC\n5nTLsoC8oXoFnPp+iIno7dHjSiE2v4Z9h7Dl6geQ+tgMdL9qmodbpR5cRyGeP2Qn1wolFlDS+UP/\nUxJHoPyQXOufrPZmmKsWoznoQo8eVwn1O3KQdeVMpD19n18XT0Qd5elVga0F1MHqZi4kJ5/EAkoF\nPD2P3fqJztPTdyu2f4NAUxpceuWvvDteZ/OrXr8VW699CINefASJF0+SqVXqwXUU4jE78cKNeoTr\n3bA53TjCheSisP/JiwWUH5KjgLI5mvFT1qeIjFP3ruPlv/yOHXc+iWHvP4P48yYq3Rwiv5ZodAPg\nQnLyTSygVMCT89hOt4CDMiwgX7H9W6R2H4qAoJ4eO6andDS/I5//hL3/fhkjPn8FUWeky9wq9eA6\nCvGYnTRj05IAAPsrmxRuiTqx/8mLBZSfya2ywOZ0Iyk8EOEeWkBuczRjyeZFuPyMOzxyPCXkv/0/\nHHrlQ4z67i2ED+2vdHOICMCg+GAAwK6yRoVbQvR3LKBUwJPz2DtLW96IhiSGeOyYS7O/Qmr3oegZ\nl+qxY3pSe/kJgoD9z7yD4i9/wegfFyC4T7IXW6YOXEchHrOTpiZ3Bww6DfJrrDBbnUo3R3XY/+TF\nAsrPtBZQQxM8U0A1NNdhyeZPcPXEuz1yPG9yO53Y89B/ULNxG0b98A6M3eKUbhIRHUevBdJigyEA\n2F3OUSjyLSygVMBT89gut4A9R9+EhnpoBOr7jR9gbNpkdItK8cjx5HCi/FxWG3bcORvNxeUY+fXr\nCIgKV6Bl6sB1FOIxO2nGjx/f9l7V+uGPOo79T14soPzIoepmWBxudAsLQExwgOTjldcWYd2eX3DZ\nCdY+CT68bYu9ph5ZV86ENsCAEZ/Mhz5YnhsqE/kDuV/rraPlu1hAkY9hAaUCnprH3lnWAAAY4qHp\nuy/WvY2pI65BRHB029d88R67x+dnKSzBpov+gciRQzH0naegDZReSHZ1XEchnj9lJ8drPzMzEwPi\ng6HXanCophlNdpfnT9KF+VP/UwILKD/StoDcAwVUbsku5BzZjmmnXyf5WN5Sv30fNl00A8m3TUf/\n2f+ERsvuT+TrjHotUmNNcAvAbl6NRz6Ev0FUwBPz2C63gN1lLXupSF3/JAgC/rfmdVw5fgaMAZ69\nHYwcxo8fj8oVG7Dluocw8PmH0fMWdW/26W1cRyEes5OmNb/WabydLKA6hf1PXiyg/ERBbTMa7S7E\nhRiQEBoo6VhbD61Fo9WMMwer4553RZ/+iN0PPo8Rn8xH/FTuLk6kNlxITr6IBZQKeGIee4eHti9w\nuZ34bM0buO7M+6DV6iS3S06CICD3hfew96WFGPXDO4gYMVjpJqkS11GIx+ykac1vYFwwtJqWjYC5\nDqrj2P/kxQLKT2wuMgMA0ruHSTrOiu3fITIkFsN6j/NEs2Tjttmx696nUbVmM4Lm3Y3g3klKN4mI\nRDIF6DAoPhhuAdhabFa6OUQAWECpgtR5bIvdhZ2ljdBqgJFJ4guouqZqfLP+/3BzxsPQ+OLldkfZ\nqmqw+Yp74bLaMOrbtzDx/POUbpKqcR2FeMxOmuPzG53UslfbpkIWUB3F/icvFlB+ILu4AU63gAFx\nwZLuf/fZmjdw5uALkRTb14Ot86yGnEP4Y+odiBqXjmHvPQudyah0k4jIA0Ynt3z421xkhsvtwxvN\nkd9gAaUCUuex/yisBwCMTha/2/a+omzsKczCFePu7NDzlXh7q1yxAVmX34d+s+5A6qP/aNumgOsA\npGF+4jE7aY7PLznCiITQANRbndhfaVGwVerB/icvFlBdnFsQsOno+qcxIqfvnC4HPlj+H9xw9gMw\nBrS/a7cSE3uCIKDgvS+x+8HnMfy//0G3KzhlR9TVaDSaY9N4RfUKt4aIBZQqSJnHPlBpQb3VifiQ\nAPSMFDed9dvWLxAVEovR/SeJbodc3A4n9jwyH0c+W4IxP7+HyJFD/vYcrgOQhvmJx+yk+Wt+Y3q2\nfAjcVMgCqiPY/+TFAqqLa52+G5McJmrhd3VDOX7c9F/cMmmWzy0ct9easeWaB2ArrcSYJf+HoKRE\npZtERDIakhCCIIMWeTVWVDTalW4O+TkWUCogZR77j6NXrIhd/7Ro1SuYPOwKJEYli26DHMx7crHx\n3FsRNiQV6R+/AH1o8Emfy3UA0jA/8ZidNH/NL0CnxYjuoQCOfTikk2P/kxcLqC6suN6KvJpmBBm0\nojbQ3JG/EXll+3DJmFtkaJ14pT8sR9aVM9Hv3/9A2px7odH59oaeROQ5Y45+GFyXX6dwS8jfsYBS\nAbHz2KsO1bb8fEoEAvSd+6e22Brx/tJncfuUfyPA4BtbAbidTuQ8/RYOzFuAkV++hm6XTu7Qz3Ed\ngDTMTzxmJ82J8huXEgGDToOdpY2oauI0XnvY/+TFAqqLEgQBqw62FFDn9Ins9M9/uvpVDO01FkN7\njfV000Sx19Rj67UPoWF3LsYu/RBhg1OVbhIRKSA4QIcxSeEQAKzJq1W6OeTHWECpgJh57ANVFhSb\nbYgM0mNYt9BO/ez2vA3YVbAJ1591f6fPKwfznlxsPO82hA1OxYjPXkZAVOfWc3EdgDTMTzxmJ83J\n8jv76IfC1g+JdGLsf/ISvy01+bTVR6fvzuwdCZ2241fPNVkb8P7SZzFj6hyYAqXceNgzW2mWfLcM\n+2a/hoHzHkDiJR2bsiMi7xEU2DV3VFIYggN0OFjdjMJaK5JFbtFCJAVHoFSgs/PYLreANYfETd8t\nWv0K0vtMwJCU0Z36uWM8s9WBy2rDnlkv4uCLCzHyq9clFU9cByAN8xPPn7KTY5eTk+UXoNdifErL\nSPSqQzWeP3EX4U/9TwksoLqg7aUNqGl2oltYIPrHtr9z+PGyD63D3sKtuO6smTK27tQsh4ux6aIZ\nsNfUtax3GtRP0fYQke/J6BsFoGW0XVBiGIz8HgsoFejsPPZv+6sBABl9Izu8+WWj1YyFS5/DjKlP\nnvJ2LXIq/+V3/DHtTnS/ahqGvfcsDGFSphFbcB2ANMxPPGYnTXv5DUkIQYzJgNIGO3aUNnqxVerB\n/icvFlBdTLXFgcz8Omg1wLmp0R36GUEQ8P7SeRiVeg4GJp8ucwtPzG13IGfOG8iZ8zrSP30RPW+b\n7nM7nxOR79BpNZia1vIet2RvlcKtIX/EAkoFOjOP/WtOFVwCMLZnOOJCAjr0Myu2f4Py2iJce9Z9\nYpsoSfORMmy+9G405RVh7LL/ImL4QI8en+sApGF+4jE7aU6V37T+MdBpgPWH61DJPaH+hv1PXiyg\nuhCnW8DPOS3TdxcNiO3QzxSU78dXmQsw86LnEaAPlLN5J1SxLBMbp96OuGkTkf7xCwiIDPN6G4hI\nnaKDDRiXEgG3APx69L2PyFtYQKlAR+exNx6uR7XFgaTwQAzrduq1Q832Jry2+FHclPEwEqN6Sm1m\np7iabdj76EvY9/grGL5wHnrffT00Wnm6I9cBSMP8xGN20nQkvwsHxgAAfsmpgsPllrtJqsL+Jy8W\nUF3I4r2VAFreUE61fkgQBCxc+hwGJqVj/MCp3mhem4a9B7Hx3FvhqDPjjBUfI3L0aV49PxF1HUMT\nQtAz0oiaZifWH+YNhsl7WECpQEfmsXOrLNhR2gijXovJ/U69eHz1zh9QWHkQN2U87Ikm/s2JrioW\nBAGHF36FzdPvQ697rsfQd+fCEN65XdLF4DoAaZifeP6QneChTXNPpCP5aTQaXDigZRTq210V3NLg\nOP7Q/5TEAqqL+Gx7GQDgggExCA7QtfvcwspcfL72Lcy86HkEGoI82o6TDXzZKmuw9fqHUfLtMoz9\n+T10v3Iqr7Ij6kI0HtpEV4wpqdEIN+qxv9KCrcUNirWD/AsLKBU41Tx2QU0z1hfUw6DT4PIhce0+\n12ypxUvfP4wbznkQPWJ6e7KZJ1W5ciM2TLoZYUNSMXrxAphSenjlvK24DkAa5ices5Omo/kZ9Vpc\ncfS973/byjgKdRT7n7x4L7wu4PMd5QCAqf2jEW0ynPR5TpcDr/04C2NSMzBx0Pmyt8vZ0IScp95E\n1e+bcNq7TyHqjHTZz0lE/unCATH4amc59pQ3YVdZI4Ymyr88gPwbR6BUoL157CP1VvyeVwudBrhy\naPxJnycIAj5aMR/GABOunni3HM38E0fWdqw/50ZAEDB+9aeKFk9cByAN8xOP2UnTmfxMATpcOqhl\n+5bPtpXL1SRVYf+TF0egVG5RdhncAnBe/+h2N85cmv0l9hfvwNPXfQittv01UlJobVacveRLNOXv\nRforjyJ20hmynYuI6HgXD4rFN7sqkF3SgJ2lDRyFIllxBEoFTjaPnVPRhNWHamHQaXDtsJOPPu3M\n34jv//gQj1z2KkyB0u8tdzK1m3di+BOPI9BqRdhn7/hM8cR1ANIwP/GYnTSdzS80UI/pR0fi/++P\nYrj9fC0U+5+8WECplCAI+L9NxQCAywbFIiH0xLuIl9QU4O2fn8T9F/0HcRHdZWmLq9mGnLlvYvvt\njyP/6mvx2/SboA3jJz8i8r7Lh8QhxmRAbnUzVh2sVbo51IWxgFKBE81jZxbUY095E8KNelw9LOGE\nP1fTUIHnv74XV0+8BwOS5FmDVL1+K9afcwOsR8oxbtUnqBkxQpbzSMF1ANIwP/GYnTRi8jPqtbj5\n9EQAwEdbSmB1+u/u5Ox/8pK0BuqXX35BZmYm9Ho9EhMTcccdd0Cv57IqudmdbnyQ1TL6dEN6wgn3\nfWporsNzX92NScMux9lDL/Z8G2rN2D/3TVSv24KBzz2IuHMnHP1ODQDIuLUeEfkSX3ytT+oXhR/2\nVOJgdTO+3VWB64af+EMmkRSiR6AaGxtRWFiIefPm4emnn0ZoaCg2b97sybbRUX+dx/5sexlKzHb0\njDBiWlrM355vtVvwwjczMbzPeFw8+maPtkUQBJT+sBzrz7wOOlMQxq/59LjiCQpupXdyXAcgDfMT\nz5+yk+O1LzY/rUaDf4xpWbLw2fYyHKm3erJZquFP/U8JooeLQkJCMGPGjLbHNpsNsbGxHmkUnVx+\nTTO+PLrv0/3jk6DX/vlty+G04+Uf/oWk2L649sz7PHru5qIy7Hn0RViLyzH8o+cRMWKwR49PROQp\npyWGYkq/KCzLrcFrmUWYP60vtLz7AXmQR9ZAff/99zCZTOjXr58nDkd/0TqP7XILeGVdIVxCy6Zx\ngxL+fEWd2+3C2z/PRlCACbdP+bfHbpXidjpR8N6X2HDuLYgcNRRnLPtIVcUT1wFIw/zEY3bSSM3v\nztHdEW7UY2dpI5bur/ZQq9SD/U9ekhYsud1ufPjhh0hISMCll17a7nMzMzPb/jFbhxX5uHOPy8NT\nsb/SglC9GwOchwEktX3fLbixp2EVGq1mTEi8Chs3/OGR89ds2IYt9z8DTXgIzljyfwjuk3zKnweA\nvXv3YkzyWJ/Kj4/5mI89/7impgbH/ypRuj3HPw4z6pER1YjvSox4b3MJTk8Kw/5tm32mfXzsu49N\nJhNORSOIvGmQ1WrF22+/jQkTJmDUqFHtPnflypVIT+dtPMTKzMxEQlo6Zi4+AIdbwNzJvTG2Z3jb\n950uB975ZQ7Mllo8fOkrMAZIv0GwtbQS+59+C7VZO5H21H2IP/+sDo1ozV56CJuKzHh6Sm+MSQ4/\n5fO9ITPzWPFOncf8xPOH7GYvO4RNhWY8Pbk3xvT07GveE/kJgoAnl+dhU6EZQxND8MLUvtBp/WMq\nzx/6n1yPCuEaAAAgAElEQVSys7ORkZHR7nP07X63HatWrcLBgwfR2NiIX3/9FQBw9tlnY+LEiWIP\nSSdhdwPPry6Awy3gggExfyqeHE473ljyGJwuBx657FUEGIySzuW2O1Dw/pfIf/t/SL7pUgx6+VHo\nTdILMiIiJWg0Gjw0IRn/+C4HO0sb8cWOcl6VRx4huoCaNm0apk2b5sm20Els1ySjqL4aPSON+Mfo\nY5th2p02vPrDI9DrDHjwkhdh0J/8Vi4dUbV6E/Y+8SqCeydhzM/vI7hXD6lN9wn8BCYN8xOP2Unj\nqfwiggx45Mye+Pdvh7AouxTDuoVgULx8d2XwFex/8uJGmj7u15wq/La/GgE6DR4/OwWB+pZ/Mqu9\nGfO/vR9BgcGYedHzkoqnxgMF2HrjI9j775eQ9tS9GLHoxS5TPBERAcCIHmGYPjQObgF4dmUBqi0O\npZtEKscCyoftLmvEmxuOAADuHZeElKiWqbT6pho8++UMRIfG457zn4FeZxB1fFtVDfY8+iI2XfpP\nRI0djvG//w9xk8d5pvE+tLte66JAEof5iecX2cn4Wvd0fjePSMSQhGBUWxyYuzwP9i6+S7lf9D8F\nsYDyURWNdjy9Ih9Ot4DRkQ6cmxoNACiuzsfsT2/G0F5jMGPqHGi1f9+F/FRcFisOvfZfZE68DrrA\nQExY9zl63XUNtIHSpgAB+OZOmkQkPxW89g06LWZn9EJciAE5lRa8vr4IIq+jIpK2jQHJw2x14vHf\nDqHO6kR691A8dW4fAMDuw1l4c8ljuPas+3Dm4As7fVzB5ULJN0uR+8J7iBgxGGN/eR+mlK4/Vcd1\nANIwP/GYnTRy5BcRZMDcyb1x/5JcLM+tQXxIAG4ckejx8/gC9j95sYDyMVaHC7OXHcLhOit6Rhrx\n2Nkp0Gk1WL3zR3yx9i3cd9FzGJQ8slPHFAQBlcvXI/eF96EzGXHae88g8vQh8vwFiIh8XJ9oE/59\ndk88vSIfn24rQ7hRj4sH8U4a1DmcwvMhdqcbT6/Mx74KC+JDAvD8eX0QHADM//QRfP/Hh3jymvc6\nVTwJgoCq1Zvwx7Q7cOD5/0Pfh27F6MUL/K544joAaZifeMxOGjnzO6NnBO4fnwwAeGfjEaw8WCPb\nuZTC/icvjkD5CJvTjbkr8rDlSAPCjXo8P7UPdEI95n35OBqaGvHsDf9FmCmyw8er2ZCN3Bfeh72m\nDn0fvg0JF54DjZb1MhFRq/P6R8NsdWJhVgle/P0w3AIwuV+U0s0ilWAB5QOsDheeXJ6H7SWNCDfq\n8cK0vqiv34V5S55AxrDLcdnY2zq8WLw2axdyX3gP1iNl6PPQbeh22WRodJ1faN6VcB2ANMxPPGYn\njTfyu/K0eNhdbnySXYaXfj8Ml1vAef2jZT+vN7D/yYsFlMLqmh2YszwP+yosiArS4/mpvbF9/2dY\nmv0V/nn+XAxNGXPKYwiCgJoN2ch7YxEseYXo88At6DZ9KrQG/vMSEZ3K9emJ0Ou0+DCrBK+sK0S9\n1Ykrh8Z57Ibs1DVxTkdBxfU23L8kF/sqLIgLMeCJs8Lw2YpHsD1vA567cVFb8XSyeWzB7Ub5r2vx\nx7Q7sOeRF5F4ySRMWP8lelx7IYun43AdgDTMTzxmJ40387v6tHjcNablTg8fZJXgrQ1H4HKre4sD\n9j958besQraXNGDeqgLUW53oE2XEBT33443v38J56VfjotE3tbs5ptvhROl3y5D39qfQBRnR+94b\nED91ot9P1RERSXHp4DhEmwx44ffDWLKvCmUNdjx6dk+EBvJXJf0de4WXCYKAb3dXYOHmErgFID3B\nifDmd7F2VyUev/Id9IxL/dvPtM5jO5ssKP7iZ+S/+xmCeyVhwLMPIHrC6T45zOxLn9u4DkAa5iee\nP2Qn52tdifwm9o5ElMmAp5bnIeuIGff+uB9zJvVGryj13VTdH/qfklhAeZHZ6sRrmYXILKgHBAET\nE/agMP9jjBh+BS4de9tJR50sBUdQ+NF3KP7qF0SNS8ew9+chYvhAL7e+Y3yvlCMib+hKr/3BCSF4\n65L+eHpFPg5WN+O+xQfwzzHdcV7/aJ/8wErK4BooL9le0oAZ3+Ugs6AewSjCIN3rsNQsxaPT38T0\n8TP+VjwJgoCqtVnYeuMjWDvlFmgMepyx7L8YvvA5ny2efBXXAUjD/MRjdtIomV9CaCBevTAVk/tF\nweZ049XMIjy7sgBmq1OxNnUW+5+8OAIlM4vdhQ+3lGDx3ipo3E3ojp+gs23BBRPvxtlDLvrb9gRO\nSzNKv1mKwwu/BrQa9Lx9Oiw3nYf+Geco9DcgIvJPgXot/nVmT6R3D8Wb64uwrqAOe8obce+4JIxL\niVC6eaQwFlAy2lRYjzc3FKGioRlB9nUId/yM8QOn4KoJ3yIkKLzteYIgwLwjB0c+/wllP65A5Ohh\nGPDcA4gaNwIajQZJCv4dugKuA5CG+YnH7KTxlfwy+kZhUHww5q85jN3lTZi7Ih8TekXgrjHdERPs\ngZuwy8RX8uuqWEDJoLjehgV/HMGmwjoE2P9AjH0Jesf1wu2T3kFKfP+25znqzCj5bhmO/G8JnA1N\n6HHNBRi3ahGM3eIUbD0REf1VQmggXrqgH5bsrcIHWSVYl1+HrCIzrhuegEsHxyJAxxUx/ob/4h5U\n3eTAWxuKcMc3e5B9aBUizHOQErAJj182D89e9y5S4vtDcLtRvX4rdvzzKfw+6grUbd6JtKfuxcQ/\nvkKfB24+YfHEeWxpmJ80zE88ZieNr+Wn1Whw8aBYvH/5AIxLCYfV6cYHWSW4/Zt9WHag2uf2jfK1\n/LoajkB5QF2zA1/uqMCSvaVA82aYrEsRZgzELdMewfi0CQCA+h05KP1hOcp+XAlDRBh6XHsBBjz7\nAAKiwk9xdCIi8iXxoQGYM6k3thabsWBjMQ7XWfHS2kJ8uaMcN6QnYmLvCGh5tV6XxwJKgmqLAz/u\nqcQPuw4DTWtgsq5EaEgPTJ80E+cOPRtNBwtx8KUPUPrDCghOFxIvnYQRn7+C0P69O3UezmNLw/yk\nYX7iMTtpfD2/Ed3DsOCyUKzJq8Wi7FIU1dvw3OoCfL7diGuHJ2BcSgT0WuUKKV/PT+1YQImQU9GE\nH/ZUYt2BPTBY18Jo34DwiBG4YcpLSNdGomLpWmx8+BbYyquRcHEGhr45G+HDB/rV/iGCT22lSURy\nEfz8pa7TapDRNwpn9o7E8gPV+HRbGfJrrZi3qgCxwQZcMCAGU/tHIyLo5HeXIHViAdVBVqcbmfl1\n+GF3EQpK1iLQtg7BrirExZ6D6VGPIWF7Hspv/Q+ymiyIO3cC+s+5B1Fjh3vk9iqZmZmq+SSh8cHt\n9NSUny9ifuL5U3ZyfD5UU356rQZT02KQ0S8KS/dX44c9lSiqt+GjLaX4dFsZzukTifPTYtA/1uS1\nD9Nqyk+NWEC1w+UWsL20AStzq7AxdzMEyyYE2LcgWN8Xo7QjMD7Piqb/boQ+/gC0547HaW/PQdhp\naX410kRERMcE6LS4cGAszh8Qg23FDfhhTyU2FZmx9EANlh6oQY/wQGT0jcI5fSKRGBaodHNJAhZQ\nf+FyC9hT3oj1BTX4PWczrOZNCLBvhdFpQnJtHEbu643wvYUIHx6C+PMmIPaRO2BK7iZrm/gJQhrm\nJw3zE4/ZSaPm/LQaDUb0CMOIHmEorrdiyb4qrDpYiyP1Nny8tRQfby3FwPhgnNU7EmOSw5AQ6vli\nSs35qQELKACNNie2HGnA+rwSbMv/Ay7LdgTadsJgM6BPUQiGbgHiI6KRcPYIxDw0EpGjToPOZFS6\n2UREpALdw42YMaYH7hjVHdnFDVh5sAbrD9djb3kT9pY34Z2NQEqkEWOSwzE6OQxpscHQKbj4nDrG\nLwuoJrsLe8obsa24FtsKdqGibCuMTdsAbRniqkzofcCBbjWRSD5tFHqfPxYxz49AQEykYu3lPLY0\nzE8a5ices5Omq+Wn02owMikMI5PC0OxwYcPhemw8XI8tR8woqLWioNaKL3aUIzRQhyEJIRiSEILT\nEkPQKypIVEHV1fLzNV2+gHK5BRTVWbG/yoK9pZXIObwDjUWboHMegNNQgRCzDkMKBURZuyGpxyVI\nO3Mk+jyajsDYKKWbTkREXVSQQYeMvlHI6BsFh8uNXWWN+KPQjD8K61HWYMeGw/XYcLgeABASoMPA\n+GD0jzWhX4wJ/WNNiORVfYrrUgVUXbMDBbVWHK614mBFBYrytsN8JBtaWx6chgo4AmyIrNQgpTYU\noZpkdO9+LvqdNRpDJgxFcLDvTsnxE4Q0zE8a5ices5PGX/Iz6LRI7x6G9O5h+OfYHihrsGFnaSN2\nlDZiZ2kjyhvt2FxkxuYic9vPxAYb0DfahJ6RRvSMNCIl0oikcCMC9MduMOIv+SlFNQWUIAiwONyo\ntjhQ3eRAWYMNxXWNKDl8APVFe2GtzoPbUQyXrgbW4CYIGhfCavWIagpDoK4HIuLGI7n/aKReNwBp\n3SMQZJC+vQAREZGnJYQGIiE0EFNSowEAZQ025FRacKDSggNVFuRWWVDZ5EBlUz02Fta3/ZxWA8SH\nBCAxNBAJoQFICDv6Z0gAokwGRAbpYeA9+zzGawVUcb0VTrcApxtwut1wugW43AIcbgFWhxtNdhca\n7S40Nttgrq5CU10Fmuur0NxQBVt9KZzNVRBctYCmES6dBbYgG2xBLgQ1amFsNkLrCoNBEwdT8GmI\nTRyCpAFDkJISh77RQarfwEyN89i+tLmeGvPzJcxPPP/ITr4Xu3/kd2qtBdVZvVvW4rrcAo7UW5Ff\nY8XhOisO1zbjcK0VxWYbShvsKG2wn/RY4UY9ok16RAQZEBKgQ0iADsGBR/8MOPZngE4LvU4DvVYD\nnbblz+P/iwjS+/0NlL1WQD331MWARoAAN6BxQdC4AY0At8YNt84Fl94FR4AbToMAvQPQO7TQO/TQ\nO/XQOoOgQSg0ugjog/ohNDwRkQl9kZCSiu7x0UgIbam4o0x67sGkMMZP5K/44vcWnVaDnpFB6BkZ\n9Kev211ulB8toMoabNiyLx/asBhUNtlRY3GittmBeqsT9VYnAKukNrx8QT8MSQiRdAy10wiC/GMF\nK1euxE/vLYQGemg0emiga/lTYwA0Omg0QdDowqDRH/1Pq5qZRSIiIr9z0YMTkRpjUroZssnOzkZG\nRka7z/FapfLkgne8dSpS0FPL87DhcD3mTOqFcSkRSjeHiGT2+G8HkXWkAc+e2wejksKUbg6R1/j3\nBKZKZGZmKt0EVWN+0jA/8ZidNMxPGuYnLxZQRERERJ3EAkoFeBWKNMxPGuYnHrOThvlJw/zkxQKK\niIiIqJNYQKkA57GlYX7SMD/xmJ00zE8a5icvFlBERCSaD+2ZS+RVLKBUgPPY0jA/aZifeP6UnRzb\naPpTfnJgfvJiAUVERETUSSygVIDz2NIwP2mYn3jMThrmJw3zkxcLKCIiIqJOYgGlApzHlob5ScP8\nxGN20jA/aZifvFhAEREREXUSCygV4Dy2NMxPGuYnHrOThvlJw/zkxQKKiIiIqJNYQKmAGuexBR/a\nXU+N+fkS5ieeP2Qn52vdH/KTE/OTFwso8iiNHLvpEZHP42uf/A0LKBXgPLY0zE8a5ices5OG+UnD\n/OTFAoqIiIiok1hAqQDnsaVhftIwP/GYnTTMTxrmJy8WUERERESdxAJKBTiPLQ3zk4b5icfspGF+\n0jA/ebGAIiIiIuokFlAqwHlsaZifNMxPPGYnDfOThvnJiwUUycKH9tEkIhnxtU7+igWUCqhpHtsX\n99JTU36+iPmJ50/ZyfHa96f85MD85MUCioiIiKiTWECpAOexpWF+0jA/8ZidNMxPGuYnLxZQRERE\nRJ0kqYBavHgxZs+ejdmzZ+P777/3VJvoLziPLQ3zk4b5icfspGF+0jA/eYkuoPbt24f8/Hw888wz\neOaZZ1BWVoZdu3Z5sm1EREREPkl0AbVt2zZkZGS0Pc7IyEB2drZHGkV/xnlsaZifNMxPPGYnDfOT\nhvnJS3QB1dDQgNDQ0LbHYWFhqK+v90ijiIiIiHyZ6AIqNDQUZrO57bHZbEZYWNhJn3/8XGxmZiYf\nd+Lxu+++61PtOdVjoGWK11fao7b8fO0x8xP/uPX/faU9cjyura3D8Zif7zxmfp75fXYyGkEQRG0k\nm5OTg6VLl2LmzJkAgAULFmDcuHEYMmTI3567cuVKpKenizkNoeUfVC1Dsc+syMe6gjo8kZGCib0i\nlW4OAHXl54uYn3j+kN2jvxxEdkkDnp/aByO6n/xDtBj+kJ+cmJ942dnZf1qmdCJ6sQdPS0vD/v37\n8cQTTwAA0tPTT1g8kXR8AUjD/KRhfuIxO2mYnzTMT16iCygAuPjii3HxxRd7qi1EREREqsCNNFWg\no/OxdGLMTxrmJx6zk4b5ScP85MUCioiIiKiTWECpAOexpWF+0jA/8ZidNMxPGuYnLxZQRERERJ3E\nAkoFOI8tDfOThvmJx+ykYX7SMD95sYAieYjaXYyI1IYvdfJXLKBUQFXz2BqlG/B3qsrPBzE/8fwp\nOzle+v6UnxyYn7xYQBERERF1EgsoFeA8tjTMTxrmJx6zk4b5ScP85MUCioiIiKiTWECpAOexpWF+\n0jA/8ZidNMxPGuYnLxZQRERERJ3EAkoFOI8tDfOThvmJx+ykYX7SMD95sYAiIiIi6iQWUCqgxnls\nX9pcT435+RLmJ54/ZCfI+Gr3h/zkxPzkxQKKPMoH99EkIi/Q8NVPfoYFlApwHlsa5icN8xOP2UnD\n/KRhfvJiAUVERETUSSygVIDz2NIwP2mYn3jMThrmJw3zkxcLKCIiIqJOYgGlApzHlob5ScP8xGN2\n0jA/aZifvFhAEREREXUSCygV4Dy2NMxPGuYnHrOThvlJw/zkxQKKZOFLG2kSkXwEvtjJT7GAUgE1\nzWP74lZ6asrPFzE/8fwpO40ML35/yk8OzE9eLKCIiIiIOokFlApwHlsa5icN8xOP2UnD/KRhfvJi\nAUVERETUSSygVIDz2NIwP2mYn3jMThrmJw3zk5de6QYQkbq4BQEOlwCHyw2Hu+X/nW4BWg2g1Wig\n02ig1aLlTw2g02pg0Gmh1/riJQZEROKwgFIBzmNLw/xOzOUWUGd1orrJgcomO6otDjTYXGiwOf/y\nZzTe/N8uNDvccLjccIm8bD1Qp4EpQAeTQQdTgBYmgw7BATqYDFpEBBkQGaRHZJABkSY9ooIMiA02\nICRQ3W9R7HvSMD9pmJ+81P3uRETtsjrdKK63othsQ4nZjhKzDSVmG8oabKhucoguhgxaDQy6lpGl\nAJ0GOq0GgtAyOuUSBLjdaPlTaCnU7C43bC4BtmYnapudHT6PyaBFQmgA4kMCERcSgO7hgUiOCERS\nhBExJgM0clw7T0TUASygVCAzM1N9nyR8aHM9VebXSYIgoLLJgQOVFuTXNqOgxor82maUmG1wt/Nv\nEW7UIybYgJhgA6JNBoQb9QgN1CEkoOXP0EA9Du7dgTPHjILRoG0pmrSaThcugiDA5hJgsbvQZHfB\n4nDBYnfD4nCh0e5CXbMTtc0O1B79s8biREWjHRaHG3k1VuTVWP92zCCDFknhRvSKMqJfjAl9o03o\nHWWE0aDrbHyy8Ye+JyfmJw3zkxcLKPIsDgh4hdXpRk5FU8t/lRbkVDSh5gQjO1oNkBQRiB5hRnQL\nC0S3sAB0CwtEYlggYkwGBOhPfR2J+ZCA6GCDpPZqNBoY9RoY9VpEmTp2LEEQYLa5UN5oR3mDHWUN\nNhTX21BYZ0VRvQ31VicOVFlwoMqCpQdqjv19w41IizNhcEIIBseHoFtYAEeqiMjjWECpAD9BSNMV\n8nO6BeyvaMK2kgZsK2nEvoomOP8ytBQaqEP/WBN6RwWhV1QQUiKDkBQRiACdtIttlcpPo9Eg3KhH\nuFGP1BjT375fb3WisM6KQ9XNOFhlwcFqCwpqrThc1/Jfa1EVFaTH4IQQDOsWipE9whAfGuC1v0NX\n6HtKYn7SMD95sYAi8lFmqxObiszYcLgO2cUNaHa4276nAdAvOggD4oMxIC4YabEmdAsL9KuRlnCj\nHkMSQjAkIaTtazanG/k1zdhT3oRdZY3YU94yMrc2vw5r8+sAAD0jjBiZFIZRSWEYFB8Mg8QCk4j8\nEwsoFeA8tjRqyq/a4sC6/DpsOFyHnaWNf1q/lBQRiOHdQjG8WyiGJoYg1EtXqKkpv0C9FmlxwUiL\nC8blQ+IgCAKK6mzYVdaILcVmbCtuaBuh+mZXBUIDdRiXEoGzekfgtMRQ6Dy81YKasvNFzE8a5icv\nFlBECrM73dhYWI9lB2qwtdjcVjRpNcDwbqEYlxKOMcnhiAvx3tRTV6HRaJAcaURypBHnD4iBw+XG\nnvImZB0xY3OhGYfrrPhtfzV+21+NCKMeE3tHYFLfKPSPNfnVaB4RdR4LKBXgJwhpfDW/Q9XN+CWn\nCqsP1aLR7gIA6DTAGT3DMT4lAqOTw7w2ytQeX81PDINOi2HdQjGsWyjuGNUdBbXN+D2vDmsO1aLY\nbMPivVVYvLcKfaKDcMGAGJzTJxJBEq7q60rZKYH5ScP85KX8uzORH3ELArYcMeObXRXYXtLY9vW+\n0UGYkhqFs3pHIiJI2hVv1HEpkUFIGRGEG9MTcLC6GasP1WJ5bg0OVTfj9cwivL+pGJP6ReGigbFI\njjAq3Vwi8iFcPakCvJ+RNL6Qn93pxq85Vbjz2xw8sTQP20saEWTQ4uKBsXj30jS8c2kaLhkU55PF\nky/kJzeNRoN+MSbcObo7/nf1IMw6qycGxgfD4nBj8d4q3PHNPsxblY+CmuZOHdcfspMT85OG+cmL\nI1AkC8GXdtJUkMstYMXBGnyytRSVTQ4AQIzJgEsGxWJaWrTqb1XSFQXotcjoG4WMvlHIq2nG4j2V\nWJ5bg9/z6vB7Xh0mpETg2uHx6BP9960V/BFf6eSv+O6tAmqax9b44E6aSuQnCAI2FZrxwZYSHK5t\n2UW7V6QRV54Wj4m9IlR16bya+p+n9Y4Kwv0TknFdegK+2lGBX/ZXYV1BHdYV1GFcSjhuH9kN3cNP\nPrXnT9nJseben/KTA/OTFwsoIg/LqWjCe5uKsbu8CQAQHxKAm09PxNl9IqHllV2qFBscgLvP6IGr\nh8Xj653l+HlfFdYX1GNToRkXDYzB9cMTOJpI5GfU8zHYj3EeWxpv5ddgc+L1zELMXHwAu8ubEBao\nw11juuOD6QOQ0TdKtcUT+98x0SYDZozpgf9eOQjnpkbB5Rbw3e5K3P7NPqw5VAtB+POEFrOThvlJ\nw/zkxY9MRB6QmV+HN9YXoc7qhE4DXDEkDlcPS0BwgO/c2JY8JzrYgIcm9sQlg2Lx1oYj2FPehOdW\nF2BZbigemJCM2GDu2UXU1bGAUgHOY0sjZ36NNife3ngEKw/WAgCGJATj3nFJSIkMku2c3sb+d3J9\nok14+YJ+WHagBu9vLsaWIw2489sc3D22BzL6RjI7iZifNMxPXiygiETaV9GEeavyUdHoQKBOg9tH\ndceFA2NUO1VH4mg1GpzXPxqjksLwWmYh/ig0Y/7vh7G5yIz7xyfBxFFIoi6Ja6BUgPPY0ng6P0EQ\n8M2ucjy45AAqGh3oH2vCu5el4eJBsV2yeGL/65gokwFzJ/fGwxOTEWTQYk1eLW79fDsOVXdu7yg6\nhn1PGuYnLxZQRJ1gc7rx3OoCvLepBC4BuHxwHF65oB96tHMpO/kPjUaDKanReOvi/ugVaUSNQ4v7\nF+/H2rxapZtGRB7GAkoF1DiPLfjQ7nqeyq+6yYGHfsrF73l1MBm0mDOpF/4xpruq9nQSQ439T2lJ\nEUa8fnF/TO4XBZtLwLOrCvBpdunfrtLrCuT8K7HvScP85NW13/nJ67rgDBYAoLDOivsW78eBKgsS\nQgPw2kWpGJcSoXSzyIcZ9Vo8PDEZd47uBg2AT7LL8NLaQrjcXa+IAuCDW+gSyYsFlApwHlsaqfkd\nqLTgwSUHUNnkwMD4YLxxUWqXusruVNj/xFu/fj2uGBKPuVN6I1CvxfLcGjy9Ih82p1vppqkC+540\nzE9eLKCI2rGrrBH/+iUXZpsLo5LC8J+pfX3yhr/k28Ykh2P+tL4IDdRhY2E9nlh6CFaHS+lmEZEE\nLKBUgPPY0ojNb295E55YegjNDjfO6ROJpyb3hlHvfy8Z9j/xjs9uQFwwXr6gH6JNBuwobcSTy/M4\nEnUK7HvSMD95+d9vA6IOOFBpwWO/HWwrnv51Zk/otVzlQdKkRAbhxfP7IipIj+0ljXh6RR7sLhZR\nRGrEAkoFOI8tTWfzK6634rHfDsLicGNirwj868ye0Plx8cT+J96JsusRbsQL0/oi3KhH1pEGvLjm\nMNxd8Oo8T2Dfk4b5yYsFFNFx6q1OPL40r23N06Nnp/h18UTy6BkZhP9M7QuTQYvf8+vwUVaJ0k0i\nok5iAaUCnMeWpqP52Z1uzFmehxKzDX2jg/D4OSmctgP7nxTtZdcnOgizJ/WCTgN8ubMCP++r8mLL\n1IF9TxrmJy8WUERouT3LG+uLsLe8CbHBBjwzpQ+CDLyHGclrRPcwzByfDAB4c0MRdpY2KtwiIuoo\nFlAqoMZ5bF9a0dGR/H7bX41luTUI1Gnw9JQ+iA7mVgWt1Nj/fEVHsjuvfzSmD4mDWwCeW5WPGovD\nCy3zJPle7ex70jA/eenF/mBBQQE++ugjaLVaCIKAm2++GSkpKR5sGqmRGie8cqsseGvjEQDAfeOT\n0SfafzbJJN9w68huyKm0YFdZI55bXYAXpvZV4do7tbWXSBrRI1Dr1q3DjBkzMGfOHNx+++34/PPP\nPdkuOg7nsaVpLz+L3YVnV+bD4RJwflo0JveL8mLL1IH9T7yOZqfTavDYOSmICtJjZ2kjFmWXytwy\ndWDfk4b5yUt0AXXDDTcgMTERAGC1WhETE+OxRhF5y3ubi1HaYEef6CDcNaaH0s0hPxZtMuCxc1Kg\nAUUx/SMAACAASURBVPDFjnLkVDQp3SQiake7BVRdXR3mzp37t//Wrl3b9pz8/Hx8/vnnuOaaa2Rv\nrL/iPLY0J8svq8iMX3KqYdBqMOvMngjww13GO4L9T7zOZjc0MRRXHF0PNf/3w7D6+U7l7HvSMD95\ntbsGKiIiAnPmzDnp97dt24Zly5bhoYcegslkavdEmZmZbcOJrf+ofNyxx7t27fKp9pzqMQAc2L8f\nGX3H+kR7TpRfswv4sDgCADAx2oYje7cixUfy87XHaut/an/cz5aP2IAgHKm34aOsEgxxFfhU+/76\nuL7eDODYFatKt4eP+dgTj09V0wCARhDEbYG7YsUK5Obm4o477oBer2/3uStXrkR6erqY05DK/Gd1\nAVYdqsWss3oio6/vrid6dV0hft1fjYHxwXj5/H4qXLBLXdmBKgvu+3E/3ALwxkWpSIsLVrpJJ/XQ\nTwewq6wJL53fD0MTQ5RuDpFHZGdnIyMjo93niJqzsFgs+OCDD1BRUYF58+Zh7ty5ePPNN0U1ksjb\nciqa8Nv+aui1Gjw4IZnFE/mc1BgTpg+JA9CyP5TL7UsbgxARIHIbA5PJxKvuvCgz89j0J3Xe8fm5\n3ALe2nAEAoDLB8ciOcKobONUgP1PPCnZXTs8AasO1SK3qhm/7a/G+QP870Id9j1pmJ+8uGqW/Mpv\nB6pxoMqC2GADrh2eoHRziE4qyKDDP0Z3BwB8uKUEZqtT4RadGO+DTP6KBZQK8BOENK35NdldbTdt\nvXN0d96qpYPY/8STmt2EXhEY3i0UDTYXPt7q23tDaWSYCWffk4b5yYsFFPmNb3ZVwGxzYUhCCCb2\nilC6OUSnpNFo8M+x3aHVAL/kVKHUbFO6SUR0FAsoFWi9rJLEyczMRF2zA9/trgAA3Hp6IjRyfFzu\notj/xPNEdj0jg5DRNwouAfh0W5kHWqUe7HvSMD95iVpETqQ2X+6oQLPDjVFJYRiUwEutSV2uH56A\nVQdrsPJgDa4aGo/kSP+8+EEQBNTW1sLlcvFDUAdERkaiqqpK6Wb4nNbdm4KDgzu039PJsIBSAc5j\nS9N/+Cg8/9VeAMDNIxIVbo36sP+J56nsEsMCMS0tBkv2VeHj7FLMzujlkeP6ur/mV1tbC5PJBKPR\nPwvIzuIt1k5OEATU19fDbrcjIkLckg5O4VGX99WOCjhcAib2ikDfGPGfNoiUdO2wBAToNFiXX4f8\nmmalm6MIl8vF4ok8QqPRICIiAg6HQ/QxWECpAOexxTNbnfhlX8vap+u4bYEo7H/ieTK76GADpvaP\nBgB8u6vCY8f1ZX/Nj9N2ndPQ0KB0E3yelD7FAoq6tF9yquAQNBjRPRS9ooKUbg6RJJcOjoNWA6w6\nVItqi/hPzkQkHQsoFVDjGhRf2FzP7nLjhz2VAIArjt4WgzpPjf3PV3g6u25hgRjXMwJOt4Afj/Zt\npcn5Uu/KfU/kbWg7pLm5ZYo3NDS03e+TNCygyKN8aYR9zaFa1DQ70SvSiPTuJ34jIVKby49+GPg5\npwpWh0vh1hzjQy99n1BcXIzJkydj1qxZJ/z+hRdeKNsU29133401a9ac9PuzZs3CTz/9JMu5/QkL\nKBXgGpTOEwShbZ3IUGM9105IwP4nnhzZDYwPxsD4YDTYXFh6oMbjx/clau17GzZswKWXXoq0tLQT\nfn/9+vXo1avXSUeIpMjKykJ1dTXOOuuskxZoDzzwAObNm+fxc/sbFlDUJe0pb0J+rRVRQXoMDvPN\ne4gRiXX54JZRqJ/2Vck6FUTiREVF4fPPP8cZZ5xxwu8vWLAAd911lyzn/vjjjzFz5sx2n9OrVy+k\npaVh/fr1srTBX3AfKBXoyusA5LL0QDUAYHJqNM4cOUTh1qgb+594cmU3tmc4Iox6HK6zYn+lBWlx\nwbKcR2mnym/Kwm1eakmLZbcP79DzWkeeNm/e/Lfv5eXlwWKxYODAgQCA+vp6zJ07Fzk5ObDb7UhJ\nScH8+fMRFRWF7777Dh988AF0Oh0cDgeuvfZa3HDDDQCA1atX46WXXgIAGAwGvPHGG0hOTkZWVhZe\nf/11AC0jTf369cOsWbNgsVgwdepUvPrqq0hPT8f555+PNWvWYNy4cZJz8VcsoKjLsdhd+D2vDgBw\nbmqUwq0h8jy9VoPJ/aLw9a4K/La/ussWUF3RggULMGPGjLbH99xzD8aPH49XXnkFALB27Vro9Xos\nW7YMCxcuxBdffIGwsDA0NTXhpptugtFoxPTp0/HMM89gwYIFSE1Nxfr16xEYGIiGhgYEBgZCp2u5\nUfqbb76JqVOnYuTIkfjhhx9w0003IT09HQCQmpqKn3/+2fsBdCEsoFQgMzOTowCdsDa/DlanG0MS\ngtEj3Mj8JGJ+4smZ3bmp0fh6VwXW5NVixpjuMBp0spxHSafKr6MjQr6ivr4eW7duxfz58wEAFosF\nW7ZswaJFi9qeM3HiRADA119/jQcffBBhYWEAWm47MmvWLDz11FOYPn06pkyZgnvuuQcXXXQRzjzz\nTMTHx6O0tBQhIcduVeV0OvHJJ59g8uTJGDt2LG699da27wUHB3OfKIm4Boq6nN/2t0zfnZsarXBL\niOSTHGnEwLhgWBxurM2vU7o51AEff/wxbrzxxrbHp1q/9tfvC4LQdkHMo48+ioULFyIiIgIPPPAA\nPvzwQ0RGRqKu7s99ITMzE0OGDMGePXtQUXFsA9a6ujpERkZK/Sv5NRZQKsBP/x1XWGvF3oomBBm0\nmNir5f5GzE8a5iee3Nmdd3Rn8tY1f12N2vve8QWQ0+nEt99+i6uuuqrta8HBwRgxYgQWLlzY9rXV\nq1ejvr4eV199NV599VWYzWYAQGNjI+bPn4/bbrsNQEsxFhsbi+uvvx533HEHtm/fDqPRCEEQ0NjY\nCADIzc3FwoULsWjRIjz44IO46aab2m5dsmPHDgwdOlT2DLoyTuGRLJS6Lmh5bssvkrN6R3bJKQ2i\n403sFYF3Nh7BrrImFNfb/r+9ew+K6jz/AP5ddrmzIKIgoAn6g2aDRq1GnF/UjFxUElGMtkOYjpKx\nozbR4LTzC506XiaR1GtiicaobRNtNK1x0nrBRFOBkixkqBGUBIEoylXdBQSWiyyX3d8f664XYN09\ne86e87LP55924XDexye78Jz3fc57EB7g6fQY6B7AoclkMsuM0enTp7FgwYIBz/L78MMP8c477yAp\nKQkGgwFhYWGYOnUq4uPj0d7ejtTUVEsT+fLly/HKK68AALq7u5GQkIARI0bA3d3d0kM1d+5cnDlz\nBvPmzcPatWvxt7/9Dd7e3khNTUVJSQkyMjKwZ88enDp1Cjt27HBuQoYZKqAYwFIPipi7LRmNRstS\nRnzkg+ZxlvInRZQ/7oTOnY+HHC88HYDcqhaoq1uRMiVEsLGeRIjPPuvvvdTUVKSmpgIAXnrpJSxY\nsGDAMQEBAXjvvfcG/fklS5ZgyZIlg35vzZo1WLNmzYCvr1y5EmlpafjlL3+Jr7/++pG9psy9V0VF\nRZDJZEPuU0VsQ0t4ZNioar6H2+09CPRWYGII3ZVEXMOc+0vV31IflKR5e3vD11f430tRUVFISEhA\nScnQWzz84x//wPbt2wWPZbijGSgGsHwF5kzqatMfkFkRIyB3e3A9TPlzDOWPO2fk7vmx/vBSuOGn\npi5o2nsQovQQfExnofceN++8847V7+/Zs8dJkQxvNANFhgWj0Wi5Ap8dESByNIQ4j6fCDTHjTLe6\nmy8iCCHCowKKAaw+D8qZalq7Udemh7+nHJNDH32+FOXPMZQ/7pyVu9nmZbxhVkDRe88xtM+TsKiA\nIsOC+v7s0/8+HQCFGz04mLiWmLH+cJfLcFXTiebOXrHDIcQlUAHFAOoDeDLz8p25ofZhlD/HUP64\nc1bufDzkmDHWtIxXUDN8ZqHoveeYh+/AI/yjAoow7067HjdbuuHj7oapYfQLg7im2RGmi4fC6jaR\nIyHENVABxQAW+wCe9IgCPl2qN63zTw/3h4d84FuaxfxJCeWPO2fm7vmxpouHHzQd0PcZnDaukDtp\n0nvPMdQDJSwqoAivzLvuOlNxg+mXxLRwmn0irmuEtzsig7zR22/Ej3c6nB8AtR4SF0MFFAOoD2Bo\n/QYjSm5ZL6Aof46h/HHn7NyZPwPmiwrW0XvPMdQDJSwqoAjTrjV1oaOnH2H+Hgj1d/5zwAiRkunh\npkbyS8OkgCIDnT17Fvv370dGRgbS09PR2dnJ+VwajQZpaWk8RudaqIBiAPUBDO2SZfnOf8hjKH+O\nofxx5+zcTQzxhYdchht376HlHvvbGdB771G1tbWoqanBG2+8gZ07d6KlpQWbN28e8nhrPVBHjhxB\nVlYWrly5IkSoLoEKKMK04gYdAGA69T8RAg+FGyaH+gEYPst45IGysjJkZmZCr9cDAObMmYPCwkJO\n50pLS8Prr7/OZ3guh56FxwDqAxhcV08/rmo64SYDptz/ozEYyp9jKH/ciZG7aeFKfF/fjuKGdsRH\njnT6+Hxi+b1XXV2N8+fPo6ysDIsXL8bt27dRUlKC1atXQ6VSWY7TarU4cOCA1XMlJiYiJiYG8+bN\nw7lz5+DpaWpXaGhowIQJEwYcv3TpUiQnJz9xec6Zd0sPR1RAEWaV3ulAvxGIDvaFnye9lQkBzH1Q\nt3CpQQej0SjKnbHOtHvDOaeN9X9/TLT5WLVajRUrVkClUiE9PR0JCQnQ6/XIzc19pIAKDg62ugz3\nMIVCgcmTJwMAdDodzpw5g+PHjw84bt26dYiKirI5VsIN/dVhgFqtZvpKTCi2bl9A+XMM5Y87MXIX\nEeiFkd4K3O3qQ01rNyICvZ06Pp9syZ89RY0zJScno6ioCLGxsYiMjAQAlJaWYtGiRQ6f22g0YsOG\nDfjwww8HLZTi4uIAmHqg6E484VABRZhVpjHtdTPZyvIdIa5GJpPhuVA/5N9oxVVNp+AFlFHInTQZ\nplQqUVBQgFmzZgEA+vr6oFarsWPHDuh0Ovj7m2580Wg0OHjwoNVzLViwADNnzrS8/tOf/oRVq1Zh\nypQpuHHjxqDLeER4VEAxgK7+B+ruM+BG8z24yYBnRvtYPZby5xjKH3di5e7ZYF/k32hFubYTL6tG\nOWVMmQA7abL+3isoKMDu3bsBAIWFhZgyZQoaGxtRUVGB+fPnAwBCQkJsXsIDgKNHj2LSpEkYM2YM\nNBoNzp07hzfeeOORY/Lz8zFu3DgqrARGBRRh0rWmLvQbgQkjveHtLhc7HEIkJTrYFwBwVct9jyDi\nGKPRiM7OTkRHRwMAQkND4evri7y8PM57LxUVFeF3v/sd+vv7LV9btWrVgOMOHTqEefPmWS2gjh8/\njpycHDQ2NmLTpk1ITEy0zJYR21ABxQDqQRmoXGP6wxAd4vvEYyl/jqH8cSdW7v4nyBvuchnqWvXQ\ndffB34vNX/Usv/dkMhny8/Mtr6OiorBv3z6Hzjlz5kxotdonHnfs2DEA1nugUlJSkJKS4lA8ro72\ngSJMMl9ZPxv85AKKEFfjLndD1CjT0nZFY5fI0RAyPFEBxQBWr8CEYjQaUX6/gIoOtt7/BFD+HEX5\n407M3JmX8SoYXsaj955j6A48YVEBRZij6ehBy70+BHgpEEbPvyNkUM9SHxQhgqICigH0PKhHXb3f\n/6QK9rFpk0DKn2Mof9yJmbuHZ6AMjO44Te89x1h7Ft7jioqK8J///AdffPGFgBENL1RAEeY8WL6j\n/idChhLk645gP3d09RpQ29ItdjhE4srKyjB37lyUlpaKHQozqIBiAIt9AEJe79rbQM5i/qSE8sed\n2Ll7drTwy3hCTm6JnT/W2dMDtXLlSmi1WowdO1bAiIYXKqAIr4R+6pY9G2gS4uqevb/NR7kT+qCG\n+SP3hj2DwYC8vDykpqaKHQozqIBiAPUBPFB99x76jcDTI7xs3kCT8ucYyh93YudOdX8G6lrTPVHj\n4Ers/LFuqB6o5uZm5ObmYufOncjOzsb69euxd+9eXL58GYcPH3ZukAxjc3c14rJu3jX9IRg/kt0H\npBLiLBGBXgCAutZu9BmMULjRNNFwYTAYkJycjDNnztj9s93d3YiLi8OpU6ewbt06vPjii5Zn8/FN\no9EgIyMDR44cEeT8YqIZKAZQH8ADN+6ammEn2FFAUf4cQ/njTuzc+XjIEar0QK/BiPo29hrJxc6f\nlJ04cQKFhYVWjxmqB8rf3x8GgwHt7e3w8fFBa2srpxg0Gg2ys7OH/P6RI0eQlZWFK1eucDq/1FEB\nRZhys8U0AxVBM1CE2MQ8W2uevSXsq6qqwsiRIzn//Pvvv48TJ05g/PjxyMnJQW9vL6fz9PT0WN0q\nIS0tDa+//jrXMCWPlvAYwPLzoPhkNBotfwQmjPSy+ecof46h/HEnhdyNH+mNwpo23Lzbjdj/ETUU\nu0khf1xVV1fj/PnzKCsrw+LFi3H79m2UlJRg9erVUKlUluO0Wi0OHDhg9VyJiYmIiYkBYFq6y83N\nHfQhwmZLly5FcnIyli5dOugs1JYtWzj+q+xnZHQPMltQAUWY0dzVi3Z9P5SecgT5uIsdDiFMGH//\nYoNmoJxLrVZjxYoVUKlUSE9PR0JCAvR6PXJzcx8poIKDg7F582abz/vPf/4Tv/jFL6wes27dOkRF\nRXGO3VbDuTiyBRVQDGD1CoxvN+/3P40f6W3TDuRmlD/HUP64k0LuzP2C5uVvltiSv3NjXnBCJCaJ\nd6z3HD0sOTkZRUVFiI2NRWRkJACgtLQUixYt4jz+9evXERgYiMDAQKvHxcXFcR7Dmsdny3Q6Herr\n63Ht2jXL1xYuXIjp06cLMr7UUAFFBCHEhYnlDrxA6n8ixFahSk94ymXQdvSiQ98HP09+f+2LPQdh\nT1HjTEqlEgUFBZg1axYAoK+vD2q1Gjt27IBOp7Pc9abRaHDw4EGr51qwYAFmzpwJtVqNtrY2/Pjj\nj+juNl1QfvDBB1i8eDEiIiJsji0oKMjmY2UyGZqamgAMnC2rq6uDWq122b2jqIBiAEt9AEJupnfD\nsoWB7f1PAFv5kyLKH3dSyJ3cTYanA73xU1MXbrZ047kxfoKMI8RHXwr5c0RBQQF2794NACgsLMSU\nKVPQ2NiIiooKzJ8/HwAQEhJi8xLea6+9Zvn/tbW12LlzJ9LT0wccl5+fj3HjxmH06NGD9kA1Nzdz\n+NeQx9FdeIQZ1S3mBnKagSLEHtQH5XxGoxGdnZ2Ijo4GAISGhsLX1xd5eXmW4omr0tJSbN++HTKZ\nDBs2bEBNTc0j3z906BC++eYbm85VVVWFkydP4uOPP+Z9E83jx48jMzMTjY2N2LRpEwoKCng9v9ho\nBooBLF+B8aW334DaVj0A4OlA+2agKH+OofxxJ5XcsbqVgVTyx4VMJkN+fr7ldVRUFPbt28fLuSdP\nnoz9+/dj//79g37/2LFjNp/r3LlzUKlUWLJkCRISErB8+XLI5bY95UEul8PDw2PI76ekpCAlJcXm\nWFhDBRRhQn2bHn0GI8L8PWx+hAshxMTSSH6Xvc00ibDWrl0LwLSnk5+fn83FEwCEhYVh2bJlQoUm\nebSExwB6HpRjj3Ch/DmG8sedVHJnfqRLdcs9GBi69Vwq+WOVtU0uH/fJJ59Y+rWIbaiAIkygO/AI\n4W6EtztGeivQ1WuAtqNH7HCIxFy4cAELFy6E0WiEwWAQOxxmOLyEd/LkSXz99ddDrsUSx7HcB8AX\nrv1PAOXPUZQ/7qSUu4hAb9y9146alm6MUXqKHY5NpJQ/Fg31LLyHZWdnY9euXQgKCoJCocDnn3/u\nhMiGB4cKqMuXL8PLywsBAQF8xUPIoG7pTAXU2AA2fvETIjXhAZ4ovtWO2+16sUMhEpKUlISkpCSx\nw2AS5yU8rVaLixcvIjExkc94yCBcvQ/AYDTi1v1f+qEcrpxdPX+OovxxJ6Xchfqb7pZqaGNnCU9K\n+WORPT1QxH5WZ6BaW1uRlZU14OuxsbEoLi7GmjVrBAuMELPmrl709hsxwksBHw+6A48QLsL8TRcf\nNANFCD+sFlAjRowY9KnNVVVVyMnJsexpcefOHezevRvr16+Hu/vgD3l9eEdZ81UFvbbtNWv5A4Br\n164h8ZkgXs53vuB7AN4Iu798N9zzJ7XXlD/ur2fPni2ZeMZOND2frErTyut/T9Msx4MLG6HzZ55V\nMff30OuhXyuVSknFI8XXGo0GFRUVA95/Pj4+eBKZkYfHKf/hD3/Atm3bhvx+Tk4Opk2b5ugwhAHv\nfVOD8z/dxe/mPGUpoBz1VUUT9qjrkBAZiIy5EbyckxBXo+8zYNHhK1C4yXDmtSmQu/Hz8JU3T1Wi\nsrELHyz+GVTBvryccyhNTU0YNWqUoGOQB65fv47S0lIsXbpUsDGKiopw7949NDc3i7Kn1FDvqeLi\nYsTHx1v9WdrGgAGu3gdwq93Us2FegrCXq+fPUZQ/7qSUO0+FG0b5uKPPYERjJxt9UFLKH4sc7YG6\nevUq9Hphl3zLysowd+5clJaWCjqOEHgpoKzNPhHiKPMdeKEcCyhCiIn5M2T+TBHXVFdXhzlz5uDX\nv/41Ll68OOgxP/74IyZOnCh4LCtXroRWq8XYsWMFH4tv9CgXBrj6XijmX/bhHAsoV8+foyh/3Ekt\nd2H+HvjhDnBL14Np4WJH82RSyx9rrO0DtXv3bsycOXPI7zc2NqK9vR3V1dUCRPaAwWBAXl4eUlNT\nBR1HCFRAEUkzGo24fb+A4rqERwgxMV+E3KYZKJdXVFSEtrY2tLS0ICEhAVeuXMH333+P6Oho/Pvf\n/0ZWVha++OILdHR08DJec3PzoGPs3bsXd+7cQWNjI9atW8fLWM5CPVAMcOU+gLbuPnT1GuDrIYfS\nk9sWBq6cPz5Q/riTWu7MS3gNjBRQUsufFPT19eG9997Dn//8Zxw8eBDFxcVDHjtUD1R4eDjWrl2L\n+fPn4+TJk+ju7kZcXBwaGhoQFxeHrVu3AgCWLVuGd999l5e4hxpj/fr12LZtG+/Fk0ajQVpaGq/n\nfBwVUEQQPNzcCeDBL/owfw/IZPzcNUSIqwoToAeKoWcTDwubNm1CTEwMVq1ahc7OTnz22Wd2n+Ov\nf/0rSkpKAAAdHR1QKpUwGAxob2+Hj48PWltbOcWm0WiQnZ096Pf8/f0FH8PsyJEjyMrKwpUrVziN\nYStawmMAS30AfBc5t3WO3YEHsJU/KaL8cSe13IU9tIRnNBp5/bwKcX0jtfyJraGhAXl5eZYbt1at\nWoX+/v4hjx+qB+rll19GeXk5Tpw4gfXr12PPnj1QqVQYP348cnJyEBERwSm+np6eIWe93n//fcHH\nMEtLS0NdXR2+/PJLTmPYigooImm3qP+JEN74esgR4KVAW3cf7nb1Ich38I2PieOqq6tx/vx5lJWV\nYfHixbh9+zZKSkqwevVqqFQqy3FarRYHDhyweq7ExETExMQgLy8Po0ePxsmTJ9HV1YWrV68iIyNj\nwPFLly5FcnLykEtY4eHhCA9/cBdBQkICx3+l7QbblFtIfK2CWEMFFAMe3jXY1fBRQLly/vhA+eNO\nirkL8/dAW3cfGnR6yRdQUsyfrdRqNVasWAGVSoX09HQkJCRAr9cjNzf3kQIqODgYmzdvtumcWq0W\nFRUViI+Ph1KpxKeffootW7Zgz549jxy3bt06REVFob293eqdeHxzRtHijDFsRQUUkTSagSKEX2H+\nnijXduF2ux6TQ/3EDsdhr+6c7rSx/pFxyeZjk5OTUVRUhNjYWERGRgIASktLsWjRIs7j+/r6Yvz4\n8ZaiKCwsDJmZmQMKqLi4OADCP0z48dkznU6H+vp6XLt2zfK1hQsXYvp07v+NnDEGV1RAMYDVKzA+\nWAooJfVAiYXyx50UcydEI7lQbMmfPUWNMymVShQUFGDWrFkATHfPqdVq7NixAzqdDv7+/gBMTdEH\nDx60eq4FCxZg5syZeO6553DixAnL12UyGfr6+qzGMJigIO6P2ZLJZGhqagIwcPasrq4OarV60D2d\n7BmT6xjORgUUkawOfR90+n54ymUY6UNvVUL4YCmg2qRfQLGuoKAAu3fvBgAUFhZiypQpaGxsREVF\nBebPnw8ACAkJsXkJLyYmBp2dnZalucrKykGfU5efn49x48ZhwoQJg56nubmZ47+IOzHGFBptY8AA\nV90L5c79Z+CN8fd06G4hV80fXyh/3Ekxd2OUHgCAOx3Sfx6eFPNnK6PRiM7OTkRHRwMAQkND4evr\ni7y8PEvxZC+FQoEPPvgA27dvx969e1FfX4+33357wHGHDh3CN998Y9MSXlVVFU6ePImPP/4Yhw8f\ntny9srISe/fu5RQn1zH5cvz4cWRmZqKxsRGbNm1CQUEB72MANANFJKypqxcAMFrija6EsGS0r6mA\naursFTmS4U0mkyE/P9/yOioqCvv27XP4vDNmzMCMGTOsHnPs2DEAtvVAnTt3DiqVCkuWLEFCQgKW\nL18OADhz5ozVLRIGI5fL4eHhwWlMudy2jZJtGSMlJQUpKSk2nc8RVEAxQIp9FE/Cx30Szfd/wQf5\nOFZAsZg/KaH8cSfF3I30cYcMQMu9XvQbjJC7ObaBk5GXT/vgpJg/lthyB97atWsBmPZXUiqVkMvl\n+PbbbxETE4PvvvvOrvHCwsKwbNkyu8b08/OzuXiyZwxnoCU8wis+99Izz0CN8n3yFQ0hxDYKNxlG\neCtgMJqKKL7IeP30E2f75JNPsGvXLlRXVyM0NNSuosaRMc09YiyiAooBLPcBOKKp09SjMcrBGShX\nzR9fKH/cSTV35s+U1JfxpJo/Vti6jcGFCxewcOFCGI1G/PDDD/jpp5/w3Xff4dq1a6irqxMktofH\nNBgMgowhNFrCI5LVfH8GSuqb/RHCmiBfd1xrvmf5jBHXlZ2djV27diEoKAgKhQKff/45urq6cPny\nZfT09AjyDNLBxmQRFVAMcNU+gCbqgZIEyh93Us1dECMzUFLNHyts6YFKSkpCUlLSI1/z8fHBrF1j\nMAAABsxJREFUhg0bhApr0DFZREt4RLKaLT1QNANFCJ/MfYVNNANFCGdUQDHAFfsA9H0GtOv7oXCT\nIcDLsYlSV8wfnyh/3Ek1d+YZqOZOae8FJdX8sULoR7m4OiqgiCSZZ59G+ijgJsAaPCGuzDyrSzNQ\nhHBHBRQDXLEPwNybMcrH8S0MXDF/fKL8cSfV3I2yzEBJu4CSav5YYUsPFOGOCigiCEe31mvuMi0t\n0B14hPAviM8ZKOH20SRE0qiAYgBLfQB8LbY9mIFyvIBiKX9SRPnjTqq58/OQw1Muw71eAzp77Htc\nx5AEWGl/PH9GI1Vr9qAeqCdz5D1FBRSRJNoDihDhyGQyBN2/E0/qy3gPk8vl6O7uFjsMMgwYjUa0\ntrbC3Z373xjaB4oBrtgHwOcMlCvmj0+UP+6knLtRvu64pdOjqasHTwV6iR3OoB7PX2BgIFpaWtDe\n3i7IBo/DkV6vFzsEyTHPOvn6+sLHx4fzeaiAYkBlZSWeeeYZscNwqiYe94ByxfzxifLHnZRzx8Lj\nXB7Pn0wmw8iRI0WMiC1Sfv8NB7SEx4ALFy6IHYLTNVt2IXf8LjxXzB+fKH/cSTl35uVxKT/ORcr5\nYwHlT1hUQBHJMRiNtAs5IQJjYQaKECmjAooBTz31lNghOJWuuw99BiOUnnJ4Khx/i7pa/vhG+eNO\nyrljYQZKyvljAeVPWFRAEcnh6yHChJChmTeppRkoQrihAooBtbW1YodgPwe2a+F7+Y7J/EkI5Y87\nKefuweNcpPs8PCnnjwWUP2HJjE7YmSwnJ0foIQghhBBCeBMfH2/1+04poAghhBBChhNawiOEEEII\nsRMVUIQQQgghdqICihBCCCHETlRAEUIIIYTYiQooQgghhBA7Cf4w4dOnT+PixYsAgGnTpuGVV14R\neshhpa+vD5999hnKy8uxbds2scNhypdffgm1Wg2FQoHQ0FCsWrUKCgU9P9tWR44cQWVlJdzd3RET\nE4OFCxeKHRJz9Ho9/vjHPyIyMhLLly8XOxympKenIygoyPL6zTffpAcJ20Gr1eLTTz/Fb3/7W7i5\n0VyJrS5fvoxTp05ZXtfX1+Ott97Cz372swHHCvrXpLy8HDdv3sTWrVsBAB999BF++OEHPPfcc0IO\nO6z8/e9/x6RJk1BeXi52KEzp6OhAbW0t3n33XchkMhw9ehT//e9/8cILL4gdGhO6u7sxceJEpKWl\nAQDefvttzJkzB/7+/iJHxpajR48iNjYWdXV1YofCHF9fX2zZskXsMJhkMBiQnZ2NtWvXUvFkp6lT\np2Lq1KkATBdAmZmZiIqKGvRYQTNbUlLyyEZU8fHxKC4uFnLIYWf58uWYNm2a2GEwx8/PD7/5zW8g\nk8kAmD4Io0ePFjkqdnh5eeH5558HAHR1dVm+Rmz31Vdf4ec//zmCg4PFDoVJvb292Lp1KzIyMnDu\n3Dmxw2HKqVOnUFNTg6ysLOTl5YkdDrPOnj2LefPmWf6OPE7QGaj29nYolUrLa39/f7S1tQk5JCED\n/Otf/4KPj8+QVxFkaIcPH8a3336LX/3qV/Dw8BA7HGaUl5dDp9PhpZdeQllZmdjhMGnbtm1wd3dH\nb28vtm/fDpVKhYiICLHDkjytVova2lrL7N2+ffsQEhKC6OhokSNjS1dXFy5duoTMzMwhjxF0Bkqp\nVEKn01le63Q6WgIgTmMwGPCXv/wF7u7uSE1NFTscJr322mv46KOPcOnSJVRXV4sdDjMuX76M6upq\n7Nq1C8ePH8f333+P06dPix0WU9zd3S3/O2PGDNTU1IgcERuKi4sxY8YMuLm5wc3NDbNnz8bVq1fF\nDos5Z8+eRWJi4pCzT4DABdS0adOQm5treZ2bm4vp06cLOSQhAEw9PHv27MHkyZORlJQkdjjMqaqq\nstz84eHhgYCAgEcuhoh1qamp+P3vf4+33noLr776Kp5//nksXrxY7LCYUV9fj+zsbACmG2lKSkoQ\nGRkpclRsUCqVKC0ttbwuKSnBU089JWJE7Ono6EBJSQlmz55t9ThBl/BUKhUqKyuxceNGAKaCihrI\niTPk5ubi+vXr6OjowFdffQUAiI2NxYsvvihyZGwYM2YMTp8+bfkj9swzz2Dy5MkiR8Uua1exZKAx\nY8agoaEBGzduhJubG+bPn4/w8HCxw2LCCy+8gKqqKmzcuBEymQyTJk1CTEyM2GEx5cyZM3j55Zef\n+LmlhwkTQgghhNiJ7m8khBBCCLETFVCEEEIIIXaiAooQQgghxE5UQBFCCCGE2IkKKEIIIYQQO1EB\nRQghhBBiJyqgCCGEEELsRAUUIYQQQoidqIAihBBCCLHT/wOfHiGtnIxIRAAAAABJRU5ErkJggg==\n", | |
"text": [ | |||
"<matplotlib.figure.Figure at 0x107e4a810>" | |||
] | |||
Fernando Perez
|
r5783 | } | |
Brian Granger
|
r6035 | ], | |
Fernando Perez
|
r5783 | "prompt_number": 24 | |
} | |||
MinRK
|
r7739 | ], | |
"metadata": {} | |||
Fernando Perez
|
r5783 | } | |
] | |||
MinRK
|
r11536 | } |