diff --git a/docs/examples/newparallel/options/mcdriver.py b/docs/examples/newparallel/options/mcdriver.py
deleted file mode 100644
index c0e1abd..0000000
--- a/docs/examples/newparallel/options/mcdriver.py
+++ /dev/null
@@ -1,144 +0,0 @@
-#!/usr/bin/env python
-"""Run a Monte-Carlo options pricer in parallel."""
-
-#-----------------------------------------------------------------------------
-# Imports
-#-----------------------------------------------------------------------------
-
-import sys
-import time
-from IPython.parallel import Client
-import numpy as np
-from mcpricer import price_options
-from matplotlib import pyplot as plt
-
-#-----------------------------------------------------------------------------
-# Setup parameters for the run
-#-----------------------------------------------------------------------------
-
-def ask_question(text, the_type, default):
- s = '%s [%r]: ' % (text, the_type(default))
- result = raw_input(s)
- if result:
- return the_type(result)
- else:
- return the_type(default)
-
-cluster_profile = ask_question("Cluster profile", str, "default")
-price = ask_question("Initial price", float, 100.0)
-rate = ask_question("Interest rate", float, 0.05)
-days = ask_question("Days to expiration", int, 260)
-paths = ask_question("Number of MC paths", int, 10000)
-n_strikes = ask_question("Number of strike values", int, 5)
-min_strike = ask_question("Min strike price", float, 90.0)
-max_strike = ask_question("Max strike price", float, 110.0)
-n_sigmas = ask_question("Number of volatility values", int, 5)
-min_sigma = ask_question("Min volatility", float, 0.1)
-max_sigma = ask_question("Max volatility", float, 0.4)
-
-strike_vals = np.linspace(min_strike, max_strike, n_strikes)
-sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas)
-
-#-----------------------------------------------------------------------------
-# Setup for parallel calculation
-#-----------------------------------------------------------------------------
-
-# The Client is used to setup the calculation and works with all
-# engines.
-c = Client(profile=cluster_profile)
-
-# A LoadBalancedView is an interface to the engines that provides dynamic load
-# balancing at the expense of not knowing which engine will execute the code.
-view = c.load_balanced_view()
-
-# Initialize the common code on the engines. This Python module has the
-# price_options function that prices the options.
-
-#-----------------------------------------------------------------------------
-# Perform parallel calculation
-#-----------------------------------------------------------------------------
-
-print "Running parallel calculation over strike prices and volatilities..."
-print "Strike prices: ", strike_vals
-print "Volatilities: ", sigma_vals
-sys.stdout.flush()
-
-# Submit tasks to the TaskClient for each (strike, sigma) pair as a MapTask.
-t1 = time.time()
-async_results = []
-for strike in strike_vals:
- for sigma in sigma_vals:
- ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths)
- async_results.append(ar)
-
-print "Submitted tasks: ", len(async_results)
-sys.stdout.flush()
-
-# Block until all tasks are completed.
-c.wait(async_results)
-t2 = time.time()
-t = t2-t1
-
-print "Parallel calculation completed, time = %s s" % t
-print "Collecting results..."
-
-# Get the results using TaskClient.get_task_result.
-results = [ar.get() for ar in async_results]
-
-# Assemble the result into a structured NumPy array.
-prices = np.empty(n_strikes*n_sigmas,
- dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)]
-)
-
-for i, price in enumerate(results):
- prices[i] = tuple(price)
-
-prices.shape = (n_strikes, n_sigmas)
-strike_mesh, sigma_mesh = np.meshgrid(strike_vals, sigma_vals)
-
-print "Results are available: strike_mesh, sigma_mesh, prices"
-print "To plot results type 'plot_options(sigma_mesh, strike_mesh, prices)'"
-
-#-----------------------------------------------------------------------------
-# Utilities
-#-----------------------------------------------------------------------------
-
-def plot_options(sigma_mesh, strike_mesh, prices):
- """
- Make a contour plot of the option price in (sigma, strike) space.
- """
- plt.figure(1)
-
- plt.subplot(221)
- plt.contourf(sigma_mesh, strike_mesh, prices['ecall'])
- plt.axis('tight')
- plt.colorbar()
- plt.title('European Call')
- plt.ylabel("Strike Price")
-
- plt.subplot(222)
- plt.contourf(sigma_mesh, strike_mesh, prices['acall'])
- plt.axis('tight')
- plt.colorbar()
- plt.title("Asian Call")
-
- plt.subplot(223)
- plt.contourf(sigma_mesh, strike_mesh, prices['eput'])
- plt.axis('tight')
- plt.colorbar()
- plt.title("European Put")
- plt.xlabel("Volatility")
- plt.ylabel("Strike Price")
-
- plt.subplot(224)
- plt.contourf(sigma_mesh, strike_mesh, prices['aput'])
- plt.axis('tight')
- plt.colorbar()
- plt.title("Asian Put")
- plt.xlabel("Volatility")
-
-
-
-
-
-
diff --git a/docs/examples/newparallel/options/mckernel.py b/docs/examples/newparallel/options/mckernel.py
new file mode 100644
index 0000000..db57904
--- /dev/null
+++ b/docs/examples/newparallel/options/mckernel.py
@@ -0,0 +1,44 @@
+def price_options(S=100.0, K=100.0, sigma=0.25, r=0.05, days=260, paths=10000):
+ """
+ Price European and Asian options using a Monte Carlo method.
+
+ Parameters
+ ----------
+ S : float
+ The initial price of the stock.
+ K : float
+ The strike price of the option.
+ sigma : float
+ The volatility of the stock.
+ r : float
+ The risk free interest rate.
+ days : int
+ The number of days until the option expires.
+ paths : int
+ The number of Monte Carlo paths used to price the option.
+
+ Returns
+ -------
+ A tuple of (E. call, E. put, A. call, A. put) option prices.
+ """
+ import numpy as np
+ from math import exp,sqrt
+
+ h = 1.0/days
+ const1 = exp((r-0.5*sigma**2)*h)
+ const2 = sigma*sqrt(h)
+ stock_price = S*np.ones(paths, dtype='float64')
+ stock_price_sum = np.zeros(paths, dtype='float64')
+ for j in range(days):
+ growth_factor = const1*np.exp(const2*np.random.standard_normal(paths))
+ stock_price = stock_price*growth_factor
+ stock_price_sum = stock_price_sum + stock_price
+ stock_price_avg = stock_price_sum/days
+ zeros = np.zeros(paths, dtype='float64')
+ r_factor = exp(-r*h*days)
+ euro_put = r_factor*np.mean(np.maximum(zeros, K-stock_price))
+ asian_put = r_factor*np.mean(np.maximum(zeros, K-stock_price_avg))
+ euro_call = r_factor*np.mean(np.maximum(zeros, stock_price-K))
+ asian_call = r_factor*np.mean(np.maximum(zeros, stock_price_avg-K))
+ return (euro_call, euro_put, asian_call, asian_put)
+
diff --git a/docs/examples/newparallel/options/mcpricer.ipynb b/docs/examples/newparallel/options/mcpricer.ipynb
index a0e1b3c..7a68887 100644
--- a/docs/examples/newparallel/options/mcpricer.ipynb
+++ b/docs/examples/newparallel/options/mcpricer.ipynb
@@ -16,10 +16,10 @@
import time
from IPython.parallel import Client
import numpy as np
-from mcpricer import price_options
+from mckernel import price_options
from matplotlib import pyplot as plt
python
- 27
+ 1
1
@@ -36,7 +36,7 @@ n_sigmas = 5 # Number of volatility values
min_sigma = 0.1 # Min volatility
max_sigma = 0.4 # Max volatility
python
- 28
+ 2
1
@@ -44,7 +44,7 @@ max_sigma = 0.4 # Max volatility
strike_vals = np.linspace(min_strike, max_strike, n_strikes)
sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas)
python
- 29
+ 3
1
@@ -57,7 +57,7 @@ sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas)
c = Client(profile=cluster_profile)
python
- 30
+ 4
1
@@ -68,7 +68,7 @@ balancing at the expense of not knowing which engine will execute the code.
view = c.load_balanced_view()
python
- 31
+ 5
1
@@ -76,7 +76,7 @@ balancing at the expense of not knowing which engine will execute the code.print "Strike prices: ", strike_vals
print "Volatilities: ", sigma_vals
python
- 32
+ 6
0