##// END OF EJS Templates
Small formatting fixes to address Jorgen's last code review.
Fernando Perez -
Show More
@@ -1,3451 +1,3446 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #*****************************************************************************
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2006 Fernando Perez <fperez@colorado.edu>
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #*****************************************************************************
12 12
13 13 #****************************************************************************
14 14 # Modules and globals
15 15
16 16 # Python standard modules
17 17 import __builtin__
18 18 import bdb
19 19 import inspect
20 20 import os
21 21 import pdb
22 22 import pydoc
23 23 import sys
24 24 import re
25 25 import tempfile
26 26 import time
27 27 import cPickle as pickle
28 28 import textwrap
29 29 from cStringIO import StringIO
30 30 from getopt import getopt,GetoptError
31 31 from pprint import pprint, pformat
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 # Homebrewed
45 45 import IPython
46 46 from IPython import Debugger, OInspect, wildcard
47 47 from IPython.FakeModule import FakeModule
48 48 from IPython.Itpl import Itpl, itpl, printpl,itplns
49 49 from IPython.PyColorize import Parser
50 50 from IPython.ipstruct import Struct
51 51 from IPython.macro import Macro
52 52 from IPython.genutils import *
53 53 from IPython import platutils
54 54 import IPython.generics
55 55 import IPython.ipapi
56 56 from IPython.ipapi import UsageError
57 57 from IPython.testing import decorators as testdec
58 58
59 59 #***************************************************************************
60 60 # Utility functions
61 61 def on_off(tag):
62 62 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
63 63 return ['OFF','ON'][tag]
64 64
65 65 class Bunch: pass
66 66
67 67 def compress_dhist(dh):
68 68 head, tail = dh[:-10], dh[-10:]
69 69
70 70 newhead = []
71 71 done = set()
72 72 for h in head:
73 73 if h in done:
74 74 continue
75 75 newhead.append(h)
76 76 done.add(h)
77 77
78 78 return newhead + tail
79 79
80 80
81 81 #***************************************************************************
82 82 # Main class implementing Magic functionality
83 83 class Magic:
84 84 """Magic functions for InteractiveShell.
85 85
86 86 Shell functions which can be reached as %function_name. All magic
87 87 functions should accept a string, which they can parse for their own
88 88 needs. This can make some functions easier to type, eg `%cd ../`
89 89 vs. `%cd("../")`
90 90
91 91 ALL definitions MUST begin with the prefix magic_. The user won't need it
92 92 at the command line, but it is is needed in the definition. """
93 93
94 94 # class globals
95 95 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
96 96 'Automagic is ON, % prefix NOT needed for magic functions.']
97 97
98 98 #......................................................................
99 99 # some utility functions
100 100
101 101 def __init__(self,shell):
102 102
103 103 self.options_table = {}
104 104 if profile is None:
105 105 self.magic_prun = self.profile_missing_notice
106 106 self.shell = shell
107 107
108 108 # namespace for holding state we may need
109 109 self._magic_state = Bunch()
110 110
111 111 def profile_missing_notice(self, *args, **kwargs):
112 112 error("""\
113 113 The profile module could not be found. It has been removed from the standard
114 114 python packages because of its non-free license. To use profiling, install the
115 115 python-profiler package from non-free.""")
116 116
117 117 def default_option(self,fn,optstr):
118 118 """Make an entry in the options_table for fn, with value optstr"""
119 119
120 120 if fn not in self.lsmagic():
121 121 error("%s is not a magic function" % fn)
122 122 self.options_table[fn] = optstr
123 123
124 124 def lsmagic(self):
125 125 """Return a list of currently available magic functions.
126 126
127 127 Gives a list of the bare names after mangling (['ls','cd', ...], not
128 128 ['magic_ls','magic_cd',...]"""
129 129
130 130 # FIXME. This needs a cleanup, in the way the magics list is built.
131 131
132 132 # magics in class definition
133 133 class_magic = lambda fn: fn.startswith('magic_') and \
134 134 callable(Magic.__dict__[fn])
135 135 # in instance namespace (run-time user additions)
136 136 inst_magic = lambda fn: fn.startswith('magic_') and \
137 137 callable(self.__dict__[fn])
138 138 # and bound magics by user (so they can access self):
139 139 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
140 140 callable(self.__class__.__dict__[fn])
141 141 magics = filter(class_magic,Magic.__dict__.keys()) + \
142 142 filter(inst_magic,self.__dict__.keys()) + \
143 143 filter(inst_bound_magic,self.__class__.__dict__.keys())
144 144 out = []
145 145 for fn in set(magics):
146 146 out.append(fn.replace('magic_','',1))
147 147 out.sort()
148 148 return out
149 149
150 150 def extract_input_slices(self,slices,raw=False):
151 151 """Return as a string a set of input history slices.
152 152
153 153 Inputs:
154 154
155 155 - slices: the set of slices is given as a list of strings (like
156 156 ['1','4:8','9'], since this function is for use by magic functions
157 157 which get their arguments as strings.
158 158
159 159 Optional inputs:
160 160
161 161 - raw(False): by default, the processed input is used. If this is
162 162 true, the raw input history is used instead.
163 163
164 164 Note that slices can be called with two notations:
165 165
166 166 N:M -> standard python form, means including items N...(M-1).
167 167
168 168 N-M -> include items N..M (closed endpoint)."""
169 169
170 170 if raw:
171 171 hist = self.shell.input_hist_raw
172 172 else:
173 173 hist = self.shell.input_hist
174 174
175 175 cmds = []
176 176 for chunk in slices:
177 177 if ':' in chunk:
178 178 ini,fin = map(int,chunk.split(':'))
179 179 elif '-' in chunk:
180 180 ini,fin = map(int,chunk.split('-'))
181 181 fin += 1
182 182 else:
183 183 ini = int(chunk)
184 184 fin = ini+1
185 185 cmds.append(hist[ini:fin])
186 186 return cmds
187 187
188 188 def _ofind(self, oname, namespaces=None):
189 189 """Find an object in the available namespaces.
190 190
191 191 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
192 192
193 193 Has special code to detect magic functions.
194 194 """
195 195
196 196 oname = oname.strip()
197 197
198 198 alias_ns = None
199 199 if namespaces is None:
200 200 # Namespaces to search in:
201 201 # Put them in a list. The order is important so that we
202 202 # find things in the same order that Python finds them.
203 203 namespaces = [ ('Interactive', self.shell.user_ns),
204 204 ('IPython internal', self.shell.internal_ns),
205 205 ('Python builtin', __builtin__.__dict__),
206 206 ('Alias', self.shell.alias_table),
207 207 ]
208 208 alias_ns = self.shell.alias_table
209 209
210 210 # initialize results to 'null'
211 211 found = 0; obj = None; ospace = None; ds = None;
212 212 ismagic = 0; isalias = 0; parent = None
213 213
214 214 # Look for the given name by splitting it in parts. If the head is
215 215 # found, then we look for all the remaining parts as members, and only
216 216 # declare success if we can find them all.
217 217 oname_parts = oname.split('.')
218 218 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
219 219 for nsname,ns in namespaces:
220 220 try:
221 221 obj = ns[oname_head]
222 222 except KeyError:
223 223 continue
224 224 else:
225 225 #print 'oname_rest:', oname_rest # dbg
226 226 for part in oname_rest:
227 227 try:
228 228 parent = obj
229 229 obj = getattr(obj,part)
230 230 except:
231 231 # Blanket except b/c some badly implemented objects
232 232 # allow __getattr__ to raise exceptions other than
233 233 # AttributeError, which then crashes IPython.
234 234 break
235 235 else:
236 236 # If we finish the for loop (no break), we got all members
237 237 found = 1
238 238 ospace = nsname
239 239 if ns == alias_ns:
240 240 isalias = 1
241 241 break # namespace loop
242 242
243 243 # Try to see if it's magic
244 244 if not found:
245 245 if oname.startswith(self.shell.ESC_MAGIC):
246 246 oname = oname[1:]
247 247 obj = getattr(self,'magic_'+oname,None)
248 248 if obj is not None:
249 249 found = 1
250 250 ospace = 'IPython internal'
251 251 ismagic = 1
252 252
253 253 # Last try: special-case some literals like '', [], {}, etc:
254 254 if not found and oname_head in ["''",'""','[]','{}','()']:
255 255 obj = eval(oname_head)
256 256 found = 1
257 257 ospace = 'Interactive'
258 258
259 259 return {'found':found, 'obj':obj, 'namespace':ospace,
260 260 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
261 261
262 262 def arg_err(self,func):
263 263 """Print docstring if incorrect arguments were passed"""
264 264 print 'Error in arguments:'
265 265 print OInspect.getdoc(func)
266 266
267 267 def format_latex(self,strng):
268 268 """Format a string for latex inclusion."""
269 269
270 270 # Characters that need to be escaped for latex:
271 271 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
272 272 # Magic command names as headers:
273 273 cmd_name_re = re.compile(r'^(%s.*?):' % self.shell.ESC_MAGIC,
274 274 re.MULTILINE)
275 275 # Magic commands
276 276 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % self.shell.ESC_MAGIC,
277 277 re.MULTILINE)
278 278 # Paragraph continue
279 279 par_re = re.compile(r'\\$',re.MULTILINE)
280 280
281 281 # The "\n" symbol
282 282 newline_re = re.compile(r'\\n')
283 283
284 284 # Now build the string for output:
285 285 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
286 286 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
287 287 strng)
288 288 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
289 289 strng = par_re.sub(r'\\\\',strng)
290 290 strng = escape_re.sub(r'\\\1',strng)
291 291 strng = newline_re.sub(r'\\textbackslash{}n',strng)
292 292 return strng
293 293
294 294 def format_screen(self,strng):
295 295 """Format a string for screen printing.
296 296
297 297 This removes some latex-type format codes."""
298 298 # Paragraph continue
299 299 par_re = re.compile(r'\\$',re.MULTILINE)
300 300 strng = par_re.sub('',strng)
301 301 return strng
302 302
303 303 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
304 304 """Parse options passed to an argument string.
305 305
306 306 The interface is similar to that of getopt(), but it returns back a
307 307 Struct with the options as keys and the stripped argument string still
308 308 as a string.
309 309
310 310 arg_str is quoted as a true sys.argv vector by using shlex.split.
311 311 This allows us to easily expand variables, glob files, quote
312 312 arguments, etc.
313 313
314 314 Options:
315 315 -mode: default 'string'. If given as 'list', the argument string is
316 316 returned as a list (split on whitespace) instead of a string.
317 317
318 318 -list_all: put all option values in lists. Normally only options
319 319 appearing more than once are put in a list.
320 320
321 321 -posix (True): whether to split the input line in POSIX mode or not,
322 322 as per the conventions outlined in the shlex module from the
323 323 standard library."""
324 324
325 325 # inject default options at the beginning of the input line
326 326 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
327 327 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
328 328
329 329 mode = kw.get('mode','string')
330 330 if mode not in ['string','list']:
331 331 raise ValueError,'incorrect mode given: %s' % mode
332 332 # Get options
333 333 list_all = kw.get('list_all',0)
334 334 posix = kw.get('posix',True)
335 335
336 336 # Check if we have more than one argument to warrant extra processing:
337 337 odict = {} # Dictionary with options
338 338 args = arg_str.split()
339 339 if len(args) >= 1:
340 340 # If the list of inputs only has 0 or 1 thing in it, there's no
341 341 # need to look for options
342 342 argv = arg_split(arg_str,posix)
343 343 # Do regular option processing
344 344 try:
345 345 opts,args = getopt(argv,opt_str,*long_opts)
346 346 except GetoptError,e:
347 347 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
348 348 " ".join(long_opts)))
349 349 for o,a in opts:
350 350 if o.startswith('--'):
351 351 o = o[2:]
352 352 else:
353 353 o = o[1:]
354 354 try:
355 355 odict[o].append(a)
356 356 except AttributeError:
357 357 odict[o] = [odict[o],a]
358 358 except KeyError:
359 359 if list_all:
360 360 odict[o] = [a]
361 361 else:
362 362 odict[o] = a
363 363
364 364 # Prepare opts,args for return
365 365 opts = Struct(odict)
366 366 if mode == 'string':
367 367 args = ' '.join(args)
368 368
369 369 return opts,args
370 370
371 371 #......................................................................
372 372 # And now the actual magic functions
373 373
374 374 # Functions for IPython shell work (vars,funcs, config, etc)
375 375 def magic_lsmagic(self, parameter_s = ''):
376 376 """List currently available magic functions."""
377 377 mesc = self.shell.ESC_MAGIC
378 378 print 'Available magic functions:\n'+mesc+\
379 379 (' '+mesc).join(self.lsmagic())
380 380 print '\n' + Magic.auto_status[self.shell.rc.automagic]
381 381 return None
382 382
383 383 def magic_magic(self, parameter_s = ''):
384 384 """Print information about the magic function system.
385 385
386 386 Supported formats: -latex, -brief, -rest
387 387 """
388 388
389 389 mode = ''
390 390 try:
391 391 if parameter_s.split()[0] == '-latex':
392 392 mode = 'latex'
393 393 if parameter_s.split()[0] == '-brief':
394 394 mode = 'brief'
395 395 if parameter_s.split()[0] == '-rest':
396 396 mode = 'rest'
397 397 rest_docs = []
398 398 except:
399 399 pass
400 400
401 401 magic_docs = []
402 402 for fname in self.lsmagic():
403 403 mname = 'magic_' + fname
404 404 for space in (Magic,self,self.__class__):
405 405 try:
406 406 fn = space.__dict__[mname]
407 407 except KeyError:
408 408 pass
409 409 else:
410 410 break
411 411 if mode == 'brief':
412 412 # only first line
413 413 if fn.__doc__:
414 414 fndoc = fn.__doc__.split('\n',1)[0]
415 415 else:
416 416 fndoc = 'No documentation'
417 417 else:
418 418 if fn.__doc__:
419 419 fndoc = fn.__doc__.rstrip()
420 420 else:
421 421 fndoc = 'No documentation'
422 422
423 423
424 424 if mode == 'rest':
425 425 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(self.shell.ESC_MAGIC,
426 426 fname,fndoc))
427 427
428 428 else:
429 429 magic_docs.append('%s%s:\n\t%s\n' %(self.shell.ESC_MAGIC,
430 430 fname,fndoc))
431 431
432 432 magic_docs = ''.join(magic_docs)
433 433
434 434 if mode == 'rest':
435 435 return "".join(rest_docs)
436 436
437 437 if mode == 'latex':
438 438 print self.format_latex(magic_docs)
439 439 return
440 440 else:
441 441 magic_docs = self.format_screen(magic_docs)
442 442 if mode == 'brief':
443 443 return magic_docs
444 444
445 445 outmsg = """
446 446 IPython's 'magic' functions
447 447 ===========================
448 448
449 449 The magic function system provides a series of functions which allow you to
450 450 control the behavior of IPython itself, plus a lot of system-type
451 451 features. All these functions are prefixed with a % character, but parameters
452 452 are given without parentheses or quotes.
453 453
454 454 NOTE: If you have 'automagic' enabled (via the command line option or with the
455 455 %automagic function), you don't need to type in the % explicitly. By default,
456 456 IPython ships with automagic on, so you should only rarely need the % escape.
457 457
458 458 Example: typing '%cd mydir' (without the quotes) changes you working directory
459 459 to 'mydir', if it exists.
460 460
461 461 You can define your own magic functions to extend the system. See the supplied
462 462 ipythonrc and example-magic.py files for details (in your ipython
463 463 configuration directory, typically $HOME/.ipython/).
464 464
465 465 You can also define your own aliased names for magic functions. In your
466 466 ipythonrc file, placing a line like:
467 467
468 468 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
469 469
470 470 will define %pf as a new name for %profile.
471 471
472 472 You can also call magics in code using the ipmagic() function, which IPython
473 473 automatically adds to the builtin namespace. Type 'ipmagic?' for details.
474 474
475 475 For a list of the available magic functions, use %lsmagic. For a description
476 476 of any of them, type %magic_name?, e.g. '%cd?'.
477 477
478 478 Currently the magic system has the following functions:\n"""
479 479
480 480 mesc = self.shell.ESC_MAGIC
481 481 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
482 482 "\n\n%s%s\n\n%s" % (outmsg,
483 483 magic_docs,mesc,mesc,
484 484 (' '+mesc).join(self.lsmagic()),
485 485 Magic.auto_status[self.shell.rc.automagic] ) )
486 486
487 487 page(outmsg,screen_lines=self.shell.rc.screen_length)
488 488
489 489
490 490 def magic_autoindent(self, parameter_s = ''):
491 491 """Toggle autoindent on/off (if available)."""
492 492
493 493 self.shell.set_autoindent()
494 494 print "Automatic indentation is:",['OFF','ON'][self.shell.autoindent]
495 495
496 496
497 497 def magic_automagic(self, parameter_s = ''):
498 498 """Make magic functions callable without having to type the initial %.
499 499
500 500 Without argumentsl toggles on/off (when off, you must call it as
501 501 %automagic, of course). With arguments it sets the value, and you can
502 502 use any of (case insensitive):
503 503
504 504 - on,1,True: to activate
505 505
506 506 - off,0,False: to deactivate.
507 507
508 508 Note that magic functions have lowest priority, so if there's a
509 509 variable whose name collides with that of a magic fn, automagic won't
510 510 work for that function (you get the variable instead). However, if you
511 511 delete the variable (del var), the previously shadowed magic function
512 512 becomes visible to automagic again."""
513 513
514 514 rc = self.shell.rc
515 515 arg = parameter_s.lower()
516 516 if parameter_s in ('on','1','true'):
517 517 rc.automagic = True
518 518 elif parameter_s in ('off','0','false'):
519 519 rc.automagic = False
520 520 else:
521 521 rc.automagic = not rc.automagic
522 522 print '\n' + Magic.auto_status[rc.automagic]
523 523
524 524 @testdec.skip_doctest
525 525 def magic_autocall(self, parameter_s = ''):
526 526 """Make functions callable without having to type parentheses.
527 527
528 528 Usage:
529 529
530 530 %autocall [mode]
531 531
532 532 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
533 533 value is toggled on and off (remembering the previous state).
534 534
535 535 In more detail, these values mean:
536 536
537 537 0 -> fully disabled
538 538
539 539 1 -> active, but do not apply if there are no arguments on the line.
540 540
541 541 In this mode, you get:
542 542
543 543 In [1]: callable
544 544 Out[1]: <built-in function callable>
545 545
546 546 In [2]: callable 'hello'
547 547 ------> callable('hello')
548 548 Out[2]: False
549 549
550 550 2 -> Active always. Even if no arguments are present, the callable
551 551 object is called:
552 552
553 553 In [2]: float
554 554 ------> float()
555 555 Out[2]: 0.0
556 556
557 557 Note that even with autocall off, you can still use '/' at the start of
558 558 a line to treat the first argument on the command line as a function
559 559 and add parentheses to it:
560 560
561 561 In [8]: /str 43
562 562 ------> str(43)
563 563 Out[8]: '43'
564 564
565 565 # all-random (note for auto-testing)
566 566 """
567 567
568 568 rc = self.shell.rc
569 569
570 570 if parameter_s:
571 571 arg = int(parameter_s)
572 572 else:
573 573 arg = 'toggle'
574 574
575 575 if not arg in (0,1,2,'toggle'):
576 576 error('Valid modes: (0->Off, 1->Smart, 2->Full')
577 577 return
578 578
579 579 if arg in (0,1,2):
580 580 rc.autocall = arg
581 581 else: # toggle
582 582 if rc.autocall:
583 583 self._magic_state.autocall_save = rc.autocall
584 584 rc.autocall = 0
585 585 else:
586 586 try:
587 587 rc.autocall = self._magic_state.autocall_save
588 588 except AttributeError:
589 589 rc.autocall = self._magic_state.autocall_save = 1
590 590
591 591 print "Automatic calling is:",['OFF','Smart','Full'][rc.autocall]
592 592
593 593 def magic_system_verbose(self, parameter_s = ''):
594 594 """Set verbose printing of system calls.
595 595
596 596 If called without an argument, act as a toggle"""
597 597
598 598 if parameter_s:
599 599 val = bool(eval(parameter_s))
600 600 else:
601 601 val = None
602 602
603 603 self.shell.rc_set_toggle('system_verbose',val)
604 604 print "System verbose printing is:",\
605 605 ['OFF','ON'][self.shell.rc.system_verbose]
606 606
607 607
608 608 def magic_page(self, parameter_s=''):
609 609 """Pretty print the object and display it through a pager.
610 610
611 611 %page [options] OBJECT
612 612
613 613 If no object is given, use _ (last output).
614 614
615 615 Options:
616 616
617 617 -r: page str(object), don't pretty-print it."""
618 618
619 619 # After a function contributed by Olivier Aubert, slightly modified.
620 620
621 621 # Process options/args
622 622 opts,args = self.parse_options(parameter_s,'r')
623 623 raw = 'r' in opts
624 624
625 625 oname = args and args or '_'
626 626 info = self._ofind(oname)
627 627 if info['found']:
628 628 txt = (raw and str or pformat)( info['obj'] )
629 629 page(txt)
630 630 else:
631 631 print 'Object `%s` not found' % oname
632 632
633 633 def magic_profile(self, parameter_s=''):
634 634 """Print your currently active IPyhton profile."""
635 635 if self.shell.rc.profile:
636 636 printpl('Current IPython profile: $self.shell.rc.profile.')
637 637 else:
638 638 print 'No profile active.'
639 639
640 640 def magic_pinfo(self, parameter_s='', namespaces=None):
641 641 """Provide detailed information about an object.
642 642
643 643 '%pinfo object' is just a synonym for object? or ?object."""
644 644
645 645 #print 'pinfo par: <%s>' % parameter_s # dbg
646 646
647 647
648 648 # detail_level: 0 -> obj? , 1 -> obj??
649 649 detail_level = 0
650 650 # We need to detect if we got called as 'pinfo pinfo foo', which can
651 651 # happen if the user types 'pinfo foo?' at the cmd line.
652 652 pinfo,qmark1,oname,qmark2 = \
653 653 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
654 654 if pinfo or qmark1 or qmark2:
655 655 detail_level = 1
656 656 if "*" in oname:
657 657 self.magic_psearch(oname)
658 658 else:
659 659 self._inspect('pinfo', oname, detail_level=detail_level,
660 660 namespaces=namespaces)
661 661
662 662 def magic_pdef(self, parameter_s='', namespaces=None):
663 663 """Print the definition header for any callable object.
664 664
665 665 If the object is a class, print the constructor information."""
666 666 self._inspect('pdef',parameter_s, namespaces)
667 667
668 668 def magic_pdoc(self, parameter_s='', namespaces=None):
669 669 """Print the docstring for an object.
670 670
671 671 If the given object is a class, it will print both the class and the
672 672 constructor docstrings."""
673 673 self._inspect('pdoc',parameter_s, namespaces)
674 674
675 675 def magic_psource(self, parameter_s='', namespaces=None):
676 676 """Print (or run through pager) the source code for an object."""
677 677 self._inspect('psource',parameter_s, namespaces)
678 678
679 679 def magic_pfile(self, parameter_s=''):
680 680 """Print (or run through pager) the file where an object is defined.
681 681
682 682 The file opens at the line where the object definition begins. IPython
683 683 will honor the environment variable PAGER if set, and otherwise will
684 684 do its best to print the file in a convenient form.
685 685
686 686 If the given argument is not an object currently defined, IPython will
687 687 try to interpret it as a filename (automatically adding a .py extension
688 688 if needed). You can thus use %pfile as a syntax highlighting code
689 689 viewer."""
690 690
691 691 # first interpret argument as an object name
692 692 out = self._inspect('pfile',parameter_s)
693 693 # if not, try the input as a filename
694 694 if out == 'not found':
695 695 try:
696 696 filename = get_py_filename(parameter_s)
697 697 except IOError,msg:
698 698 print msg
699 699 return
700 700 page(self.shell.inspector.format(file(filename).read()))
701 701
702 702 def _inspect(self,meth,oname,namespaces=None,**kw):
703 703 """Generic interface to the inspector system.
704 704
705 705 This function is meant to be called by pdef, pdoc & friends."""
706 706
707 707 #oname = oname.strip()
708 708 #print '1- oname: <%r>' % oname # dbg
709 709 try:
710 710 oname = oname.strip().encode('ascii')
711 711 #print '2- oname: <%r>' % oname # dbg
712 712 except UnicodeEncodeError:
713 713 print 'Python identifiers can only contain ascii characters.'
714 714 return 'not found'
715 715
716 716 info = Struct(self._ofind(oname, namespaces))
717 717
718 718 if info.found:
719 719 try:
720 720 IPython.generics.inspect_object(info.obj)
721 721 return
722 722 except IPython.ipapi.TryNext:
723 723 pass
724 724 # Get the docstring of the class property if it exists.
725 725 path = oname.split('.')
726 726 root = '.'.join(path[:-1])
727 727 if info.parent is not None:
728 728 try:
729 729 target = getattr(info.parent, '__class__')
730 730 # The object belongs to a class instance.
731 731 try:
732 732 target = getattr(target, path[-1])
733 733 # The class defines the object.
734 734 if isinstance(target, property):
735 735 oname = root + '.__class__.' + path[-1]
736 736 info = Struct(self._ofind(oname))
737 737 except AttributeError: pass
738 738 except AttributeError: pass
739 739
740 740 pmethod = getattr(self.shell.inspector,meth)
741 741 formatter = info.ismagic and self.format_screen or None
742 742 if meth == 'pdoc':
743 743 pmethod(info.obj,oname,formatter)
744 744 elif meth == 'pinfo':
745 745 pmethod(info.obj,oname,formatter,info,**kw)
746 746 else:
747 747 pmethod(info.obj,oname)
748 748 else:
749 749 print 'Object `%s` not found.' % oname
750 750 return 'not found' # so callers can take other action
751 751
752 752 def magic_psearch(self, parameter_s=''):
753 753 """Search for object in namespaces by wildcard.
754 754
755 755 %psearch [options] PATTERN [OBJECT TYPE]
756 756
757 757 Note: ? can be used as a synonym for %psearch, at the beginning or at
758 758 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
759 759 rest of the command line must be unchanged (options come first), so
760 760 for example the following forms are equivalent
761 761
762 762 %psearch -i a* function
763 763 -i a* function?
764 764 ?-i a* function
765 765
766 766 Arguments:
767 767
768 768 PATTERN
769 769
770 770 where PATTERN is a string containing * as a wildcard similar to its
771 771 use in a shell. The pattern is matched in all namespaces on the
772 772 search path. By default objects starting with a single _ are not
773 773 matched, many IPython generated objects have a single
774 774 underscore. The default is case insensitive matching. Matching is
775 775 also done on the attributes of objects and not only on the objects
776 776 in a module.
777 777
778 778 [OBJECT TYPE]
779 779
780 780 Is the name of a python type from the types module. The name is
781 781 given in lowercase without the ending type, ex. StringType is
782 782 written string. By adding a type here only objects matching the
783 783 given type are matched. Using all here makes the pattern match all
784 784 types (this is the default).
785 785
786 786 Options:
787 787
788 788 -a: makes the pattern match even objects whose names start with a
789 789 single underscore. These names are normally ommitted from the
790 790 search.
791 791
792 792 -i/-c: make the pattern case insensitive/sensitive. If neither of
793 793 these options is given, the default is read from your ipythonrc
794 794 file. The option name which sets this value is
795 795 'wildcards_case_sensitive'. If this option is not specified in your
796 796 ipythonrc file, IPython's internal default is to do a case sensitive
797 797 search.
798 798
799 799 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
800 800 specifiy can be searched in any of the following namespaces:
801 801 'builtin', 'user', 'user_global','internal', 'alias', where
802 802 'builtin' and 'user' are the search defaults. Note that you should
803 803 not use quotes when specifying namespaces.
804 804
805 805 'Builtin' contains the python module builtin, 'user' contains all
806 806 user data, 'alias' only contain the shell aliases and no python
807 807 objects, 'internal' contains objects used by IPython. The
808 808 'user_global' namespace is only used by embedded IPython instances,
809 809 and it contains module-level globals. You can add namespaces to the
810 810 search with -s or exclude them with -e (these options can be given
811 811 more than once).
812 812
813 813 Examples:
814 814
815 815 %psearch a* -> objects beginning with an a
816 816 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
817 817 %psearch a* function -> all functions beginning with an a
818 818 %psearch re.e* -> objects beginning with an e in module re
819 819 %psearch r*.e* -> objects that start with e in modules starting in r
820 820 %psearch r*.* string -> all strings in modules beginning with r
821 821
822 822 Case sensitve search:
823 823
824 824 %psearch -c a* list all object beginning with lower case a
825 825
826 826 Show objects beginning with a single _:
827 827
828 828 %psearch -a _* list objects beginning with a single underscore"""
829 829 try:
830 830 parameter_s = parameter_s.encode('ascii')
831 831 except UnicodeEncodeError:
832 832 print 'Python identifiers can only contain ascii characters.'
833 833 return
834 834
835 835 # default namespaces to be searched
836 836 def_search = ['user','builtin']
837 837
838 838 # Process options/args
839 839 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
840 840 opt = opts.get
841 841 shell = self.shell
842 842 psearch = shell.inspector.psearch
843 843
844 844 # select case options
845 845 if opts.has_key('i'):
846 846 ignore_case = True
847 847 elif opts.has_key('c'):
848 848 ignore_case = False
849 849 else:
850 850 ignore_case = not shell.rc.wildcards_case_sensitive
851 851
852 852 # Build list of namespaces to search from user options
853 853 def_search.extend(opt('s',[]))
854 854 ns_exclude = ns_exclude=opt('e',[])
855 855 ns_search = [nm for nm in def_search if nm not in ns_exclude]
856 856
857 857 # Call the actual search
858 858 try:
859 859 psearch(args,shell.ns_table,ns_search,
860 860 show_all=opt('a'),ignore_case=ignore_case)
861 861 except:
862 862 shell.showtraceback()
863 863
864 864 def magic_who_ls(self, parameter_s=''):
865 865 """Return a sorted list of all interactive variables.
866 866
867 867 If arguments are given, only variables of types matching these
868 868 arguments are returned."""
869 869
870 870 user_ns = self.shell.user_ns
871 871 internal_ns = self.shell.internal_ns
872 872 user_config_ns = self.shell.user_config_ns
873 873 out = []
874 874 typelist = parameter_s.split()
875 875
876 876 for i in user_ns:
877 877 if not (i.startswith('_') or i.startswith('_i')) \
878 878 and not (i in internal_ns or i in user_config_ns):
879 879 if typelist:
880 880 if type(user_ns[i]).__name__ in typelist:
881 881 out.append(i)
882 882 else:
883 883 out.append(i)
884 884 out.sort()
885 885 return out
886 886
887 887 def magic_who(self, parameter_s=''):
888 888 """Print all interactive variables, with some minimal formatting.
889 889
890 890 If any arguments are given, only variables whose type matches one of
891 891 these are printed. For example:
892 892
893 893 %who function str
894 894
895 895 will only list functions and strings, excluding all other types of
896 896 variables. To find the proper type names, simply use type(var) at a
897 897 command line to see how python prints type names. For example:
898 898
899 899 In [1]: type('hello')\\
900 900 Out[1]: <type 'str'>
901 901
902 902 indicates that the type name for strings is 'str'.
903 903
904 904 %who always excludes executed names loaded through your configuration
905 905 file and things which are internal to IPython.
906 906
907 907 This is deliberate, as typically you may load many modules and the
908 908 purpose of %who is to show you only what you've manually defined."""
909 909
910 910 varlist = self.magic_who_ls(parameter_s)
911 911 if not varlist:
912 912 if parameter_s:
913 913 print 'No variables match your requested type.'
914 914 else:
915 915 print 'Interactive namespace is empty.'
916 916 return
917 917
918 918 # if we have variables, move on...
919 919 count = 0
920 920 for i in varlist:
921 921 print i+'\t',
922 922 count += 1
923 923 if count > 8:
924 924 count = 0
925 925 print
926 926 print
927 927
928 928 def magic_whos(self, parameter_s=''):
929 929 """Like %who, but gives some extra information about each variable.
930 930
931 931 The same type filtering of %who can be applied here.
932 932
933 933 For all variables, the type is printed. Additionally it prints:
934 934
935 935 - For {},[],(): their length.
936 936
937 937 - For numpy and Numeric arrays, a summary with shape, number of
938 938 elements, typecode and size in memory.
939 939
940 940 - Everything else: a string representation, snipping their middle if
941 941 too long."""
942 942
943 943 varnames = self.magic_who_ls(parameter_s)
944 944 if not varnames:
945 945 if parameter_s:
946 946 print 'No variables match your requested type.'
947 947 else:
948 948 print 'Interactive namespace is empty.'
949 949 return
950 950
951 951 # if we have variables, move on...
952 952
953 953 # for these types, show len() instead of data:
954 954 seq_types = [types.DictType,types.ListType,types.TupleType]
955 955
956 956 # for numpy/Numeric arrays, display summary info
957 957 try:
958 958 import numpy
959 959 except ImportError:
960 960 ndarray_type = None
961 961 else:
962 962 ndarray_type = numpy.ndarray.__name__
963 963 try:
964 964 import Numeric
965 965 except ImportError:
966 966 array_type = None
967 967 else:
968 968 array_type = Numeric.ArrayType.__name__
969 969
970 970 # Find all variable names and types so we can figure out column sizes
971 971 def get_vars(i):
972 972 return self.shell.user_ns[i]
973 973
974 974 # some types are well known and can be shorter
975 975 abbrevs = {'IPython.macro.Macro' : 'Macro'}
976 976 def type_name(v):
977 977 tn = type(v).__name__
978 978 return abbrevs.get(tn,tn)
979 979
980 980 varlist = map(get_vars,varnames)
981 981
982 982 typelist = []
983 983 for vv in varlist:
984 984 tt = type_name(vv)
985 985
986 986 if tt=='instance':
987 987 typelist.append( abbrevs.get(str(vv.__class__),
988 988 str(vv.__class__)))
989 989 else:
990 990 typelist.append(tt)
991 991
992 992 # column labels and # of spaces as separator
993 993 varlabel = 'Variable'
994 994 typelabel = 'Type'
995 995 datalabel = 'Data/Info'
996 996 colsep = 3
997 997 # variable format strings
998 998 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
999 999 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
1000 1000 aformat = "%s: %s elems, type `%s`, %s bytes"
1001 1001 # find the size of the columns to format the output nicely
1002 1002 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
1003 1003 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
1004 1004 # table header
1005 1005 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
1006 1006 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
1007 1007 # and the table itself
1008 1008 kb = 1024
1009 1009 Mb = 1048576 # kb**2
1010 1010 for vname,var,vtype in zip(varnames,varlist,typelist):
1011 1011 print itpl(vformat),
1012 1012 if vtype in seq_types:
1013 1013 print len(var)
1014 1014 elif vtype in [array_type,ndarray_type]:
1015 1015 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
1016 1016 if vtype==ndarray_type:
1017 1017 # numpy
1018 1018 vsize = var.size
1019 1019 vbytes = vsize*var.itemsize
1020 1020 vdtype = var.dtype
1021 1021 else:
1022 1022 # Numeric
1023 1023 vsize = Numeric.size(var)
1024 1024 vbytes = vsize*var.itemsize()
1025 1025 vdtype = var.typecode()
1026 1026
1027 1027 if vbytes < 100000:
1028 1028 print aformat % (vshape,vsize,vdtype,vbytes)
1029 1029 else:
1030 1030 print aformat % (vshape,vsize,vdtype,vbytes),
1031 1031 if vbytes < Mb:
1032 1032 print '(%s kb)' % (vbytes/kb,)
1033 1033 else:
1034 1034 print '(%s Mb)' % (vbytes/Mb,)
1035 1035 else:
1036 1036 try:
1037 1037 vstr = str(var)
1038 1038 except UnicodeEncodeError:
1039 1039 vstr = unicode(var).encode(sys.getdefaultencoding(),
1040 1040 'backslashreplace')
1041 1041 vstr = vstr.replace('\n','\\n')
1042 1042 if len(vstr) < 50:
1043 1043 print vstr
1044 1044 else:
1045 1045 printpl(vfmt_short)
1046 1046
1047 1047 def magic_reset(self, parameter_s=''):
1048 1048 """Resets the namespace by removing all names defined by the user.
1049 1049
1050 1050 Input/Output history are left around in case you need them.
1051 1051
1052 1052 Parameters
1053 1053 ----------
1054 1054 -y : force reset without asking for confirmation.
1055 1055
1056 1056 Examples
1057 1057 --------
1058 1058 In [6]: a = 1
1059 1059
1060 1060 In [7]: a
1061 1061 Out[7]: 1
1062 1062
1063 1063 In [8]: 'a' in _ip.user_ns
1064 1064 Out[8]: True
1065 1065
1066 1066 In [9]: %reset -f
1067 1067
1068 1068 In [10]: 'a' in _ip.user_ns
1069 1069 Out[10]: False
1070 1070 """
1071 1071
1072 1072 if parameter_s == '-f':
1073 1073 ans = True
1074 1074 else:
1075 1075 ans = self.shell.ask_yes_no(
1076 1076 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1077 1077 if not ans:
1078 1078 print 'Nothing done.'
1079 1079 return
1080 1080 user_ns = self.shell.user_ns
1081 1081 for i in self.magic_who_ls():
1082 1082 del(user_ns[i])
1083 1083
1084 1084 # Also flush the private list of module references kept for script
1085 1085 # execution protection
1086 1086 self.shell.clear_main_mod_cache()
1087 1087
1088 1088 def magic_logstart(self,parameter_s=''):
1089 1089 """Start logging anywhere in a session.
1090 1090
1091 1091 %logstart [-o|-r|-t] [log_name [log_mode]]
1092 1092
1093 1093 If no name is given, it defaults to a file named 'ipython_log.py' in your
1094 1094 current directory, in 'rotate' mode (see below).
1095 1095
1096 1096 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1097 1097 history up to that point and then continues logging.
1098 1098
1099 1099 %logstart takes a second optional parameter: logging mode. This can be one
1100 1100 of (note that the modes are given unquoted):\\
1101 1101 append: well, that says it.\\
1102 1102 backup: rename (if exists) to name~ and start name.\\
1103 1103 global: single logfile in your home dir, appended to.\\
1104 1104 over : overwrite existing log.\\
1105 1105 rotate: create rotating logs name.1~, name.2~, etc.
1106 1106
1107 1107 Options:
1108 1108
1109 1109 -o: log also IPython's output. In this mode, all commands which
1110 1110 generate an Out[NN] prompt are recorded to the logfile, right after
1111 1111 their corresponding input line. The output lines are always
1112 1112 prepended with a '#[Out]# ' marker, so that the log remains valid
1113 1113 Python code.
1114 1114
1115 1115 Since this marker is always the same, filtering only the output from
1116 1116 a log is very easy, using for example a simple awk call:
1117 1117
1118 1118 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1119 1119
1120 1120 -r: log 'raw' input. Normally, IPython's logs contain the processed
1121 1121 input, so that user lines are logged in their final form, converted
1122 1122 into valid Python. For example, %Exit is logged as
1123 1123 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1124 1124 exactly as typed, with no transformations applied.
1125 1125
1126 1126 -t: put timestamps before each input line logged (these are put in
1127 1127 comments)."""
1128 1128
1129 1129 opts,par = self.parse_options(parameter_s,'ort')
1130 1130 log_output = 'o' in opts
1131 1131 log_raw_input = 'r' in opts
1132 1132 timestamp = 't' in opts
1133 1133
1134 1134 rc = self.shell.rc
1135 1135 logger = self.shell.logger
1136 1136
1137 1137 # if no args are given, the defaults set in the logger constructor by
1138 1138 # ipytohn remain valid
1139 1139 if par:
1140 1140 try:
1141 1141 logfname,logmode = par.split()
1142 1142 except:
1143 1143 logfname = par
1144 1144 logmode = 'backup'
1145 1145 else:
1146 1146 logfname = logger.logfname
1147 1147 logmode = logger.logmode
1148 1148 # put logfname into rc struct as if it had been called on the command
1149 1149 # line, so it ends up saved in the log header Save it in case we need
1150 1150 # to restore it...
1151 1151 old_logfile = rc.opts.get('logfile','')
1152 1152 if logfname:
1153 1153 logfname = os.path.expanduser(logfname)
1154 1154 rc.opts.logfile = logfname
1155 1155 loghead = self.shell.loghead_tpl % (rc.opts,rc.args)
1156 1156 try:
1157 1157 started = logger.logstart(logfname,loghead,logmode,
1158 1158 log_output,timestamp,log_raw_input)
1159 1159 except:
1160 1160 rc.opts.logfile = old_logfile
1161 1161 warn("Couldn't start log: %s" % sys.exc_info()[1])
1162 1162 else:
1163 1163 # log input history up to this point, optionally interleaving
1164 1164 # output if requested
1165 1165
1166 1166 if timestamp:
1167 1167 # disable timestamping for the previous history, since we've
1168 1168 # lost those already (no time machine here).
1169 1169 logger.timestamp = False
1170 1170
1171 1171 if log_raw_input:
1172 1172 input_hist = self.shell.input_hist_raw
1173 1173 else:
1174 1174 input_hist = self.shell.input_hist
1175 1175
1176 1176 if log_output:
1177 1177 log_write = logger.log_write
1178 1178 output_hist = self.shell.output_hist
1179 1179 for n in range(1,len(input_hist)-1):
1180 1180 log_write(input_hist[n].rstrip())
1181 1181 if n in output_hist:
1182 1182 log_write(repr(output_hist[n]),'output')
1183 1183 else:
1184 1184 logger.log_write(input_hist[1:])
1185 1185 if timestamp:
1186 1186 # re-enable timestamping
1187 1187 logger.timestamp = True
1188 1188
1189 1189 print ('Activating auto-logging. '
1190 1190 'Current session state plus future input saved.')
1191 1191 logger.logstate()
1192 1192
1193 1193 def magic_logstop(self,parameter_s=''):
1194 1194 """Fully stop logging and close log file.
1195 1195
1196 1196 In order to start logging again, a new %logstart call needs to be made,
1197 1197 possibly (though not necessarily) with a new filename, mode and other
1198 1198 options."""
1199 1199 self.logger.logstop()
1200 1200
1201 1201 def magic_logoff(self,parameter_s=''):
1202 1202 """Temporarily stop logging.
1203 1203
1204 1204 You must have previously started logging."""
1205 1205 self.shell.logger.switch_log(0)
1206 1206
1207 1207 def magic_logon(self,parameter_s=''):
1208 1208 """Restart logging.
1209 1209
1210 1210 This function is for restarting logging which you've temporarily
1211 1211 stopped with %logoff. For starting logging for the first time, you
1212 1212 must use the %logstart function, which allows you to specify an
1213 1213 optional log filename."""
1214 1214
1215 1215 self.shell.logger.switch_log(1)
1216 1216
1217 1217 def magic_logstate(self,parameter_s=''):
1218 1218 """Print the status of the logging system."""
1219 1219
1220 1220 self.shell.logger.logstate()
1221 1221
1222 1222 def magic_pdb(self, parameter_s=''):
1223 1223 """Control the automatic calling of the pdb interactive debugger.
1224 1224
1225 1225 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1226 1226 argument it works as a toggle.
1227 1227
1228 1228 When an exception is triggered, IPython can optionally call the
1229 1229 interactive pdb debugger after the traceback printout. %pdb toggles
1230 1230 this feature on and off.
1231 1231
1232 1232 The initial state of this feature is set in your ipythonrc
1233 1233 configuration file (the variable is called 'pdb').
1234 1234
1235 1235 If you want to just activate the debugger AFTER an exception has fired,
1236 1236 without having to type '%pdb on' and rerunning your code, you can use
1237 1237 the %debug magic."""
1238 1238
1239 1239 par = parameter_s.strip().lower()
1240 1240
1241 1241 if par:
1242 1242 try:
1243 1243 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1244 1244 except KeyError:
1245 1245 print ('Incorrect argument. Use on/1, off/0, '
1246 1246 'or nothing for a toggle.')
1247 1247 return
1248 1248 else:
1249 1249 # toggle
1250 1250 new_pdb = not self.shell.call_pdb
1251 1251
1252 1252 # set on the shell
1253 1253 self.shell.call_pdb = new_pdb
1254 1254 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1255 1255
1256 1256 def magic_debug(self, parameter_s=''):
1257 1257 """Activate the interactive debugger in post-mortem mode.
1258 1258
1259 1259 If an exception has just occurred, this lets you inspect its stack
1260 1260 frames interactively. Note that this will always work only on the last
1261 1261 traceback that occurred, so you must call this quickly after an
1262 1262 exception that you wish to inspect has fired, because if another one
1263 1263 occurs, it clobbers the previous one.
1264 1264
1265 1265 If you want IPython to automatically do this on every exception, see
1266 1266 the %pdb magic for more details.
1267 1267 """
1268 1268
1269 1269 self.shell.debugger(force=True)
1270 1270
1271 1271 @testdec.skip_doctest
1272 1272 def magic_prun(self, parameter_s ='',user_mode=1,
1273 1273 opts=None,arg_lst=None,prog_ns=None):
1274 1274
1275 1275 """Run a statement through the python code profiler.
1276 1276
1277 1277 Usage:
1278 1278 %prun [options] statement
1279 1279
1280 1280 The given statement (which doesn't require quote marks) is run via the
1281 1281 python profiler in a manner similar to the profile.run() function.
1282 1282 Namespaces are internally managed to work correctly; profile.run
1283 1283 cannot be used in IPython because it makes certain assumptions about
1284 1284 namespaces which do not hold under IPython.
1285 1285
1286 1286 Options:
1287 1287
1288 1288 -l <limit>: you can place restrictions on what or how much of the
1289 1289 profile gets printed. The limit value can be:
1290 1290
1291 1291 * A string: only information for function names containing this string
1292 1292 is printed.
1293 1293
1294 1294 * An integer: only these many lines are printed.
1295 1295
1296 1296 * A float (between 0 and 1): this fraction of the report is printed
1297 1297 (for example, use a limit of 0.4 to see the topmost 40% only).
1298 1298
1299 1299 You can combine several limits with repeated use of the option. For
1300 1300 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1301 1301 information about class constructors.
1302 1302
1303 1303 -r: return the pstats.Stats object generated by the profiling. This
1304 1304 object has all the information about the profile in it, and you can
1305 1305 later use it for further analysis or in other functions.
1306 1306
1307 1307 -s <key>: sort profile by given key. You can provide more than one key
1308 1308 by using the option several times: '-s key1 -s key2 -s key3...'. The
1309 1309 default sorting key is 'time'.
1310 1310
1311 1311 The following is copied verbatim from the profile documentation
1312 1312 referenced below:
1313 1313
1314 1314 When more than one key is provided, additional keys are used as
1315 1315 secondary criteria when the there is equality in all keys selected
1316 1316 before them.
1317 1317
1318 1318 Abbreviations can be used for any key names, as long as the
1319 1319 abbreviation is unambiguous. The following are the keys currently
1320 1320 defined:
1321 1321
1322 1322 Valid Arg Meaning
1323 1323 "calls" call count
1324 1324 "cumulative" cumulative time
1325 1325 "file" file name
1326 1326 "module" file name
1327 1327 "pcalls" primitive call count
1328 1328 "line" line number
1329 1329 "name" function name
1330 1330 "nfl" name/file/line
1331 1331 "stdname" standard name
1332 1332 "time" internal time
1333 1333
1334 1334 Note that all sorts on statistics are in descending order (placing
1335 1335 most time consuming items first), where as name, file, and line number
1336 1336 searches are in ascending order (i.e., alphabetical). The subtle
1337 1337 distinction between "nfl" and "stdname" is that the standard name is a
1338 1338 sort of the name as printed, which means that the embedded line
1339 1339 numbers get compared in an odd way. For example, lines 3, 20, and 40
1340 1340 would (if the file names were the same) appear in the string order
1341 1341 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1342 1342 line numbers. In fact, sort_stats("nfl") is the same as
1343 1343 sort_stats("name", "file", "line").
1344 1344
1345 1345 -T <filename>: save profile results as shown on screen to a text
1346 1346 file. The profile is still shown on screen.
1347 1347
1348 1348 -D <filename>: save (via dump_stats) profile statistics to given
1349 1349 filename. This data is in a format understod by the pstats module, and
1350 1350 is generated by a call to the dump_stats() method of profile
1351 1351 objects. The profile is still shown on screen.
1352 1352
1353 1353 If you want to run complete programs under the profiler's control, use
1354 1354 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1355 1355 contains profiler specific options as described here.
1356 1356
1357 1357 You can read the complete documentation for the profile module with::
1358 1358
1359 1359 In [1]: import profile; profile.help()
1360 1360 """
1361 1361
1362 1362 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1363 1363 # protect user quote marks
1364 1364 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1365 1365
1366 1366 if user_mode: # regular user call
1367 1367 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1368 1368 list_all=1)
1369 1369 namespace = self.shell.user_ns
1370 1370 else: # called to run a program by %run -p
1371 1371 try:
1372 1372 filename = get_py_filename(arg_lst[0])
1373 1373 except IOError,msg:
1374 1374 error(msg)
1375 1375 return
1376 1376
1377 1377 arg_str = 'execfile(filename,prog_ns)'
1378 1378 namespace = locals()
1379 1379
1380 1380 opts.merge(opts_def)
1381 1381
1382 1382 prof = profile.Profile()
1383 1383 try:
1384 1384 prof = prof.runctx(arg_str,namespace,namespace)
1385 1385 sys_exit = ''
1386 1386 except SystemExit:
1387 1387 sys_exit = """*** SystemExit exception caught in code being profiled."""
1388 1388
1389 1389 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1390 1390
1391 1391 lims = opts.l
1392 1392 if lims:
1393 1393 lims = [] # rebuild lims with ints/floats/strings
1394 1394 for lim in opts.l:
1395 1395 try:
1396 1396 lims.append(int(lim))
1397 1397 except ValueError:
1398 1398 try:
1399 1399 lims.append(float(lim))
1400 1400 except ValueError:
1401 1401 lims.append(lim)
1402 1402
1403 1403 # Trap output.
1404 1404 stdout_trap = StringIO()
1405 1405
1406 1406 if hasattr(stats,'stream'):
1407 1407 # In newer versions of python, the stats object has a 'stream'
1408 1408 # attribute to write into.
1409 1409 stats.stream = stdout_trap
1410 1410 stats.print_stats(*lims)
1411 1411 else:
1412 1412 # For older versions, we manually redirect stdout during printing
1413 1413 sys_stdout = sys.stdout
1414 1414 try:
1415 1415 sys.stdout = stdout_trap
1416 1416 stats.print_stats(*lims)
1417 1417 finally:
1418 1418 sys.stdout = sys_stdout
1419 1419
1420 1420 output = stdout_trap.getvalue()
1421 1421 output = output.rstrip()
1422 1422
1423 1423 page(output,screen_lines=self.shell.rc.screen_length)
1424 1424 print sys_exit,
1425 1425
1426 1426 dump_file = opts.D[0]
1427 1427 text_file = opts.T[0]
1428 1428 if dump_file:
1429 1429 prof.dump_stats(dump_file)
1430 1430 print '\n*** Profile stats marshalled to file',\
1431 1431 `dump_file`+'.',sys_exit
1432 1432 if text_file:
1433 1433 pfile = file(text_file,'w')
1434 1434 pfile.write(output)
1435 1435 pfile.close()
1436 1436 print '\n*** Profile printout saved to text file',\
1437 1437 `text_file`+'.',sys_exit
1438 1438
1439 1439 if opts.has_key('r'):
1440 1440 return stats
1441 1441 else:
1442 1442 return None
1443 1443
1444 1444 @testdec.skip_doctest
1445 1445 def magic_run(self, parameter_s ='',runner=None,
1446 1446 file_finder=get_py_filename):
1447 1447 """Run the named file inside IPython as a program.
1448 1448
1449 1449 Usage:\\
1450 1450 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1451 1451
1452 1452 Parameters after the filename are passed as command-line arguments to
1453 1453 the program (put in sys.argv). Then, control returns to IPython's
1454 1454 prompt.
1455 1455
1456 1456 This is similar to running at a system prompt:\\
1457 1457 $ python file args\\
1458 1458 but with the advantage of giving you IPython's tracebacks, and of
1459 1459 loading all variables into your interactive namespace for further use
1460 1460 (unless -p is used, see below).
1461 1461
1462 1462 The file is executed in a namespace initially consisting only of
1463 1463 __name__=='__main__' and sys.argv constructed as indicated. It thus
1464 1464 sees its environment as if it were being run as a stand-alone program
1465 1465 (except for sharing global objects such as previously imported
1466 1466 modules). But after execution, the IPython interactive namespace gets
1467 1467 updated with all variables defined in the program (except for __name__
1468 1468 and sys.argv). This allows for very convenient loading of code for
1469 1469 interactive work, while giving each program a 'clean sheet' to run in.
1470 1470
1471 1471 Options:
1472 1472
1473 1473 -n: __name__ is NOT set to '__main__', but to the running file's name
1474 1474 without extension (as python does under import). This allows running
1475 1475 scripts and reloading the definitions in them without calling code
1476 1476 protected by an ' if __name__ == "__main__" ' clause.
1477 1477
1478 1478 -i: run the file in IPython's namespace instead of an empty one. This
1479 1479 is useful if you are experimenting with code written in a text editor
1480 1480 which depends on variables defined interactively.
1481 1481
1482 1482 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1483 1483 being run. This is particularly useful if IPython is being used to
1484 1484 run unittests, which always exit with a sys.exit() call. In such
1485 1485 cases you are interested in the output of the test results, not in
1486 1486 seeing a traceback of the unittest module.
1487 1487
1488 1488 -t: print timing information at the end of the run. IPython will give
1489 1489 you an estimated CPU time consumption for your script, which under
1490 1490 Unix uses the resource module to avoid the wraparound problems of
1491 1491 time.clock(). Under Unix, an estimate of time spent on system tasks
1492 1492 is also given (for Windows platforms this is reported as 0.0).
1493 1493
1494 1494 If -t is given, an additional -N<N> option can be given, where <N>
1495 1495 must be an integer indicating how many times you want the script to
1496 1496 run. The final timing report will include total and per run results.
1497 1497
1498 1498 For example (testing the script uniq_stable.py):
1499 1499
1500 1500 In [1]: run -t uniq_stable
1501 1501
1502 1502 IPython CPU timings (estimated):\\
1503 1503 User : 0.19597 s.\\
1504 1504 System: 0.0 s.\\
1505 1505
1506 1506 In [2]: run -t -N5 uniq_stable
1507 1507
1508 1508 IPython CPU timings (estimated):\\
1509 1509 Total runs performed: 5\\
1510 1510 Times : Total Per run\\
1511 1511 User : 0.910862 s, 0.1821724 s.\\
1512 1512 System: 0.0 s, 0.0 s.
1513 1513
1514 1514 -d: run your program under the control of pdb, the Python debugger.
1515 1515 This allows you to execute your program step by step, watch variables,
1516 1516 etc. Internally, what IPython does is similar to calling:
1517 1517
1518 1518 pdb.run('execfile("YOURFILENAME")')
1519 1519
1520 1520 with a breakpoint set on line 1 of your file. You can change the line
1521 1521 number for this automatic breakpoint to be <N> by using the -bN option
1522 1522 (where N must be an integer). For example:
1523 1523
1524 1524 %run -d -b40 myscript
1525 1525
1526 1526 will set the first breakpoint at line 40 in myscript.py. Note that
1527 1527 the first breakpoint must be set on a line which actually does
1528 1528 something (not a comment or docstring) for it to stop execution.
1529 1529
1530 1530 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1531 1531 first enter 'c' (without qoutes) to start execution up to the first
1532 1532 breakpoint.
1533 1533
1534 1534 Entering 'help' gives information about the use of the debugger. You
1535 1535 can easily see pdb's full documentation with "import pdb;pdb.help()"
1536 1536 at a prompt.
1537 1537
1538 1538 -p: run program under the control of the Python profiler module (which
1539 1539 prints a detailed report of execution times, function calls, etc).
1540 1540
1541 1541 You can pass other options after -p which affect the behavior of the
1542 1542 profiler itself. See the docs for %prun for details.
1543 1543
1544 1544 In this mode, the program's variables do NOT propagate back to the
1545 1545 IPython interactive namespace (because they remain in the namespace
1546 1546 where the profiler executes them).
1547 1547
1548 1548 Internally this triggers a call to %prun, see its documentation for
1549 1549 details on the options available specifically for profiling.
1550 1550
1551 1551 There is one special usage for which the text above doesn't apply:
1552 1552 if the filename ends with .ipy, the file is run as ipython script,
1553 1553 just as if the commands were written on IPython prompt.
1554 1554 """
1555 1555
1556 1556 # get arguments and set sys.argv for program to be run.
1557 1557 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1558 1558 mode='list',list_all=1)
1559 1559
1560 1560 try:
1561 1561 filename = file_finder(arg_lst[0])
1562 1562 except IndexError:
1563 1563 warn('you must provide at least a filename.')
1564 1564 print '\n%run:\n',OInspect.getdoc(self.magic_run)
1565 1565 return
1566 1566 except IOError,msg:
1567 1567 error(msg)
1568 1568 return
1569 1569
1570 1570 if filename.lower().endswith('.ipy'):
1571 1571 self.api.runlines(open(filename).read())
1572 1572 return
1573 1573
1574 1574 # Control the response to exit() calls made by the script being run
1575 1575 exit_ignore = opts.has_key('e')
1576 1576
1577 1577 # Make sure that the running script gets a proper sys.argv as if it
1578 1578 # were run from a system shell.
1579 1579 save_argv = sys.argv # save it for later restoring
1580 1580 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1581 1581
1582 1582 if opts.has_key('i'):
1583 1583 # Run in user's interactive namespace
1584 1584 prog_ns = self.shell.user_ns
1585 1585 __name__save = self.shell.user_ns['__name__']
1586 1586 prog_ns['__name__'] = '__main__'
1587
1588 ##main_mod = FakeModule(prog_ns)
1589 1587 main_mod = self.shell.new_main_mod(prog_ns)
1590
1591 1588 else:
1592 1589 # Run in a fresh, empty namespace
1593 1590 if opts.has_key('n'):
1594 1591 name = os.path.splitext(os.path.basename(filename))[0]
1595 1592 else:
1596 1593 name = '__main__'
1597 1594
1598 1595 main_mod = self.shell.new_main_mod()
1599
1600 1596 prog_ns = main_mod.__dict__
1601 1597 prog_ns['__name__'] = name
1602
1603 1598
1604 1599 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1605 1600 # set the __file__ global in the script's namespace
1606 1601 prog_ns['__file__'] = filename
1607 1602
1608 1603 # pickle fix. See iplib for an explanation. But we need to make sure
1609 1604 # that, if we overwrite __main__, we replace it at the end
1610 1605 main_mod_name = prog_ns['__name__']
1611 1606
1612 1607 if main_mod_name == '__main__':
1613 1608 restore_main = sys.modules['__main__']
1614 1609 else:
1615 1610 restore_main = False
1616 1611
1617 1612 # This needs to be undone at the end to prevent holding references to
1618 1613 # every single object ever created.
1619 1614 sys.modules[main_mod_name] = main_mod
1620 1615
1621 1616 stats = None
1622 1617 try:
1623 1618 self.shell.savehist()
1624 1619
1625 1620 if opts.has_key('p'):
1626 1621 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1627 1622 else:
1628 1623 if opts.has_key('d'):
1629 1624 deb = Debugger.Pdb(self.shell.rc.colors)
1630 1625 # reset Breakpoint state, which is moronically kept
1631 1626 # in a class
1632 1627 bdb.Breakpoint.next = 1
1633 1628 bdb.Breakpoint.bplist = {}
1634 1629 bdb.Breakpoint.bpbynumber = [None]
1635 1630 # Set an initial breakpoint to stop execution
1636 1631 maxtries = 10
1637 1632 bp = int(opts.get('b',[1])[0])
1638 1633 checkline = deb.checkline(filename,bp)
1639 1634 if not checkline:
1640 1635 for bp in range(bp+1,bp+maxtries+1):
1641 1636 if deb.checkline(filename,bp):
1642 1637 break
1643 1638 else:
1644 1639 msg = ("\nI failed to find a valid line to set "
1645 1640 "a breakpoint\n"
1646 1641 "after trying up to line: %s.\n"
1647 1642 "Please set a valid breakpoint manually "
1648 1643 "with the -b option." % bp)
1649 1644 error(msg)
1650 1645 return
1651 1646 # if we find a good linenumber, set the breakpoint
1652 1647 deb.do_break('%s:%s' % (filename,bp))
1653 1648 # Start file run
1654 1649 print "NOTE: Enter 'c' at the",
1655 1650 print "%s prompt to start your script." % deb.prompt
1656 1651 try:
1657 1652 deb.run('execfile("%s")' % filename,prog_ns)
1658 1653
1659 1654 except:
1660 1655 etype, value, tb = sys.exc_info()
1661 1656 # Skip three frames in the traceback: the %run one,
1662 1657 # one inside bdb.py, and the command-line typed by the
1663 1658 # user (run by exec in pdb itself).
1664 1659 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1665 1660 else:
1666 1661 if runner is None:
1667 1662 runner = self.shell.safe_execfile
1668 1663 if opts.has_key('t'):
1669 1664 # timed execution
1670 1665 try:
1671 1666 nruns = int(opts['N'][0])
1672 1667 if nruns < 1:
1673 1668 error('Number of runs must be >=1')
1674 1669 return
1675 1670 except (KeyError):
1676 1671 nruns = 1
1677 1672 if nruns == 1:
1678 1673 t0 = clock2()
1679 1674 runner(filename,prog_ns,prog_ns,
1680 1675 exit_ignore=exit_ignore)
1681 1676 t1 = clock2()
1682 1677 t_usr = t1[0]-t0[0]
1683 1678 t_sys = t1[1]-t1[1]
1684 1679 print "\nIPython CPU timings (estimated):"
1685 1680 print " User : %10s s." % t_usr
1686 1681 print " System: %10s s." % t_sys
1687 1682 else:
1688 1683 runs = range(nruns)
1689 1684 t0 = clock2()
1690 1685 for nr in runs:
1691 1686 runner(filename,prog_ns,prog_ns,
1692 1687 exit_ignore=exit_ignore)
1693 1688 t1 = clock2()
1694 1689 t_usr = t1[0]-t0[0]
1695 1690 t_sys = t1[1]-t1[1]
1696 1691 print "\nIPython CPU timings (estimated):"
1697 1692 print "Total runs performed:",nruns
1698 1693 print " Times : %10s %10s" % ('Total','Per run')
1699 1694 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1700 1695 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1701 1696
1702 1697 else:
1703 1698 # regular execution
1704 1699 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1705 1700
1706 1701 if opts.has_key('i'):
1707 1702 self.shell.user_ns['__name__'] = __name__save
1708 1703 else:
1709 1704 # The shell MUST hold a reference to prog_ns so after %run
1710 1705 # exits, the python deletion mechanism doesn't zero it out
1711 1706 # (leaving dangling references).
1712 1707 self.shell.cache_main_mod(prog_ns,filename)
1713 1708 # update IPython interactive namespace
1714 1709 del prog_ns['__name__']
1715 1710 self.shell.user_ns.update(prog_ns)
1716 1711 finally:
1717 1712 # Ensure key global structures are restored
1718 1713 sys.argv = save_argv
1719 1714 if restore_main:
1720 1715 sys.modules['__main__'] = restore_main
1721 1716 else:
1722 1717 # Remove from sys.modules the reference to main_mod we'd
1723 1718 # added. Otherwise it will trap references to objects
1724 1719 # contained therein.
1725 1720 del sys.modules[main_mod_name]
1726 1721
1727 1722 self.shell.reloadhist()
1728 1723
1729 1724 return stats
1730 1725
1731 1726 def magic_runlog(self, parameter_s =''):
1732 1727 """Run files as logs.
1733 1728
1734 1729 Usage:\\
1735 1730 %runlog file1 file2 ...
1736 1731
1737 1732 Run the named files (treating them as log files) in sequence inside
1738 1733 the interpreter, and return to the prompt. This is much slower than
1739 1734 %run because each line is executed in a try/except block, but it
1740 1735 allows running files with syntax errors in them.
1741 1736
1742 1737 Normally IPython will guess when a file is one of its own logfiles, so
1743 1738 you can typically use %run even for logs. This shorthand allows you to
1744 1739 force any file to be treated as a log file."""
1745 1740
1746 1741 for f in parameter_s.split():
1747 1742 self.shell.safe_execfile(f,self.shell.user_ns,
1748 1743 self.shell.user_ns,islog=1)
1749 1744
1750 1745 @testdec.skip_doctest
1751 1746 def magic_timeit(self, parameter_s =''):
1752 1747 """Time execution of a Python statement or expression
1753 1748
1754 1749 Usage:\\
1755 1750 %timeit [-n<N> -r<R> [-t|-c]] statement
1756 1751
1757 1752 Time execution of a Python statement or expression using the timeit
1758 1753 module.
1759 1754
1760 1755 Options:
1761 1756 -n<N>: execute the given statement <N> times in a loop. If this value
1762 1757 is not given, a fitting value is chosen.
1763 1758
1764 1759 -r<R>: repeat the loop iteration <R> times and take the best result.
1765 1760 Default: 3
1766 1761
1767 1762 -t: use time.time to measure the time, which is the default on Unix.
1768 1763 This function measures wall time.
1769 1764
1770 1765 -c: use time.clock to measure the time, which is the default on
1771 1766 Windows and measures wall time. On Unix, resource.getrusage is used
1772 1767 instead and returns the CPU user time.
1773 1768
1774 1769 -p<P>: use a precision of <P> digits to display the timing result.
1775 1770 Default: 3
1776 1771
1777 1772
1778 1773 Examples:
1779 1774
1780 1775 In [1]: %timeit pass
1781 1776 10000000 loops, best of 3: 53.3 ns per loop
1782 1777
1783 1778 In [2]: u = None
1784 1779
1785 1780 In [3]: %timeit u is None
1786 1781 10000000 loops, best of 3: 184 ns per loop
1787 1782
1788 1783 In [4]: %timeit -r 4 u == None
1789 1784 1000000 loops, best of 4: 242 ns per loop
1790 1785
1791 1786 In [5]: import time
1792 1787
1793 1788 In [6]: %timeit -n1 time.sleep(2)
1794 1789 1 loops, best of 3: 2 s per loop
1795 1790
1796 1791
1797 1792 The times reported by %timeit will be slightly higher than those
1798 1793 reported by the timeit.py script when variables are accessed. This is
1799 1794 due to the fact that %timeit executes the statement in the namespace
1800 1795 of the shell, compared with timeit.py, which uses a single setup
1801 1796 statement to import function or create variables. Generally, the bias
1802 1797 does not matter as long as results from timeit.py are not mixed with
1803 1798 those from %timeit."""
1804 1799
1805 1800 import timeit
1806 1801 import math
1807 1802
1808 1803 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1809 1804 # certain terminals. Until we figure out a robust way of
1810 1805 # auto-detecting if the terminal can deal with it, use plain 'us' for
1811 1806 # microseconds. I am really NOT happy about disabling the proper
1812 1807 # 'micro' prefix, but crashing is worse... If anyone knows what the
1813 1808 # right solution for this is, I'm all ears...
1814 1809 #
1815 1810 # Note: using
1816 1811 #
1817 1812 # s = u'\xb5'
1818 1813 # s.encode(sys.getdefaultencoding())
1819 1814 #
1820 1815 # is not sufficient, as I've seen terminals where that fails but
1821 1816 # print s
1822 1817 #
1823 1818 # succeeds
1824 1819 #
1825 1820 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1826 1821
1827 1822 #units = [u"s", u"ms",u'\xb5',"ns"]
1828 1823 units = [u"s", u"ms",u'us',"ns"]
1829 1824
1830 1825 scaling = [1, 1e3, 1e6, 1e9]
1831 1826
1832 1827 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1833 1828 posix=False)
1834 1829 if stmt == "":
1835 1830 return
1836 1831 timefunc = timeit.default_timer
1837 1832 number = int(getattr(opts, "n", 0))
1838 1833 repeat = int(getattr(opts, "r", timeit.default_repeat))
1839 1834 precision = int(getattr(opts, "p", 3))
1840 1835 if hasattr(opts, "t"):
1841 1836 timefunc = time.time
1842 1837 if hasattr(opts, "c"):
1843 1838 timefunc = clock
1844 1839
1845 1840 timer = timeit.Timer(timer=timefunc)
1846 1841 # this code has tight coupling to the inner workings of timeit.Timer,
1847 1842 # but is there a better way to achieve that the code stmt has access
1848 1843 # to the shell namespace?
1849 1844
1850 1845 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1851 1846 'setup': "pass"}
1852 1847 # Track compilation time so it can be reported if too long
1853 1848 # Minimum time above which compilation time will be reported
1854 1849 tc_min = 0.1
1855 1850
1856 1851 t0 = clock()
1857 1852 code = compile(src, "<magic-timeit>", "exec")
1858 1853 tc = clock()-t0
1859 1854
1860 1855 ns = {}
1861 1856 exec code in self.shell.user_ns, ns
1862 1857 timer.inner = ns["inner"]
1863 1858
1864 1859 if number == 0:
1865 1860 # determine number so that 0.2 <= total time < 2.0
1866 1861 number = 1
1867 1862 for i in range(1, 10):
1868 1863 if timer.timeit(number) >= 0.2:
1869 1864 break
1870 1865 number *= 10
1871 1866
1872 1867 best = min(timer.repeat(repeat, number)) / number
1873 1868
1874 1869 if best > 0.0:
1875 1870 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1876 1871 else:
1877 1872 order = 3
1878 1873 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1879 1874 precision,
1880 1875 best * scaling[order],
1881 1876 units[order])
1882 1877 if tc > tc_min:
1883 1878 print "Compiler time: %.2f s" % tc
1884 1879
1885 1880 @testdec.skip_doctest
1886 1881 def magic_time(self,parameter_s = ''):
1887 1882 """Time execution of a Python statement or expression.
1888 1883
1889 1884 The CPU and wall clock times are printed, and the value of the
1890 1885 expression (if any) is returned. Note that under Win32, system time
1891 1886 is always reported as 0, since it can not be measured.
1892 1887
1893 1888 This function provides very basic timing functionality. In Python
1894 1889 2.3, the timeit module offers more control and sophistication, so this
1895 1890 could be rewritten to use it (patches welcome).
1896 1891
1897 1892 Some examples:
1898 1893
1899 1894 In [1]: time 2**128
1900 1895 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1901 1896 Wall time: 0.00
1902 1897 Out[1]: 340282366920938463463374607431768211456L
1903 1898
1904 1899 In [2]: n = 1000000
1905 1900
1906 1901 In [3]: time sum(range(n))
1907 1902 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1908 1903 Wall time: 1.37
1909 1904 Out[3]: 499999500000L
1910 1905
1911 1906 In [4]: time print 'hello world'
1912 1907 hello world
1913 1908 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1914 1909 Wall time: 0.00
1915 1910
1916 1911 Note that the time needed by Python to compile the given expression
1917 1912 will be reported if it is more than 0.1s. In this example, the
1918 1913 actual exponentiation is done by Python at compilation time, so while
1919 1914 the expression can take a noticeable amount of time to compute, that
1920 1915 time is purely due to the compilation:
1921 1916
1922 1917 In [5]: time 3**9999;
1923 1918 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1924 1919 Wall time: 0.00 s
1925 1920
1926 1921 In [6]: time 3**999999;
1927 1922 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1928 1923 Wall time: 0.00 s
1929 1924 Compiler : 0.78 s
1930 1925 """
1931 1926
1932 1927 # fail immediately if the given expression can't be compiled
1933 1928
1934 1929 expr = self.shell.prefilter(parameter_s,False)
1935 1930
1936 1931 # Minimum time above which compilation time will be reported
1937 1932 tc_min = 0.1
1938 1933
1939 1934 try:
1940 1935 mode = 'eval'
1941 1936 t0 = clock()
1942 1937 code = compile(expr,'<timed eval>',mode)
1943 1938 tc = clock()-t0
1944 1939 except SyntaxError:
1945 1940 mode = 'exec'
1946 1941 t0 = clock()
1947 1942 code = compile(expr,'<timed exec>',mode)
1948 1943 tc = clock()-t0
1949 1944 # skew measurement as little as possible
1950 1945 glob = self.shell.user_ns
1951 1946 clk = clock2
1952 1947 wtime = time.time
1953 1948 # time execution
1954 1949 wall_st = wtime()
1955 1950 if mode=='eval':
1956 1951 st = clk()
1957 1952 out = eval(code,glob)
1958 1953 end = clk()
1959 1954 else:
1960 1955 st = clk()
1961 1956 exec code in glob
1962 1957 end = clk()
1963 1958 out = None
1964 1959 wall_end = wtime()
1965 1960 # Compute actual times and report
1966 1961 wall_time = wall_end-wall_st
1967 1962 cpu_user = end[0]-st[0]
1968 1963 cpu_sys = end[1]-st[1]
1969 1964 cpu_tot = cpu_user+cpu_sys
1970 1965 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1971 1966 (cpu_user,cpu_sys,cpu_tot)
1972 1967 print "Wall time: %.2f s" % wall_time
1973 1968 if tc > tc_min:
1974 1969 print "Compiler : %.2f s" % tc
1975 1970 return out
1976 1971
1977 1972 @testdec.skip_doctest
1978 1973 def magic_macro(self,parameter_s = ''):
1979 1974 """Define a set of input lines as a macro for future re-execution.
1980 1975
1981 1976 Usage:\\
1982 1977 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1983 1978
1984 1979 Options:
1985 1980
1986 1981 -r: use 'raw' input. By default, the 'processed' history is used,
1987 1982 so that magics are loaded in their transformed version to valid
1988 1983 Python. If this option is given, the raw input as typed as the
1989 1984 command line is used instead.
1990 1985
1991 1986 This will define a global variable called `name` which is a string
1992 1987 made of joining the slices and lines you specify (n1,n2,... numbers
1993 1988 above) from your input history into a single string. This variable
1994 1989 acts like an automatic function which re-executes those lines as if
1995 1990 you had typed them. You just type 'name' at the prompt and the code
1996 1991 executes.
1997 1992
1998 1993 The notation for indicating number ranges is: n1-n2 means 'use line
1999 1994 numbers n1,...n2' (the endpoint is included). That is, '5-7' means
2000 1995 using the lines numbered 5,6 and 7.
2001 1996
2002 1997 Note: as a 'hidden' feature, you can also use traditional python slice
2003 1998 notation, where N:M means numbers N through M-1.
2004 1999
2005 2000 For example, if your history contains (%hist prints it):
2006 2001
2007 2002 44: x=1
2008 2003 45: y=3
2009 2004 46: z=x+y
2010 2005 47: print x
2011 2006 48: a=5
2012 2007 49: print 'x',x,'y',y
2013 2008
2014 2009 you can create a macro with lines 44 through 47 (included) and line 49
2015 2010 called my_macro with:
2016 2011
2017 2012 In [55]: %macro my_macro 44-47 49
2018 2013
2019 2014 Now, typing `my_macro` (without quotes) will re-execute all this code
2020 2015 in one pass.
2021 2016
2022 2017 You don't need to give the line-numbers in order, and any given line
2023 2018 number can appear multiple times. You can assemble macros with any
2024 2019 lines from your input history in any order.
2025 2020
2026 2021 The macro is a simple object which holds its value in an attribute,
2027 2022 but IPython's display system checks for macros and executes them as
2028 2023 code instead of printing them when you type their name.
2029 2024
2030 2025 You can view a macro's contents by explicitly printing it with:
2031 2026
2032 2027 'print macro_name'.
2033 2028
2034 2029 For one-off cases which DON'T contain magic function calls in them you
2035 2030 can obtain similar results by explicitly executing slices from your
2036 2031 input history with:
2037 2032
2038 2033 In [60]: exec In[44:48]+In[49]"""
2039 2034
2040 2035 opts,args = self.parse_options(parameter_s,'r',mode='list')
2041 2036 if not args:
2042 2037 macs = [k for k,v in self.shell.user_ns.items() if isinstance(v, Macro)]
2043 2038 macs.sort()
2044 2039 return macs
2045 2040 if len(args) == 1:
2046 2041 raise UsageError(
2047 2042 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2048 2043 name,ranges = args[0], args[1:]
2049 2044
2050 2045 #print 'rng',ranges # dbg
2051 2046 lines = self.extract_input_slices(ranges,opts.has_key('r'))
2052 2047 macro = Macro(lines)
2053 2048 self.shell.user_ns.update({name:macro})
2054 2049 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2055 2050 print 'Macro contents:'
2056 2051 print macro,
2057 2052
2058 2053 def magic_save(self,parameter_s = ''):
2059 2054 """Save a set of lines to a given filename.
2060 2055
2061 2056 Usage:\\
2062 2057 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2063 2058
2064 2059 Options:
2065 2060
2066 2061 -r: use 'raw' input. By default, the 'processed' history is used,
2067 2062 so that magics are loaded in their transformed version to valid
2068 2063 Python. If this option is given, the raw input as typed as the
2069 2064 command line is used instead.
2070 2065
2071 2066 This function uses the same syntax as %macro for line extraction, but
2072 2067 instead of creating a macro it saves the resulting string to the
2073 2068 filename you specify.
2074 2069
2075 2070 It adds a '.py' extension to the file if you don't do so yourself, and
2076 2071 it asks for confirmation before overwriting existing files."""
2077 2072
2078 2073 opts,args = self.parse_options(parameter_s,'r',mode='list')
2079 2074 fname,ranges = args[0], args[1:]
2080 2075 if not fname.endswith('.py'):
2081 2076 fname += '.py'
2082 2077 if os.path.isfile(fname):
2083 2078 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2084 2079 if ans.lower() not in ['y','yes']:
2085 2080 print 'Operation cancelled.'
2086 2081 return
2087 2082 cmds = ''.join(self.extract_input_slices(ranges,opts.has_key('r')))
2088 2083 f = file(fname,'w')
2089 2084 f.write(cmds)
2090 2085 f.close()
2091 2086 print 'The following commands were written to file `%s`:' % fname
2092 2087 print cmds
2093 2088
2094 2089 def _edit_macro(self,mname,macro):
2095 2090 """open an editor with the macro data in a file"""
2096 2091 filename = self.shell.mktempfile(macro.value)
2097 2092 self.shell.hooks.editor(filename)
2098 2093
2099 2094 # and make a new macro object, to replace the old one
2100 2095 mfile = open(filename)
2101 2096 mvalue = mfile.read()
2102 2097 mfile.close()
2103 2098 self.shell.user_ns[mname] = Macro(mvalue)
2104 2099
2105 2100 def magic_ed(self,parameter_s=''):
2106 2101 """Alias to %edit."""
2107 2102 return self.magic_edit(parameter_s)
2108 2103
2109 2104 @testdec.skip_doctest
2110 2105 def magic_edit(self,parameter_s='',last_call=['','']):
2111 2106 """Bring up an editor and execute the resulting code.
2112 2107
2113 2108 Usage:
2114 2109 %edit [options] [args]
2115 2110
2116 2111 %edit runs IPython's editor hook. The default version of this hook is
2117 2112 set to call the __IPYTHON__.rc.editor command. This is read from your
2118 2113 environment variable $EDITOR. If this isn't found, it will default to
2119 2114 vi under Linux/Unix and to notepad under Windows. See the end of this
2120 2115 docstring for how to change the editor hook.
2121 2116
2122 2117 You can also set the value of this editor via the command line option
2123 2118 '-editor' or in your ipythonrc file. This is useful if you wish to use
2124 2119 specifically for IPython an editor different from your typical default
2125 2120 (and for Windows users who typically don't set environment variables).
2126 2121
2127 2122 This command allows you to conveniently edit multi-line code right in
2128 2123 your IPython session.
2129 2124
2130 2125 If called without arguments, %edit opens up an empty editor with a
2131 2126 temporary file and will execute the contents of this file when you
2132 2127 close it (don't forget to save it!).
2133 2128
2134 2129
2135 2130 Options:
2136 2131
2137 2132 -n <number>: open the editor at a specified line number. By default,
2138 2133 the IPython editor hook uses the unix syntax 'editor +N filename', but
2139 2134 you can configure this by providing your own modified hook if your
2140 2135 favorite editor supports line-number specifications with a different
2141 2136 syntax.
2142 2137
2143 2138 -p: this will call the editor with the same data as the previous time
2144 2139 it was used, regardless of how long ago (in your current session) it
2145 2140 was.
2146 2141
2147 2142 -r: use 'raw' input. This option only applies to input taken from the
2148 2143 user's history. By default, the 'processed' history is used, so that
2149 2144 magics are loaded in their transformed version to valid Python. If
2150 2145 this option is given, the raw input as typed as the command line is
2151 2146 used instead. When you exit the editor, it will be executed by
2152 2147 IPython's own processor.
2153 2148
2154 2149 -x: do not execute the edited code immediately upon exit. This is
2155 2150 mainly useful if you are editing programs which need to be called with
2156 2151 command line arguments, which you can then do using %run.
2157 2152
2158 2153
2159 2154 Arguments:
2160 2155
2161 2156 If arguments are given, the following possibilites exist:
2162 2157
2163 2158 - The arguments are numbers or pairs of colon-separated numbers (like
2164 2159 1 4:8 9). These are interpreted as lines of previous input to be
2165 2160 loaded into the editor. The syntax is the same of the %macro command.
2166 2161
2167 2162 - If the argument doesn't start with a number, it is evaluated as a
2168 2163 variable and its contents loaded into the editor. You can thus edit
2169 2164 any string which contains python code (including the result of
2170 2165 previous edits).
2171 2166
2172 2167 - If the argument is the name of an object (other than a string),
2173 2168 IPython will try to locate the file where it was defined and open the
2174 2169 editor at the point where it is defined. You can use `%edit function`
2175 2170 to load an editor exactly at the point where 'function' is defined,
2176 2171 edit it and have the file be executed automatically.
2177 2172
2178 2173 If the object is a macro (see %macro for details), this opens up your
2179 2174 specified editor with a temporary file containing the macro's data.
2180 2175 Upon exit, the macro is reloaded with the contents of the file.
2181 2176
2182 2177 Note: opening at an exact line is only supported under Unix, and some
2183 2178 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2184 2179 '+NUMBER' parameter necessary for this feature. Good editors like
2185 2180 (X)Emacs, vi, jed, pico and joe all do.
2186 2181
2187 2182 - If the argument is not found as a variable, IPython will look for a
2188 2183 file with that name (adding .py if necessary) and load it into the
2189 2184 editor. It will execute its contents with execfile() when you exit,
2190 2185 loading any code in the file into your interactive namespace.
2191 2186
2192 2187 After executing your code, %edit will return as output the code you
2193 2188 typed in the editor (except when it was an existing file). This way
2194 2189 you can reload the code in further invocations of %edit as a variable,
2195 2190 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2196 2191 the output.
2197 2192
2198 2193 Note that %edit is also available through the alias %ed.
2199 2194
2200 2195 This is an example of creating a simple function inside the editor and
2201 2196 then modifying it. First, start up the editor:
2202 2197
2203 2198 In [1]: ed
2204 2199 Editing... done. Executing edited code...
2205 2200 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2206 2201
2207 2202 We can then call the function foo():
2208 2203
2209 2204 In [2]: foo()
2210 2205 foo() was defined in an editing session
2211 2206
2212 2207 Now we edit foo. IPython automatically loads the editor with the
2213 2208 (temporary) file where foo() was previously defined:
2214 2209
2215 2210 In [3]: ed foo
2216 2211 Editing... done. Executing edited code...
2217 2212
2218 2213 And if we call foo() again we get the modified version:
2219 2214
2220 2215 In [4]: foo()
2221 2216 foo() has now been changed!
2222 2217
2223 2218 Here is an example of how to edit a code snippet successive
2224 2219 times. First we call the editor:
2225 2220
2226 2221 In [5]: ed
2227 2222 Editing... done. Executing edited code...
2228 2223 hello
2229 2224 Out[5]: "print 'hello'n"
2230 2225
2231 2226 Now we call it again with the previous output (stored in _):
2232 2227
2233 2228 In [6]: ed _
2234 2229 Editing... done. Executing edited code...
2235 2230 hello world
2236 2231 Out[6]: "print 'hello world'n"
2237 2232
2238 2233 Now we call it with the output #8 (stored in _8, also as Out[8]):
2239 2234
2240 2235 In [7]: ed _8
2241 2236 Editing... done. Executing edited code...
2242 2237 hello again
2243 2238 Out[7]: "print 'hello again'n"
2244 2239
2245 2240
2246 2241 Changing the default editor hook:
2247 2242
2248 2243 If you wish to write your own editor hook, you can put it in a
2249 2244 configuration file which you load at startup time. The default hook
2250 2245 is defined in the IPython.hooks module, and you can use that as a
2251 2246 starting example for further modifications. That file also has
2252 2247 general instructions on how to set a new hook for use once you've
2253 2248 defined it."""
2254 2249
2255 2250 # FIXME: This function has become a convoluted mess. It needs a
2256 2251 # ground-up rewrite with clean, simple logic.
2257 2252
2258 2253 def make_filename(arg):
2259 2254 "Make a filename from the given args"
2260 2255 try:
2261 2256 filename = get_py_filename(arg)
2262 2257 except IOError:
2263 2258 if args.endswith('.py'):
2264 2259 filename = arg
2265 2260 else:
2266 2261 filename = None
2267 2262 return filename
2268 2263
2269 2264 # custom exceptions
2270 2265 class DataIsObject(Exception): pass
2271 2266
2272 2267 opts,args = self.parse_options(parameter_s,'prxn:')
2273 2268 # Set a few locals from the options for convenience:
2274 2269 opts_p = opts.has_key('p')
2275 2270 opts_r = opts.has_key('r')
2276 2271
2277 2272 # Default line number value
2278 2273 lineno = opts.get('n',None)
2279 2274
2280 2275 if opts_p:
2281 2276 args = '_%s' % last_call[0]
2282 2277 if not self.shell.user_ns.has_key(args):
2283 2278 args = last_call[1]
2284 2279
2285 2280 # use last_call to remember the state of the previous call, but don't
2286 2281 # let it be clobbered by successive '-p' calls.
2287 2282 try:
2288 2283 last_call[0] = self.shell.outputcache.prompt_count
2289 2284 if not opts_p:
2290 2285 last_call[1] = parameter_s
2291 2286 except:
2292 2287 pass
2293 2288
2294 2289 # by default this is done with temp files, except when the given
2295 2290 # arg is a filename
2296 2291 use_temp = 1
2297 2292
2298 2293 if re.match(r'\d',args):
2299 2294 # Mode where user specifies ranges of lines, like in %macro.
2300 2295 # This means that you can't edit files whose names begin with
2301 2296 # numbers this way. Tough.
2302 2297 ranges = args.split()
2303 2298 data = ''.join(self.extract_input_slices(ranges,opts_r))
2304 2299 elif args.endswith('.py'):
2305 2300 filename = make_filename(args)
2306 2301 data = ''
2307 2302 use_temp = 0
2308 2303 elif args:
2309 2304 try:
2310 2305 # Load the parameter given as a variable. If not a string,
2311 2306 # process it as an object instead (below)
2312 2307
2313 2308 #print '*** args',args,'type',type(args) # dbg
2314 2309 data = eval(args,self.shell.user_ns)
2315 2310 if not type(data) in StringTypes:
2316 2311 raise DataIsObject
2317 2312
2318 2313 except (NameError,SyntaxError):
2319 2314 # given argument is not a variable, try as a filename
2320 2315 filename = make_filename(args)
2321 2316 if filename is None:
2322 2317 warn("Argument given (%s) can't be found as a variable "
2323 2318 "or as a filename." % args)
2324 2319 return
2325 2320
2326 2321 data = ''
2327 2322 use_temp = 0
2328 2323 except DataIsObject:
2329 2324
2330 2325 # macros have a special edit function
2331 2326 if isinstance(data,Macro):
2332 2327 self._edit_macro(args,data)
2333 2328 return
2334 2329
2335 2330 # For objects, try to edit the file where they are defined
2336 2331 try:
2337 2332 filename = inspect.getabsfile(data)
2338 2333 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2339 2334 # class created by %edit? Try to find source
2340 2335 # by looking for method definitions instead, the
2341 2336 # __module__ in those classes is FakeModule.
2342 2337 attrs = [getattr(data, aname) for aname in dir(data)]
2343 2338 for attr in attrs:
2344 2339 if not inspect.ismethod(attr):
2345 2340 continue
2346 2341 filename = inspect.getabsfile(attr)
2347 2342 if filename and 'fakemodule' not in filename.lower():
2348 2343 # change the attribute to be the edit target instead
2349 2344 data = attr
2350 2345 break
2351 2346
2352 2347 datafile = 1
2353 2348 except TypeError:
2354 2349 filename = make_filename(args)
2355 2350 datafile = 1
2356 2351 warn('Could not find file where `%s` is defined.\n'
2357 2352 'Opening a file named `%s`' % (args,filename))
2358 2353 # Now, make sure we can actually read the source (if it was in
2359 2354 # a temp file it's gone by now).
2360 2355 if datafile:
2361 2356 try:
2362 2357 if lineno is None:
2363 2358 lineno = inspect.getsourcelines(data)[1]
2364 2359 except IOError:
2365 2360 filename = make_filename(args)
2366 2361 if filename is None:
2367 2362 warn('The file `%s` where `%s` was defined cannot '
2368 2363 'be read.' % (filename,data))
2369 2364 return
2370 2365 use_temp = 0
2371 2366 else:
2372 2367 data = ''
2373 2368
2374 2369 if use_temp:
2375 2370 filename = self.shell.mktempfile(data)
2376 2371 print 'IPython will make a temporary file named:',filename
2377 2372
2378 2373 # do actual editing here
2379 2374 print 'Editing...',
2380 2375 sys.stdout.flush()
2381 2376 try:
2382 2377 self.shell.hooks.editor(filename,lineno)
2383 2378 except IPython.ipapi.TryNext:
2384 2379 warn('Could not open editor')
2385 2380 return
2386 2381
2387 2382 # XXX TODO: should this be generalized for all string vars?
2388 2383 # For now, this is special-cased to blocks created by cpaste
2389 2384 if args.strip() == 'pasted_block':
2390 2385 self.shell.user_ns['pasted_block'] = file_read(filename)
2391 2386
2392 2387 if opts.has_key('x'): # -x prevents actual execution
2393 2388 print
2394 2389 else:
2395 2390 print 'done. Executing edited code...'
2396 2391 if opts_r:
2397 2392 self.shell.runlines(file_read(filename))
2398 2393 else:
2399 2394 self.shell.safe_execfile(filename,self.shell.user_ns,
2400 2395 self.shell.user_ns)
2401 2396
2402 2397
2403 2398 if use_temp:
2404 2399 try:
2405 2400 return open(filename).read()
2406 2401 except IOError,msg:
2407 2402 if msg.filename == filename:
2408 2403 warn('File not found. Did you forget to save?')
2409 2404 return
2410 2405 else:
2411 2406 self.shell.showtraceback()
2412 2407
2413 2408 def magic_xmode(self,parameter_s = ''):
2414 2409 """Switch modes for the exception handlers.
2415 2410
2416 2411 Valid modes: Plain, Context and Verbose.
2417 2412
2418 2413 If called without arguments, acts as a toggle."""
2419 2414
2420 2415 def xmode_switch_err(name):
2421 2416 warn('Error changing %s exception modes.\n%s' %
2422 2417 (name,sys.exc_info()[1]))
2423 2418
2424 2419 shell = self.shell
2425 2420 new_mode = parameter_s.strip().capitalize()
2426 2421 try:
2427 2422 shell.InteractiveTB.set_mode(mode=new_mode)
2428 2423 print 'Exception reporting mode:',shell.InteractiveTB.mode
2429 2424 except:
2430 2425 xmode_switch_err('user')
2431 2426
2432 2427 # threaded shells use a special handler in sys.excepthook
2433 2428 if shell.isthreaded:
2434 2429 try:
2435 2430 shell.sys_excepthook.set_mode(mode=new_mode)
2436 2431 except:
2437 2432 xmode_switch_err('threaded')
2438 2433
2439 2434 def magic_colors(self,parameter_s = ''):
2440 2435 """Switch color scheme for prompts, info system and exception handlers.
2441 2436
2442 2437 Currently implemented schemes: NoColor, Linux, LightBG.
2443 2438
2444 2439 Color scheme names are not case-sensitive."""
2445 2440
2446 2441 def color_switch_err(name):
2447 2442 warn('Error changing %s color schemes.\n%s' %
2448 2443 (name,sys.exc_info()[1]))
2449 2444
2450 2445
2451 2446 new_scheme = parameter_s.strip()
2452 2447 if not new_scheme:
2453 2448 raise UsageError(
2454 2449 "%colors: you must specify a color scheme. See '%colors?'")
2455 2450 return
2456 2451 # local shortcut
2457 2452 shell = self.shell
2458 2453
2459 2454 import IPython.rlineimpl as readline
2460 2455
2461 2456 if not readline.have_readline and sys.platform == "win32":
2462 2457 msg = """\
2463 2458 Proper color support under MS Windows requires the pyreadline library.
2464 2459 You can find it at:
2465 2460 http://ipython.scipy.org/moin/PyReadline/Intro
2466 2461 Gary's readline needs the ctypes module, from:
2467 2462 http://starship.python.net/crew/theller/ctypes
2468 2463 (Note that ctypes is already part of Python versions 2.5 and newer).
2469 2464
2470 2465 Defaulting color scheme to 'NoColor'"""
2471 2466 new_scheme = 'NoColor'
2472 2467 warn(msg)
2473 2468
2474 2469 # readline option is 0
2475 2470 if not shell.has_readline:
2476 2471 new_scheme = 'NoColor'
2477 2472
2478 2473 # Set prompt colors
2479 2474 try:
2480 2475 shell.outputcache.set_colors(new_scheme)
2481 2476 except:
2482 2477 color_switch_err('prompt')
2483 2478 else:
2484 2479 shell.rc.colors = \
2485 2480 shell.outputcache.color_table.active_scheme_name
2486 2481 # Set exception colors
2487 2482 try:
2488 2483 shell.InteractiveTB.set_colors(scheme = new_scheme)
2489 2484 shell.SyntaxTB.set_colors(scheme = new_scheme)
2490 2485 except:
2491 2486 color_switch_err('exception')
2492 2487
2493 2488 # threaded shells use a verbose traceback in sys.excepthook
2494 2489 if shell.isthreaded:
2495 2490 try:
2496 2491 shell.sys_excepthook.set_colors(scheme=new_scheme)
2497 2492 except:
2498 2493 color_switch_err('system exception handler')
2499 2494
2500 2495 # Set info (for 'object?') colors
2501 2496 if shell.rc.color_info:
2502 2497 try:
2503 2498 shell.inspector.set_active_scheme(new_scheme)
2504 2499 except:
2505 2500 color_switch_err('object inspector')
2506 2501 else:
2507 2502 shell.inspector.set_active_scheme('NoColor')
2508 2503
2509 2504 def magic_color_info(self,parameter_s = ''):
2510 2505 """Toggle color_info.
2511 2506
2512 2507 The color_info configuration parameter controls whether colors are
2513 2508 used for displaying object details (by things like %psource, %pfile or
2514 2509 the '?' system). This function toggles this value with each call.
2515 2510
2516 2511 Note that unless you have a fairly recent pager (less works better
2517 2512 than more) in your system, using colored object information displays
2518 2513 will not work properly. Test it and see."""
2519 2514
2520 2515 self.shell.rc.color_info = 1 - self.shell.rc.color_info
2521 2516 self.magic_colors(self.shell.rc.colors)
2522 2517 print 'Object introspection functions have now coloring:',
2523 2518 print ['OFF','ON'][self.shell.rc.color_info]
2524 2519
2525 2520 def magic_Pprint(self, parameter_s=''):
2526 2521 """Toggle pretty printing on/off."""
2527 2522
2528 2523 self.shell.rc.pprint = 1 - self.shell.rc.pprint
2529 2524 print 'Pretty printing has been turned', \
2530 2525 ['OFF','ON'][self.shell.rc.pprint]
2531 2526
2532 2527 def magic_exit(self, parameter_s=''):
2533 2528 """Exit IPython, confirming if configured to do so.
2534 2529
2535 2530 You can configure whether IPython asks for confirmation upon exit by
2536 2531 setting the confirm_exit flag in the ipythonrc file."""
2537 2532
2538 2533 self.shell.exit()
2539 2534
2540 2535 def magic_quit(self, parameter_s=''):
2541 2536 """Exit IPython, confirming if configured to do so (like %exit)"""
2542 2537
2543 2538 self.shell.exit()
2544 2539
2545 2540 def magic_Exit(self, parameter_s=''):
2546 2541 """Exit IPython without confirmation."""
2547 2542
2548 2543 self.shell.ask_exit()
2549 2544
2550 2545 #......................................................................
2551 2546 # Functions to implement unix shell-type things
2552 2547
2553 2548 @testdec.skip_doctest
2554 2549 def magic_alias(self, parameter_s = ''):
2555 2550 """Define an alias for a system command.
2556 2551
2557 2552 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2558 2553
2559 2554 Then, typing 'alias_name params' will execute the system command 'cmd
2560 2555 params' (from your underlying operating system).
2561 2556
2562 2557 Aliases have lower precedence than magic functions and Python normal
2563 2558 variables, so if 'foo' is both a Python variable and an alias, the
2564 2559 alias can not be executed until 'del foo' removes the Python variable.
2565 2560
2566 2561 You can use the %l specifier in an alias definition to represent the
2567 2562 whole line when the alias is called. For example:
2568 2563
2569 2564 In [2]: alias all echo "Input in brackets: <%l>"
2570 2565 In [3]: all hello world
2571 2566 Input in brackets: <hello world>
2572 2567
2573 2568 You can also define aliases with parameters using %s specifiers (one
2574 2569 per parameter):
2575 2570
2576 2571 In [1]: alias parts echo first %s second %s
2577 2572 In [2]: %parts A B
2578 2573 first A second B
2579 2574 In [3]: %parts A
2580 2575 Incorrect number of arguments: 2 expected.
2581 2576 parts is an alias to: 'echo first %s second %s'
2582 2577
2583 2578 Note that %l and %s are mutually exclusive. You can only use one or
2584 2579 the other in your aliases.
2585 2580
2586 2581 Aliases expand Python variables just like system calls using ! or !!
2587 2582 do: all expressions prefixed with '$' get expanded. For details of
2588 2583 the semantic rules, see PEP-215:
2589 2584 http://www.python.org/peps/pep-0215.html. This is the library used by
2590 2585 IPython for variable expansion. If you want to access a true shell
2591 2586 variable, an extra $ is necessary to prevent its expansion by IPython:
2592 2587
2593 2588 In [6]: alias show echo
2594 2589 In [7]: PATH='A Python string'
2595 2590 In [8]: show $PATH
2596 2591 A Python string
2597 2592 In [9]: show $$PATH
2598 2593 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2599 2594
2600 2595 You can use the alias facility to acess all of $PATH. See the %rehash
2601 2596 and %rehashx functions, which automatically create aliases for the
2602 2597 contents of your $PATH.
2603 2598
2604 2599 If called with no parameters, %alias prints the current alias table."""
2605 2600
2606 2601 par = parameter_s.strip()
2607 2602 if not par:
2608 2603 stored = self.db.get('stored_aliases', {} )
2609 2604 atab = self.shell.alias_table
2610 2605 aliases = atab.keys()
2611 2606 aliases.sort()
2612 2607 res = []
2613 2608 showlast = []
2614 2609 for alias in aliases:
2615 2610 special = False
2616 2611 try:
2617 2612 tgt = atab[alias][1]
2618 2613 except (TypeError, AttributeError):
2619 2614 # unsubscriptable? probably a callable
2620 2615 tgt = atab[alias]
2621 2616 special = True
2622 2617 # 'interesting' aliases
2623 2618 if (alias in stored or
2624 2619 special or
2625 2620 alias.lower() != os.path.splitext(tgt)[0].lower() or
2626 2621 ' ' in tgt):
2627 2622 showlast.append((alias, tgt))
2628 2623 else:
2629 2624 res.append((alias, tgt ))
2630 2625
2631 2626 # show most interesting aliases last
2632 2627 res.extend(showlast)
2633 2628 print "Total number of aliases:",len(aliases)
2634 2629 return res
2635 2630 try:
2636 2631 alias,cmd = par.split(None,1)
2637 2632 except:
2638 2633 print OInspect.getdoc(self.magic_alias)
2639 2634 else:
2640 2635 nargs = cmd.count('%s')
2641 2636 if nargs>0 and cmd.find('%l')>=0:
2642 2637 error('The %s and %l specifiers are mutually exclusive '
2643 2638 'in alias definitions.')
2644 2639 else: # all looks OK
2645 2640 self.shell.alias_table[alias] = (nargs,cmd)
2646 2641 self.shell.alias_table_validate(verbose=0)
2647 2642 # end magic_alias
2648 2643
2649 2644 def magic_unalias(self, parameter_s = ''):
2650 2645 """Remove an alias"""
2651 2646
2652 2647 aname = parameter_s.strip()
2653 2648 if aname in self.shell.alias_table:
2654 2649 del self.shell.alias_table[aname]
2655 2650 stored = self.db.get('stored_aliases', {} )
2656 2651 if aname in stored:
2657 2652 print "Removing %stored alias",aname
2658 2653 del stored[aname]
2659 2654 self.db['stored_aliases'] = stored
2660 2655
2661 2656
2662 2657 def magic_rehashx(self, parameter_s = ''):
2663 2658 """Update the alias table with all executable files in $PATH.
2664 2659
2665 2660 This version explicitly checks that every entry in $PATH is a file
2666 2661 with execute access (os.X_OK), so it is much slower than %rehash.
2667 2662
2668 2663 Under Windows, it checks executability as a match agains a
2669 2664 '|'-separated string of extensions, stored in the IPython config
2670 2665 variable win_exec_ext. This defaults to 'exe|com|bat'.
2671 2666
2672 2667 This function also resets the root module cache of module completer,
2673 2668 used on slow filesystems.
2674 2669 """
2675 2670
2676 2671
2677 2672 ip = self.api
2678 2673
2679 2674 # for the benefit of module completer in ipy_completers.py
2680 2675 del ip.db['rootmodules']
2681 2676
2682 2677 path = [os.path.abspath(os.path.expanduser(p)) for p in
2683 2678 os.environ.get('PATH','').split(os.pathsep)]
2684 2679 path = filter(os.path.isdir,path)
2685 2680
2686 2681 alias_table = self.shell.alias_table
2687 2682 syscmdlist = []
2688 2683 if os.name == 'posix':
2689 2684 isexec = lambda fname:os.path.isfile(fname) and \
2690 2685 os.access(fname,os.X_OK)
2691 2686 else:
2692 2687
2693 2688 try:
2694 2689 winext = os.environ['pathext'].replace(';','|').replace('.','')
2695 2690 except KeyError:
2696 2691 winext = 'exe|com|bat|py'
2697 2692 if 'py' not in winext:
2698 2693 winext += '|py'
2699 2694 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2700 2695 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2701 2696 savedir = os.getcwd()
2702 2697 try:
2703 2698 # write the whole loop for posix/Windows so we don't have an if in
2704 2699 # the innermost part
2705 2700 if os.name == 'posix':
2706 2701 for pdir in path:
2707 2702 os.chdir(pdir)
2708 2703 for ff in os.listdir(pdir):
2709 2704 if isexec(ff) and ff not in self.shell.no_alias:
2710 2705 # each entry in the alias table must be (N,name),
2711 2706 # where N is the number of positional arguments of the
2712 2707 # alias.
2713 2708 # Dots will be removed from alias names, since ipython
2714 2709 # assumes names with dots to be python code
2715 2710 alias_table[ff.replace('.','')] = (0,ff)
2716 2711 syscmdlist.append(ff)
2717 2712 else:
2718 2713 for pdir in path:
2719 2714 os.chdir(pdir)
2720 2715 for ff in os.listdir(pdir):
2721 2716 base, ext = os.path.splitext(ff)
2722 2717 if isexec(ff) and base.lower() not in self.shell.no_alias:
2723 2718 if ext.lower() == '.exe':
2724 2719 ff = base
2725 2720 alias_table[base.lower().replace('.','')] = (0,ff)
2726 2721 syscmdlist.append(ff)
2727 2722 # Make sure the alias table doesn't contain keywords or builtins
2728 2723 self.shell.alias_table_validate()
2729 2724 # Call again init_auto_alias() so we get 'rm -i' and other
2730 2725 # modified aliases since %rehashx will probably clobber them
2731 2726
2732 2727 # no, we don't want them. if %rehashx clobbers them, good,
2733 2728 # we'll probably get better versions
2734 2729 # self.shell.init_auto_alias()
2735 2730 db = ip.db
2736 2731 db['syscmdlist'] = syscmdlist
2737 2732 finally:
2738 2733 os.chdir(savedir)
2739 2734
2740 2735 def magic_pwd(self, parameter_s = ''):
2741 2736 """Return the current working directory path."""
2742 2737 return os.getcwd()
2743 2738
2744 2739 def magic_cd(self, parameter_s=''):
2745 2740 """Change the current working directory.
2746 2741
2747 2742 This command automatically maintains an internal list of directories
2748 2743 you visit during your IPython session, in the variable _dh. The
2749 2744 command %dhist shows this history nicely formatted. You can also
2750 2745 do 'cd -<tab>' to see directory history conveniently.
2751 2746
2752 2747 Usage:
2753 2748
2754 2749 cd 'dir': changes to directory 'dir'.
2755 2750
2756 2751 cd -: changes to the last visited directory.
2757 2752
2758 2753 cd -<n>: changes to the n-th directory in the directory history.
2759 2754
2760 2755 cd --foo: change to directory that matches 'foo' in history
2761 2756
2762 2757 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2763 2758 (note: cd <bookmark_name> is enough if there is no
2764 2759 directory <bookmark_name>, but a bookmark with the name exists.)
2765 2760 'cd -b <tab>' allows you to tab-complete bookmark names.
2766 2761
2767 2762 Options:
2768 2763
2769 2764 -q: quiet. Do not print the working directory after the cd command is
2770 2765 executed. By default IPython's cd command does print this directory,
2771 2766 since the default prompts do not display path information.
2772 2767
2773 2768 Note that !cd doesn't work for this purpose because the shell where
2774 2769 !command runs is immediately discarded after executing 'command'."""
2775 2770
2776 2771 parameter_s = parameter_s.strip()
2777 2772 #bkms = self.shell.persist.get("bookmarks",{})
2778 2773
2779 2774 oldcwd = os.getcwd()
2780 2775 numcd = re.match(r'(-)(\d+)$',parameter_s)
2781 2776 # jump in directory history by number
2782 2777 if numcd:
2783 2778 nn = int(numcd.group(2))
2784 2779 try:
2785 2780 ps = self.shell.user_ns['_dh'][nn]
2786 2781 except IndexError:
2787 2782 print 'The requested directory does not exist in history.'
2788 2783 return
2789 2784 else:
2790 2785 opts = {}
2791 2786 elif parameter_s.startswith('--'):
2792 2787 ps = None
2793 2788 fallback = None
2794 2789 pat = parameter_s[2:]
2795 2790 dh = self.shell.user_ns['_dh']
2796 2791 # first search only by basename (last component)
2797 2792 for ent in reversed(dh):
2798 2793 if pat in os.path.basename(ent) and os.path.isdir(ent):
2799 2794 ps = ent
2800 2795 break
2801 2796
2802 2797 if fallback is None and pat in ent and os.path.isdir(ent):
2803 2798 fallback = ent
2804 2799
2805 2800 # if we have no last part match, pick the first full path match
2806 2801 if ps is None:
2807 2802 ps = fallback
2808 2803
2809 2804 if ps is None:
2810 2805 print "No matching entry in directory history"
2811 2806 return
2812 2807 else:
2813 2808 opts = {}
2814 2809
2815 2810
2816 2811 else:
2817 2812 #turn all non-space-escaping backslashes to slashes,
2818 2813 # for c:\windows\directory\names\
2819 2814 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2820 2815 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2821 2816 # jump to previous
2822 2817 if ps == '-':
2823 2818 try:
2824 2819 ps = self.shell.user_ns['_dh'][-2]
2825 2820 except IndexError:
2826 2821 raise UsageError('%cd -: No previous directory to change to.')
2827 2822 # jump to bookmark if needed
2828 2823 else:
2829 2824 if not os.path.isdir(ps) or opts.has_key('b'):
2830 2825 bkms = self.db.get('bookmarks', {})
2831 2826
2832 2827 if bkms.has_key(ps):
2833 2828 target = bkms[ps]
2834 2829 print '(bookmark:%s) -> %s' % (ps,target)
2835 2830 ps = target
2836 2831 else:
2837 2832 if opts.has_key('b'):
2838 2833 raise UsageError("Bookmark '%s' not found. "
2839 2834 "Use '%%bookmark -l' to see your bookmarks." % ps)
2840 2835
2841 2836 # at this point ps should point to the target dir
2842 2837 if ps:
2843 2838 try:
2844 2839 os.chdir(os.path.expanduser(ps))
2845 2840 if self.shell.rc.term_title:
2846 2841 #print 'set term title:',self.shell.rc.term_title # dbg
2847 2842 platutils.set_term_title('IPy ' + abbrev_cwd())
2848 2843 except OSError:
2849 2844 print sys.exc_info()[1]
2850 2845 else:
2851 2846 cwd = os.getcwd()
2852 2847 dhist = self.shell.user_ns['_dh']
2853 2848 if oldcwd != cwd:
2854 2849 dhist.append(cwd)
2855 2850 self.db['dhist'] = compress_dhist(dhist)[-100:]
2856 2851
2857 2852 else:
2858 2853 os.chdir(self.shell.home_dir)
2859 2854 if self.shell.rc.term_title:
2860 2855 platutils.set_term_title("IPy ~")
2861 2856 cwd = os.getcwd()
2862 2857 dhist = self.shell.user_ns['_dh']
2863 2858
2864 2859 if oldcwd != cwd:
2865 2860 dhist.append(cwd)
2866 2861 self.db['dhist'] = compress_dhist(dhist)[-100:]
2867 2862 if not 'q' in opts and self.shell.user_ns['_dh']:
2868 2863 print self.shell.user_ns['_dh'][-1]
2869 2864
2870 2865
2871 2866 def magic_env(self, parameter_s=''):
2872 2867 """List environment variables."""
2873 2868
2874 2869 return os.environ.data
2875 2870
2876 2871 def magic_pushd(self, parameter_s=''):
2877 2872 """Place the current dir on stack and change directory.
2878 2873
2879 2874 Usage:\\
2880 2875 %pushd ['dirname']
2881 2876 """
2882 2877
2883 2878 dir_s = self.shell.dir_stack
2884 2879 tgt = os.path.expanduser(parameter_s)
2885 2880 cwd = os.getcwd().replace(self.home_dir,'~')
2886 2881 if tgt:
2887 2882 self.magic_cd(parameter_s)
2888 2883 dir_s.insert(0,cwd)
2889 2884 return self.magic_dirs()
2890 2885
2891 2886 def magic_popd(self, parameter_s=''):
2892 2887 """Change to directory popped off the top of the stack.
2893 2888 """
2894 2889 if not self.shell.dir_stack:
2895 2890 raise UsageError("%popd on empty stack")
2896 2891 top = self.shell.dir_stack.pop(0)
2897 2892 self.magic_cd(top)
2898 2893 print "popd ->",top
2899 2894
2900 2895 def magic_dirs(self, parameter_s=''):
2901 2896 """Return the current directory stack."""
2902 2897
2903 2898 return self.shell.dir_stack
2904 2899
2905 2900 def magic_dhist(self, parameter_s=''):
2906 2901 """Print your history of visited directories.
2907 2902
2908 2903 %dhist -> print full history\\
2909 2904 %dhist n -> print last n entries only\\
2910 2905 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2911 2906
2912 2907 This history is automatically maintained by the %cd command, and
2913 2908 always available as the global list variable _dh. You can use %cd -<n>
2914 2909 to go to directory number <n>.
2915 2910
2916 2911 Note that most of time, you should view directory history by entering
2917 2912 cd -<TAB>.
2918 2913
2919 2914 """
2920 2915
2921 2916 dh = self.shell.user_ns['_dh']
2922 2917 if parameter_s:
2923 2918 try:
2924 2919 args = map(int,parameter_s.split())
2925 2920 except:
2926 2921 self.arg_err(Magic.magic_dhist)
2927 2922 return
2928 2923 if len(args) == 1:
2929 2924 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2930 2925 elif len(args) == 2:
2931 2926 ini,fin = args
2932 2927 else:
2933 2928 self.arg_err(Magic.magic_dhist)
2934 2929 return
2935 2930 else:
2936 2931 ini,fin = 0,len(dh)
2937 2932 nlprint(dh,
2938 2933 header = 'Directory history (kept in _dh)',
2939 2934 start=ini,stop=fin)
2940 2935
2941 2936 @testdec.skip_doctest
2942 2937 def magic_sc(self, parameter_s=''):
2943 2938 """Shell capture - execute a shell command and capture its output.
2944 2939
2945 2940 DEPRECATED. Suboptimal, retained for backwards compatibility.
2946 2941
2947 2942 You should use the form 'var = !command' instead. Example:
2948 2943
2949 2944 "%sc -l myfiles = ls ~" should now be written as
2950 2945
2951 2946 "myfiles = !ls ~"
2952 2947
2953 2948 myfiles.s, myfiles.l and myfiles.n still apply as documented
2954 2949 below.
2955 2950
2956 2951 --
2957 2952 %sc [options] varname=command
2958 2953
2959 2954 IPython will run the given command using commands.getoutput(), and
2960 2955 will then update the user's interactive namespace with a variable
2961 2956 called varname, containing the value of the call. Your command can
2962 2957 contain shell wildcards, pipes, etc.
2963 2958
2964 2959 The '=' sign in the syntax is mandatory, and the variable name you
2965 2960 supply must follow Python's standard conventions for valid names.
2966 2961
2967 2962 (A special format without variable name exists for internal use)
2968 2963
2969 2964 Options:
2970 2965
2971 2966 -l: list output. Split the output on newlines into a list before
2972 2967 assigning it to the given variable. By default the output is stored
2973 2968 as a single string.
2974 2969
2975 2970 -v: verbose. Print the contents of the variable.
2976 2971
2977 2972 In most cases you should not need to split as a list, because the
2978 2973 returned value is a special type of string which can automatically
2979 2974 provide its contents either as a list (split on newlines) or as a
2980 2975 space-separated string. These are convenient, respectively, either
2981 2976 for sequential processing or to be passed to a shell command.
2982 2977
2983 2978 For example:
2984 2979
2985 2980 # all-random
2986 2981
2987 2982 # Capture into variable a
2988 2983 In [1]: sc a=ls *py
2989 2984
2990 2985 # a is a string with embedded newlines
2991 2986 In [2]: a
2992 2987 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2993 2988
2994 2989 # which can be seen as a list:
2995 2990 In [3]: a.l
2996 2991 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2997 2992
2998 2993 # or as a whitespace-separated string:
2999 2994 In [4]: a.s
3000 2995 Out[4]: 'setup.py win32_manual_post_install.py'
3001 2996
3002 2997 # a.s is useful to pass as a single command line:
3003 2998 In [5]: !wc -l $a.s
3004 2999 146 setup.py
3005 3000 130 win32_manual_post_install.py
3006 3001 276 total
3007 3002
3008 3003 # while the list form is useful to loop over:
3009 3004 In [6]: for f in a.l:
3010 3005 ...: !wc -l $f
3011 3006 ...:
3012 3007 146 setup.py
3013 3008 130 win32_manual_post_install.py
3014 3009
3015 3010 Similiarly, the lists returned by the -l option are also special, in
3016 3011 the sense that you can equally invoke the .s attribute on them to
3017 3012 automatically get a whitespace-separated string from their contents:
3018 3013
3019 3014 In [7]: sc -l b=ls *py
3020 3015
3021 3016 In [8]: b
3022 3017 Out[8]: ['setup.py', 'win32_manual_post_install.py']
3023 3018
3024 3019 In [9]: b.s
3025 3020 Out[9]: 'setup.py win32_manual_post_install.py'
3026 3021
3027 3022 In summary, both the lists and strings used for ouptut capture have
3028 3023 the following special attributes:
3029 3024
3030 3025 .l (or .list) : value as list.
3031 3026 .n (or .nlstr): value as newline-separated string.
3032 3027 .s (or .spstr): value as space-separated string.
3033 3028 """
3034 3029
3035 3030 opts,args = self.parse_options(parameter_s,'lv')
3036 3031 # Try to get a variable name and command to run
3037 3032 try:
3038 3033 # the variable name must be obtained from the parse_options
3039 3034 # output, which uses shlex.split to strip options out.
3040 3035 var,_ = args.split('=',1)
3041 3036 var = var.strip()
3042 3037 # But the the command has to be extracted from the original input
3043 3038 # parameter_s, not on what parse_options returns, to avoid the
3044 3039 # quote stripping which shlex.split performs on it.
3045 3040 _,cmd = parameter_s.split('=',1)
3046 3041 except ValueError:
3047 3042 var,cmd = '',''
3048 3043 # If all looks ok, proceed
3049 3044 out,err = self.shell.getoutputerror(cmd)
3050 3045 if err:
3051 3046 print >> Term.cerr,err
3052 3047 if opts.has_key('l'):
3053 3048 out = SList(out.split('\n'))
3054 3049 else:
3055 3050 out = LSString(out)
3056 3051 if opts.has_key('v'):
3057 3052 print '%s ==\n%s' % (var,pformat(out))
3058 3053 if var:
3059 3054 self.shell.user_ns.update({var:out})
3060 3055 else:
3061 3056 return out
3062 3057
3063 3058 def magic_sx(self, parameter_s=''):
3064 3059 """Shell execute - run a shell command and capture its output.
3065 3060
3066 3061 %sx command
3067 3062
3068 3063 IPython will run the given command using commands.getoutput(), and
3069 3064 return the result formatted as a list (split on '\\n'). Since the
3070 3065 output is _returned_, it will be stored in ipython's regular output
3071 3066 cache Out[N] and in the '_N' automatic variables.
3072 3067
3073 3068 Notes:
3074 3069
3075 3070 1) If an input line begins with '!!', then %sx is automatically
3076 3071 invoked. That is, while:
3077 3072 !ls
3078 3073 causes ipython to simply issue system('ls'), typing
3079 3074 !!ls
3080 3075 is a shorthand equivalent to:
3081 3076 %sx ls
3082 3077
3083 3078 2) %sx differs from %sc in that %sx automatically splits into a list,
3084 3079 like '%sc -l'. The reason for this is to make it as easy as possible
3085 3080 to process line-oriented shell output via further python commands.
3086 3081 %sc is meant to provide much finer control, but requires more
3087 3082 typing.
3088 3083
3089 3084 3) Just like %sc -l, this is a list with special attributes:
3090 3085
3091 3086 .l (or .list) : value as list.
3092 3087 .n (or .nlstr): value as newline-separated string.
3093 3088 .s (or .spstr): value as whitespace-separated string.
3094 3089
3095 3090 This is very useful when trying to use such lists as arguments to
3096 3091 system commands."""
3097 3092
3098 3093 if parameter_s:
3099 3094 out,err = self.shell.getoutputerror(parameter_s)
3100 3095 if err:
3101 3096 print >> Term.cerr,err
3102 3097 return SList(out.split('\n'))
3103 3098
3104 3099 def magic_bg(self, parameter_s=''):
3105 3100 """Run a job in the background, in a separate thread.
3106 3101
3107 3102 For example,
3108 3103
3109 3104 %bg myfunc(x,y,z=1)
3110 3105
3111 3106 will execute 'myfunc(x,y,z=1)' in a background thread. As soon as the
3112 3107 execution starts, a message will be printed indicating the job
3113 3108 number. If your job number is 5, you can use
3114 3109
3115 3110 myvar = jobs.result(5) or myvar = jobs[5].result
3116 3111
3117 3112 to assign this result to variable 'myvar'.
3118 3113
3119 3114 IPython has a job manager, accessible via the 'jobs' object. You can
3120 3115 type jobs? to get more information about it, and use jobs.<TAB> to see
3121 3116 its attributes. All attributes not starting with an underscore are
3122 3117 meant for public use.
3123 3118
3124 3119 In particular, look at the jobs.new() method, which is used to create
3125 3120 new jobs. This magic %bg function is just a convenience wrapper
3126 3121 around jobs.new(), for expression-based jobs. If you want to create a
3127 3122 new job with an explicit function object and arguments, you must call
3128 3123 jobs.new() directly.
3129 3124
3130 3125 The jobs.new docstring also describes in detail several important
3131 3126 caveats associated with a thread-based model for background job
3132 3127 execution. Type jobs.new? for details.
3133 3128
3134 3129 You can check the status of all jobs with jobs.status().
3135 3130
3136 3131 The jobs variable is set by IPython into the Python builtin namespace.
3137 3132 If you ever declare a variable named 'jobs', you will shadow this
3138 3133 name. You can either delete your global jobs variable to regain
3139 3134 access to the job manager, or make a new name and assign it manually
3140 3135 to the manager (stored in IPython's namespace). For example, to
3141 3136 assign the job manager to the Jobs name, use:
3142 3137
3143 3138 Jobs = __builtins__.jobs"""
3144 3139
3145 3140 self.shell.jobs.new(parameter_s,self.shell.user_ns)
3146 3141
3147 3142 def magic_r(self, parameter_s=''):
3148 3143 """Repeat previous input.
3149 3144
3150 3145 Note: Consider using the more powerfull %rep instead!
3151 3146
3152 3147 If given an argument, repeats the previous command which starts with
3153 3148 the same string, otherwise it just repeats the previous input.
3154 3149
3155 3150 Shell escaped commands (with ! as first character) are not recognized
3156 3151 by this system, only pure python code and magic commands.
3157 3152 """
3158 3153
3159 3154 start = parameter_s.strip()
3160 3155 esc_magic = self.shell.ESC_MAGIC
3161 3156 # Identify magic commands even if automagic is on (which means
3162 3157 # the in-memory version is different from that typed by the user).
3163 3158 if self.shell.rc.automagic:
3164 3159 start_magic = esc_magic+start
3165 3160 else:
3166 3161 start_magic = start
3167 3162 # Look through the input history in reverse
3168 3163 for n in range(len(self.shell.input_hist)-2,0,-1):
3169 3164 input = self.shell.input_hist[n]
3170 3165 # skip plain 'r' lines so we don't recurse to infinity
3171 3166 if input != '_ip.magic("r")\n' and \
3172 3167 (input.startswith(start) or input.startswith(start_magic)):
3173 3168 #print 'match',`input` # dbg
3174 3169 print 'Executing:',input,
3175 3170 self.shell.runlines(input)
3176 3171 return
3177 3172 print 'No previous input matching `%s` found.' % start
3178 3173
3179 3174
3180 3175 def magic_bookmark(self, parameter_s=''):
3181 3176 """Manage IPython's bookmark system.
3182 3177
3183 3178 %bookmark <name> - set bookmark to current dir
3184 3179 %bookmark <name> <dir> - set bookmark to <dir>
3185 3180 %bookmark -l - list all bookmarks
3186 3181 %bookmark -d <name> - remove bookmark
3187 3182 %bookmark -r - remove all bookmarks
3188 3183
3189 3184 You can later on access a bookmarked folder with:
3190 3185 %cd -b <name>
3191 3186 or simply '%cd <name>' if there is no directory called <name> AND
3192 3187 there is such a bookmark defined.
3193 3188
3194 3189 Your bookmarks persist through IPython sessions, but they are
3195 3190 associated with each profile."""
3196 3191
3197 3192 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3198 3193 if len(args) > 2:
3199 3194 raise UsageError("%bookmark: too many arguments")
3200 3195
3201 3196 bkms = self.db.get('bookmarks',{})
3202 3197
3203 3198 if opts.has_key('d'):
3204 3199 try:
3205 3200 todel = args[0]
3206 3201 except IndexError:
3207 3202 raise UsageError(
3208 3203 "%bookmark -d: must provide a bookmark to delete")
3209 3204 else:
3210 3205 try:
3211 3206 del bkms[todel]
3212 3207 except KeyError:
3213 3208 raise UsageError(
3214 3209 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3215 3210
3216 3211 elif opts.has_key('r'):
3217 3212 bkms = {}
3218 3213 elif opts.has_key('l'):
3219 3214 bks = bkms.keys()
3220 3215 bks.sort()
3221 3216 if bks:
3222 3217 size = max(map(len,bks))
3223 3218 else:
3224 3219 size = 0
3225 3220 fmt = '%-'+str(size)+'s -> %s'
3226 3221 print 'Current bookmarks:'
3227 3222 for bk in bks:
3228 3223 print fmt % (bk,bkms[bk])
3229 3224 else:
3230 3225 if not args:
3231 3226 raise UsageError("%bookmark: You must specify the bookmark name")
3232 3227 elif len(args)==1:
3233 3228 bkms[args[0]] = os.getcwd()
3234 3229 elif len(args)==2:
3235 3230 bkms[args[0]] = args[1]
3236 3231 self.db['bookmarks'] = bkms
3237 3232
3238 3233 def magic_pycat(self, parameter_s=''):
3239 3234 """Show a syntax-highlighted file through a pager.
3240 3235
3241 3236 This magic is similar to the cat utility, but it will assume the file
3242 3237 to be Python source and will show it with syntax highlighting. """
3243 3238
3244 3239 try:
3245 3240 filename = get_py_filename(parameter_s)
3246 3241 cont = file_read(filename)
3247 3242 except IOError:
3248 3243 try:
3249 3244 cont = eval(parameter_s,self.user_ns)
3250 3245 except NameError:
3251 3246 cont = None
3252 3247 if cont is None:
3253 3248 print "Error: no such file or variable"
3254 3249 return
3255 3250
3256 3251 page(self.shell.pycolorize(cont),
3257 3252 screen_lines=self.shell.rc.screen_length)
3258 3253
3259 3254 def magic_cpaste(self, parameter_s=''):
3260 3255 """Allows you to paste & execute a pre-formatted code block from clipboard.
3261 3256
3262 3257 You must terminate the block with '--' (two minus-signs) alone on the
3263 3258 line. You can also provide your own sentinel with '%paste -s %%' ('%%'
3264 3259 is the new sentinel for this operation)
3265 3260
3266 3261 The block is dedented prior to execution to enable execution of method
3267 3262 definitions. '>' and '+' characters at the beginning of a line are
3268 3263 ignored, to allow pasting directly from e-mails, diff files and
3269 3264 doctests (the '...' continuation prompt is also stripped). The
3270 3265 executed block is also assigned to variable named 'pasted_block' for
3271 3266 later editing with '%edit pasted_block'.
3272 3267
3273 3268 You can also pass a variable name as an argument, e.g. '%cpaste foo'.
3274 3269 This assigns the pasted block to variable 'foo' as string, without
3275 3270 dedenting or executing it (preceding >>> and + is still stripped)
3276 3271
3277 3272 '%cpaste -r' re-executes the block previously entered by cpaste.
3278 3273
3279 3274 Do not be alarmed by garbled output on Windows (it's a readline bug).
3280 3275 Just press enter and type -- (and press enter again) and the block
3281 3276 will be what was just pasted.
3282 3277
3283 3278 IPython statements (magics, shell escapes) are not supported (yet).
3284 3279 """
3285 3280 opts,args = self.parse_options(parameter_s,'rs:',mode='string')
3286 3281 par = args.strip()
3287 3282 if opts.has_key('r'):
3288 3283 b = self.user_ns.get('pasted_block', None)
3289 3284 if b is None:
3290 3285 raise UsageError('No previous pasted block available')
3291 3286 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3292 3287 exec b in self.user_ns
3293 3288 return
3294 3289
3295 3290 sentinel = opts.get('s','--')
3296 3291
3297 3292 # Regular expressions that declare text we strip from the input:
3298 3293 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3299 3294 r'^\s*(\s?>)+', # Python input prompt
3300 3295 r'^\s*\.{3,}', # Continuation prompts
3301 3296 r'^\++',
3302 3297 ]
3303 3298
3304 3299 strip_from_start = map(re.compile,strip_re)
3305 3300
3306 3301 from IPython import iplib
3307 3302 lines = []
3308 3303 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3309 3304 while 1:
3310 3305 l = iplib.raw_input_original(':')
3311 3306 if l ==sentinel:
3312 3307 break
3313 3308
3314 3309 for pat in strip_from_start:
3315 3310 l = pat.sub('',l)
3316 3311 lines.append(l)
3317 3312
3318 3313 block = "\n".join(lines) + '\n'
3319 3314 #print "block:\n",block
3320 3315 if not par:
3321 3316 b = textwrap.dedent(block)
3322 3317 self.user_ns['pasted_block'] = b
3323 3318 exec b in self.user_ns
3324 3319 else:
3325 3320 self.user_ns[par] = SList(block.splitlines())
3326 3321 print "Block assigned to '%s'" % par
3327 3322
3328 3323 def magic_quickref(self,arg):
3329 3324 """ Show a quick reference sheet """
3330 3325 import IPython.usage
3331 3326 qr = IPython.usage.quick_reference + self.magic_magic('-brief')
3332 3327
3333 3328 page(qr)
3334 3329
3335 3330 def magic_upgrade(self,arg):
3336 3331 """ Upgrade your IPython installation
3337 3332
3338 3333 This will copy the config files that don't yet exist in your
3339 3334 ipython dir from the system config dir. Use this after upgrading
3340 3335 IPython if you don't wish to delete your .ipython dir.
3341 3336
3342 3337 Call with -nolegacy to get rid of ipythonrc* files (recommended for
3343 3338 new users)
3344 3339
3345 3340 """
3346 3341 ip = self.getapi()
3347 3342 ipinstallation = path(IPython.__file__).dirname()
3348 3343 upgrade_script = '%s "%s"' % (sys.executable,ipinstallation / 'upgrade_dir.py')
3349 3344 src_config = ipinstallation / 'UserConfig'
3350 3345 userdir = path(ip.options.ipythondir)
3351 3346 cmd = '%s "%s" "%s"' % (upgrade_script, src_config, userdir)
3352 3347 print ">",cmd
3353 3348 shell(cmd)
3354 3349 if arg == '-nolegacy':
3355 3350 legacy = userdir.files('ipythonrc*')
3356 3351 print "Nuking legacy files:",legacy
3357 3352
3358 3353 [p.remove() for p in legacy]
3359 3354 suffix = (sys.platform == 'win32' and '.ini' or '')
3360 3355 (userdir / ('ipythonrc' + suffix)).write_text('# Empty, see ipy_user_conf.py\n')
3361 3356
3362 3357
3363 3358 def magic_doctest_mode(self,parameter_s=''):
3364 3359 """Toggle doctest mode on and off.
3365 3360
3366 3361 This mode allows you to toggle the prompt behavior between normal
3367 3362 IPython prompts and ones that are as similar to the default IPython
3368 3363 interpreter as possible.
3369 3364
3370 3365 It also supports the pasting of code snippets that have leading '>>>'
3371 3366 and '...' prompts in them. This means that you can paste doctests from
3372 3367 files or docstrings (even if they have leading whitespace), and the
3373 3368 code will execute correctly. You can then use '%history -tn' to see
3374 3369 the translated history without line numbers; this will give you the
3375 3370 input after removal of all the leading prompts and whitespace, which
3376 3371 can be pasted back into an editor.
3377 3372
3378 3373 With these features, you can switch into this mode easily whenever you
3379 3374 need to do testing and changes to doctests, without having to leave
3380 3375 your existing IPython session.
3381 3376 """
3382 3377
3383 3378 # XXX - Fix this to have cleaner activate/deactivate calls.
3384 3379 from IPython.Extensions import InterpreterPasteInput as ipaste
3385 3380 from IPython.ipstruct import Struct
3386 3381
3387 3382 # Shorthands
3388 3383 shell = self.shell
3389 3384 oc = shell.outputcache
3390 3385 rc = shell.rc
3391 3386 meta = shell.meta
3392 3387 # dstore is a data store kept in the instance metadata bag to track any
3393 3388 # changes we make, so we can undo them later.
3394 3389 dstore = meta.setdefault('doctest_mode',Struct())
3395 3390 save_dstore = dstore.setdefault
3396 3391
3397 3392 # save a few values we'll need to recover later
3398 3393 mode = save_dstore('mode',False)
3399 3394 save_dstore('rc_pprint',rc.pprint)
3400 3395 save_dstore('xmode',shell.InteractiveTB.mode)
3401 3396 save_dstore('rc_separate_out',rc.separate_out)
3402 3397 save_dstore('rc_separate_out2',rc.separate_out2)
3403 3398 save_dstore('rc_prompts_pad_left',rc.prompts_pad_left)
3404 3399 save_dstore('rc_separate_in',rc.separate_in)
3405 3400
3406 3401 if mode == False:
3407 3402 # turn on
3408 3403 ipaste.activate_prefilter()
3409 3404
3410 3405 oc.prompt1.p_template = '>>> '
3411 3406 oc.prompt2.p_template = '... '
3412 3407 oc.prompt_out.p_template = ''
3413 3408
3414 3409 # Prompt separators like plain python
3415 3410 oc.input_sep = oc.prompt1.sep = ''
3416 3411 oc.output_sep = ''
3417 3412 oc.output_sep2 = ''
3418 3413
3419 3414 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3420 3415 oc.prompt_out.pad_left = False
3421 3416
3422 3417 rc.pprint = False
3423 3418
3424 3419 shell.magic_xmode('Plain')
3425 3420
3426 3421 else:
3427 3422 # turn off
3428 3423 ipaste.deactivate_prefilter()
3429 3424
3430 3425 oc.prompt1.p_template = rc.prompt_in1
3431 3426 oc.prompt2.p_template = rc.prompt_in2
3432 3427 oc.prompt_out.p_template = rc.prompt_out
3433 3428
3434 3429 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3435 3430
3436 3431 oc.output_sep = dstore.rc_separate_out
3437 3432 oc.output_sep2 = dstore.rc_separate_out2
3438 3433
3439 3434 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3440 3435 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3441 3436
3442 3437 rc.pprint = dstore.rc_pprint
3443 3438
3444 3439 shell.magic_xmode(dstore.xmode)
3445 3440
3446 3441 # Store new mode and inform
3447 3442 dstore.mode = bool(1-int(mode))
3448 3443 print 'Doctest mode is:',
3449 3444 print ['OFF','ON'][dstore.mode]
3450 3445
3451 3446 # end Magic
@@ -1,34 +1,34 b''
1 1 """Test code for https://bugs.launchpad.net/ipython/+bug/239054
2 2
3 3 WARNING: this script exits IPython! It MUST be run in a subprocess.
4 4
5 5 When you run the following script from CPython it prints:
6 6 __init__ is here
7 7 __del__ is here
8 8
9 9 and creates the __del__.txt file
10 10
11 11 When you run it from IPython it prints:
12 12 __init__ is here
13 13
14 14 When you exit() or Exit from IPython neothing is printed and no file is created
15 15 (the file thing is to make sure __del__ is really never called and not that
16 16 just the output is eaten).
17 17
18 18 Note that if you call %reset in IPython then everything is Ok.
19 19
20 20 IPython should do the equivalent of %reset and release all the references it
21 21 holds before exit. This behavior is important when working with binding objects
22 22 that rely on __del__. If the current behavior has some use case then I suggest
23 23 to add a configuration option to IPython to control it.
24 24 """
25 25 import sys
26 26
27 27 class A(object):
28 28 def __del__(self):
29 print 'obj_del.py: object A deleted'
29 print 'obj_del.py: object A deleted'
30 30
31 31 a = A()
32 32
33 33 # Now, we force an exit, the caller will check that the del printout was given
34 34 _ip.IP.ask_exit()
@@ -1,38 +1,41 b''
1 1 """Minimal script to reproduce our nasty reference counting bug.
2 2
3 3 The problem is related to https://bugs.launchpad.net/ipython/+bug/269966
4 4
5 The original fix for that appeared to work, but JD Hunter found a matplotlib
6 example which, when run twice in a row, would break. The problem were
7 references held by open figures to internals of Tkinter.
5 The original fix for that appeared to work, but John D. Hunter found a
6 matplotlib example which, when run twice in a row, would break. The problem
7 were references held by open figures to internals of Tkinter.
8 8
9 This code reproduces the problem that John saw, without matplotlib. We can
10 thus use it for our test suite.
9 This code reproduces the problem that John saw, without matplotlib.
10
11 This script is meant to be called by other parts of the test suite that call it
12 via %run as if it were executed interactively by the user. As of 2009-04-13,
13 test_magic.py calls it.
11 14 """
12 15
13 16 #-----------------------------------------------------------------------------
14 17 # Module imports
15 18 #-----------------------------------------------------------------------------
16 19 import sys
17 20
18 21 from IPython import ipapi
19 22
20 23 #-----------------------------------------------------------------------------
21 24 # Globals
22 25 #-----------------------------------------------------------------------------
23 26 ip = ipapi.get()
24 27
25 28 if not '_refbug_cache' in ip.user_ns:
26 29 ip.user_ns['_refbug_cache'] = []
27 30
28 31
29 32 aglobal = 'Hello'
30 33 def f():
31 34 return aglobal
32 35
33 36 cache = ip.user_ns['_refbug_cache']
34 37 cache.append(f)
35 38
36 39 def call_f():
37 40 for func in cache:
38 41 print 'lowercased:',func().lower()
@@ -1,68 +1,68 b''
1 1 """Tests for the key iplib module, where the main ipython class is defined.
2 2 """
3 3 #-----------------------------------------------------------------------------
4 4 # Module imports
5 5 #-----------------------------------------------------------------------------
6 6
7 7 # stdlib
8 8 import os
9 9 import shutil
10 10 import tempfile
11 11
12 12 # third party
13 13 import nose.tools as nt
14 14
15 15 # our own packages
16 16 from IPython import iplib
17 17
18 18 #-----------------------------------------------------------------------------
19 19 # Globals
20 20 #-----------------------------------------------------------------------------
21 21
22 22 # Useful global ipapi object and main IPython one. Unfortunately we have a
23 23 # long precedent of carrying the 'ipapi' global object which is injected into
24 24 # the system namespace as _ip, but that keeps a pointer to the actual IPython
25 25 # InteractiveShell instance, which is named IP. Since in testing we do need
26 26 # access to the real thing (we want to probe beyond what ipapi exposes), make
27 27 # here a global reference to each. In general, things that are exposed by the
28 28 # ipapi instance should be read from there, but we also will often need to use
29 29 # the actual IPython one.
30 30
31 31 ip = _ip # This is the ipapi instance
32 32 IP = ip.IP # This is the actual IPython shell 'raw' object.
33 33
34 34 #-----------------------------------------------------------------------------
35 35 # Test functions
36 36 #-----------------------------------------------------------------------------
37 37
38 38 def test_reset():
39 39 """reset must clear most namespaces."""
40 40 IP.reset() # first, it should run without error
41 41 # Then, check that most namespaces end up empty
42 42 for ns in IP.ns_refs_table:
43 43 if ns is IP.user_ns:
44 44 # The user namespace is reset with some data, so we can't check for
45 45 # it being empty
46 46 continue
47 47 nt.assert_equals(len(ns),0)
48 48
49 49
50 50 # make sure that user_setup can be run re-entrantly in 'install' mode.
51 51 def test_user_setup():
52 52 # use a lambda to pass kwargs to the generator
53 53 user_setup = lambda a,k: iplib.user_setup(*a,**k)
54 kw = dict(mode='install',interactive=False)
54 kw = dict(mode='install', interactive=False)
55 55
56 56 # Call the user setup and verify that the directory exists
57 yield user_setup, (ip.options.ipythondir,''),kw
58 yield os.path.isdir,ip.options.ipythondir
57 yield user_setup, (ip.options.ipythondir,''), kw
58 yield os.path.isdir, ip.options.ipythondir
59 59
60 60 # Now repeat the operation with a non-existent directory. Check both that
61 61 # the call succeeds and that the directory is created.
62 62 tmpdir = tempfile.mktemp(prefix='ipython-test-')
63 63 try:
64 yield user_setup, (tmpdir,''),kw
65 yield os.path.isdir,tmpdir
64 yield user_setup, (tmpdir,''), kw
65 yield os.path.isdir, tmpdir
66 66 finally:
67 67 # In this case, clean up the temp dir once done
68 68 shutil.rmtree(tmpdir)
General Comments 0
You need to be logged in to leave comments. Login now