Show More
@@ -1,544 +1,544 | |||
|
1 | 1 | #!/usr/bin/env python |
|
2 | 2 | # encoding: utf-8 |
|
3 | 3 | """ |
|
4 | 4 | The IPython cluster directory |
|
5 | 5 | """ |
|
6 | 6 | |
|
7 | 7 | #----------------------------------------------------------------------------- |
|
8 | 8 | # Copyright (C) 2008-2009 The IPython Development Team |
|
9 | 9 | # |
|
10 | 10 | # Distributed under the terms of the BSD License. The full license is in |
|
11 | 11 | # the file COPYING, distributed as part of this software. |
|
12 | 12 | #----------------------------------------------------------------------------- |
|
13 | 13 | |
|
14 | 14 | #----------------------------------------------------------------------------- |
|
15 | 15 | # Imports |
|
16 | 16 | #----------------------------------------------------------------------------- |
|
17 | 17 | |
|
18 | 18 | from __future__ import with_statement |
|
19 | 19 | |
|
20 | 20 | import os |
|
21 | 21 | import logging |
|
22 | 22 | import re |
|
23 | 23 | import shutil |
|
24 | 24 | import sys |
|
25 | 25 | |
|
26 | 26 | from subprocess import Popen, PIPE |
|
27 | 27 | |
|
28 | 28 | from IPython.config.loader import PyFileConfigLoader, Config |
|
29 | 29 | from IPython.config.configurable import Configurable |
|
30 | 30 | from IPython.config.application import Application |
|
31 | 31 | from IPython.core.crashhandler import CrashHandler |
|
32 | 32 | from IPython.core.newapplication import BaseIPythonApplication |
|
33 | 33 | from IPython.core import release |
|
34 | 34 | from IPython.utils.path import ( |
|
35 | 35 | get_ipython_package_dir, |
|
36 | 36 | get_ipython_dir, |
|
37 | 37 | expand_path |
|
38 | 38 | ) |
|
39 | 39 | from IPython.utils.traitlets import Unicode, Bool, Instance, Dict |
|
40 | 40 | |
|
41 | 41 | #----------------------------------------------------------------------------- |
|
42 | 42 | # Module errors |
|
43 | 43 | #----------------------------------------------------------------------------- |
|
44 | 44 | |
|
45 | 45 | class ClusterDirError(Exception): |
|
46 | 46 | pass |
|
47 | 47 | |
|
48 | 48 | |
|
49 | 49 | class PIDFileError(Exception): |
|
50 | 50 | pass |
|
51 | 51 | |
|
52 | 52 | |
|
53 | 53 | #----------------------------------------------------------------------------- |
|
54 | 54 | # Class for managing cluster directories |
|
55 | 55 | #----------------------------------------------------------------------------- |
|
56 | 56 | |
|
57 | 57 | class ClusterDir(Configurable): |
|
58 | 58 | """An object to manage the cluster directory and its resources. |
|
59 | 59 | |
|
60 | 60 | The cluster directory is used by :command:`ipengine`, |
|
61 | 61 | :command:`ipcontroller` and :command:`ipclsuter` to manage the |
|
62 | 62 | configuration, logging and security of these applications. |
|
63 | 63 | |
|
64 | 64 | This object knows how to find, create and manage these directories. This |
|
65 | 65 | should be used by any code that want's to handle cluster directories. |
|
66 | 66 | """ |
|
67 | 67 | |
|
68 | 68 | security_dir_name = Unicode('security') |
|
69 | 69 | log_dir_name = Unicode('log') |
|
70 | 70 | pid_dir_name = Unicode('pid') |
|
71 | 71 | security_dir = Unicode(u'') |
|
72 | 72 | log_dir = Unicode(u'') |
|
73 | 73 | pid_dir = Unicode(u'') |
|
74 | 74 | |
|
75 | 75 | auto_create = Bool(False, |
|
76 | 76 | help="""Whether to automatically create the ClusterDirectory if it does |
|
77 | 77 | not exist""") |
|
78 | 78 | overwrite = Bool(False, |
|
79 | 79 | help="""Whether to overwrite existing config files""") |
|
80 | 80 | location = Unicode(u'', config=True, |
|
81 | 81 | help="""Set the cluster dir. This overrides the logic used by the |
|
82 | 82 | `profile` option.""", |
|
83 | 83 | ) |
|
84 | 84 | profile = Unicode(u'default', config=True, |
|
85 | 85 | help="""The string name of the profile to be used. This determines the name |
|
86 | 86 | of the cluster dir as: cluster_<profile>. The default profile is named |
|
87 | 87 | 'default'. The cluster directory is resolve this way if the |
|
88 | 88 | `cluster_dir` option is not used.""" |
|
89 | 89 | ) |
|
90 | 90 | |
|
91 | 91 | _location_isset = Bool(False) # flag for detecting multiply set location |
|
92 | 92 | _new_dir = Bool(False) # flag for whether a new dir was created |
|
93 | 93 | |
|
94 | 94 | def __init__(self, **kwargs): |
|
95 | 95 | # make sure auto_create,overwrite are set *before* location |
|
96 | 96 | for name in ('auto_create', 'overwrite'): |
|
97 | 97 | v = kwargs.pop(name, None) |
|
98 | 98 | if v is not None: |
|
99 | 99 | setattr(self, name, v) |
|
100 | 100 | super(ClusterDir, self).__init__(**kwargs) |
|
101 | 101 | if not self.location: |
|
102 | 102 | self._profile_changed('profile', 'default', self.profile) |
|
103 | 103 | |
|
104 | 104 | def _location_changed(self, name, old, new): |
|
105 | 105 | if self._location_isset: |
|
106 | 106 | raise RuntimeError("Cannot set ClusterDir more than once.") |
|
107 | 107 | self._location_isset = True |
|
108 | 108 | if not os.path.isdir(new): |
|
109 | 109 | if self.auto_create:# or self.config.ClusterDir.auto_create: |
|
110 | 110 | os.makedirs(new) |
|
111 | 111 | self._new_dir = True |
|
112 | 112 | else: |
|
113 | 113 | raise ClusterDirError('Directory not found: %s' % new) |
|
114 | 114 | |
|
115 | 115 | # ensure config files exist: |
|
116 | 116 | self.copy_all_config_files(overwrite=self.overwrite) |
|
117 | 117 | self.security_dir = os.path.join(new, self.security_dir_name) |
|
118 | 118 | self.log_dir = os.path.join(new, self.log_dir_name) |
|
119 | 119 | self.pid_dir = os.path.join(new, self.pid_dir_name) |
|
120 | 120 | self.check_dirs() |
|
121 | 121 | |
|
122 | 122 | def _profile_changed(self, name, old, new): |
|
123 | 123 | if self._location_isset: |
|
124 | 124 | raise RuntimeError("ClusterDir already set. Cannot set by profile.") |
|
125 | 125 | self.location = os.path.join(get_ipython_dir(), 'cluster_'+new) |
|
126 | 126 | |
|
127 | 127 | def _log_dir_changed(self, name, old, new): |
|
128 | 128 | self.check_log_dir() |
|
129 | 129 | |
|
130 | 130 | def check_log_dir(self): |
|
131 | 131 | if not os.path.isdir(self.log_dir): |
|
132 | 132 | os.mkdir(self.log_dir) |
|
133 | 133 | |
|
134 | 134 | def _security_dir_changed(self, name, old, new): |
|
135 | 135 | self.check_security_dir() |
|
136 | 136 | |
|
137 | 137 | def check_security_dir(self): |
|
138 | 138 | if not os.path.isdir(self.security_dir): |
|
139 | 139 | os.mkdir(self.security_dir, 0700) |
|
140 | 140 | os.chmod(self.security_dir, 0700) |
|
141 | 141 | |
|
142 | 142 | def _pid_dir_changed(self, name, old, new): |
|
143 | 143 | self.check_pid_dir() |
|
144 | 144 | |
|
145 | 145 | def check_pid_dir(self): |
|
146 | 146 | if not os.path.isdir(self.pid_dir): |
|
147 | 147 | os.mkdir(self.pid_dir, 0700) |
|
148 | 148 | os.chmod(self.pid_dir, 0700) |
|
149 | 149 | |
|
150 | 150 | def check_dirs(self): |
|
151 | 151 | self.check_security_dir() |
|
152 | 152 | self.check_log_dir() |
|
153 | 153 | self.check_pid_dir() |
|
154 | 154 | |
|
155 | 155 | def copy_config_file(self, config_file, path=None, overwrite=False): |
|
156 | 156 | """Copy a default config file into the active cluster directory. |
|
157 | 157 | |
|
158 | 158 | Default configuration files are kept in :mod:`IPython.config.default`. |
|
159 | 159 | This function moves these from that location to the working cluster |
|
160 | 160 | directory. |
|
161 | 161 | """ |
|
162 | 162 | if path is None: |
|
163 | 163 | import IPython.config.default |
|
164 | 164 | path = IPython.config.default.__file__.split(os.path.sep)[:-1] |
|
165 | 165 | path = os.path.sep.join(path) |
|
166 | 166 | src = os.path.join(path, config_file) |
|
167 | 167 | dst = os.path.join(self.location, config_file) |
|
168 | 168 | if not os.path.isfile(dst) or overwrite: |
|
169 | 169 | shutil.copy(src, dst) |
|
170 | 170 | |
|
171 | 171 | def copy_all_config_files(self, path=None, overwrite=False): |
|
172 | 172 | """Copy all config files into the active cluster directory.""" |
|
173 | 173 | for f in [u'ipcontroller_config.py', u'ipengine_config.py', |
|
174 | 174 | u'ipcluster_config.py']: |
|
175 | 175 | self.copy_config_file(f, path=path, overwrite=overwrite) |
|
176 | 176 | |
|
177 | 177 | @classmethod |
|
178 | 178 | def create_cluster_dir(csl, cluster_dir): |
|
179 | 179 | """Create a new cluster directory given a full path. |
|
180 | 180 | |
|
181 | 181 | Parameters |
|
182 | 182 | ---------- |
|
183 | 183 | cluster_dir : str |
|
184 | 184 | The full path to the cluster directory. If it does exist, it will |
|
185 | 185 | be used. If not, it will be created. |
|
186 | 186 | """ |
|
187 | 187 | return ClusterDir(location=cluster_dir) |
|
188 | 188 | |
|
189 | 189 | @classmethod |
|
190 | 190 | def create_cluster_dir_by_profile(cls, path, profile=u'default'): |
|
191 | 191 | """Create a cluster dir by profile name and path. |
|
192 | 192 | |
|
193 | 193 | Parameters |
|
194 | 194 | ---------- |
|
195 | 195 | path : str |
|
196 | 196 | The path (directory) to put the cluster directory in. |
|
197 | 197 | profile : str |
|
198 | 198 | The name of the profile. The name of the cluster directory will |
|
199 | 199 | be "cluster_<profile>". |
|
200 | 200 | """ |
|
201 | 201 | if not os.path.isdir(path): |
|
202 | 202 | raise ClusterDirError('Directory not found: %s' % path) |
|
203 | 203 | cluster_dir = os.path.join(path, u'cluster_' + profile) |
|
204 | 204 | return ClusterDir(location=cluster_dir) |
|
205 | 205 | |
|
206 | 206 | @classmethod |
|
207 | 207 | def find_cluster_dir_by_profile(cls, ipython_dir, profile=u'default'): |
|
208 | 208 | """Find an existing cluster dir by profile name, return its ClusterDir. |
|
209 | 209 | |
|
210 | 210 | This searches through a sequence of paths for a cluster dir. If it |
|
211 | 211 | is not found, a :class:`ClusterDirError` exception will be raised. |
|
212 | 212 | |
|
213 | 213 | The search path algorithm is: |
|
214 | 214 | 1. ``os.getcwd()`` |
|
215 | 215 | 2. ``ipython_dir`` |
|
216 | 216 | 3. The directories found in the ":" separated |
|
217 | 217 | :env:`IPCLUSTER_DIR_PATH` environment variable. |
|
218 | 218 | |
|
219 | 219 | Parameters |
|
220 | 220 | ---------- |
|
221 | 221 | ipython_dir : unicode or str |
|
222 | 222 | The IPython directory to use. |
|
223 | 223 | profile : unicode or str |
|
224 | 224 | The name of the profile. The name of the cluster directory |
|
225 | 225 | will be "cluster_<profile>". |
|
226 | 226 | """ |
|
227 | 227 | dirname = u'cluster_' + profile |
|
228 | 228 | cluster_dir_paths = os.environ.get('IPCLUSTER_DIR_PATH','') |
|
229 | 229 | if cluster_dir_paths: |
|
230 | 230 | cluster_dir_paths = cluster_dir_paths.split(':') |
|
231 | 231 | else: |
|
232 | 232 | cluster_dir_paths = [] |
|
233 | 233 | paths = [os.getcwd(), ipython_dir] + cluster_dir_paths |
|
234 | 234 | for p in paths: |
|
235 | 235 | cluster_dir = os.path.join(p, dirname) |
|
236 | 236 | if os.path.isdir(cluster_dir): |
|
237 | 237 | return ClusterDir(location=cluster_dir) |
|
238 | 238 | else: |
|
239 | 239 | raise ClusterDirError('Cluster directory not found in paths: %s' % dirname) |
|
240 | 240 | |
|
241 | 241 | @classmethod |
|
242 | 242 | def find_cluster_dir(cls, cluster_dir): |
|
243 | 243 | """Find/create a cluster dir and return its ClusterDir. |
|
244 | 244 | |
|
245 | 245 | This will create the cluster directory if it doesn't exist. |
|
246 | 246 | |
|
247 | 247 | Parameters |
|
248 | 248 | ---------- |
|
249 | 249 | cluster_dir : unicode or str |
|
250 | 250 | The path of the cluster directory. This is expanded using |
|
251 | 251 | :func:`IPython.utils.genutils.expand_path`. |
|
252 | 252 | """ |
|
253 | 253 | cluster_dir = expand_path(cluster_dir) |
|
254 | 254 | if not os.path.isdir(cluster_dir): |
|
255 | 255 | raise ClusterDirError('Cluster directory not found: %s' % cluster_dir) |
|
256 | 256 | return ClusterDir(location=cluster_dir) |
|
257 | 257 | |
|
258 | 258 | |
|
259 | 259 | #----------------------------------------------------------------------------- |
|
260 | 260 | # Crash handler for this application |
|
261 | 261 | #----------------------------------------------------------------------------- |
|
262 | 262 | |
|
263 | 263 | |
|
264 | 264 | _message_template = """\ |
|
265 | 265 | Oops, $self.app_name crashed. We do our best to make it stable, but... |
|
266 | 266 | |
|
267 | 267 | A crash report was automatically generated with the following information: |
|
268 | 268 | - A verbatim copy of the crash traceback. |
|
269 | 269 | - Data on your current $self.app_name configuration. |
|
270 | 270 | |
|
271 | 271 | It was left in the file named: |
|
272 | 272 | \t'$self.crash_report_fname' |
|
273 | 273 | If you can email this file to the developers, the information in it will help |
|
274 | 274 | them in understanding and correcting the problem. |
|
275 | 275 | |
|
276 | 276 | You can mail it to: $self.contact_name at $self.contact_email |
|
277 | 277 | with the subject '$self.app_name Crash Report'. |
|
278 | 278 | |
|
279 | 279 | If you want to do it now, the following command will work (under Unix): |
|
280 | 280 | mail -s '$self.app_name Crash Report' $self.contact_email < $self.crash_report_fname |
|
281 | 281 | |
|
282 | 282 | To ensure accurate tracking of this issue, please file a report about it at: |
|
283 | 283 | $self.bug_tracker |
|
284 | 284 | """ |
|
285 | 285 | |
|
286 | 286 | class ClusterDirCrashHandler(CrashHandler): |
|
287 | 287 | """sys.excepthook for IPython itself, leaves a detailed report on disk.""" |
|
288 | 288 | |
|
289 | 289 | message_template = _message_template |
|
290 | 290 | |
|
291 | 291 | def __init__(self, app): |
|
292 | 292 | contact_name = release.authors['Min'][0] |
|
293 | 293 | contact_email = release.authors['Min'][1] |
|
294 | 294 | bug_tracker = 'http://github.com/ipython/ipython/issues' |
|
295 | 295 | super(ClusterDirCrashHandler,self).__init__( |
|
296 | 296 | app, contact_name, contact_email, bug_tracker |
|
297 | 297 | ) |
|
298 | 298 | |
|
299 | 299 | |
|
300 | 300 | #----------------------------------------------------------------------------- |
|
301 | 301 | # Main application |
|
302 | 302 | #----------------------------------------------------------------------------- |
|
303 | 303 | base_aliases = { |
|
304 | 304 | 'profile' : "ClusterDir.profile", |
|
305 | 305 | 'cluster_dir' : 'ClusterDir.location', |
|
306 | 306 | 'auto_create' : 'ClusterDirApplication.auto_create', |
|
307 | 307 | 'log_level' : 'ClusterApplication.log_level', |
|
308 | 308 | 'work_dir' : 'ClusterApplication.work_dir', |
|
309 | 309 | 'log_to_file' : 'ClusterApplication.log_to_file', |
|
310 | 310 | 'clean_logs' : 'ClusterApplication.clean_logs', |
|
311 | 311 | 'log_url' : 'ClusterApplication.log_url', |
|
312 | 312 | } |
|
313 | 313 | |
|
314 | 314 | base_flags = { |
|
315 | 315 | 'debug' : ( {"ClusterApplication" : {"log_level" : logging.DEBUG}}, "set loglevel to DEBUG"), |
|
316 | 316 | 'quiet' : ( {"ClusterApplication" : {"log_level" : logging.CRITICAL}}, "set loglevel to CRITICAL (minimal output)"), |
|
317 | 317 | 'log-to-file' : ( {"ClusterApplication" : {"log_to_file" : True}}, "redirect log output to a file"), |
|
318 | 318 | } |
|
319 | 319 | for k,v in base_flags.iteritems(): |
|
320 | 320 | base_flags[k] = (Config(v[0]),v[1]) |
|
321 | 321 | |
|
322 | 322 | class ClusterApplication(BaseIPythonApplication): |
|
323 | 323 | """An application that puts everything into a cluster directory. |
|
324 | 324 | |
|
325 | 325 | Instead of looking for things in the ipython_dir, this type of application |
|
326 | 326 | will use its own private directory called the "cluster directory" |
|
327 | 327 | for things like config files, log files, etc. |
|
328 | 328 | |
|
329 | 329 | The cluster directory is resolved as follows: |
|
330 | 330 | |
|
331 |
* If the `` |
|
|
332 |
* If `` |
|
|
331 | * If the ``cluster_dir`` option is given, it is used. | |
|
332 | * If ``cluster_dir`` is not given, the application directory is | |
|
333 | 333 | resolve using the profile name as ``cluster_<profile>``. The search |
|
334 | 334 | path for this directory is then i) cwd if it is found there |
|
335 | 335 | and ii) in ipython_dir otherwise. |
|
336 | 336 | |
|
337 | 337 | The config file for the application is to be put in the cluster |
|
338 | 338 | dir and named the value of the ``config_file_name`` class attribute. |
|
339 | 339 | """ |
|
340 | 340 | |
|
341 | 341 | crash_handler_class = ClusterDirCrashHandler |
|
342 | 342 | auto_create_cluster_dir = Bool(True, config=True, |
|
343 | 343 | help="whether to create the cluster_dir if it doesn't exist") |
|
344 | 344 | cluster_dir = Instance(ClusterDir) |
|
345 | 345 | classes = [ClusterDir] |
|
346 | 346 | |
|
347 | 347 | def _log_level_default(self): |
|
348 | 348 | # temporarily override default_log_level to INFO |
|
349 | 349 | return logging.INFO |
|
350 | 350 | |
|
351 | 351 | work_dir = Unicode(os.getcwdu(), config=True, |
|
352 | 352 | help='Set the working dir for the process.' |
|
353 | 353 | ) |
|
354 | 354 | def _work_dir_changed(self, name, old, new): |
|
355 | 355 | self.work_dir = unicode(expand_path(new)) |
|
356 | 356 | |
|
357 | 357 | log_to_file = Bool(config=True, |
|
358 | 358 | help="whether to log to a file") |
|
359 | 359 | |
|
360 | 360 | clean_logs = Bool(False, shortname='--clean-logs', config=True, |
|
361 | 361 | help="whether to cleanup old logfiles before starting") |
|
362 | 362 | |
|
363 | 363 | log_url = Unicode('', shortname='--log-url', config=True, |
|
364 | 364 | help="The ZMQ URL of the iplogger to aggregate logging.") |
|
365 | 365 | |
|
366 | 366 | config_file = Unicode(u'', config=True, |
|
367 | 367 | help="""Path to ipcontroller configuration file. The default is to use |
|
368 | 368 | <appname>_config.py, as found by cluster-dir.""" |
|
369 | 369 | ) |
|
370 | 370 | |
|
371 | 371 | loop = Instance('zmq.eventloop.ioloop.IOLoop') |
|
372 | 372 | def _loop_default(self): |
|
373 | 373 | from zmq.eventloop.ioloop import IOLoop |
|
374 | 374 | return IOLoop.instance() |
|
375 | 375 | |
|
376 | 376 | aliases = Dict(base_aliases) |
|
377 | 377 | flags = Dict(base_flags) |
|
378 | 378 | |
|
379 | 379 | def init_clusterdir(self): |
|
380 | 380 | """This resolves the cluster directory. |
|
381 | 381 | |
|
382 | 382 | This tries to find the cluster directory and if successful, it will |
|
383 | 383 | have done: |
|
384 | 384 | * Sets ``self.cluster_dir_obj`` to the :class:`ClusterDir` object for |
|
385 | 385 | the application. |
|
386 | 386 | * Sets ``self.cluster_dir`` attribute of the application and config |
|
387 | 387 | objects. |
|
388 | 388 | |
|
389 | 389 | The algorithm used for this is as follows: |
|
390 | 390 | 1. Try ``Global.cluster_dir``. |
|
391 | 391 | 2. Try using ``Global.profile``. |
|
392 | 392 | 3. If both of these fail and ``self.auto_create_cluster_dir`` is |
|
393 | 393 | ``True``, then create the new cluster dir in the IPython directory. |
|
394 | 394 | 4. If all fails, then raise :class:`ClusterDirError`. |
|
395 | 395 | """ |
|
396 | 396 | try: |
|
397 | 397 | self.cluster_dir = ClusterDir(auto_create=self.auto_create_cluster_dir, config=self.config) |
|
398 | 398 | except ClusterDirError as e: |
|
399 | 399 | self.log.fatal("Error initializing cluster dir: %s"%e) |
|
400 | 400 | self.log.fatal("A cluster dir must be created before running this command.") |
|
401 | 401 | self.log.fatal("Do 'ipcluster create -h' or 'ipcluster list -h' for more " |
|
402 | 402 | "information about creating and listing cluster dirs." |
|
403 | 403 | ) |
|
404 | 404 | self.exit(1) |
|
405 | 405 | |
|
406 | 406 | if self.cluster_dir._new_dir: |
|
407 | 407 | self.log.info('Creating new cluster dir: %s' % \ |
|
408 | 408 | self.cluster_dir.location) |
|
409 | 409 | else: |
|
410 | 410 | self.log.info('Using existing cluster dir: %s' % \ |
|
411 | 411 | self.cluster_dir.location) |
|
412 | 412 | |
|
413 | 413 | def initialize(self, argv=None): |
|
414 | 414 | """initialize the app""" |
|
415 | 415 | self.init_crash_handler() |
|
416 | 416 | self.parse_command_line(argv) |
|
417 | 417 | cl_config = self.config |
|
418 | 418 | self.init_clusterdir() |
|
419 | 419 | if self.config_file: |
|
420 | 420 | self.load_config_file(self.config_file) |
|
421 | 421 | elif self.default_config_file_name: |
|
422 | 422 | try: |
|
423 | 423 | self.load_config_file(self.default_config_file_name, |
|
424 | 424 | path=self.cluster_dir.location) |
|
425 | 425 | except IOError: |
|
426 | 426 | self.log.warn("Warning: Default config file not found") |
|
427 | 427 | # command-line should *override* config file, but command-line is necessary |
|
428 | 428 | # to determine clusterdir, etc. |
|
429 | 429 | self.update_config(cl_config) |
|
430 | 430 | self.to_work_dir() |
|
431 | 431 | self.reinit_logging() |
|
432 | 432 | |
|
433 | 433 | def to_work_dir(self): |
|
434 | 434 | wd = self.work_dir |
|
435 | 435 | if unicode(wd) != os.getcwdu(): |
|
436 | 436 | os.chdir(wd) |
|
437 | 437 | self.log.info("Changing to working dir: %s" % wd) |
|
438 | 438 | # This is the working dir by now. |
|
439 | 439 | sys.path.insert(0, '') |
|
440 | 440 | |
|
441 | 441 | def load_config_file(self, filename, path=None): |
|
442 | 442 | """Load a .py based config file by filename and path.""" |
|
443 | 443 | # use config.application.Application.load_config |
|
444 | 444 | # instead of inflexible core.newapplication.BaseIPythonApplication.load_config |
|
445 | 445 | return Application.load_config_file(self, filename, path=path) |
|
446 | 446 | # |
|
447 | 447 | # def load_default_config_file(self): |
|
448 | 448 | # """Load a .py based config file by filename and path.""" |
|
449 | 449 | # return BaseIPythonApplication.load_config_file(self) |
|
450 | 450 | |
|
451 | 451 | # disable URL-logging |
|
452 | 452 | def reinit_logging(self): |
|
453 | 453 | # Remove old log files |
|
454 | 454 | log_dir = self.cluster_dir.log_dir |
|
455 | 455 | if self.clean_logs: |
|
456 | 456 | for f in os.listdir(log_dir): |
|
457 | 457 | if re.match(r'%s-\d+\.(log|err|out)'%self.name,f): |
|
458 | 458 | os.remove(os.path.join(log_dir, f)) |
|
459 | 459 | if self.log_to_file: |
|
460 | 460 | # Start logging to the new log file |
|
461 | 461 | log_filename = self.name + u'-' + str(os.getpid()) + u'.log' |
|
462 | 462 | logfile = os.path.join(log_dir, log_filename) |
|
463 | 463 | open_log_file = open(logfile, 'w') |
|
464 | 464 | else: |
|
465 | 465 | open_log_file = None |
|
466 | 466 | if open_log_file is not None: |
|
467 | 467 | self.log.removeHandler(self._log_handler) |
|
468 | 468 | self._log_handler = logging.StreamHandler(open_log_file) |
|
469 | 469 | self._log_formatter = logging.Formatter("[%(name)s] %(message)s") |
|
470 | 470 | self._log_handler.setFormatter(self._log_formatter) |
|
471 | 471 | self.log.addHandler(self._log_handler) |
|
472 | 472 | |
|
473 | 473 | def write_pid_file(self, overwrite=False): |
|
474 | 474 | """Create a .pid file in the pid_dir with my pid. |
|
475 | 475 | |
|
476 | 476 | This must be called after pre_construct, which sets `self.pid_dir`. |
|
477 | 477 | This raises :exc:`PIDFileError` if the pid file exists already. |
|
478 | 478 | """ |
|
479 | 479 | pid_file = os.path.join(self.cluster_dir.pid_dir, self.name + u'.pid') |
|
480 | 480 | if os.path.isfile(pid_file): |
|
481 | 481 | pid = self.get_pid_from_file() |
|
482 | 482 | if not overwrite: |
|
483 | 483 | raise PIDFileError( |
|
484 | 484 | 'The pid file [%s] already exists. \nThis could mean that this ' |
|
485 | 485 | 'server is already running with [pid=%s].' % (pid_file, pid) |
|
486 | 486 | ) |
|
487 | 487 | with open(pid_file, 'w') as f: |
|
488 | 488 | self.log.info("Creating pid file: %s" % pid_file) |
|
489 | 489 | f.write(repr(os.getpid())+'\n') |
|
490 | 490 | |
|
491 | 491 | def remove_pid_file(self): |
|
492 | 492 | """Remove the pid file. |
|
493 | 493 | |
|
494 | 494 | This should be called at shutdown by registering a callback with |
|
495 | 495 | :func:`reactor.addSystemEventTrigger`. This needs to return |
|
496 | 496 | ``None``. |
|
497 | 497 | """ |
|
498 | 498 | pid_file = os.path.join(self.cluster_dir.pid_dir, self.name + u'.pid') |
|
499 | 499 | if os.path.isfile(pid_file): |
|
500 | 500 | try: |
|
501 | 501 | self.log.info("Removing pid file: %s" % pid_file) |
|
502 | 502 | os.remove(pid_file) |
|
503 | 503 | except: |
|
504 | 504 | self.log.warn("Error removing the pid file: %s" % pid_file) |
|
505 | 505 | |
|
506 | 506 | def get_pid_from_file(self): |
|
507 | 507 | """Get the pid from the pid file. |
|
508 | 508 | |
|
509 | 509 | If the pid file doesn't exist a :exc:`PIDFileError` is raised. |
|
510 | 510 | """ |
|
511 | 511 | pid_file = os.path.join(self.cluster_dir.pid_dir, self.name + u'.pid') |
|
512 | 512 | if os.path.isfile(pid_file): |
|
513 | 513 | with open(pid_file, 'r') as f: |
|
514 | 514 | pid = int(f.read().strip()) |
|
515 | 515 | return pid |
|
516 | 516 | else: |
|
517 | 517 | raise PIDFileError('pid file not found: %s' % pid_file) |
|
518 | 518 | |
|
519 | 519 | def check_pid(self, pid): |
|
520 | 520 | if os.name == 'nt': |
|
521 | 521 | try: |
|
522 | 522 | import ctypes |
|
523 | 523 | # returns 0 if no such process (of ours) exists |
|
524 | 524 | # positive int otherwise |
|
525 | 525 | p = ctypes.windll.kernel32.OpenProcess(1,0,pid) |
|
526 | 526 | except Exception: |
|
527 | 527 | self.log.warn( |
|
528 | 528 | "Could not determine whether pid %i is running via `OpenProcess`. " |
|
529 | 529 | " Making the likely assumption that it is."%pid |
|
530 | 530 | ) |
|
531 | 531 | return True |
|
532 | 532 | return bool(p) |
|
533 | 533 | else: |
|
534 | 534 | try: |
|
535 | 535 | p = Popen(['ps','x'], stdout=PIPE, stderr=PIPE) |
|
536 | 536 | output,_ = p.communicate() |
|
537 | 537 | except OSError: |
|
538 | 538 | self.log.warn( |
|
539 | 539 | "Could not determine whether pid %i is running via `ps x`. " |
|
540 | 540 | " Making the likely assumption that it is."%pid |
|
541 | 541 | ) |
|
542 | 542 | return True |
|
543 | 543 | pids = map(int, re.findall(r'^\W*\d+', output, re.MULTILINE)) |
|
544 | 544 | return pid in pids |
@@ -1,537 +1,542 | |||
|
1 | 1 | #!/usr/bin/env python |
|
2 | 2 | # encoding: utf-8 |
|
3 | 3 | """ |
|
4 | 4 | The ipcluster application. |
|
5 | 5 | """ |
|
6 | 6 | |
|
7 | 7 | #----------------------------------------------------------------------------- |
|
8 | 8 | # Copyright (C) 2008-2009 The IPython Development Team |
|
9 | 9 | # |
|
10 | 10 | # Distributed under the terms of the BSD License. The full license is in |
|
11 | 11 | # the file COPYING, distributed as part of this software. |
|
12 | 12 | #----------------------------------------------------------------------------- |
|
13 | 13 | |
|
14 | 14 | #----------------------------------------------------------------------------- |
|
15 | 15 | # Imports |
|
16 | 16 | #----------------------------------------------------------------------------- |
|
17 | 17 | |
|
18 | 18 | import errno |
|
19 | 19 | import logging |
|
20 | 20 | import os |
|
21 | 21 | import re |
|
22 | 22 | import signal |
|
23 | 23 | |
|
24 | 24 | from subprocess import check_call, CalledProcessError, PIPE |
|
25 | 25 | import zmq |
|
26 | 26 | from zmq.eventloop import ioloop |
|
27 | 27 | |
|
28 | 28 | from IPython.config.application import Application, boolean_flag |
|
29 | 29 | from IPython.config.loader import Config |
|
30 | 30 | from IPython.core.newapplication import BaseIPythonApplication |
|
31 | 31 | from IPython.utils.importstring import import_item |
|
32 | 32 | from IPython.utils.traitlets import Int, Unicode, Bool, CFloat, Dict, List |
|
33 | 33 | |
|
34 | 34 | from IPython.parallel.apps.clusterdir import ( |
|
35 | 35 | ClusterApplication, ClusterDirError, ClusterDir, |
|
36 | 36 | PIDFileError, |
|
37 | 37 | base_flags, base_aliases |
|
38 | 38 | ) |
|
39 | 39 | |
|
40 | 40 | |
|
41 | 41 | #----------------------------------------------------------------------------- |
|
42 | 42 | # Module level variables |
|
43 | 43 | #----------------------------------------------------------------------------- |
|
44 | 44 | |
|
45 | 45 | |
|
46 | 46 | default_config_file_name = u'ipcluster_config.py' |
|
47 | 47 | |
|
48 | 48 | |
|
49 | _description = """\ | |
|
50 | Start an IPython cluster for parallel computing.\n\n | |
|
49 | _description = """Start an IPython cluster for parallel computing. | |
|
51 | 50 | |
|
52 | 51 | An IPython cluster consists of 1 controller and 1 or more engines. |
|
53 | 52 | This command automates the startup of these processes using a wide |
|
54 | 53 | range of startup methods (SSH, local processes, PBS, mpiexec, |
|
55 | 54 | Windows HPC Server 2008). To start a cluster with 4 engines on your |
|
56 | 55 | local host simply do 'ipcluster start n=4'. For more complex usage |
|
57 | 56 | you will typically do 'ipcluster create profile=mycluster', then edit |
|
58 | 57 | configuration files, followed by 'ipcluster start profile=mycluster n=4'. |
|
59 | 58 | """ |
|
60 | 59 | |
|
61 | 60 | |
|
62 | 61 | # Exit codes for ipcluster |
|
63 | 62 | |
|
64 | 63 | # This will be the exit code if the ipcluster appears to be running because |
|
65 | 64 | # a .pid file exists |
|
66 | 65 | ALREADY_STARTED = 10 |
|
67 | 66 | |
|
68 | 67 | |
|
69 | 68 | # This will be the exit code if ipcluster stop is run, but there is not .pid |
|
70 | 69 | # file to be found. |
|
71 | 70 | ALREADY_STOPPED = 11 |
|
72 | 71 | |
|
73 | 72 | # This will be the exit code if ipcluster engines is run, but there is not .pid |
|
74 | 73 | # file to be found. |
|
75 | 74 | NO_CLUSTER = 12 |
|
76 | 75 | |
|
77 | 76 | |
|
78 | 77 | #----------------------------------------------------------------------------- |
|
79 | 78 | # Main application |
|
80 | 79 | #----------------------------------------------------------------------------- |
|
81 | start_help = """ | |
|
80 | start_help = """Start an IPython cluster for parallel computing | |
|
81 | ||
|
82 | 82 | Start an ipython cluster by its profile name or cluster |
|
83 | 83 | directory. Cluster directories contain configuration, log and |
|
84 | 84 | security related files and are named using the convention |
|
85 | 85 | 'cluster_<profile>' and should be creating using the 'start' |
|
86 | 86 | subcommand of 'ipcluster'. If your cluster directory is in |
|
87 | 87 | the cwd or the ipython directory, you can simply refer to it |
|
88 | 88 | using its profile name, 'ipcluster start n=4 profile=<profile>`, |
|
89 | 89 | otherwise use the 'cluster_dir' option. |
|
90 | 90 | """ |
|
91 | stop_help = """ | |
|
91 | stop_help = """Stop a running IPython cluster | |
|
92 | ||
|
92 | 93 | Stop a running ipython cluster by its profile name or cluster |
|
93 | 94 | directory. Cluster directories are named using the convention |
|
94 | 95 | 'cluster_<profile>'. If your cluster directory is in |
|
95 | 96 | the cwd or the ipython directory, you can simply refer to it |
|
96 | 97 | using its profile name, 'ipcluster stop profile=<profile>`, otherwise |
|
97 | 98 | use the 'cluster_dir' option. |
|
98 | 99 | """ |
|
99 | engines_help = """ | |
|
100 | engines_help = """Start engines connected to an existing IPython cluster | |
|
101 | ||
|
100 | 102 | Start one or more engines to connect to an existing Cluster |
|
101 | 103 | by profile name or cluster directory. |
|
102 | 104 | Cluster directories contain configuration, log and |
|
103 | 105 | security related files and are named using the convention |
|
104 | 106 | 'cluster_<profile>' and should be creating using the 'start' |
|
105 | 107 | subcommand of 'ipcluster'. If your cluster directory is in |
|
106 | 108 | the cwd or the ipython directory, you can simply refer to it |
|
107 | 109 | using its profile name, 'ipcluster engines n=4 profile=<profile>`, |
|
108 | 110 | otherwise use the 'cluster_dir' option. |
|
109 | 111 | """ |
|
110 | create_help = """ | |
|
112 | create_help = """Create an ipcluster profile by name | |
|
113 | ||
|
111 | 114 | Create an ipython cluster directory by its profile name or |
|
112 | 115 | cluster directory path. Cluster directories contain |
|
113 | 116 | configuration, log and security related files and are named |
|
114 | 117 | using the convention 'cluster_<profile>'. By default they are |
|
115 | 118 | located in your ipython directory. Once created, you will |
|
116 | 119 | probably need to edit the configuration files in the cluster |
|
117 | 120 | directory to configure your cluster. Most users will create a |
|
118 | 121 | cluster directory by profile name, |
|
119 | 122 | `ipcluster create profile=mycluster`, which will put the directory |
|
120 | 123 | in `<ipython_dir>/cluster_mycluster`. |
|
121 | 124 | """ |
|
122 |
list_help = """List a |
|
|
125 | list_help = """List available cluster profiles | |
|
126 | ||
|
127 | List all available clusters, by cluster directory, that can | |
|
123 | 128 | be found in the current working directly or in the ipython |
|
124 | 129 | directory. Cluster directories are named using the convention |
|
125 | 130 | 'cluster_<profile>'. |
|
126 | 131 | """ |
|
127 | 132 | |
|
128 | 133 | |
|
129 | 134 | class IPClusterList(BaseIPythonApplication): |
|
130 | 135 | name = u'ipcluster-list' |
|
131 | 136 | description = list_help |
|
132 | 137 | |
|
133 | 138 | # empty aliases |
|
134 | 139 | aliases=Dict() |
|
135 | 140 | flags = Dict(base_flags) |
|
136 | 141 | |
|
137 | 142 | def _log_level_default(self): |
|
138 | 143 | return 20 |
|
139 | 144 | |
|
140 | 145 | def list_cluster_dirs(self): |
|
141 | 146 | # Find the search paths |
|
142 | 147 | cluster_dir_paths = os.environ.get('IPCLUSTER_DIR_PATH','') |
|
143 | 148 | if cluster_dir_paths: |
|
144 | 149 | cluster_dir_paths = cluster_dir_paths.split(':') |
|
145 | 150 | else: |
|
146 | 151 | cluster_dir_paths = [] |
|
147 | 152 | |
|
148 | 153 | ipython_dir = self.ipython_dir |
|
149 | 154 | |
|
150 | 155 | paths = [os.getcwd(), ipython_dir] + cluster_dir_paths |
|
151 | 156 | paths = list(set(paths)) |
|
152 | 157 | |
|
153 | 158 | self.log.info('Searching for cluster dirs in paths: %r' % paths) |
|
154 | 159 | for path in paths: |
|
155 | 160 | files = os.listdir(path) |
|
156 | 161 | for f in files: |
|
157 | 162 | full_path = os.path.join(path, f) |
|
158 | 163 | if os.path.isdir(full_path) and f.startswith('cluster_'): |
|
159 | 164 | profile = full_path.split('_')[-1] |
|
160 | 165 | start_cmd = 'ipcluster start profile=%s n=4' % profile |
|
161 | 166 | print start_cmd + " ==> " + full_path |
|
162 | 167 | |
|
163 | 168 | def start(self): |
|
164 | 169 | self.list_cluster_dirs() |
|
165 | 170 | |
|
166 | 171 | create_flags = {} |
|
167 | 172 | create_flags.update(base_flags) |
|
168 | 173 | create_flags.update(boolean_flag('reset', 'IPClusterCreate.reset', |
|
169 | 174 | "reset config files to defaults", "leave existing config files")) |
|
170 | 175 | |
|
171 | 176 | class IPClusterCreate(ClusterApplication): |
|
172 | 177 | name = u'ipcluster' |
|
173 | 178 | description = create_help |
|
174 | 179 | auto_create_cluster_dir = Bool(True, |
|
175 | 180 | help="whether to create the cluster_dir if it doesn't exist") |
|
176 | 181 | default_config_file_name = default_config_file_name |
|
177 | 182 | |
|
178 | 183 | reset = Bool(False, config=True, |
|
179 | 184 | help="Whether to reset config files as part of 'create'." |
|
180 | 185 | ) |
|
181 | 186 | |
|
182 | 187 | flags = Dict(create_flags) |
|
183 | 188 | |
|
184 | 189 | aliases = Dict(dict(profile='ClusterDir.profile')) |
|
185 | 190 | |
|
186 | 191 | classes = [ClusterDir] |
|
187 | 192 | |
|
188 | 193 | def init_clusterdir(self): |
|
189 | 194 | super(IPClusterCreate, self).init_clusterdir() |
|
190 | 195 | self.log.info('Copying default config files to cluster directory ' |
|
191 | 196 | '[overwrite=%r]' % (self.reset,)) |
|
192 | 197 | self.cluster_dir.copy_all_config_files(overwrite=self.reset) |
|
193 | 198 | |
|
194 | 199 | def initialize(self, argv=None): |
|
195 | 200 | self.parse_command_line(argv) |
|
196 | 201 | self.init_clusterdir() |
|
197 | 202 | |
|
198 | 203 | stop_aliases = dict( |
|
199 | 204 | signal='IPClusterStop.signal', |
|
200 | 205 | profile='ClusterDir.profile', |
|
201 | 206 | cluster_dir='ClusterDir.location', |
|
202 | 207 | ) |
|
203 | 208 | |
|
204 | 209 | class IPClusterStop(ClusterApplication): |
|
205 | 210 | name = u'ipcluster' |
|
206 | 211 | description = stop_help |
|
207 | 212 | auto_create_cluster_dir = Bool(False) |
|
208 | 213 | default_config_file_name = default_config_file_name |
|
209 | 214 | |
|
210 | 215 | signal = Int(signal.SIGINT, config=True, |
|
211 | 216 | help="signal to use for stopping processes.") |
|
212 | 217 | |
|
213 | 218 | aliases = Dict(stop_aliases) |
|
214 | 219 | |
|
215 | 220 | def init_clusterdir(self): |
|
216 | 221 | try: |
|
217 | 222 | super(IPClusterStop, self).init_clusterdir() |
|
218 | 223 | except ClusterDirError as e: |
|
219 | 224 | self.log.fatal("Failed ClusterDir init: %s"%e) |
|
220 | 225 | self.exit(1) |
|
221 | 226 | |
|
222 | 227 | def start(self): |
|
223 | 228 | """Start the app for the stop subcommand.""" |
|
224 | 229 | try: |
|
225 | 230 | pid = self.get_pid_from_file() |
|
226 | 231 | except PIDFileError: |
|
227 | 232 | self.log.critical( |
|
228 | 233 | 'Could not read pid file, cluster is probably not running.' |
|
229 | 234 | ) |
|
230 | 235 | # Here I exit with a unusual exit status that other processes |
|
231 | 236 | # can watch for to learn how I existed. |
|
232 | 237 | self.remove_pid_file() |
|
233 | 238 | self.exit(ALREADY_STOPPED) |
|
234 | 239 | |
|
235 | 240 | if not self.check_pid(pid): |
|
236 | 241 | self.log.critical( |
|
237 | 242 | 'Cluster [pid=%r] is not running.' % pid |
|
238 | 243 | ) |
|
239 | 244 | self.remove_pid_file() |
|
240 | 245 | # Here I exit with a unusual exit status that other processes |
|
241 | 246 | # can watch for to learn how I existed. |
|
242 | 247 | self.exit(ALREADY_STOPPED) |
|
243 | 248 | |
|
244 | 249 | elif os.name=='posix': |
|
245 | 250 | sig = self.signal |
|
246 | 251 | self.log.info( |
|
247 | 252 | "Stopping cluster [pid=%r] with [signal=%r]" % (pid, sig) |
|
248 | 253 | ) |
|
249 | 254 | try: |
|
250 | 255 | os.kill(pid, sig) |
|
251 | 256 | except OSError: |
|
252 | 257 | self.log.error("Stopping cluster failed, assuming already dead.", |
|
253 | 258 | exc_info=True) |
|
254 | 259 | self.remove_pid_file() |
|
255 | 260 | elif os.name=='nt': |
|
256 | 261 | try: |
|
257 | 262 | # kill the whole tree |
|
258 | 263 | p = check_call(['taskkill', '-pid', str(pid), '-t', '-f'], stdout=PIPE,stderr=PIPE) |
|
259 | 264 | except (CalledProcessError, OSError): |
|
260 | 265 | self.log.error("Stopping cluster failed, assuming already dead.", |
|
261 | 266 | exc_info=True) |
|
262 | 267 | self.remove_pid_file() |
|
263 | 268 | |
|
264 | 269 | engine_aliases = {} |
|
265 | 270 | engine_aliases.update(base_aliases) |
|
266 | 271 | engine_aliases.update(dict( |
|
267 | 272 | n='IPClusterEngines.n', |
|
268 | 273 | elauncher = 'IPClusterEngines.engine_launcher_class', |
|
269 | 274 | )) |
|
270 | 275 | class IPClusterEngines(ClusterApplication): |
|
271 | 276 | |
|
272 | 277 | name = u'ipcluster' |
|
273 | 278 | description = engines_help |
|
274 | 279 | usage = None |
|
275 | 280 | default_config_file_name = default_config_file_name |
|
276 | 281 | default_log_level = logging.INFO |
|
277 | 282 | auto_create_cluster_dir = Bool(False) |
|
278 | 283 | classes = List() |
|
279 | 284 | def _classes_default(self): |
|
280 | 285 | from IPython.parallel.apps import launcher |
|
281 | 286 | launchers = launcher.all_launchers |
|
282 | 287 | eslaunchers = [ l for l in launchers if 'EngineSet' in l.__name__] |
|
283 | 288 | return [ClusterDir]+eslaunchers |
|
284 | 289 | |
|
285 | 290 | n = Int(2, config=True, |
|
286 | 291 | help="The number of engines to start.") |
|
287 | 292 | |
|
288 | 293 | engine_launcher_class = Unicode('LocalEngineSetLauncher', |
|
289 | 294 | config=True, |
|
290 | 295 | help="The class for launching a set of Engines." |
|
291 | 296 | ) |
|
292 | 297 | daemonize = Bool(False, config=True, |
|
293 | 298 | help='Daemonize the ipcluster program. This implies --log-to-file') |
|
294 | 299 | |
|
295 | 300 | def _daemonize_changed(self, name, old, new): |
|
296 | 301 | if new: |
|
297 | 302 | self.log_to_file = True |
|
298 | 303 | |
|
299 | 304 | aliases = Dict(engine_aliases) |
|
300 | 305 | # flags = Dict(flags) |
|
301 | 306 | _stopping = False |
|
302 | 307 | |
|
303 | 308 | def initialize(self, argv=None): |
|
304 | 309 | super(IPClusterEngines, self).initialize(argv) |
|
305 | 310 | self.init_signal() |
|
306 | 311 | self.init_launchers() |
|
307 | 312 | |
|
308 | 313 | def init_launchers(self): |
|
309 | 314 | self.engine_launcher = self.build_launcher(self.engine_launcher_class) |
|
310 | 315 | self.engine_launcher.on_stop(lambda r: self.loop.stop()) |
|
311 | 316 | |
|
312 | 317 | def init_signal(self): |
|
313 | 318 | # Setup signals |
|
314 | 319 | signal.signal(signal.SIGINT, self.sigint_handler) |
|
315 | 320 | |
|
316 | 321 | def build_launcher(self, clsname): |
|
317 | 322 | """import and instantiate a Launcher based on importstring""" |
|
318 | 323 | if '.' not in clsname: |
|
319 | 324 | # not a module, presume it's the raw name in apps.launcher |
|
320 | 325 | clsname = 'IPython.parallel.apps.launcher.'+clsname |
|
321 | 326 | # print repr(clsname) |
|
322 | 327 | klass = import_item(clsname) |
|
323 | 328 | |
|
324 | 329 | launcher = klass( |
|
325 | 330 | work_dir=self.cluster_dir.location, config=self.config, logname=self.log.name |
|
326 | 331 | ) |
|
327 | 332 | return launcher |
|
328 | 333 | |
|
329 | 334 | def start_engines(self): |
|
330 | 335 | self.log.info("Starting %i engines"%self.n) |
|
331 | 336 | self.engine_launcher.start( |
|
332 | 337 | self.n, |
|
333 | 338 | cluster_dir=self.cluster_dir.location |
|
334 | 339 | ) |
|
335 | 340 | |
|
336 | 341 | def stop_engines(self): |
|
337 | 342 | self.log.info("Stopping Engines...") |
|
338 | 343 | if self.engine_launcher.running: |
|
339 | 344 | d = self.engine_launcher.stop() |
|
340 | 345 | return d |
|
341 | 346 | else: |
|
342 | 347 | return None |
|
343 | 348 | |
|
344 | 349 | def stop_launchers(self, r=None): |
|
345 | 350 | if not self._stopping: |
|
346 | 351 | self._stopping = True |
|
347 | 352 | self.log.error("IPython cluster: stopping") |
|
348 | 353 | self.stop_engines() |
|
349 | 354 | # Wait a few seconds to let things shut down. |
|
350 | 355 | dc = ioloop.DelayedCallback(self.loop.stop, 4000, self.loop) |
|
351 | 356 | dc.start() |
|
352 | 357 | |
|
353 | 358 | def sigint_handler(self, signum, frame): |
|
354 | 359 | self.log.debug("SIGINT received, stopping launchers...") |
|
355 | 360 | self.stop_launchers() |
|
356 | 361 | |
|
357 | 362 | def start_logging(self): |
|
358 | 363 | # Remove old log files of the controller and engine |
|
359 | 364 | if self.clean_logs: |
|
360 | 365 | log_dir = self.cluster_dir.log_dir |
|
361 | 366 | for f in os.listdir(log_dir): |
|
362 | 367 | if re.match(r'ip(engine|controller)z-\d+\.(log|err|out)',f): |
|
363 | 368 | os.remove(os.path.join(log_dir, f)) |
|
364 | 369 | # This will remove old log files for ipcluster itself |
|
365 | 370 | # super(IPClusterApp, self).start_logging() |
|
366 | 371 | |
|
367 | 372 | def start(self): |
|
368 | 373 | """Start the app for the engines subcommand.""" |
|
369 | 374 | self.log.info("IPython cluster: started") |
|
370 | 375 | # First see if the cluster is already running |
|
371 | 376 | |
|
372 | 377 | # Now log and daemonize |
|
373 | 378 | self.log.info( |
|
374 | 379 | 'Starting engines with [daemon=%r]' % self.daemonize |
|
375 | 380 | ) |
|
376 | 381 | # TODO: Get daemonize working on Windows or as a Windows Server. |
|
377 | 382 | if self.daemonize: |
|
378 | 383 | if os.name=='posix': |
|
379 | 384 | from twisted.scripts._twistd_unix import daemonize |
|
380 | 385 | daemonize() |
|
381 | 386 | |
|
382 | 387 | dc = ioloop.DelayedCallback(self.start_engines, 0, self.loop) |
|
383 | 388 | dc.start() |
|
384 | 389 | # Now write the new pid file AFTER our new forked pid is active. |
|
385 | 390 | # self.write_pid_file() |
|
386 | 391 | try: |
|
387 | 392 | self.loop.start() |
|
388 | 393 | except KeyboardInterrupt: |
|
389 | 394 | pass |
|
390 | 395 | except zmq.ZMQError as e: |
|
391 | 396 | if e.errno == errno.EINTR: |
|
392 | 397 | pass |
|
393 | 398 | else: |
|
394 | 399 | raise |
|
395 | 400 | |
|
396 | 401 | start_aliases = {} |
|
397 | 402 | start_aliases.update(engine_aliases) |
|
398 | 403 | start_aliases.update(dict( |
|
399 | 404 | delay='IPClusterStart.delay', |
|
400 | 405 | clean_logs='IPClusterStart.clean_logs', |
|
401 | 406 | )) |
|
402 | 407 | |
|
403 | 408 | class IPClusterStart(IPClusterEngines): |
|
404 | 409 | |
|
405 | 410 | name = u'ipcluster' |
|
406 | 411 | description = start_help |
|
407 | 412 | usage = None |
|
408 | 413 | default_config_file_name = default_config_file_name |
|
409 | 414 | default_log_level = logging.INFO |
|
410 | 415 | auto_create_cluster_dir = Bool(True, config=True, |
|
411 | 416 | help="whether to create the cluster_dir if it doesn't exist") |
|
412 | 417 | classes = List() |
|
413 | 418 | def _classes_default(self,): |
|
414 | 419 | from IPython.parallel.apps import launcher |
|
415 | 420 | return [ClusterDir]+launcher.all_launchers |
|
416 | 421 | |
|
417 | 422 | clean_logs = Bool(True, config=True, |
|
418 | 423 | help="whether to cleanup old logs before starting") |
|
419 | 424 | |
|
420 | 425 | delay = CFloat(1., config=True, |
|
421 | 426 | help="delay (in s) between starting the controller and the engines") |
|
422 | 427 | |
|
423 | 428 | controller_launcher_class = Unicode('LocalControllerLauncher', |
|
424 | 429 | config=True, |
|
425 | 430 | help="The class for launching a Controller." |
|
426 | 431 | ) |
|
427 | 432 | reset = Bool(False, config=True, |
|
428 | 433 | help="Whether to reset config files as part of '--create'." |
|
429 | 434 | ) |
|
430 | 435 | |
|
431 | 436 | # flags = Dict(flags) |
|
432 | 437 | aliases = Dict(start_aliases) |
|
433 | 438 | |
|
434 | 439 | def init_launchers(self): |
|
435 | 440 | self.controller_launcher = self.build_launcher(self.controller_launcher_class) |
|
436 | 441 | self.engine_launcher = self.build_launcher(self.engine_launcher_class) |
|
437 | 442 | self.controller_launcher.on_stop(self.stop_launchers) |
|
438 | 443 | |
|
439 | 444 | def start_controller(self): |
|
440 | 445 | self.controller_launcher.start( |
|
441 | 446 | cluster_dir=self.cluster_dir.location |
|
442 | 447 | ) |
|
443 | 448 | |
|
444 | 449 | def stop_controller(self): |
|
445 | 450 | # self.log.info("In stop_controller") |
|
446 | 451 | if self.controller_launcher and self.controller_launcher.running: |
|
447 | 452 | return self.controller_launcher.stop() |
|
448 | 453 | |
|
449 | 454 | def stop_launchers(self, r=None): |
|
450 | 455 | if not self._stopping: |
|
451 | 456 | self.stop_controller() |
|
452 | 457 | super(IPClusterStart, self).stop_launchers() |
|
453 | 458 | |
|
454 | 459 | def start(self): |
|
455 | 460 | """Start the app for the start subcommand.""" |
|
456 | 461 | # First see if the cluster is already running |
|
457 | 462 | try: |
|
458 | 463 | pid = self.get_pid_from_file() |
|
459 | 464 | except PIDFileError: |
|
460 | 465 | pass |
|
461 | 466 | else: |
|
462 | 467 | if self.check_pid(pid): |
|
463 | 468 | self.log.critical( |
|
464 | 469 | 'Cluster is already running with [pid=%s]. ' |
|
465 | 470 | 'use "ipcluster stop" to stop the cluster.' % pid |
|
466 | 471 | ) |
|
467 | 472 | # Here I exit with a unusual exit status that other processes |
|
468 | 473 | # can watch for to learn how I existed. |
|
469 | 474 | self.exit(ALREADY_STARTED) |
|
470 | 475 | else: |
|
471 | 476 | self.remove_pid_file() |
|
472 | 477 | |
|
473 | 478 | |
|
474 | 479 | # Now log and daemonize |
|
475 | 480 | self.log.info( |
|
476 | 481 | 'Starting ipcluster with [daemon=%r]' % self.daemonize |
|
477 | 482 | ) |
|
478 | 483 | # TODO: Get daemonize working on Windows or as a Windows Server. |
|
479 | 484 | if self.daemonize: |
|
480 | 485 | if os.name=='posix': |
|
481 | 486 | from twisted.scripts._twistd_unix import daemonize |
|
482 | 487 | daemonize() |
|
483 | 488 | |
|
484 | 489 | dc = ioloop.DelayedCallback(self.start_controller, 0, self.loop) |
|
485 | 490 | dc.start() |
|
486 | 491 | dc = ioloop.DelayedCallback(self.start_engines, 1000*self.delay, self.loop) |
|
487 | 492 | dc.start() |
|
488 | 493 | # Now write the new pid file AFTER our new forked pid is active. |
|
489 | 494 | self.write_pid_file() |
|
490 | 495 | try: |
|
491 | 496 | self.loop.start() |
|
492 | 497 | except KeyboardInterrupt: |
|
493 | 498 | pass |
|
494 | 499 | except zmq.ZMQError as e: |
|
495 | 500 | if e.errno == errno.EINTR: |
|
496 | 501 | pass |
|
497 | 502 | else: |
|
498 | 503 | raise |
|
499 | 504 | finally: |
|
500 | 505 | self.remove_pid_file() |
|
501 | 506 | |
|
502 | 507 | base='IPython.parallel.apps.ipclusterapp.IPCluster' |
|
503 | 508 | |
|
504 | 509 | class IPClusterApp(Application): |
|
505 | 510 | name = u'ipcluster' |
|
506 | 511 | description = _description |
|
507 | 512 | |
|
508 | 513 | subcommands = {'create' : (base+'Create', create_help), |
|
509 | 514 | 'list' : (base+'List', list_help), |
|
510 | 515 | 'start' : (base+'Start', start_help), |
|
511 | 516 | 'stop' : (base+'Stop', stop_help), |
|
512 | 517 | 'engines' : (base+'Engines', engines_help), |
|
513 | 518 | } |
|
514 | 519 | |
|
515 | 520 | # no aliases or flags for parent App |
|
516 | 521 | aliases = Dict() |
|
517 | 522 | flags = Dict() |
|
518 | 523 | |
|
519 | 524 | def start(self): |
|
520 | 525 | if self.subapp is None: |
|
521 | 526 | print "No subcommand specified! Must specify one of: %s"%(self.subcommands.keys()) |
|
522 | 527 | |
|
523 | 528 | self.print_subcommands() |
|
524 | 529 | self.exit(1) |
|
525 | 530 | else: |
|
526 | 531 | return self.subapp.start() |
|
527 | 532 | |
|
528 | 533 | def launch_new_instance(): |
|
529 | 534 | """Create and run the IPython cluster.""" |
|
530 | 535 | app = IPClusterApp() |
|
531 | 536 | app.initialize() |
|
532 | 537 | app.start() |
|
533 | 538 | |
|
534 | 539 | |
|
535 | 540 | if __name__ == '__main__': |
|
536 | 541 | launch_new_instance() |
|
537 | 542 |
@@ -1,403 +1,405 | |||
|
1 | 1 | #!/usr/bin/env python |
|
2 | 2 | # encoding: utf-8 |
|
3 | 3 | """ |
|
4 | 4 | The IPython controller application. |
|
5 | 5 | """ |
|
6 | 6 | |
|
7 | 7 | #----------------------------------------------------------------------------- |
|
8 | 8 | # Copyright (C) 2008-2009 The IPython Development Team |
|
9 | 9 | # |
|
10 | 10 | # Distributed under the terms of the BSD License. The full license is in |
|
11 | 11 | # the file COPYING, distributed as part of this software. |
|
12 | 12 | #----------------------------------------------------------------------------- |
|
13 | 13 | |
|
14 | 14 | #----------------------------------------------------------------------------- |
|
15 | 15 | # Imports |
|
16 | 16 | #----------------------------------------------------------------------------- |
|
17 | 17 | |
|
18 | 18 | from __future__ import with_statement |
|
19 | 19 | |
|
20 | 20 | import copy |
|
21 | 21 | import os |
|
22 | 22 | import logging |
|
23 | 23 | import socket |
|
24 | 24 | import stat |
|
25 | 25 | import sys |
|
26 | 26 | import uuid |
|
27 | 27 | |
|
28 | 28 | from multiprocessing import Process |
|
29 | 29 | |
|
30 | 30 | import zmq |
|
31 | 31 | from zmq.devices import ProcessMonitoredQueue |
|
32 | 32 | from zmq.log.handlers import PUBHandler |
|
33 | 33 | from zmq.utils import jsonapi as json |
|
34 | 34 | |
|
35 | 35 | from IPython.config.loader import Config |
|
36 | 36 | |
|
37 | 37 | from IPython.parallel import factory |
|
38 | 38 | |
|
39 | 39 | from IPython.parallel.apps.clusterdir import ( |
|
40 | 40 | ClusterDir, |
|
41 | 41 | ClusterApplication, |
|
42 | 42 | base_flags |
|
43 | 43 | # ClusterDirConfigLoader |
|
44 | 44 | ) |
|
45 | 45 | from IPython.utils.importstring import import_item |
|
46 | 46 | from IPython.utils.traitlets import Instance, Unicode, Bool, List, Dict |
|
47 | 47 | |
|
48 | 48 | # from IPython.parallel.controller.controller import ControllerFactory |
|
49 | 49 | from IPython.parallel.streamsession import StreamSession |
|
50 | 50 | from IPython.parallel.controller.heartmonitor import HeartMonitor |
|
51 | 51 | from IPython.parallel.controller.hub import Hub, HubFactory |
|
52 | 52 | from IPython.parallel.controller.scheduler import TaskScheduler,launch_scheduler |
|
53 | 53 | from IPython.parallel.controller.sqlitedb import SQLiteDB |
|
54 | 54 | |
|
55 | 55 | from IPython.parallel.util import signal_children,disambiguate_ip_address, split_url |
|
56 | 56 | |
|
57 | 57 | # conditional import of MongoDB backend class |
|
58 | 58 | |
|
59 | 59 | try: |
|
60 | 60 | from IPython.parallel.controller.mongodb import MongoDB |
|
61 | 61 | except ImportError: |
|
62 | 62 | maybe_mongo = [] |
|
63 | 63 | else: |
|
64 | 64 | maybe_mongo = [MongoDB] |
|
65 | 65 | |
|
66 | 66 | |
|
67 | 67 | #----------------------------------------------------------------------------- |
|
68 | 68 | # Module level variables |
|
69 | 69 | #----------------------------------------------------------------------------- |
|
70 | 70 | |
|
71 | 71 | |
|
72 | 72 | #: The default config file name for this application |
|
73 | 73 | default_config_file_name = u'ipcontroller_config.py' |
|
74 | 74 | |
|
75 | 75 | |
|
76 | 76 | _description = """Start the IPython controller for parallel computing. |
|
77 | 77 | |
|
78 | 78 | The IPython controller provides a gateway between the IPython engines and |
|
79 | 79 | clients. The controller needs to be started before the engines and can be |
|
80 | 80 | configured using command line options or using a cluster directory. Cluster |
|
81 | 81 | directories contain config, log and security files and are usually located in |
|
82 |
your ipython directory and named as "cluster_<profile>". See the |
|
|
83 |
and |
|
|
82 | your ipython directory and named as "cluster_<profile>". See the `profile` | |
|
83 | and `cluster_dir` options for details. | |
|
84 | 84 | """ |
|
85 | 85 | |
|
86 | 86 | |
|
87 | 87 | |
|
88 | 88 | |
|
89 | 89 | #----------------------------------------------------------------------------- |
|
90 | 90 | # The main application |
|
91 | 91 | #----------------------------------------------------------------------------- |
|
92 | 92 | flags = {} |
|
93 | 93 | flags.update(base_flags) |
|
94 | 94 | flags.update({ |
|
95 | 'usethreads' : ( {'IPControllerApp' : {'usethreads' : True}}, | |
|
95 | 'usethreads' : ( {'IPControllerApp' : {'use_threads' : True}}, | |
|
96 | 96 | 'Use threads instead of processes for the schedulers'), |
|
97 | 'sqlitedb' : ({'HubFactory' : {'db_class' : 'IPython.parallel.controller.sqlitedb.SQLiteDB'}}, | |
|
97 | 'sqlitedb' : ({'HubFactory' : Config({'db_class' : 'IPython.parallel.controller.sqlitedb.SQLiteDB'})}, | |
|
98 | 98 | 'use the SQLiteDB backend'), |
|
99 | 'mongodb' : ({'HubFactory' : {'db_class' : 'IPython.parallel.controller.mongodb.MongoDB'}}, | |
|
99 | 'mongodb' : ({'HubFactory' : Config({'db_class' : 'IPython.parallel.controller.mongodb.MongoDB'})}, | |
|
100 | 100 | 'use the MongoDB backend'), |
|
101 | 'dictdb' : ({'HubFactory' : {'db_class' : 'IPython.parallel.controller.dictdb.DictDB'}}, | |
|
101 | 'dictdb' : ({'HubFactory' : Config({'db_class' : 'IPython.parallel.controller.dictdb.DictDB'})}, | |
|
102 | 102 | 'use the in-memory DictDB backend'), |
|
103 | 'reuse' : ({'IPControllerApp' : Config({'reuse_files' : True})}, | |
|
104 | 'reuse existing json connection files') | |
|
103 | 105 | }) |
|
104 | 106 | |
|
105 | 107 | flags.update() |
|
106 | 108 | |
|
107 | 109 | class IPControllerApp(ClusterApplication): |
|
108 | 110 | |
|
109 | 111 | name = u'ipcontroller' |
|
110 | 112 | description = _description |
|
111 | 113 | # command_line_loader = IPControllerAppConfigLoader |
|
112 | 114 | default_config_file_name = default_config_file_name |
|
113 | 115 | classes = [ClusterDir, StreamSession, HubFactory, TaskScheduler, HeartMonitor, SQLiteDB] + maybe_mongo |
|
114 | 116 | |
|
115 | 117 | auto_create_cluster_dir = Bool(True, config=True, |
|
116 | 118 | help="Whether to create cluster_dir if it exists.") |
|
117 | 119 | reuse_files = Bool(False, config=True, |
|
118 | 120 | help='Whether to reuse existing json connection files [default: False]' |
|
119 | 121 | ) |
|
120 | 122 | secure = Bool(True, config=True, |
|
121 | 123 | help='Whether to use exec_keys for extra authentication [default: True]' |
|
122 | 124 | ) |
|
123 | 125 | ssh_server = Unicode(u'', config=True, |
|
124 | 126 | help="""ssh url for clients to use when connecting to the Controller |
|
125 | 127 | processes. It should be of the form: [user@]server[:port]. The |
|
126 | 128 | Controller\'s listening addresses must be accessible from the ssh server""", |
|
127 | 129 | ) |
|
128 | 130 | location = Unicode(u'', config=True, |
|
129 | 131 | help="""The external IP or domain name of the Controller, used for disambiguating |
|
130 | 132 | engine and client connections.""", |
|
131 | 133 | ) |
|
132 | 134 | import_statements = List([], config=True, |
|
133 | 135 | help="import statements to be run at startup. Necessary in some environments" |
|
134 | 136 | ) |
|
135 | 137 | |
|
136 | usethreads = Bool(False, config=True, | |
|
138 | use_threads = Bool(False, config=True, | |
|
137 | 139 | help='Use threads instead of processes for the schedulers', |
|
138 | 140 | ) |
|
139 | 141 | |
|
140 | 142 | # internal |
|
141 | 143 | children = List() |
|
142 | 144 | mq_class = Unicode('zmq.devices.ProcessMonitoredQueue') |
|
143 | 145 | |
|
144 | def _usethreads_changed(self, name, old, new): | |
|
146 | def _use_threads_changed(self, name, old, new): | |
|
145 | 147 | self.mq_class = 'zmq.devices.%sMonitoredQueue'%('Thread' if new else 'Process') |
|
146 | 148 | |
|
147 | 149 | aliases = Dict(dict( |
|
148 | 150 | config = 'IPControllerApp.config_file', |
|
149 | 151 | # file = 'IPControllerApp.url_file', |
|
150 | 152 | log_level = 'IPControllerApp.log_level', |
|
151 | 153 | log_url = 'IPControllerApp.log_url', |
|
152 | 154 | reuse_files = 'IPControllerApp.reuse_files', |
|
153 | 155 | secure = 'IPControllerApp.secure', |
|
154 | 156 | ssh = 'IPControllerApp.ssh_server', |
|
155 | usethreads = 'IPControllerApp.usethreads', | |
|
157 | use_threads = 'IPControllerApp.use_threads', | |
|
156 | 158 | import_statements = 'IPControllerApp.import_statements', |
|
157 | 159 | location = 'IPControllerApp.location', |
|
158 | 160 | |
|
159 | 161 | ident = 'StreamSession.session', |
|
160 | 162 | user = 'StreamSession.username', |
|
161 | 163 | exec_key = 'StreamSession.keyfile', |
|
162 | 164 | |
|
163 | 165 | url = 'HubFactory.url', |
|
164 | 166 | ip = 'HubFactory.ip', |
|
165 | 167 | transport = 'HubFactory.transport', |
|
166 | 168 | port = 'HubFactory.regport', |
|
167 | 169 | |
|
168 | 170 | ping = 'HeartMonitor.period', |
|
169 | 171 | |
|
170 | 172 | scheme = 'TaskScheduler.scheme_name', |
|
171 | 173 | hwm = 'TaskScheduler.hwm', |
|
172 | 174 | |
|
173 | 175 | |
|
174 | 176 | profile = "ClusterDir.profile", |
|
175 | 177 | cluster_dir = 'ClusterDir.location', |
|
176 | 178 | |
|
177 | 179 | )) |
|
178 | 180 | flags = Dict(flags) |
|
179 | 181 | |
|
180 | 182 | |
|
181 | 183 | def save_connection_dict(self, fname, cdict): |
|
182 | 184 | """save a connection dict to json file.""" |
|
183 | 185 | c = self.config |
|
184 | 186 | url = cdict['url'] |
|
185 | 187 | location = cdict['location'] |
|
186 | 188 | if not location: |
|
187 | 189 | try: |
|
188 | 190 | proto,ip,port = split_url(url) |
|
189 | 191 | except AssertionError: |
|
190 | 192 | pass |
|
191 | 193 | else: |
|
192 | 194 | location = socket.gethostbyname_ex(socket.gethostname())[2][-1] |
|
193 | 195 | cdict['location'] = location |
|
194 | 196 | fname = os.path.join(self.cluster_dir.security_dir, fname) |
|
195 | 197 | with open(fname, 'w') as f: |
|
196 | 198 | f.write(json.dumps(cdict, indent=2)) |
|
197 | 199 | os.chmod(fname, stat.S_IRUSR|stat.S_IWUSR) |
|
198 | 200 | |
|
199 | 201 | def load_config_from_json(self): |
|
200 | 202 | """load config from existing json connector files.""" |
|
201 | 203 | c = self.config |
|
202 | 204 | # load from engine config |
|
203 | 205 | with open(os.path.join(self.cluster_dir.security_dir, 'ipcontroller-engine.json')) as f: |
|
204 | 206 | cfg = json.loads(f.read()) |
|
205 | 207 | key = c.StreamSession.key = cfg['exec_key'] |
|
206 | 208 | xport,addr = cfg['url'].split('://') |
|
207 | 209 | c.HubFactory.engine_transport = xport |
|
208 | 210 | ip,ports = addr.split(':') |
|
209 | 211 | c.HubFactory.engine_ip = ip |
|
210 | 212 | c.HubFactory.regport = int(ports) |
|
211 | 213 | self.location = cfg['location'] |
|
212 | 214 | |
|
213 | 215 | # load client config |
|
214 | 216 | with open(os.path.join(self.cluster_dir.security_dir, 'ipcontroller-client.json')) as f: |
|
215 | 217 | cfg = json.loads(f.read()) |
|
216 | 218 | assert key == cfg['exec_key'], "exec_key mismatch between engine and client keys" |
|
217 | 219 | xport,addr = cfg['url'].split('://') |
|
218 | 220 | c.HubFactory.client_transport = xport |
|
219 | 221 | ip,ports = addr.split(':') |
|
220 | 222 | c.HubFactory.client_ip = ip |
|
221 | 223 | self.ssh_server = cfg['ssh'] |
|
222 | 224 | assert int(ports) == c.HubFactory.regport, "regport mismatch" |
|
223 | 225 | |
|
224 | 226 | def init_hub(self): |
|
225 | 227 | c = self.config |
|
226 | 228 | |
|
227 | 229 | self.do_import_statements() |
|
228 | 230 | reusing = self.reuse_files |
|
229 | 231 | if reusing: |
|
230 | 232 | try: |
|
231 | 233 | self.load_config_from_json() |
|
232 | 234 | except (AssertionError,IOError): |
|
233 | 235 | reusing=False |
|
234 | 236 | # check again, because reusing may have failed: |
|
235 | 237 | if reusing: |
|
236 | 238 | pass |
|
237 | 239 | elif self.secure: |
|
238 | 240 | key = str(uuid.uuid4()) |
|
239 | 241 | # keyfile = os.path.join(self.cluster_dir.security_dir, self.exec_key) |
|
240 | 242 | # with open(keyfile, 'w') as f: |
|
241 | 243 | # f.write(key) |
|
242 | 244 | # os.chmod(keyfile, stat.S_IRUSR|stat.S_IWUSR) |
|
243 | 245 | c.StreamSession.key = key |
|
244 | 246 | else: |
|
245 | 247 | key = c.StreamSession.key = '' |
|
246 | 248 | |
|
247 | 249 | try: |
|
248 | 250 | self.factory = HubFactory(config=c, log=self.log) |
|
249 | 251 | # self.start_logging() |
|
250 | 252 | self.factory.init_hub() |
|
251 | 253 | except: |
|
252 | 254 | self.log.error("Couldn't construct the Controller", exc_info=True) |
|
253 | 255 | self.exit(1) |
|
254 | 256 | |
|
255 | 257 | if not reusing: |
|
256 | 258 | # save to new json config files |
|
257 | 259 | f = self.factory |
|
258 | 260 | cdict = {'exec_key' : key, |
|
259 | 261 | 'ssh' : self.ssh_server, |
|
260 | 262 | 'url' : "%s://%s:%s"%(f.client_transport, f.client_ip, f.regport), |
|
261 | 263 | 'location' : self.location |
|
262 | 264 | } |
|
263 | 265 | self.save_connection_dict('ipcontroller-client.json', cdict) |
|
264 | 266 | edict = cdict |
|
265 | 267 | edict['url']="%s://%s:%s"%((f.client_transport, f.client_ip, f.regport)) |
|
266 | 268 | self.save_connection_dict('ipcontroller-engine.json', edict) |
|
267 | 269 | |
|
268 | 270 | # |
|
269 | 271 | def init_schedulers(self): |
|
270 | 272 | children = self.children |
|
271 | 273 | mq = import_item(str(self.mq_class)) |
|
272 | 274 | |
|
273 | 275 | hub = self.factory |
|
274 | # maybe_inproc = 'inproc://monitor' if self.usethreads else self.monitor_url | |
|
276 | # maybe_inproc = 'inproc://monitor' if self.use_threads else self.monitor_url | |
|
275 | 277 | # IOPub relay (in a Process) |
|
276 | 278 | q = mq(zmq.PUB, zmq.SUB, zmq.PUB, 'N/A','iopub') |
|
277 | 279 | q.bind_in(hub.client_info['iopub']) |
|
278 | 280 | q.bind_out(hub.engine_info['iopub']) |
|
279 | 281 | q.setsockopt_out(zmq.SUBSCRIBE, '') |
|
280 | 282 | q.connect_mon(hub.monitor_url) |
|
281 | 283 | q.daemon=True |
|
282 | 284 | children.append(q) |
|
283 | 285 | |
|
284 | 286 | # Multiplexer Queue (in a Process) |
|
285 | 287 | q = mq(zmq.XREP, zmq.XREP, zmq.PUB, 'in', 'out') |
|
286 | 288 | q.bind_in(hub.client_info['mux']) |
|
287 | 289 | q.setsockopt_in(zmq.IDENTITY, 'mux') |
|
288 | 290 | q.bind_out(hub.engine_info['mux']) |
|
289 | 291 | q.connect_mon(hub.monitor_url) |
|
290 | 292 | q.daemon=True |
|
291 | 293 | children.append(q) |
|
292 | 294 | |
|
293 | 295 | # Control Queue (in a Process) |
|
294 | 296 | q = mq(zmq.XREP, zmq.XREP, zmq.PUB, 'incontrol', 'outcontrol') |
|
295 | 297 | q.bind_in(hub.client_info['control']) |
|
296 | 298 | q.setsockopt_in(zmq.IDENTITY, 'control') |
|
297 | 299 | q.bind_out(hub.engine_info['control']) |
|
298 | 300 | q.connect_mon(hub.monitor_url) |
|
299 | 301 | q.daemon=True |
|
300 | 302 | children.append(q) |
|
301 | 303 | try: |
|
302 | 304 | scheme = self.config.TaskScheduler.scheme_name |
|
303 | 305 | except AttributeError: |
|
304 | 306 | scheme = TaskScheduler.scheme_name.get_default_value() |
|
305 | 307 | # Task Queue (in a Process) |
|
306 | 308 | if scheme == 'pure': |
|
307 | 309 | self.log.warn("task::using pure XREQ Task scheduler") |
|
308 | 310 | q = mq(zmq.XREP, zmq.XREQ, zmq.PUB, 'intask', 'outtask') |
|
309 | 311 | # q.setsockopt_out(zmq.HWM, hub.hwm) |
|
310 | 312 | q.bind_in(hub.client_info['task'][1]) |
|
311 | 313 | q.setsockopt_in(zmq.IDENTITY, 'task') |
|
312 | 314 | q.bind_out(hub.engine_info['task']) |
|
313 | 315 | q.connect_mon(hub.monitor_url) |
|
314 | 316 | q.daemon=True |
|
315 | 317 | children.append(q) |
|
316 | 318 | elif scheme == 'none': |
|
317 | 319 | self.log.warn("task::using no Task scheduler") |
|
318 | 320 | |
|
319 | 321 | else: |
|
320 | 322 | self.log.info("task::using Python %s Task scheduler"%scheme) |
|
321 | 323 | sargs = (hub.client_info['task'][1], hub.engine_info['task'], |
|
322 | 324 | hub.monitor_url, hub.client_info['notification']) |
|
323 | 325 | kwargs = dict(logname='scheduler', loglevel=self.log_level, |
|
324 | 326 | log_url = self.log_url, config=dict(self.config)) |
|
325 | 327 | q = Process(target=launch_scheduler, args=sargs, kwargs=kwargs) |
|
326 | 328 | q.daemon=True |
|
327 | 329 | children.append(q) |
|
328 | 330 | |
|
329 | 331 | |
|
330 | 332 | def save_urls(self): |
|
331 | 333 | """save the registration urls to files.""" |
|
332 | 334 | c = self.config |
|
333 | 335 | |
|
334 | 336 | sec_dir = self.cluster_dir.security_dir |
|
335 | 337 | cf = self.factory |
|
336 | 338 | |
|
337 | 339 | with open(os.path.join(sec_dir, 'ipcontroller-engine.url'), 'w') as f: |
|
338 | 340 | f.write("%s://%s:%s"%(cf.engine_transport, cf.engine_ip, cf.regport)) |
|
339 | 341 | |
|
340 | 342 | with open(os.path.join(sec_dir, 'ipcontroller-client.url'), 'w') as f: |
|
341 | 343 | f.write("%s://%s:%s"%(cf.client_transport, cf.client_ip, cf.regport)) |
|
342 | 344 | |
|
343 | 345 | |
|
344 | 346 | def do_import_statements(self): |
|
345 | 347 | statements = self.import_statements |
|
346 | 348 | for s in statements: |
|
347 | 349 | try: |
|
348 | 350 | self.log.msg("Executing statement: '%s'" % s) |
|
349 | 351 | exec s in globals(), locals() |
|
350 | 352 | except: |
|
351 | 353 | self.log.msg("Error running statement: %s" % s) |
|
352 | 354 | |
|
353 | 355 | def forward_logging(self): |
|
354 | 356 | if self.log_url: |
|
355 | 357 | self.log.info("Forwarding logging to %s"%self.log_url) |
|
356 | 358 | context = zmq.Context.instance() |
|
357 | 359 | lsock = context.socket(zmq.PUB) |
|
358 | 360 | lsock.connect(self.log_url) |
|
359 | 361 | handler = PUBHandler(lsock) |
|
360 | 362 | self.log.removeHandler(self._log_handler) |
|
361 | 363 | handler.root_topic = 'controller' |
|
362 | 364 | handler.setLevel(self.log_level) |
|
363 | 365 | self.log.addHandler(handler) |
|
364 | 366 | self._log_handler = handler |
|
365 | 367 | # # |
|
366 | 368 | |
|
367 | 369 | def initialize(self, argv=None): |
|
368 | 370 | super(IPControllerApp, self).initialize(argv) |
|
369 | 371 | self.forward_logging() |
|
370 | 372 | self.init_hub() |
|
371 | 373 | self.init_schedulers() |
|
372 | 374 | |
|
373 | 375 | def start(self): |
|
374 | 376 | # Start the subprocesses: |
|
375 | 377 | self.factory.start() |
|
376 | 378 | child_procs = [] |
|
377 | 379 | for child in self.children: |
|
378 | 380 | child.start() |
|
379 | 381 | if isinstance(child, ProcessMonitoredQueue): |
|
380 | 382 | child_procs.append(child.launcher) |
|
381 | 383 | elif isinstance(child, Process): |
|
382 | 384 | child_procs.append(child) |
|
383 | 385 | if child_procs: |
|
384 | 386 | signal_children(child_procs) |
|
385 | 387 | |
|
386 | 388 | self.write_pid_file(overwrite=True) |
|
387 | 389 | |
|
388 | 390 | try: |
|
389 | 391 | self.factory.loop.start() |
|
390 | 392 | except KeyboardInterrupt: |
|
391 | 393 | self.log.critical("Interrupted, Exiting...\n") |
|
392 | 394 | |
|
393 | 395 | |
|
394 | 396 | |
|
395 | 397 | def launch_new_instance(): |
|
396 | 398 | """Create and run the IPython controller""" |
|
397 | 399 | app = IPControllerApp() |
|
398 | 400 | app.initialize() |
|
399 | 401 | app.start() |
|
400 | 402 | |
|
401 | 403 | |
|
402 | 404 | if __name__ == '__main__': |
|
403 | 405 | launch_new_instance() |
@@ -1,277 +1,277 | |||
|
1 | 1 | #!/usr/bin/env python |
|
2 | 2 | # encoding: utf-8 |
|
3 | 3 | """ |
|
4 | 4 | The IPython engine application |
|
5 | 5 | """ |
|
6 | 6 | |
|
7 | 7 | #----------------------------------------------------------------------------- |
|
8 | 8 | # Copyright (C) 2008-2009 The IPython Development Team |
|
9 | 9 | # |
|
10 | 10 | # Distributed under the terms of the BSD License. The full license is in |
|
11 | 11 | # the file COPYING, distributed as part of this software. |
|
12 | 12 | #----------------------------------------------------------------------------- |
|
13 | 13 | |
|
14 | 14 | #----------------------------------------------------------------------------- |
|
15 | 15 | # Imports |
|
16 | 16 | #----------------------------------------------------------------------------- |
|
17 | 17 | |
|
18 | 18 | import json |
|
19 | 19 | import os |
|
20 | 20 | import sys |
|
21 | 21 | |
|
22 | 22 | import zmq |
|
23 | 23 | from zmq.eventloop import ioloop |
|
24 | 24 | |
|
25 | 25 | from IPython.parallel.apps.clusterdir import ( |
|
26 | 26 | ClusterApplication, |
|
27 | 27 | ClusterDir, |
|
28 | 28 | # ClusterDirConfigLoader |
|
29 | 29 | ) |
|
30 | 30 | from IPython.zmq.log import EnginePUBHandler |
|
31 | 31 | |
|
32 | 32 | from IPython.config.configurable import Configurable |
|
33 | 33 | from IPython.parallel.streamsession import StreamSession |
|
34 | 34 | from IPython.parallel.engine.engine import EngineFactory |
|
35 | 35 | from IPython.parallel.engine.streamkernel import Kernel |
|
36 | 36 | from IPython.parallel.util import disambiguate_url |
|
37 | 37 | |
|
38 | 38 | from IPython.utils.importstring import import_item |
|
39 | 39 | from IPython.utils.traitlets import Bool, Unicode, Dict, List |
|
40 | 40 | |
|
41 | 41 | |
|
42 | 42 | #----------------------------------------------------------------------------- |
|
43 | 43 | # Module level variables |
|
44 | 44 | #----------------------------------------------------------------------------- |
|
45 | 45 | |
|
46 | 46 | #: The default config file name for this application |
|
47 | 47 | default_config_file_name = u'ipengine_config.py' |
|
48 | 48 | |
|
49 |
_description = """Start an IPython engine for parallel computing. |
|
|
49 | _description = """Start an IPython engine for parallel computing. | |
|
50 | 50 | |
|
51 | 51 | IPython engines run in parallel and perform computations on behalf of a client |
|
52 | 52 | and controller. A controller needs to be started before the engines. The |
|
53 | 53 | engine can be configured using command line options or using a cluster |
|
54 | 54 | directory. Cluster directories contain config, log and security files and are |
|
55 | 55 | usually located in your ipython directory and named as "cluster_<profile>". |
|
56 | 56 | See the `profile` and `cluster_dir` options for details. |
|
57 | 57 | """ |
|
58 | 58 | |
|
59 | 59 | |
|
60 | 60 | #----------------------------------------------------------------------------- |
|
61 | 61 | # MPI configuration |
|
62 | 62 | #----------------------------------------------------------------------------- |
|
63 | 63 | |
|
64 | 64 | mpi4py_init = """from mpi4py import MPI as mpi |
|
65 | 65 | mpi.size = mpi.COMM_WORLD.Get_size() |
|
66 | 66 | mpi.rank = mpi.COMM_WORLD.Get_rank() |
|
67 | 67 | """ |
|
68 | 68 | |
|
69 | 69 | |
|
70 | 70 | pytrilinos_init = """from PyTrilinos import Epetra |
|
71 | 71 | class SimpleStruct: |
|
72 | 72 | pass |
|
73 | 73 | mpi = SimpleStruct() |
|
74 | 74 | mpi.rank = 0 |
|
75 | 75 | mpi.size = 0 |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | class MPI(Configurable): |
|
79 | 79 | """Configurable for MPI initialization""" |
|
80 | 80 | use = Unicode('', config=True, |
|
81 | 81 | help='How to enable MPI (mpi4py, pytrilinos, or empty string to disable).' |
|
82 | 82 | ) |
|
83 | 83 | |
|
84 | 84 | def _on_use_changed(self, old, new): |
|
85 | 85 | # load default init script if it's not set |
|
86 | 86 | if not self.init_script: |
|
87 | 87 | self.init_script = self.default_inits.get(new, '') |
|
88 | 88 | |
|
89 | 89 | init_script = Unicode('', config=True, |
|
90 | 90 | help="Initialization code for MPI") |
|
91 | 91 | |
|
92 | 92 | default_inits = Dict({'mpi4py' : mpi4py_init, 'pytrilinos':pytrilinos_init}, |
|
93 | 93 | config=True) |
|
94 | 94 | |
|
95 | 95 | |
|
96 | 96 | #----------------------------------------------------------------------------- |
|
97 | 97 | # Main application |
|
98 | 98 | #----------------------------------------------------------------------------- |
|
99 | 99 | |
|
100 | 100 | |
|
101 | 101 | class IPEngineApp(ClusterApplication): |
|
102 | 102 | |
|
103 | 103 | app_name = Unicode(u'ipengine') |
|
104 | 104 | description = Unicode(_description) |
|
105 | 105 | default_config_file_name = default_config_file_name |
|
106 | 106 | classes = List([ClusterDir, StreamSession, EngineFactory, Kernel, MPI]) |
|
107 | 107 | |
|
108 | 108 | auto_create_cluster_dir = Bool(False, |
|
109 | 109 | help="whether to create the cluster_dir if it doesn't exist") |
|
110 | 110 | |
|
111 | 111 | startup_script = Unicode(u'', config=True, |
|
112 | 112 | help='specify a script to be run at startup') |
|
113 | 113 | startup_command = Unicode('', config=True, |
|
114 | 114 | help='specify a command to be run at startup') |
|
115 | 115 | |
|
116 | 116 | url_file = Unicode(u'', config=True, |
|
117 | 117 | help="""The full location of the file containing the connection information for |
|
118 | 118 | the controller. If this is not given, the file must be in the |
|
119 | 119 | security directory of the cluster directory. This location is |
|
120 | 120 | resolved using the `profile` or `cluster_dir` options.""", |
|
121 | 121 | ) |
|
122 | 122 | |
|
123 | 123 | url_file_name = Unicode(u'ipcontroller-engine.json') |
|
124 | 124 | log_url = Unicode('', config=True, |
|
125 | 125 | help="""The URL for the iploggerapp instance, for forwarding |
|
126 | 126 | logging to a central location.""") |
|
127 | 127 | |
|
128 | 128 | aliases = Dict(dict( |
|
129 | 129 | config = 'IPEngineApp.config_file', |
|
130 | 130 | file = 'IPEngineApp.url_file', |
|
131 | 131 | c = 'IPEngineApp.startup_command', |
|
132 | 132 | s = 'IPEngineApp.startup_script', |
|
133 | 133 | |
|
134 | 134 | ident = 'StreamSession.session', |
|
135 | 135 | user = 'StreamSession.username', |
|
136 | 136 | exec_key = 'StreamSession.keyfile', |
|
137 | 137 | |
|
138 | 138 | url = 'EngineFactory.url', |
|
139 | 139 | ip = 'EngineFactory.ip', |
|
140 | 140 | transport = 'EngineFactory.transport', |
|
141 | 141 | port = 'EngineFactory.regport', |
|
142 | 142 | location = 'EngineFactory.location', |
|
143 | 143 | |
|
144 | 144 | timeout = 'EngineFactory.timeout', |
|
145 | 145 | |
|
146 | 146 | profile = "ClusterDir.profile", |
|
147 | 147 | cluster_dir = 'ClusterDir.location', |
|
148 | 148 | |
|
149 | 149 | mpi = 'MPI.use', |
|
150 | 150 | |
|
151 | 151 | log_level = 'IPEngineApp.log_level', |
|
152 | 152 | log_url = 'IPEngineApp.log_url' |
|
153 | 153 | )) |
|
154 | 154 | |
|
155 | 155 | # def find_key_file(self): |
|
156 | 156 | # """Set the key file. |
|
157 | 157 | # |
|
158 | 158 | # Here we don't try to actually see if it exists for is valid as that |
|
159 | 159 | # is hadled by the connection logic. |
|
160 | 160 | # """ |
|
161 | 161 | # config = self.master_config |
|
162 | 162 | # # Find the actual controller key file |
|
163 | 163 | # if not config.Global.key_file: |
|
164 | 164 | # try_this = os.path.join( |
|
165 | 165 | # config.Global.cluster_dir, |
|
166 | 166 | # config.Global.security_dir, |
|
167 | 167 | # config.Global.key_file_name |
|
168 | 168 | # ) |
|
169 | 169 | # config.Global.key_file = try_this |
|
170 | 170 | |
|
171 | 171 | def find_url_file(self): |
|
172 | 172 | """Set the key file. |
|
173 | 173 | |
|
174 | 174 | Here we don't try to actually see if it exists for is valid as that |
|
175 | 175 | is hadled by the connection logic. |
|
176 | 176 | """ |
|
177 | 177 | config = self.config |
|
178 | 178 | # Find the actual controller key file |
|
179 | 179 | if not self.url_file: |
|
180 | 180 | self.url_file = os.path.join( |
|
181 | 181 | self.cluster_dir.security_dir, |
|
182 | 182 | self.url_file_name |
|
183 | 183 | ) |
|
184 | 184 | def init_engine(self): |
|
185 | 185 | # This is the working dir by now. |
|
186 | 186 | sys.path.insert(0, '') |
|
187 | 187 | config = self.config |
|
188 | 188 | # print config |
|
189 | 189 | self.find_url_file() |
|
190 | 190 | |
|
191 | 191 | # if os.path.exists(config.Global.key_file) and config.Global.secure: |
|
192 | 192 | # config.SessionFactory.exec_key = config.Global.key_file |
|
193 | 193 | if os.path.exists(self.url_file): |
|
194 | 194 | with open(self.url_file) as f: |
|
195 | 195 | d = json.loads(f.read()) |
|
196 | 196 | for k,v in d.iteritems(): |
|
197 | 197 | if isinstance(v, unicode): |
|
198 | 198 | d[k] = v.encode() |
|
199 | 199 | if d['exec_key']: |
|
200 | 200 | config.StreamSession.key = d['exec_key'] |
|
201 | 201 | d['url'] = disambiguate_url(d['url'], d['location']) |
|
202 | 202 | config.EngineFactory.url = d['url'] |
|
203 | 203 | config.EngineFactory.location = d['location'] |
|
204 | 204 | |
|
205 | 205 | try: |
|
206 | 206 | exec_lines = config.Kernel.exec_lines |
|
207 | 207 | except AttributeError: |
|
208 | 208 | config.Kernel.exec_lines = [] |
|
209 | 209 | exec_lines = config.Kernel.exec_lines |
|
210 | 210 | |
|
211 | 211 | if self.startup_script: |
|
212 | 212 | enc = sys.getfilesystemencoding() or 'utf8' |
|
213 | 213 | cmd="execfile(%r)"%self.startup_script.encode(enc) |
|
214 | 214 | exec_lines.append(cmd) |
|
215 | 215 | if self.startup_command: |
|
216 | 216 | exec_lines.append(self.startup_command) |
|
217 | 217 | |
|
218 | 218 | # Create the underlying shell class and Engine |
|
219 | 219 | # shell_class = import_item(self.master_config.Global.shell_class) |
|
220 | 220 | # print self.config |
|
221 | 221 | try: |
|
222 | 222 | self.engine = EngineFactory(config=config, log=self.log) |
|
223 | 223 | except: |
|
224 | 224 | self.log.error("Couldn't start the Engine", exc_info=True) |
|
225 | 225 | self.exit(1) |
|
226 | 226 | |
|
227 | 227 | def forward_logging(self): |
|
228 | 228 | if self.log_url: |
|
229 | 229 | self.log.info("Forwarding logging to %s"%self.log_url) |
|
230 | 230 | context = self.engine.context |
|
231 | 231 | lsock = context.socket(zmq.PUB) |
|
232 | 232 | lsock.connect(self.log_url) |
|
233 | 233 | self.log.removeHandler(self._log_handler) |
|
234 | 234 | handler = EnginePUBHandler(self.engine, lsock) |
|
235 | 235 | handler.setLevel(self.log_level) |
|
236 | 236 | self.log.addHandler(handler) |
|
237 | 237 | self._log_handler = handler |
|
238 | 238 | # |
|
239 | 239 | def init_mpi(self): |
|
240 | 240 | global mpi |
|
241 | 241 | self.mpi = MPI(config=self.config) |
|
242 | 242 | |
|
243 | 243 | mpi_import_statement = self.mpi.init_script |
|
244 | 244 | if mpi_import_statement: |
|
245 | 245 | try: |
|
246 | 246 | self.log.info("Initializing MPI:") |
|
247 | 247 | self.log.info(mpi_import_statement) |
|
248 | 248 | exec mpi_import_statement in globals() |
|
249 | 249 | except: |
|
250 | 250 | mpi = None |
|
251 | 251 | else: |
|
252 | 252 | mpi = None |
|
253 | 253 | |
|
254 | 254 | def initialize(self, argv=None): |
|
255 | 255 | super(IPEngineApp, self).initialize(argv) |
|
256 | 256 | self.init_mpi() |
|
257 | 257 | self.init_engine() |
|
258 | 258 | self.forward_logging() |
|
259 | 259 | |
|
260 | 260 | def start(self): |
|
261 | 261 | self.engine.start() |
|
262 | 262 | try: |
|
263 | 263 | self.engine.loop.start() |
|
264 | 264 | except KeyboardInterrupt: |
|
265 | 265 | self.log.critical("Engine Interrupted, shutting down...\n") |
|
266 | 266 | |
|
267 | 267 | |
|
268 | 268 | def launch_new_instance(): |
|
269 | 269 | """Create and run the IPython engine""" |
|
270 | 270 | app = IPEngineApp() |
|
271 | 271 | app.initialize() |
|
272 | 272 | app.start() |
|
273 | 273 | |
|
274 | 274 | |
|
275 | 275 | if __name__ == '__main__': |
|
276 | 276 | launch_new_instance() |
|
277 | 277 |
@@ -1,97 +1,97 | |||
|
1 | 1 | #!/usr/bin/env python |
|
2 | 2 | # encoding: utf-8 |
|
3 | 3 | """ |
|
4 | 4 | A simple IPython logger application |
|
5 | 5 | """ |
|
6 | 6 | |
|
7 | 7 | #----------------------------------------------------------------------------- |
|
8 | 8 | # Copyright (C) 2011 The IPython Development Team |
|
9 | 9 | # |
|
10 | 10 | # Distributed under the terms of the BSD License. The full license is in |
|
11 | 11 | # the file COPYING, distributed as part of this software. |
|
12 | 12 | #----------------------------------------------------------------------------- |
|
13 | 13 | |
|
14 | 14 | #----------------------------------------------------------------------------- |
|
15 | 15 | # Imports |
|
16 | 16 | #----------------------------------------------------------------------------- |
|
17 | 17 | |
|
18 | 18 | import os |
|
19 | 19 | import sys |
|
20 | 20 | |
|
21 | 21 | import zmq |
|
22 | 22 | |
|
23 | 23 | from IPython.utils.traitlets import Bool, Dict |
|
24 | 24 | |
|
25 | 25 | from IPython.parallel.apps.clusterdir import ( |
|
26 | 26 | ClusterApplication, |
|
27 | 27 | ClusterDir, |
|
28 | 28 | base_aliases |
|
29 | 29 | ) |
|
30 | 30 | from IPython.parallel.apps.logwatcher import LogWatcher |
|
31 | 31 | |
|
32 | 32 | #----------------------------------------------------------------------------- |
|
33 | 33 | # Module level variables |
|
34 | 34 | #----------------------------------------------------------------------------- |
|
35 | 35 | |
|
36 | 36 | #: The default config file name for this application |
|
37 | 37 | default_config_file_name = u'iplogger_config.py' |
|
38 | 38 | |
|
39 |
_description = """Start an IPython logger for parallel computing. |
|
|
39 | _description = """Start an IPython logger for parallel computing. | |
|
40 | 40 | |
|
41 | 41 | IPython controllers and engines (and your own processes) can broadcast log messages |
|
42 | 42 | by registering a `zmq.log.handlers.PUBHandler` with the `logging` module. The |
|
43 | 43 | logger can be configured using command line options or using a cluster |
|
44 | 44 | directory. Cluster directories contain config, log and security files and are |
|
45 | 45 | usually located in your ipython directory and named as "cluster_<profile>". |
|
46 |
See the |
|
|
46 | See the `profile` and `cluster_dir` options for details. | |
|
47 | 47 | """ |
|
48 | 48 | |
|
49 | 49 | |
|
50 | 50 | #----------------------------------------------------------------------------- |
|
51 | 51 | # Main application |
|
52 | 52 | #----------------------------------------------------------------------------- |
|
53 | 53 | aliases = {} |
|
54 | 54 | aliases.update(base_aliases) |
|
55 | 55 | aliases.update(dict(url='LogWatcher.url', topics='LogWatcher.topics')) |
|
56 | 56 | |
|
57 | 57 | class IPLoggerApp(ClusterApplication): |
|
58 | 58 | |
|
59 | 59 | name = u'iploggerz' |
|
60 | 60 | description = _description |
|
61 | 61 | default_config_file_name = default_config_file_name |
|
62 | 62 | auto_create_cluster_dir = Bool(False) |
|
63 | 63 | |
|
64 | 64 | classes = [LogWatcher, ClusterDir] |
|
65 | 65 | aliases = Dict(aliases) |
|
66 | 66 | |
|
67 | 67 | def initialize(self, argv=None): |
|
68 | 68 | super(IPLoggerApp, self).initialize(argv) |
|
69 | 69 | self.init_watcher() |
|
70 | 70 | |
|
71 | 71 | def init_watcher(self): |
|
72 | 72 | try: |
|
73 | 73 | self.watcher = LogWatcher(config=self.config, logname=self.log.name) |
|
74 | 74 | except: |
|
75 | 75 | self.log.error("Couldn't start the LogWatcher", exc_info=True) |
|
76 | 76 | self.exit(1) |
|
77 | 77 | self.log.info("Listening for log messages on %r"%self.watcher.url) |
|
78 | 78 | |
|
79 | 79 | |
|
80 | 80 | def start(self): |
|
81 | 81 | self.watcher.start() |
|
82 | 82 | try: |
|
83 | 83 | self.watcher.loop.start() |
|
84 | 84 | except KeyboardInterrupt: |
|
85 | 85 | self.log.critical("Logging Interrupted, shutting down...\n") |
|
86 | 86 | |
|
87 | 87 | |
|
88 | 88 | def launch_new_instance(): |
|
89 | 89 | """Create and run the IPython LogWatcher""" |
|
90 | 90 | app = IPLoggerApp() |
|
91 | 91 | app.initialize() |
|
92 | 92 | app.start() |
|
93 | 93 | |
|
94 | 94 | |
|
95 | 95 | if __name__ == '__main__': |
|
96 | 96 | launch_new_instance() |
|
97 | 97 |
@@ -1,166 +1,165 | |||
|
1 | 1 | #!/usr/bin/env python |
|
2 | 2 | """A simple engine that talks to a controller over 0MQ. |
|
3 | 3 | it handles registration, etc. and launches a kernel |
|
4 | 4 | connected to the Controller's Schedulers. |
|
5 | 5 | """ |
|
6 | 6 | #----------------------------------------------------------------------------- |
|
7 | 7 | # Copyright (C) 2010-2011 The IPython Development Team |
|
8 | 8 | # |
|
9 | 9 | # Distributed under the terms of the BSD License. The full license is in |
|
10 | 10 | # the file COPYING, distributed as part of this software. |
|
11 | 11 | #----------------------------------------------------------------------------- |
|
12 | 12 | |
|
13 | 13 | from __future__ import print_function |
|
14 | 14 | |
|
15 | 15 | import sys |
|
16 | 16 | import time |
|
17 | 17 | |
|
18 | 18 | import zmq |
|
19 | 19 | from zmq.eventloop import ioloop, zmqstream |
|
20 | 20 | |
|
21 | 21 | # internal |
|
22 | 22 | from IPython.utils.traitlets import Instance, Dict, Int, Type, CFloat, Unicode |
|
23 | 23 | # from IPython.utils.localinterfaces import LOCALHOST |
|
24 | 24 | |
|
25 | 25 | from IPython.parallel.controller.heartmonitor import Heart |
|
26 | 26 | from IPython.parallel.factory import RegistrationFactory |
|
27 | 27 | from IPython.parallel.streamsession import Message |
|
28 | 28 | from IPython.parallel.util import disambiguate_url |
|
29 | 29 | |
|
30 | 30 | from .streamkernel import Kernel |
|
31 | 31 | |
|
32 | 32 | class EngineFactory(RegistrationFactory): |
|
33 | 33 | """IPython engine""" |
|
34 | 34 | |
|
35 | 35 | # configurables: |
|
36 | 36 | out_stream_factory=Type('IPython.zmq.iostream.OutStream', config=True, |
|
37 | 37 | help="""The OutStream for handling stdout/err. |
|
38 | 38 | Typically 'IPython.zmq.iostream.OutStream'""") |
|
39 | 39 | display_hook_factory=Type('IPython.zmq.displayhook.DisplayHook', config=True, |
|
40 | 40 | help="""The class for handling displayhook. |
|
41 | 41 | Typically 'IPython.zmq.displayhook.DisplayHook'""") |
|
42 | 42 | location=Unicode(config=True, |
|
43 | 43 | help="""The location (an IP address) of the controller. This is |
|
44 | 44 | used for disambiguating URLs, to determine whether |
|
45 | 45 | loopback should be used to connect or the public address.""") |
|
46 | 46 | timeout=CFloat(2,config=True, |
|
47 | 47 | help="""The time (in seconds) to wait for the Controller to respond |
|
48 | 48 | to registration requests before giving up.""") |
|
49 | 49 | |
|
50 | 50 | # not configurable: |
|
51 | 51 | user_ns=Dict() |
|
52 | 52 | id=Int(allow_none=True) |
|
53 | 53 | registrar=Instance('zmq.eventloop.zmqstream.ZMQStream') |
|
54 | 54 | kernel=Instance(Kernel) |
|
55 | 55 | |
|
56 | 56 | |
|
57 | 57 | def __init__(self, **kwargs): |
|
58 | 58 | super(EngineFactory, self).__init__(**kwargs) |
|
59 | 59 | self.ident = self.session.session |
|
60 | 60 | ctx = self.context |
|
61 | 61 | |
|
62 | 62 | reg = ctx.socket(zmq.XREQ) |
|
63 | 63 | reg.setsockopt(zmq.IDENTITY, self.ident) |
|
64 | 64 | reg.connect(self.url) |
|
65 | 65 | self.registrar = zmqstream.ZMQStream(reg, self.loop) |
|
66 | 66 | |
|
67 | 67 | def register(self): |
|
68 | 68 | """send the registration_request""" |
|
69 | 69 | |
|
70 | 70 | self.log.info("registering") |
|
71 | 71 | content = dict(queue=self.ident, heartbeat=self.ident, control=self.ident) |
|
72 | 72 | self.registrar.on_recv(self.complete_registration) |
|
73 | 73 | # print (self.session.key) |
|
74 | 74 | self.session.send(self.registrar, "registration_request",content=content) |
|
75 | 75 | |
|
76 | 76 | def complete_registration(self, msg): |
|
77 | 77 | # print msg |
|
78 | 78 | self._abort_dc.stop() |
|
79 | 79 | ctx = self.context |
|
80 | 80 | loop = self.loop |
|
81 | 81 | identity = self.ident |
|
82 | 82 | |
|
83 | 83 | idents,msg = self.session.feed_identities(msg) |
|
84 | 84 | msg = Message(self.session.unpack_message(msg)) |
|
85 | 85 | |
|
86 | 86 | if msg.content.status == 'ok': |
|
87 | 87 | self.id = int(msg.content.id) |
|
88 | 88 | |
|
89 | 89 | # create Shell Streams (MUX, Task, etc.): |
|
90 | 90 | queue_addr = msg.content.mux |
|
91 | 91 | shell_addrs = [ str(queue_addr) ] |
|
92 | 92 | task_addr = msg.content.task |
|
93 | 93 | if task_addr: |
|
94 | 94 | shell_addrs.append(str(task_addr)) |
|
95 | 95 | |
|
96 | 96 | # Uncomment this to go back to two-socket model |
|
97 | 97 | # shell_streams = [] |
|
98 | 98 | # for addr in shell_addrs: |
|
99 | 99 | # stream = zmqstream.ZMQStream(ctx.socket(zmq.XREP), loop) |
|
100 | 100 | # stream.setsockopt(zmq.IDENTITY, identity) |
|
101 | 101 | # stream.connect(disambiguate_url(addr, self.location)) |
|
102 | 102 | # shell_streams.append(stream) |
|
103 | 103 | |
|
104 | 104 | # Now use only one shell stream for mux and tasks |
|
105 | 105 | stream = zmqstream.ZMQStream(ctx.socket(zmq.XREP), loop) |
|
106 | 106 | stream.setsockopt(zmq.IDENTITY, identity) |
|
107 | 107 | shell_streams = [stream] |
|
108 | 108 | for addr in shell_addrs: |
|
109 | 109 | stream.connect(disambiguate_url(addr, self.location)) |
|
110 | 110 | # end single stream-socket |
|
111 | 111 | |
|
112 | 112 | # control stream: |
|
113 | 113 | control_addr = str(msg.content.control) |
|
114 | 114 | control_stream = zmqstream.ZMQStream(ctx.socket(zmq.XREP), loop) |
|
115 | 115 | control_stream.setsockopt(zmq.IDENTITY, identity) |
|
116 | 116 | control_stream.connect(disambiguate_url(control_addr, self.location)) |
|
117 | 117 | |
|
118 | 118 | # create iopub stream: |
|
119 | 119 | iopub_addr = msg.content.iopub |
|
120 | 120 | iopub_stream = zmqstream.ZMQStream(ctx.socket(zmq.PUB), loop) |
|
121 | 121 | iopub_stream.setsockopt(zmq.IDENTITY, identity) |
|
122 | 122 | iopub_stream.connect(disambiguate_url(iopub_addr, self.location)) |
|
123 | 123 | |
|
124 | 124 | # launch heartbeat |
|
125 | 125 | hb_addrs = msg.content.heartbeat |
|
126 | 126 | # print (hb_addrs) |
|
127 | 127 | |
|
128 | 128 | # # Redirect input streams and set a display hook. |
|
129 | 129 | if self.out_stream_factory: |
|
130 | 130 | sys.stdout = self.out_stream_factory(self.session, iopub_stream, u'stdout') |
|
131 | 131 | sys.stdout.topic = 'engine.%i.stdout'%self.id |
|
132 | 132 | sys.stderr = self.out_stream_factory(self.session, iopub_stream, u'stderr') |
|
133 | 133 | sys.stderr.topic = 'engine.%i.stderr'%self.id |
|
134 | 134 | if self.display_hook_factory: |
|
135 | 135 | sys.displayhook = self.display_hook_factory(self.session, iopub_stream) |
|
136 | 136 | sys.displayhook.topic = 'engine.%i.pyout'%self.id |
|
137 | 137 | |
|
138 | 138 | self.kernel = Kernel(config=self.config, int_id=self.id, ident=self.ident, session=self.session, |
|
139 | 139 | control_stream=control_stream, shell_streams=shell_streams, iopub_stream=iopub_stream, |
|
140 | 140 | loop=loop, user_ns = self.user_ns, log=self.log) |
|
141 | 141 | self.kernel.start() |
|
142 | 142 | hb_addrs = [ disambiguate_url(addr, self.location) for addr in hb_addrs ] |
|
143 | 143 | heart = Heart(*map(str, hb_addrs), heart_id=identity) |
|
144 | # ioloop.DelayedCallback(heart.start, 1000, self.loop).start() | |
|
145 | 144 | heart.start() |
|
146 | 145 | |
|
147 | 146 | |
|
148 | 147 | else: |
|
149 | 148 | self.log.fatal("Registration Failed: %s"%msg) |
|
150 | 149 | raise Exception("Registration Failed: %s"%msg) |
|
151 | 150 | |
|
152 | 151 | self.log.info("Completed registration with id %i"%self.id) |
|
153 | 152 | |
|
154 | 153 | |
|
155 | 154 | def abort(self): |
|
156 | 155 | self.log.fatal("Registration timed out after %.1f seconds"%self.timeout) |
|
157 | 156 | self.session.send(self.registrar, "unregistration_request", content=dict(id=self.id)) |
|
158 | 157 | time.sleep(1) |
|
159 | 158 | sys.exit(255) |
|
160 | 159 | |
|
161 | 160 | def start(self): |
|
162 | 161 | dc = ioloop.DelayedCallback(self.register, 0, self.loop) |
|
163 | 162 | dc.start() |
|
164 | 163 | self._abort_dc = ioloop.DelayedCallback(self.abort, self.timeout*1000, self.loop) |
|
165 | 164 | self._abort_dc.start() |
|
166 | 165 |
@@ -1,107 +1,107 | |||
|
1 | 1 | """toplevel setup/teardown for parallel tests.""" |
|
2 | 2 | |
|
3 | 3 | #------------------------------------------------------------------------------- |
|
4 | 4 | # Copyright (C) 2011 The IPython Development Team |
|
5 | 5 | # |
|
6 | 6 | # Distributed under the terms of the BSD License. The full license is in |
|
7 | 7 | # the file COPYING, distributed as part of this software. |
|
8 | 8 | #------------------------------------------------------------------------------- |
|
9 | 9 | |
|
10 | 10 | #------------------------------------------------------------------------------- |
|
11 | 11 | # Imports |
|
12 | 12 | #------------------------------------------------------------------------------- |
|
13 | 13 | |
|
14 | 14 | import os |
|
15 | 15 | import tempfile |
|
16 | 16 | import time |
|
17 | 17 | from subprocess import Popen |
|
18 | 18 | |
|
19 | 19 | from IPython.utils.path import get_ipython_dir |
|
20 | 20 | from IPython.parallel import Client |
|
21 | 21 | from IPython.parallel.apps.launcher import (LocalProcessLauncher, |
|
22 | 22 | ipengine_cmd_argv, |
|
23 | 23 | ipcontroller_cmd_argv, |
|
24 | 24 | SIGKILL) |
|
25 | 25 | |
|
26 | 26 | # globals |
|
27 | 27 | launchers = [] |
|
28 | 28 | blackhole = open(os.devnull, 'w') |
|
29 | 29 | |
|
30 | 30 | # Launcher class |
|
31 | 31 | class TestProcessLauncher(LocalProcessLauncher): |
|
32 | 32 | """subclass LocalProcessLauncher, to prevent extra sockets and threads being created on Windows""" |
|
33 | 33 | def start(self): |
|
34 | 34 | if self.state == 'before': |
|
35 | 35 | self.process = Popen(self.args, |
|
36 | 36 | stdout=blackhole, stderr=blackhole, |
|
37 | 37 | env=os.environ, |
|
38 | 38 | cwd=self.work_dir |
|
39 | 39 | ) |
|
40 | 40 | self.notify_start(self.process.pid) |
|
41 | 41 | self.poll = self.process.poll |
|
42 | 42 | else: |
|
43 | 43 | s = 'The process was already started and has state: %r' % self.state |
|
44 | 44 | raise ProcessStateError(s) |
|
45 | 45 | |
|
46 | 46 | # nose setup/teardown |
|
47 | 47 | |
|
48 | 48 | def setup(): |
|
49 | 49 | cp = TestProcessLauncher() |
|
50 | 50 | cp.cmd_and_args = ipcontroller_cmd_argv + \ |
|
51 |
[' |
|
|
51 | ['profile=iptest', 'log_level=50', '--reuse'] | |
|
52 | 52 | cp.start() |
|
53 | 53 | launchers.append(cp) |
|
54 | 54 | cluster_dir = os.path.join(get_ipython_dir(), 'cluster_iptest') |
|
55 | 55 | engine_json = os.path.join(cluster_dir, 'security', 'ipcontroller-engine.json') |
|
56 | 56 | client_json = os.path.join(cluster_dir, 'security', 'ipcontroller-client.json') |
|
57 | 57 | tic = time.time() |
|
58 | 58 | while not os.path.exists(engine_json) or not os.path.exists(client_json): |
|
59 | 59 | if cp.poll() is not None: |
|
60 | 60 | print cp.poll() |
|
61 | 61 | raise RuntimeError("The test controller failed to start.") |
|
62 | 62 | elif time.time()-tic > 10: |
|
63 | 63 | raise RuntimeError("Timeout waiting for the test controller to start.") |
|
64 | 64 | time.sleep(0.1) |
|
65 | 65 | add_engines(1) |
|
66 | 66 | |
|
67 | 67 | def add_engines(n=1, profile='iptest'): |
|
68 | 68 | rc = Client(profile=profile) |
|
69 | 69 | base = len(rc) |
|
70 | 70 | eps = [] |
|
71 | 71 | for i in range(n): |
|
72 | 72 | ep = TestProcessLauncher() |
|
73 |
ep.cmd_and_args = ipengine_cmd_argv + [' |
|
|
73 | ep.cmd_and_args = ipengine_cmd_argv + ['profile=%s'%profile, 'log_level=50'] | |
|
74 | 74 | ep.start() |
|
75 | 75 | launchers.append(ep) |
|
76 | 76 | eps.append(ep) |
|
77 | 77 | tic = time.time() |
|
78 | 78 | while len(rc) < base+n: |
|
79 | 79 | if any([ ep.poll() is not None for ep in eps ]): |
|
80 | 80 | raise RuntimeError("A test engine failed to start.") |
|
81 | 81 | elif time.time()-tic > 10: |
|
82 | 82 | raise RuntimeError("Timeout waiting for engines to connect.") |
|
83 | 83 | time.sleep(.1) |
|
84 | 84 | rc.spin() |
|
85 | 85 | rc.close() |
|
86 | 86 | return eps |
|
87 | 87 | |
|
88 | 88 | def teardown(): |
|
89 | 89 | time.sleep(1) |
|
90 | 90 | while launchers: |
|
91 | 91 | p = launchers.pop() |
|
92 | 92 | if p.poll() is None: |
|
93 | 93 | try: |
|
94 | 94 | p.stop() |
|
95 | 95 | except Exception, e: |
|
96 | 96 | print e |
|
97 | 97 | pass |
|
98 | 98 | if p.poll() is None: |
|
99 | 99 | time.sleep(.25) |
|
100 | 100 | if p.poll() is None: |
|
101 | 101 | try: |
|
102 | 102 | print 'cleaning up test process...' |
|
103 | 103 | p.signal(SIGKILL) |
|
104 | 104 | except: |
|
105 | 105 | print "couldn't shutdown process: ", p |
|
106 | 106 | blackhole.close() |
|
107 | 107 |
@@ -1,111 +1,111 | |||
|
1 | 1 | """test building messages with streamsession""" |
|
2 | 2 | |
|
3 | 3 | #------------------------------------------------------------------------------- |
|
4 | 4 | # Copyright (C) 2011 The IPython Development Team |
|
5 | 5 | # |
|
6 | 6 | # Distributed under the terms of the BSD License. The full license is in |
|
7 | 7 | # the file COPYING, distributed as part of this software. |
|
8 | 8 | #------------------------------------------------------------------------------- |
|
9 | 9 | |
|
10 | 10 | #------------------------------------------------------------------------------- |
|
11 | 11 | # Imports |
|
12 | 12 | #------------------------------------------------------------------------------- |
|
13 | 13 | |
|
14 | 14 | import os |
|
15 | 15 | import uuid |
|
16 | 16 | import zmq |
|
17 | 17 | |
|
18 | 18 | from zmq.tests import BaseZMQTestCase |
|
19 | 19 | from zmq.eventloop.zmqstream import ZMQStream |
|
20 | 20 | # from IPython.zmq.tests import SessionTestCase |
|
21 | 21 | from IPython.parallel import streamsession as ss |
|
22 | 22 | |
|
23 | 23 | class SessionTestCase(BaseZMQTestCase): |
|
24 | 24 | |
|
25 | 25 | def setUp(self): |
|
26 | 26 | BaseZMQTestCase.setUp(self) |
|
27 | 27 | self.session = ss.StreamSession() |
|
28 | 28 | |
|
29 | 29 | class TestSession(SessionTestCase): |
|
30 | 30 | |
|
31 | 31 | def test_msg(self): |
|
32 | 32 | """message format""" |
|
33 | 33 | msg = self.session.msg('execute') |
|
34 | 34 | thekeys = set('header msg_id parent_header msg_type content'.split()) |
|
35 | 35 | s = set(msg.keys()) |
|
36 | 36 | self.assertEquals(s, thekeys) |
|
37 | 37 | self.assertTrue(isinstance(msg['content'],dict)) |
|
38 | 38 | self.assertTrue(isinstance(msg['header'],dict)) |
|
39 | 39 | self.assertTrue(isinstance(msg['parent_header'],dict)) |
|
40 | 40 | self.assertEquals(msg['msg_type'], 'execute') |
|
41 | 41 | |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def test_args(self): |
|
45 | 45 | """initialization arguments for StreamSession""" |
|
46 | 46 | s = self.session |
|
47 | 47 | self.assertTrue(s.pack is ss.default_packer) |
|
48 | 48 | self.assertTrue(s.unpack is ss.default_unpacker) |
|
49 | 49 | self.assertEquals(s.username, os.environ.get('USER', 'username')) |
|
50 | 50 | |
|
51 |
s = ss.StreamSession( |
|
|
51 | s = ss.StreamSession() | |
|
52 | 52 | self.assertEquals(s.username, os.environ.get('USER', 'username')) |
|
53 | 53 | |
|
54 |
self.assertRaises(TypeError, ss.StreamSession, pack |
|
|
55 |
self.assertRaises(TypeError, ss.StreamSession, unpack |
|
|
54 | self.assertRaises(TypeError, ss.StreamSession, pack='hi') | |
|
55 | self.assertRaises(TypeError, ss.StreamSession, unpack='hi') | |
|
56 | 56 | u = str(uuid.uuid4()) |
|
57 | 57 | s = ss.StreamSession(username='carrot', session=u) |
|
58 | 58 | self.assertEquals(s.session, u) |
|
59 | 59 | self.assertEquals(s.username, 'carrot') |
|
60 | 60 | |
|
61 | 61 | def test_tracking(self): |
|
62 | 62 | """test tracking messages""" |
|
63 | 63 | a,b = self.create_bound_pair(zmq.PAIR, zmq.PAIR) |
|
64 | 64 | s = self.session |
|
65 | 65 | stream = ZMQStream(a) |
|
66 | 66 | msg = s.send(a, 'hello', track=False) |
|
67 | 67 | self.assertTrue(msg['tracker'] is None) |
|
68 | 68 | msg = s.send(a, 'hello', track=True) |
|
69 | 69 | self.assertTrue(isinstance(msg['tracker'], zmq.MessageTracker)) |
|
70 | 70 | M = zmq.Message(b'hi there', track=True) |
|
71 | 71 | msg = s.send(a, 'hello', buffers=[M], track=True) |
|
72 | 72 | t = msg['tracker'] |
|
73 | 73 | self.assertTrue(isinstance(t, zmq.MessageTracker)) |
|
74 | 74 | self.assertRaises(zmq.NotDone, t.wait, .1) |
|
75 | 75 | del M |
|
76 | 76 | t.wait(1) # this will raise |
|
77 | 77 | |
|
78 | 78 | |
|
79 | 79 | # def test_rekey(self): |
|
80 | 80 | # """rekeying dict around json str keys""" |
|
81 | 81 | # d = {'0': uuid.uuid4(), 0:uuid.uuid4()} |
|
82 | 82 | # self.assertRaises(KeyError, ss.rekey, d) |
|
83 | 83 | # |
|
84 | 84 | # d = {'0': uuid.uuid4(), 1:uuid.uuid4(), 'asdf':uuid.uuid4()} |
|
85 | 85 | # d2 = {0:d['0'],1:d[1],'asdf':d['asdf']} |
|
86 | 86 | # rd = ss.rekey(d) |
|
87 | 87 | # self.assertEquals(d2,rd) |
|
88 | 88 | # |
|
89 | 89 | # d = {'1.5':uuid.uuid4(),'1':uuid.uuid4()} |
|
90 | 90 | # d2 = {1.5:d['1.5'],1:d['1']} |
|
91 | 91 | # rd = ss.rekey(d) |
|
92 | 92 | # self.assertEquals(d2,rd) |
|
93 | 93 | # |
|
94 | 94 | # d = {'1.0':uuid.uuid4(),'1':uuid.uuid4()} |
|
95 | 95 | # self.assertRaises(KeyError, ss.rekey, d) |
|
96 | 96 | # |
|
97 | 97 | def test_unique_msg_ids(self): |
|
98 | 98 | """test that messages receive unique ids""" |
|
99 | 99 | ids = set() |
|
100 | 100 | for i in range(2**12): |
|
101 | 101 | h = self.session.msg_header('test') |
|
102 | 102 | msg_id = h['msg_id'] |
|
103 | 103 | self.assertTrue(msg_id not in ids) |
|
104 | 104 | ids.add(msg_id) |
|
105 | 105 | |
|
106 | 106 | def test_feed_identities(self): |
|
107 | 107 | """scrub the front for zmq IDENTITIES""" |
|
108 | 108 | theids = "engine client other".split() |
|
109 | 109 | content = dict(code='whoda',stuff=object()) |
|
110 | 110 | themsg = self.session.msg('execute',content=content) |
|
111 | 111 | pmsg = theids |
@@ -1,253 +1,253 | |||
|
1 | 1 | .. _ip1par: |
|
2 | 2 | |
|
3 | 3 | ============================ |
|
4 | 4 | Overview and getting started |
|
5 | 5 | ============================ |
|
6 | 6 | |
|
7 | 7 | Introduction |
|
8 | 8 | ============ |
|
9 | 9 | |
|
10 | 10 | This section gives an overview of IPython's sophisticated and powerful |
|
11 | 11 | architecture for parallel and distributed computing. This architecture |
|
12 | 12 | abstracts out parallelism in a very general way, which enables IPython to |
|
13 | 13 | support many different styles of parallelism including: |
|
14 | 14 | |
|
15 | 15 | * Single program, multiple data (SPMD) parallelism. |
|
16 | 16 | * Multiple program, multiple data (MPMD) parallelism. |
|
17 | 17 | * Message passing using MPI. |
|
18 | 18 | * Task farming. |
|
19 | 19 | * Data parallel. |
|
20 | 20 | * Combinations of these approaches. |
|
21 | 21 | * Custom user defined approaches. |
|
22 | 22 | |
|
23 | 23 | Most importantly, IPython enables all types of parallel applications to |
|
24 | 24 | be developed, executed, debugged and monitored *interactively*. Hence, |
|
25 | 25 | the ``I`` in IPython. The following are some example usage cases for IPython: |
|
26 | 26 | |
|
27 | 27 | * Quickly parallelize algorithms that are embarrassingly parallel |
|
28 | 28 | using a number of simple approaches. Many simple things can be |
|
29 | 29 | parallelized interactively in one or two lines of code. |
|
30 | 30 | |
|
31 | 31 | * Steer traditional MPI applications on a supercomputer from an |
|
32 | 32 | IPython session on your laptop. |
|
33 | 33 | |
|
34 | 34 | * Analyze and visualize large datasets (that could be remote and/or |
|
35 | 35 | distributed) interactively using IPython and tools like |
|
36 | 36 | matplotlib/TVTK. |
|
37 | 37 | |
|
38 | 38 | * Develop, test and debug new parallel algorithms |
|
39 | 39 | (that may use MPI) interactively. |
|
40 | 40 | |
|
41 | 41 | * Tie together multiple MPI jobs running on different systems into |
|
42 | 42 | one giant distributed and parallel system. |
|
43 | 43 | |
|
44 | 44 | * Start a parallel job on your cluster and then have a remote |
|
45 | 45 | collaborator connect to it and pull back data into their |
|
46 | 46 | local IPython session for plotting and analysis. |
|
47 | 47 | |
|
48 | 48 | * Run a set of tasks on a set of CPUs using dynamic load balancing. |
|
49 | 49 | |
|
50 | 50 | Architecture overview |
|
51 | 51 | ===================== |
|
52 | 52 | |
|
53 | 53 | The IPython architecture consists of four components: |
|
54 | 54 | |
|
55 | 55 | * The IPython engine. |
|
56 | 56 | * The IPython hub. |
|
57 | 57 | * The IPython schedulers. |
|
58 | 58 | * The controller client. |
|
59 | 59 | |
|
60 | 60 | These components live in the :mod:`IPython.parallel` package and are |
|
61 | 61 | installed with IPython. They do, however, have additional dependencies |
|
62 | 62 | that must be installed. For more information, see our |
|
63 | 63 | :ref:`installation documentation <install_index>`. |
|
64 | 64 | |
|
65 | 65 | .. TODO: include zmq in install_index |
|
66 | 66 | |
|
67 | 67 | IPython engine |
|
68 | 68 | --------------- |
|
69 | 69 | |
|
70 | 70 | The IPython engine is a Python instance that takes Python commands over a |
|
71 | 71 | network connection. Eventually, the IPython engine will be a full IPython |
|
72 | 72 | interpreter, but for now, it is a regular Python interpreter. The engine |
|
73 | 73 | can also handle incoming and outgoing Python objects sent over a network |
|
74 | 74 | connection. When multiple engines are started, parallel and distributed |
|
75 | 75 | computing becomes possible. An important feature of an IPython engine is |
|
76 | 76 | that it blocks while user code is being executed. Read on for how the |
|
77 | 77 | IPython controller solves this problem to expose a clean asynchronous API |
|
78 | 78 | to the user. |
|
79 | 79 | |
|
80 | 80 | IPython controller |
|
81 | 81 | ------------------ |
|
82 | 82 | |
|
83 | 83 | The IPython controller processes provide an interface for working with a set of engines. |
|
84 | 84 | At a general level, the controller is a collection of processes to which IPython engines |
|
85 | 85 | and clients can connect. The controller is composed of a :class:`Hub` and a collection of |
|
86 | 86 | :class:`Schedulers`. These Schedulers are typically run in separate processes but on the |
|
87 | 87 | same machine as the Hub, but can be run anywhere from local threads or on remote machines. |
|
88 | 88 | |
|
89 | 89 | The controller also provides a single point of contact for users who wish to |
|
90 | 90 | utilize the engines connected to the controller. There are different ways of |
|
91 | 91 | working with a controller. In IPython, all of these models are implemented via |
|
92 | 92 | the client's :meth:`.View.apply` method, with various arguments, or |
|
93 | 93 | constructing :class:`.View` objects to represent subsets of engines. The two |
|
94 | 94 | primary models for interacting with engines are: |
|
95 | 95 | |
|
96 | 96 | * A **Direct** interface, where engines are addressed explicitly. |
|
97 | 97 | * A **LoadBalanced** interface, where the Scheduler is trusted with assigning work to |
|
98 | 98 | appropriate engines. |
|
99 | 99 | |
|
100 | 100 | Advanced users can readily extend the View models to enable other |
|
101 | 101 | styles of parallelism. |
|
102 | 102 | |
|
103 | 103 | .. note:: |
|
104 | 104 | |
|
105 | 105 | A single controller and set of engines can be used with multiple models |
|
106 | 106 | simultaneously. This opens the door for lots of interesting things. |
|
107 | 107 | |
|
108 | 108 | |
|
109 | 109 | The Hub |
|
110 | 110 | ******* |
|
111 | 111 | |
|
112 | 112 | The center of an IPython cluster is the Hub. This is the process that keeps |
|
113 | 113 | track of engine connections, schedulers, clients, as well as all task requests and |
|
114 | 114 | results. The primary role of the Hub is to facilitate queries of the cluster state, and |
|
115 | 115 | minimize the necessary information required to establish the many connections involved in |
|
116 | 116 | connecting new clients and engines. |
|
117 | 117 | |
|
118 | 118 | |
|
119 | 119 | Schedulers |
|
120 | 120 | ********** |
|
121 | 121 | |
|
122 | 122 | All actions that can be performed on the engine go through a Scheduler. While the engines |
|
123 | 123 | themselves block when user code is run, the schedulers hide that from the user to provide |
|
124 | 124 | a fully asynchronous interface to a set of engines. |
|
125 | 125 | |
|
126 | 126 | |
|
127 | 127 | IPython client and views |
|
128 | 128 | ------------------------ |
|
129 | 129 | |
|
130 | 130 | There is one primary object, the :class:`~.parallel.Client`, for connecting to a cluster. |
|
131 | 131 | For each execution model, there is a corresponding :class:`~.parallel.View`. These views |
|
132 | 132 | allow users to interact with a set of engines through the interface. Here are the two default |
|
133 | 133 | views: |
|
134 | 134 | |
|
135 | 135 | * The :class:`DirectView` class for explicit addressing. |
|
136 | 136 | * The :class:`LoadBalancedView` class for destination-agnostic scheduling. |
|
137 | 137 | |
|
138 | 138 | Security |
|
139 | 139 | -------- |
|
140 | 140 | |
|
141 | 141 | IPython uses ZeroMQ for networking, which has provided many advantages, but |
|
142 | 142 | one of the setbacks is its utter lack of security [ZeroMQ]_. By default, no IPython |
|
143 | 143 | connections are encrypted, but open ports only listen on localhost. The only |
|
144 | 144 | source of security for IPython is via ssh-tunnel. IPython supports both shell |
|
145 | 145 | (`openssh`) and `paramiko` based tunnels for connections. There is a key necessary |
|
146 | 146 | to submit requests, but due to the lack of encryption, it does not provide |
|
147 | 147 | significant security if loopback traffic is compromised. |
|
148 | 148 | |
|
149 | 149 | In our architecture, the controller is the only process that listens on |
|
150 | 150 | network ports, and is thus the main point of vulnerability. The standard model |
|
151 | 151 | for secure connections is to designate that the controller listen on |
|
152 | 152 | localhost, and use ssh-tunnels to connect clients and/or |
|
153 | 153 | engines. |
|
154 | 154 | |
|
155 | 155 | To connect and authenticate to the controller an engine or client needs |
|
156 | 156 | some information that the controller has stored in a JSON file. |
|
157 | 157 | Thus, the JSON files need to be copied to a location where |
|
158 | 158 | the clients and engines can find them. Typically, this is the |
|
159 | 159 | :file:`~/.ipython/cluster_default/security` directory on the host where the |
|
160 | 160 | client/engine is running (which could be a different host than the controller). |
|
161 | 161 | Once the JSON files are copied over, everything should work fine. |
|
162 | 162 | |
|
163 | 163 | Currently, there are two JSON files that the controller creates: |
|
164 | 164 | |
|
165 | 165 | ipcontroller-engine.json |
|
166 | 166 | This JSON file has the information necessary for an engine to connect |
|
167 | 167 | to a controller. |
|
168 | 168 | |
|
169 | 169 | ipcontroller-client.json |
|
170 | 170 | The client's connection information. This may not differ from the engine's, |
|
171 | 171 | but since the controller may listen on different ports for clients and |
|
172 | 172 | engines, it is stored separately. |
|
173 | 173 | |
|
174 | 174 | More details of how these JSON files are used are given below. |
|
175 | 175 | |
|
176 | 176 | A detailed description of the security model and its implementation in IPython |
|
177 | 177 | can be found :ref:`here <parallelsecurity>`. |
|
178 | 178 | |
|
179 | 179 | .. warning:: |
|
180 | 180 | |
|
181 | 181 | Even at its most secure, the Controller listens on ports on localhost, and |
|
182 | 182 | every time you make a tunnel, you open a localhost port on the connecting |
|
183 | 183 | machine that points to the Controller. If localhost on the Controller's |
|
184 | 184 | machine, or the machine of any client or engine, is untrusted, then your |
|
185 | 185 | Controller is insecure. There is no way around this with ZeroMQ. |
|
186 | 186 | |
|
187 | 187 | |
|
188 | 188 | |
|
189 | 189 | Getting Started |
|
190 | 190 | =============== |
|
191 | 191 | |
|
192 | 192 | To use IPython for parallel computing, you need to start one instance of the |
|
193 | 193 | controller and one or more instances of the engine. Initially, it is best to |
|
194 | 194 | simply start a controller and engines on a single host using the |
|
195 | 195 | :command:`ipcluster` command. To start a controller and 4 engines on your |
|
196 | 196 | localhost, just do:: |
|
197 | 197 | |
|
198 |
$ ipcluster start |
|
|
198 | $ ipcluster start n=4 | |
|
199 | 199 | |
|
200 | 200 | More details about starting the IPython controller and engines can be found |
|
201 | 201 | :ref:`here <parallel_process>` |
|
202 | 202 | |
|
203 | 203 | Once you have started the IPython controller and one or more engines, you |
|
204 | 204 | are ready to use the engines to do something useful. To make sure |
|
205 | 205 | everything is working correctly, try the following commands: |
|
206 | 206 | |
|
207 | 207 | .. sourcecode:: ipython |
|
208 | 208 | |
|
209 | 209 | In [1]: from IPython.parallel import Client |
|
210 | 210 | |
|
211 | 211 | In [2]: c = Client() |
|
212 | 212 | |
|
213 | 213 | In [4]: c.ids |
|
214 | 214 | Out[4]: set([0, 1, 2, 3]) |
|
215 | 215 | |
|
216 | 216 | In [5]: c[:].apply_sync(lambda : "Hello, World") |
|
217 | 217 | Out[5]: [ 'Hello, World', 'Hello, World', 'Hello, World', 'Hello, World' ] |
|
218 | 218 | |
|
219 | 219 | |
|
220 | 220 | When a client is created with no arguments, the client tries to find the corresponding JSON file |
|
221 | 221 | in the local `~/.ipython/cluster_default/security` directory. Or if you specified a profile, |
|
222 | 222 | you can use that with the Client. This should cover most cases: |
|
223 | 223 | |
|
224 | 224 | .. sourcecode:: ipython |
|
225 | 225 | |
|
226 | 226 | In [2]: c = Client(profile='myprofile') |
|
227 | 227 | |
|
228 | 228 | If you have put the JSON file in a different location or it has a different name, create the |
|
229 | 229 | client like this: |
|
230 | 230 | |
|
231 | 231 | .. sourcecode:: ipython |
|
232 | 232 | |
|
233 | 233 | In [2]: c = Client('/path/to/my/ipcontroller-client.json') |
|
234 | 234 | |
|
235 | 235 | Remember, a client needs to be able to see the Hub's ports to connect. So if they are on a |
|
236 | 236 | different machine, you may need to use an ssh server to tunnel access to that machine, |
|
237 | 237 | then you would connect to it with: |
|
238 | 238 | |
|
239 | 239 | .. sourcecode:: ipython |
|
240 | 240 | |
|
241 | 241 | In [2]: c = Client(sshserver='myhub.example.com') |
|
242 | 242 | |
|
243 | 243 | Where 'myhub.example.com' is the url or IP address of the machine on |
|
244 | 244 | which the Hub process is running (or another machine that has direct access to the Hub's ports). |
|
245 | 245 | |
|
246 | 246 | The SSH server may already be specified in ipcontroller-client.json, if the controller was |
|
247 | 247 | instructed at its launch time. |
|
248 | 248 | |
|
249 | 249 | You are now ready to learn more about the :ref:`Direct |
|
250 | 250 | <parallel_multiengine>` and :ref:`LoadBalanced <parallel_task>` interfaces to the |
|
251 | 251 | controller. |
|
252 | 252 | |
|
253 | 253 | .. [ZeroMQ] ZeroMQ. http://www.zeromq.org |
@@ -1,156 +1,156 | |||
|
1 | 1 | .. _parallelmpi: |
|
2 | 2 | |
|
3 | 3 | ======================= |
|
4 | 4 | Using MPI with IPython |
|
5 | 5 | ======================= |
|
6 | 6 | |
|
7 | 7 | .. note:: |
|
8 | 8 | |
|
9 | 9 | Not adapted to zmq yet |
|
10 | 10 | This is out of date wrt ipcluster in general as well |
|
11 | 11 | |
|
12 | 12 | Often, a parallel algorithm will require moving data between the engines. One |
|
13 | 13 | way of accomplishing this is by doing a pull and then a push using the |
|
14 | 14 | multiengine client. However, this will be slow as all the data has to go |
|
15 | 15 | through the controller to the client and then back through the controller, to |
|
16 | 16 | its final destination. |
|
17 | 17 | |
|
18 | 18 | A much better way of moving data between engines is to use a message passing |
|
19 | 19 | library, such as the Message Passing Interface (MPI) [MPI]_. IPython's |
|
20 | 20 | parallel computing architecture has been designed from the ground up to |
|
21 | 21 | integrate with MPI. This document describes how to use MPI with IPython. |
|
22 | 22 | |
|
23 | 23 | Additional installation requirements |
|
24 | 24 | ==================================== |
|
25 | 25 | |
|
26 | 26 | If you want to use MPI with IPython, you will need to install: |
|
27 | 27 | |
|
28 | 28 | * A standard MPI implementation such as OpenMPI [OpenMPI]_ or MPICH. |
|
29 | 29 | * The mpi4py [mpi4py]_ package. |
|
30 | 30 | |
|
31 | 31 | .. note:: |
|
32 | 32 | |
|
33 | 33 | The mpi4py package is not a strict requirement. However, you need to |
|
34 | 34 | have *some* way of calling MPI from Python. You also need some way of |
|
35 | 35 | making sure that :func:`MPI_Init` is called when the IPython engines start |
|
36 | 36 | up. There are a number of ways of doing this and a good number of |
|
37 | 37 | associated subtleties. We highly recommend just using mpi4py as it |
|
38 | 38 | takes care of most of these problems. If you want to do something |
|
39 | 39 | different, let us know and we can help you get started. |
|
40 | 40 | |
|
41 | 41 | Starting the engines with MPI enabled |
|
42 | 42 | ===================================== |
|
43 | 43 | |
|
44 | 44 | To use code that calls MPI, there are typically two things that MPI requires. |
|
45 | 45 | |
|
46 | 46 | 1. The process that wants to call MPI must be started using |
|
47 | 47 | :command:`mpiexec` or a batch system (like PBS) that has MPI support. |
|
48 | 48 | 2. Once the process starts, it must call :func:`MPI_Init`. |
|
49 | 49 | |
|
50 | 50 | There are a couple of ways that you can start the IPython engines and get |
|
51 | 51 | these things to happen. |
|
52 | 52 | |
|
53 | 53 | Automatic starting using :command:`mpiexec` and :command:`ipcluster` |
|
54 | 54 | -------------------------------------------------------------------- |
|
55 | 55 | |
|
56 |
The easiest approach is to use the ` |
|
|
56 | The easiest approach is to use the `MPIExec` Launchers in :command:`ipcluster`, | |
|
57 | 57 | which will first start a controller and then a set of engines using |
|
58 | 58 | :command:`mpiexec`:: |
|
59 | 59 | |
|
60 | $ ipcluster mpiexec -n 4 | |
|
60 | $ ipcluster start n=4 elauncher=MPIExecEngineSetLauncher | |
|
61 | 61 | |
|
62 | 62 | This approach is best as interrupting :command:`ipcluster` will automatically |
|
63 | 63 | stop and clean up the controller and engines. |
|
64 | 64 | |
|
65 | 65 | Manual starting using :command:`mpiexec` |
|
66 | 66 | ---------------------------------------- |
|
67 | 67 | |
|
68 | 68 | If you want to start the IPython engines using the :command:`mpiexec`, just |
|
69 | 69 | do:: |
|
70 | 70 | |
|
71 |
$ mpiexec |
|
|
71 | $ mpiexec n=4 ipengine mpi=mpi4py | |
|
72 | 72 | |
|
73 | 73 | This requires that you already have a controller running and that the FURL |
|
74 | 74 | files for the engines are in place. We also have built in support for |
|
75 | 75 | PyTrilinos [PyTrilinos]_, which can be used (assuming is installed) by |
|
76 | 76 | starting the engines with:: |
|
77 | 77 | |
|
78 |
$ mpiexec |
|
|
78 | $ mpiexec n=4 ipengine mpi=pytrilinos | |
|
79 | 79 | |
|
80 | 80 | Automatic starting using PBS and :command:`ipcluster` |
|
81 | 81 | ------------------------------------------------------ |
|
82 | 82 | |
|
83 | 83 | The :command:`ipcluster` command also has built-in integration with PBS. For |
|
84 | 84 | more information on this approach, see our documentation on :ref:`ipcluster |
|
85 | 85 | <parallel_process>`. |
|
86 | 86 | |
|
87 | 87 | Actually using MPI |
|
88 | 88 | ================== |
|
89 | 89 | |
|
90 | 90 | Once the engines are running with MPI enabled, you are ready to go. You can |
|
91 | 91 | now call any code that uses MPI in the IPython engines. And, all of this can |
|
92 | 92 | be done interactively. Here we show a simple example that uses mpi4py |
|
93 | 93 | [mpi4py]_ version 1.1.0 or later. |
|
94 | 94 | |
|
95 | 95 | First, lets define a simply function that uses MPI to calculate the sum of a |
|
96 | 96 | distributed array. Save the following text in a file called :file:`psum.py`: |
|
97 | 97 | |
|
98 | 98 | .. sourcecode:: python |
|
99 | 99 | |
|
100 | 100 | from mpi4py import MPI |
|
101 | 101 | import numpy as np |
|
102 | 102 | |
|
103 | 103 | def psum(a): |
|
104 | 104 | s = np.sum(a) |
|
105 | 105 | rcvBuf = np.array(0.0,'d') |
|
106 | 106 | MPI.COMM_WORLD.Allreduce([s, MPI.DOUBLE], |
|
107 | 107 | [rcvBuf, MPI.DOUBLE], |
|
108 | 108 | op=MPI.SUM) |
|
109 | 109 | return rcvBuf |
|
110 | 110 | |
|
111 | 111 | Now, start an IPython cluster:: |
|
112 | 112 | |
|
113 |
$ ipcluster start |
|
|
113 | $ ipcluster start profile=mpi n=4 | |
|
114 | 114 | |
|
115 | 115 | .. note:: |
|
116 | 116 | |
|
117 | 117 | It is assumed here that the mpi profile has been set up, as described :ref:`here |
|
118 | 118 | <parallel_process>`. |
|
119 | 119 | |
|
120 | 120 | Finally, connect to the cluster and use this function interactively. In this |
|
121 | 121 | case, we create a random array on each engine and sum up all the random arrays |
|
122 | 122 | using our :func:`psum` function: |
|
123 | 123 | |
|
124 | 124 | .. sourcecode:: ipython |
|
125 | 125 | |
|
126 | 126 | In [1]: from IPython.parallel import Client |
|
127 | 127 | |
|
128 | 128 | In [2]: %load_ext parallel_magic |
|
129 | 129 | |
|
130 | 130 | In [3]: c = Client(profile='mpi') |
|
131 | 131 | |
|
132 | 132 | In [4]: view = c[:] |
|
133 | 133 | |
|
134 | 134 | In [5]: view.activate() |
|
135 | 135 | |
|
136 | 136 | # run the contents of the file on each engine: |
|
137 | 137 | In [6]: view.run('psum.py') |
|
138 | 138 | |
|
139 | 139 | In [6]: px a = np.random.rand(100) |
|
140 | 140 | Parallel execution on engines: [0,1,2,3] |
|
141 | 141 | |
|
142 | 142 | In [8]: px s = psum(a) |
|
143 | 143 | Parallel execution on engines: [0,1,2,3] |
|
144 | 144 | |
|
145 | 145 | In [9]: view['s'] |
|
146 | 146 | Out[9]: [187.451545803,187.451545803,187.451545803,187.451545803] |
|
147 | 147 | |
|
148 | 148 | Any Python code that makes calls to MPI can be used in this manner, including |
|
149 | 149 | compiled C, C++ and Fortran libraries that have been exposed to Python. |
|
150 | 150 | |
|
151 | 151 | .. [MPI] Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/ |
|
152 | 152 | .. [mpi4py] MPI for Python. mpi4py: http://mpi4py.scipy.org/ |
|
153 | 153 | .. [OpenMPI] Open MPI. http://www.open-mpi.org/ |
|
154 | 154 | .. [PyTrilinos] PyTrilinos. http://trilinos.sandia.gov/packages/pytrilinos/ |
|
155 | 155 | |
|
156 | 156 |
@@ -1,843 +1,843 | |||
|
1 | 1 | .. _parallel_multiengine: |
|
2 | 2 | |
|
3 | 3 | ========================== |
|
4 | 4 | IPython's Direct interface |
|
5 | 5 | ========================== |
|
6 | 6 | |
|
7 | 7 | The direct, or multiengine, interface represents one possible way of working with a set of |
|
8 | 8 | IPython engines. The basic idea behind the multiengine interface is that the |
|
9 | 9 | capabilities of each engine are directly and explicitly exposed to the user. |
|
10 | 10 | Thus, in the multiengine interface, each engine is given an id that is used to |
|
11 | 11 | identify the engine and give it work to do. This interface is very intuitive |
|
12 | 12 | and is designed with interactive usage in mind, and is the best place for |
|
13 | 13 | new users of IPython to begin. |
|
14 | 14 | |
|
15 | 15 | Starting the IPython controller and engines |
|
16 | 16 | =========================================== |
|
17 | 17 | |
|
18 | 18 | To follow along with this tutorial, you will need to start the IPython |
|
19 | 19 | controller and four IPython engines. The simplest way of doing this is to use |
|
20 | 20 | the :command:`ipcluster` command:: |
|
21 | 21 | |
|
22 |
$ ipcluster start |
|
|
22 | $ ipcluster start n=4 | |
|
23 | 23 | |
|
24 | 24 | For more detailed information about starting the controller and engines, see |
|
25 | 25 | our :ref:`introduction <ip1par>` to using IPython for parallel computing. |
|
26 | 26 | |
|
27 | 27 | Creating a ``Client`` instance |
|
28 | 28 | ============================== |
|
29 | 29 | |
|
30 | 30 | The first step is to import the IPython :mod:`IPython.parallel` |
|
31 | 31 | module and then create a :class:`.Client` instance: |
|
32 | 32 | |
|
33 | 33 | .. sourcecode:: ipython |
|
34 | 34 | |
|
35 | 35 | In [1]: from IPython.parallel import Client |
|
36 | 36 | |
|
37 | 37 | In [2]: rc = Client() |
|
38 | 38 | |
|
39 | 39 | This form assumes that the default connection information (stored in |
|
40 | 40 | :file:`ipcontroller-client.json` found in :file:`IPYTHON_DIR/cluster_default/security`) is |
|
41 | 41 | accurate. If the controller was started on a remote machine, you must copy that connection |
|
42 | 42 | file to the client machine, or enter its contents as arguments to the Client constructor: |
|
43 | 43 | |
|
44 | 44 | .. sourcecode:: ipython |
|
45 | 45 | |
|
46 | 46 | # If you have copied the json connector file from the controller: |
|
47 | 47 | In [2]: rc = Client('/path/to/ipcontroller-client.json') |
|
48 | 48 | # or to connect with a specific profile you have set up: |
|
49 | 49 | In [3]: rc = Client(profile='mpi') |
|
50 | 50 | |
|
51 | 51 | |
|
52 | 52 | To make sure there are engines connected to the controller, users can get a list |
|
53 | 53 | of engine ids: |
|
54 | 54 | |
|
55 | 55 | .. sourcecode:: ipython |
|
56 | 56 | |
|
57 | 57 | In [3]: rc.ids |
|
58 | 58 | Out[3]: [0, 1, 2, 3] |
|
59 | 59 | |
|
60 | 60 | Here we see that there are four engines ready to do work for us. |
|
61 | 61 | |
|
62 | 62 | For direct execution, we will make use of a :class:`DirectView` object, which can be |
|
63 | 63 | constructed via list-access to the client: |
|
64 | 64 | |
|
65 | 65 | .. sourcecode:: ipython |
|
66 | 66 | |
|
67 | 67 | In [4]: dview = rc[:] # use all engines |
|
68 | 68 | |
|
69 | 69 | .. seealso:: |
|
70 | 70 | |
|
71 | 71 | For more information, see the in-depth explanation of :ref:`Views <parallel_details>`. |
|
72 | 72 | |
|
73 | 73 | |
|
74 | 74 | Quick and easy parallelism |
|
75 | 75 | ========================== |
|
76 | 76 | |
|
77 | 77 | In many cases, you simply want to apply a Python function to a sequence of |
|
78 | 78 | objects, but *in parallel*. The client interface provides a simple way |
|
79 | 79 | of accomplishing this: using the DirectView's :meth:`~DirectView.map` method. |
|
80 | 80 | |
|
81 | 81 | Parallel map |
|
82 | 82 | ------------ |
|
83 | 83 | |
|
84 | 84 | Python's builtin :func:`map` functions allows a function to be applied to a |
|
85 | 85 | sequence element-by-element. This type of code is typically trivial to |
|
86 | 86 | parallelize. In fact, since IPython's interface is all about functions anyway, |
|
87 | 87 | you can just use the builtin :func:`map` with a :class:`RemoteFunction`, or a |
|
88 | 88 | DirectView's :meth:`map` method: |
|
89 | 89 | |
|
90 | 90 | .. sourcecode:: ipython |
|
91 | 91 | |
|
92 | 92 | In [62]: serial_result = map(lambda x:x**10, range(32)) |
|
93 | 93 | |
|
94 | 94 | In [63]: parallel_result = dview.map_sync(lambda x: x**10, range(32)) |
|
95 | 95 | |
|
96 | 96 | In [67]: serial_result==parallel_result |
|
97 | 97 | Out[67]: True |
|
98 | 98 | |
|
99 | 99 | |
|
100 | 100 | .. note:: |
|
101 | 101 | |
|
102 | 102 | The :class:`DirectView`'s version of :meth:`map` does |
|
103 | 103 | not do dynamic load balancing. For a load balanced version, use a |
|
104 | 104 | :class:`LoadBalancedView`. |
|
105 | 105 | |
|
106 | 106 | .. seealso:: |
|
107 | 107 | |
|
108 | 108 | :meth:`map` is implemented via :class:`ParallelFunction`. |
|
109 | 109 | |
|
110 | 110 | Remote function decorators |
|
111 | 111 | -------------------------- |
|
112 | 112 | |
|
113 | 113 | Remote functions are just like normal functions, but when they are called, |
|
114 | 114 | they execute on one or more engines, rather than locally. IPython provides |
|
115 | 115 | two decorators: |
|
116 | 116 | |
|
117 | 117 | .. sourcecode:: ipython |
|
118 | 118 | |
|
119 | 119 | In [10]: @dview.remote(block=True) |
|
120 | 120 | ...: def getpid(): |
|
121 | 121 | ...: import os |
|
122 | 122 | ...: return os.getpid() |
|
123 | 123 | ...: |
|
124 | 124 | |
|
125 | 125 | In [11]: getpid() |
|
126 | 126 | Out[11]: [12345, 12346, 12347, 12348] |
|
127 | 127 | |
|
128 | 128 | The ``@parallel`` decorator creates parallel functions, that break up an element-wise |
|
129 | 129 | operations and distribute them, reconstructing the result. |
|
130 | 130 | |
|
131 | 131 | .. sourcecode:: ipython |
|
132 | 132 | |
|
133 | 133 | In [12]: import numpy as np |
|
134 | 134 | |
|
135 | 135 | In [13]: A = np.random.random((64,48)) |
|
136 | 136 | |
|
137 | 137 | In [14]: @dview.parallel(block=True) |
|
138 | 138 | ...: def pmul(A,B): |
|
139 | 139 | ...: return A*B |
|
140 | 140 | |
|
141 | 141 | In [15]: C_local = A*A |
|
142 | 142 | |
|
143 | 143 | In [16]: C_remote = pmul(A,A) |
|
144 | 144 | |
|
145 | 145 | In [17]: (C_local == C_remote).all() |
|
146 | 146 | Out[17]: True |
|
147 | 147 | |
|
148 | 148 | .. seealso:: |
|
149 | 149 | |
|
150 | 150 | See the docstrings for the :func:`parallel` and :func:`remote` decorators for |
|
151 | 151 | options. |
|
152 | 152 | |
|
153 | 153 | Calling Python functions |
|
154 | 154 | ======================== |
|
155 | 155 | |
|
156 | 156 | The most basic type of operation that can be performed on the engines is to |
|
157 | 157 | execute Python code or call Python functions. Executing Python code can be |
|
158 | 158 | done in blocking or non-blocking mode (non-blocking is default) using the |
|
159 | 159 | :meth:`.View.execute` method, and calling functions can be done via the |
|
160 | 160 | :meth:`.View.apply` method. |
|
161 | 161 | |
|
162 | 162 | apply |
|
163 | 163 | ----- |
|
164 | 164 | |
|
165 | 165 | The main method for doing remote execution (in fact, all methods that |
|
166 | 166 | communicate with the engines are built on top of it), is :meth:`View.apply`. |
|
167 | 167 | |
|
168 | 168 | We strive to provide the cleanest interface we can, so `apply` has the following |
|
169 | 169 | signature: |
|
170 | 170 | |
|
171 | 171 | .. sourcecode:: python |
|
172 | 172 | |
|
173 | 173 | view.apply(f, *args, **kwargs) |
|
174 | 174 | |
|
175 | 175 | There are various ways to call functions with IPython, and these flags are set as |
|
176 | 176 | attributes of the View. The ``DirectView`` has just two of these flags: |
|
177 | 177 | |
|
178 | 178 | dv.block : bool |
|
179 | 179 | whether to wait for the result, or return an :class:`AsyncResult` object |
|
180 | 180 | immediately |
|
181 | 181 | dv.track : bool |
|
182 | 182 | whether to instruct pyzmq to track when |
|
183 | 183 | This is primarily useful for non-copying sends of numpy arrays that you plan to |
|
184 | 184 | edit in-place. You need to know when it becomes safe to edit the buffer |
|
185 | 185 | without corrupting the message. |
|
186 | 186 | |
|
187 | 187 | |
|
188 | 188 | Creating a view is simple: index-access on a client creates a :class:`.DirectView`. |
|
189 | 189 | |
|
190 | 190 | .. sourcecode:: ipython |
|
191 | 191 | |
|
192 | 192 | In [4]: view = rc[1:3] |
|
193 | 193 | Out[4]: <DirectView [1, 2]> |
|
194 | 194 | |
|
195 | 195 | In [5]: view.apply<tab> |
|
196 | 196 | view.apply view.apply_async view.apply_sync |
|
197 | 197 | |
|
198 | 198 | For convenience, you can set block temporarily for a single call with the extra sync/async methods. |
|
199 | 199 | |
|
200 | 200 | Blocking execution |
|
201 | 201 | ------------------ |
|
202 | 202 | |
|
203 | 203 | In blocking mode, the :class:`.DirectView` object (called ``dview`` in |
|
204 | 204 | these examples) submits the command to the controller, which places the |
|
205 | 205 | command in the engines' queues for execution. The :meth:`apply` call then |
|
206 | 206 | blocks until the engines are done executing the command: |
|
207 | 207 | |
|
208 | 208 | .. sourcecode:: ipython |
|
209 | 209 | |
|
210 | 210 | In [2]: dview = rc[:] # A DirectView of all engines |
|
211 | 211 | In [3]: dview.block=True |
|
212 | 212 | In [4]: dview['a'] = 5 |
|
213 | 213 | |
|
214 | 214 | In [5]: dview['b'] = 10 |
|
215 | 215 | |
|
216 | 216 | In [6]: dview.apply(lambda x: a+b+x, 27) |
|
217 | 217 | Out[6]: [42, 42, 42, 42] |
|
218 | 218 | |
|
219 | 219 | You can also select blocking execution on a call-by-call basis with the :meth:`apply_sync` |
|
220 | 220 | method: |
|
221 | 221 | |
|
222 | 222 | In [7]: dview.block=False |
|
223 | 223 | |
|
224 | 224 | In [8]: dview.apply_sync(lambda x: a+b+x, 27) |
|
225 | 225 | Out[8]: [42, 42, 42, 42] |
|
226 | 226 | |
|
227 | 227 | Python commands can be executed as strings on specific engines by using a View's ``execute`` |
|
228 | 228 | method: |
|
229 | 229 | |
|
230 | 230 | .. sourcecode:: ipython |
|
231 | 231 | |
|
232 | 232 | In [6]: rc[::2].execute('c=a+b') |
|
233 | 233 | |
|
234 | 234 | In [7]: rc[1::2].execute('c=a-b') |
|
235 | 235 | |
|
236 | 236 | In [8]: dview['c'] # shorthand for dview.pull('c', block=True) |
|
237 | 237 | Out[8]: [15, -5, 15, -5] |
|
238 | 238 | |
|
239 | 239 | |
|
240 | 240 | Non-blocking execution |
|
241 | 241 | ---------------------- |
|
242 | 242 | |
|
243 | 243 | In non-blocking mode, :meth:`apply` submits the command to be executed and |
|
244 | 244 | then returns a :class:`AsyncResult` object immediately. The |
|
245 | 245 | :class:`AsyncResult` object gives you a way of getting a result at a later |
|
246 | 246 | time through its :meth:`get` method. |
|
247 | 247 | |
|
248 | 248 | .. Note:: |
|
249 | 249 | |
|
250 | 250 | The :class:`AsyncResult` object provides a superset of the interface in |
|
251 | 251 | :py:class:`multiprocessing.pool.AsyncResult`. See the |
|
252 | 252 | `official Python documentation <http://docs.python.org/library/multiprocessing#multiprocessing.pool.AsyncResult>`_ |
|
253 | 253 | for more. |
|
254 | 254 | |
|
255 | 255 | |
|
256 | 256 | This allows you to quickly submit long running commands without blocking your |
|
257 | 257 | local Python/IPython session: |
|
258 | 258 | |
|
259 | 259 | .. sourcecode:: ipython |
|
260 | 260 | |
|
261 | 261 | # define our function |
|
262 | 262 | In [6]: def wait(t): |
|
263 | 263 | ...: import time |
|
264 | 264 | ...: tic = time.time() |
|
265 | 265 | ...: time.sleep(t) |
|
266 | 266 | ...: return time.time()-tic |
|
267 | 267 | |
|
268 | 268 | # In non-blocking mode |
|
269 | 269 | In [7]: ar = dview.apply_async(wait, 2) |
|
270 | 270 | |
|
271 | 271 | # Now block for the result |
|
272 | 272 | In [8]: ar.get() |
|
273 | 273 | Out[8]: [2.0006198883056641, 1.9997570514678955, 1.9996809959411621, 2.0003249645233154] |
|
274 | 274 | |
|
275 | 275 | # Again in non-blocking mode |
|
276 | 276 | In [9]: ar = dview.apply_async(wait, 10) |
|
277 | 277 | |
|
278 | 278 | # Poll to see if the result is ready |
|
279 | 279 | In [10]: ar.ready() |
|
280 | 280 | Out[10]: False |
|
281 | 281 | |
|
282 | 282 | # ask for the result, but wait a maximum of 1 second: |
|
283 | 283 | In [45]: ar.get(1) |
|
284 | 284 | --------------------------------------------------------------------------- |
|
285 | 285 | TimeoutError Traceback (most recent call last) |
|
286 | 286 | /home/you/<ipython-input-45-7cd858bbb8e0> in <module>() |
|
287 | 287 | ----> 1 ar.get(1) |
|
288 | 288 | |
|
289 | 289 | /path/to/site-packages/IPython/parallel/asyncresult.pyc in get(self, timeout) |
|
290 | 290 | 62 raise self._exception |
|
291 | 291 | 63 else: |
|
292 | 292 | ---> 64 raise error.TimeoutError("Result not ready.") |
|
293 | 293 | 65 |
|
294 | 294 | 66 def ready(self): |
|
295 | 295 | |
|
296 | 296 | TimeoutError: Result not ready. |
|
297 | 297 | |
|
298 | 298 | .. Note:: |
|
299 | 299 | |
|
300 | 300 | Note the import inside the function. This is a common model, to ensure |
|
301 | 301 | that the appropriate modules are imported where the task is run. You can |
|
302 | 302 | also manually import modules into the engine(s) namespace(s) via |
|
303 | 303 | :meth:`view.execute('import numpy')`. |
|
304 | 304 | |
|
305 | 305 | Often, it is desirable to wait until a set of :class:`AsyncResult` objects |
|
306 | 306 | are done. For this, there is a the method :meth:`wait`. This method takes a |
|
307 | 307 | tuple of :class:`AsyncResult` objects (or `msg_ids` or indices to the client's History), |
|
308 | 308 | and blocks until all of the associated results are ready: |
|
309 | 309 | |
|
310 | 310 | .. sourcecode:: ipython |
|
311 | 311 | |
|
312 | 312 | In [72]: dview.block=False |
|
313 | 313 | |
|
314 | 314 | # A trivial list of AsyncResults objects |
|
315 | 315 | In [73]: pr_list = [dview.apply_async(wait, 3) for i in range(10)] |
|
316 | 316 | |
|
317 | 317 | # Wait until all of them are done |
|
318 | 318 | In [74]: dview.wait(pr_list) |
|
319 | 319 | |
|
320 | 320 | # Then, their results are ready using get() or the `.r` attribute |
|
321 | 321 | In [75]: pr_list[0].get() |
|
322 | 322 | Out[75]: [2.9982571601867676, 2.9982588291168213, 2.9987530708312988, 2.9990990161895752] |
|
323 | 323 | |
|
324 | 324 | |
|
325 | 325 | |
|
326 | 326 | The ``block`` and ``targets`` keyword arguments and attributes |
|
327 | 327 | -------------------------------------------------------------- |
|
328 | 328 | |
|
329 | 329 | Most DirectView methods (excluding :meth:`apply` and :meth:`map`) accept ``block`` and |
|
330 | 330 | ``targets`` as keyword arguments. As we have seen above, these keyword arguments control the |
|
331 | 331 | blocking mode and which engines the command is applied to. The :class:`View` class also has |
|
332 | 332 | :attr:`block` and :attr:`targets` attributes that control the default behavior when the keyword |
|
333 | 333 | arguments are not provided. Thus the following logic is used for :attr:`block` and :attr:`targets`: |
|
334 | 334 | |
|
335 | 335 | * If no keyword argument is provided, the instance attributes are used. |
|
336 | 336 | * Keyword argument, if provided override the instance attributes for |
|
337 | 337 | the duration of a single call. |
|
338 | 338 | |
|
339 | 339 | The following examples demonstrate how to use the instance attributes: |
|
340 | 340 | |
|
341 | 341 | .. sourcecode:: ipython |
|
342 | 342 | |
|
343 | 343 | In [16]: dview.targets = [0,2] |
|
344 | 344 | |
|
345 | 345 | In [17]: dview.block = False |
|
346 | 346 | |
|
347 | 347 | In [18]: ar = dview.apply(lambda : 10) |
|
348 | 348 | |
|
349 | 349 | In [19]: ar.get() |
|
350 | 350 | Out[19]: [10, 10] |
|
351 | 351 | |
|
352 | 352 | In [16]: dview.targets = v.client.ids # all engines (4) |
|
353 | 353 | |
|
354 | 354 | In [21]: dview.block = True |
|
355 | 355 | |
|
356 | 356 | In [22]: dview.apply(lambda : 42) |
|
357 | 357 | Out[22]: [42, 42, 42, 42] |
|
358 | 358 | |
|
359 | 359 | The :attr:`block` and :attr:`targets` instance attributes of the |
|
360 | 360 | :class:`.DirectView` also determine the behavior of the parallel magic commands. |
|
361 | 361 | |
|
362 | 362 | Parallel magic commands |
|
363 | 363 | ----------------------- |
|
364 | 364 | |
|
365 | 365 | .. warning:: |
|
366 | 366 | |
|
367 | 367 | The magics have not been changed to work with the zeromq system. The |
|
368 | 368 | magics do work, but *do not* print stdin/out like they used to in IPython.kernel. |
|
369 | 369 | |
|
370 | 370 | We provide a few IPython magic commands (``%px``, ``%autopx`` and ``%result``) |
|
371 | 371 | that make it more pleasant to execute Python commands on the engines |
|
372 | 372 | interactively. These are simply shortcuts to :meth:`execute` and |
|
373 | 373 | :meth:`get_result` of the :class:`DirectView`. The ``%px`` magic executes a single |
|
374 | 374 | Python command on the engines specified by the :attr:`targets` attribute of the |
|
375 | 375 | :class:`DirectView` instance: |
|
376 | 376 | |
|
377 | 377 | .. sourcecode:: ipython |
|
378 | 378 | |
|
379 | 379 | # load the parallel magic extension: |
|
380 | 380 | In [21]: %load_ext parallelmagic |
|
381 | 381 | |
|
382 | 382 | # Create a DirectView for all targets |
|
383 | 383 | In [22]: dv = rc[:] |
|
384 | 384 | |
|
385 | 385 | # Make this DirectView active for parallel magic commands |
|
386 | 386 | In [23]: dv.activate() |
|
387 | 387 | |
|
388 | 388 | In [24]: dv.block=True |
|
389 | 389 | |
|
390 | 390 | In [25]: import numpy |
|
391 | 391 | |
|
392 | 392 | In [26]: %px import numpy |
|
393 | 393 | Parallel execution on engines: [0, 1, 2, 3] |
|
394 | 394 | |
|
395 | 395 | In [27]: %px a = numpy.random.rand(2,2) |
|
396 | 396 | Parallel execution on engines: [0, 1, 2, 3] |
|
397 | 397 | |
|
398 | 398 | In [28]: %px ev = numpy.linalg.eigvals(a) |
|
399 | 399 | Parallel execution on engines: [0, 1, 2, 3] |
|
400 | 400 | |
|
401 | 401 | In [28]: dv['ev'] |
|
402 | 402 | Out[28]: [ array([ 1.09522024, -0.09645227]), |
|
403 | 403 | array([ 1.21435496, -0.35546712]), |
|
404 | 404 | array([ 0.72180653, 0.07133042]), |
|
405 | 405 | array([ 1.46384341e+00, 1.04353244e-04]) |
|
406 | 406 | ] |
|
407 | 407 | |
|
408 | 408 | The ``%result`` magic gets the most recent result, or takes an argument |
|
409 | 409 | specifying the index of the result to be requested. It is simply a shortcut to the |
|
410 | 410 | :meth:`get_result` method: |
|
411 | 411 | |
|
412 | 412 | .. sourcecode:: ipython |
|
413 | 413 | |
|
414 | 414 | In [29]: dv.apply_async(lambda : ev) |
|
415 | 415 | |
|
416 | 416 | In [30]: %result |
|
417 | 417 | Out[30]: [ [ 1.28167017 0.14197338], |
|
418 | 418 | [-0.14093616 1.27877273], |
|
419 | 419 | [-0.37023573 1.06779409], |
|
420 | 420 | [ 0.83664764 -0.25602658] ] |
|
421 | 421 | |
|
422 | 422 | The ``%autopx`` magic switches to a mode where everything you type is executed |
|
423 | 423 | on the engines given by the :attr:`targets` attribute: |
|
424 | 424 | |
|
425 | 425 | .. sourcecode:: ipython |
|
426 | 426 | |
|
427 | 427 | In [30]: dv.block=False |
|
428 | 428 | |
|
429 | 429 | In [31]: %autopx |
|
430 | 430 | Auto Parallel Enabled |
|
431 | 431 | Type %autopx to disable |
|
432 | 432 | |
|
433 | 433 | In [32]: max_evals = [] |
|
434 | 434 | <IPython.parallel.AsyncResult object at 0x17b8a70> |
|
435 | 435 | |
|
436 | 436 | In [33]: for i in range(100): |
|
437 | 437 | ....: a = numpy.random.rand(10,10) |
|
438 | 438 | ....: a = a+a.transpose() |
|
439 | 439 | ....: evals = numpy.linalg.eigvals(a) |
|
440 | 440 | ....: max_evals.append(evals[0].real) |
|
441 | 441 | ....: |
|
442 | 442 | ....: |
|
443 | 443 | <IPython.parallel.AsyncResult object at 0x17af8f0> |
|
444 | 444 | |
|
445 | 445 | In [34]: %autopx |
|
446 | 446 | Auto Parallel Disabled |
|
447 | 447 | |
|
448 | 448 | In [35]: dv.block=True |
|
449 | 449 | |
|
450 | 450 | In [36]: px ans= "Average max eigenvalue is: %f"%(sum(max_evals)/len(max_evals)) |
|
451 | 451 | Parallel execution on engines: [0, 1, 2, 3] |
|
452 | 452 | |
|
453 | 453 | In [37]: dv['ans'] |
|
454 | 454 | Out[37]: [ 'Average max eigenvalue is: 10.1387247332', |
|
455 | 455 | 'Average max eigenvalue is: 10.2076902286', |
|
456 | 456 | 'Average max eigenvalue is: 10.1891484655', |
|
457 | 457 | 'Average max eigenvalue is: 10.1158837784',] |
|
458 | 458 | |
|
459 | 459 | |
|
460 | 460 | Moving Python objects around |
|
461 | 461 | ============================ |
|
462 | 462 | |
|
463 | 463 | In addition to calling functions and executing code on engines, you can |
|
464 | 464 | transfer Python objects to and from your IPython session and the engines. In |
|
465 | 465 | IPython, these operations are called :meth:`push` (sending an object to the |
|
466 | 466 | engines) and :meth:`pull` (getting an object from the engines). |
|
467 | 467 | |
|
468 | 468 | Basic push and pull |
|
469 | 469 | ------------------- |
|
470 | 470 | |
|
471 | 471 | Here are some examples of how you use :meth:`push` and :meth:`pull`: |
|
472 | 472 | |
|
473 | 473 | .. sourcecode:: ipython |
|
474 | 474 | |
|
475 | 475 | In [38]: dview.push(dict(a=1.03234,b=3453)) |
|
476 | 476 | Out[38]: [None,None,None,None] |
|
477 | 477 | |
|
478 | 478 | In [39]: dview.pull('a') |
|
479 | 479 | Out[39]: [ 1.03234, 1.03234, 1.03234, 1.03234] |
|
480 | 480 | |
|
481 | 481 | In [40]: dview.pull('b', targets=0) |
|
482 | 482 | Out[40]: 3453 |
|
483 | 483 | |
|
484 | 484 | In [41]: dview.pull(('a','b')) |
|
485 | 485 | Out[41]: [ [1.03234, 3453], [1.03234, 3453], [1.03234, 3453], [1.03234, 3453] ] |
|
486 | 486 | |
|
487 | 487 | In [43]: dview.push(dict(c='speed')) |
|
488 | 488 | Out[43]: [None,None,None,None] |
|
489 | 489 | |
|
490 | 490 | In non-blocking mode :meth:`push` and :meth:`pull` also return |
|
491 | 491 | :class:`AsyncResult` objects: |
|
492 | 492 | |
|
493 | 493 | .. sourcecode:: ipython |
|
494 | 494 | |
|
495 | 495 | In [48]: ar = dview.pull('a', block=False) |
|
496 | 496 | |
|
497 | 497 | In [49]: ar.get() |
|
498 | 498 | Out[49]: [1.03234, 1.03234, 1.03234, 1.03234] |
|
499 | 499 | |
|
500 | 500 | |
|
501 | 501 | Dictionary interface |
|
502 | 502 | -------------------- |
|
503 | 503 | |
|
504 | 504 | Since a Python namespace is just a :class:`dict`, :class:`DirectView` objects provide |
|
505 | 505 | dictionary-style access by key and methods such as :meth:`get` and |
|
506 | 506 | :meth:`update` for convenience. This make the remote namespaces of the engines |
|
507 | 507 | appear as a local dictionary. Underneath, these methods call :meth:`apply`: |
|
508 | 508 | |
|
509 | 509 | .. sourcecode:: ipython |
|
510 | 510 | |
|
511 | 511 | In [51]: dview['a']=['foo','bar'] |
|
512 | 512 | |
|
513 | 513 | In [52]: dview['a'] |
|
514 | 514 | Out[52]: [ ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'] ] |
|
515 | 515 | |
|
516 | 516 | Scatter and gather |
|
517 | 517 | ------------------ |
|
518 | 518 | |
|
519 | 519 | Sometimes it is useful to partition a sequence and push the partitions to |
|
520 | 520 | different engines. In MPI language, this is know as scatter/gather and we |
|
521 | 521 | follow that terminology. However, it is important to remember that in |
|
522 | 522 | IPython's :class:`Client` class, :meth:`scatter` is from the |
|
523 | 523 | interactive IPython session to the engines and :meth:`gather` is from the |
|
524 | 524 | engines back to the interactive IPython session. For scatter/gather operations |
|
525 | 525 | between engines, MPI should be used: |
|
526 | 526 | |
|
527 | 527 | .. sourcecode:: ipython |
|
528 | 528 | |
|
529 | 529 | In [58]: dview.scatter('a',range(16)) |
|
530 | 530 | Out[58]: [None,None,None,None] |
|
531 | 531 | |
|
532 | 532 | In [59]: dview['a'] |
|
533 | 533 | Out[59]: [ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ] |
|
534 | 534 | |
|
535 | 535 | In [60]: dview.gather('a') |
|
536 | 536 | Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] |
|
537 | 537 | |
|
538 | 538 | Other things to look at |
|
539 | 539 | ======================= |
|
540 | 540 | |
|
541 | 541 | How to do parallel list comprehensions |
|
542 | 542 | -------------------------------------- |
|
543 | 543 | |
|
544 | 544 | In many cases list comprehensions are nicer than using the map function. While |
|
545 | 545 | we don't have fully parallel list comprehensions, it is simple to get the |
|
546 | 546 | basic effect using :meth:`scatter` and :meth:`gather`: |
|
547 | 547 | |
|
548 | 548 | .. sourcecode:: ipython |
|
549 | 549 | |
|
550 | 550 | In [66]: dview.scatter('x',range(64)) |
|
551 | 551 | |
|
552 | 552 | In [67]: %px y = [i**10 for i in x] |
|
553 | 553 | Parallel execution on engines: [0, 1, 2, 3] |
|
554 | 554 | Out[67]: |
|
555 | 555 | |
|
556 | 556 | In [68]: y = dview.gather('y') |
|
557 | 557 | |
|
558 | 558 | In [69]: print y |
|
559 | 559 | [0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824,...] |
|
560 | 560 | |
|
561 | 561 | Remote imports |
|
562 | 562 | -------------- |
|
563 | 563 | |
|
564 | 564 | Sometimes you will want to import packages both in your interactive session |
|
565 | 565 | and on your remote engines. This can be done with the :class:`ContextManager` |
|
566 | 566 | created by a DirectView's :meth:`sync_imports` method: |
|
567 | 567 | |
|
568 | 568 | .. sourcecode:: ipython |
|
569 | 569 | |
|
570 | 570 | In [69]: with dview.sync_imports(): |
|
571 | 571 | ...: import numpy |
|
572 | 572 | importing numpy on engine(s) |
|
573 | 573 | |
|
574 | 574 | Any imports made inside the block will also be performed on the view's engines. |
|
575 | 575 | sync_imports also takes a `local` boolean flag that defaults to True, which specifies |
|
576 | 576 | whether the local imports should also be performed. However, support for `local=False` |
|
577 | 577 | has not been implemented, so only packages that can be imported locally will work |
|
578 | 578 | this way. |
|
579 | 579 | |
|
580 | 580 | You can also specify imports via the ``@require`` decorator. This is a decorator |
|
581 | 581 | designed for use in Dependencies, but can be used to handle remote imports as well. |
|
582 | 582 | Modules or module names passed to ``@require`` will be imported before the decorated |
|
583 | 583 | function is called. If they cannot be imported, the decorated function will never |
|
584 | 584 | execution, and will fail with an UnmetDependencyError. |
|
585 | 585 | |
|
586 | 586 | .. sourcecode:: ipython |
|
587 | 587 | |
|
588 | 588 | In [69]: from IPython.parallel import require |
|
589 | 589 | |
|
590 | 590 | In [70]: @requre('re'): |
|
591 | 591 | ...: def findall(pat, x): |
|
592 | 592 | ...: # re is guaranteed to be available |
|
593 | 593 | ...: return re.findall(pat, x) |
|
594 | 594 | |
|
595 | 595 | # you can also pass modules themselves, that you already have locally: |
|
596 | 596 | In [71]: @requre(time): |
|
597 | 597 | ...: def wait(t): |
|
598 | 598 | ...: time.sleep(t) |
|
599 | 599 | ...: return t |
|
600 | 600 | |
|
601 | 601 | |
|
602 | 602 | Parallel exceptions |
|
603 | 603 | ------------------- |
|
604 | 604 | |
|
605 | 605 | In the multiengine interface, parallel commands can raise Python exceptions, |
|
606 | 606 | just like serial commands. But, it is a little subtle, because a single |
|
607 | 607 | parallel command can actually raise multiple exceptions (one for each engine |
|
608 | 608 | the command was run on). To express this idea, we have a |
|
609 | 609 | :exc:`CompositeError` exception class that will be raised in most cases. The |
|
610 | 610 | :exc:`CompositeError` class is a special type of exception that wraps one or |
|
611 | 611 | more other types of exceptions. Here is how it works: |
|
612 | 612 | |
|
613 | 613 | .. sourcecode:: ipython |
|
614 | 614 | |
|
615 | 615 | In [76]: dview.block=True |
|
616 | 616 | |
|
617 | 617 | In [77]: dview.execute('1/0') |
|
618 | 618 | --------------------------------------------------------------------------- |
|
619 | 619 | CompositeError Traceback (most recent call last) |
|
620 | 620 | /home/you/<ipython-input-10-15c2c22dec39> in <module>() |
|
621 | 621 | ----> 1 dview.execute('1/0', block=True) |
|
622 | 622 | |
|
623 | 623 | /path/to/site-packages/IPython/parallel/view.py in execute(self, code, block) |
|
624 | 624 | 460 default: self.block |
|
625 | 625 | 461 """ |
|
626 | 626 | --> 462 return self.apply_with_flags(util._execute, args=(code,), block=block) |
|
627 | 627 | 463 |
|
628 | 628 | 464 def run(self, filename, block=None): |
|
629 | 629 | |
|
630 | 630 | /home/you/<string> in apply_with_flags(self, f, args, kwargs, block, track) |
|
631 | 631 | |
|
632 | 632 | /path/to/site-packages/IPython/parallel/view.py in sync_results(f, self, *args, **kwargs) |
|
633 | 633 | 46 def sync_results(f, self, *args, **kwargs): |
|
634 | 634 | 47 """sync relevant results from self.client to our results attribute.""" |
|
635 | 635 | ---> 48 ret = f(self, *args, **kwargs) |
|
636 | 636 | 49 delta = self.outstanding.difference(self.client.outstanding) |
|
637 | 637 | 50 completed = self.outstanding.intersection(delta) |
|
638 | 638 | |
|
639 | 639 | /home/you/<string> in apply_with_flags(self, f, args, kwargs, block, track) |
|
640 | 640 | |
|
641 | 641 | /path/to/site-packages/IPython/parallel/view.py in save_ids(f, self, *args, **kwargs) |
|
642 | 642 | 35 n_previous = len(self.client.history) |
|
643 | 643 | 36 try: |
|
644 | 644 | ---> 37 ret = f(self, *args, **kwargs) |
|
645 | 645 | 38 finally: |
|
646 | 646 | 39 nmsgs = len(self.client.history) - n_previous |
|
647 | 647 | |
|
648 | 648 | /path/to/site-packages/IPython/parallel/view.py in apply_with_flags(self, f, args, kwargs, block, track) |
|
649 | 649 | 398 if block: |
|
650 | 650 | 399 try: |
|
651 | 651 | --> 400 return ar.get() |
|
652 | 652 | 401 except KeyboardInterrupt: |
|
653 | 653 | 402 pass |
|
654 | 654 | |
|
655 | 655 | /path/to/site-packages/IPython/parallel/asyncresult.pyc in get(self, timeout) |
|
656 | 656 | 87 return self._result |
|
657 | 657 | 88 else: |
|
658 | 658 | ---> 89 raise self._exception |
|
659 | 659 | 90 else: |
|
660 | 660 | 91 raise error.TimeoutError("Result not ready.") |
|
661 | 661 | |
|
662 | 662 | CompositeError: one or more exceptions from call to method: _execute |
|
663 | 663 | [0:apply]: ZeroDivisionError: integer division or modulo by zero |
|
664 | 664 | [1:apply]: ZeroDivisionError: integer division or modulo by zero |
|
665 | 665 | [2:apply]: ZeroDivisionError: integer division or modulo by zero |
|
666 | 666 | [3:apply]: ZeroDivisionError: integer division or modulo by zero |
|
667 | 667 | |
|
668 | 668 | |
|
669 | 669 | Notice how the error message printed when :exc:`CompositeError` is raised has |
|
670 | 670 | information about the individual exceptions that were raised on each engine. |
|
671 | 671 | If you want, you can even raise one of these original exceptions: |
|
672 | 672 | |
|
673 | 673 | .. sourcecode:: ipython |
|
674 | 674 | |
|
675 | 675 | In [80]: try: |
|
676 | 676 | ....: dview.execute('1/0') |
|
677 | 677 | ....: except client.CompositeError, e: |
|
678 | 678 | ....: e.raise_exception() |
|
679 | 679 | ....: |
|
680 | 680 | ....: |
|
681 | 681 | --------------------------------------------------------------------------- |
|
682 | 682 | ZeroDivisionError Traceback (most recent call last) |
|
683 | 683 | |
|
684 | 684 | /ipython1-client-r3021/docs/examples/<ipython console> in <module>() |
|
685 | 685 | |
|
686 | 686 | /ipython1-client-r3021/ipython1/kernel/error.pyc in raise_exception(self, excid) |
|
687 | 687 | 156 raise IndexError("an exception with index %i does not exist"%excid) |
|
688 | 688 | 157 else: |
|
689 | 689 | --> 158 raise et, ev, etb |
|
690 | 690 | 159 |
|
691 | 691 | 160 def collect_exceptions(rlist, method): |
|
692 | 692 | |
|
693 | 693 | ZeroDivisionError: integer division or modulo by zero |
|
694 | 694 | |
|
695 | 695 | If you are working in IPython, you can simple type ``%debug`` after one of |
|
696 | 696 | these :exc:`CompositeError` exceptions is raised, and inspect the exception |
|
697 | 697 | instance: |
|
698 | 698 | |
|
699 | 699 | .. sourcecode:: ipython |
|
700 | 700 | |
|
701 | 701 | In [81]: dview.execute('1/0') |
|
702 | 702 | --------------------------------------------------------------------------- |
|
703 | 703 | CompositeError Traceback (most recent call last) |
|
704 | 704 | /home/you/<ipython-input-10-15c2c22dec39> in <module>() |
|
705 | 705 | ----> 1 dview.execute('1/0', block=True) |
|
706 | 706 | |
|
707 | 707 | /path/to/site-packages/IPython/parallel/view.py in execute(self, code, block) |
|
708 | 708 | 460 default: self.block |
|
709 | 709 | 461 """ |
|
710 | 710 | --> 462 return self.apply_with_flags(util._execute, args=(code,), block=block) |
|
711 | 711 | 463 |
|
712 | 712 | 464 def run(self, filename, block=None): |
|
713 | 713 | |
|
714 | 714 | /home/you/<string> in apply_with_flags(self, f, args, kwargs, block, track) |
|
715 | 715 | |
|
716 | 716 | /path/to/site-packages/IPython/parallel/view.py in sync_results(f, self, *args, **kwargs) |
|
717 | 717 | 46 def sync_results(f, self, *args, **kwargs): |
|
718 | 718 | 47 """sync relevant results from self.client to our results attribute.""" |
|
719 | 719 | ---> 48 ret = f(self, *args, **kwargs) |
|
720 | 720 | 49 delta = self.outstanding.difference(self.client.outstanding) |
|
721 | 721 | 50 completed = self.outstanding.intersection(delta) |
|
722 | 722 | |
|
723 | 723 | /home/you/<string> in apply_with_flags(self, f, args, kwargs, block, track) |
|
724 | 724 | |
|
725 | 725 | /path/to/site-packages/IPython/parallel/view.py in save_ids(f, self, *args, **kwargs) |
|
726 | 726 | 35 n_previous = len(self.client.history) |
|
727 | 727 | 36 try: |
|
728 | 728 | ---> 37 ret = f(self, *args, **kwargs) |
|
729 | 729 | 38 finally: |
|
730 | 730 | 39 nmsgs = len(self.client.history) - n_previous |
|
731 | 731 | |
|
732 | 732 | /path/to/site-packages/IPython/parallel/view.py in apply_with_flags(self, f, args, kwargs, block, track) |
|
733 | 733 | 398 if block: |
|
734 | 734 | 399 try: |
|
735 | 735 | --> 400 return ar.get() |
|
736 | 736 | 401 except KeyboardInterrupt: |
|
737 | 737 | 402 pass |
|
738 | 738 | |
|
739 | 739 | /path/to/site-packages/IPython/parallel/asyncresult.pyc in get(self, timeout) |
|
740 | 740 | 87 return self._result |
|
741 | 741 | 88 else: |
|
742 | 742 | ---> 89 raise self._exception |
|
743 | 743 | 90 else: |
|
744 | 744 | 91 raise error.TimeoutError("Result not ready.") |
|
745 | 745 | |
|
746 | 746 | CompositeError: one or more exceptions from call to method: _execute |
|
747 | 747 | [0:apply]: ZeroDivisionError: integer division or modulo by zero |
|
748 | 748 | [1:apply]: ZeroDivisionError: integer division or modulo by zero |
|
749 | 749 | [2:apply]: ZeroDivisionError: integer division or modulo by zero |
|
750 | 750 | [3:apply]: ZeroDivisionError: integer division or modulo by zero |
|
751 | 751 | |
|
752 | 752 | In [82]: %debug |
|
753 | 753 | > /path/to/site-packages/IPython/parallel/asyncresult.py(80)get() |
|
754 | 754 | 79 else: |
|
755 | 755 | ---> 80 raise self._exception |
|
756 | 756 | 81 else: |
|
757 | 757 | |
|
758 | 758 | |
|
759 | 759 | # With the debugger running, e is the exceptions instance. We can tab complete |
|
760 | 760 | # on it and see the extra methods that are available. |
|
761 | 761 | ipdb> e. |
|
762 | 762 | e.__class__ e.__getitem__ e.__new__ e.__setstate__ e.args |
|
763 | 763 | e.__delattr__ e.__getslice__ e.__reduce__ e.__str__ e.elist |
|
764 | 764 | e.__dict__ e.__hash__ e.__reduce_ex__ e.__weakref__ e.message |
|
765 | 765 | e.__doc__ e.__init__ e.__repr__ e._get_engine_str e.print_tracebacks |
|
766 | 766 | e.__getattribute__ e.__module__ e.__setattr__ e._get_traceback e.raise_exception |
|
767 | 767 | ipdb> e.print_tracebacks() |
|
768 | 768 | [0:apply]: |
|
769 | 769 | Traceback (most recent call last): |
|
770 | 770 | File "/path/to/site-packages/IPython/parallel/streamkernel.py", line 332, in apply_request |
|
771 | 771 | exec code in working, working |
|
772 | 772 | File "<string>", line 1, in <module> |
|
773 | 773 | File "/path/to/site-packages/IPython/parallel/client.py", line 69, in _execute |
|
774 | 774 | exec code in globals() |
|
775 | 775 | File "<string>", line 1, in <module> |
|
776 | 776 | ZeroDivisionError: integer division or modulo by zero |
|
777 | 777 | |
|
778 | 778 | |
|
779 | 779 | [1:apply]: |
|
780 | 780 | Traceback (most recent call last): |
|
781 | 781 | File "/path/to/site-packages/IPython/parallel/streamkernel.py", line 332, in apply_request |
|
782 | 782 | exec code in working, working |
|
783 | 783 | File "<string>", line 1, in <module> |
|
784 | 784 | File "/path/to/site-packages/IPython/parallel/client.py", line 69, in _execute |
|
785 | 785 | exec code in globals() |
|
786 | 786 | File "<string>", line 1, in <module> |
|
787 | 787 | ZeroDivisionError: integer division or modulo by zero |
|
788 | 788 | |
|
789 | 789 | |
|
790 | 790 | [2:apply]: |
|
791 | 791 | Traceback (most recent call last): |
|
792 | 792 | File "/path/to/site-packages/IPython/parallel/streamkernel.py", line 332, in apply_request |
|
793 | 793 | exec code in working, working |
|
794 | 794 | File "<string>", line 1, in <module> |
|
795 | 795 | File "/path/to/site-packages/IPython/parallel/client.py", line 69, in _execute |
|
796 | 796 | exec code in globals() |
|
797 | 797 | File "<string>", line 1, in <module> |
|
798 | 798 | ZeroDivisionError: integer division or modulo by zero |
|
799 | 799 | |
|
800 | 800 | |
|
801 | 801 | [3:apply]: |
|
802 | 802 | Traceback (most recent call last): |
|
803 | 803 | File "/path/to/site-packages/IPython/parallel/streamkernel.py", line 332, in apply_request |
|
804 | 804 | exec code in working, working |
|
805 | 805 | File "<string>", line 1, in <module> |
|
806 | 806 | File "/path/to/site-packages/IPython/parallel/client.py", line 69, in _execute |
|
807 | 807 | exec code in globals() |
|
808 | 808 | File "<string>", line 1, in <module> |
|
809 | 809 | ZeroDivisionError: integer division or modulo by zero |
|
810 | 810 | |
|
811 | 811 | |
|
812 | 812 | .. note:: |
|
813 | 813 | |
|
814 | 814 | TODO: The above tracebacks are not up to date |
|
815 | 815 | |
|
816 | 816 | |
|
817 | 817 | All of this same error handling magic even works in non-blocking mode: |
|
818 | 818 | |
|
819 | 819 | .. sourcecode:: ipython |
|
820 | 820 | |
|
821 | 821 | In [83]: dview.block=False |
|
822 | 822 | |
|
823 | 823 | In [84]: ar = dview.execute('1/0') |
|
824 | 824 | |
|
825 | 825 | In [85]: ar.get() |
|
826 | 826 | --------------------------------------------------------------------------- |
|
827 | 827 | CompositeError Traceback (most recent call last) |
|
828 | 828 | /Users/minrk/<ipython-input-3-8531eb3d26fb> in <module>() |
|
829 | 829 | ----> 1 ar.get() |
|
830 | 830 | |
|
831 | 831 | /path/to/site-packages/IPython/parallel/asyncresult.pyc in get(self, timeout) |
|
832 | 832 | 78 return self._result |
|
833 | 833 | 79 else: |
|
834 | 834 | ---> 80 raise self._exception |
|
835 | 835 | 81 else: |
|
836 | 836 | 82 raise error.TimeoutError("Result not ready.") |
|
837 | 837 | |
|
838 | 838 | CompositeError: one or more exceptions from call to method: _execute |
|
839 | 839 | [0:apply]: ZeroDivisionError: integer division or modulo by zero |
|
840 | 840 | [1:apply]: ZeroDivisionError: integer division or modulo by zero |
|
841 | 841 | [2:apply]: ZeroDivisionError: integer division or modulo by zero |
|
842 | 842 | [3:apply]: ZeroDivisionError: integer division or modulo by zero |
|
843 | 843 |
@@ -1,506 +1,507 | |||
|
1 | 1 | .. _parallel_process: |
|
2 | 2 | |
|
3 | 3 | =========================================== |
|
4 | 4 | Starting the IPython controller and engines |
|
5 | 5 | =========================================== |
|
6 | 6 | |
|
7 | 7 | To use IPython for parallel computing, you need to start one instance of |
|
8 | 8 | the controller and one or more instances of the engine. The controller |
|
9 | 9 | and each engine can run on different machines or on the same machine. |
|
10 | 10 | Because of this, there are many different possibilities. |
|
11 | 11 | |
|
12 | 12 | Broadly speaking, there are two ways of going about starting a controller and engines: |
|
13 | 13 | |
|
14 | 14 | * In an automated manner using the :command:`ipcluster` command. |
|
15 | 15 | * In a more manual way using the :command:`ipcontroller` and |
|
16 | 16 | :command:`ipengine` commands. |
|
17 | 17 | |
|
18 | 18 | This document describes both of these methods. We recommend that new users |
|
19 | 19 | start with the :command:`ipcluster` command as it simplifies many common usage |
|
20 | 20 | cases. |
|
21 | 21 | |
|
22 | 22 | General considerations |
|
23 | 23 | ====================== |
|
24 | 24 | |
|
25 | 25 | Before delving into the details about how you can start a controller and |
|
26 | 26 | engines using the various methods, we outline some of the general issues that |
|
27 | 27 | come up when starting the controller and engines. These things come up no |
|
28 | 28 | matter which method you use to start your IPython cluster. |
|
29 | 29 | |
|
30 | 30 | Let's say that you want to start the controller on ``host0`` and engines on |
|
31 | 31 | hosts ``host1``-``hostn``. The following steps are then required: |
|
32 | 32 | |
|
33 | 33 | 1. Start the controller on ``host0`` by running :command:`ipcontroller` on |
|
34 | 34 | ``host0``. |
|
35 | 35 | 2. Move the JSON file (:file:`ipcontroller-engine.json`) created by the |
|
36 | 36 | controller from ``host0`` to hosts ``host1``-``hostn``. |
|
37 | 37 | 3. Start the engines on hosts ``host1``-``hostn`` by running |
|
38 | 38 | :command:`ipengine`. This command has to be told where the JSON file |
|
39 | 39 | (:file:`ipcontroller-engine.json`) is located. |
|
40 | 40 | |
|
41 | 41 | At this point, the controller and engines will be connected. By default, the JSON files |
|
42 | 42 | created by the controller are put into the :file:`~/.ipython/cluster_default/security` |
|
43 | 43 | directory. If the engines share a filesystem with the controller, step 2 can be skipped as |
|
44 | 44 | the engines will automatically look at that location. |
|
45 | 45 | |
|
46 | 46 | The final step required to actually use the running controller from a client is to move |
|
47 | 47 | the JSON file :file:`ipcontroller-client.json` from ``host0`` to any host where clients |
|
48 | 48 | will be run. If these file are put into the :file:`~/.ipython/cluster_default/security` |
|
49 | 49 | directory of the client's host, they will be found automatically. Otherwise, the full path |
|
50 | 50 | to them has to be passed to the client's constructor. |
|
51 | 51 | |
|
52 | 52 | Using :command:`ipcluster` |
|
53 | 53 | =========================== |
|
54 | 54 | |
|
55 | 55 | The :command:`ipcluster` command provides a simple way of starting a |
|
56 | 56 | controller and engines in the following situations: |
|
57 | 57 | |
|
58 | 58 | 1. When the controller and engines are all run on localhost. This is useful |
|
59 | 59 | for testing or running on a multicore computer. |
|
60 |
2. When engines are started using the :command:`mpi |
|
|
60 | 2. When engines are started using the :command:`mpiexec` command that comes | |
|
61 | 61 | with most MPI [MPI]_ implementations |
|
62 | 62 | 3. When engines are started using the PBS [PBS]_ batch system |
|
63 | 63 | (or other `qsub` systems, such as SGE). |
|
64 | 64 | 4. When the controller is started on localhost and the engines are started on |
|
65 | 65 | remote nodes using :command:`ssh`. |
|
66 | 66 | 5. When engines are started using the Windows HPC Server batch system. |
|
67 | 67 | |
|
68 | 68 | .. note:: |
|
69 | 69 | |
|
70 | 70 | Currently :command:`ipcluster` requires that the |
|
71 | 71 | :file:`~/.ipython/cluster_<profile>/security` directory live on a shared filesystem that is |
|
72 | 72 | seen by both the controller and engines. If you don't have a shared file |
|
73 | 73 | system you will need to use :command:`ipcontroller` and |
|
74 | 74 | :command:`ipengine` directly. |
|
75 | 75 | |
|
76 | 76 | Under the hood, :command:`ipcluster` just uses :command:`ipcontroller` |
|
77 | 77 | and :command:`ipengine` to perform the steps described above. |
|
78 | 78 | |
|
79 | 79 | The simplest way to use ipcluster requires no configuration, and will |
|
80 | 80 | launch a controller and a number of engines on the local machine. For instance, |
|
81 | 81 | to start one controller and 4 engines on localhost, just do:: |
|
82 | 82 | |
|
83 |
$ ipcluster start |
|
|
83 | $ ipcluster start n=4 | |
|
84 | 84 | |
|
85 |
To see other command line options |
|
|
85 | To see other command line options, do:: | |
|
86 | 86 | |
|
87 | 87 | $ ipcluster -h |
|
88 | 88 | |
|
89 | 89 | |
|
90 | 90 | Configuring an IPython cluster |
|
91 | 91 | ============================== |
|
92 | 92 | |
|
93 | 93 | Cluster configurations are stored as `profiles`. You can create a new profile with:: |
|
94 | 94 | |
|
95 |
$ ipcluster create |
|
|
95 | $ ipcluster create profile=myprofile | |
|
96 | 96 | |
|
97 | 97 | This will create the directory :file:`IPYTHONDIR/cluster_myprofile`, and populate it |
|
98 | 98 | with the default configuration files for the three IPython cluster commands. Once |
|
99 | 99 | you edit those files, you can continue to call ipcluster/ipcontroller/ipengine |
|
100 |
with no arguments beyond `` |
|
|
100 | with no arguments beyond ``p=myprofile``, and any configuration will be maintained. | |
|
101 | 101 | |
|
102 | 102 | There is no limit to the number of profiles you can have, so you can maintain a profile for each |
|
103 | 103 | of your common use cases. The default profile will be used whenever the |
|
104 | 104 | profile argument is not specified, so edit :file:`IPYTHONDIR/cluster_default/*_config.py` to |
|
105 | 105 | represent your most common use case. |
|
106 | 106 | |
|
107 | 107 | The configuration files are loaded with commented-out settings and explanations, |
|
108 | 108 | which should cover most of the available possibilities. |
|
109 | 109 | |
|
110 | 110 | Using various batch systems with :command:`ipcluster` |
|
111 | 111 | ------------------------------------------------------ |
|
112 | 112 | |
|
113 | 113 | :command:`ipcluster` has a notion of Launchers that can start controllers |
|
114 | 114 | and engines with various remote execution schemes. Currently supported |
|
115 |
models include `mpiexec`, PBS-style (Torque, SGE), |
|
|
115 | models include :command:`ssh`, :command`mpiexec`, PBS-style (Torque, SGE), | |
|
116 | and Windows HPC Server. | |
|
116 | 117 | |
|
117 | 118 | .. note:: |
|
118 | 119 | |
|
119 | 120 | The Launchers and configuration are designed in such a way that advanced |
|
120 | 121 | users can subclass and configure them to fit their own system that we |
|
121 | 122 | have not yet supported (such as Condor) |
|
122 | 123 | |
|
123 | 124 | Using :command:`ipcluster` in mpiexec/mpirun mode |
|
124 | 125 | -------------------------------------------------- |
|
125 | 126 | |
|
126 | 127 | |
|
127 | 128 | The mpiexec/mpirun mode is useful if you: |
|
128 | 129 | |
|
129 | 130 | 1. Have MPI installed. |
|
130 | 131 | 2. Your systems are configured to use the :command:`mpiexec` or |
|
131 | 132 | :command:`mpirun` commands to start MPI processes. |
|
132 | 133 | |
|
133 | 134 | If these are satisfied, you can create a new profile:: |
|
134 | 135 | |
|
135 |
$ ipcluster create |
|
|
136 | $ ipcluster create profile=mpi | |
|
136 | 137 | |
|
137 | 138 | and edit the file :file:`IPYTHONDIR/cluster_mpi/ipcluster_config.py`. |
|
138 | 139 | |
|
139 | 140 | There, instruct ipcluster to use the MPIExec launchers by adding the lines: |
|
140 | 141 | |
|
141 | 142 | .. sourcecode:: python |
|
142 | 143 | |
|
143 |
c. |
|
|
144 | c.IPClusterEnginesApp.engine_launcher = 'IPython.parallel.apps.launcher.MPIExecEngineSetLauncher' | |
|
144 | 145 | |
|
145 | 146 | If the default MPI configuration is correct, then you can now start your cluster, with:: |
|
146 | 147 | |
|
147 |
$ ipcluster start |
|
|
148 | $ ipcluster start n=4 profile=mpi | |
|
148 | 149 | |
|
149 | 150 | This does the following: |
|
150 | 151 | |
|
151 | 152 | 1. Starts the IPython controller on current host. |
|
152 | 153 | 2. Uses :command:`mpiexec` to start 4 engines. |
|
153 | 154 | |
|
154 | 155 | If you have a reason to also start the Controller with mpi, you can specify: |
|
155 | 156 | |
|
156 | 157 | .. sourcecode:: python |
|
157 | 158 | |
|
158 |
c. |
|
|
159 | c.IPClusterStartApp.controller_launcher = 'IPython.parallel.apps.launcher.MPIExecControllerLauncher' | |
|
159 | 160 | |
|
160 | 161 | .. note:: |
|
161 | 162 | |
|
162 | 163 | The Controller *will not* be in the same MPI universe as the engines, so there is not |
|
163 | 164 | much reason to do this unless sysadmins demand it. |
|
164 | 165 | |
|
165 | 166 | On newer MPI implementations (such as OpenMPI), this will work even if you |
|
166 | 167 | don't make any calls to MPI or call :func:`MPI_Init`. However, older MPI |
|
167 | 168 | implementations actually require each process to call :func:`MPI_Init` upon |
|
168 | 169 | starting. The easiest way of having this done is to install the mpi4py |
|
169 | 170 | [mpi4py]_ package and then specify the ``c.MPI.use`` option in :file:`ipengine_config.py`: |
|
170 | 171 | |
|
171 | 172 | .. sourcecode:: python |
|
172 | 173 | |
|
173 | 174 | c.MPI.use = 'mpi4py' |
|
174 | 175 | |
|
175 | 176 | Unfortunately, even this won't work for some MPI implementations. If you are |
|
176 | 177 | having problems with this, you will likely have to use a custom Python |
|
177 | 178 | executable that itself calls :func:`MPI_Init` at the appropriate time. |
|
178 | 179 | Fortunately, mpi4py comes with such a custom Python executable that is easy to |
|
179 | 180 | install and use. However, this custom Python executable approach will not work |
|
180 | 181 | with :command:`ipcluster` currently. |
|
181 | 182 | |
|
182 | 183 | More details on using MPI with IPython can be found :ref:`here <parallelmpi>`. |
|
183 | 184 | |
|
184 | 185 | |
|
185 | 186 | Using :command:`ipcluster` in PBS mode |
|
186 | 187 | --------------------------------------- |
|
187 | 188 | |
|
188 | 189 | The PBS mode uses the Portable Batch System [PBS]_ to start the engines. |
|
189 | 190 | |
|
190 | 191 | As usual, we will start by creating a fresh profile:: |
|
191 | 192 | |
|
192 |
$ ipcluster create |
|
|
193 | $ ipcluster create profile=pbs | |
|
193 | 194 | |
|
194 | 195 | And in :file:`ipcluster_config.py`, we will select the PBS launchers for the controller |
|
195 | 196 | and engines: |
|
196 | 197 | |
|
197 | 198 | .. sourcecode:: python |
|
198 | 199 | |
|
199 | 200 | c.Global.controller_launcher = 'IPython.parallel.apps.launcher.PBSControllerLauncher' |
|
200 | 201 | c.Global.engine_launcher = 'IPython.parallel.apps.launcher.PBSEngineSetLauncher' |
|
201 | 202 | |
|
202 | 203 | IPython does provide simple default batch templates for PBS and SGE, but you may need |
|
203 | 204 | to specify your own. Here is a sample PBS script template: |
|
204 | 205 | |
|
205 | 206 | .. sourcecode:: bash |
|
206 | 207 | |
|
207 | 208 | #PBS -N ipython |
|
208 | 209 | #PBS -j oe |
|
209 | 210 | #PBS -l walltime=00:10:00 |
|
210 | 211 | #PBS -l nodes=${n/4}:ppn=4 |
|
211 | 212 | #PBS -q $queue |
|
212 | 213 | |
|
213 | 214 | cd $$PBS_O_WORKDIR |
|
214 | 215 | export PATH=$$HOME/usr/local/bin |
|
215 | 216 | export PYTHONPATH=$$HOME/usr/local/lib/python2.7/site-packages |
|
216 |
/usr/local/bin/mpiexec -n ${n} ipengine |
|
|
217 | /usr/local/bin/mpiexec -n ${n} ipengine cluster_dir=${cluster_dir} | |
|
217 | 218 | |
|
218 | 219 | There are a few important points about this template: |
|
219 | 220 | |
|
220 | 221 | 1. This template will be rendered at runtime using IPython's :mod:`Itpl` |
|
221 | 222 | template engine. |
|
222 | 223 | |
|
223 | 224 | 2. Instead of putting in the actual number of engines, use the notation |
|
224 | 225 | ``${n}`` to indicate the number of engines to be started. You can also uses |
|
225 | 226 | expressions like ``${n/4}`` in the template to indicate the number of |
|
226 | 227 | nodes. There will always be a ${n} and ${cluster_dir} variable passed to the template. |
|
227 | 228 | These allow the batch system to know how many engines, and where the configuration |
|
228 | 229 | files reside. The same is true for the batch queue, with the template variable ``$queue``. |
|
229 | 230 | |
|
230 | 231 | 3. Because ``$`` is a special character used by the template engine, you must |
|
231 | 232 | escape any ``$`` by using ``$$``. This is important when referring to |
|
232 | 233 | environment variables in the template, or in SGE, where the config lines start |
|
233 | 234 | with ``#$``, which will have to be ``#$$``. |
|
234 | 235 | |
|
235 | 236 | 4. Any options to :command:`ipengine` can be given in the batch script |
|
236 | 237 | template, or in :file:`ipengine_config.py`. |
|
237 | 238 | |
|
238 | 239 | 5. Depending on the configuration of you system, you may have to set |
|
239 | 240 | environment variables in the script template. |
|
240 | 241 | |
|
241 | 242 | The controller template should be similar, but simpler: |
|
242 | 243 | |
|
243 | 244 | .. sourcecode:: bash |
|
244 | 245 | |
|
245 | 246 | #PBS -N ipython |
|
246 | 247 | #PBS -j oe |
|
247 | 248 | #PBS -l walltime=00:10:00 |
|
248 | 249 | #PBS -l nodes=1:ppn=4 |
|
249 | 250 | #PBS -q $queue |
|
250 | 251 | |
|
251 | 252 | cd $$PBS_O_WORKDIR |
|
252 | 253 | export PATH=$$HOME/usr/local/bin |
|
253 | 254 | export PYTHONPATH=$$HOME/usr/local/lib/python2.7/site-packages |
|
254 |
ipcontroller |
|
|
255 | ipcontroller cluster_dir=${cluster_dir} | |
|
255 | 256 | |
|
256 | 257 | |
|
257 | 258 | Once you have created these scripts, save them with names like |
|
258 | 259 | :file:`pbs.engine.template`. Now you can load them into the :file:`ipcluster_config` with: |
|
259 | 260 | |
|
260 | 261 | .. sourcecode:: python |
|
261 | 262 | |
|
262 | 263 | c.PBSEngineSetLauncher.batch_template_file = "pbs.engine.template" |
|
263 | 264 | |
|
264 | 265 | c.PBSControllerLauncher.batch_template_file = "pbs.controller.template" |
|
265 | 266 | |
|
266 | 267 | |
|
267 | 268 | Alternately, you can just define the templates as strings inside :file:`ipcluster_config`. |
|
268 | 269 | |
|
269 | 270 | Whether you are using your own templates or our defaults, the extra configurables available are |
|
270 | 271 | the number of engines to launch (``$n``, and the batch system queue to which the jobs are to be |
|
271 | 272 | submitted (``$queue``)). These are configurables, and can be specified in |
|
272 | 273 | :file:`ipcluster_config`: |
|
273 | 274 | |
|
274 | 275 | .. sourcecode:: python |
|
275 | 276 | |
|
276 | 277 | c.PBSLauncher.queue = 'veryshort.q' |
|
277 | 278 | c.PBSEngineSetLauncher.n = 64 |
|
278 | 279 | |
|
279 | 280 | Note that assuming you are running PBS on a multi-node cluster, the Controller's default behavior |
|
280 | 281 | of listening only on localhost is likely too restrictive. In this case, also assuming the |
|
281 | 282 | nodes are safely behind a firewall, you can simply instruct the Controller to listen for |
|
282 | 283 | connections on all its interfaces, by adding in :file:`ipcontroller_config`: |
|
283 | 284 | |
|
284 | 285 | .. sourcecode:: python |
|
285 | 286 | |
|
286 | 287 | c.RegistrationFactory.ip = '*' |
|
287 | 288 | |
|
288 | 289 | You can now run the cluster with:: |
|
289 | 290 | |
|
290 |
$ ipcluster start |
|
|
291 | $ ipcluster start profile=pbs n=128 | |
|
291 | 292 | |
|
292 | 293 | Additional configuration options can be found in the PBS section of :file:`ipcluster_config`. |
|
293 | 294 | |
|
294 | 295 | .. note:: |
|
295 | 296 | |
|
296 | 297 | Due to the flexibility of configuration, the PBS launchers work with simple changes |
|
297 | 298 | to the template for other :command:`qsub`-using systems, such as Sun Grid Engine, |
|
298 | 299 | and with further configuration in similar batch systems like Condor. |
|
299 | 300 | |
|
300 | 301 | |
|
301 | 302 | Using :command:`ipcluster` in SSH mode |
|
302 | 303 | --------------------------------------- |
|
303 | 304 | |
|
304 | 305 | |
|
305 | 306 | The SSH mode uses :command:`ssh` to execute :command:`ipengine` on remote |
|
306 | 307 | nodes and :command:`ipcontroller` can be run remotely as well, or on localhost. |
|
307 | 308 | |
|
308 | 309 | .. note:: |
|
309 | 310 | |
|
310 | 311 | When using this mode it highly recommended that you have set up SSH keys |
|
311 | 312 | and are using ssh-agent [SSH]_ for password-less logins. |
|
312 | 313 | |
|
313 | 314 | As usual, we start by creating a clean profile:: |
|
314 | 315 | |
|
315 |
$ ipcluster create |
|
|
316 | $ ipcluster create profile= ssh | |
|
316 | 317 | |
|
317 | 318 | To use this mode, select the SSH launchers in :file:`ipcluster_config.py`: |
|
318 | 319 | |
|
319 | 320 | .. sourcecode:: python |
|
320 | 321 | |
|
321 | 322 | c.Global.engine_launcher = 'IPython.parallel.apps.launcher.SSHEngineSetLauncher' |
|
322 | 323 | # and if the Controller is also to be remote: |
|
323 | 324 | c.Global.controller_launcher = 'IPython.parallel.apps.launcher.SSHControllerLauncher' |
|
324 | 325 | |
|
325 | 326 | |
|
326 | 327 | The controller's remote location and configuration can be specified: |
|
327 | 328 | |
|
328 | 329 | .. sourcecode:: python |
|
329 | 330 | |
|
330 | 331 | # Set the user and hostname for the controller |
|
331 | 332 | # c.SSHControllerLauncher.hostname = 'controller.example.com' |
|
332 | 333 | # c.SSHControllerLauncher.user = os.environ.get('USER','username') |
|
333 | 334 | |
|
334 | 335 | # Set the arguments to be passed to ipcontroller |
|
335 | 336 | # note that remotely launched ipcontroller will not get the contents of |
|
336 | 337 | # the local ipcontroller_config.py unless it resides on the *remote host* |
|
337 |
# in the location specified by the |
|
|
338 | # in the location specified by the `cluster_dir` argument. | |
|
338 | 339 | # c.SSHControllerLauncher.program_args = ['-r', '-ip', '0.0.0.0', '--cluster_dir', '/path/to/cd'] |
|
339 | 340 | |
|
340 | 341 | .. note:: |
|
341 | 342 | |
|
342 | 343 | SSH mode does not do any file movement, so you will need to distribute configuration |
|
343 | 344 | files manually. To aid in this, the `reuse_files` flag defaults to True for ssh-launched |
|
344 | 345 | Controllers, so you will only need to do this once, unless you override this flag back |
|
345 | 346 | to False. |
|
346 | 347 | |
|
347 | 348 | Engines are specified in a dictionary, by hostname and the number of engines to be run |
|
348 | 349 | on that host. |
|
349 | 350 | |
|
350 | 351 | .. sourcecode:: python |
|
351 | 352 | |
|
352 | 353 | c.SSHEngineSetLauncher.engines = { 'host1.example.com' : 2, |
|
353 | 354 | 'host2.example.com' : 5, |
|
354 |
'host3.example.com' : (1, [' |
|
|
355 | 'host3.example.com' : (1, ['cluster_dir=/home/different/location']), | |
|
355 | 356 | 'host4.example.com' : 8 } |
|
356 | 357 | |
|
357 | 358 | * The `engines` dict, where the keys are the host we want to run engines on and |
|
358 | 359 | the value is the number of engines to run on that host. |
|
359 | 360 | * on host3, the value is a tuple, where the number of engines is first, and the arguments |
|
360 | 361 | to be passed to :command:`ipengine` are the second element. |
|
361 | 362 | |
|
362 | 363 | For engines without explicitly specified arguments, the default arguments are set in |
|
363 | 364 | a single location: |
|
364 | 365 | |
|
365 | 366 | .. sourcecode:: python |
|
366 | 367 | |
|
367 | 368 | c.SSHEngineSetLauncher.engine_args = ['--cluster_dir', '/path/to/cluster_ssh'] |
|
368 | 369 | |
|
369 | 370 | Current limitations of the SSH mode of :command:`ipcluster` are: |
|
370 | 371 | |
|
371 | 372 | * Untested on Windows. Would require a working :command:`ssh` on Windows. |
|
372 | 373 | Also, we are using shell scripts to setup and execute commands on remote |
|
373 | 374 | hosts. |
|
374 | 375 | * No file movement - |
|
375 | 376 | |
|
376 | 377 | Using the :command:`ipcontroller` and :command:`ipengine` commands |
|
377 | 378 | ==================================================================== |
|
378 | 379 | |
|
379 | 380 | It is also possible to use the :command:`ipcontroller` and :command:`ipengine` |
|
380 | 381 | commands to start your controller and engines. This approach gives you full |
|
381 | 382 | control over all aspects of the startup process. |
|
382 | 383 | |
|
383 | 384 | Starting the controller and engine on your local machine |
|
384 | 385 | -------------------------------------------------------- |
|
385 | 386 | |
|
386 | 387 | To use :command:`ipcontroller` and :command:`ipengine` to start things on your |
|
387 | 388 | local machine, do the following. |
|
388 | 389 | |
|
389 | 390 | First start the controller:: |
|
390 | 391 | |
|
391 | 392 | $ ipcontroller |
|
392 | 393 | |
|
393 | 394 | Next, start however many instances of the engine you want using (repeatedly) |
|
394 | 395 | the command:: |
|
395 | 396 | |
|
396 | 397 | $ ipengine |
|
397 | 398 | |
|
398 | 399 | The engines should start and automatically connect to the controller using the |
|
399 | 400 | JSON files in :file:`~/.ipython/cluster_default/security`. You are now ready to use the |
|
400 | 401 | controller and engines from IPython. |
|
401 | 402 | |
|
402 | 403 | .. warning:: |
|
403 | 404 | |
|
404 | 405 | The order of the above operations may be important. You *must* |
|
405 | 406 | start the controller before the engines, unless you are reusing connection |
|
406 | 407 | information (via `-r`), in which case ordering is not important. |
|
407 | 408 | |
|
408 | 409 | .. note:: |
|
409 | 410 | |
|
410 | 411 | On some platforms (OS X), to put the controller and engine into the |
|
411 | 412 | background you may need to give these commands in the form ``(ipcontroller |
|
412 | 413 | &)`` and ``(ipengine &)`` (with the parentheses) for them to work |
|
413 | 414 | properly. |
|
414 | 415 | |
|
415 | 416 | Starting the controller and engines on different hosts |
|
416 | 417 | ------------------------------------------------------ |
|
417 | 418 | |
|
418 | 419 | When the controller and engines are running on different hosts, things are |
|
419 | 420 | slightly more complicated, but the underlying ideas are the same: |
|
420 | 421 | |
|
421 | 422 | 1. Start the controller on a host using :command:`ipcontroller`. |
|
422 | 423 | 2. Copy :file:`ipcontroller-engine.json` from :file:`~/.ipython/cluster_<profile>/security` on |
|
423 | 424 | the controller's host to the host where the engines will run. |
|
424 | 425 | 3. Use :command:`ipengine` on the engine's hosts to start the engines. |
|
425 | 426 | |
|
426 | 427 | The only thing you have to be careful of is to tell :command:`ipengine` where |
|
427 | 428 | the :file:`ipcontroller-engine.json` file is located. There are two ways you |
|
428 | 429 | can do this: |
|
429 | 430 | |
|
430 | 431 | * Put :file:`ipcontroller-engine.json` in the :file:`~/.ipython/cluster_<profile>/security` |
|
431 | 432 | directory on the engine's host, where it will be found automatically. |
|
432 | 433 | * Call :command:`ipengine` with the ``--file=full_path_to_the_file`` |
|
433 | 434 | flag. |
|
434 | 435 | |
|
435 | 436 | The ``--file`` flag works like this:: |
|
436 | 437 | |
|
437 | 438 | $ ipengine --file=/path/to/my/ipcontroller-engine.json |
|
438 | 439 | |
|
439 | 440 | .. note:: |
|
440 | 441 | |
|
441 | 442 | If the controller's and engine's hosts all have a shared file system |
|
442 | 443 | (:file:`~/.ipython/cluster_<profile>/security` is the same on all of them), then things |
|
443 | 444 | will just work! |
|
444 | 445 | |
|
445 | 446 | Make JSON files persistent |
|
446 | 447 | -------------------------- |
|
447 | 448 | |
|
448 | 449 | At fist glance it may seem that that managing the JSON files is a bit |
|
449 | 450 | annoying. Going back to the house and key analogy, copying the JSON around |
|
450 | 451 | each time you start the controller is like having to make a new key every time |
|
451 | 452 | you want to unlock the door and enter your house. As with your house, you want |
|
452 | 453 | to be able to create the key (or JSON file) once, and then simply use it at |
|
453 | 454 | any point in the future. |
|
454 | 455 | |
|
455 | To do this, the only thing you have to do is specify the `-r` flag, so that | |
|
456 | To do this, the only thing you have to do is specify the `--reuse` flag, so that | |
|
456 | 457 | the connection information in the JSON files remains accurate:: |
|
457 | 458 | |
|
458 | $ ipcontroller -r | |
|
459 | $ ipcontroller --reuse | |
|
459 | 460 | |
|
460 | 461 | Then, just copy the JSON files over the first time and you are set. You can |
|
461 | 462 | start and stop the controller and engines any many times as you want in the |
|
462 | 463 | future, just make sure to tell the controller to reuse the file. |
|
463 | 464 | |
|
464 | 465 | .. note:: |
|
465 | 466 | |
|
466 | 467 | You may ask the question: what ports does the controller listen on if you |
|
467 | 468 | don't tell is to use specific ones? The default is to use high random port |
|
468 | 469 | numbers. We do this for two reasons: i) to increase security through |
|
469 | 470 | obscurity and ii) to multiple controllers on a given host to start and |
|
470 | 471 | automatically use different ports. |
|
471 | 472 | |
|
472 | 473 | Log files |
|
473 | 474 | --------- |
|
474 | 475 | |
|
475 | 476 | All of the components of IPython have log files associated with them. |
|
476 | 477 | These log files can be extremely useful in debugging problems with |
|
477 | 478 | IPython and can be found in the directory :file:`~/.ipython/cluster_<profile>/log`. |
|
478 | 479 | Sending the log files to us will often help us to debug any problems. |
|
479 | 480 | |
|
480 | 481 | |
|
481 | 482 | Configuring `ipcontroller` |
|
482 | 483 | --------------------------- |
|
483 | 484 | |
|
484 | 485 | Ports and addresses |
|
485 | 486 | ******************* |
|
486 | 487 | |
|
487 | 488 | |
|
488 | 489 | Database Backend |
|
489 | 490 | **************** |
|
490 | 491 | |
|
491 | 492 | |
|
492 | 493 | .. seealso:: |
|
493 | 494 | |
|
494 | 495 | |
|
495 | 496 | |
|
496 | 497 | Configuring `ipengine` |
|
497 | 498 | ----------------------- |
|
498 | 499 | |
|
499 | 500 | .. note:: |
|
500 | 501 | |
|
501 | 502 | TODO |
|
502 | 503 | |
|
503 | 504 | |
|
504 | 505 | |
|
505 | 506 | .. [PBS] Portable Batch System. http://www.openpbs.org/ |
|
506 | 507 | .. [SSH] SSH-Agent http://en.wikipedia.org/wiki/ssh-agent |
@@ -1,442 +1,442 | |||
|
1 | 1 | .. _parallel_task: |
|
2 | 2 | |
|
3 | 3 | ========================== |
|
4 | 4 | The IPython task interface |
|
5 | 5 | ========================== |
|
6 | 6 | |
|
7 | 7 | The task interface to the cluster presents the engines as a fault tolerant, |
|
8 | 8 | dynamic load-balanced system of workers. Unlike the multiengine interface, in |
|
9 | 9 | the task interface the user have no direct access to individual engines. By |
|
10 | 10 | allowing the IPython scheduler to assign work, this interface is simultaneously |
|
11 | 11 | simpler and more powerful. |
|
12 | 12 | |
|
13 | 13 | Best of all, the user can use both of these interfaces running at the same time |
|
14 | 14 | to take advantage of their respective strengths. When the user can break up |
|
15 | 15 | the user's work into segments that do not depend on previous execution, the |
|
16 | 16 | task interface is ideal. But it also has more power and flexibility, allowing |
|
17 | 17 | the user to guide the distribution of jobs, without having to assign tasks to |
|
18 | 18 | engines explicitly. |
|
19 | 19 | |
|
20 | 20 | Starting the IPython controller and engines |
|
21 | 21 | =========================================== |
|
22 | 22 | |
|
23 | 23 | To follow along with this tutorial, you will need to start the IPython |
|
24 | 24 | controller and four IPython engines. The simplest way of doing this is to use |
|
25 | 25 | the :command:`ipcluster` command:: |
|
26 | 26 | |
|
27 |
$ ipcluster start |
|
|
27 | $ ipcluster start n=4 | |
|
28 | 28 | |
|
29 | 29 | For more detailed information about starting the controller and engines, see |
|
30 | 30 | our :ref:`introduction <ip1par>` to using IPython for parallel computing. |
|
31 | 31 | |
|
32 | 32 | Creating a ``Client`` instance |
|
33 | 33 | ============================== |
|
34 | 34 | |
|
35 | 35 | The first step is to import the IPython :mod:`IPython.parallel` |
|
36 | 36 | module and then create a :class:`.Client` instance, and we will also be using |
|
37 | 37 | a :class:`LoadBalancedView`, here called `lview`: |
|
38 | 38 | |
|
39 | 39 | .. sourcecode:: ipython |
|
40 | 40 | |
|
41 | 41 | In [1]: from IPython.parallel import Client |
|
42 | 42 | |
|
43 | 43 | In [2]: rc = Client() |
|
44 | 44 | |
|
45 | 45 | |
|
46 | 46 | This form assumes that the controller was started on localhost with default |
|
47 | 47 | configuration. If not, the location of the controller must be given as an |
|
48 | 48 | argument to the constructor: |
|
49 | 49 | |
|
50 | 50 | .. sourcecode:: ipython |
|
51 | 51 | |
|
52 | 52 | # for a visible LAN controller listening on an external port: |
|
53 | 53 | In [2]: rc = Client('tcp://192.168.1.16:10101') |
|
54 | 54 | # or to connect with a specific profile you have set up: |
|
55 | 55 | In [3]: rc = Client(profile='mpi') |
|
56 | 56 | |
|
57 | 57 | For load-balanced execution, we will make use of a :class:`LoadBalancedView` object, which can |
|
58 | 58 | be constructed via the client's :meth:`load_balanced_view` method: |
|
59 | 59 | |
|
60 | 60 | .. sourcecode:: ipython |
|
61 | 61 | |
|
62 | 62 | In [4]: lview = rc.load_balanced_view() # default load-balanced view |
|
63 | 63 | |
|
64 | 64 | .. seealso:: |
|
65 | 65 | |
|
66 | 66 | For more information, see the in-depth explanation of :ref:`Views <parallel_details>`. |
|
67 | 67 | |
|
68 | 68 | |
|
69 | 69 | Quick and easy parallelism |
|
70 | 70 | ========================== |
|
71 | 71 | |
|
72 | 72 | In many cases, you simply want to apply a Python function to a sequence of |
|
73 | 73 | objects, but *in parallel*. Like the multiengine interface, these can be |
|
74 | 74 | implemented via the task interface. The exact same tools can perform these |
|
75 | 75 | actions in load-balanced ways as well as multiplexed ways: a parallel version |
|
76 | 76 | of :func:`map` and :func:`@parallel` function decorator. If one specifies the |
|
77 | 77 | argument `balanced=True`, then they are dynamically load balanced. Thus, if the |
|
78 | 78 | execution time per item varies significantly, you should use the versions in |
|
79 | 79 | the task interface. |
|
80 | 80 | |
|
81 | 81 | Parallel map |
|
82 | 82 | ------------ |
|
83 | 83 | |
|
84 | 84 | To load-balance :meth:`map`,simply use a LoadBalancedView: |
|
85 | 85 | |
|
86 | 86 | .. sourcecode:: ipython |
|
87 | 87 | |
|
88 | 88 | In [62]: lview.block = True |
|
89 | 89 | |
|
90 | 90 | In [63]: serial_result = map(lambda x:x**10, range(32)) |
|
91 | 91 | |
|
92 | 92 | In [64]: parallel_result = lview.map(lambda x:x**10, range(32)) |
|
93 | 93 | |
|
94 | 94 | In [65]: serial_result==parallel_result |
|
95 | 95 | Out[65]: True |
|
96 | 96 | |
|
97 | 97 | Parallel function decorator |
|
98 | 98 | --------------------------- |
|
99 | 99 | |
|
100 | 100 | Parallel functions are just like normal function, but they can be called on |
|
101 | 101 | sequences and *in parallel*. The multiengine interface provides a decorator |
|
102 | 102 | that turns any Python function into a parallel function: |
|
103 | 103 | |
|
104 | 104 | .. sourcecode:: ipython |
|
105 | 105 | |
|
106 | 106 | In [10]: @lview.parallel() |
|
107 | 107 | ....: def f(x): |
|
108 | 108 | ....: return 10.0*x**4 |
|
109 | 109 | ....: |
|
110 | 110 | |
|
111 | 111 | In [11]: f.map(range(32)) # this is done in parallel |
|
112 | 112 | Out[11]: [0.0,10.0,160.0,...] |
|
113 | 113 | |
|
114 | 114 | .. _parallel_dependencies: |
|
115 | 115 | |
|
116 | 116 | Dependencies |
|
117 | 117 | ============ |
|
118 | 118 | |
|
119 | 119 | Often, pure atomic load-balancing is too primitive for your work. In these cases, you |
|
120 | 120 | may want to associate some kind of `Dependency` that describes when, where, or whether |
|
121 | 121 | a task can be run. In IPython, we provide two types of dependencies: |
|
122 | 122 | `Functional Dependencies`_ and `Graph Dependencies`_ |
|
123 | 123 | |
|
124 | 124 | .. note:: |
|
125 | 125 | |
|
126 | 126 | It is important to note that the pure ZeroMQ scheduler does not support dependencies, |
|
127 | 127 | and you will see errors or warnings if you try to use dependencies with the pure |
|
128 | 128 | scheduler. |
|
129 | 129 | |
|
130 | 130 | Functional Dependencies |
|
131 | 131 | ----------------------- |
|
132 | 132 | |
|
133 | 133 | Functional dependencies are used to determine whether a given engine is capable of running |
|
134 | 134 | a particular task. This is implemented via a special :class:`Exception` class, |
|
135 | 135 | :class:`UnmetDependency`, found in `IPython.parallel.error`. Its use is very simple: |
|
136 | 136 | if a task fails with an UnmetDependency exception, then the scheduler, instead of relaying |
|
137 | 137 | the error up to the client like any other error, catches the error, and submits the task |
|
138 | 138 | to a different engine. This will repeat indefinitely, and a task will never be submitted |
|
139 | 139 | to a given engine a second time. |
|
140 | 140 | |
|
141 | 141 | You can manually raise the :class:`UnmetDependency` yourself, but IPython has provided |
|
142 | 142 | some decorators for facilitating this behavior. |
|
143 | 143 | |
|
144 | 144 | There are two decorators and a class used for functional dependencies: |
|
145 | 145 | |
|
146 | 146 | .. sourcecode:: ipython |
|
147 | 147 | |
|
148 | 148 | In [9]: from IPython.parallel import depend, require, dependent |
|
149 | 149 | |
|
150 | 150 | @require |
|
151 | 151 | ******** |
|
152 | 152 | |
|
153 | 153 | The simplest sort of dependency is requiring that a Python module is available. The |
|
154 | 154 | ``@require`` decorator lets you define a function that will only run on engines where names |
|
155 | 155 | you specify are importable: |
|
156 | 156 | |
|
157 | 157 | .. sourcecode:: ipython |
|
158 | 158 | |
|
159 | 159 | In [10]: @require('numpy', 'zmq') |
|
160 | 160 | ...: def myfunc(): |
|
161 | 161 | ...: return dostuff() |
|
162 | 162 | |
|
163 | 163 | Now, any time you apply :func:`myfunc`, the task will only run on a machine that has |
|
164 | 164 | numpy and pyzmq available, and when :func:`myfunc` is called, numpy and zmq will be imported. |
|
165 | 165 | |
|
166 | 166 | @depend |
|
167 | 167 | ******* |
|
168 | 168 | |
|
169 | 169 | The ``@depend`` decorator lets you decorate any function with any *other* function to |
|
170 | 170 | evaluate the dependency. The dependency function will be called at the start of the task, |
|
171 | 171 | and if it returns ``False``, then the dependency will be considered unmet, and the task |
|
172 | 172 | will be assigned to another engine. If the dependency returns *anything other than |
|
173 | 173 | ``False``*, the rest of the task will continue. |
|
174 | 174 | |
|
175 | 175 | .. sourcecode:: ipython |
|
176 | 176 | |
|
177 | 177 | In [10]: def platform_specific(plat): |
|
178 | 178 | ...: import sys |
|
179 | 179 | ...: return sys.platform == plat |
|
180 | 180 | |
|
181 | 181 | In [11]: @depend(platform_specific, 'darwin') |
|
182 | 182 | ...: def mactask(): |
|
183 | 183 | ...: do_mac_stuff() |
|
184 | 184 | |
|
185 | 185 | In [12]: @depend(platform_specific, 'nt') |
|
186 | 186 | ...: def wintask(): |
|
187 | 187 | ...: do_windows_stuff() |
|
188 | 188 | |
|
189 | 189 | In this case, any time you apply ``mytask``, it will only run on an OSX machine. |
|
190 | 190 | ``@depend`` is just like ``apply``, in that it has a ``@depend(f,*args,**kwargs)`` |
|
191 | 191 | signature. |
|
192 | 192 | |
|
193 | 193 | dependents |
|
194 | 194 | ********** |
|
195 | 195 | |
|
196 | 196 | You don't have to use the decorators on your tasks, if for instance you may want |
|
197 | 197 | to run tasks with a single function but varying dependencies, you can directly construct |
|
198 | 198 | the :class:`dependent` object that the decorators use: |
|
199 | 199 | |
|
200 | 200 | .. sourcecode::ipython |
|
201 | 201 | |
|
202 | 202 | In [13]: def mytask(*args): |
|
203 | 203 | ...: dostuff() |
|
204 | 204 | |
|
205 | 205 | In [14]: mactask = dependent(mytask, platform_specific, 'darwin') |
|
206 | 206 | # this is the same as decorating the declaration of mytask with @depend |
|
207 | 207 | # but you can do it again: |
|
208 | 208 | |
|
209 | 209 | In [15]: wintask = dependent(mytask, platform_specific, 'nt') |
|
210 | 210 | |
|
211 | 211 | # in general: |
|
212 | 212 | In [16]: t = dependent(f, g, *dargs, **dkwargs) |
|
213 | 213 | |
|
214 | 214 | # is equivalent to: |
|
215 | 215 | In [17]: @depend(g, *dargs, **dkwargs) |
|
216 | 216 | ...: def t(a,b,c): |
|
217 | 217 | ...: # contents of f |
|
218 | 218 | |
|
219 | 219 | Graph Dependencies |
|
220 | 220 | ------------------ |
|
221 | 221 | |
|
222 | 222 | Sometimes you want to restrict the time and/or location to run a given task as a function |
|
223 | 223 | of the time and/or location of other tasks. This is implemented via a subclass of |
|
224 | 224 | :class:`set`, called a :class:`Dependency`. A Dependency is just a set of `msg_ids` |
|
225 | 225 | corresponding to tasks, and a few attributes to guide how to decide when the Dependency |
|
226 | 226 | has been met. |
|
227 | 227 | |
|
228 | 228 | The switches we provide for interpreting whether a given dependency set has been met: |
|
229 | 229 | |
|
230 | 230 | any|all |
|
231 | 231 | Whether the dependency is considered met if *any* of the dependencies are done, or |
|
232 | 232 | only after *all* of them have finished. This is set by a Dependency's :attr:`all` |
|
233 | 233 | boolean attribute, which defaults to ``True``. |
|
234 | 234 | |
|
235 | 235 | success [default: True] |
|
236 | 236 | Whether to consider tasks that succeeded as fulfilling dependencies. |
|
237 | 237 | |
|
238 | 238 | failure [default : False] |
|
239 | 239 | Whether to consider tasks that failed as fulfilling dependencies. |
|
240 | 240 | using `failure=True,success=False` is useful for setting up cleanup tasks, to be run |
|
241 | 241 | only when tasks have failed. |
|
242 | 242 | |
|
243 | 243 | Sometimes you want to run a task after another, but only if that task succeeded. In this case, |
|
244 | 244 | ``success`` should be ``True`` and ``failure`` should be ``False``. However sometimes you may |
|
245 | 245 | not care whether the task succeeds, and always want the second task to run, in which case you |
|
246 | 246 | should use `success=failure=True`. The default behavior is to only use successes. |
|
247 | 247 | |
|
248 | 248 | There are other switches for interpretation that are made at the *task* level. These are |
|
249 | 249 | specified via keyword arguments to the client's :meth:`apply` method. |
|
250 | 250 | |
|
251 | 251 | after,follow |
|
252 | 252 | You may want to run a task *after* a given set of dependencies have been run and/or |
|
253 | 253 | run it *where* another set of dependencies are met. To support this, every task has an |
|
254 | 254 | `after` dependency to restrict time, and a `follow` dependency to restrict |
|
255 | 255 | destination. |
|
256 | 256 | |
|
257 | 257 | timeout |
|
258 | 258 | You may also want to set a time-limit for how long the scheduler should wait before a |
|
259 | 259 | task's dependencies are met. This is done via a `timeout`, which defaults to 0, which |
|
260 | 260 | indicates that the task should never timeout. If the timeout is reached, and the |
|
261 | 261 | scheduler still hasn't been able to assign the task to an engine, the task will fail |
|
262 | 262 | with a :class:`DependencyTimeout`. |
|
263 | 263 | |
|
264 | 264 | .. note:: |
|
265 | 265 | |
|
266 | 266 | Dependencies only work within the task scheduler. You cannot instruct a load-balanced |
|
267 | 267 | task to run after a job submitted via the MUX interface. |
|
268 | 268 | |
|
269 | 269 | The simplest form of Dependencies is with `all=True,success=True,failure=False`. In these cases, |
|
270 | 270 | you can skip using Dependency objects, and just pass msg_ids or AsyncResult objects as the |
|
271 | 271 | `follow` and `after` keywords to :meth:`client.apply`: |
|
272 | 272 | |
|
273 | 273 | .. sourcecode:: ipython |
|
274 | 274 | |
|
275 | 275 | In [14]: client.block=False |
|
276 | 276 | |
|
277 | 277 | In [15]: ar = lview.apply(f, args, kwargs) |
|
278 | 278 | |
|
279 | 279 | In [16]: ar2 = lview.apply(f2) |
|
280 | 280 | |
|
281 | 281 | In [17]: ar3 = lview.apply_with_flags(f3, after=[ar,ar2]) |
|
282 | 282 | |
|
283 | 283 | In [17]: ar4 = lview.apply_with_flags(f3, follow=[ar], timeout=2.5) |
|
284 | 284 | |
|
285 | 285 | |
|
286 | 286 | .. seealso:: |
|
287 | 287 | |
|
288 | 288 | Some parallel workloads can be described as a `Directed Acyclic Graph |
|
289 | 289 | <http://en.wikipedia.org/wiki/Directed_acyclic_graph>`_, or DAG. See :ref:`DAG |
|
290 | 290 | Dependencies <dag_dependencies>` for an example demonstrating how to use map a NetworkX DAG |
|
291 | 291 | onto task dependencies. |
|
292 | 292 | |
|
293 | 293 | |
|
294 | 294 | |
|
295 | 295 | |
|
296 | 296 | Impossible Dependencies |
|
297 | 297 | *********************** |
|
298 | 298 | |
|
299 | 299 | The schedulers do perform some analysis on graph dependencies to determine whether they |
|
300 | 300 | are not possible to be met. If the scheduler does discover that a dependency cannot be |
|
301 | 301 | met, then the task will fail with an :class:`ImpossibleDependency` error. This way, if the |
|
302 | 302 | scheduler realized that a task can never be run, it won't sit indefinitely in the |
|
303 | 303 | scheduler clogging the pipeline. |
|
304 | 304 | |
|
305 | 305 | The basic cases that are checked: |
|
306 | 306 | |
|
307 | 307 | * depending on nonexistent messages |
|
308 | 308 | * `follow` dependencies were run on more than one machine and `all=True` |
|
309 | 309 | * any dependencies failed and `all=True,success=True,failures=False` |
|
310 | 310 | * all dependencies failed and `all=False,success=True,failure=False` |
|
311 | 311 | |
|
312 | 312 | .. warning:: |
|
313 | 313 | |
|
314 | 314 | This analysis has not been proven to be rigorous, so it is likely possible for tasks |
|
315 | 315 | to become impossible to run in obscure situations, so a timeout may be a good choice. |
|
316 | 316 | |
|
317 | 317 | |
|
318 | 318 | Retries and Resubmit |
|
319 | 319 | ==================== |
|
320 | 320 | |
|
321 | 321 | Retries |
|
322 | 322 | ------- |
|
323 | 323 | |
|
324 | 324 | Another flag for tasks is `retries`. This is an integer, specifying how many times |
|
325 | 325 | a task should be resubmitted after failure. This is useful for tasks that should still run |
|
326 | 326 | if their engine was shutdown, or may have some statistical chance of failing. The default |
|
327 | 327 | is to not retry tasks. |
|
328 | 328 | |
|
329 | 329 | Resubmit |
|
330 | 330 | -------- |
|
331 | 331 | |
|
332 | 332 | Sometimes you may want to re-run a task. This could be because it failed for some reason, and |
|
333 | 333 | you have fixed the error, or because you want to restore the cluster to an interrupted state. |
|
334 | 334 | For this, the :class:`Client` has a :meth:`rc.resubmit` method. This simply takes one or more |
|
335 | 335 | msg_ids, and returns an :class:`AsyncHubResult` for the result(s). You cannot resubmit |
|
336 | 336 | a task that is pending - only those that have finished, either successful or unsuccessful. |
|
337 | 337 | |
|
338 | 338 | .. _parallel_schedulers: |
|
339 | 339 | |
|
340 | 340 | Schedulers |
|
341 | 341 | ========== |
|
342 | 342 | |
|
343 | 343 | There are a variety of valid ways to determine where jobs should be assigned in a |
|
344 | 344 | load-balancing situation. In IPython, we support several standard schemes, and |
|
345 |
even make it easy to define your own. The scheme can be selected via the `` |
|
|
346 |
argument to :command:`ipcontroller`, or in the :attr:` |
|
|
345 | even make it easy to define your own. The scheme can be selected via the ``scheme`` | |
|
346 | argument to :command:`ipcontroller`, or in the :attr:`TaskScheduler.schemename` attribute | |
|
347 | 347 | of a controller config object. |
|
348 | 348 | |
|
349 | 349 | The built-in routing schemes: |
|
350 | 350 | |
|
351 | 351 | To select one of these schemes, simply do:: |
|
352 | 352 | |
|
353 |
$ ipcontroller |
|
|
353 | $ ipcontroller scheme=<schemename> | |
|
354 | 354 | for instance: |
|
355 |
$ ipcontroller |
|
|
355 | $ ipcontroller scheme=lru | |
|
356 | 356 | |
|
357 | 357 | lru: Least Recently Used |
|
358 | 358 | |
|
359 | 359 | Always assign work to the least-recently-used engine. A close relative of |
|
360 | 360 | round-robin, it will be fair with respect to the number of tasks, agnostic |
|
361 | 361 | with respect to runtime of each task. |
|
362 | 362 | |
|
363 | 363 | plainrandom: Plain Random |
|
364 | 364 | |
|
365 | 365 | Randomly picks an engine on which to run. |
|
366 | 366 | |
|
367 | 367 | twobin: Two-Bin Random |
|
368 | 368 | |
|
369 | 369 | **Requires numpy** |
|
370 | 370 | |
|
371 | 371 | Pick two engines at random, and use the LRU of the two. This is known to be better |
|
372 | 372 | than plain random in many cases, but requires a small amount of computation. |
|
373 | 373 | |
|
374 | 374 | leastload: Least Load |
|
375 | 375 | |
|
376 | 376 | **This is the default scheme** |
|
377 | 377 | |
|
378 | 378 | Always assign tasks to the engine with the fewest outstanding tasks (LRU breaks tie). |
|
379 | 379 | |
|
380 | 380 | weighted: Weighted Two-Bin Random |
|
381 | 381 | |
|
382 | 382 | **Requires numpy** |
|
383 | 383 | |
|
384 | 384 | Pick two engines at random using the number of outstanding tasks as inverse weights, |
|
385 | 385 | and use the one with the lower load. |
|
386 | 386 | |
|
387 | 387 | |
|
388 | 388 | Pure ZMQ Scheduler |
|
389 | 389 | ------------------ |
|
390 | 390 | |
|
391 | 391 | For maximum throughput, the 'pure' scheme is not Python at all, but a C-level |
|
392 | 392 | :class:`MonitoredQueue` from PyZMQ, which uses a ZeroMQ ``XREQ`` socket to perform all |
|
393 | 393 | load-balancing. This scheduler does not support any of the advanced features of the Python |
|
394 | 394 | :class:`.Scheduler`. |
|
395 | 395 | |
|
396 | 396 | Disabled features when using the ZMQ Scheduler: |
|
397 | 397 | |
|
398 | 398 | * Engine unregistration |
|
399 | 399 | Task farming will be disabled if an engine unregisters. |
|
400 | 400 | Further, if an engine is unregistered during computation, the scheduler may not recover. |
|
401 | 401 | * Dependencies |
|
402 | 402 | Since there is no Python logic inside the Scheduler, routing decisions cannot be made |
|
403 | 403 | based on message content. |
|
404 | 404 | * Early destination notification |
|
405 | 405 | The Python schedulers know which engine gets which task, and notify the Hub. This |
|
406 | 406 | allows graceful handling of Engines coming and going. There is no way to know |
|
407 | 407 | where ZeroMQ messages have gone, so there is no way to know what tasks are on which |
|
408 | 408 | engine until they *finish*. This makes recovery from engine shutdown very difficult. |
|
409 | 409 | |
|
410 | 410 | |
|
411 | 411 | .. note:: |
|
412 | 412 | |
|
413 | 413 | TODO: performance comparisons |
|
414 | 414 | |
|
415 | 415 | |
|
416 | 416 | |
|
417 | 417 | |
|
418 | 418 | More details |
|
419 | 419 | ============ |
|
420 | 420 | |
|
421 | 421 | The :class:`LoadBalancedView` has many more powerful features that allow quite a bit |
|
422 | 422 | of flexibility in how tasks are defined and run. The next places to look are |
|
423 | 423 | in the following classes: |
|
424 | 424 | |
|
425 | 425 | * :class:`~IPython.parallel.client.view.LoadBalancedView` |
|
426 | 426 | * :class:`~IPython.parallel.client.asyncresult.AsyncResult` |
|
427 | 427 | * :meth:`~IPython.parallel.client.view.LoadBalancedView.apply` |
|
428 | 428 | * :mod:`~IPython.parallel.controller.dependency` |
|
429 | 429 | |
|
430 | 430 | The following is an overview of how to use these classes together: |
|
431 | 431 | |
|
432 | 432 | 1. Create a :class:`Client` and :class:`LoadBalancedView` |
|
433 | 433 | 2. Define some functions to be run as tasks |
|
434 | 434 | 3. Submit your tasks to using the :meth:`apply` method of your |
|
435 | 435 | :class:`LoadBalancedView` instance. |
|
436 | 436 | 4. Use :meth:`Client.get_result` to get the results of the |
|
437 | 437 | tasks, or use the :meth:`AsyncResult.get` method of the results to wait |
|
438 | 438 | for and then receive the results. |
|
439 | 439 | |
|
440 | 440 | .. seealso:: |
|
441 | 441 | |
|
442 | 442 | A demo of :ref:`DAG Dependencies <dag_dependencies>` with NetworkX and IPython. |
@@ -1,334 +1,334 | |||
|
1 | 1 | ============================================ |
|
2 | 2 | Getting started with Windows HPC Server 2008 |
|
3 | 3 | ============================================ |
|
4 | 4 | |
|
5 | 5 | .. note:: |
|
6 | 6 | |
|
7 | 7 | Not adapted to zmq yet |
|
8 | 8 | |
|
9 | 9 | Introduction |
|
10 | 10 | ============ |
|
11 | 11 | |
|
12 | 12 | The Python programming language is an increasingly popular language for |
|
13 | 13 | numerical computing. This is due to a unique combination of factors. First, |
|
14 | 14 | Python is a high-level and *interactive* language that is well matched to |
|
15 | 15 | interactive numerical work. Second, it is easy (often times trivial) to |
|
16 | 16 | integrate legacy C/C++/Fortran code into Python. Third, a large number of |
|
17 | 17 | high-quality open source projects provide all the needed building blocks for |
|
18 | 18 | numerical computing: numerical arrays (NumPy), algorithms (SciPy), 2D/3D |
|
19 | 19 | Visualization (Matplotlib, Mayavi, Chaco), Symbolic Mathematics (Sage, Sympy) |
|
20 | 20 | and others. |
|
21 | 21 | |
|
22 | 22 | The IPython project is a core part of this open-source toolchain and is |
|
23 | 23 | focused on creating a comprehensive environment for interactive and |
|
24 | 24 | exploratory computing in the Python programming language. It enables all of |
|
25 | 25 | the above tools to be used interactively and consists of two main components: |
|
26 | 26 | |
|
27 | 27 | * An enhanced interactive Python shell with support for interactive plotting |
|
28 | 28 | and visualization. |
|
29 | 29 | * An architecture for interactive parallel computing. |
|
30 | 30 | |
|
31 | 31 | With these components, it is possible to perform all aspects of a parallel |
|
32 | 32 | computation interactively. This type of workflow is particularly relevant in |
|
33 | 33 | scientific and numerical computing where algorithms, code and data are |
|
34 | 34 | continually evolving as the user/developer explores a problem. The broad |
|
35 | 35 | treads in computing (commodity clusters, multicore, cloud computing, etc.) |
|
36 | 36 | make these capabilities of IPython particularly relevant. |
|
37 | 37 | |
|
38 | 38 | While IPython is a cross platform tool, it has particularly strong support for |
|
39 | 39 | Windows based compute clusters running Windows HPC Server 2008. This document |
|
40 | 40 | describes how to get started with IPython on Windows HPC Server 2008. The |
|
41 | 41 | content and emphasis here is practical: installing IPython, configuring |
|
42 | 42 | IPython to use the Windows job scheduler and running example parallel programs |
|
43 | 43 | interactively. A more complete description of IPython's parallel computing |
|
44 | 44 | capabilities can be found in IPython's online documentation |
|
45 | 45 | (http://ipython.scipy.org/moin/Documentation). |
|
46 | 46 | |
|
47 | 47 | Setting up your Windows cluster |
|
48 | 48 | =============================== |
|
49 | 49 | |
|
50 | 50 | This document assumes that you already have a cluster running Windows |
|
51 | 51 | HPC Server 2008. Here is a broad overview of what is involved with setting up |
|
52 | 52 | such a cluster: |
|
53 | 53 | |
|
54 | 54 | 1. Install Windows Server 2008 on the head and compute nodes in the cluster. |
|
55 | 55 | 2. Setup the network configuration on each host. Each host should have a |
|
56 | 56 | static IP address. |
|
57 | 57 | 3. On the head node, activate the "Active Directory Domain Services" role |
|
58 | 58 | and make the head node the domain controller. |
|
59 | 59 | 4. Join the compute nodes to the newly created Active Directory (AD) domain. |
|
60 | 60 | 5. Setup user accounts in the domain with shared home directories. |
|
61 | 61 | 6. Install the HPC Pack 2008 on the head node to create a cluster. |
|
62 | 62 | 7. Install the HPC Pack 2008 on the compute nodes. |
|
63 | 63 | |
|
64 | 64 | More details about installing and configuring Windows HPC Server 2008 can be |
|
65 | 65 | found on the Windows HPC Home Page (http://www.microsoft.com/hpc). Regardless |
|
66 | 66 | of what steps you follow to set up your cluster, the remainder of this |
|
67 | 67 | document will assume that: |
|
68 | 68 | |
|
69 | 69 | * There are domain users that can log on to the AD domain and submit jobs |
|
70 | 70 | to the cluster scheduler. |
|
71 | 71 | * These domain users have shared home directories. While shared home |
|
72 | 72 | directories are not required to use IPython, they make it much easier to |
|
73 | 73 | use IPython. |
|
74 | 74 | |
|
75 | 75 | Installation of IPython and its dependencies |
|
76 | 76 | ============================================ |
|
77 | 77 | |
|
78 | 78 | IPython and all of its dependencies are freely available and open source. |
|
79 | 79 | These packages provide a powerful and cost-effective approach to numerical and |
|
80 | 80 | scientific computing on Windows. The following dependencies are needed to run |
|
81 | 81 | IPython on Windows: |
|
82 | 82 | |
|
83 | 83 | * Python 2.6 or 2.7 (http://www.python.org) |
|
84 | 84 | * pywin32 (http://sourceforge.net/projects/pywin32/) |
|
85 | 85 | * PyReadline (https://launchpad.net/pyreadline) |
|
86 | 86 | * pyzmq (http://github.com/zeromq/pyzmq/downloads) |
|
87 | 87 | * IPython (http://ipython.scipy.org) |
|
88 | 88 | |
|
89 | 89 | In addition, the following dependencies are needed to run the demos described |
|
90 | 90 | in this document. |
|
91 | 91 | |
|
92 | 92 | * NumPy and SciPy (http://www.scipy.org) |
|
93 | 93 | * Matplotlib (http://matplotlib.sourceforge.net/) |
|
94 | 94 | |
|
95 | 95 | The easiest way of obtaining these dependencies is through the Enthought |
|
96 | 96 | Python Distribution (EPD) (http://www.enthought.com/products/epd.php). EPD is |
|
97 | 97 | produced by Enthought, Inc. and contains all of these packages and others in a |
|
98 | 98 | single installer and is available free for academic users. While it is also |
|
99 | 99 | possible to download and install each package individually, this is a tedious |
|
100 | 100 | process. Thus, we highly recommend using EPD to install these packages on |
|
101 | 101 | Windows. |
|
102 | 102 | |
|
103 | 103 | Regardless of how you install the dependencies, here are the steps you will |
|
104 | 104 | need to follow: |
|
105 | 105 | |
|
106 | 106 | 1. Install all of the packages listed above, either individually or using EPD |
|
107 | 107 | on the head node, compute nodes and user workstations. |
|
108 | 108 | |
|
109 | 109 | 2. Make sure that :file:`C:\\Python27` and :file:`C:\\Python27\\Scripts` are |
|
110 | 110 | in the system :envvar:`%PATH%` variable on each node. |
|
111 | 111 | |
|
112 | 112 | 3. Install the latest development version of IPython. This can be done by |
|
113 | 113 | downloading the the development version from the IPython website |
|
114 | 114 | (http://ipython.scipy.org) and following the installation instructions. |
|
115 | 115 | |
|
116 | 116 | Further details about installing IPython or its dependencies can be found in |
|
117 | 117 | the online IPython documentation (http://ipython.scipy.org/moin/Documentation) |
|
118 | 118 | Once you are finished with the installation, you can try IPython out by |
|
119 | 119 | opening a Windows Command Prompt and typing ``ipython``. This will |
|
120 | 120 | start IPython's interactive shell and you should see something like the |
|
121 | 121 | following screenshot: |
|
122 | 122 | |
|
123 | 123 | .. image:: ipython_shell.* |
|
124 | 124 | |
|
125 | 125 | Starting an IPython cluster |
|
126 | 126 | =========================== |
|
127 | 127 | |
|
128 | 128 | To use IPython's parallel computing capabilities, you will need to start an |
|
129 | 129 | IPython cluster. An IPython cluster consists of one controller and multiple |
|
130 | 130 | engines: |
|
131 | 131 | |
|
132 | 132 | IPython controller |
|
133 | 133 | The IPython controller manages the engines and acts as a gateway between |
|
134 | 134 | the engines and the client, which runs in the user's interactive IPython |
|
135 | 135 | session. The controller is started using the :command:`ipcontroller` |
|
136 | 136 | command. |
|
137 | 137 | |
|
138 | 138 | IPython engine |
|
139 | 139 | IPython engines run a user's Python code in parallel on the compute nodes. |
|
140 | 140 | Engines are starting using the :command:`ipengine` command. |
|
141 | 141 | |
|
142 | 142 | Once these processes are started, a user can run Python code interactively and |
|
143 | 143 | in parallel on the engines from within the IPython shell using an appropriate |
|
144 | 144 | client. This includes the ability to interact with, plot and visualize data |
|
145 | 145 | from the engines. |
|
146 | 146 | |
|
147 | 147 | IPython has a command line program called :command:`ipcluster` that automates |
|
148 | 148 | all aspects of starting the controller and engines on the compute nodes. |
|
149 | 149 | :command:`ipcluster` has full support for the Windows HPC job scheduler, |
|
150 | 150 | meaning that :command:`ipcluster` can use this job scheduler to start the |
|
151 | 151 | controller and engines. In our experience, the Windows HPC job scheduler is |
|
152 | 152 | particularly well suited for interactive applications, such as IPython. Once |
|
153 | 153 | :command:`ipcluster` is configured properly, a user can start an IPython |
|
154 | 154 | cluster from their local workstation almost instantly, without having to log |
|
155 | 155 | on to the head node (as is typically required by Unix based job schedulers). |
|
156 | 156 | This enables a user to move seamlessly between serial and parallel |
|
157 | 157 | computations. |
|
158 | 158 | |
|
159 | 159 | In this section we show how to use :command:`ipcluster` to start an IPython |
|
160 | 160 | cluster using the Windows HPC Server 2008 job scheduler. To make sure that |
|
161 | 161 | :command:`ipcluster` is installed and working properly, you should first try |
|
162 | 162 | to start an IPython cluster on your local host. To do this, open a Windows |
|
163 | 163 | Command Prompt and type the following command:: |
|
164 | 164 | |
|
165 |
ipcluster start |
|
|
165 | ipcluster start n=2 | |
|
166 | 166 | |
|
167 | 167 | You should see a number of messages printed to the screen, ending with |
|
168 | 168 | "IPython cluster: started". The result should look something like the following |
|
169 | 169 | screenshot: |
|
170 | 170 | |
|
171 | 171 | .. image:: ipcluster_start.* |
|
172 | 172 | |
|
173 | 173 | At this point, the controller and two engines are running on your local host. |
|
174 | 174 | This configuration is useful for testing and for situations where you want to |
|
175 | 175 | take advantage of multiple cores on your local computer. |
|
176 | 176 | |
|
177 | 177 | Now that we have confirmed that :command:`ipcluster` is working properly, we |
|
178 | 178 | describe how to configure and run an IPython cluster on an actual compute |
|
179 | 179 | cluster running Windows HPC Server 2008. Here is an outline of the needed |
|
180 | 180 | steps: |
|
181 | 181 | |
|
182 |
1. Create a cluster profile using: ``ipcluster create |
|
|
182 | 1. Create a cluster profile using: ``ipcluster create profile=mycluster`` | |
|
183 | 183 | |
|
184 | 184 | 2. Edit configuration files in the directory :file:`.ipython\\cluster_mycluster` |
|
185 | 185 | |
|
186 |
3. Start the cluster using: ``ipcluser start |
|
|
186 | 3. Start the cluster using: ``ipcluser start profile=mycluster n=32`` | |
|
187 | 187 | |
|
188 | 188 | Creating a cluster profile |
|
189 | 189 | -------------------------- |
|
190 | 190 | |
|
191 | 191 | In most cases, you will have to create a cluster profile to use IPython on a |
|
192 | 192 | cluster. A cluster profile is a name (like "mycluster") that is associated |
|
193 | 193 | with a particular cluster configuration. The profile name is used by |
|
194 | 194 | :command:`ipcluster` when working with the cluster. |
|
195 | 195 | |
|
196 | 196 | Associated with each cluster profile is a cluster directory. This cluster |
|
197 | 197 | directory is a specially named directory (typically located in the |
|
198 | 198 | :file:`.ipython` subdirectory of your home directory) that contains the |
|
199 | 199 | configuration files for a particular cluster profile, as well as log files and |
|
200 | 200 | security keys. The naming convention for cluster directories is: |
|
201 | 201 | :file:`cluster_<profile name>`. Thus, the cluster directory for a profile named |
|
202 | 202 | "foo" would be :file:`.ipython\\cluster_foo`. |
|
203 | 203 | |
|
204 | 204 | To create a new cluster profile (named "mycluster") and the associated cluster |
|
205 | 205 | directory, type the following command at the Windows Command Prompt:: |
|
206 | 206 | |
|
207 |
ipcluster create |
|
|
207 | ipcluster create profile=mycluster | |
|
208 | 208 | |
|
209 | 209 | The output of this command is shown in the screenshot below. Notice how |
|
210 | 210 | :command:`ipcluster` prints out the location of the newly created cluster |
|
211 | 211 | directory. |
|
212 | 212 | |
|
213 | 213 | .. image:: ipcluster_create.* |
|
214 | 214 | |
|
215 | 215 | Configuring a cluster profile |
|
216 | 216 | ----------------------------- |
|
217 | 217 | |
|
218 | 218 | Next, you will need to configure the newly created cluster profile by editing |
|
219 | 219 | the following configuration files in the cluster directory: |
|
220 | 220 | |
|
221 | 221 | * :file:`ipcluster_config.py` |
|
222 | 222 | * :file:`ipcontroller_config.py` |
|
223 | 223 | * :file:`ipengine_config.py` |
|
224 | 224 | |
|
225 | 225 | When :command:`ipcluster` is run, these configuration files are used to |
|
226 | 226 | determine how the engines and controller will be started. In most cases, |
|
227 | 227 | you will only have to set a few of the attributes in these files. |
|
228 | 228 | |
|
229 | 229 | To configure :command:`ipcluster` to use the Windows HPC job scheduler, you |
|
230 | 230 | will need to edit the following attributes in the file |
|
231 | 231 | :file:`ipcluster_config.py`:: |
|
232 | 232 | |
|
233 | 233 | # Set these at the top of the file to tell ipcluster to use the |
|
234 | 234 | # Windows HPC job scheduler. |
|
235 | 235 | c.Global.controller_launcher = \ |
|
236 | 236 | 'IPython.parallel.apps.launcher.WindowsHPCControllerLauncher' |
|
237 | 237 | c.Global.engine_launcher = \ |
|
238 | 238 | 'IPython.parallel.apps.launcher.WindowsHPCEngineSetLauncher' |
|
239 | 239 | |
|
240 | 240 | # Set these to the host name of the scheduler (head node) of your cluster. |
|
241 | 241 | c.WindowsHPCControllerLauncher.scheduler = 'HEADNODE' |
|
242 | 242 | c.WindowsHPCEngineSetLauncher.scheduler = 'HEADNODE' |
|
243 | 243 | |
|
244 | 244 | There are a number of other configuration attributes that can be set, but |
|
245 | 245 | in most cases these will be sufficient to get you started. |
|
246 | 246 | |
|
247 | 247 | .. warning:: |
|
248 | 248 | If any of your configuration attributes involve specifying the location |
|
249 | 249 | of shared directories or files, you must make sure that you use UNC paths |
|
250 | 250 | like :file:`\\\\host\\share`. It is also important that you specify |
|
251 | 251 | these paths using raw Python strings: ``r'\\host\share'`` to make sure |
|
252 | 252 | that the backslashes are properly escaped. |
|
253 | 253 | |
|
254 | 254 | Starting the cluster profile |
|
255 | 255 | ---------------------------- |
|
256 | 256 | |
|
257 | 257 | Once a cluster profile has been configured, starting an IPython cluster using |
|
258 | 258 | the profile is simple:: |
|
259 | 259 | |
|
260 |
ipcluster start |
|
|
260 | ipcluster start profile=mycluster n=32 | |
|
261 | 261 | |
|
262 | 262 | The ``-n`` option tells :command:`ipcluster` how many engines to start (in |
|
263 | 263 | this case 32). Stopping the cluster is as simple as typing Control-C. |
|
264 | 264 | |
|
265 | 265 | Using the HPC Job Manager |
|
266 | 266 | ------------------------- |
|
267 | 267 | |
|
268 | 268 | When ``ipcluster start`` is run the first time, :command:`ipcluster` creates |
|
269 | 269 | two XML job description files in the cluster directory: |
|
270 | 270 | |
|
271 | 271 | * :file:`ipcontroller_job.xml` |
|
272 | 272 | * :file:`ipengineset_job.xml` |
|
273 | 273 | |
|
274 | 274 | Once these files have been created, they can be imported into the HPC Job |
|
275 | 275 | Manager application. Then, the controller and engines for that profile can be |
|
276 | 276 | started using the HPC Job Manager directly, without using :command:`ipcluster`. |
|
277 | 277 | However, anytime the cluster profile is re-configured, ``ipcluster start`` |
|
278 | 278 | must be run again to regenerate the XML job description files. The |
|
279 | 279 | following screenshot shows what the HPC Job Manager interface looks like |
|
280 | 280 | with a running IPython cluster. |
|
281 | 281 | |
|
282 | 282 | .. image:: hpc_job_manager.* |
|
283 | 283 | |
|
284 | 284 | Performing a simple interactive parallel computation |
|
285 | 285 | ==================================================== |
|
286 | 286 | |
|
287 | 287 | Once you have started your IPython cluster, you can start to use it. To do |
|
288 | 288 | this, open up a new Windows Command Prompt and start up IPython's interactive |
|
289 | 289 | shell by typing:: |
|
290 | 290 | |
|
291 | 291 | ipython |
|
292 | 292 | |
|
293 | 293 | Then you can create a :class:`MultiEngineClient` instance for your profile and |
|
294 | 294 | use the resulting instance to do a simple interactive parallel computation. In |
|
295 | 295 | the code and screenshot that follows, we take a simple Python function and |
|
296 | 296 | apply it to each element of an array of integers in parallel using the |
|
297 | 297 | :meth:`MultiEngineClient.map` method: |
|
298 | 298 | |
|
299 | 299 | .. sourcecode:: ipython |
|
300 | 300 | |
|
301 | 301 | In [1]: from IPython.parallel import * |
|
302 | 302 | |
|
303 | 303 | In [2]: c = MultiEngineClient(profile='mycluster') |
|
304 | 304 | |
|
305 | 305 | In [3]: mec.get_ids() |
|
306 | 306 | Out[3]: [0, 1, 2, 3, 4, 5, 67, 8, 9, 10, 11, 12, 13, 14] |
|
307 | 307 | |
|
308 | 308 | In [4]: def f(x): |
|
309 | 309 | ...: return x**10 |
|
310 | 310 | |
|
311 | 311 | In [5]: mec.map(f, range(15)) # f is applied in parallel |
|
312 | 312 | Out[5]: |
|
313 | 313 | [0, |
|
314 | 314 | 1, |
|
315 | 315 | 1024, |
|
316 | 316 | 59049, |
|
317 | 317 | 1048576, |
|
318 | 318 | 9765625, |
|
319 | 319 | 60466176, |
|
320 | 320 | 282475249, |
|
321 | 321 | 1073741824, |
|
322 | 322 | 3486784401L, |
|
323 | 323 | 10000000000L, |
|
324 | 324 | 25937424601L, |
|
325 | 325 | 61917364224L, |
|
326 | 326 | 137858491849L, |
|
327 | 327 | 289254654976L] |
|
328 | 328 | |
|
329 | 329 | The :meth:`map` method has the same signature as Python's builtin :func:`map` |
|
330 | 330 | function, but runs the calculation in parallel. More involved examples of using |
|
331 | 331 | :class:`MultiEngineClient` are provided in the examples that follow. |
|
332 | 332 | |
|
333 | 333 | .. image:: mec_simple.* |
|
334 | 334 |
General Comments 0
You need to be logged in to leave comments.
Login now