##// END OF EJS Templates
Implement hard reset with '%reset -h' call....
Thomas Kluyver -
Show More
@@ -1,327 +1,330 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Displayhook for IPython.
3 3
4 4 This defines a callable class that IPython uses for `sys.displayhook`.
5 5
6 6 Authors:
7 7
8 8 * Fernando Perez
9 9 * Brian Granger
10 10 * Robert Kern
11 11 """
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Copyright (C) 2008-2010 The IPython Development Team
15 15 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
16 16 #
17 17 # Distributed under the terms of the BSD License. The full license is in
18 18 # the file COPYING, distributed as part of this software.
19 19 #-----------------------------------------------------------------------------
20 20
21 21 #-----------------------------------------------------------------------------
22 22 # Imports
23 23 #-----------------------------------------------------------------------------
24 24
25 25 import __builtin__
26 26
27 27 from IPython.config.configurable import Configurable
28 28 from IPython.core import prompts
29 29 import IPython.utils.generics
30 30 import IPython.utils.io
31 31 from IPython.utils.traitlets import Instance, List
32 32 from IPython.utils.warn import warn
33 33
34 34 #-----------------------------------------------------------------------------
35 35 # Main displayhook class
36 36 #-----------------------------------------------------------------------------
37 37
38 38 # TODO: The DisplayHook class should be split into two classes, one that
39 39 # manages the prompts and their synchronization and another that just does the
40 40 # displayhook logic and calls into the prompt manager.
41 41
42 42 # TODO: Move the various attributes (cache_size, colors, input_sep,
43 43 # output_sep, output_sep2, ps1, ps2, ps_out, pad_left). Some of these are also
44 44 # attributes of InteractiveShell. They should be on ONE object only and the
45 45 # other objects should ask that one object for their values.
46 46
47 47 class DisplayHook(Configurable):
48 48 """The custom IPython displayhook to replace sys.displayhook.
49 49
50 50 This class does many things, but the basic idea is that it is a callable
51 51 that gets called anytime user code returns a value.
52 52
53 53 Currently this class does more than just the displayhook logic and that
54 54 extra logic should eventually be moved out of here.
55 55 """
56 56
57 57 shell = Instance('IPython.core.interactiveshell.InteractiveShellABC')
58 58
59 59 def __init__(self, shell=None, cache_size=1000,
60 60 colors='NoColor', input_sep='\n',
61 61 output_sep='\n', output_sep2='',
62 62 ps1 = None, ps2 = None, ps_out = None, pad_left=True,
63 63 config=None):
64 64 super(DisplayHook, self).__init__(shell=shell, config=config)
65 65
66 66 cache_size_min = 3
67 67 if cache_size <= 0:
68 68 self.do_full_cache = 0
69 69 cache_size = 0
70 70 elif cache_size < cache_size_min:
71 71 self.do_full_cache = 0
72 72 cache_size = 0
73 73 warn('caching was disabled (min value for cache size is %s).' %
74 74 cache_size_min,level=3)
75 75 else:
76 76 self.do_full_cache = 1
77 77
78 78 self.cache_size = cache_size
79 79 self.input_sep = input_sep
80 80
81 81 # we need a reference to the user-level namespace
82 82 self.shell = shell
83 83
84 84 # Set input prompt strings and colors
85 85 if cache_size == 0:
86 86 if ps1.find('%n') > -1 or ps1.find(r'\#') > -1 \
87 87 or ps1.find(r'\N') > -1:
88 88 ps1 = '>>> '
89 89 if ps2.find('%n') > -1 or ps2.find(r'\#') > -1 \
90 90 or ps2.find(r'\N') > -1:
91 91 ps2 = '... '
92 92 self.ps1_str = self._set_prompt_str(ps1,'In [\\#]: ','>>> ')
93 93 self.ps2_str = self._set_prompt_str(ps2,' .\\D.: ','... ')
94 94 self.ps_out_str = self._set_prompt_str(ps_out,'Out[\\#]: ','')
95 95
96 96 self.color_table = prompts.PromptColors
97 97 self.prompt1 = prompts.Prompt1(self,sep=input_sep,prompt=self.ps1_str,
98 98 pad_left=pad_left)
99 99 self.prompt2 = prompts.Prompt2(self,prompt=self.ps2_str,pad_left=pad_left)
100 100 self.prompt_out = prompts.PromptOut(self,sep='',prompt=self.ps_out_str,
101 101 pad_left=pad_left)
102 102 self.set_colors(colors)
103 103
104 104 # Store the last prompt string each time, we need it for aligning
105 105 # continuation and auto-rewrite prompts
106 106 self.last_prompt = ''
107 107 self.output_sep = output_sep
108 108 self.output_sep2 = output_sep2
109 109 self._,self.__,self.___ = '','',''
110 110
111 111 # these are deliberately global:
112 112 to_user_ns = {'_':self._,'__':self.__,'___':self.___}
113 113 self.shell.user_ns.update(to_user_ns)
114 114
115 115 @property
116 116 def prompt_count(self):
117 117 return self.shell.execution_count
118 118
119 119 def _set_prompt_str(self,p_str,cache_def,no_cache_def):
120 120 if p_str is None:
121 121 if self.do_full_cache:
122 122 return cache_def
123 123 else:
124 124 return no_cache_def
125 125 else:
126 126 return p_str
127 127
128 128 def set_colors(self, colors):
129 129 """Set the active color scheme and configure colors for the three
130 130 prompt subsystems."""
131 131
132 132 # FIXME: This modifying of the global prompts.prompt_specials needs
133 133 # to be fixed. We need to refactor all of the prompts stuff to use
134 134 # proper configuration and traits notifications.
135 135 if colors.lower()=='nocolor':
136 136 prompts.prompt_specials = prompts.prompt_specials_nocolor
137 137 else:
138 138 prompts.prompt_specials = prompts.prompt_specials_color
139 139
140 140 self.color_table.set_active_scheme(colors)
141 141 self.prompt1.set_colors()
142 142 self.prompt2.set_colors()
143 143 self.prompt_out.set_colors()
144 144
145 145 #-------------------------------------------------------------------------
146 146 # Methods used in __call__. Override these methods to modify the behavior
147 147 # of the displayhook.
148 148 #-------------------------------------------------------------------------
149 149
150 150 def check_for_underscore(self):
151 151 """Check if the user has set the '_' variable by hand."""
152 152 # If something injected a '_' variable in __builtin__, delete
153 153 # ipython's automatic one so we don't clobber that. gettext() in
154 154 # particular uses _, so we need to stay away from it.
155 155 if '_' in __builtin__.__dict__:
156 156 try:
157 157 del self.shell.user_ns['_']
158 158 except KeyError:
159 159 pass
160 160
161 161 def quiet(self):
162 162 """Should we silence the display hook because of ';'?"""
163 163 # do not print output if input ends in ';'
164 164 try:
165 165 if self.shell.history_manager.input_hist_parsed[self.prompt_count].endswith(';\n'):
166 166 return True
167 167 except IndexError:
168 168 # some uses of ipshellembed may fail here
169 169 pass
170 170 return False
171 171
172 172 def start_displayhook(self):
173 173 """Start the displayhook, initializing resources."""
174 174 pass
175 175
176 176 def write_output_prompt(self):
177 177 """Write the output prompt.
178 178
179 179 The default implementation simply writes the prompt to
180 180 ``io.Term.cout``.
181 181 """
182 182 # Use write, not print which adds an extra space.
183 183 IPython.utils.io.Term.cout.write(self.output_sep)
184 184 outprompt = str(self.prompt_out)
185 185 if self.do_full_cache:
186 186 IPython.utils.io.Term.cout.write(outprompt)
187 187
188 188 def compute_format_data(self, result):
189 189 """Compute format data of the object to be displayed.
190 190
191 191 The format data is a generalization of the :func:`repr` of an object.
192 192 In the default implementation the format data is a :class:`dict` of
193 193 key value pair where the keys are valid MIME types and the values
194 194 are JSON'able data structure containing the raw data for that MIME
195 195 type. It is up to frontends to determine pick a MIME to to use and
196 196 display that data in an appropriate manner.
197 197
198 198 This method only computes the format data for the object and should
199 199 NOT actually print or write that to a stream.
200 200
201 201 Parameters
202 202 ----------
203 203 result : object
204 204 The Python object passed to the display hook, whose format will be
205 205 computed.
206 206
207 207 Returns
208 208 -------
209 209 format_data : dict
210 210 A :class:`dict` whose keys are valid MIME types and values are
211 211 JSON'able raw data for that MIME type. It is recommended that
212 212 all return values of this should always include the "text/plain"
213 213 MIME type representation of the object.
214 214 """
215 215 return self.shell.display_formatter.format(result)
216 216
217 217 def write_format_data(self, format_dict):
218 218 """Write the format data dict to the frontend.
219 219
220 220 This default version of this method simply writes the plain text
221 221 representation of the object to ``io.Term.cout``. Subclasses should
222 222 override this method to send the entire `format_dict` to the
223 223 frontends.
224 224
225 225 Parameters
226 226 ----------
227 227 format_dict : dict
228 228 The format dict for the object passed to `sys.displayhook`.
229 229 """
230 230 # We want to print because we want to always make sure we have a
231 231 # newline, even if all the prompt separators are ''. This is the
232 232 # standard IPython behavior.
233 233 result_repr = format_dict['text/plain']
234 234 if '\n' in result_repr:
235 235 # So that multi-line strings line up with the left column of
236 236 # the screen, instead of having the output prompt mess up
237 237 # their first line.
238 238 # We use the ps_out_str template instead of the expanded prompt
239 239 # because the expansion may add ANSI escapes that will interfere
240 240 # with our ability to determine whether or not we should add
241 241 # a newline.
242 242 if self.ps_out_str and not self.ps_out_str.endswith('\n'):
243 243 # But avoid extraneous empty lines.
244 244 result_repr = '\n' + result_repr
245 245
246 246 print >>IPython.utils.io.Term.cout, result_repr
247 247
248 248 def update_user_ns(self, result):
249 249 """Update user_ns with various things like _, __, _1, etc."""
250 250
251 251 # Avoid recursive reference when displaying _oh/Out
252 252 if result is not self.shell.user_ns['_oh']:
253 253 if len(self.shell.user_ns['_oh']) >= self.cache_size and self.do_full_cache:
254 254 warn('Output cache limit (currently '+
255 255 `self.cache_size`+' entries) hit.\n'
256 256 'Flushing cache and resetting history counter...\n'
257 257 'The only history variables available will be _,__,___ and _1\n'
258 258 'with the current result.')
259 259
260 260 self.flush()
261 261 # Don't overwrite '_' and friends if '_' is in __builtin__ (otherwise
262 262 # we cause buggy behavior for things like gettext).
263 263
264 264 if '_' not in __builtin__.__dict__:
265 265 self.___ = self.__
266 266 self.__ = self._
267 267 self._ = result
268 268 self.shell.user_ns.update({'_':self._,
269 269 '__':self.__,
270 270 '___':self.___})
271 271
272 272 # hackish access to top-level namespace to create _1,_2... dynamically
273 273 to_main = {}
274 274 if self.do_full_cache:
275 275 new_result = '_'+`self.prompt_count`
276 276 to_main[new_result] = result
277 277 self.shell.user_ns.update(to_main)
278 278 self.shell.user_ns['_oh'][self.prompt_count] = result
279 279
280 280 def log_output(self, format_dict):
281 281 """Log the output."""
282 282 if self.shell.logger.log_output:
283 283 self.shell.logger.log_write(format_dict['text/plain'], 'output')
284 284 # This is a defaultdict of lists, so we can always append
285 285 self.shell.history_manager.output_hist_reprs[self.prompt_count]\
286 286 .append(format_dict['text/plain'])
287 287
288 288 def finish_displayhook(self):
289 289 """Finish up all displayhook activities."""
290 290 IPython.utils.io.Term.cout.write(self.output_sep2)
291 291 IPython.utils.io.Term.cout.flush()
292 292
293 293 def __call__(self, result=None):
294 294 """Printing with history cache management.
295 295
296 296 This is invoked everytime the interpreter needs to print, and is
297 297 activated by setting the variable sys.displayhook to it.
298 298 """
299 299 self.check_for_underscore()
300 300 if result is not None and not self.quiet():
301 301 self.start_displayhook()
302 302 self.write_output_prompt()
303 303 format_dict = self.compute_format_data(result)
304 304 self.write_format_data(format_dict)
305 305 self.update_user_ns(result)
306 306 self.log_output(format_dict)
307 307 self.finish_displayhook()
308 308
309 309 def flush(self):
310 310 if not self.do_full_cache:
311 311 raise ValueError,"You shouldn't have reached the cache flush "\
312 312 "if full caching is not enabled!"
313 313 # delete auto-generated vars from global namespace
314 314
315 315 for n in range(1,self.prompt_count + 1):
316 316 key = '_'+`n`
317 317 try:
318 318 del self.shell.user_ns[key]
319 319 except: pass
320 320 self.shell.user_ns['_oh'].clear()
321 321
322 # Release our own references to objects:
323 self._, self.__, self.___ = '', '', ''
324
322 325 if '_' not in __builtin__.__dict__:
323 326 self.shell.user_ns.update({'_':None,'__':None, '___':None})
324 327 import gc
325 328 # TODO: Is this really needed?
326 329 gc.collect()
327 330
@@ -1,2613 +1,2620 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import inspect
26 26 import os
27 27 import re
28 28 import sys
29 29 import tempfile
30 30 import types
31 31 from contextlib import nested
32 32
33 33 from IPython.config.configurable import Configurable
34 34 from IPython.core import debugger, oinspect
35 35 from IPython.core import history as ipcorehist
36 36 from IPython.core import page
37 37 from IPython.core import prefilter
38 38 from IPython.core import shadowns
39 39 from IPython.core import ultratb
40 40 from IPython.core.alias import AliasManager
41 41 from IPython.core.builtin_trap import BuiltinTrap
42 42 from IPython.core.compilerop import CachingCompiler
43 43 from IPython.core.display_trap import DisplayTrap
44 44 from IPython.core.displayhook import DisplayHook
45 45 from IPython.core.displaypub import DisplayPublisher
46 46 from IPython.core.error import TryNext, UsageError
47 47 from IPython.core.extensions import ExtensionManager
48 48 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
49 49 from IPython.core.formatters import DisplayFormatter
50 50 from IPython.core.history import HistoryManager
51 51 from IPython.core.inputsplitter import IPythonInputSplitter
52 52 from IPython.core.logger import Logger
53 53 from IPython.core.macro import Macro
54 54 from IPython.core.magic import Magic
55 55 from IPython.core.payload import PayloadManager
56 56 from IPython.core.plugin import PluginManager
57 57 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
58 58 from IPython.external.Itpl import ItplNS
59 59 from IPython.utils import PyColorize
60 60 from IPython.utils import io
61 61 from IPython.utils.doctestreload import doctest_reload
62 62 from IPython.utils.io import ask_yes_no, rprint
63 63 from IPython.utils.ipstruct import Struct
64 64 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
65 65 from IPython.utils.pickleshare import PickleShareDB
66 66 from IPython.utils.process import system, getoutput
67 67 from IPython.utils.strdispatch import StrDispatch
68 68 from IPython.utils.syspathcontext import prepended_to_syspath
69 69 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
70 70 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
71 71 List, Unicode, Instance, Type)
72 72 from IPython.utils.warn import warn, error, fatal
73 73 import IPython.core.hooks
74 74
75 75 #-----------------------------------------------------------------------------
76 76 # Globals
77 77 #-----------------------------------------------------------------------------
78 78
79 79 # compiled regexps for autoindent management
80 80 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
81 81
82 82 #-----------------------------------------------------------------------------
83 83 # Utilities
84 84 #-----------------------------------------------------------------------------
85 85
86 86 # store the builtin raw_input globally, and use this always, in case user code
87 87 # overwrites it (like wx.py.PyShell does)
88 88 raw_input_original = raw_input
89 89
90 90 def softspace(file, newvalue):
91 91 """Copied from code.py, to remove the dependency"""
92 92
93 93 oldvalue = 0
94 94 try:
95 95 oldvalue = file.softspace
96 96 except AttributeError:
97 97 pass
98 98 try:
99 99 file.softspace = newvalue
100 100 except (AttributeError, TypeError):
101 101 # "attribute-less object" or "read-only attributes"
102 102 pass
103 103 return oldvalue
104 104
105 105
106 106 def no_op(*a, **kw): pass
107 107
108 108 class SpaceInInput(Exception): pass
109 109
110 110 class Bunch: pass
111 111
112 112
113 113 def get_default_colors():
114 114 if sys.platform=='darwin':
115 115 return "LightBG"
116 116 elif os.name=='nt':
117 117 return 'Linux'
118 118 else:
119 119 return 'Linux'
120 120
121 121
122 122 class SeparateStr(Str):
123 123 """A Str subclass to validate separate_in, separate_out, etc.
124 124
125 125 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
126 126 """
127 127
128 128 def validate(self, obj, value):
129 129 if value == '0': value = ''
130 130 value = value.replace('\\n','\n')
131 131 return super(SeparateStr, self).validate(obj, value)
132 132
133 133 class MultipleInstanceError(Exception):
134 134 pass
135 135
136 136 class ReadlineNoRecord(object):
137 137 """Context manager to execute some code, then reload readline history
138 138 so that interactive input to the code doesn't appear when pressing up."""
139 139 def __init__(self, shell):
140 140 self.shell = shell
141 141 self._nested_level = 0
142 142
143 143 def __enter__(self):
144 144 if self._nested_level == 0:
145 145 self.orig_length = self.current_length()
146 146 self.readline_tail = self.get_readline_tail()
147 147 self._nested_level += 1
148 148
149 149 def __exit__(self, type, value, traceback):
150 150 self._nested_level -= 1
151 151 if self._nested_level == 0:
152 152 # Try clipping the end if it's got longer
153 153 e = self.current_length() - self.orig_length
154 154 if e > 0:
155 155 for _ in range(e):
156 156 self.shell.readline.remove_history_item(self.orig_length)
157 157
158 158 # If it still doesn't match, just reload readline history.
159 159 if self.current_length() != self.orig_length \
160 160 or self.get_readline_tail() != self.readline_tail:
161 161 self.shell.refill_readline_hist()
162 162 # Returning False will cause exceptions to propagate
163 163 return False
164 164
165 165 def current_length(self):
166 166 return self.shell.readline.get_current_history_length()
167 167
168 168 def get_readline_tail(self, n=10):
169 169 """Get the last n items in readline history."""
170 170 end = self.shell.readline.get_current_history_length() + 1
171 171 start = max(end-n, 1)
172 172 ghi = self.shell.readline.get_history_item
173 173 return [ghi(x) for x in range(start, end)]
174 174
175 175
176 176 #-----------------------------------------------------------------------------
177 177 # Main IPython class
178 178 #-----------------------------------------------------------------------------
179 179
180 180 class InteractiveShell(Configurable, Magic):
181 181 """An enhanced, interactive shell for Python."""
182 182
183 183 _instance = None
184 184 autocall = Enum((0,1,2), default_value=1, config=True)
185 185 # TODO: remove all autoindent logic and put into frontends.
186 186 # We can't do this yet because even runlines uses the autoindent.
187 187 autoindent = CBool(True, config=True)
188 188 automagic = CBool(True, config=True)
189 189 cache_size = Int(1000, config=True)
190 190 color_info = CBool(True, config=True)
191 191 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
192 192 default_value=get_default_colors(), config=True)
193 193 debug = CBool(False, config=True)
194 194 deep_reload = CBool(False, config=True)
195 195 display_formatter = Instance(DisplayFormatter)
196 196 displayhook_class = Type(DisplayHook)
197 197 display_pub_class = Type(DisplayPublisher)
198 198
199 199 exit_now = CBool(False)
200 200 # Monotonically increasing execution counter
201 201 execution_count = Int(1)
202 202 filename = Unicode("<ipython console>")
203 203 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
204 204
205 205 # Input splitter, to split entire cells of input into either individual
206 206 # interactive statements or whole blocks.
207 207 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
208 208 (), {})
209 209 logstart = CBool(False, config=True)
210 210 logfile = Unicode('', config=True)
211 211 logappend = Unicode('', config=True)
212 212 object_info_string_level = Enum((0,1,2), default_value=0,
213 213 config=True)
214 214 pdb = CBool(False, config=True)
215 215
216 216 profile = Unicode('', config=True)
217 217 prompt_in1 = Str('In [\\#]: ', config=True)
218 218 prompt_in2 = Str(' .\\D.: ', config=True)
219 219 prompt_out = Str('Out[\\#]: ', config=True)
220 220 prompts_pad_left = CBool(True, config=True)
221 221 quiet = CBool(False, config=True)
222 222
223 223 history_length = Int(10000, config=True)
224 224
225 225 # The readline stuff will eventually be moved to the terminal subclass
226 226 # but for now, we can't do that as readline is welded in everywhere.
227 227 readline_use = CBool(True, config=True)
228 228 readline_merge_completions = CBool(True, config=True)
229 229 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
230 230 readline_remove_delims = Str('-/~', config=True)
231 231 readline_parse_and_bind = List([
232 232 'tab: complete',
233 233 '"\C-l": clear-screen',
234 234 'set show-all-if-ambiguous on',
235 235 '"\C-o": tab-insert',
236 236 # See bug gh-58 - with \M-i enabled, chars 0x9000-0x9fff
237 237 # crash IPython.
238 238 '"\M-o": "\d\d\d\d"',
239 239 '"\M-I": "\d\d\d\d"',
240 240 '"\C-r": reverse-search-history',
241 241 '"\C-s": forward-search-history',
242 242 '"\C-p": history-search-backward',
243 243 '"\C-n": history-search-forward',
244 244 '"\e[A": history-search-backward',
245 245 '"\e[B": history-search-forward',
246 246 '"\C-k": kill-line',
247 247 '"\C-u": unix-line-discard',
248 248 ], allow_none=False, config=True)
249 249
250 250 # TODO: this part of prompt management should be moved to the frontends.
251 251 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
252 252 separate_in = SeparateStr('\n', config=True)
253 253 separate_out = SeparateStr('', config=True)
254 254 separate_out2 = SeparateStr('', config=True)
255 255 wildcards_case_sensitive = CBool(True, config=True)
256 256 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
257 257 default_value='Context', config=True)
258 258
259 259 # Subcomponents of InteractiveShell
260 260 alias_manager = Instance('IPython.core.alias.AliasManager')
261 261 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
262 262 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
263 263 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
264 264 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
265 265 plugin_manager = Instance('IPython.core.plugin.PluginManager')
266 266 payload_manager = Instance('IPython.core.payload.PayloadManager')
267 267 history_manager = Instance('IPython.core.history.HistoryManager')
268 268
269 269 # Private interface
270 270 _post_execute = set()
271 271
272 272 def __init__(self, config=None, ipython_dir=None,
273 273 user_ns=None, user_global_ns=None,
274 274 custom_exceptions=((), None)):
275 275
276 276 # This is where traits with a config_key argument are updated
277 277 # from the values on config.
278 278 super(InteractiveShell, self).__init__(config=config)
279 279
280 280 # These are relatively independent and stateless
281 281 self.init_ipython_dir(ipython_dir)
282 282 self.init_instance_attrs()
283 283 self.init_environment()
284 284
285 285 # Create namespaces (user_ns, user_global_ns, etc.)
286 286 self.init_create_namespaces(user_ns, user_global_ns)
287 287 # This has to be done after init_create_namespaces because it uses
288 288 # something in self.user_ns, but before init_sys_modules, which
289 289 # is the first thing to modify sys.
290 290 # TODO: When we override sys.stdout and sys.stderr before this class
291 291 # is created, we are saving the overridden ones here. Not sure if this
292 292 # is what we want to do.
293 293 self.save_sys_module_state()
294 294 self.init_sys_modules()
295 295
296 296 # While we're trying to have each part of the code directly access what
297 297 # it needs without keeping redundant references to objects, we have too
298 298 # much legacy code that expects ip.db to exist.
299 299 self.db = PickleShareDB(os.path.join(self.ipython_dir, 'db'))
300 300
301 301 self.init_history()
302 302 self.init_encoding()
303 303 self.init_prefilter()
304 304
305 305 Magic.__init__(self, self)
306 306
307 307 self.init_syntax_highlighting()
308 308 self.init_hooks()
309 309 self.init_pushd_popd_magic()
310 310 # self.init_traceback_handlers use to be here, but we moved it below
311 311 # because it and init_io have to come after init_readline.
312 312 self.init_user_ns()
313 313 self.init_logger()
314 314 self.init_alias()
315 315 self.init_builtins()
316 316
317 317 # pre_config_initialization
318 318
319 319 # The next section should contain everything that was in ipmaker.
320 320 self.init_logstart()
321 321
322 322 # The following was in post_config_initialization
323 323 self.init_inspector()
324 324 # init_readline() must come before init_io(), because init_io uses
325 325 # readline related things.
326 326 self.init_readline()
327 327 # init_completer must come after init_readline, because it needs to
328 328 # know whether readline is present or not system-wide to configure the
329 329 # completers, since the completion machinery can now operate
330 330 # independently of readline (e.g. over the network)
331 331 self.init_completer()
332 332 # TODO: init_io() needs to happen before init_traceback handlers
333 333 # because the traceback handlers hardcode the stdout/stderr streams.
334 334 # This logic in in debugger.Pdb and should eventually be changed.
335 335 self.init_io()
336 336 self.init_traceback_handlers(custom_exceptions)
337 337 self.init_prompts()
338 338 self.init_display_formatter()
339 339 self.init_display_pub()
340 340 self.init_displayhook()
341 341 self.init_reload_doctest()
342 342 self.init_magics()
343 343 self.init_pdb()
344 344 self.init_extension_manager()
345 345 self.init_plugin_manager()
346 346 self.init_payload()
347 347 self.hooks.late_startup_hook()
348 348 atexit.register(self.atexit_operations)
349 349
350 350 @classmethod
351 351 def instance(cls, *args, **kwargs):
352 352 """Returns a global InteractiveShell instance."""
353 353 if cls._instance is None:
354 354 inst = cls(*args, **kwargs)
355 355 # Now make sure that the instance will also be returned by
356 356 # the subclasses instance attribute.
357 357 for subclass in cls.mro():
358 358 if issubclass(cls, subclass) and \
359 359 issubclass(subclass, InteractiveShell):
360 360 subclass._instance = inst
361 361 else:
362 362 break
363 363 if isinstance(cls._instance, cls):
364 364 return cls._instance
365 365 else:
366 366 raise MultipleInstanceError(
367 367 'Multiple incompatible subclass instances of '
368 368 'InteractiveShell are being created.'
369 369 )
370 370
371 371 @classmethod
372 372 def initialized(cls):
373 373 return hasattr(cls, "_instance")
374 374
375 375 def get_ipython(self):
376 376 """Return the currently running IPython instance."""
377 377 return self
378 378
379 379 #-------------------------------------------------------------------------
380 380 # Trait changed handlers
381 381 #-------------------------------------------------------------------------
382 382
383 383 def _ipython_dir_changed(self, name, new):
384 384 if not os.path.isdir(new):
385 385 os.makedirs(new, mode = 0777)
386 386
387 387 def set_autoindent(self,value=None):
388 388 """Set the autoindent flag, checking for readline support.
389 389
390 390 If called with no arguments, it acts as a toggle."""
391 391
392 392 if not self.has_readline:
393 393 if os.name == 'posix':
394 394 warn("The auto-indent feature requires the readline library")
395 395 self.autoindent = 0
396 396 return
397 397 if value is None:
398 398 self.autoindent = not self.autoindent
399 399 else:
400 400 self.autoindent = value
401 401
402 402 #-------------------------------------------------------------------------
403 403 # init_* methods called by __init__
404 404 #-------------------------------------------------------------------------
405 405
406 406 def init_ipython_dir(self, ipython_dir):
407 407 if ipython_dir is not None:
408 408 self.ipython_dir = ipython_dir
409 409 self.config.Global.ipython_dir = self.ipython_dir
410 410 return
411 411
412 412 if hasattr(self.config.Global, 'ipython_dir'):
413 413 self.ipython_dir = self.config.Global.ipython_dir
414 414 else:
415 415 self.ipython_dir = get_ipython_dir()
416 416
417 417 # All children can just read this
418 418 self.config.Global.ipython_dir = self.ipython_dir
419 419
420 420 def init_instance_attrs(self):
421 421 self.more = False
422 422
423 423 # command compiler
424 424 self.compile = CachingCompiler()
425 425
426 426 # User input buffers
427 427 # NOTE: these variables are slated for full removal, once we are 100%
428 428 # sure that the new execution logic is solid. We will delte runlines,
429 429 # push_line and these buffers, as all input will be managed by the
430 430 # frontends via an inputsplitter instance.
431 431 self.buffer = []
432 432 self.buffer_raw = []
433 433
434 434 # Make an empty namespace, which extension writers can rely on both
435 435 # existing and NEVER being used by ipython itself. This gives them a
436 436 # convenient location for storing additional information and state
437 437 # their extensions may require, without fear of collisions with other
438 438 # ipython names that may develop later.
439 439 self.meta = Struct()
440 440
441 441 # Object variable to store code object waiting execution. This is
442 442 # used mainly by the multithreaded shells, but it can come in handy in
443 443 # other situations. No need to use a Queue here, since it's a single
444 444 # item which gets cleared once run.
445 445 self.code_to_run = None
446 446
447 447 # Temporary files used for various purposes. Deleted at exit.
448 448 self.tempfiles = []
449 449
450 450 # Keep track of readline usage (later set by init_readline)
451 451 self.has_readline = False
452 452
453 453 # keep track of where we started running (mainly for crash post-mortem)
454 454 # This is not being used anywhere currently.
455 455 self.starting_dir = os.getcwd()
456 456
457 457 # Indentation management
458 458 self.indent_current_nsp = 0
459 459
460 460 def init_environment(self):
461 461 """Any changes we need to make to the user's environment."""
462 462 pass
463 463
464 464 def init_encoding(self):
465 465 # Get system encoding at startup time. Certain terminals (like Emacs
466 466 # under Win32 have it set to None, and we need to have a known valid
467 467 # encoding to use in the raw_input() method
468 468 try:
469 469 self.stdin_encoding = sys.stdin.encoding or 'ascii'
470 470 except AttributeError:
471 471 self.stdin_encoding = 'ascii'
472 472
473 473 def init_syntax_highlighting(self):
474 474 # Python source parser/formatter for syntax highlighting
475 475 pyformat = PyColorize.Parser().format
476 476 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
477 477
478 478 def init_pushd_popd_magic(self):
479 479 # for pushd/popd management
480 480 try:
481 481 self.home_dir = get_home_dir()
482 482 except HomeDirError, msg:
483 483 fatal(msg)
484 484
485 485 self.dir_stack = []
486 486
487 487 def init_logger(self):
488 488 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
489 489 logmode='rotate')
490 490
491 491 def init_logstart(self):
492 492 """Initialize logging in case it was requested at the command line.
493 493 """
494 494 if self.logappend:
495 495 self.magic_logstart(self.logappend + ' append')
496 496 elif self.logfile:
497 497 self.magic_logstart(self.logfile)
498 498 elif self.logstart:
499 499 self.magic_logstart()
500 500
501 501 def init_builtins(self):
502 502 self.builtin_trap = BuiltinTrap(shell=self)
503 503
504 504 def init_inspector(self):
505 505 # Object inspector
506 506 self.inspector = oinspect.Inspector(oinspect.InspectColors,
507 507 PyColorize.ANSICodeColors,
508 508 'NoColor',
509 509 self.object_info_string_level)
510 510
511 511 def init_io(self):
512 512 # This will just use sys.stdout and sys.stderr. If you want to
513 513 # override sys.stdout and sys.stderr themselves, you need to do that
514 514 # *before* instantiating this class, because Term holds onto
515 515 # references to the underlying streams.
516 516 if sys.platform == 'win32' and self.has_readline:
517 517 Term = io.IOTerm(cout=self.readline._outputfile,
518 518 cerr=self.readline._outputfile)
519 519 else:
520 520 Term = io.IOTerm()
521 521 io.Term = Term
522 522
523 523 def init_prompts(self):
524 524 # TODO: This is a pass for now because the prompts are managed inside
525 525 # the DisplayHook. Once there is a separate prompt manager, this
526 526 # will initialize that object and all prompt related information.
527 527 pass
528 528
529 529 def init_display_formatter(self):
530 530 self.display_formatter = DisplayFormatter(config=self.config)
531 531
532 532 def init_display_pub(self):
533 533 self.display_pub = self.display_pub_class(config=self.config)
534 534
535 535 def init_displayhook(self):
536 536 # Initialize displayhook, set in/out prompts and printing system
537 537 self.displayhook = self.displayhook_class(
538 538 config=self.config,
539 539 shell=self,
540 540 cache_size=self.cache_size,
541 541 input_sep = self.separate_in,
542 542 output_sep = self.separate_out,
543 543 output_sep2 = self.separate_out2,
544 544 ps1 = self.prompt_in1,
545 545 ps2 = self.prompt_in2,
546 546 ps_out = self.prompt_out,
547 547 pad_left = self.prompts_pad_left
548 548 )
549 549 # This is a context manager that installs/revmoes the displayhook at
550 550 # the appropriate time.
551 551 self.display_trap = DisplayTrap(hook=self.displayhook)
552 552
553 553 def init_reload_doctest(self):
554 554 # Do a proper resetting of doctest, including the necessary displayhook
555 555 # monkeypatching
556 556 try:
557 557 doctest_reload()
558 558 except ImportError:
559 559 warn("doctest module does not exist.")
560 560
561 561 #-------------------------------------------------------------------------
562 562 # Things related to injections into the sys module
563 563 #-------------------------------------------------------------------------
564 564
565 565 def save_sys_module_state(self):
566 566 """Save the state of hooks in the sys module.
567 567
568 568 This has to be called after self.user_ns is created.
569 569 """
570 570 self._orig_sys_module_state = {}
571 571 self._orig_sys_module_state['stdin'] = sys.stdin
572 572 self._orig_sys_module_state['stdout'] = sys.stdout
573 573 self._orig_sys_module_state['stderr'] = sys.stderr
574 574 self._orig_sys_module_state['excepthook'] = sys.excepthook
575 575 try:
576 576 self._orig_sys_modules_main_name = self.user_ns['__name__']
577 577 except KeyError:
578 578 pass
579 579
580 580 def restore_sys_module_state(self):
581 581 """Restore the state of the sys module."""
582 582 try:
583 583 for k, v in self._orig_sys_module_state.iteritems():
584 584 setattr(sys, k, v)
585 585 except AttributeError:
586 586 pass
587 587 # Reset what what done in self.init_sys_modules
588 588 try:
589 589 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
590 590 except (AttributeError, KeyError):
591 591 pass
592 592
593 593 #-------------------------------------------------------------------------
594 594 # Things related to hooks
595 595 #-------------------------------------------------------------------------
596 596
597 597 def init_hooks(self):
598 598 # hooks holds pointers used for user-side customizations
599 599 self.hooks = Struct()
600 600
601 601 self.strdispatchers = {}
602 602
603 603 # Set all default hooks, defined in the IPython.hooks module.
604 604 hooks = IPython.core.hooks
605 605 for hook_name in hooks.__all__:
606 606 # default hooks have priority 100, i.e. low; user hooks should have
607 607 # 0-100 priority
608 608 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
609 609
610 610 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
611 611 """set_hook(name,hook) -> sets an internal IPython hook.
612 612
613 613 IPython exposes some of its internal API as user-modifiable hooks. By
614 614 adding your function to one of these hooks, you can modify IPython's
615 615 behavior to call at runtime your own routines."""
616 616
617 617 # At some point in the future, this should validate the hook before it
618 618 # accepts it. Probably at least check that the hook takes the number
619 619 # of args it's supposed to.
620 620
621 621 f = types.MethodType(hook,self)
622 622
623 623 # check if the hook is for strdispatcher first
624 624 if str_key is not None:
625 625 sdp = self.strdispatchers.get(name, StrDispatch())
626 626 sdp.add_s(str_key, f, priority )
627 627 self.strdispatchers[name] = sdp
628 628 return
629 629 if re_key is not None:
630 630 sdp = self.strdispatchers.get(name, StrDispatch())
631 631 sdp.add_re(re.compile(re_key), f, priority )
632 632 self.strdispatchers[name] = sdp
633 633 return
634 634
635 635 dp = getattr(self.hooks, name, None)
636 636 if name not in IPython.core.hooks.__all__:
637 637 print "Warning! Hook '%s' is not one of %s" % \
638 638 (name, IPython.core.hooks.__all__ )
639 639 if not dp:
640 640 dp = IPython.core.hooks.CommandChainDispatcher()
641 641
642 642 try:
643 643 dp.add(f,priority)
644 644 except AttributeError:
645 645 # it was not commandchain, plain old func - replace
646 646 dp = f
647 647
648 648 setattr(self.hooks,name, dp)
649 649
650 650 def register_post_execute(self, func):
651 651 """Register a function for calling after code execution.
652 652 """
653 653 if not callable(func):
654 654 raise ValueError('argument %s must be callable' % func)
655 655 self._post_execute.add(func)
656 656
657 657 #-------------------------------------------------------------------------
658 658 # Things related to the "main" module
659 659 #-------------------------------------------------------------------------
660 660
661 661 def new_main_mod(self,ns=None):
662 662 """Return a new 'main' module object for user code execution.
663 663 """
664 664 main_mod = self._user_main_module
665 665 init_fakemod_dict(main_mod,ns)
666 666 return main_mod
667 667
668 668 def cache_main_mod(self,ns,fname):
669 669 """Cache a main module's namespace.
670 670
671 671 When scripts are executed via %run, we must keep a reference to the
672 672 namespace of their __main__ module (a FakeModule instance) around so
673 673 that Python doesn't clear it, rendering objects defined therein
674 674 useless.
675 675
676 676 This method keeps said reference in a private dict, keyed by the
677 677 absolute path of the module object (which corresponds to the script
678 678 path). This way, for multiple executions of the same script we only
679 679 keep one copy of the namespace (the last one), thus preventing memory
680 680 leaks from old references while allowing the objects from the last
681 681 execution to be accessible.
682 682
683 683 Note: we can not allow the actual FakeModule instances to be deleted,
684 684 because of how Python tears down modules (it hard-sets all their
685 685 references to None without regard for reference counts). This method
686 686 must therefore make a *copy* of the given namespace, to allow the
687 687 original module's __dict__ to be cleared and reused.
688 688
689 689
690 690 Parameters
691 691 ----------
692 692 ns : a namespace (a dict, typically)
693 693
694 694 fname : str
695 695 Filename associated with the namespace.
696 696
697 697 Examples
698 698 --------
699 699
700 700 In [10]: import IPython
701 701
702 702 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
703 703
704 704 In [12]: IPython.__file__ in _ip._main_ns_cache
705 705 Out[12]: True
706 706 """
707 707 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
708 708
709 709 def clear_main_mod_cache(self):
710 710 """Clear the cache of main modules.
711 711
712 712 Mainly for use by utilities like %reset.
713 713
714 714 Examples
715 715 --------
716 716
717 717 In [15]: import IPython
718 718
719 719 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
720 720
721 721 In [17]: len(_ip._main_ns_cache) > 0
722 722 Out[17]: True
723 723
724 724 In [18]: _ip.clear_main_mod_cache()
725 725
726 726 In [19]: len(_ip._main_ns_cache) == 0
727 727 Out[19]: True
728 728 """
729 729 self._main_ns_cache.clear()
730 730
731 731 #-------------------------------------------------------------------------
732 732 # Things related to debugging
733 733 #-------------------------------------------------------------------------
734 734
735 735 def init_pdb(self):
736 736 # Set calling of pdb on exceptions
737 737 # self.call_pdb is a property
738 738 self.call_pdb = self.pdb
739 739
740 740 def _get_call_pdb(self):
741 741 return self._call_pdb
742 742
743 743 def _set_call_pdb(self,val):
744 744
745 745 if val not in (0,1,False,True):
746 746 raise ValueError,'new call_pdb value must be boolean'
747 747
748 748 # store value in instance
749 749 self._call_pdb = val
750 750
751 751 # notify the actual exception handlers
752 752 self.InteractiveTB.call_pdb = val
753 753
754 754 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
755 755 'Control auto-activation of pdb at exceptions')
756 756
757 757 def debugger(self,force=False):
758 758 """Call the pydb/pdb debugger.
759 759
760 760 Keywords:
761 761
762 762 - force(False): by default, this routine checks the instance call_pdb
763 763 flag and does not actually invoke the debugger if the flag is false.
764 764 The 'force' option forces the debugger to activate even if the flag
765 765 is false.
766 766 """
767 767
768 768 if not (force or self.call_pdb):
769 769 return
770 770
771 771 if not hasattr(sys,'last_traceback'):
772 772 error('No traceback has been produced, nothing to debug.')
773 773 return
774 774
775 775 # use pydb if available
776 776 if debugger.has_pydb:
777 777 from pydb import pm
778 778 else:
779 779 # fallback to our internal debugger
780 780 pm = lambda : self.InteractiveTB.debugger(force=True)
781 781
782 782 with self.readline_no_record:
783 783 pm()
784 784
785 785 #-------------------------------------------------------------------------
786 786 # Things related to IPython's various namespaces
787 787 #-------------------------------------------------------------------------
788 788
789 789 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
790 790 # Create the namespace where the user will operate. user_ns is
791 791 # normally the only one used, and it is passed to the exec calls as
792 792 # the locals argument. But we do carry a user_global_ns namespace
793 793 # given as the exec 'globals' argument, This is useful in embedding
794 794 # situations where the ipython shell opens in a context where the
795 795 # distinction between locals and globals is meaningful. For
796 796 # non-embedded contexts, it is just the same object as the user_ns dict.
797 797
798 798 # FIXME. For some strange reason, __builtins__ is showing up at user
799 799 # level as a dict instead of a module. This is a manual fix, but I
800 800 # should really track down where the problem is coming from. Alex
801 801 # Schmolck reported this problem first.
802 802
803 803 # A useful post by Alex Martelli on this topic:
804 804 # Re: inconsistent value from __builtins__
805 805 # Von: Alex Martelli <aleaxit@yahoo.com>
806 806 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
807 807 # Gruppen: comp.lang.python
808 808
809 809 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
810 810 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
811 811 # > <type 'dict'>
812 812 # > >>> print type(__builtins__)
813 813 # > <type 'module'>
814 814 # > Is this difference in return value intentional?
815 815
816 816 # Well, it's documented that '__builtins__' can be either a dictionary
817 817 # or a module, and it's been that way for a long time. Whether it's
818 818 # intentional (or sensible), I don't know. In any case, the idea is
819 819 # that if you need to access the built-in namespace directly, you
820 820 # should start with "import __builtin__" (note, no 's') which will
821 821 # definitely give you a module. Yeah, it's somewhat confusing:-(.
822 822
823 823 # These routines return properly built dicts as needed by the rest of
824 824 # the code, and can also be used by extension writers to generate
825 825 # properly initialized namespaces.
826 826 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
827 827 user_global_ns)
828 828
829 829 # Assign namespaces
830 830 # This is the namespace where all normal user variables live
831 831 self.user_ns = user_ns
832 832 self.user_global_ns = user_global_ns
833 833
834 834 # An auxiliary namespace that checks what parts of the user_ns were
835 835 # loaded at startup, so we can list later only variables defined in
836 836 # actual interactive use. Since it is always a subset of user_ns, it
837 837 # doesn't need to be separately tracked in the ns_table.
838 838 self.user_ns_hidden = {}
839 839
840 840 # A namespace to keep track of internal data structures to prevent
841 841 # them from cluttering user-visible stuff. Will be updated later
842 842 self.internal_ns = {}
843 843
844 844 # Now that FakeModule produces a real module, we've run into a nasty
845 845 # problem: after script execution (via %run), the module where the user
846 846 # code ran is deleted. Now that this object is a true module (needed
847 847 # so docetst and other tools work correctly), the Python module
848 848 # teardown mechanism runs over it, and sets to None every variable
849 849 # present in that module. Top-level references to objects from the
850 850 # script survive, because the user_ns is updated with them. However,
851 851 # calling functions defined in the script that use other things from
852 852 # the script will fail, because the function's closure had references
853 853 # to the original objects, which are now all None. So we must protect
854 854 # these modules from deletion by keeping a cache.
855 855 #
856 856 # To avoid keeping stale modules around (we only need the one from the
857 857 # last run), we use a dict keyed with the full path to the script, so
858 858 # only the last version of the module is held in the cache. Note,
859 859 # however, that we must cache the module *namespace contents* (their
860 860 # __dict__). Because if we try to cache the actual modules, old ones
861 861 # (uncached) could be destroyed while still holding references (such as
862 862 # those held by GUI objects that tend to be long-lived)>
863 863 #
864 864 # The %reset command will flush this cache. See the cache_main_mod()
865 865 # and clear_main_mod_cache() methods for details on use.
866 866
867 867 # This is the cache used for 'main' namespaces
868 868 self._main_ns_cache = {}
869 869 # And this is the single instance of FakeModule whose __dict__ we keep
870 870 # copying and clearing for reuse on each %run
871 871 self._user_main_module = FakeModule()
872 872
873 873 # A table holding all the namespaces IPython deals with, so that
874 874 # introspection facilities can search easily.
875 875 self.ns_table = {'user':user_ns,
876 876 'user_global':user_global_ns,
877 877 'internal':self.internal_ns,
878 878 'builtin':__builtin__.__dict__
879 879 }
880 880
881 881 # Similarly, track all namespaces where references can be held and that
882 882 # we can safely clear (so it can NOT include builtin). This one can be
883 883 # a simple list. Note that the main execution namespaces, user_ns and
884 884 # user_global_ns, can NOT be listed here, as clearing them blindly
885 885 # causes errors in object __del__ methods. Instead, the reset() method
886 886 # clears them manually and carefully.
887 887 self.ns_refs_table = [ self.user_ns_hidden,
888 888 self.internal_ns, self._main_ns_cache ]
889 889
890 890 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
891 891 """Return a valid local and global user interactive namespaces.
892 892
893 893 This builds a dict with the minimal information needed to operate as a
894 894 valid IPython user namespace, which you can pass to the various
895 895 embedding classes in ipython. The default implementation returns the
896 896 same dict for both the locals and the globals to allow functions to
897 897 refer to variables in the namespace. Customized implementations can
898 898 return different dicts. The locals dictionary can actually be anything
899 899 following the basic mapping protocol of a dict, but the globals dict
900 900 must be a true dict, not even a subclass. It is recommended that any
901 901 custom object for the locals namespace synchronize with the globals
902 902 dict somehow.
903 903
904 904 Raises TypeError if the provided globals namespace is not a true dict.
905 905
906 906 Parameters
907 907 ----------
908 908 user_ns : dict-like, optional
909 909 The current user namespace. The items in this namespace should
910 910 be included in the output. If None, an appropriate blank
911 911 namespace should be created.
912 912 user_global_ns : dict, optional
913 913 The current user global namespace. The items in this namespace
914 914 should be included in the output. If None, an appropriate
915 915 blank namespace should be created.
916 916
917 917 Returns
918 918 -------
919 919 A pair of dictionary-like object to be used as the local namespace
920 920 of the interpreter and a dict to be used as the global namespace.
921 921 """
922 922
923 923
924 924 # We must ensure that __builtin__ (without the final 's') is always
925 925 # available and pointing to the __builtin__ *module*. For more details:
926 926 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
927 927
928 928 if user_ns is None:
929 929 # Set __name__ to __main__ to better match the behavior of the
930 930 # normal interpreter.
931 931 user_ns = {'__name__' :'__main__',
932 932 '__builtin__' : __builtin__,
933 933 '__builtins__' : __builtin__,
934 934 }
935 935 else:
936 936 user_ns.setdefault('__name__','__main__')
937 937 user_ns.setdefault('__builtin__',__builtin__)
938 938 user_ns.setdefault('__builtins__',__builtin__)
939 939
940 940 if user_global_ns is None:
941 941 user_global_ns = user_ns
942 942 if type(user_global_ns) is not dict:
943 943 raise TypeError("user_global_ns must be a true dict; got %r"
944 944 % type(user_global_ns))
945 945
946 946 return user_ns, user_global_ns
947 947
948 948 def init_sys_modules(self):
949 949 # We need to insert into sys.modules something that looks like a
950 950 # module but which accesses the IPython namespace, for shelve and
951 951 # pickle to work interactively. Normally they rely on getting
952 952 # everything out of __main__, but for embedding purposes each IPython
953 953 # instance has its own private namespace, so we can't go shoving
954 954 # everything into __main__.
955 955
956 956 # note, however, that we should only do this for non-embedded
957 957 # ipythons, which really mimic the __main__.__dict__ with their own
958 958 # namespace. Embedded instances, on the other hand, should not do
959 959 # this because they need to manage the user local/global namespaces
960 960 # only, but they live within a 'normal' __main__ (meaning, they
961 961 # shouldn't overtake the execution environment of the script they're
962 962 # embedded in).
963 963
964 964 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
965 965
966 966 try:
967 967 main_name = self.user_ns['__name__']
968 968 except KeyError:
969 969 raise KeyError('user_ns dictionary MUST have a "__name__" key')
970 970 else:
971 971 sys.modules[main_name] = FakeModule(self.user_ns)
972 972
973 973 def init_user_ns(self):
974 974 """Initialize all user-visible namespaces to their minimum defaults.
975 975
976 976 Certain history lists are also initialized here, as they effectively
977 977 act as user namespaces.
978 978
979 979 Notes
980 980 -----
981 981 All data structures here are only filled in, they are NOT reset by this
982 982 method. If they were not empty before, data will simply be added to
983 983 therm.
984 984 """
985 985 # This function works in two parts: first we put a few things in
986 986 # user_ns, and we sync that contents into user_ns_hidden so that these
987 987 # initial variables aren't shown by %who. After the sync, we add the
988 988 # rest of what we *do* want the user to see with %who even on a new
989 989 # session (probably nothing, so theye really only see their own stuff)
990 990
991 991 # The user dict must *always* have a __builtin__ reference to the
992 992 # Python standard __builtin__ namespace, which must be imported.
993 993 # This is so that certain operations in prompt evaluation can be
994 994 # reliably executed with builtins. Note that we can NOT use
995 995 # __builtins__ (note the 's'), because that can either be a dict or a
996 996 # module, and can even mutate at runtime, depending on the context
997 997 # (Python makes no guarantees on it). In contrast, __builtin__ is
998 998 # always a module object, though it must be explicitly imported.
999 999
1000 1000 # For more details:
1001 1001 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
1002 1002 ns = dict(__builtin__ = __builtin__)
1003 1003
1004 1004 # Put 'help' in the user namespace
1005 1005 try:
1006 1006 from site import _Helper
1007 1007 ns['help'] = _Helper()
1008 1008 except ImportError:
1009 1009 warn('help() not available - check site.py')
1010 1010
1011 1011 # make global variables for user access to the histories
1012 1012 ns['_ih'] = self.history_manager.input_hist_parsed
1013 1013 ns['_oh'] = self.history_manager.output_hist
1014 1014 ns['_dh'] = self.history_manager.dir_hist
1015 1015
1016 1016 ns['_sh'] = shadowns
1017 1017
1018 1018 # user aliases to input and output histories. These shouldn't show up
1019 1019 # in %who, as they can have very large reprs.
1020 1020 ns['In'] = self.history_manager.input_hist_parsed
1021 1021 ns['Out'] = self.history_manager.output_hist
1022 1022
1023 1023 # Store myself as the public api!!!
1024 1024 ns['get_ipython'] = self.get_ipython
1025 1025
1026 1026 # Sync what we've added so far to user_ns_hidden so these aren't seen
1027 1027 # by %who
1028 1028 self.user_ns_hidden.update(ns)
1029 1029
1030 1030 # Anything put into ns now would show up in %who. Think twice before
1031 1031 # putting anything here, as we really want %who to show the user their
1032 1032 # stuff, not our variables.
1033 1033
1034 1034 # Finally, update the real user's namespace
1035 1035 self.user_ns.update(ns)
1036 1036
1037 1037 def reset(self, new_session=True):
1038 1038 """Clear all internal namespaces.
1039 1039
1040 1040 Note that this is much more aggressive than %reset, since it clears
1041 1041 fully all namespaces, as well as all input/output lists.
1042 1042
1043 1043 If new_session is True, a new history session will be opened.
1044 1044 """
1045 1045 # Clear histories
1046 1046 self.history_manager.reset(new_session)
1047 1047
1048 # Flush cached output items
1049 self.displayhook.flush()
1050
1048 1051 # Reset counter used to index all histories
1049 1052 self.execution_count = 0
1050 1053
1051 1054 # Restore the user namespaces to minimal usability
1052 1055 for ns in self.ns_refs_table:
1053 1056 ns.clear()
1054 1057
1055 1058 # The main execution namespaces must be cleared very carefully,
1056 1059 # skipping the deletion of the builtin-related keys, because doing so
1057 1060 # would cause errors in many object's __del__ methods.
1058 1061 for ns in [self.user_ns, self.user_global_ns]:
1059 1062 drop_keys = set(ns.keys())
1060 1063 drop_keys.discard('__builtin__')
1061 1064 drop_keys.discard('__builtins__')
1062 1065 for k in drop_keys:
1063 1066 del ns[k]
1064 1067
1065 1068 # Restore the user namespaces to minimal usability
1066 1069 self.init_user_ns()
1067 1070
1068 1071 # Restore the default and user aliases
1069 1072 self.alias_manager.clear_aliases()
1070 1073 self.alias_manager.init_aliases()
1071 1074
1075 # Flush the private list of module references kept for script
1076 # execution protection
1077 self.clear_main_mod_cache()
1078
1072 1079 def reset_selective(self, regex=None):
1073 1080 """Clear selective variables from internal namespaces based on a
1074 1081 specified regular expression.
1075 1082
1076 1083 Parameters
1077 1084 ----------
1078 1085 regex : string or compiled pattern, optional
1079 1086 A regular expression pattern that will be used in searching
1080 1087 variable names in the users namespaces.
1081 1088 """
1082 1089 if regex is not None:
1083 1090 try:
1084 1091 m = re.compile(regex)
1085 1092 except TypeError:
1086 1093 raise TypeError('regex must be a string or compiled pattern')
1087 1094 # Search for keys in each namespace that match the given regex
1088 1095 # If a match is found, delete the key/value pair.
1089 1096 for ns in self.ns_refs_table:
1090 1097 for var in ns:
1091 1098 if m.search(var):
1092 1099 del ns[var]
1093 1100
1094 1101 def push(self, variables, interactive=True):
1095 1102 """Inject a group of variables into the IPython user namespace.
1096 1103
1097 1104 Parameters
1098 1105 ----------
1099 1106 variables : dict, str or list/tuple of str
1100 1107 The variables to inject into the user's namespace. If a dict, a
1101 1108 simple update is done. If a str, the string is assumed to have
1102 1109 variable names separated by spaces. A list/tuple of str can also
1103 1110 be used to give the variable names. If just the variable names are
1104 1111 give (list/tuple/str) then the variable values looked up in the
1105 1112 callers frame.
1106 1113 interactive : bool
1107 1114 If True (default), the variables will be listed with the ``who``
1108 1115 magic.
1109 1116 """
1110 1117 vdict = None
1111 1118
1112 1119 # We need a dict of name/value pairs to do namespace updates.
1113 1120 if isinstance(variables, dict):
1114 1121 vdict = variables
1115 1122 elif isinstance(variables, (basestring, list, tuple)):
1116 1123 if isinstance(variables, basestring):
1117 1124 vlist = variables.split()
1118 1125 else:
1119 1126 vlist = variables
1120 1127 vdict = {}
1121 1128 cf = sys._getframe(1)
1122 1129 for name in vlist:
1123 1130 try:
1124 1131 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1125 1132 except:
1126 1133 print ('Could not get variable %s from %s' %
1127 1134 (name,cf.f_code.co_name))
1128 1135 else:
1129 1136 raise ValueError('variables must be a dict/str/list/tuple')
1130 1137
1131 1138 # Propagate variables to user namespace
1132 1139 self.user_ns.update(vdict)
1133 1140
1134 1141 # And configure interactive visibility
1135 1142 config_ns = self.user_ns_hidden
1136 1143 if interactive:
1137 1144 for name, val in vdict.iteritems():
1138 1145 config_ns.pop(name, None)
1139 1146 else:
1140 1147 for name,val in vdict.iteritems():
1141 1148 config_ns[name] = val
1142 1149
1143 1150 #-------------------------------------------------------------------------
1144 1151 # Things related to object introspection
1145 1152 #-------------------------------------------------------------------------
1146 1153
1147 1154 def _ofind(self, oname, namespaces=None):
1148 1155 """Find an object in the available namespaces.
1149 1156
1150 1157 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1151 1158
1152 1159 Has special code to detect magic functions.
1153 1160 """
1154 1161 #oname = oname.strip()
1155 1162 #print '1- oname: <%r>' % oname # dbg
1156 1163 try:
1157 1164 oname = oname.strip().encode('ascii')
1158 1165 #print '2- oname: <%r>' % oname # dbg
1159 1166 except UnicodeEncodeError:
1160 1167 print 'Python identifiers can only contain ascii characters.'
1161 1168 return dict(found=False)
1162 1169
1163 1170 alias_ns = None
1164 1171 if namespaces is None:
1165 1172 # Namespaces to search in:
1166 1173 # Put them in a list. The order is important so that we
1167 1174 # find things in the same order that Python finds them.
1168 1175 namespaces = [ ('Interactive', self.user_ns),
1169 1176 ('IPython internal', self.internal_ns),
1170 1177 ('Python builtin', __builtin__.__dict__),
1171 1178 ('Alias', self.alias_manager.alias_table),
1172 1179 ]
1173 1180 alias_ns = self.alias_manager.alias_table
1174 1181
1175 1182 # initialize results to 'null'
1176 1183 found = False; obj = None; ospace = None; ds = None;
1177 1184 ismagic = False; isalias = False; parent = None
1178 1185
1179 1186 # We need to special-case 'print', which as of python2.6 registers as a
1180 1187 # function but should only be treated as one if print_function was
1181 1188 # loaded with a future import. In this case, just bail.
1182 1189 if (oname == 'print' and not (self.compile.compiler_flags &
1183 1190 __future__.CO_FUTURE_PRINT_FUNCTION)):
1184 1191 return {'found':found, 'obj':obj, 'namespace':ospace,
1185 1192 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1186 1193
1187 1194 # Look for the given name by splitting it in parts. If the head is
1188 1195 # found, then we look for all the remaining parts as members, and only
1189 1196 # declare success if we can find them all.
1190 1197 oname_parts = oname.split('.')
1191 1198 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1192 1199 for nsname,ns in namespaces:
1193 1200 try:
1194 1201 obj = ns[oname_head]
1195 1202 except KeyError:
1196 1203 continue
1197 1204 else:
1198 1205 #print 'oname_rest:', oname_rest # dbg
1199 1206 for part in oname_rest:
1200 1207 try:
1201 1208 parent = obj
1202 1209 obj = getattr(obj,part)
1203 1210 except:
1204 1211 # Blanket except b/c some badly implemented objects
1205 1212 # allow __getattr__ to raise exceptions other than
1206 1213 # AttributeError, which then crashes IPython.
1207 1214 break
1208 1215 else:
1209 1216 # If we finish the for loop (no break), we got all members
1210 1217 found = True
1211 1218 ospace = nsname
1212 1219 if ns == alias_ns:
1213 1220 isalias = True
1214 1221 break # namespace loop
1215 1222
1216 1223 # Try to see if it's magic
1217 1224 if not found:
1218 1225 if oname.startswith(ESC_MAGIC):
1219 1226 oname = oname[1:]
1220 1227 obj = getattr(self,'magic_'+oname,None)
1221 1228 if obj is not None:
1222 1229 found = True
1223 1230 ospace = 'IPython internal'
1224 1231 ismagic = True
1225 1232
1226 1233 # Last try: special-case some literals like '', [], {}, etc:
1227 1234 if not found and oname_head in ["''",'""','[]','{}','()']:
1228 1235 obj = eval(oname_head)
1229 1236 found = True
1230 1237 ospace = 'Interactive'
1231 1238
1232 1239 return {'found':found, 'obj':obj, 'namespace':ospace,
1233 1240 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1234 1241
1235 1242 def _ofind_property(self, oname, info):
1236 1243 """Second part of object finding, to look for property details."""
1237 1244 if info.found:
1238 1245 # Get the docstring of the class property if it exists.
1239 1246 path = oname.split('.')
1240 1247 root = '.'.join(path[:-1])
1241 1248 if info.parent is not None:
1242 1249 try:
1243 1250 target = getattr(info.parent, '__class__')
1244 1251 # The object belongs to a class instance.
1245 1252 try:
1246 1253 target = getattr(target, path[-1])
1247 1254 # The class defines the object.
1248 1255 if isinstance(target, property):
1249 1256 oname = root + '.__class__.' + path[-1]
1250 1257 info = Struct(self._ofind(oname))
1251 1258 except AttributeError: pass
1252 1259 except AttributeError: pass
1253 1260
1254 1261 # We return either the new info or the unmodified input if the object
1255 1262 # hadn't been found
1256 1263 return info
1257 1264
1258 1265 def _object_find(self, oname, namespaces=None):
1259 1266 """Find an object and return a struct with info about it."""
1260 1267 inf = Struct(self._ofind(oname, namespaces))
1261 1268 return Struct(self._ofind_property(oname, inf))
1262 1269
1263 1270 def _inspect(self, meth, oname, namespaces=None, **kw):
1264 1271 """Generic interface to the inspector system.
1265 1272
1266 1273 This function is meant to be called by pdef, pdoc & friends."""
1267 1274 info = self._object_find(oname)
1268 1275 if info.found:
1269 1276 pmethod = getattr(self.inspector, meth)
1270 1277 formatter = format_screen if info.ismagic else None
1271 1278 if meth == 'pdoc':
1272 1279 pmethod(info.obj, oname, formatter)
1273 1280 elif meth == 'pinfo':
1274 1281 pmethod(info.obj, oname, formatter, info, **kw)
1275 1282 else:
1276 1283 pmethod(info.obj, oname)
1277 1284 else:
1278 1285 print 'Object `%s` not found.' % oname
1279 1286 return 'not found' # so callers can take other action
1280 1287
1281 1288 def object_inspect(self, oname):
1282 1289 info = self._object_find(oname)
1283 1290 if info.found:
1284 1291 return self.inspector.info(info.obj, oname, info=info)
1285 1292 else:
1286 1293 return oinspect.object_info(name=oname, found=False)
1287 1294
1288 1295 #-------------------------------------------------------------------------
1289 1296 # Things related to history management
1290 1297 #-------------------------------------------------------------------------
1291 1298
1292 1299 def init_history(self):
1293 1300 """Sets up the command history, and starts regular autosaves."""
1294 1301 self.history_manager = HistoryManager(shell=self, config=self.config)
1295 1302
1296 1303 #-------------------------------------------------------------------------
1297 1304 # Things related to exception handling and tracebacks (not debugging)
1298 1305 #-------------------------------------------------------------------------
1299 1306
1300 1307 def init_traceback_handlers(self, custom_exceptions):
1301 1308 # Syntax error handler.
1302 1309 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1303 1310
1304 1311 # The interactive one is initialized with an offset, meaning we always
1305 1312 # want to remove the topmost item in the traceback, which is our own
1306 1313 # internal code. Valid modes: ['Plain','Context','Verbose']
1307 1314 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1308 1315 color_scheme='NoColor',
1309 1316 tb_offset = 1,
1310 1317 check_cache=self.compile.check_cache)
1311 1318
1312 1319 # The instance will store a pointer to the system-wide exception hook,
1313 1320 # so that runtime code (such as magics) can access it. This is because
1314 1321 # during the read-eval loop, it may get temporarily overwritten.
1315 1322 self.sys_excepthook = sys.excepthook
1316 1323
1317 1324 # and add any custom exception handlers the user may have specified
1318 1325 self.set_custom_exc(*custom_exceptions)
1319 1326
1320 1327 # Set the exception mode
1321 1328 self.InteractiveTB.set_mode(mode=self.xmode)
1322 1329
1323 1330 def set_custom_exc(self, exc_tuple, handler):
1324 1331 """set_custom_exc(exc_tuple,handler)
1325 1332
1326 1333 Set a custom exception handler, which will be called if any of the
1327 1334 exceptions in exc_tuple occur in the mainloop (specifically, in the
1328 1335 run_code() method.
1329 1336
1330 1337 Inputs:
1331 1338
1332 1339 - exc_tuple: a *tuple* of valid exceptions to call the defined
1333 1340 handler for. It is very important that you use a tuple, and NOT A
1334 1341 LIST here, because of the way Python's except statement works. If
1335 1342 you only want to trap a single exception, use a singleton tuple:
1336 1343
1337 1344 exc_tuple == (MyCustomException,)
1338 1345
1339 1346 - handler: this must be defined as a function with the following
1340 1347 basic interface::
1341 1348
1342 1349 def my_handler(self, etype, value, tb, tb_offset=None)
1343 1350 ...
1344 1351 # The return value must be
1345 1352 return structured_traceback
1346 1353
1347 1354 This will be made into an instance method (via types.MethodType)
1348 1355 of IPython itself, and it will be called if any of the exceptions
1349 1356 listed in the exc_tuple are caught. If the handler is None, an
1350 1357 internal basic one is used, which just prints basic info.
1351 1358
1352 1359 WARNING: by putting in your own exception handler into IPython's main
1353 1360 execution loop, you run a very good chance of nasty crashes. This
1354 1361 facility should only be used if you really know what you are doing."""
1355 1362
1356 1363 assert type(exc_tuple)==type(()) , \
1357 1364 "The custom exceptions must be given AS A TUPLE."
1358 1365
1359 1366 def dummy_handler(self,etype,value,tb):
1360 1367 print '*** Simple custom exception handler ***'
1361 1368 print 'Exception type :',etype
1362 1369 print 'Exception value:',value
1363 1370 print 'Traceback :',tb
1364 1371 print 'Source code :','\n'.join(self.buffer)
1365 1372
1366 1373 if handler is None: handler = dummy_handler
1367 1374
1368 1375 self.CustomTB = types.MethodType(handler,self)
1369 1376 self.custom_exceptions = exc_tuple
1370 1377
1371 1378 def excepthook(self, etype, value, tb):
1372 1379 """One more defense for GUI apps that call sys.excepthook.
1373 1380
1374 1381 GUI frameworks like wxPython trap exceptions and call
1375 1382 sys.excepthook themselves. I guess this is a feature that
1376 1383 enables them to keep running after exceptions that would
1377 1384 otherwise kill their mainloop. This is a bother for IPython
1378 1385 which excepts to catch all of the program exceptions with a try:
1379 1386 except: statement.
1380 1387
1381 1388 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1382 1389 any app directly invokes sys.excepthook, it will look to the user like
1383 1390 IPython crashed. In order to work around this, we can disable the
1384 1391 CrashHandler and replace it with this excepthook instead, which prints a
1385 1392 regular traceback using our InteractiveTB. In this fashion, apps which
1386 1393 call sys.excepthook will generate a regular-looking exception from
1387 1394 IPython, and the CrashHandler will only be triggered by real IPython
1388 1395 crashes.
1389 1396
1390 1397 This hook should be used sparingly, only in places which are not likely
1391 1398 to be true IPython errors.
1392 1399 """
1393 1400 self.showtraceback((etype,value,tb),tb_offset=0)
1394 1401
1395 1402 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1396 1403 exception_only=False):
1397 1404 """Display the exception that just occurred.
1398 1405
1399 1406 If nothing is known about the exception, this is the method which
1400 1407 should be used throughout the code for presenting user tracebacks,
1401 1408 rather than directly invoking the InteractiveTB object.
1402 1409
1403 1410 A specific showsyntaxerror() also exists, but this method can take
1404 1411 care of calling it if needed, so unless you are explicitly catching a
1405 1412 SyntaxError exception, don't try to analyze the stack manually and
1406 1413 simply call this method."""
1407 1414
1408 1415 try:
1409 1416 if exc_tuple is None:
1410 1417 etype, value, tb = sys.exc_info()
1411 1418 else:
1412 1419 etype, value, tb = exc_tuple
1413 1420
1414 1421 if etype is None:
1415 1422 if hasattr(sys, 'last_type'):
1416 1423 etype, value, tb = sys.last_type, sys.last_value, \
1417 1424 sys.last_traceback
1418 1425 else:
1419 1426 self.write_err('No traceback available to show.\n')
1420 1427 return
1421 1428
1422 1429 if etype is SyntaxError:
1423 1430 # Though this won't be called by syntax errors in the input
1424 1431 # line, there may be SyntaxError cases whith imported code.
1425 1432 self.showsyntaxerror(filename)
1426 1433 elif etype is UsageError:
1427 1434 print "UsageError:", value
1428 1435 else:
1429 1436 # WARNING: these variables are somewhat deprecated and not
1430 1437 # necessarily safe to use in a threaded environment, but tools
1431 1438 # like pdb depend on their existence, so let's set them. If we
1432 1439 # find problems in the field, we'll need to revisit their use.
1433 1440 sys.last_type = etype
1434 1441 sys.last_value = value
1435 1442 sys.last_traceback = tb
1436 1443
1437 1444 if etype in self.custom_exceptions:
1438 1445 # FIXME: Old custom traceback objects may just return a
1439 1446 # string, in that case we just put it into a list
1440 1447 stb = self.CustomTB(etype, value, tb, tb_offset)
1441 1448 if isinstance(ctb, basestring):
1442 1449 stb = [stb]
1443 1450 else:
1444 1451 if exception_only:
1445 1452 stb = ['An exception has occurred, use %tb to see '
1446 1453 'the full traceback.\n']
1447 1454 stb.extend(self.InteractiveTB.get_exception_only(etype,
1448 1455 value))
1449 1456 else:
1450 1457 stb = self.InteractiveTB.structured_traceback(etype,
1451 1458 value, tb, tb_offset=tb_offset)
1452 1459 # FIXME: the pdb calling should be done by us, not by
1453 1460 # the code computing the traceback.
1454 1461 if self.InteractiveTB.call_pdb:
1455 1462 # pdb mucks up readline, fix it back
1456 1463 self.set_readline_completer()
1457 1464
1458 1465 # Actually show the traceback
1459 1466 self._showtraceback(etype, value, stb)
1460 1467
1461 1468 except KeyboardInterrupt:
1462 1469 self.write_err("\nKeyboardInterrupt\n")
1463 1470
1464 1471 def _showtraceback(self, etype, evalue, stb):
1465 1472 """Actually show a traceback.
1466 1473
1467 1474 Subclasses may override this method to put the traceback on a different
1468 1475 place, like a side channel.
1469 1476 """
1470 1477 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1471 1478
1472 1479 def showsyntaxerror(self, filename=None):
1473 1480 """Display the syntax error that just occurred.
1474 1481
1475 1482 This doesn't display a stack trace because there isn't one.
1476 1483
1477 1484 If a filename is given, it is stuffed in the exception instead
1478 1485 of what was there before (because Python's parser always uses
1479 1486 "<string>" when reading from a string).
1480 1487 """
1481 1488 etype, value, last_traceback = sys.exc_info()
1482 1489
1483 1490 # See note about these variables in showtraceback() above
1484 1491 sys.last_type = etype
1485 1492 sys.last_value = value
1486 1493 sys.last_traceback = last_traceback
1487 1494
1488 1495 if filename and etype is SyntaxError:
1489 1496 # Work hard to stuff the correct filename in the exception
1490 1497 try:
1491 1498 msg, (dummy_filename, lineno, offset, line) = value
1492 1499 except:
1493 1500 # Not the format we expect; leave it alone
1494 1501 pass
1495 1502 else:
1496 1503 # Stuff in the right filename
1497 1504 try:
1498 1505 # Assume SyntaxError is a class exception
1499 1506 value = SyntaxError(msg, (filename, lineno, offset, line))
1500 1507 except:
1501 1508 # If that failed, assume SyntaxError is a string
1502 1509 value = msg, (filename, lineno, offset, line)
1503 1510 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1504 1511 self._showtraceback(etype, value, stb)
1505 1512
1506 1513 #-------------------------------------------------------------------------
1507 1514 # Things related to readline
1508 1515 #-------------------------------------------------------------------------
1509 1516
1510 1517 def init_readline(self):
1511 1518 """Command history completion/saving/reloading."""
1512 1519
1513 1520 if self.readline_use:
1514 1521 import IPython.utils.rlineimpl as readline
1515 1522
1516 1523 self.rl_next_input = None
1517 1524 self.rl_do_indent = False
1518 1525
1519 1526 if not self.readline_use or not readline.have_readline:
1520 1527 self.has_readline = False
1521 1528 self.readline = None
1522 1529 # Set a number of methods that depend on readline to be no-op
1523 1530 self.set_readline_completer = no_op
1524 1531 self.set_custom_completer = no_op
1525 1532 self.set_completer_frame = no_op
1526 1533 warn('Readline services not available or not loaded.')
1527 1534 else:
1528 1535 self.has_readline = True
1529 1536 self.readline = readline
1530 1537 sys.modules['readline'] = readline
1531 1538
1532 1539 # Platform-specific configuration
1533 1540 if os.name == 'nt':
1534 1541 # FIXME - check with Frederick to see if we can harmonize
1535 1542 # naming conventions with pyreadline to avoid this
1536 1543 # platform-dependent check
1537 1544 self.readline_startup_hook = readline.set_pre_input_hook
1538 1545 else:
1539 1546 self.readline_startup_hook = readline.set_startup_hook
1540 1547
1541 1548 # Load user's initrc file (readline config)
1542 1549 # Or if libedit is used, load editrc.
1543 1550 inputrc_name = os.environ.get('INPUTRC')
1544 1551 if inputrc_name is None:
1545 1552 home_dir = get_home_dir()
1546 1553 if home_dir is not None:
1547 1554 inputrc_name = '.inputrc'
1548 1555 if readline.uses_libedit:
1549 1556 inputrc_name = '.editrc'
1550 1557 inputrc_name = os.path.join(home_dir, inputrc_name)
1551 1558 if os.path.isfile(inputrc_name):
1552 1559 try:
1553 1560 readline.read_init_file(inputrc_name)
1554 1561 except:
1555 1562 warn('Problems reading readline initialization file <%s>'
1556 1563 % inputrc_name)
1557 1564
1558 1565 # Configure readline according to user's prefs
1559 1566 # This is only done if GNU readline is being used. If libedit
1560 1567 # is being used (as on Leopard) the readline config is
1561 1568 # not run as the syntax for libedit is different.
1562 1569 if not readline.uses_libedit:
1563 1570 for rlcommand in self.readline_parse_and_bind:
1564 1571 #print "loading rl:",rlcommand # dbg
1565 1572 readline.parse_and_bind(rlcommand)
1566 1573
1567 1574 # Remove some chars from the delimiters list. If we encounter
1568 1575 # unicode chars, discard them.
1569 1576 delims = readline.get_completer_delims().encode("ascii", "ignore")
1570 1577 delims = delims.translate(None, self.readline_remove_delims)
1571 1578 delims = delims.replace(ESC_MAGIC, '')
1572 1579 readline.set_completer_delims(delims)
1573 1580 # otherwise we end up with a monster history after a while:
1574 1581 readline.set_history_length(self.history_length)
1575 1582
1576 1583 self.refill_readline_hist()
1577 1584 self.readline_no_record = ReadlineNoRecord(self)
1578 1585
1579 1586 # Configure auto-indent for all platforms
1580 1587 self.set_autoindent(self.autoindent)
1581 1588
1582 1589 def refill_readline_hist(self):
1583 1590 # Load the last 1000 lines from history
1584 1591 self.readline.clear_history()
1585 1592 stdin_encoding = sys.stdin.encoding or "utf-8"
1586 1593 for _, _, cell in self.history_manager.get_tail(1000,
1587 1594 include_latest=True):
1588 1595 if cell.strip(): # Ignore blank lines
1589 1596 for line in cell.splitlines():
1590 1597 self.readline.add_history(line.encode(stdin_encoding))
1591 1598
1592 1599 def set_next_input(self, s):
1593 1600 """ Sets the 'default' input string for the next command line.
1594 1601
1595 1602 Requires readline.
1596 1603
1597 1604 Example:
1598 1605
1599 1606 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1600 1607 [D:\ipython]|2> Hello Word_ # cursor is here
1601 1608 """
1602 1609
1603 1610 self.rl_next_input = s
1604 1611
1605 1612 # Maybe move this to the terminal subclass?
1606 1613 def pre_readline(self):
1607 1614 """readline hook to be used at the start of each line.
1608 1615
1609 1616 Currently it handles auto-indent only."""
1610 1617
1611 1618 if self.rl_do_indent:
1612 1619 self.readline.insert_text(self._indent_current_str())
1613 1620 if self.rl_next_input is not None:
1614 1621 self.readline.insert_text(self.rl_next_input)
1615 1622 self.rl_next_input = None
1616 1623
1617 1624 def _indent_current_str(self):
1618 1625 """return the current level of indentation as a string"""
1619 1626 return self.input_splitter.indent_spaces * ' '
1620 1627
1621 1628 #-------------------------------------------------------------------------
1622 1629 # Things related to text completion
1623 1630 #-------------------------------------------------------------------------
1624 1631
1625 1632 def init_completer(self):
1626 1633 """Initialize the completion machinery.
1627 1634
1628 1635 This creates completion machinery that can be used by client code,
1629 1636 either interactively in-process (typically triggered by the readline
1630 1637 library), programatically (such as in test suites) or out-of-prcess
1631 1638 (typically over the network by remote frontends).
1632 1639 """
1633 1640 from IPython.core.completer import IPCompleter
1634 1641 from IPython.core.completerlib import (module_completer,
1635 1642 magic_run_completer, cd_completer)
1636 1643
1637 1644 self.Completer = IPCompleter(self,
1638 1645 self.user_ns,
1639 1646 self.user_global_ns,
1640 1647 self.readline_omit__names,
1641 1648 self.alias_manager.alias_table,
1642 1649 self.has_readline)
1643 1650
1644 1651 # Add custom completers to the basic ones built into IPCompleter
1645 1652 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1646 1653 self.strdispatchers['complete_command'] = sdisp
1647 1654 self.Completer.custom_completers = sdisp
1648 1655
1649 1656 self.set_hook('complete_command', module_completer, str_key = 'import')
1650 1657 self.set_hook('complete_command', module_completer, str_key = 'from')
1651 1658 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1652 1659 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1653 1660
1654 1661 # Only configure readline if we truly are using readline. IPython can
1655 1662 # do tab-completion over the network, in GUIs, etc, where readline
1656 1663 # itself may be absent
1657 1664 if self.has_readline:
1658 1665 self.set_readline_completer()
1659 1666
1660 1667 def complete(self, text, line=None, cursor_pos=None):
1661 1668 """Return the completed text and a list of completions.
1662 1669
1663 1670 Parameters
1664 1671 ----------
1665 1672
1666 1673 text : string
1667 1674 A string of text to be completed on. It can be given as empty and
1668 1675 instead a line/position pair are given. In this case, the
1669 1676 completer itself will split the line like readline does.
1670 1677
1671 1678 line : string, optional
1672 1679 The complete line that text is part of.
1673 1680
1674 1681 cursor_pos : int, optional
1675 1682 The position of the cursor on the input line.
1676 1683
1677 1684 Returns
1678 1685 -------
1679 1686 text : string
1680 1687 The actual text that was completed.
1681 1688
1682 1689 matches : list
1683 1690 A sorted list with all possible completions.
1684 1691
1685 1692 The optional arguments allow the completion to take more context into
1686 1693 account, and are part of the low-level completion API.
1687 1694
1688 1695 This is a wrapper around the completion mechanism, similar to what
1689 1696 readline does at the command line when the TAB key is hit. By
1690 1697 exposing it as a method, it can be used by other non-readline
1691 1698 environments (such as GUIs) for text completion.
1692 1699
1693 1700 Simple usage example:
1694 1701
1695 1702 In [1]: x = 'hello'
1696 1703
1697 1704 In [2]: _ip.complete('x.l')
1698 1705 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1699 1706 """
1700 1707
1701 1708 # Inject names into __builtin__ so we can complete on the added names.
1702 1709 with self.builtin_trap:
1703 1710 return self.Completer.complete(text, line, cursor_pos)
1704 1711
1705 1712 def set_custom_completer(self, completer, pos=0):
1706 1713 """Adds a new custom completer function.
1707 1714
1708 1715 The position argument (defaults to 0) is the index in the completers
1709 1716 list where you want the completer to be inserted."""
1710 1717
1711 1718 newcomp = types.MethodType(completer,self.Completer)
1712 1719 self.Completer.matchers.insert(pos,newcomp)
1713 1720
1714 1721 def set_readline_completer(self):
1715 1722 """Reset readline's completer to be our own."""
1716 1723 self.readline.set_completer(self.Completer.rlcomplete)
1717 1724
1718 1725 def set_completer_frame(self, frame=None):
1719 1726 """Set the frame of the completer."""
1720 1727 if frame:
1721 1728 self.Completer.namespace = frame.f_locals
1722 1729 self.Completer.global_namespace = frame.f_globals
1723 1730 else:
1724 1731 self.Completer.namespace = self.user_ns
1725 1732 self.Completer.global_namespace = self.user_global_ns
1726 1733
1727 1734 #-------------------------------------------------------------------------
1728 1735 # Things related to magics
1729 1736 #-------------------------------------------------------------------------
1730 1737
1731 1738 def init_magics(self):
1732 1739 # FIXME: Move the color initialization to the DisplayHook, which
1733 1740 # should be split into a prompt manager and displayhook. We probably
1734 1741 # even need a centralize colors management object.
1735 1742 self.magic_colors(self.colors)
1736 1743 # History was moved to a separate module
1737 1744 from . import history
1738 1745 history.init_ipython(self)
1739 1746
1740 1747 def magic(self,arg_s):
1741 1748 """Call a magic function by name.
1742 1749
1743 1750 Input: a string containing the name of the magic function to call and
1744 1751 any additional arguments to be passed to the magic.
1745 1752
1746 1753 magic('name -opt foo bar') is equivalent to typing at the ipython
1747 1754 prompt:
1748 1755
1749 1756 In[1]: %name -opt foo bar
1750 1757
1751 1758 To call a magic without arguments, simply use magic('name').
1752 1759
1753 1760 This provides a proper Python function to call IPython's magics in any
1754 1761 valid Python code you can type at the interpreter, including loops and
1755 1762 compound statements.
1756 1763 """
1757 1764 args = arg_s.split(' ',1)
1758 1765 magic_name = args[0]
1759 1766 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1760 1767
1761 1768 try:
1762 1769 magic_args = args[1]
1763 1770 except IndexError:
1764 1771 magic_args = ''
1765 1772 fn = getattr(self,'magic_'+magic_name,None)
1766 1773 if fn is None:
1767 1774 error("Magic function `%s` not found." % magic_name)
1768 1775 else:
1769 1776 magic_args = self.var_expand(magic_args,1)
1770 1777 # Grab local namespace if we need it:
1771 1778 if getattr(fn, "needs_local_scope", False):
1772 1779 self._magic_locals = sys._getframe(1).f_locals
1773 1780 with nested(self.builtin_trap,):
1774 1781 result = fn(magic_args)
1775 1782 # Ensure we're not keeping object references around:
1776 1783 self._magic_locals = {}
1777 1784 return result
1778 1785
1779 1786 def define_magic(self, magicname, func):
1780 1787 """Expose own function as magic function for ipython
1781 1788
1782 1789 def foo_impl(self,parameter_s=''):
1783 1790 'My very own magic!. (Use docstrings, IPython reads them).'
1784 1791 print 'Magic function. Passed parameter is between < >:'
1785 1792 print '<%s>' % parameter_s
1786 1793 print 'The self object is:',self
1787 1794
1788 1795 self.define_magic('foo',foo_impl)
1789 1796 """
1790 1797
1791 1798 import new
1792 1799 im = types.MethodType(func,self)
1793 1800 old = getattr(self, "magic_" + magicname, None)
1794 1801 setattr(self, "magic_" + magicname, im)
1795 1802 return old
1796 1803
1797 1804 #-------------------------------------------------------------------------
1798 1805 # Things related to macros
1799 1806 #-------------------------------------------------------------------------
1800 1807
1801 1808 def define_macro(self, name, themacro):
1802 1809 """Define a new macro
1803 1810
1804 1811 Parameters
1805 1812 ----------
1806 1813 name : str
1807 1814 The name of the macro.
1808 1815 themacro : str or Macro
1809 1816 The action to do upon invoking the macro. If a string, a new
1810 1817 Macro object is created by passing the string to it.
1811 1818 """
1812 1819
1813 1820 from IPython.core import macro
1814 1821
1815 1822 if isinstance(themacro, basestring):
1816 1823 themacro = macro.Macro(themacro)
1817 1824 if not isinstance(themacro, macro.Macro):
1818 1825 raise ValueError('A macro must be a string or a Macro instance.')
1819 1826 self.user_ns[name] = themacro
1820 1827
1821 1828 #-------------------------------------------------------------------------
1822 1829 # Things related to the running of system commands
1823 1830 #-------------------------------------------------------------------------
1824 1831
1825 1832 def system(self, cmd):
1826 1833 """Call the given cmd in a subprocess.
1827 1834
1828 1835 Parameters
1829 1836 ----------
1830 1837 cmd : str
1831 1838 Command to execute (can not end in '&', as bacground processes are
1832 1839 not supported.
1833 1840 """
1834 1841 # We do not support backgrounding processes because we either use
1835 1842 # pexpect or pipes to read from. Users can always just call
1836 1843 # os.system() if they really want a background process.
1837 1844 if cmd.endswith('&'):
1838 1845 raise OSError("Background processes not supported.")
1839 1846
1840 1847 return system(self.var_expand(cmd, depth=2))
1841 1848
1842 1849 def getoutput(self, cmd, split=True):
1843 1850 """Get output (possibly including stderr) from a subprocess.
1844 1851
1845 1852 Parameters
1846 1853 ----------
1847 1854 cmd : str
1848 1855 Command to execute (can not end in '&', as background processes are
1849 1856 not supported.
1850 1857 split : bool, optional
1851 1858
1852 1859 If True, split the output into an IPython SList. Otherwise, an
1853 1860 IPython LSString is returned. These are objects similar to normal
1854 1861 lists and strings, with a few convenience attributes for easier
1855 1862 manipulation of line-based output. You can use '?' on them for
1856 1863 details.
1857 1864 """
1858 1865 if cmd.endswith('&'):
1859 1866 raise OSError("Background processes not supported.")
1860 1867 out = getoutput(self.var_expand(cmd, depth=2))
1861 1868 if split:
1862 1869 out = SList(out.splitlines())
1863 1870 else:
1864 1871 out = LSString(out)
1865 1872 return out
1866 1873
1867 1874 #-------------------------------------------------------------------------
1868 1875 # Things related to aliases
1869 1876 #-------------------------------------------------------------------------
1870 1877
1871 1878 def init_alias(self):
1872 1879 self.alias_manager = AliasManager(shell=self, config=self.config)
1873 1880 self.ns_table['alias'] = self.alias_manager.alias_table,
1874 1881
1875 1882 #-------------------------------------------------------------------------
1876 1883 # Things related to extensions and plugins
1877 1884 #-------------------------------------------------------------------------
1878 1885
1879 1886 def init_extension_manager(self):
1880 1887 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1881 1888
1882 1889 def init_plugin_manager(self):
1883 1890 self.plugin_manager = PluginManager(config=self.config)
1884 1891
1885 1892 #-------------------------------------------------------------------------
1886 1893 # Things related to payloads
1887 1894 #-------------------------------------------------------------------------
1888 1895
1889 1896 def init_payload(self):
1890 1897 self.payload_manager = PayloadManager(config=self.config)
1891 1898
1892 1899 #-------------------------------------------------------------------------
1893 1900 # Things related to the prefilter
1894 1901 #-------------------------------------------------------------------------
1895 1902
1896 1903 def init_prefilter(self):
1897 1904 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1898 1905 # Ultimately this will be refactored in the new interpreter code, but
1899 1906 # for now, we should expose the main prefilter method (there's legacy
1900 1907 # code out there that may rely on this).
1901 1908 self.prefilter = self.prefilter_manager.prefilter_lines
1902 1909
1903 1910 def auto_rewrite_input(self, cmd):
1904 1911 """Print to the screen the rewritten form of the user's command.
1905 1912
1906 1913 This shows visual feedback by rewriting input lines that cause
1907 1914 automatic calling to kick in, like::
1908 1915
1909 1916 /f x
1910 1917
1911 1918 into::
1912 1919
1913 1920 ------> f(x)
1914 1921
1915 1922 after the user's input prompt. This helps the user understand that the
1916 1923 input line was transformed automatically by IPython.
1917 1924 """
1918 1925 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1919 1926
1920 1927 try:
1921 1928 # plain ascii works better w/ pyreadline, on some machines, so
1922 1929 # we use it and only print uncolored rewrite if we have unicode
1923 1930 rw = str(rw)
1924 1931 print >> IPython.utils.io.Term.cout, rw
1925 1932 except UnicodeEncodeError:
1926 1933 print "------> " + cmd
1927 1934
1928 1935 #-------------------------------------------------------------------------
1929 1936 # Things related to extracting values/expressions from kernel and user_ns
1930 1937 #-------------------------------------------------------------------------
1931 1938
1932 1939 def _simple_error(self):
1933 1940 etype, value = sys.exc_info()[:2]
1934 1941 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1935 1942
1936 1943 def user_variables(self, names):
1937 1944 """Get a list of variable names from the user's namespace.
1938 1945
1939 1946 Parameters
1940 1947 ----------
1941 1948 names : list of strings
1942 1949 A list of names of variables to be read from the user namespace.
1943 1950
1944 1951 Returns
1945 1952 -------
1946 1953 A dict, keyed by the input names and with the repr() of each value.
1947 1954 """
1948 1955 out = {}
1949 1956 user_ns = self.user_ns
1950 1957 for varname in names:
1951 1958 try:
1952 1959 value = repr(user_ns[varname])
1953 1960 except:
1954 1961 value = self._simple_error()
1955 1962 out[varname] = value
1956 1963 return out
1957 1964
1958 1965 def user_expressions(self, expressions):
1959 1966 """Evaluate a dict of expressions in the user's namespace.
1960 1967
1961 1968 Parameters
1962 1969 ----------
1963 1970 expressions : dict
1964 1971 A dict with string keys and string values. The expression values
1965 1972 should be valid Python expressions, each of which will be evaluated
1966 1973 in the user namespace.
1967 1974
1968 1975 Returns
1969 1976 -------
1970 1977 A dict, keyed like the input expressions dict, with the repr() of each
1971 1978 value.
1972 1979 """
1973 1980 out = {}
1974 1981 user_ns = self.user_ns
1975 1982 global_ns = self.user_global_ns
1976 1983 for key, expr in expressions.iteritems():
1977 1984 try:
1978 1985 value = repr(eval(expr, global_ns, user_ns))
1979 1986 except:
1980 1987 value = self._simple_error()
1981 1988 out[key] = value
1982 1989 return out
1983 1990
1984 1991 #-------------------------------------------------------------------------
1985 1992 # Things related to the running of code
1986 1993 #-------------------------------------------------------------------------
1987 1994
1988 1995 def ex(self, cmd):
1989 1996 """Execute a normal python statement in user namespace."""
1990 1997 with nested(self.builtin_trap,):
1991 1998 exec cmd in self.user_global_ns, self.user_ns
1992 1999
1993 2000 def ev(self, expr):
1994 2001 """Evaluate python expression expr in user namespace.
1995 2002
1996 2003 Returns the result of evaluation
1997 2004 """
1998 2005 with nested(self.builtin_trap,):
1999 2006 return eval(expr, self.user_global_ns, self.user_ns)
2000 2007
2001 2008 def safe_execfile(self, fname, *where, **kw):
2002 2009 """A safe version of the builtin execfile().
2003 2010
2004 2011 This version will never throw an exception, but instead print
2005 2012 helpful error messages to the screen. This only works on pure
2006 2013 Python files with the .py extension.
2007 2014
2008 2015 Parameters
2009 2016 ----------
2010 2017 fname : string
2011 2018 The name of the file to be executed.
2012 2019 where : tuple
2013 2020 One or two namespaces, passed to execfile() as (globals,locals).
2014 2021 If only one is given, it is passed as both.
2015 2022 exit_ignore : bool (False)
2016 2023 If True, then silence SystemExit for non-zero status (it is always
2017 2024 silenced for zero status, as it is so common).
2018 2025 """
2019 2026 kw.setdefault('exit_ignore', False)
2020 2027
2021 2028 fname = os.path.abspath(os.path.expanduser(fname))
2022 2029 # Make sure we have a .py file
2023 2030 if not fname.endswith('.py'):
2024 2031 warn('File must end with .py to be run using execfile: <%s>' % fname)
2025 2032
2026 2033 # Make sure we can open the file
2027 2034 try:
2028 2035 with open(fname) as thefile:
2029 2036 pass
2030 2037 except:
2031 2038 warn('Could not open file <%s> for safe execution.' % fname)
2032 2039 return
2033 2040
2034 2041 # Find things also in current directory. This is needed to mimic the
2035 2042 # behavior of running a script from the system command line, where
2036 2043 # Python inserts the script's directory into sys.path
2037 2044 dname = os.path.dirname(fname)
2038 2045
2039 2046 if isinstance(fname, unicode):
2040 2047 # execfile uses default encoding instead of filesystem encoding
2041 2048 # so unicode filenames will fail
2042 2049 fname = fname.encode(sys.getfilesystemencoding() or sys.getdefaultencoding())
2043 2050
2044 2051 with prepended_to_syspath(dname):
2045 2052 try:
2046 2053 execfile(fname,*where)
2047 2054 except SystemExit, status:
2048 2055 # If the call was made with 0 or None exit status (sys.exit(0)
2049 2056 # or sys.exit() ), don't bother showing a traceback, as both of
2050 2057 # these are considered normal by the OS:
2051 2058 # > python -c'import sys;sys.exit(0)'; echo $?
2052 2059 # 0
2053 2060 # > python -c'import sys;sys.exit()'; echo $?
2054 2061 # 0
2055 2062 # For other exit status, we show the exception unless
2056 2063 # explicitly silenced, but only in short form.
2057 2064 if status.code not in (0, None) and not kw['exit_ignore']:
2058 2065 self.showtraceback(exception_only=True)
2059 2066 except:
2060 2067 self.showtraceback()
2061 2068
2062 2069 def safe_execfile_ipy(self, fname):
2063 2070 """Like safe_execfile, but for .ipy files with IPython syntax.
2064 2071
2065 2072 Parameters
2066 2073 ----------
2067 2074 fname : str
2068 2075 The name of the file to execute. The filename must have a
2069 2076 .ipy extension.
2070 2077 """
2071 2078 fname = os.path.abspath(os.path.expanduser(fname))
2072 2079
2073 2080 # Make sure we have a .py file
2074 2081 if not fname.endswith('.ipy'):
2075 2082 warn('File must end with .py to be run using execfile: <%s>' % fname)
2076 2083
2077 2084 # Make sure we can open the file
2078 2085 try:
2079 2086 with open(fname) as thefile:
2080 2087 pass
2081 2088 except:
2082 2089 warn('Could not open file <%s> for safe execution.' % fname)
2083 2090 return
2084 2091
2085 2092 # Find things also in current directory. This is needed to mimic the
2086 2093 # behavior of running a script from the system command line, where
2087 2094 # Python inserts the script's directory into sys.path
2088 2095 dname = os.path.dirname(fname)
2089 2096
2090 2097 with prepended_to_syspath(dname):
2091 2098 try:
2092 2099 with open(fname) as thefile:
2093 2100 # self.run_cell currently captures all exceptions
2094 2101 # raised in user code. It would be nice if there were
2095 2102 # versions of runlines, execfile that did raise, so
2096 2103 # we could catch the errors.
2097 2104 self.run_cell(thefile.read(), store_history=False)
2098 2105 except:
2099 2106 self.showtraceback()
2100 2107 warn('Unknown failure executing file: <%s>' % fname)
2101 2108
2102 2109 def run_cell(self, cell, store_history=True):
2103 2110 """Run the contents of an entire multiline 'cell' of code, and store it
2104 2111 in the history.
2105 2112
2106 2113 The cell is split into separate blocks which can be executed
2107 2114 individually. Then, based on how many blocks there are, they are
2108 2115 executed as follows:
2109 2116
2110 2117 - A single block: 'single' mode. If it is also a single line, dynamic
2111 2118 transformations, including automagic and macros, will be applied.
2112 2119
2113 2120 If there's more than one block, it depends:
2114 2121
2115 2122 - if the last one is no more than two lines long, run all but the last
2116 2123 in 'exec' mode and the very last one in 'single' mode. This makes it
2117 2124 easy to type simple expressions at the end to see computed values. -
2118 2125 otherwise (last one is also multiline), run all in 'exec' mode
2119 2126
2120 2127 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2121 2128 results are displayed and output prompts are computed. In 'exec' mode,
2122 2129 no results are displayed unless :func:`print` is called explicitly;
2123 2130 this mode is more akin to running a script.
2124 2131
2125 2132 Parameters
2126 2133 ----------
2127 2134 cell : str
2128 2135 A single or multiline string.
2129 2136 """
2130 2137 # Store the untransformed code
2131 2138 raw_cell = cell
2132 2139
2133 2140 # Code transformation and execution must take place with our
2134 2141 # modifications to builtins.
2135 2142 with self.builtin_trap:
2136 2143
2137 2144 # We need to break up the input into executable blocks that can
2138 2145 # be runin 'single' mode, to provide comfortable user behavior.
2139 2146 blocks = self.input_splitter.split_blocks(cell)
2140 2147
2141 2148 if not blocks: # Blank cell
2142 2149 return
2143 2150
2144 2151 # We only do dynamic transforms on a single line. But a macro
2145 2152 # can be expanded to several lines, so we need to split it
2146 2153 # into input blocks again.
2147 2154 if len(cell.splitlines()) <= 1:
2148 2155 cell = self.prefilter_manager.prefilter_line(blocks[0])
2149 2156 blocks = self.input_splitter.split_blocks(cell)
2150 2157
2151 2158 # Store the 'ipython' version of the cell as well, since
2152 2159 # that's what needs to go into the translated history and get
2153 2160 # executed (the original cell may contain non-python syntax).
2154 2161 cell = ''.join(blocks)
2155 2162
2156 2163 # Store raw and processed history
2157 2164 if store_history:
2158 2165 self.history_manager.store_inputs(self.execution_count,
2159 2166 cell, raw_cell)
2160 2167
2161 2168 self.logger.log(cell, raw_cell)
2162 2169
2163 2170 # All user code execution should take place with our
2164 2171 # modified displayhook.
2165 2172 with self.display_trap:
2166 2173 # Single-block input should behave like an interactive prompt
2167 2174 if len(blocks) == 1:
2168 2175 out = self.run_source(blocks[0])
2169 2176 # Write output to the database. Does nothing unless
2170 2177 # history output logging is enabled.
2171 2178 if store_history:
2172 2179 self.history_manager.store_output(self.execution_count)
2173 2180 # Since we return here, we need to update the
2174 2181 # execution count
2175 2182 self.execution_count += 1
2176 2183 return out
2177 2184
2178 2185 # In multi-block input, if the last block is a simple (one-two
2179 2186 # lines) expression, run it in single mode so it produces output.
2180 2187 # Otherwise just run it all in 'exec' mode. This seems like a
2181 2188 # reasonable usability design.
2182 2189 last = blocks[-1]
2183 2190 last_nlines = len(last.splitlines())
2184 2191
2185 2192 if last_nlines < 2:
2186 2193 # Here we consider the cell split between 'body' and 'last',
2187 2194 # store all history and execute 'body', and if successful, then
2188 2195 # proceed to execute 'last'.
2189 2196
2190 2197 # Get the main body to run as a cell
2191 2198 ipy_body = ''.join(blocks[:-1])
2192 2199 retcode = self.run_source(ipy_body, symbol='exec',
2193 2200 post_execute=False)
2194 2201 if retcode==0:
2195 2202 # Last expression compiled as 'single' so it
2196 2203 # produces output
2197 2204 self.run_source(last)
2198 2205 else:
2199 2206 # Run the whole cell as one entity, storing both raw and
2200 2207 # processed input in history
2201 2208 self.run_source(cell, symbol='exec')
2202 2209
2203 2210 # Write output to the database. Does nothing unless
2204 2211 # history output logging is enabled.
2205 2212 if store_history:
2206 2213 self.history_manager.store_output(self.execution_count)
2207 2214 # Each cell is a *single* input, regardless of how many lines it has
2208 2215 self.execution_count += 1
2209 2216
2210 2217 # PENDING REMOVAL: this method is slated for deletion, once our new
2211 2218 # input logic has been 100% moved to frontends and is stable.
2212 2219 def runlines(self, lines, clean=False):
2213 2220 """Run a string of one or more lines of source.
2214 2221
2215 2222 This method is capable of running a string containing multiple source
2216 2223 lines, as if they had been entered at the IPython prompt. Since it
2217 2224 exposes IPython's processing machinery, the given strings can contain
2218 2225 magic calls (%magic), special shell access (!cmd), etc.
2219 2226 """
2220 2227
2221 2228 if not isinstance(lines, (list, tuple)):
2222 2229 lines = lines.splitlines()
2223 2230
2224 2231 if clean:
2225 2232 lines = self._cleanup_ipy_script(lines)
2226 2233
2227 2234 # We must start with a clean buffer, in case this is run from an
2228 2235 # interactive IPython session (via a magic, for example).
2229 2236 self.reset_buffer()
2230 2237
2231 2238 # Since we will prefilter all lines, store the user's raw input too
2232 2239 # before we apply any transformations
2233 2240 self.buffer_raw[:] = [ l+'\n' for l in lines]
2234 2241
2235 2242 more = False
2236 2243 prefilter_lines = self.prefilter_manager.prefilter_lines
2237 2244 with nested(self.builtin_trap, self.display_trap):
2238 2245 for line in lines:
2239 2246 # skip blank lines so we don't mess up the prompt counter, but
2240 2247 # do NOT skip even a blank line if we are in a code block (more
2241 2248 # is true)
2242 2249
2243 2250 if line or more:
2244 2251 more = self.push_line(prefilter_lines(line, more))
2245 2252 # IPython's run_source returns None if there was an error
2246 2253 # compiling the code. This allows us to stop processing
2247 2254 # right away, so the user gets the error message at the
2248 2255 # right place.
2249 2256 if more is None:
2250 2257 break
2251 2258 # final newline in case the input didn't have it, so that the code
2252 2259 # actually does get executed
2253 2260 if more:
2254 2261 self.push_line('\n')
2255 2262
2256 2263 def run_source(self, source, filename=None,
2257 2264 symbol='single', post_execute=True):
2258 2265 """Compile and run some source in the interpreter.
2259 2266
2260 2267 Arguments are as for compile_command().
2261 2268
2262 2269 One several things can happen:
2263 2270
2264 2271 1) The input is incorrect; compile_command() raised an
2265 2272 exception (SyntaxError or OverflowError). A syntax traceback
2266 2273 will be printed by calling the showsyntaxerror() method.
2267 2274
2268 2275 2) The input is incomplete, and more input is required;
2269 2276 compile_command() returned None. Nothing happens.
2270 2277
2271 2278 3) The input is complete; compile_command() returned a code
2272 2279 object. The code is executed by calling self.run_code() (which
2273 2280 also handles run-time exceptions, except for SystemExit).
2274 2281
2275 2282 The return value is:
2276 2283
2277 2284 - True in case 2
2278 2285
2279 2286 - False in the other cases, unless an exception is raised, where
2280 2287 None is returned instead. This can be used by external callers to
2281 2288 know whether to continue feeding input or not.
2282 2289
2283 2290 The return value can be used to decide whether to use sys.ps1 or
2284 2291 sys.ps2 to prompt the next line."""
2285 2292
2286 2293 # We need to ensure that the source is unicode from here on.
2287 2294 if type(source)==str:
2288 2295 usource = source.decode(self.stdin_encoding)
2289 2296 else:
2290 2297 usource = source
2291 2298
2292 2299 if False: # dbg
2293 2300 print 'Source:', repr(source) # dbg
2294 2301 print 'USource:', repr(usource) # dbg
2295 2302 print 'type:', type(source) # dbg
2296 2303 print 'encoding', self.stdin_encoding # dbg
2297 2304
2298 2305 try:
2299 2306 code = self.compile(usource, symbol, self.execution_count)
2300 2307 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2301 2308 # Case 1
2302 2309 self.showsyntaxerror(filename)
2303 2310 return None
2304 2311
2305 2312 if code is None:
2306 2313 # Case 2
2307 2314 return True
2308 2315
2309 2316 # Case 3
2310 2317 # We store the code object so that threaded shells and
2311 2318 # custom exception handlers can access all this info if needed.
2312 2319 # The source corresponding to this can be obtained from the
2313 2320 # buffer attribute as '\n'.join(self.buffer).
2314 2321 self.code_to_run = code
2315 2322 # now actually execute the code object
2316 2323 if self.run_code(code, post_execute) == 0:
2317 2324 return False
2318 2325 else:
2319 2326 return None
2320 2327
2321 2328 # For backwards compatibility
2322 2329 runsource = run_source
2323 2330
2324 2331 def run_code(self, code_obj, post_execute=True):
2325 2332 """Execute a code object.
2326 2333
2327 2334 When an exception occurs, self.showtraceback() is called to display a
2328 2335 traceback.
2329 2336
2330 2337 Return value: a flag indicating whether the code to be run completed
2331 2338 successfully:
2332 2339
2333 2340 - 0: successful execution.
2334 2341 - 1: an error occurred.
2335 2342 """
2336 2343
2337 2344 # Set our own excepthook in case the user code tries to call it
2338 2345 # directly, so that the IPython crash handler doesn't get triggered
2339 2346 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2340 2347
2341 2348 # we save the original sys.excepthook in the instance, in case config
2342 2349 # code (such as magics) needs access to it.
2343 2350 self.sys_excepthook = old_excepthook
2344 2351 outflag = 1 # happens in more places, so it's easier as default
2345 2352 try:
2346 2353 try:
2347 2354 self.hooks.pre_run_code_hook()
2348 2355 #rprint('Running code', repr(code_obj)) # dbg
2349 2356 exec code_obj in self.user_global_ns, self.user_ns
2350 2357 finally:
2351 2358 # Reset our crash handler in place
2352 2359 sys.excepthook = old_excepthook
2353 2360 except SystemExit:
2354 2361 self.reset_buffer()
2355 2362 self.showtraceback(exception_only=True)
2356 2363 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2357 2364 except self.custom_exceptions:
2358 2365 etype,value,tb = sys.exc_info()
2359 2366 self.CustomTB(etype,value,tb)
2360 2367 except:
2361 2368 self.showtraceback()
2362 2369 else:
2363 2370 outflag = 0
2364 2371 if softspace(sys.stdout, 0):
2365 2372 print
2366 2373
2367 2374 # Execute any registered post-execution functions. Here, any errors
2368 2375 # are reported only minimally and just on the terminal, because the
2369 2376 # main exception channel may be occupied with a user traceback.
2370 2377 # FIXME: we need to think this mechanism a little more carefully.
2371 2378 if post_execute:
2372 2379 for func in self._post_execute:
2373 2380 try:
2374 2381 func()
2375 2382 except:
2376 2383 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2377 2384 func
2378 2385 print >> io.Term.cout, head
2379 2386 print >> io.Term.cout, self._simple_error()
2380 2387 print >> io.Term.cout, 'Removing from post_execute'
2381 2388 self._post_execute.remove(func)
2382 2389
2383 2390 # Flush out code object which has been run (and source)
2384 2391 self.code_to_run = None
2385 2392 return outflag
2386 2393
2387 2394 # For backwards compatibility
2388 2395 runcode = run_code
2389 2396
2390 2397 # PENDING REMOVAL: this method is slated for deletion, once our new
2391 2398 # input logic has been 100% moved to frontends and is stable.
2392 2399 def push_line(self, line):
2393 2400 """Push a line to the interpreter.
2394 2401
2395 2402 The line should not have a trailing newline; it may have
2396 2403 internal newlines. The line is appended to a buffer and the
2397 2404 interpreter's run_source() method is called with the
2398 2405 concatenated contents of the buffer as source. If this
2399 2406 indicates that the command was executed or invalid, the buffer
2400 2407 is reset; otherwise, the command is incomplete, and the buffer
2401 2408 is left as it was after the line was appended. The return
2402 2409 value is 1 if more input is required, 0 if the line was dealt
2403 2410 with in some way (this is the same as run_source()).
2404 2411 """
2405 2412
2406 2413 # autoindent management should be done here, and not in the
2407 2414 # interactive loop, since that one is only seen by keyboard input. We
2408 2415 # need this done correctly even for code run via runlines (which uses
2409 2416 # push).
2410 2417
2411 2418 #print 'push line: <%s>' % line # dbg
2412 2419 self.buffer.append(line)
2413 2420 full_source = '\n'.join(self.buffer)
2414 2421 more = self.run_source(full_source, self.filename)
2415 2422 if not more:
2416 2423 self.history_manager.store_inputs(self.execution_count,
2417 2424 '\n'.join(self.buffer_raw), full_source)
2418 2425 self.reset_buffer()
2419 2426 self.execution_count += 1
2420 2427 return more
2421 2428
2422 2429 def reset_buffer(self):
2423 2430 """Reset the input buffer."""
2424 2431 self.buffer[:] = []
2425 2432 self.buffer_raw[:] = []
2426 2433 self.input_splitter.reset()
2427 2434
2428 2435 # For backwards compatibility
2429 2436 resetbuffer = reset_buffer
2430 2437
2431 2438 def _is_secondary_block_start(self, s):
2432 2439 if not s.endswith(':'):
2433 2440 return False
2434 2441 if (s.startswith('elif') or
2435 2442 s.startswith('else') or
2436 2443 s.startswith('except') or
2437 2444 s.startswith('finally')):
2438 2445 return True
2439 2446
2440 2447 def _cleanup_ipy_script(self, script):
2441 2448 """Make a script safe for self.runlines()
2442 2449
2443 2450 Currently, IPython is lines based, with blocks being detected by
2444 2451 empty lines. This is a problem for block based scripts that may
2445 2452 not have empty lines after blocks. This script adds those empty
2446 2453 lines to make scripts safe for running in the current line based
2447 2454 IPython.
2448 2455 """
2449 2456 res = []
2450 2457 lines = script.splitlines()
2451 2458 level = 0
2452 2459
2453 2460 for l in lines:
2454 2461 lstripped = l.lstrip()
2455 2462 stripped = l.strip()
2456 2463 if not stripped:
2457 2464 continue
2458 2465 newlevel = len(l) - len(lstripped)
2459 2466 if level > 0 and newlevel == 0 and \
2460 2467 not self._is_secondary_block_start(stripped):
2461 2468 # add empty line
2462 2469 res.append('')
2463 2470 res.append(l)
2464 2471 level = newlevel
2465 2472
2466 2473 return '\n'.join(res) + '\n'
2467 2474
2468 2475 #-------------------------------------------------------------------------
2469 2476 # Things related to GUI support and pylab
2470 2477 #-------------------------------------------------------------------------
2471 2478
2472 2479 def enable_pylab(self, gui=None):
2473 2480 raise NotImplementedError('Implement enable_pylab in a subclass')
2474 2481
2475 2482 #-------------------------------------------------------------------------
2476 2483 # Utilities
2477 2484 #-------------------------------------------------------------------------
2478 2485
2479 2486 def var_expand(self,cmd,depth=0):
2480 2487 """Expand python variables in a string.
2481 2488
2482 2489 The depth argument indicates how many frames above the caller should
2483 2490 be walked to look for the local namespace where to expand variables.
2484 2491
2485 2492 The global namespace for expansion is always the user's interactive
2486 2493 namespace.
2487 2494 """
2488 2495 res = ItplNS(cmd, self.user_ns, # globals
2489 2496 # Skip our own frame in searching for locals:
2490 2497 sys._getframe(depth+1).f_locals # locals
2491 2498 )
2492 2499 return str(res).decode(res.codec)
2493 2500
2494 2501 def mktempfile(self, data=None, prefix='ipython_edit_'):
2495 2502 """Make a new tempfile and return its filename.
2496 2503
2497 2504 This makes a call to tempfile.mktemp, but it registers the created
2498 2505 filename internally so ipython cleans it up at exit time.
2499 2506
2500 2507 Optional inputs:
2501 2508
2502 2509 - data(None): if data is given, it gets written out to the temp file
2503 2510 immediately, and the file is closed again."""
2504 2511
2505 2512 filename = tempfile.mktemp('.py', prefix)
2506 2513 self.tempfiles.append(filename)
2507 2514
2508 2515 if data:
2509 2516 tmp_file = open(filename,'w')
2510 2517 tmp_file.write(data)
2511 2518 tmp_file.close()
2512 2519 return filename
2513 2520
2514 2521 # TODO: This should be removed when Term is refactored.
2515 2522 def write(self,data):
2516 2523 """Write a string to the default output"""
2517 2524 io.Term.cout.write(data)
2518 2525
2519 2526 # TODO: This should be removed when Term is refactored.
2520 2527 def write_err(self,data):
2521 2528 """Write a string to the default error output"""
2522 2529 io.Term.cerr.write(data)
2523 2530
2524 2531 def ask_yes_no(self,prompt,default=True):
2525 2532 if self.quiet:
2526 2533 return True
2527 2534 return ask_yes_no(prompt,default)
2528 2535
2529 2536 def show_usage(self):
2530 2537 """Show a usage message"""
2531 2538 page.page(IPython.core.usage.interactive_usage)
2532 2539
2533 2540 def find_user_code(self, target, raw=True):
2534 2541 """Get a code string from history, file, or a string or macro.
2535 2542
2536 2543 This is mainly used by magic functions.
2537 2544
2538 2545 Parameters
2539 2546 ----------
2540 2547 target : str
2541 2548 A string specifying code to retrieve. This will be tried respectively
2542 2549 as: ranges of input history (see %history for syntax), a filename, or
2543 2550 an expression evaluating to a string or Macro in the user namespace.
2544 2551 raw : bool
2545 2552 If true (default), retrieve raw history. Has no effect on the other
2546 2553 retrieval mechanisms.
2547 2554
2548 2555 Returns
2549 2556 -------
2550 2557 A string of code.
2551 2558
2552 2559 ValueError is raised if nothing is found, and TypeError if it evaluates
2553 2560 to an object of another type. In each case, .args[0] is a printable
2554 2561 message.
2555 2562 """
2556 2563 code = self.extract_input_lines(target, raw=raw) # Grab history
2557 2564 if code:
2558 2565 return code
2559 2566 if os.path.isfile(target): # Read file
2560 2567 return open(target, "r").read()
2561 2568
2562 2569 try: # User namespace
2563 2570 codeobj = eval(target, self.user_ns)
2564 2571 except Exception:
2565 2572 raise ValueError(("'%s' was not found in history, as a file, nor in"
2566 2573 " the user namespace.") % target)
2567 2574 if isinstance(codeobj, basestring):
2568 2575 return codeobj
2569 2576 elif isinstance(codeobj, Macro):
2570 2577 return codeobj.value
2571 2578
2572 2579 raise TypeError("%s is neither a string nor a macro." % target,
2573 2580 codeobj)
2574 2581
2575 2582 #-------------------------------------------------------------------------
2576 2583 # Things related to IPython exiting
2577 2584 #-------------------------------------------------------------------------
2578 2585 def atexit_operations(self):
2579 2586 """This will be executed at the time of exit.
2580 2587
2581 2588 Cleanup operations and saving of persistent data that is done
2582 2589 unconditionally by IPython should be performed here.
2583 2590
2584 2591 For things that may depend on startup flags or platform specifics (such
2585 2592 as having readline or not), register a separate atexit function in the
2586 2593 code that has the appropriate information, rather than trying to
2587 2594 clutter
2588 2595 """
2589 2596 # Cleanup all tempfiles left around
2590 2597 for tfile in self.tempfiles:
2591 2598 try:
2592 2599 os.unlink(tfile)
2593 2600 except OSError:
2594 2601 pass
2595 2602
2596 2603 # Close the history session (this stores the end time and line count)
2597 2604 self.history_manager.end_session()
2598 2605
2599 2606 # Clear all user namespaces to release all references cleanly.
2600 2607 self.reset(new_session=False)
2601 2608
2602 2609 # Run user hooks
2603 2610 self.hooks.shutdown_hook()
2604 2611
2605 2612 def cleanup(self):
2606 2613 self.restore_sys_module_state()
2607 2614
2608 2615
2609 2616 class InteractiveShellABC(object):
2610 2617 """An abstract base class for InteractiveShell."""
2611 2618 __metaclass__ = abc.ABCMeta
2612 2619
2613 2620 InteractiveShellABC.register(InteractiveShell)
@@ -1,3472 +1,3476 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 from cStringIO import StringIO
29 29 from getopt import getopt,GetoptError
30 30 from pprint import pformat
31 31 from xmlrpclib import ServerProxy
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.macro import Macro
50 50 from IPython.core import page
51 51 from IPython.core.prefilter import ESC_MAGIC
52 52 from IPython.lib.pylabtools import mpl_runner
53 53 from IPython.external.Itpl import itpl, printpl
54 54 from IPython.testing import decorators as testdec
55 55 from IPython.utils.io import file_read, nlprint
56 56 import IPython.utils.io
57 57 from IPython.utils.path import get_py_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 import IPython.utils.generics
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89 def needs_local_scope(func):
90 90 """Decorator to mark magic functions which need to local scope to run."""
91 91 func.needs_local_scope = True
92 92 return func
93 93
94 94 #***************************************************************************
95 95 # Main class implementing Magic functionality
96 96
97 97 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
98 98 # on construction of the main InteractiveShell object. Something odd is going
99 99 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
100 100 # eventually this needs to be clarified.
101 101 # BG: This is because InteractiveShell inherits from this, but is itself a
102 102 # Configurable. This messes up the MRO in some way. The fix is that we need to
103 103 # make Magic a configurable that InteractiveShell does not subclass.
104 104
105 105 class Magic:
106 106 """Magic functions for InteractiveShell.
107 107
108 108 Shell functions which can be reached as %function_name. All magic
109 109 functions should accept a string, which they can parse for their own
110 110 needs. This can make some functions easier to type, eg `%cd ../`
111 111 vs. `%cd("../")`
112 112
113 113 ALL definitions MUST begin with the prefix magic_. The user won't need it
114 114 at the command line, but it is is needed in the definition. """
115 115
116 116 # class globals
117 117 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
118 118 'Automagic is ON, % prefix NOT needed for magic functions.']
119 119
120 120 #......................................................................
121 121 # some utility functions
122 122
123 123 def __init__(self,shell):
124 124
125 125 self.options_table = {}
126 126 if profile is None:
127 127 self.magic_prun = self.profile_missing_notice
128 128 self.shell = shell
129 129
130 130 # namespace for holding state we may need
131 131 self._magic_state = Bunch()
132 132
133 133 def profile_missing_notice(self, *args, **kwargs):
134 134 error("""\
135 135 The profile module could not be found. It has been removed from the standard
136 136 python packages because of its non-free license. To use profiling, install the
137 137 python-profiler package from non-free.""")
138 138
139 139 def default_option(self,fn,optstr):
140 140 """Make an entry in the options_table for fn, with value optstr"""
141 141
142 142 if fn not in self.lsmagic():
143 143 error("%s is not a magic function" % fn)
144 144 self.options_table[fn] = optstr
145 145
146 146 def lsmagic(self):
147 147 """Return a list of currently available magic functions.
148 148
149 149 Gives a list of the bare names after mangling (['ls','cd', ...], not
150 150 ['magic_ls','magic_cd',...]"""
151 151
152 152 # FIXME. This needs a cleanup, in the way the magics list is built.
153 153
154 154 # magics in class definition
155 155 class_magic = lambda fn: fn.startswith('magic_') and \
156 156 callable(Magic.__dict__[fn])
157 157 # in instance namespace (run-time user additions)
158 158 inst_magic = lambda fn: fn.startswith('magic_') and \
159 159 callable(self.__dict__[fn])
160 160 # and bound magics by user (so they can access self):
161 161 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
162 162 callable(self.__class__.__dict__[fn])
163 163 magics = filter(class_magic,Magic.__dict__.keys()) + \
164 164 filter(inst_magic,self.__dict__.keys()) + \
165 165 filter(inst_bound_magic,self.__class__.__dict__.keys())
166 166 out = []
167 167 for fn in set(magics):
168 168 out.append(fn.replace('magic_','',1))
169 169 out.sort()
170 170 return out
171 171
172 172 def extract_input_lines(self, range_str, raw=False):
173 173 """Return as a string a set of input history slices.
174 174
175 175 Inputs:
176 176
177 177 - range_str: the set of slices is given as a string, like
178 178 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
179 179 which get their arguments as strings. The number before the / is the
180 180 session number: ~n goes n back from the current session.
181 181
182 182 Optional inputs:
183 183
184 184 - raw(False): by default, the processed input is used. If this is
185 185 true, the raw input history is used instead.
186 186
187 187 Note that slices can be called with two notations:
188 188
189 189 N:M -> standard python form, means including items N...(M-1).
190 190
191 191 N-M -> include items N..M (closed endpoint)."""
192 192 lines = self.shell.history_manager.\
193 193 get_range_by_str(range_str, raw=raw)
194 194 return "\n".join(x for _, _, x in lines)
195 195
196 196 def arg_err(self,func):
197 197 """Print docstring if incorrect arguments were passed"""
198 198 print 'Error in arguments:'
199 199 print oinspect.getdoc(func)
200 200
201 201 def format_latex(self,strng):
202 202 """Format a string for latex inclusion."""
203 203
204 204 # Characters that need to be escaped for latex:
205 205 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
206 206 # Magic command names as headers:
207 207 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
208 208 re.MULTILINE)
209 209 # Magic commands
210 210 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
211 211 re.MULTILINE)
212 212 # Paragraph continue
213 213 par_re = re.compile(r'\\$',re.MULTILINE)
214 214
215 215 # The "\n" symbol
216 216 newline_re = re.compile(r'\\n')
217 217
218 218 # Now build the string for output:
219 219 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
220 220 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
221 221 strng)
222 222 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
223 223 strng = par_re.sub(r'\\\\',strng)
224 224 strng = escape_re.sub(r'\\\1',strng)
225 225 strng = newline_re.sub(r'\\textbackslash{}n',strng)
226 226 return strng
227 227
228 228 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
229 229 """Parse options passed to an argument string.
230 230
231 231 The interface is similar to that of getopt(), but it returns back a
232 232 Struct with the options as keys and the stripped argument string still
233 233 as a string.
234 234
235 235 arg_str is quoted as a true sys.argv vector by using shlex.split.
236 236 This allows us to easily expand variables, glob files, quote
237 237 arguments, etc.
238 238
239 239 Options:
240 240 -mode: default 'string'. If given as 'list', the argument string is
241 241 returned as a list (split on whitespace) instead of a string.
242 242
243 243 -list_all: put all option values in lists. Normally only options
244 244 appearing more than once are put in a list.
245 245
246 246 -posix (True): whether to split the input line in POSIX mode or not,
247 247 as per the conventions outlined in the shlex module from the
248 248 standard library."""
249 249
250 250 # inject default options at the beginning of the input line
251 251 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
252 252 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
253 253
254 254 mode = kw.get('mode','string')
255 255 if mode not in ['string','list']:
256 256 raise ValueError,'incorrect mode given: %s' % mode
257 257 # Get options
258 258 list_all = kw.get('list_all',0)
259 259 posix = kw.get('posix', os.name == 'posix')
260 260
261 261 # Check if we have more than one argument to warrant extra processing:
262 262 odict = {} # Dictionary with options
263 263 args = arg_str.split()
264 264 if len(args) >= 1:
265 265 # If the list of inputs only has 0 or 1 thing in it, there's no
266 266 # need to look for options
267 267 argv = arg_split(arg_str,posix)
268 268 # Do regular option processing
269 269 try:
270 270 opts,args = getopt(argv,opt_str,*long_opts)
271 271 except GetoptError,e:
272 272 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
273 273 " ".join(long_opts)))
274 274 for o,a in opts:
275 275 if o.startswith('--'):
276 276 o = o[2:]
277 277 else:
278 278 o = o[1:]
279 279 try:
280 280 odict[o].append(a)
281 281 except AttributeError:
282 282 odict[o] = [odict[o],a]
283 283 except KeyError:
284 284 if list_all:
285 285 odict[o] = [a]
286 286 else:
287 287 odict[o] = a
288 288
289 289 # Prepare opts,args for return
290 290 opts = Struct(odict)
291 291 if mode == 'string':
292 292 args = ' '.join(args)
293 293
294 294 return opts,args
295 295
296 296 #......................................................................
297 297 # And now the actual magic functions
298 298
299 299 # Functions for IPython shell work (vars,funcs, config, etc)
300 300 def magic_lsmagic(self, parameter_s = ''):
301 301 """List currently available magic functions."""
302 302 mesc = ESC_MAGIC
303 303 print 'Available magic functions:\n'+mesc+\
304 304 (' '+mesc).join(self.lsmagic())
305 305 print '\n' + Magic.auto_status[self.shell.automagic]
306 306 return None
307 307
308 308 def magic_magic(self, parameter_s = ''):
309 309 """Print information about the magic function system.
310 310
311 311 Supported formats: -latex, -brief, -rest
312 312 """
313 313
314 314 mode = ''
315 315 try:
316 316 if parameter_s.split()[0] == '-latex':
317 317 mode = 'latex'
318 318 if parameter_s.split()[0] == '-brief':
319 319 mode = 'brief'
320 320 if parameter_s.split()[0] == '-rest':
321 321 mode = 'rest'
322 322 rest_docs = []
323 323 except:
324 324 pass
325 325
326 326 magic_docs = []
327 327 for fname in self.lsmagic():
328 328 mname = 'magic_' + fname
329 329 for space in (Magic,self,self.__class__):
330 330 try:
331 331 fn = space.__dict__[mname]
332 332 except KeyError:
333 333 pass
334 334 else:
335 335 break
336 336 if mode == 'brief':
337 337 # only first line
338 338 if fn.__doc__:
339 339 fndoc = fn.__doc__.split('\n',1)[0]
340 340 else:
341 341 fndoc = 'No documentation'
342 342 else:
343 343 if fn.__doc__:
344 344 fndoc = fn.__doc__.rstrip()
345 345 else:
346 346 fndoc = 'No documentation'
347 347
348 348
349 349 if mode == 'rest':
350 350 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
351 351 fname,fndoc))
352 352
353 353 else:
354 354 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
355 355 fname,fndoc))
356 356
357 357 magic_docs = ''.join(magic_docs)
358 358
359 359 if mode == 'rest':
360 360 return "".join(rest_docs)
361 361
362 362 if mode == 'latex':
363 363 print self.format_latex(magic_docs)
364 364 return
365 365 else:
366 366 magic_docs = format_screen(magic_docs)
367 367 if mode == 'brief':
368 368 return magic_docs
369 369
370 370 outmsg = """
371 371 IPython's 'magic' functions
372 372 ===========================
373 373
374 374 The magic function system provides a series of functions which allow you to
375 375 control the behavior of IPython itself, plus a lot of system-type
376 376 features. All these functions are prefixed with a % character, but parameters
377 377 are given without parentheses or quotes.
378 378
379 379 NOTE: If you have 'automagic' enabled (via the command line option or with the
380 380 %automagic function), you don't need to type in the % explicitly. By default,
381 381 IPython ships with automagic on, so you should only rarely need the % escape.
382 382
383 383 Example: typing '%cd mydir' (without the quotes) changes you working directory
384 384 to 'mydir', if it exists.
385 385
386 386 You can define your own magic functions to extend the system. See the supplied
387 387 ipythonrc and example-magic.py files for details (in your ipython
388 388 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
389 389
390 390 You can also define your own aliased names for magic functions. In your
391 391 ipythonrc file, placing a line like:
392 392
393 393 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
394 394
395 395 will define %pf as a new name for %profile.
396 396
397 397 You can also call magics in code using the magic() function, which IPython
398 398 automatically adds to the builtin namespace. Type 'magic?' for details.
399 399
400 400 For a list of the available magic functions, use %lsmagic. For a description
401 401 of any of them, type %magic_name?, e.g. '%cd?'.
402 402
403 403 Currently the magic system has the following functions:\n"""
404 404
405 405 mesc = ESC_MAGIC
406 406 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
407 407 "\n\n%s%s\n\n%s" % (outmsg,
408 408 magic_docs,mesc,mesc,
409 409 (' '+mesc).join(self.lsmagic()),
410 410 Magic.auto_status[self.shell.automagic] ) )
411 411 page.page(outmsg)
412 412
413 413 def magic_automagic(self, parameter_s = ''):
414 414 """Make magic functions callable without having to type the initial %.
415 415
416 416 Without argumentsl toggles on/off (when off, you must call it as
417 417 %automagic, of course). With arguments it sets the value, and you can
418 418 use any of (case insensitive):
419 419
420 420 - on,1,True: to activate
421 421
422 422 - off,0,False: to deactivate.
423 423
424 424 Note that magic functions have lowest priority, so if there's a
425 425 variable whose name collides with that of a magic fn, automagic won't
426 426 work for that function (you get the variable instead). However, if you
427 427 delete the variable (del var), the previously shadowed magic function
428 428 becomes visible to automagic again."""
429 429
430 430 arg = parameter_s.lower()
431 431 if parameter_s in ('on','1','true'):
432 432 self.shell.automagic = True
433 433 elif parameter_s in ('off','0','false'):
434 434 self.shell.automagic = False
435 435 else:
436 436 self.shell.automagic = not self.shell.automagic
437 437 print '\n' + Magic.auto_status[self.shell.automagic]
438 438
439 439 @testdec.skip_doctest
440 440 def magic_autocall(self, parameter_s = ''):
441 441 """Make functions callable without having to type parentheses.
442 442
443 443 Usage:
444 444
445 445 %autocall [mode]
446 446
447 447 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
448 448 value is toggled on and off (remembering the previous state).
449 449
450 450 In more detail, these values mean:
451 451
452 452 0 -> fully disabled
453 453
454 454 1 -> active, but do not apply if there are no arguments on the line.
455 455
456 456 In this mode, you get:
457 457
458 458 In [1]: callable
459 459 Out[1]: <built-in function callable>
460 460
461 461 In [2]: callable 'hello'
462 462 ------> callable('hello')
463 463 Out[2]: False
464 464
465 465 2 -> Active always. Even if no arguments are present, the callable
466 466 object is called:
467 467
468 468 In [2]: float
469 469 ------> float()
470 470 Out[2]: 0.0
471 471
472 472 Note that even with autocall off, you can still use '/' at the start of
473 473 a line to treat the first argument on the command line as a function
474 474 and add parentheses to it:
475 475
476 476 In [8]: /str 43
477 477 ------> str(43)
478 478 Out[8]: '43'
479 479
480 480 # all-random (note for auto-testing)
481 481 """
482 482
483 483 if parameter_s:
484 484 arg = int(parameter_s)
485 485 else:
486 486 arg = 'toggle'
487 487
488 488 if not arg in (0,1,2,'toggle'):
489 489 error('Valid modes: (0->Off, 1->Smart, 2->Full')
490 490 return
491 491
492 492 if arg in (0,1,2):
493 493 self.shell.autocall = arg
494 494 else: # toggle
495 495 if self.shell.autocall:
496 496 self._magic_state.autocall_save = self.shell.autocall
497 497 self.shell.autocall = 0
498 498 else:
499 499 try:
500 500 self.shell.autocall = self._magic_state.autocall_save
501 501 except AttributeError:
502 502 self.shell.autocall = self._magic_state.autocall_save = 1
503 503
504 504 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
505 505
506 506
507 507 def magic_page(self, parameter_s=''):
508 508 """Pretty print the object and display it through a pager.
509 509
510 510 %page [options] OBJECT
511 511
512 512 If no object is given, use _ (last output).
513 513
514 514 Options:
515 515
516 516 -r: page str(object), don't pretty-print it."""
517 517
518 518 # After a function contributed by Olivier Aubert, slightly modified.
519 519
520 520 # Process options/args
521 521 opts,args = self.parse_options(parameter_s,'r')
522 522 raw = 'r' in opts
523 523
524 524 oname = args and args or '_'
525 525 info = self._ofind(oname)
526 526 if info['found']:
527 527 txt = (raw and str or pformat)( info['obj'] )
528 528 page.page(txt)
529 529 else:
530 530 print 'Object `%s` not found' % oname
531 531
532 532 def magic_profile(self, parameter_s=''):
533 533 """Print your currently active IPython profile."""
534 534 if self.shell.profile:
535 535 printpl('Current IPython profile: $self.shell.profile.')
536 536 else:
537 537 print 'No profile active.'
538 538
539 539 def magic_pinfo(self, parameter_s='', namespaces=None):
540 540 """Provide detailed information about an object.
541 541
542 542 '%pinfo object' is just a synonym for object? or ?object."""
543 543
544 544 #print 'pinfo par: <%s>' % parameter_s # dbg
545 545
546 546
547 547 # detail_level: 0 -> obj? , 1 -> obj??
548 548 detail_level = 0
549 549 # We need to detect if we got called as 'pinfo pinfo foo', which can
550 550 # happen if the user types 'pinfo foo?' at the cmd line.
551 551 pinfo,qmark1,oname,qmark2 = \
552 552 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
553 553 if pinfo or qmark1 or qmark2:
554 554 detail_level = 1
555 555 if "*" in oname:
556 556 self.magic_psearch(oname)
557 557 else:
558 558 self.shell._inspect('pinfo', oname, detail_level=detail_level,
559 559 namespaces=namespaces)
560 560
561 561 def magic_pinfo2(self, parameter_s='', namespaces=None):
562 562 """Provide extra detailed information about an object.
563 563
564 564 '%pinfo2 object' is just a synonym for object?? or ??object."""
565 565 self.shell._inspect('pinfo', parameter_s, detail_level=1,
566 566 namespaces=namespaces)
567 567
568 568 @testdec.skip_doctest
569 569 def magic_pdef(self, parameter_s='', namespaces=None):
570 570 """Print the definition header for any callable object.
571 571
572 572 If the object is a class, print the constructor information.
573 573
574 574 Examples
575 575 --------
576 576 ::
577 577
578 578 In [3]: %pdef urllib.urlopen
579 579 urllib.urlopen(url, data=None, proxies=None)
580 580 """
581 581 self._inspect('pdef',parameter_s, namespaces)
582 582
583 583 def magic_pdoc(self, parameter_s='', namespaces=None):
584 584 """Print the docstring for an object.
585 585
586 586 If the given object is a class, it will print both the class and the
587 587 constructor docstrings."""
588 588 self._inspect('pdoc',parameter_s, namespaces)
589 589
590 590 def magic_psource(self, parameter_s='', namespaces=None):
591 591 """Print (or run through pager) the source code for an object."""
592 592 self._inspect('psource',parameter_s, namespaces)
593 593
594 594 def magic_pfile(self, parameter_s=''):
595 595 """Print (or run through pager) the file where an object is defined.
596 596
597 597 The file opens at the line where the object definition begins. IPython
598 598 will honor the environment variable PAGER if set, and otherwise will
599 599 do its best to print the file in a convenient form.
600 600
601 601 If the given argument is not an object currently defined, IPython will
602 602 try to interpret it as a filename (automatically adding a .py extension
603 603 if needed). You can thus use %pfile as a syntax highlighting code
604 604 viewer."""
605 605
606 606 # first interpret argument as an object name
607 607 out = self._inspect('pfile',parameter_s)
608 608 # if not, try the input as a filename
609 609 if out == 'not found':
610 610 try:
611 611 filename = get_py_filename(parameter_s)
612 612 except IOError,msg:
613 613 print msg
614 614 return
615 615 page.page(self.shell.inspector.format(file(filename).read()))
616 616
617 617 def magic_psearch(self, parameter_s=''):
618 618 """Search for object in namespaces by wildcard.
619 619
620 620 %psearch [options] PATTERN [OBJECT TYPE]
621 621
622 622 Note: ? can be used as a synonym for %psearch, at the beginning or at
623 623 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
624 624 rest of the command line must be unchanged (options come first), so
625 625 for example the following forms are equivalent
626 626
627 627 %psearch -i a* function
628 628 -i a* function?
629 629 ?-i a* function
630 630
631 631 Arguments:
632 632
633 633 PATTERN
634 634
635 635 where PATTERN is a string containing * as a wildcard similar to its
636 636 use in a shell. The pattern is matched in all namespaces on the
637 637 search path. By default objects starting with a single _ are not
638 638 matched, many IPython generated objects have a single
639 639 underscore. The default is case insensitive matching. Matching is
640 640 also done on the attributes of objects and not only on the objects
641 641 in a module.
642 642
643 643 [OBJECT TYPE]
644 644
645 645 Is the name of a python type from the types module. The name is
646 646 given in lowercase without the ending type, ex. StringType is
647 647 written string. By adding a type here only objects matching the
648 648 given type are matched. Using all here makes the pattern match all
649 649 types (this is the default).
650 650
651 651 Options:
652 652
653 653 -a: makes the pattern match even objects whose names start with a
654 654 single underscore. These names are normally ommitted from the
655 655 search.
656 656
657 657 -i/-c: make the pattern case insensitive/sensitive. If neither of
658 658 these options is given, the default is read from your ipythonrc
659 659 file. The option name which sets this value is
660 660 'wildcards_case_sensitive'. If this option is not specified in your
661 661 ipythonrc file, IPython's internal default is to do a case sensitive
662 662 search.
663 663
664 664 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
665 665 specifiy can be searched in any of the following namespaces:
666 666 'builtin', 'user', 'user_global','internal', 'alias', where
667 667 'builtin' and 'user' are the search defaults. Note that you should
668 668 not use quotes when specifying namespaces.
669 669
670 670 'Builtin' contains the python module builtin, 'user' contains all
671 671 user data, 'alias' only contain the shell aliases and no python
672 672 objects, 'internal' contains objects used by IPython. The
673 673 'user_global' namespace is only used by embedded IPython instances,
674 674 and it contains module-level globals. You can add namespaces to the
675 675 search with -s or exclude them with -e (these options can be given
676 676 more than once).
677 677
678 678 Examples:
679 679
680 680 %psearch a* -> objects beginning with an a
681 681 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
682 682 %psearch a* function -> all functions beginning with an a
683 683 %psearch re.e* -> objects beginning with an e in module re
684 684 %psearch r*.e* -> objects that start with e in modules starting in r
685 685 %psearch r*.* string -> all strings in modules beginning with r
686 686
687 687 Case sensitve search:
688 688
689 689 %psearch -c a* list all object beginning with lower case a
690 690
691 691 Show objects beginning with a single _:
692 692
693 693 %psearch -a _* list objects beginning with a single underscore"""
694 694 try:
695 695 parameter_s = parameter_s.encode('ascii')
696 696 except UnicodeEncodeError:
697 697 print 'Python identifiers can only contain ascii characters.'
698 698 return
699 699
700 700 # default namespaces to be searched
701 701 def_search = ['user','builtin']
702 702
703 703 # Process options/args
704 704 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
705 705 opt = opts.get
706 706 shell = self.shell
707 707 psearch = shell.inspector.psearch
708 708
709 709 # select case options
710 710 if opts.has_key('i'):
711 711 ignore_case = True
712 712 elif opts.has_key('c'):
713 713 ignore_case = False
714 714 else:
715 715 ignore_case = not shell.wildcards_case_sensitive
716 716
717 717 # Build list of namespaces to search from user options
718 718 def_search.extend(opt('s',[]))
719 719 ns_exclude = ns_exclude=opt('e',[])
720 720 ns_search = [nm for nm in def_search if nm not in ns_exclude]
721 721
722 722 # Call the actual search
723 723 try:
724 724 psearch(args,shell.ns_table,ns_search,
725 725 show_all=opt('a'),ignore_case=ignore_case)
726 726 except:
727 727 shell.showtraceback()
728 728
729 729 @testdec.skip_doctest
730 730 def magic_who_ls(self, parameter_s=''):
731 731 """Return a sorted list of all interactive variables.
732 732
733 733 If arguments are given, only variables of types matching these
734 734 arguments are returned.
735 735
736 736 Examples
737 737 --------
738 738
739 739 Define two variables and list them with who_ls::
740 740
741 741 In [1]: alpha = 123
742 742
743 743 In [2]: beta = 'test'
744 744
745 745 In [3]: %who_ls
746 746 Out[3]: ['alpha', 'beta']
747 747
748 748 In [4]: %who_ls int
749 749 Out[4]: ['alpha']
750 750
751 751 In [5]: %who_ls str
752 752 Out[5]: ['beta']
753 753 """
754 754
755 755 user_ns = self.shell.user_ns
756 756 internal_ns = self.shell.internal_ns
757 757 user_ns_hidden = self.shell.user_ns_hidden
758 758 out = [ i for i in user_ns
759 759 if not i.startswith('_') \
760 760 and not (i in internal_ns or i in user_ns_hidden) ]
761 761
762 762 typelist = parameter_s.split()
763 763 if typelist:
764 764 typeset = set(typelist)
765 765 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
766 766
767 767 out.sort()
768 768 return out
769 769
770 770 @testdec.skip_doctest
771 771 def magic_who(self, parameter_s=''):
772 772 """Print all interactive variables, with some minimal formatting.
773 773
774 774 If any arguments are given, only variables whose type matches one of
775 775 these are printed. For example:
776 776
777 777 %who function str
778 778
779 779 will only list functions and strings, excluding all other types of
780 780 variables. To find the proper type names, simply use type(var) at a
781 781 command line to see how python prints type names. For example:
782 782
783 783 In [1]: type('hello')\\
784 784 Out[1]: <type 'str'>
785 785
786 786 indicates that the type name for strings is 'str'.
787 787
788 788 %who always excludes executed names loaded through your configuration
789 789 file and things which are internal to IPython.
790 790
791 791 This is deliberate, as typically you may load many modules and the
792 792 purpose of %who is to show you only what you've manually defined.
793 793
794 794 Examples
795 795 --------
796 796
797 797 Define two variables and list them with who::
798 798
799 799 In [1]: alpha = 123
800 800
801 801 In [2]: beta = 'test'
802 802
803 803 In [3]: %who
804 804 alpha beta
805 805
806 806 In [4]: %who int
807 807 alpha
808 808
809 809 In [5]: %who str
810 810 beta
811 811 """
812 812
813 813 varlist = self.magic_who_ls(parameter_s)
814 814 if not varlist:
815 815 if parameter_s:
816 816 print 'No variables match your requested type.'
817 817 else:
818 818 print 'Interactive namespace is empty.'
819 819 return
820 820
821 821 # if we have variables, move on...
822 822 count = 0
823 823 for i in varlist:
824 824 print i+'\t',
825 825 count += 1
826 826 if count > 8:
827 827 count = 0
828 828 print
829 829 print
830 830
831 831 @testdec.skip_doctest
832 832 def magic_whos(self, parameter_s=''):
833 833 """Like %who, but gives some extra information about each variable.
834 834
835 835 The same type filtering of %who can be applied here.
836 836
837 837 For all variables, the type is printed. Additionally it prints:
838 838
839 839 - For {},[],(): their length.
840 840
841 841 - For numpy arrays, a summary with shape, number of
842 842 elements, typecode and size in memory.
843 843
844 844 - Everything else: a string representation, snipping their middle if
845 845 too long.
846 846
847 847 Examples
848 848 --------
849 849
850 850 Define two variables and list them with whos::
851 851
852 852 In [1]: alpha = 123
853 853
854 854 In [2]: beta = 'test'
855 855
856 856 In [3]: %whos
857 857 Variable Type Data/Info
858 858 --------------------------------
859 859 alpha int 123
860 860 beta str test
861 861 """
862 862
863 863 varnames = self.magic_who_ls(parameter_s)
864 864 if not varnames:
865 865 if parameter_s:
866 866 print 'No variables match your requested type.'
867 867 else:
868 868 print 'Interactive namespace is empty.'
869 869 return
870 870
871 871 # if we have variables, move on...
872 872
873 873 # for these types, show len() instead of data:
874 874 seq_types = ['dict', 'list', 'tuple']
875 875
876 876 # for numpy/Numeric arrays, display summary info
877 877 try:
878 878 import numpy
879 879 except ImportError:
880 880 ndarray_type = None
881 881 else:
882 882 ndarray_type = numpy.ndarray.__name__
883 883 try:
884 884 import Numeric
885 885 except ImportError:
886 886 array_type = None
887 887 else:
888 888 array_type = Numeric.ArrayType.__name__
889 889
890 890 # Find all variable names and types so we can figure out column sizes
891 891 def get_vars(i):
892 892 return self.shell.user_ns[i]
893 893
894 894 # some types are well known and can be shorter
895 895 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
896 896 def type_name(v):
897 897 tn = type(v).__name__
898 898 return abbrevs.get(tn,tn)
899 899
900 900 varlist = map(get_vars,varnames)
901 901
902 902 typelist = []
903 903 for vv in varlist:
904 904 tt = type_name(vv)
905 905
906 906 if tt=='instance':
907 907 typelist.append( abbrevs.get(str(vv.__class__),
908 908 str(vv.__class__)))
909 909 else:
910 910 typelist.append(tt)
911 911
912 912 # column labels and # of spaces as separator
913 913 varlabel = 'Variable'
914 914 typelabel = 'Type'
915 915 datalabel = 'Data/Info'
916 916 colsep = 3
917 917 # variable format strings
918 918 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
919 919 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
920 920 aformat = "%s: %s elems, type `%s`, %s bytes"
921 921 # find the size of the columns to format the output nicely
922 922 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
923 923 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
924 924 # table header
925 925 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
926 926 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
927 927 # and the table itself
928 928 kb = 1024
929 929 Mb = 1048576 # kb**2
930 930 for vname,var,vtype in zip(varnames,varlist,typelist):
931 931 print itpl(vformat),
932 932 if vtype in seq_types:
933 933 print "n="+str(len(var))
934 934 elif vtype in [array_type,ndarray_type]:
935 935 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
936 936 if vtype==ndarray_type:
937 937 # numpy
938 938 vsize = var.size
939 939 vbytes = vsize*var.itemsize
940 940 vdtype = var.dtype
941 941 else:
942 942 # Numeric
943 943 vsize = Numeric.size(var)
944 944 vbytes = vsize*var.itemsize()
945 945 vdtype = var.typecode()
946 946
947 947 if vbytes < 100000:
948 948 print aformat % (vshape,vsize,vdtype,vbytes)
949 949 else:
950 950 print aformat % (vshape,vsize,vdtype,vbytes),
951 951 if vbytes < Mb:
952 952 print '(%s kb)' % (vbytes/kb,)
953 953 else:
954 954 print '(%s Mb)' % (vbytes/Mb,)
955 955 else:
956 956 try:
957 957 vstr = str(var)
958 958 except UnicodeEncodeError:
959 959 vstr = unicode(var).encode(sys.getdefaultencoding(),
960 960 'backslashreplace')
961 961 vstr = vstr.replace('\n','\\n')
962 962 if len(vstr) < 50:
963 963 print vstr
964 964 else:
965 965 printpl(vfmt_short)
966 966
967 967 def magic_reset(self, parameter_s=''):
968 968 """Resets the namespace by removing all names defined by the user.
969 969
970 Input/Output history are left around in case you need them.
971
972 970 Parameters
973 971 ----------
974 972 -f : force reset without asking for confirmation.
975 973
974 -h : 'Hard' reset: gives you a new session and removes all
975 references to objects from the current session. By default, we
976 do a 'soft' reset, which only clears out your namespace, and
977 leaves input and output history around.
978
976 979 Examples
977 980 --------
978 981 In [6]: a = 1
979 982
980 983 In [7]: a
981 984 Out[7]: 1
982 985
983 986 In [8]: 'a' in _ip.user_ns
984 987 Out[8]: True
985 988
986 989 In [9]: %reset -f
987 990
988 991 In [10]: 'a' in _ip.user_ns
989 992 Out[10]: False
990 993 """
991
992 if parameter_s == '-f':
994 opts, args = self.parse_options(parameter_s,'fh')
995 if 'f' in opts:
993 996 ans = True
994 997 else:
995 998 ans = self.shell.ask_yes_no(
996 999 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
997 1000 if not ans:
998 1001 print 'Nothing done.'
999 1002 return
1003
1004 if 'h' in opts: # Hard reset
1005 self.shell.reset(new_session = True)
1006
1007 else: # Soft reset
1000 1008 user_ns = self.shell.user_ns
1001 1009 for i in self.magic_who_ls():
1002 1010 del(user_ns[i])
1003 1011
1004 # Also flush the private list of module references kept for script
1005 # execution protection
1006 self.shell.clear_main_mod_cache()
1007
1008 1012 def magic_reset_selective(self, parameter_s=''):
1009 1013 """Resets the namespace by removing names defined by the user.
1010 1014
1011 1015 Input/Output history are left around in case you need them.
1012 1016
1013 1017 %reset_selective [-f] regex
1014 1018
1015 1019 No action is taken if regex is not included
1016 1020
1017 1021 Options
1018 1022 -f : force reset without asking for confirmation.
1019 1023
1020 1024 Examples
1021 1025 --------
1022 1026
1023 1027 We first fully reset the namespace so your output looks identical to
1024 1028 this example for pedagogical reasons; in practice you do not need a
1025 1029 full reset.
1026 1030
1027 1031 In [1]: %reset -f
1028 1032
1029 1033 Now, with a clean namespace we can make a few variables and use
1030 1034 %reset_selective to only delete names that match our regexp:
1031 1035
1032 1036 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1033 1037
1034 1038 In [3]: who_ls
1035 1039 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1036 1040
1037 1041 In [4]: %reset_selective -f b[2-3]m
1038 1042
1039 1043 In [5]: who_ls
1040 1044 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1041 1045
1042 1046 In [6]: %reset_selective -f d
1043 1047
1044 1048 In [7]: who_ls
1045 1049 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1046 1050
1047 1051 In [8]: %reset_selective -f c
1048 1052
1049 1053 In [9]: who_ls
1050 1054 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1051 1055
1052 1056 In [10]: %reset_selective -f b
1053 1057
1054 1058 In [11]: who_ls
1055 1059 Out[11]: ['a']
1056 1060 """
1057 1061
1058 1062 opts, regex = self.parse_options(parameter_s,'f')
1059 1063
1060 1064 if opts.has_key('f'):
1061 1065 ans = True
1062 1066 else:
1063 1067 ans = self.shell.ask_yes_no(
1064 1068 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1065 1069 if not ans:
1066 1070 print 'Nothing done.'
1067 1071 return
1068 1072 user_ns = self.shell.user_ns
1069 1073 if not regex:
1070 1074 print 'No regex pattern specified. Nothing done.'
1071 1075 return
1072 1076 else:
1073 1077 try:
1074 1078 m = re.compile(regex)
1075 1079 except TypeError:
1076 1080 raise TypeError('regex must be a string or compiled pattern')
1077 1081 for i in self.magic_who_ls():
1078 1082 if m.search(i):
1079 1083 del(user_ns[i])
1080 1084
1081 1085 def magic_logstart(self,parameter_s=''):
1082 1086 """Start logging anywhere in a session.
1083 1087
1084 1088 %logstart [-o|-r|-t] [log_name [log_mode]]
1085 1089
1086 1090 If no name is given, it defaults to a file named 'ipython_log.py' in your
1087 1091 current directory, in 'rotate' mode (see below).
1088 1092
1089 1093 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1090 1094 history up to that point and then continues logging.
1091 1095
1092 1096 %logstart takes a second optional parameter: logging mode. This can be one
1093 1097 of (note that the modes are given unquoted):\\
1094 1098 append: well, that says it.\\
1095 1099 backup: rename (if exists) to name~ and start name.\\
1096 1100 global: single logfile in your home dir, appended to.\\
1097 1101 over : overwrite existing log.\\
1098 1102 rotate: create rotating logs name.1~, name.2~, etc.
1099 1103
1100 1104 Options:
1101 1105
1102 1106 -o: log also IPython's output. In this mode, all commands which
1103 1107 generate an Out[NN] prompt are recorded to the logfile, right after
1104 1108 their corresponding input line. The output lines are always
1105 1109 prepended with a '#[Out]# ' marker, so that the log remains valid
1106 1110 Python code.
1107 1111
1108 1112 Since this marker is always the same, filtering only the output from
1109 1113 a log is very easy, using for example a simple awk call:
1110 1114
1111 1115 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1112 1116
1113 1117 -r: log 'raw' input. Normally, IPython's logs contain the processed
1114 1118 input, so that user lines are logged in their final form, converted
1115 1119 into valid Python. For example, %Exit is logged as
1116 1120 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1117 1121 exactly as typed, with no transformations applied.
1118 1122
1119 1123 -t: put timestamps before each input line logged (these are put in
1120 1124 comments)."""
1121 1125
1122 1126 opts,par = self.parse_options(parameter_s,'ort')
1123 1127 log_output = 'o' in opts
1124 1128 log_raw_input = 'r' in opts
1125 1129 timestamp = 't' in opts
1126 1130
1127 1131 logger = self.shell.logger
1128 1132
1129 1133 # if no args are given, the defaults set in the logger constructor by
1130 1134 # ipytohn remain valid
1131 1135 if par:
1132 1136 try:
1133 1137 logfname,logmode = par.split()
1134 1138 except:
1135 1139 logfname = par
1136 1140 logmode = 'backup'
1137 1141 else:
1138 1142 logfname = logger.logfname
1139 1143 logmode = logger.logmode
1140 1144 # put logfname into rc struct as if it had been called on the command
1141 1145 # line, so it ends up saved in the log header Save it in case we need
1142 1146 # to restore it...
1143 1147 old_logfile = self.shell.logfile
1144 1148 if logfname:
1145 1149 logfname = os.path.expanduser(logfname)
1146 1150 self.shell.logfile = logfname
1147 1151
1148 1152 loghead = '# IPython log file\n\n'
1149 1153 try:
1150 1154 started = logger.logstart(logfname,loghead,logmode,
1151 1155 log_output,timestamp,log_raw_input)
1152 1156 except:
1153 1157 self.shell.logfile = old_logfile
1154 1158 warn("Couldn't start log: %s" % sys.exc_info()[1])
1155 1159 else:
1156 1160 # log input history up to this point, optionally interleaving
1157 1161 # output if requested
1158 1162
1159 1163 if timestamp:
1160 1164 # disable timestamping for the previous history, since we've
1161 1165 # lost those already (no time machine here).
1162 1166 logger.timestamp = False
1163 1167
1164 1168 if log_raw_input:
1165 1169 input_hist = self.shell.history_manager.input_hist_raw
1166 1170 else:
1167 1171 input_hist = self.shell.history_manager.input_hist_parsed
1168 1172
1169 1173 if log_output:
1170 1174 log_write = logger.log_write
1171 1175 output_hist = self.shell.history_manager.output_hist
1172 1176 for n in range(1,len(input_hist)-1):
1173 1177 log_write(input_hist[n].rstrip())
1174 1178 if n in output_hist:
1175 1179 log_write(repr(output_hist[n]),'output')
1176 1180 else:
1177 1181 logger.log_write(''.join(input_hist[1:]))
1178 1182 if timestamp:
1179 1183 # re-enable timestamping
1180 1184 logger.timestamp = True
1181 1185
1182 1186 print ('Activating auto-logging. '
1183 1187 'Current session state plus future input saved.')
1184 1188 logger.logstate()
1185 1189
1186 1190 def magic_logstop(self,parameter_s=''):
1187 1191 """Fully stop logging and close log file.
1188 1192
1189 1193 In order to start logging again, a new %logstart call needs to be made,
1190 1194 possibly (though not necessarily) with a new filename, mode and other
1191 1195 options."""
1192 1196 self.logger.logstop()
1193 1197
1194 1198 def magic_logoff(self,parameter_s=''):
1195 1199 """Temporarily stop logging.
1196 1200
1197 1201 You must have previously started logging."""
1198 1202 self.shell.logger.switch_log(0)
1199 1203
1200 1204 def magic_logon(self,parameter_s=''):
1201 1205 """Restart logging.
1202 1206
1203 1207 This function is for restarting logging which you've temporarily
1204 1208 stopped with %logoff. For starting logging for the first time, you
1205 1209 must use the %logstart function, which allows you to specify an
1206 1210 optional log filename."""
1207 1211
1208 1212 self.shell.logger.switch_log(1)
1209 1213
1210 1214 def magic_logstate(self,parameter_s=''):
1211 1215 """Print the status of the logging system."""
1212 1216
1213 1217 self.shell.logger.logstate()
1214 1218
1215 1219 def magic_pdb(self, parameter_s=''):
1216 1220 """Control the automatic calling of the pdb interactive debugger.
1217 1221
1218 1222 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1219 1223 argument it works as a toggle.
1220 1224
1221 1225 When an exception is triggered, IPython can optionally call the
1222 1226 interactive pdb debugger after the traceback printout. %pdb toggles
1223 1227 this feature on and off.
1224 1228
1225 1229 The initial state of this feature is set in your ipythonrc
1226 1230 configuration file (the variable is called 'pdb').
1227 1231
1228 1232 If you want to just activate the debugger AFTER an exception has fired,
1229 1233 without having to type '%pdb on' and rerunning your code, you can use
1230 1234 the %debug magic."""
1231 1235
1232 1236 par = parameter_s.strip().lower()
1233 1237
1234 1238 if par:
1235 1239 try:
1236 1240 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1237 1241 except KeyError:
1238 1242 print ('Incorrect argument. Use on/1, off/0, '
1239 1243 'or nothing for a toggle.')
1240 1244 return
1241 1245 else:
1242 1246 # toggle
1243 1247 new_pdb = not self.shell.call_pdb
1244 1248
1245 1249 # set on the shell
1246 1250 self.shell.call_pdb = new_pdb
1247 1251 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1248 1252
1249 1253 def magic_debug(self, parameter_s=''):
1250 1254 """Activate the interactive debugger in post-mortem mode.
1251 1255
1252 1256 If an exception has just occurred, this lets you inspect its stack
1253 1257 frames interactively. Note that this will always work only on the last
1254 1258 traceback that occurred, so you must call this quickly after an
1255 1259 exception that you wish to inspect has fired, because if another one
1256 1260 occurs, it clobbers the previous one.
1257 1261
1258 1262 If you want IPython to automatically do this on every exception, see
1259 1263 the %pdb magic for more details.
1260 1264 """
1261 1265 self.shell.debugger(force=True)
1262 1266
1263 1267 @testdec.skip_doctest
1264 1268 def magic_prun(self, parameter_s ='',user_mode=1,
1265 1269 opts=None,arg_lst=None,prog_ns=None):
1266 1270
1267 1271 """Run a statement through the python code profiler.
1268 1272
1269 1273 Usage:
1270 1274 %prun [options] statement
1271 1275
1272 1276 The given statement (which doesn't require quote marks) is run via the
1273 1277 python profiler in a manner similar to the profile.run() function.
1274 1278 Namespaces are internally managed to work correctly; profile.run
1275 1279 cannot be used in IPython because it makes certain assumptions about
1276 1280 namespaces which do not hold under IPython.
1277 1281
1278 1282 Options:
1279 1283
1280 1284 -l <limit>: you can place restrictions on what or how much of the
1281 1285 profile gets printed. The limit value can be:
1282 1286
1283 1287 * A string: only information for function names containing this string
1284 1288 is printed.
1285 1289
1286 1290 * An integer: only these many lines are printed.
1287 1291
1288 1292 * A float (between 0 and 1): this fraction of the report is printed
1289 1293 (for example, use a limit of 0.4 to see the topmost 40% only).
1290 1294
1291 1295 You can combine several limits with repeated use of the option. For
1292 1296 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1293 1297 information about class constructors.
1294 1298
1295 1299 -r: return the pstats.Stats object generated by the profiling. This
1296 1300 object has all the information about the profile in it, and you can
1297 1301 later use it for further analysis or in other functions.
1298 1302
1299 1303 -s <key>: sort profile by given key. You can provide more than one key
1300 1304 by using the option several times: '-s key1 -s key2 -s key3...'. The
1301 1305 default sorting key is 'time'.
1302 1306
1303 1307 The following is copied verbatim from the profile documentation
1304 1308 referenced below:
1305 1309
1306 1310 When more than one key is provided, additional keys are used as
1307 1311 secondary criteria when the there is equality in all keys selected
1308 1312 before them.
1309 1313
1310 1314 Abbreviations can be used for any key names, as long as the
1311 1315 abbreviation is unambiguous. The following are the keys currently
1312 1316 defined:
1313 1317
1314 1318 Valid Arg Meaning
1315 1319 "calls" call count
1316 1320 "cumulative" cumulative time
1317 1321 "file" file name
1318 1322 "module" file name
1319 1323 "pcalls" primitive call count
1320 1324 "line" line number
1321 1325 "name" function name
1322 1326 "nfl" name/file/line
1323 1327 "stdname" standard name
1324 1328 "time" internal time
1325 1329
1326 1330 Note that all sorts on statistics are in descending order (placing
1327 1331 most time consuming items first), where as name, file, and line number
1328 1332 searches are in ascending order (i.e., alphabetical). The subtle
1329 1333 distinction between "nfl" and "stdname" is that the standard name is a
1330 1334 sort of the name as printed, which means that the embedded line
1331 1335 numbers get compared in an odd way. For example, lines 3, 20, and 40
1332 1336 would (if the file names were the same) appear in the string order
1333 1337 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1334 1338 line numbers. In fact, sort_stats("nfl") is the same as
1335 1339 sort_stats("name", "file", "line").
1336 1340
1337 1341 -T <filename>: save profile results as shown on screen to a text
1338 1342 file. The profile is still shown on screen.
1339 1343
1340 1344 -D <filename>: save (via dump_stats) profile statistics to given
1341 1345 filename. This data is in a format understod by the pstats module, and
1342 1346 is generated by a call to the dump_stats() method of profile
1343 1347 objects. The profile is still shown on screen.
1344 1348
1345 1349 If you want to run complete programs under the profiler's control, use
1346 1350 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1347 1351 contains profiler specific options as described here.
1348 1352
1349 1353 You can read the complete documentation for the profile module with::
1350 1354
1351 1355 In [1]: import profile; profile.help()
1352 1356 """
1353 1357
1354 1358 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1355 1359 # protect user quote marks
1356 1360 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1357 1361
1358 1362 if user_mode: # regular user call
1359 1363 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1360 1364 list_all=1)
1361 1365 namespace = self.shell.user_ns
1362 1366 else: # called to run a program by %run -p
1363 1367 try:
1364 1368 filename = get_py_filename(arg_lst[0])
1365 1369 except IOError,msg:
1366 1370 error(msg)
1367 1371 return
1368 1372
1369 1373 arg_str = 'execfile(filename,prog_ns)'
1370 1374 namespace = locals()
1371 1375
1372 1376 opts.merge(opts_def)
1373 1377
1374 1378 prof = profile.Profile()
1375 1379 try:
1376 1380 prof = prof.runctx(arg_str,namespace,namespace)
1377 1381 sys_exit = ''
1378 1382 except SystemExit:
1379 1383 sys_exit = """*** SystemExit exception caught in code being profiled."""
1380 1384
1381 1385 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1382 1386
1383 1387 lims = opts.l
1384 1388 if lims:
1385 1389 lims = [] # rebuild lims with ints/floats/strings
1386 1390 for lim in opts.l:
1387 1391 try:
1388 1392 lims.append(int(lim))
1389 1393 except ValueError:
1390 1394 try:
1391 1395 lims.append(float(lim))
1392 1396 except ValueError:
1393 1397 lims.append(lim)
1394 1398
1395 1399 # Trap output.
1396 1400 stdout_trap = StringIO()
1397 1401
1398 1402 if hasattr(stats,'stream'):
1399 1403 # In newer versions of python, the stats object has a 'stream'
1400 1404 # attribute to write into.
1401 1405 stats.stream = stdout_trap
1402 1406 stats.print_stats(*lims)
1403 1407 else:
1404 1408 # For older versions, we manually redirect stdout during printing
1405 1409 sys_stdout = sys.stdout
1406 1410 try:
1407 1411 sys.stdout = stdout_trap
1408 1412 stats.print_stats(*lims)
1409 1413 finally:
1410 1414 sys.stdout = sys_stdout
1411 1415
1412 1416 output = stdout_trap.getvalue()
1413 1417 output = output.rstrip()
1414 1418
1415 1419 page.page(output)
1416 1420 print sys_exit,
1417 1421
1418 1422 dump_file = opts.D[0]
1419 1423 text_file = opts.T[0]
1420 1424 if dump_file:
1421 1425 prof.dump_stats(dump_file)
1422 1426 print '\n*** Profile stats marshalled to file',\
1423 1427 `dump_file`+'.',sys_exit
1424 1428 if text_file:
1425 1429 pfile = file(text_file,'w')
1426 1430 pfile.write(output)
1427 1431 pfile.close()
1428 1432 print '\n*** Profile printout saved to text file',\
1429 1433 `text_file`+'.',sys_exit
1430 1434
1431 1435 if opts.has_key('r'):
1432 1436 return stats
1433 1437 else:
1434 1438 return None
1435 1439
1436 1440 @testdec.skip_doctest
1437 1441 def magic_run(self, parameter_s ='',runner=None,
1438 1442 file_finder=get_py_filename):
1439 1443 """Run the named file inside IPython as a program.
1440 1444
1441 1445 Usage:\\
1442 1446 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1443 1447
1444 1448 Parameters after the filename are passed as command-line arguments to
1445 1449 the program (put in sys.argv). Then, control returns to IPython's
1446 1450 prompt.
1447 1451
1448 1452 This is similar to running at a system prompt:\\
1449 1453 $ python file args\\
1450 1454 but with the advantage of giving you IPython's tracebacks, and of
1451 1455 loading all variables into your interactive namespace for further use
1452 1456 (unless -p is used, see below).
1453 1457
1454 1458 The file is executed in a namespace initially consisting only of
1455 1459 __name__=='__main__' and sys.argv constructed as indicated. It thus
1456 1460 sees its environment as if it were being run as a stand-alone program
1457 1461 (except for sharing global objects such as previously imported
1458 1462 modules). But after execution, the IPython interactive namespace gets
1459 1463 updated with all variables defined in the program (except for __name__
1460 1464 and sys.argv). This allows for very convenient loading of code for
1461 1465 interactive work, while giving each program a 'clean sheet' to run in.
1462 1466
1463 1467 Options:
1464 1468
1465 1469 -n: __name__ is NOT set to '__main__', but to the running file's name
1466 1470 without extension (as python does under import). This allows running
1467 1471 scripts and reloading the definitions in them without calling code
1468 1472 protected by an ' if __name__ == "__main__" ' clause.
1469 1473
1470 1474 -i: run the file in IPython's namespace instead of an empty one. This
1471 1475 is useful if you are experimenting with code written in a text editor
1472 1476 which depends on variables defined interactively.
1473 1477
1474 1478 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1475 1479 being run. This is particularly useful if IPython is being used to
1476 1480 run unittests, which always exit with a sys.exit() call. In such
1477 1481 cases you are interested in the output of the test results, not in
1478 1482 seeing a traceback of the unittest module.
1479 1483
1480 1484 -t: print timing information at the end of the run. IPython will give
1481 1485 you an estimated CPU time consumption for your script, which under
1482 1486 Unix uses the resource module to avoid the wraparound problems of
1483 1487 time.clock(). Under Unix, an estimate of time spent on system tasks
1484 1488 is also given (for Windows platforms this is reported as 0.0).
1485 1489
1486 1490 If -t is given, an additional -N<N> option can be given, where <N>
1487 1491 must be an integer indicating how many times you want the script to
1488 1492 run. The final timing report will include total and per run results.
1489 1493
1490 1494 For example (testing the script uniq_stable.py):
1491 1495
1492 1496 In [1]: run -t uniq_stable
1493 1497
1494 1498 IPython CPU timings (estimated):\\
1495 1499 User : 0.19597 s.\\
1496 1500 System: 0.0 s.\\
1497 1501
1498 1502 In [2]: run -t -N5 uniq_stable
1499 1503
1500 1504 IPython CPU timings (estimated):\\
1501 1505 Total runs performed: 5\\
1502 1506 Times : Total Per run\\
1503 1507 User : 0.910862 s, 0.1821724 s.\\
1504 1508 System: 0.0 s, 0.0 s.
1505 1509
1506 1510 -d: run your program under the control of pdb, the Python debugger.
1507 1511 This allows you to execute your program step by step, watch variables,
1508 1512 etc. Internally, what IPython does is similar to calling:
1509 1513
1510 1514 pdb.run('execfile("YOURFILENAME")')
1511 1515
1512 1516 with a breakpoint set on line 1 of your file. You can change the line
1513 1517 number for this automatic breakpoint to be <N> by using the -bN option
1514 1518 (where N must be an integer). For example:
1515 1519
1516 1520 %run -d -b40 myscript
1517 1521
1518 1522 will set the first breakpoint at line 40 in myscript.py. Note that
1519 1523 the first breakpoint must be set on a line which actually does
1520 1524 something (not a comment or docstring) for it to stop execution.
1521 1525
1522 1526 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1523 1527 first enter 'c' (without qoutes) to start execution up to the first
1524 1528 breakpoint.
1525 1529
1526 1530 Entering 'help' gives information about the use of the debugger. You
1527 1531 can easily see pdb's full documentation with "import pdb;pdb.help()"
1528 1532 at a prompt.
1529 1533
1530 1534 -p: run program under the control of the Python profiler module (which
1531 1535 prints a detailed report of execution times, function calls, etc).
1532 1536
1533 1537 You can pass other options after -p which affect the behavior of the
1534 1538 profiler itself. See the docs for %prun for details.
1535 1539
1536 1540 In this mode, the program's variables do NOT propagate back to the
1537 1541 IPython interactive namespace (because they remain in the namespace
1538 1542 where the profiler executes them).
1539 1543
1540 1544 Internally this triggers a call to %prun, see its documentation for
1541 1545 details on the options available specifically for profiling.
1542 1546
1543 1547 There is one special usage for which the text above doesn't apply:
1544 1548 if the filename ends with .ipy, the file is run as ipython script,
1545 1549 just as if the commands were written on IPython prompt.
1546 1550 """
1547 1551
1548 1552 # get arguments and set sys.argv for program to be run.
1549 1553 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1550 1554 mode='list',list_all=1)
1551 1555
1552 1556 try:
1553 1557 filename = file_finder(arg_lst[0])
1554 1558 except IndexError:
1555 1559 warn('you must provide at least a filename.')
1556 1560 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1557 1561 return
1558 1562 except IOError,msg:
1559 1563 error(msg)
1560 1564 return
1561 1565
1562 1566 if filename.lower().endswith('.ipy'):
1563 1567 self.shell.safe_execfile_ipy(filename)
1564 1568 return
1565 1569
1566 1570 # Control the response to exit() calls made by the script being run
1567 1571 exit_ignore = opts.has_key('e')
1568 1572
1569 1573 # Make sure that the running script gets a proper sys.argv as if it
1570 1574 # were run from a system shell.
1571 1575 save_argv = sys.argv # save it for later restoring
1572 1576 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1573 1577
1574 1578 if opts.has_key('i'):
1575 1579 # Run in user's interactive namespace
1576 1580 prog_ns = self.shell.user_ns
1577 1581 __name__save = self.shell.user_ns['__name__']
1578 1582 prog_ns['__name__'] = '__main__'
1579 1583 main_mod = self.shell.new_main_mod(prog_ns)
1580 1584 else:
1581 1585 # Run in a fresh, empty namespace
1582 1586 if opts.has_key('n'):
1583 1587 name = os.path.splitext(os.path.basename(filename))[0]
1584 1588 else:
1585 1589 name = '__main__'
1586 1590
1587 1591 main_mod = self.shell.new_main_mod()
1588 1592 prog_ns = main_mod.__dict__
1589 1593 prog_ns['__name__'] = name
1590 1594
1591 1595 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1592 1596 # set the __file__ global in the script's namespace
1593 1597 prog_ns['__file__'] = filename
1594 1598
1595 1599 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1596 1600 # that, if we overwrite __main__, we replace it at the end
1597 1601 main_mod_name = prog_ns['__name__']
1598 1602
1599 1603 if main_mod_name == '__main__':
1600 1604 restore_main = sys.modules['__main__']
1601 1605 else:
1602 1606 restore_main = False
1603 1607
1604 1608 # This needs to be undone at the end to prevent holding references to
1605 1609 # every single object ever created.
1606 1610 sys.modules[main_mod_name] = main_mod
1607 1611
1608 1612 try:
1609 1613 stats = None
1610 1614 with self.readline_no_record:
1611 1615 if opts.has_key('p'):
1612 1616 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1613 1617 else:
1614 1618 if opts.has_key('d'):
1615 1619 deb = debugger.Pdb(self.shell.colors)
1616 1620 # reset Breakpoint state, which is moronically kept
1617 1621 # in a class
1618 1622 bdb.Breakpoint.next = 1
1619 1623 bdb.Breakpoint.bplist = {}
1620 1624 bdb.Breakpoint.bpbynumber = [None]
1621 1625 # Set an initial breakpoint to stop execution
1622 1626 maxtries = 10
1623 1627 bp = int(opts.get('b',[1])[0])
1624 1628 checkline = deb.checkline(filename,bp)
1625 1629 if not checkline:
1626 1630 for bp in range(bp+1,bp+maxtries+1):
1627 1631 if deb.checkline(filename,bp):
1628 1632 break
1629 1633 else:
1630 1634 msg = ("\nI failed to find a valid line to set "
1631 1635 "a breakpoint\n"
1632 1636 "after trying up to line: %s.\n"
1633 1637 "Please set a valid breakpoint manually "
1634 1638 "with the -b option." % bp)
1635 1639 error(msg)
1636 1640 return
1637 1641 # if we find a good linenumber, set the breakpoint
1638 1642 deb.do_break('%s:%s' % (filename,bp))
1639 1643 # Start file run
1640 1644 print "NOTE: Enter 'c' at the",
1641 1645 print "%s prompt to start your script." % deb.prompt
1642 1646 try:
1643 1647 deb.run('execfile("%s")' % filename,prog_ns)
1644 1648
1645 1649 except:
1646 1650 etype, value, tb = sys.exc_info()
1647 1651 # Skip three frames in the traceback: the %run one,
1648 1652 # one inside bdb.py, and the command-line typed by the
1649 1653 # user (run by exec in pdb itself).
1650 1654 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1651 1655 else:
1652 1656 if runner is None:
1653 1657 runner = self.shell.safe_execfile
1654 1658 if opts.has_key('t'):
1655 1659 # timed execution
1656 1660 try:
1657 1661 nruns = int(opts['N'][0])
1658 1662 if nruns < 1:
1659 1663 error('Number of runs must be >=1')
1660 1664 return
1661 1665 except (KeyError):
1662 1666 nruns = 1
1663 1667 if nruns == 1:
1664 1668 t0 = clock2()
1665 1669 runner(filename,prog_ns,prog_ns,
1666 1670 exit_ignore=exit_ignore)
1667 1671 t1 = clock2()
1668 1672 t_usr = t1[0]-t0[0]
1669 1673 t_sys = t1[1]-t0[1]
1670 1674 print "\nIPython CPU timings (estimated):"
1671 1675 print " User : %10s s." % t_usr
1672 1676 print " System: %10s s." % t_sys
1673 1677 else:
1674 1678 runs = range(nruns)
1675 1679 t0 = clock2()
1676 1680 for nr in runs:
1677 1681 runner(filename,prog_ns,prog_ns,
1678 1682 exit_ignore=exit_ignore)
1679 1683 t1 = clock2()
1680 1684 t_usr = t1[0]-t0[0]
1681 1685 t_sys = t1[1]-t0[1]
1682 1686 print "\nIPython CPU timings (estimated):"
1683 1687 print "Total runs performed:",nruns
1684 1688 print " Times : %10s %10s" % ('Total','Per run')
1685 1689 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1686 1690 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1687 1691
1688 1692 else:
1689 1693 # regular execution
1690 1694 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1691 1695
1692 1696 if opts.has_key('i'):
1693 1697 self.shell.user_ns['__name__'] = __name__save
1694 1698 else:
1695 1699 # The shell MUST hold a reference to prog_ns so after %run
1696 1700 # exits, the python deletion mechanism doesn't zero it out
1697 1701 # (leaving dangling references).
1698 1702 self.shell.cache_main_mod(prog_ns,filename)
1699 1703 # update IPython interactive namespace
1700 1704
1701 1705 # Some forms of read errors on the file may mean the
1702 1706 # __name__ key was never set; using pop we don't have to
1703 1707 # worry about a possible KeyError.
1704 1708 prog_ns.pop('__name__', None)
1705 1709
1706 1710 self.shell.user_ns.update(prog_ns)
1707 1711 finally:
1708 1712 # It's a bit of a mystery why, but __builtins__ can change from
1709 1713 # being a module to becoming a dict missing some key data after
1710 1714 # %run. As best I can see, this is NOT something IPython is doing
1711 1715 # at all, and similar problems have been reported before:
1712 1716 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1713 1717 # Since this seems to be done by the interpreter itself, the best
1714 1718 # we can do is to at least restore __builtins__ for the user on
1715 1719 # exit.
1716 1720 self.shell.user_ns['__builtins__'] = __builtin__
1717 1721
1718 1722 # Ensure key global structures are restored
1719 1723 sys.argv = save_argv
1720 1724 if restore_main:
1721 1725 sys.modules['__main__'] = restore_main
1722 1726 else:
1723 1727 # Remove from sys.modules the reference to main_mod we'd
1724 1728 # added. Otherwise it will trap references to objects
1725 1729 # contained therein.
1726 1730 del sys.modules[main_mod_name]
1727 1731
1728 1732 return stats
1729 1733
1730 1734 @testdec.skip_doctest
1731 1735 def magic_timeit(self, parameter_s =''):
1732 1736 """Time execution of a Python statement or expression
1733 1737
1734 1738 Usage:\\
1735 1739 %timeit [-n<N> -r<R> [-t|-c]] statement
1736 1740
1737 1741 Time execution of a Python statement or expression using the timeit
1738 1742 module.
1739 1743
1740 1744 Options:
1741 1745 -n<N>: execute the given statement <N> times in a loop. If this value
1742 1746 is not given, a fitting value is chosen.
1743 1747
1744 1748 -r<R>: repeat the loop iteration <R> times and take the best result.
1745 1749 Default: 3
1746 1750
1747 1751 -t: use time.time to measure the time, which is the default on Unix.
1748 1752 This function measures wall time.
1749 1753
1750 1754 -c: use time.clock to measure the time, which is the default on
1751 1755 Windows and measures wall time. On Unix, resource.getrusage is used
1752 1756 instead and returns the CPU user time.
1753 1757
1754 1758 -p<P>: use a precision of <P> digits to display the timing result.
1755 1759 Default: 3
1756 1760
1757 1761
1758 1762 Examples:
1759 1763
1760 1764 In [1]: %timeit pass
1761 1765 10000000 loops, best of 3: 53.3 ns per loop
1762 1766
1763 1767 In [2]: u = None
1764 1768
1765 1769 In [3]: %timeit u is None
1766 1770 10000000 loops, best of 3: 184 ns per loop
1767 1771
1768 1772 In [4]: %timeit -r 4 u == None
1769 1773 1000000 loops, best of 4: 242 ns per loop
1770 1774
1771 1775 In [5]: import time
1772 1776
1773 1777 In [6]: %timeit -n1 time.sleep(2)
1774 1778 1 loops, best of 3: 2 s per loop
1775 1779
1776 1780
1777 1781 The times reported by %timeit will be slightly higher than those
1778 1782 reported by the timeit.py script when variables are accessed. This is
1779 1783 due to the fact that %timeit executes the statement in the namespace
1780 1784 of the shell, compared with timeit.py, which uses a single setup
1781 1785 statement to import function or create variables. Generally, the bias
1782 1786 does not matter as long as results from timeit.py are not mixed with
1783 1787 those from %timeit."""
1784 1788
1785 1789 import timeit
1786 1790 import math
1787 1791
1788 1792 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1789 1793 # certain terminals. Until we figure out a robust way of
1790 1794 # auto-detecting if the terminal can deal with it, use plain 'us' for
1791 1795 # microseconds. I am really NOT happy about disabling the proper
1792 1796 # 'micro' prefix, but crashing is worse... If anyone knows what the
1793 1797 # right solution for this is, I'm all ears...
1794 1798 #
1795 1799 # Note: using
1796 1800 #
1797 1801 # s = u'\xb5'
1798 1802 # s.encode(sys.getdefaultencoding())
1799 1803 #
1800 1804 # is not sufficient, as I've seen terminals where that fails but
1801 1805 # print s
1802 1806 #
1803 1807 # succeeds
1804 1808 #
1805 1809 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1806 1810
1807 1811 #units = [u"s", u"ms",u'\xb5',"ns"]
1808 1812 units = [u"s", u"ms",u'us',"ns"]
1809 1813
1810 1814 scaling = [1, 1e3, 1e6, 1e9]
1811 1815
1812 1816 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1813 1817 posix=False)
1814 1818 if stmt == "":
1815 1819 return
1816 1820 timefunc = timeit.default_timer
1817 1821 number = int(getattr(opts, "n", 0))
1818 1822 repeat = int(getattr(opts, "r", timeit.default_repeat))
1819 1823 precision = int(getattr(opts, "p", 3))
1820 1824 if hasattr(opts, "t"):
1821 1825 timefunc = time.time
1822 1826 if hasattr(opts, "c"):
1823 1827 timefunc = clock
1824 1828
1825 1829 timer = timeit.Timer(timer=timefunc)
1826 1830 # this code has tight coupling to the inner workings of timeit.Timer,
1827 1831 # but is there a better way to achieve that the code stmt has access
1828 1832 # to the shell namespace?
1829 1833
1830 1834 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1831 1835 'setup': "pass"}
1832 1836 # Track compilation time so it can be reported if too long
1833 1837 # Minimum time above which compilation time will be reported
1834 1838 tc_min = 0.1
1835 1839
1836 1840 t0 = clock()
1837 1841 code = compile(src, "<magic-timeit>", "exec")
1838 1842 tc = clock()-t0
1839 1843
1840 1844 ns = {}
1841 1845 exec code in self.shell.user_ns, ns
1842 1846 timer.inner = ns["inner"]
1843 1847
1844 1848 if number == 0:
1845 1849 # determine number so that 0.2 <= total time < 2.0
1846 1850 number = 1
1847 1851 for i in range(1, 10):
1848 1852 if timer.timeit(number) >= 0.2:
1849 1853 break
1850 1854 number *= 10
1851 1855
1852 1856 best = min(timer.repeat(repeat, number)) / number
1853 1857
1854 1858 if best > 0.0 and best < 1000.0:
1855 1859 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1856 1860 elif best >= 1000.0:
1857 1861 order = 0
1858 1862 else:
1859 1863 order = 3
1860 1864 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1861 1865 precision,
1862 1866 best * scaling[order],
1863 1867 units[order])
1864 1868 if tc > tc_min:
1865 1869 print "Compiler time: %.2f s" % tc
1866 1870
1867 1871 @testdec.skip_doctest
1868 1872 @needs_local_scope
1869 1873 def magic_time(self,parameter_s = ''):
1870 1874 """Time execution of a Python statement or expression.
1871 1875
1872 1876 The CPU and wall clock times are printed, and the value of the
1873 1877 expression (if any) is returned. Note that under Win32, system time
1874 1878 is always reported as 0, since it can not be measured.
1875 1879
1876 1880 This function provides very basic timing functionality. In Python
1877 1881 2.3, the timeit module offers more control and sophistication, so this
1878 1882 could be rewritten to use it (patches welcome).
1879 1883
1880 1884 Some examples:
1881 1885
1882 1886 In [1]: time 2**128
1883 1887 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1884 1888 Wall time: 0.00
1885 1889 Out[1]: 340282366920938463463374607431768211456L
1886 1890
1887 1891 In [2]: n = 1000000
1888 1892
1889 1893 In [3]: time sum(range(n))
1890 1894 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1891 1895 Wall time: 1.37
1892 1896 Out[3]: 499999500000L
1893 1897
1894 1898 In [4]: time print 'hello world'
1895 1899 hello world
1896 1900 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1897 1901 Wall time: 0.00
1898 1902
1899 1903 Note that the time needed by Python to compile the given expression
1900 1904 will be reported if it is more than 0.1s. In this example, the
1901 1905 actual exponentiation is done by Python at compilation time, so while
1902 1906 the expression can take a noticeable amount of time to compute, that
1903 1907 time is purely due to the compilation:
1904 1908
1905 1909 In [5]: time 3**9999;
1906 1910 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1907 1911 Wall time: 0.00 s
1908 1912
1909 1913 In [6]: time 3**999999;
1910 1914 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1911 1915 Wall time: 0.00 s
1912 1916 Compiler : 0.78 s
1913 1917 """
1914 1918
1915 1919 # fail immediately if the given expression can't be compiled
1916 1920
1917 1921 expr = self.shell.prefilter(parameter_s,False)
1918 1922
1919 1923 # Minimum time above which compilation time will be reported
1920 1924 tc_min = 0.1
1921 1925
1922 1926 try:
1923 1927 mode = 'eval'
1924 1928 t0 = clock()
1925 1929 code = compile(expr,'<timed eval>',mode)
1926 1930 tc = clock()-t0
1927 1931 except SyntaxError:
1928 1932 mode = 'exec'
1929 1933 t0 = clock()
1930 1934 code = compile(expr,'<timed exec>',mode)
1931 1935 tc = clock()-t0
1932 1936 # skew measurement as little as possible
1933 1937 glob = self.shell.user_ns
1934 1938 locs = self._magic_locals
1935 1939 clk = clock2
1936 1940 wtime = time.time
1937 1941 # time execution
1938 1942 wall_st = wtime()
1939 1943 if mode=='eval':
1940 1944 st = clk()
1941 1945 out = eval(code, glob, locs)
1942 1946 end = clk()
1943 1947 else:
1944 1948 st = clk()
1945 1949 exec code in glob, locs
1946 1950 end = clk()
1947 1951 out = None
1948 1952 wall_end = wtime()
1949 1953 # Compute actual times and report
1950 1954 wall_time = wall_end-wall_st
1951 1955 cpu_user = end[0]-st[0]
1952 1956 cpu_sys = end[1]-st[1]
1953 1957 cpu_tot = cpu_user+cpu_sys
1954 1958 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1955 1959 (cpu_user,cpu_sys,cpu_tot)
1956 1960 print "Wall time: %.2f s" % wall_time
1957 1961 if tc > tc_min:
1958 1962 print "Compiler : %.2f s" % tc
1959 1963 return out
1960 1964
1961 1965 @testdec.skip_doctest
1962 1966 def magic_macro(self,parameter_s = ''):
1963 1967 """Define a macro for future re-execution. It accepts ranges of history,
1964 1968 filenames or string objects.
1965 1969
1966 1970 Usage:\\
1967 1971 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1968 1972
1969 1973 Options:
1970 1974
1971 1975 -r: use 'raw' input. By default, the 'processed' history is used,
1972 1976 so that magics are loaded in their transformed version to valid
1973 1977 Python. If this option is given, the raw input as typed as the
1974 1978 command line is used instead.
1975 1979
1976 1980 This will define a global variable called `name` which is a string
1977 1981 made of joining the slices and lines you specify (n1,n2,... numbers
1978 1982 above) from your input history into a single string. This variable
1979 1983 acts like an automatic function which re-executes those lines as if
1980 1984 you had typed them. You just type 'name' at the prompt and the code
1981 1985 executes.
1982 1986
1983 1987 The syntax for indicating input ranges is described in %history.
1984 1988
1985 1989 Note: as a 'hidden' feature, you can also use traditional python slice
1986 1990 notation, where N:M means numbers N through M-1.
1987 1991
1988 1992 For example, if your history contains (%hist prints it):
1989 1993
1990 1994 44: x=1
1991 1995 45: y=3
1992 1996 46: z=x+y
1993 1997 47: print x
1994 1998 48: a=5
1995 1999 49: print 'x',x,'y',y
1996 2000
1997 2001 you can create a macro with lines 44 through 47 (included) and line 49
1998 2002 called my_macro with:
1999 2003
2000 2004 In [55]: %macro my_macro 44-47 49
2001 2005
2002 2006 Now, typing `my_macro` (without quotes) will re-execute all this code
2003 2007 in one pass.
2004 2008
2005 2009 You don't need to give the line-numbers in order, and any given line
2006 2010 number can appear multiple times. You can assemble macros with any
2007 2011 lines from your input history in any order.
2008 2012
2009 2013 The macro is a simple object which holds its value in an attribute,
2010 2014 but IPython's display system checks for macros and executes them as
2011 2015 code instead of printing them when you type their name.
2012 2016
2013 2017 You can view a macro's contents by explicitly printing it with:
2014 2018
2015 2019 'print macro_name'.
2016 2020
2017 2021 """
2018 2022
2019 2023 opts,args = self.parse_options(parameter_s,'r',mode='list')
2020 2024 if not args: # List existing macros
2021 2025 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2022 2026 isinstance(v, Macro))
2023 2027 if len(args) == 1:
2024 2028 raise UsageError(
2025 2029 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2026 2030 name, codefrom = args[0], " ".join(args[1:])
2027 2031
2028 2032 #print 'rng',ranges # dbg
2029 2033 try:
2030 2034 lines = self.shell.find_user_code(codefrom, 'r' in opts)
2031 2035 except (ValueError, TypeError) as e:
2032 2036 print e.args[0]
2033 2037 return
2034 2038 macro = Macro(lines)
2035 2039 self.shell.define_macro(name, macro)
2036 2040 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2037 2041 print '=== Macro contents: ==='
2038 2042 print macro,
2039 2043
2040 2044 def magic_save(self,parameter_s = ''):
2041 2045 """Save a set of lines or a macro to a given filename.
2042 2046
2043 2047 Usage:\\
2044 2048 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2045 2049
2046 2050 Options:
2047 2051
2048 2052 -r: use 'raw' input. By default, the 'processed' history is used,
2049 2053 so that magics are loaded in their transformed version to valid
2050 2054 Python. If this option is given, the raw input as typed as the
2051 2055 command line is used instead.
2052 2056
2053 2057 This function uses the same syntax as %history for input ranges,
2054 2058 then saves the lines to the filename you specify.
2055 2059
2056 2060 It adds a '.py' extension to the file if you don't do so yourself, and
2057 2061 it asks for confirmation before overwriting existing files."""
2058 2062
2059 2063 opts,args = self.parse_options(parameter_s,'r',mode='list')
2060 2064 fname, codefrom = args[0], " ".join(args[1:])
2061 2065 if not fname.endswith('.py'):
2062 2066 fname += '.py'
2063 2067 if os.path.isfile(fname):
2064 2068 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2065 2069 if ans.lower() not in ['y','yes']:
2066 2070 print 'Operation cancelled.'
2067 2071 return
2068 2072 try:
2069 2073 cmds = self.shell.find_user_code(codefrom, 'r' in opts)
2070 2074 except (TypeError, ValueError) as e:
2071 2075 print e.args[0]
2072 2076 return
2073 2077 if isinstance(cmds, unicode):
2074 2078 cmds = cmds.encode("utf-8")
2075 2079 with open(fname,'w') as f:
2076 2080 f.write("# coding: utf-8\n")
2077 2081 f.write(cmds)
2078 2082 print 'The following commands were written to file `%s`:' % fname
2079 2083 print cmds
2080 2084
2081 2085 def magic_pastebin(self, parameter_s = ''):
2082 2086 """Upload code to the 'Lodge it' paste bin, returning the URL."""
2083 2087 try:
2084 2088 code = self.shell.find_user_code(parameter_s)
2085 2089 except (ValueError, TypeError) as e:
2086 2090 print e.args[0]
2087 2091 return
2088 2092 pbserver = ServerProxy('http://paste.pocoo.org/xmlrpc/')
2089 2093 id = pbserver.pastes.newPaste("python", code)
2090 2094 return "http://paste.pocoo.org/show/" + id
2091 2095
2092 2096 def _edit_macro(self,mname,macro):
2093 2097 """open an editor with the macro data in a file"""
2094 2098 filename = self.shell.mktempfile(macro.value)
2095 2099 self.shell.hooks.editor(filename)
2096 2100
2097 2101 # and make a new macro object, to replace the old one
2098 2102 mfile = open(filename)
2099 2103 mvalue = mfile.read()
2100 2104 mfile.close()
2101 2105 self.shell.user_ns[mname] = Macro(mvalue)
2102 2106
2103 2107 def magic_ed(self,parameter_s=''):
2104 2108 """Alias to %edit."""
2105 2109 return self.magic_edit(parameter_s)
2106 2110
2107 2111 @testdec.skip_doctest
2108 2112 def magic_edit(self,parameter_s='',last_call=['','']):
2109 2113 """Bring up an editor and execute the resulting code.
2110 2114
2111 2115 Usage:
2112 2116 %edit [options] [args]
2113 2117
2114 2118 %edit runs IPython's editor hook. The default version of this hook is
2115 2119 set to call the __IPYTHON__.rc.editor command. This is read from your
2116 2120 environment variable $EDITOR. If this isn't found, it will default to
2117 2121 vi under Linux/Unix and to notepad under Windows. See the end of this
2118 2122 docstring for how to change the editor hook.
2119 2123
2120 2124 You can also set the value of this editor via the command line option
2121 2125 '-editor' or in your ipythonrc file. This is useful if you wish to use
2122 2126 specifically for IPython an editor different from your typical default
2123 2127 (and for Windows users who typically don't set environment variables).
2124 2128
2125 2129 This command allows you to conveniently edit multi-line code right in
2126 2130 your IPython session.
2127 2131
2128 2132 If called without arguments, %edit opens up an empty editor with a
2129 2133 temporary file and will execute the contents of this file when you
2130 2134 close it (don't forget to save it!).
2131 2135
2132 2136
2133 2137 Options:
2134 2138
2135 2139 -n <number>: open the editor at a specified line number. By default,
2136 2140 the IPython editor hook uses the unix syntax 'editor +N filename', but
2137 2141 you can configure this by providing your own modified hook if your
2138 2142 favorite editor supports line-number specifications with a different
2139 2143 syntax.
2140 2144
2141 2145 -p: this will call the editor with the same data as the previous time
2142 2146 it was used, regardless of how long ago (in your current session) it
2143 2147 was.
2144 2148
2145 2149 -r: use 'raw' input. This option only applies to input taken from the
2146 2150 user's history. By default, the 'processed' history is used, so that
2147 2151 magics are loaded in their transformed version to valid Python. If
2148 2152 this option is given, the raw input as typed as the command line is
2149 2153 used instead. When you exit the editor, it will be executed by
2150 2154 IPython's own processor.
2151 2155
2152 2156 -x: do not execute the edited code immediately upon exit. This is
2153 2157 mainly useful if you are editing programs which need to be called with
2154 2158 command line arguments, which you can then do using %run.
2155 2159
2156 2160
2157 2161 Arguments:
2158 2162
2159 2163 If arguments are given, the following possibilites exist:
2160 2164
2161 2165 - If the argument is a filename, IPython will load that into the
2162 2166 editor. It will execute its contents with execfile() when you exit,
2163 2167 loading any code in the file into your interactive namespace.
2164 2168
2165 2169 - The arguments are ranges of input history, e.g. "7 ~1/4-6".
2166 2170 The syntax is the same as in the %history magic.
2167 2171
2168 2172 - If the argument is a string variable, its contents are loaded
2169 2173 into the editor. You can thus edit any string which contains
2170 2174 python code (including the result of previous edits).
2171 2175
2172 2176 - If the argument is the name of an object (other than a string),
2173 2177 IPython will try to locate the file where it was defined and open the
2174 2178 editor at the point where it is defined. You can use `%edit function`
2175 2179 to load an editor exactly at the point where 'function' is defined,
2176 2180 edit it and have the file be executed automatically.
2177 2181
2178 2182 If the object is a macro (see %macro for details), this opens up your
2179 2183 specified editor with a temporary file containing the macro's data.
2180 2184 Upon exit, the macro is reloaded with the contents of the file.
2181 2185
2182 2186 Note: opening at an exact line is only supported under Unix, and some
2183 2187 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2184 2188 '+NUMBER' parameter necessary for this feature. Good editors like
2185 2189 (X)Emacs, vi, jed, pico and joe all do.
2186 2190
2187 2191 After executing your code, %edit will return as output the code you
2188 2192 typed in the editor (except when it was an existing file). This way
2189 2193 you can reload the code in further invocations of %edit as a variable,
2190 2194 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2191 2195 the output.
2192 2196
2193 2197 Note that %edit is also available through the alias %ed.
2194 2198
2195 2199 This is an example of creating a simple function inside the editor and
2196 2200 then modifying it. First, start up the editor:
2197 2201
2198 2202 In [1]: ed
2199 2203 Editing... done. Executing edited code...
2200 2204 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2201 2205
2202 2206 We can then call the function foo():
2203 2207
2204 2208 In [2]: foo()
2205 2209 foo() was defined in an editing session
2206 2210
2207 2211 Now we edit foo. IPython automatically loads the editor with the
2208 2212 (temporary) file where foo() was previously defined:
2209 2213
2210 2214 In [3]: ed foo
2211 2215 Editing... done. Executing edited code...
2212 2216
2213 2217 And if we call foo() again we get the modified version:
2214 2218
2215 2219 In [4]: foo()
2216 2220 foo() has now been changed!
2217 2221
2218 2222 Here is an example of how to edit a code snippet successive
2219 2223 times. First we call the editor:
2220 2224
2221 2225 In [5]: ed
2222 2226 Editing... done. Executing edited code...
2223 2227 hello
2224 2228 Out[5]: "print 'hello'n"
2225 2229
2226 2230 Now we call it again with the previous output (stored in _):
2227 2231
2228 2232 In [6]: ed _
2229 2233 Editing... done. Executing edited code...
2230 2234 hello world
2231 2235 Out[6]: "print 'hello world'n"
2232 2236
2233 2237 Now we call it with the output #8 (stored in _8, also as Out[8]):
2234 2238
2235 2239 In [7]: ed _8
2236 2240 Editing... done. Executing edited code...
2237 2241 hello again
2238 2242 Out[7]: "print 'hello again'n"
2239 2243
2240 2244
2241 2245 Changing the default editor hook:
2242 2246
2243 2247 If you wish to write your own editor hook, you can put it in a
2244 2248 configuration file which you load at startup time. The default hook
2245 2249 is defined in the IPython.core.hooks module, and you can use that as a
2246 2250 starting example for further modifications. That file also has
2247 2251 general instructions on how to set a new hook for use once you've
2248 2252 defined it."""
2249 2253
2250 2254 # FIXME: This function has become a convoluted mess. It needs a
2251 2255 # ground-up rewrite with clean, simple logic.
2252 2256
2253 2257 def make_filename(arg):
2254 2258 "Make a filename from the given args"
2255 2259 try:
2256 2260 filename = get_py_filename(arg)
2257 2261 except IOError:
2258 2262 if args.endswith('.py'):
2259 2263 filename = arg
2260 2264 else:
2261 2265 filename = None
2262 2266 return filename
2263 2267
2264 2268 # custom exceptions
2265 2269 class DataIsObject(Exception): pass
2266 2270
2267 2271 opts,args = self.parse_options(parameter_s,'prxn:')
2268 2272 # Set a few locals from the options for convenience:
2269 2273 opts_prev = 'p' in opts
2270 2274 opts_raw = 'r' in opts
2271 2275
2272 2276 # Default line number value
2273 2277 lineno = opts.get('n',None)
2274 2278
2275 2279 if opts_prev:
2276 2280 args = '_%s' % last_call[0]
2277 2281 if not self.shell.user_ns.has_key(args):
2278 2282 args = last_call[1]
2279 2283
2280 2284 # use last_call to remember the state of the previous call, but don't
2281 2285 # let it be clobbered by successive '-p' calls.
2282 2286 try:
2283 2287 last_call[0] = self.shell.displayhook.prompt_count
2284 2288 if not opts_prev:
2285 2289 last_call[1] = parameter_s
2286 2290 except:
2287 2291 pass
2288 2292
2289 2293 # by default this is done with temp files, except when the given
2290 2294 # arg is a filename
2291 2295 use_temp = True
2292 2296
2293 2297 data = ''
2294 2298 if args.endswith('.py'):
2295 2299 filename = make_filename(args)
2296 2300 use_temp = False
2297 2301 elif args:
2298 2302 # Mode where user specifies ranges of lines, like in %macro.
2299 2303 data = self.extract_input_lines(args, opts_raw)
2300 2304 if not data:
2301 2305 try:
2302 2306 # Load the parameter given as a variable. If not a string,
2303 2307 # process it as an object instead (below)
2304 2308
2305 2309 #print '*** args',args,'type',type(args) # dbg
2306 2310 data = eval(args, self.shell.user_ns)
2307 2311 if not isinstance(data, basestring):
2308 2312 raise DataIsObject
2309 2313
2310 2314 except (NameError,SyntaxError):
2311 2315 # given argument is not a variable, try as a filename
2312 2316 filename = make_filename(args)
2313 2317 if filename is None:
2314 2318 warn("Argument given (%s) can't be found as a variable "
2315 2319 "or as a filename." % args)
2316 2320 return
2317 2321 use_temp = False
2318 2322
2319 2323 except DataIsObject:
2320 2324 # macros have a special edit function
2321 2325 if isinstance(data, Macro):
2322 2326 self._edit_macro(args,data)
2323 2327 return
2324 2328
2325 2329 # For objects, try to edit the file where they are defined
2326 2330 try:
2327 2331 filename = inspect.getabsfile(data)
2328 2332 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2329 2333 # class created by %edit? Try to find source
2330 2334 # by looking for method definitions instead, the
2331 2335 # __module__ in those classes is FakeModule.
2332 2336 attrs = [getattr(data, aname) for aname in dir(data)]
2333 2337 for attr in attrs:
2334 2338 if not inspect.ismethod(attr):
2335 2339 continue
2336 2340 filename = inspect.getabsfile(attr)
2337 2341 if filename and 'fakemodule' not in filename.lower():
2338 2342 # change the attribute to be the edit target instead
2339 2343 data = attr
2340 2344 break
2341 2345
2342 2346 datafile = 1
2343 2347 except TypeError:
2344 2348 filename = make_filename(args)
2345 2349 datafile = 1
2346 2350 warn('Could not find file where `%s` is defined.\n'
2347 2351 'Opening a file named `%s`' % (args,filename))
2348 2352 # Now, make sure we can actually read the source (if it was in
2349 2353 # a temp file it's gone by now).
2350 2354 if datafile:
2351 2355 try:
2352 2356 if lineno is None:
2353 2357 lineno = inspect.getsourcelines(data)[1]
2354 2358 except IOError:
2355 2359 filename = make_filename(args)
2356 2360 if filename is None:
2357 2361 warn('The file `%s` where `%s` was defined cannot '
2358 2362 'be read.' % (filename,data))
2359 2363 return
2360 2364 use_temp = False
2361 2365
2362 2366 if use_temp:
2363 2367 filename = self.shell.mktempfile(data)
2364 2368 print 'IPython will make a temporary file named:',filename
2365 2369
2366 2370 # do actual editing here
2367 2371 print 'Editing...',
2368 2372 sys.stdout.flush()
2369 2373 try:
2370 2374 # Quote filenames that may have spaces in them
2371 2375 if ' ' in filename:
2372 2376 filename = "%s" % filename
2373 2377 self.shell.hooks.editor(filename,lineno)
2374 2378 except TryNext:
2375 2379 warn('Could not open editor')
2376 2380 return
2377 2381
2378 2382 # XXX TODO: should this be generalized for all string vars?
2379 2383 # For now, this is special-cased to blocks created by cpaste
2380 2384 if args.strip() == 'pasted_block':
2381 2385 self.shell.user_ns['pasted_block'] = file_read(filename)
2382 2386
2383 2387 if 'x' in opts: # -x prevents actual execution
2384 2388 print
2385 2389 else:
2386 2390 print 'done. Executing edited code...'
2387 2391 if opts_raw:
2388 2392 self.shell.run_cell(file_read(filename),
2389 2393 store_history=False)
2390 2394 else:
2391 2395 self.shell.safe_execfile(filename,self.shell.user_ns,
2392 2396 self.shell.user_ns)
2393 2397
2394 2398
2395 2399 if use_temp:
2396 2400 try:
2397 2401 return open(filename).read()
2398 2402 except IOError,msg:
2399 2403 if msg.filename == filename:
2400 2404 warn('File not found. Did you forget to save?')
2401 2405 return
2402 2406 else:
2403 2407 self.shell.showtraceback()
2404 2408
2405 2409 def magic_xmode(self,parameter_s = ''):
2406 2410 """Switch modes for the exception handlers.
2407 2411
2408 2412 Valid modes: Plain, Context and Verbose.
2409 2413
2410 2414 If called without arguments, acts as a toggle."""
2411 2415
2412 2416 def xmode_switch_err(name):
2413 2417 warn('Error changing %s exception modes.\n%s' %
2414 2418 (name,sys.exc_info()[1]))
2415 2419
2416 2420 shell = self.shell
2417 2421 new_mode = parameter_s.strip().capitalize()
2418 2422 try:
2419 2423 shell.InteractiveTB.set_mode(mode=new_mode)
2420 2424 print 'Exception reporting mode:',shell.InteractiveTB.mode
2421 2425 except:
2422 2426 xmode_switch_err('user')
2423 2427
2424 2428 def magic_colors(self,parameter_s = ''):
2425 2429 """Switch color scheme for prompts, info system and exception handlers.
2426 2430
2427 2431 Currently implemented schemes: NoColor, Linux, LightBG.
2428 2432
2429 2433 Color scheme names are not case-sensitive.
2430 2434
2431 2435 Examples
2432 2436 --------
2433 2437 To get a plain black and white terminal::
2434 2438
2435 2439 %colors nocolor
2436 2440 """
2437 2441
2438 2442 def color_switch_err(name):
2439 2443 warn('Error changing %s color schemes.\n%s' %
2440 2444 (name,sys.exc_info()[1]))
2441 2445
2442 2446
2443 2447 new_scheme = parameter_s.strip()
2444 2448 if not new_scheme:
2445 2449 raise UsageError(
2446 2450 "%colors: you must specify a color scheme. See '%colors?'")
2447 2451 return
2448 2452 # local shortcut
2449 2453 shell = self.shell
2450 2454
2451 2455 import IPython.utils.rlineimpl as readline
2452 2456
2453 2457 if not readline.have_readline and sys.platform == "win32":
2454 2458 msg = """\
2455 2459 Proper color support under MS Windows requires the pyreadline library.
2456 2460 You can find it at:
2457 2461 http://ipython.scipy.org/moin/PyReadline/Intro
2458 2462 Gary's readline needs the ctypes module, from:
2459 2463 http://starship.python.net/crew/theller/ctypes
2460 2464 (Note that ctypes is already part of Python versions 2.5 and newer).
2461 2465
2462 2466 Defaulting color scheme to 'NoColor'"""
2463 2467 new_scheme = 'NoColor'
2464 2468 warn(msg)
2465 2469
2466 2470 # readline option is 0
2467 2471 if not shell.has_readline:
2468 2472 new_scheme = 'NoColor'
2469 2473
2470 2474 # Set prompt colors
2471 2475 try:
2472 2476 shell.displayhook.set_colors(new_scheme)
2473 2477 except:
2474 2478 color_switch_err('prompt')
2475 2479 else:
2476 2480 shell.colors = \
2477 2481 shell.displayhook.color_table.active_scheme_name
2478 2482 # Set exception colors
2479 2483 try:
2480 2484 shell.InteractiveTB.set_colors(scheme = new_scheme)
2481 2485 shell.SyntaxTB.set_colors(scheme = new_scheme)
2482 2486 except:
2483 2487 color_switch_err('exception')
2484 2488
2485 2489 # Set info (for 'object?') colors
2486 2490 if shell.color_info:
2487 2491 try:
2488 2492 shell.inspector.set_active_scheme(new_scheme)
2489 2493 except:
2490 2494 color_switch_err('object inspector')
2491 2495 else:
2492 2496 shell.inspector.set_active_scheme('NoColor')
2493 2497
2494 2498 def magic_pprint(self, parameter_s=''):
2495 2499 """Toggle pretty printing on/off."""
2496 2500 ptformatter = self.shell.display_formatter.formatters['text/plain']
2497 2501 ptformatter.pprint = bool(1 - ptformatter.pprint)
2498 2502 print 'Pretty printing has been turned', \
2499 2503 ['OFF','ON'][ptformatter.pprint]
2500 2504
2501 2505 def magic_Exit(self, parameter_s=''):
2502 2506 """Exit IPython."""
2503 2507
2504 2508 self.shell.ask_exit()
2505 2509
2506 2510 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2507 2511 magic_exit = magic_quit = magic_Quit = magic_Exit
2508 2512
2509 2513 #......................................................................
2510 2514 # Functions to implement unix shell-type things
2511 2515
2512 2516 @testdec.skip_doctest
2513 2517 def magic_alias(self, parameter_s = ''):
2514 2518 """Define an alias for a system command.
2515 2519
2516 2520 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2517 2521
2518 2522 Then, typing 'alias_name params' will execute the system command 'cmd
2519 2523 params' (from your underlying operating system).
2520 2524
2521 2525 Aliases have lower precedence than magic functions and Python normal
2522 2526 variables, so if 'foo' is both a Python variable and an alias, the
2523 2527 alias can not be executed until 'del foo' removes the Python variable.
2524 2528
2525 2529 You can use the %l specifier in an alias definition to represent the
2526 2530 whole line when the alias is called. For example:
2527 2531
2528 2532 In [2]: alias bracket echo "Input in brackets: <%l>"
2529 2533 In [3]: bracket hello world
2530 2534 Input in brackets: <hello world>
2531 2535
2532 2536 You can also define aliases with parameters using %s specifiers (one
2533 2537 per parameter):
2534 2538
2535 2539 In [1]: alias parts echo first %s second %s
2536 2540 In [2]: %parts A B
2537 2541 first A second B
2538 2542 In [3]: %parts A
2539 2543 Incorrect number of arguments: 2 expected.
2540 2544 parts is an alias to: 'echo first %s second %s'
2541 2545
2542 2546 Note that %l and %s are mutually exclusive. You can only use one or
2543 2547 the other in your aliases.
2544 2548
2545 2549 Aliases expand Python variables just like system calls using ! or !!
2546 2550 do: all expressions prefixed with '$' get expanded. For details of
2547 2551 the semantic rules, see PEP-215:
2548 2552 http://www.python.org/peps/pep-0215.html. This is the library used by
2549 2553 IPython for variable expansion. If you want to access a true shell
2550 2554 variable, an extra $ is necessary to prevent its expansion by IPython:
2551 2555
2552 2556 In [6]: alias show echo
2553 2557 In [7]: PATH='A Python string'
2554 2558 In [8]: show $PATH
2555 2559 A Python string
2556 2560 In [9]: show $$PATH
2557 2561 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2558 2562
2559 2563 You can use the alias facility to acess all of $PATH. See the %rehash
2560 2564 and %rehashx functions, which automatically create aliases for the
2561 2565 contents of your $PATH.
2562 2566
2563 2567 If called with no parameters, %alias prints the current alias table."""
2564 2568
2565 2569 par = parameter_s.strip()
2566 2570 if not par:
2567 2571 stored = self.db.get('stored_aliases', {} )
2568 2572 aliases = sorted(self.shell.alias_manager.aliases)
2569 2573 # for k, v in stored:
2570 2574 # atab.append(k, v[0])
2571 2575
2572 2576 print "Total number of aliases:", len(aliases)
2573 2577 sys.stdout.flush()
2574 2578 return aliases
2575 2579
2576 2580 # Now try to define a new one
2577 2581 try:
2578 2582 alias,cmd = par.split(None, 1)
2579 2583 except:
2580 2584 print oinspect.getdoc(self.magic_alias)
2581 2585 else:
2582 2586 self.shell.alias_manager.soft_define_alias(alias, cmd)
2583 2587 # end magic_alias
2584 2588
2585 2589 def magic_unalias(self, parameter_s = ''):
2586 2590 """Remove an alias"""
2587 2591
2588 2592 aname = parameter_s.strip()
2589 2593 self.shell.alias_manager.undefine_alias(aname)
2590 2594 stored = self.db.get('stored_aliases', {} )
2591 2595 if aname in stored:
2592 2596 print "Removing %stored alias",aname
2593 2597 del stored[aname]
2594 2598 self.db['stored_aliases'] = stored
2595 2599
2596 2600 def magic_rehashx(self, parameter_s = ''):
2597 2601 """Update the alias table with all executable files in $PATH.
2598 2602
2599 2603 This version explicitly checks that every entry in $PATH is a file
2600 2604 with execute access (os.X_OK), so it is much slower than %rehash.
2601 2605
2602 2606 Under Windows, it checks executability as a match agains a
2603 2607 '|'-separated string of extensions, stored in the IPython config
2604 2608 variable win_exec_ext. This defaults to 'exe|com|bat'.
2605 2609
2606 2610 This function also resets the root module cache of module completer,
2607 2611 used on slow filesystems.
2608 2612 """
2609 2613 from IPython.core.alias import InvalidAliasError
2610 2614
2611 2615 # for the benefit of module completer in ipy_completers.py
2612 2616 del self.db['rootmodules']
2613 2617
2614 2618 path = [os.path.abspath(os.path.expanduser(p)) for p in
2615 2619 os.environ.get('PATH','').split(os.pathsep)]
2616 2620 path = filter(os.path.isdir,path)
2617 2621
2618 2622 syscmdlist = []
2619 2623 # Now define isexec in a cross platform manner.
2620 2624 if os.name == 'posix':
2621 2625 isexec = lambda fname:os.path.isfile(fname) and \
2622 2626 os.access(fname,os.X_OK)
2623 2627 else:
2624 2628 try:
2625 2629 winext = os.environ['pathext'].replace(';','|').replace('.','')
2626 2630 except KeyError:
2627 2631 winext = 'exe|com|bat|py'
2628 2632 if 'py' not in winext:
2629 2633 winext += '|py'
2630 2634 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2631 2635 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2632 2636 savedir = os.getcwd()
2633 2637
2634 2638 # Now walk the paths looking for executables to alias.
2635 2639 try:
2636 2640 # write the whole loop for posix/Windows so we don't have an if in
2637 2641 # the innermost part
2638 2642 if os.name == 'posix':
2639 2643 for pdir in path:
2640 2644 os.chdir(pdir)
2641 2645 for ff in os.listdir(pdir):
2642 2646 if isexec(ff):
2643 2647 try:
2644 2648 # Removes dots from the name since ipython
2645 2649 # will assume names with dots to be python.
2646 2650 self.shell.alias_manager.define_alias(
2647 2651 ff.replace('.',''), ff)
2648 2652 except InvalidAliasError:
2649 2653 pass
2650 2654 else:
2651 2655 syscmdlist.append(ff)
2652 2656 else:
2653 2657 no_alias = self.shell.alias_manager.no_alias
2654 2658 for pdir in path:
2655 2659 os.chdir(pdir)
2656 2660 for ff in os.listdir(pdir):
2657 2661 base, ext = os.path.splitext(ff)
2658 2662 if isexec(ff) and base.lower() not in no_alias:
2659 2663 if ext.lower() == '.exe':
2660 2664 ff = base
2661 2665 try:
2662 2666 # Removes dots from the name since ipython
2663 2667 # will assume names with dots to be python.
2664 2668 self.shell.alias_manager.define_alias(
2665 2669 base.lower().replace('.',''), ff)
2666 2670 except InvalidAliasError:
2667 2671 pass
2668 2672 syscmdlist.append(ff)
2669 2673 db = self.db
2670 2674 db['syscmdlist'] = syscmdlist
2671 2675 finally:
2672 2676 os.chdir(savedir)
2673 2677
2674 2678 @testdec.skip_doctest
2675 2679 def magic_pwd(self, parameter_s = ''):
2676 2680 """Return the current working directory path.
2677 2681
2678 2682 Examples
2679 2683 --------
2680 2684 ::
2681 2685
2682 2686 In [9]: pwd
2683 2687 Out[9]: '/home/tsuser/sprint/ipython'
2684 2688 """
2685 2689 return os.getcwd()
2686 2690
2687 2691 @testdec.skip_doctest
2688 2692 def magic_cd(self, parameter_s=''):
2689 2693 """Change the current working directory.
2690 2694
2691 2695 This command automatically maintains an internal list of directories
2692 2696 you visit during your IPython session, in the variable _dh. The
2693 2697 command %dhist shows this history nicely formatted. You can also
2694 2698 do 'cd -<tab>' to see directory history conveniently.
2695 2699
2696 2700 Usage:
2697 2701
2698 2702 cd 'dir': changes to directory 'dir'.
2699 2703
2700 2704 cd -: changes to the last visited directory.
2701 2705
2702 2706 cd -<n>: changes to the n-th directory in the directory history.
2703 2707
2704 2708 cd --foo: change to directory that matches 'foo' in history
2705 2709
2706 2710 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2707 2711 (note: cd <bookmark_name> is enough if there is no
2708 2712 directory <bookmark_name>, but a bookmark with the name exists.)
2709 2713 'cd -b <tab>' allows you to tab-complete bookmark names.
2710 2714
2711 2715 Options:
2712 2716
2713 2717 -q: quiet. Do not print the working directory after the cd command is
2714 2718 executed. By default IPython's cd command does print this directory,
2715 2719 since the default prompts do not display path information.
2716 2720
2717 2721 Note that !cd doesn't work for this purpose because the shell where
2718 2722 !command runs is immediately discarded after executing 'command'.
2719 2723
2720 2724 Examples
2721 2725 --------
2722 2726 ::
2723 2727
2724 2728 In [10]: cd parent/child
2725 2729 /home/tsuser/parent/child
2726 2730 """
2727 2731
2728 2732 parameter_s = parameter_s.strip()
2729 2733 #bkms = self.shell.persist.get("bookmarks",{})
2730 2734
2731 2735 oldcwd = os.getcwd()
2732 2736 numcd = re.match(r'(-)(\d+)$',parameter_s)
2733 2737 # jump in directory history by number
2734 2738 if numcd:
2735 2739 nn = int(numcd.group(2))
2736 2740 try:
2737 2741 ps = self.shell.user_ns['_dh'][nn]
2738 2742 except IndexError:
2739 2743 print 'The requested directory does not exist in history.'
2740 2744 return
2741 2745 else:
2742 2746 opts = {}
2743 2747 elif parameter_s.startswith('--'):
2744 2748 ps = None
2745 2749 fallback = None
2746 2750 pat = parameter_s[2:]
2747 2751 dh = self.shell.user_ns['_dh']
2748 2752 # first search only by basename (last component)
2749 2753 for ent in reversed(dh):
2750 2754 if pat in os.path.basename(ent) and os.path.isdir(ent):
2751 2755 ps = ent
2752 2756 break
2753 2757
2754 2758 if fallback is None and pat in ent and os.path.isdir(ent):
2755 2759 fallback = ent
2756 2760
2757 2761 # if we have no last part match, pick the first full path match
2758 2762 if ps is None:
2759 2763 ps = fallback
2760 2764
2761 2765 if ps is None:
2762 2766 print "No matching entry in directory history"
2763 2767 return
2764 2768 else:
2765 2769 opts = {}
2766 2770
2767 2771
2768 2772 else:
2769 2773 #turn all non-space-escaping backslashes to slashes,
2770 2774 # for c:\windows\directory\names\
2771 2775 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2772 2776 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2773 2777 # jump to previous
2774 2778 if ps == '-':
2775 2779 try:
2776 2780 ps = self.shell.user_ns['_dh'][-2]
2777 2781 except IndexError:
2778 2782 raise UsageError('%cd -: No previous directory to change to.')
2779 2783 # jump to bookmark if needed
2780 2784 else:
2781 2785 if not os.path.isdir(ps) or opts.has_key('b'):
2782 2786 bkms = self.db.get('bookmarks', {})
2783 2787
2784 2788 if bkms.has_key(ps):
2785 2789 target = bkms[ps]
2786 2790 print '(bookmark:%s) -> %s' % (ps,target)
2787 2791 ps = target
2788 2792 else:
2789 2793 if opts.has_key('b'):
2790 2794 raise UsageError("Bookmark '%s' not found. "
2791 2795 "Use '%%bookmark -l' to see your bookmarks." % ps)
2792 2796
2793 2797 # at this point ps should point to the target dir
2794 2798 if ps:
2795 2799 try:
2796 2800 os.chdir(os.path.expanduser(ps))
2797 2801 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2798 2802 set_term_title('IPython: ' + abbrev_cwd())
2799 2803 except OSError:
2800 2804 print sys.exc_info()[1]
2801 2805 else:
2802 2806 cwd = os.getcwd()
2803 2807 dhist = self.shell.user_ns['_dh']
2804 2808 if oldcwd != cwd:
2805 2809 dhist.append(cwd)
2806 2810 self.db['dhist'] = compress_dhist(dhist)[-100:]
2807 2811
2808 2812 else:
2809 2813 os.chdir(self.shell.home_dir)
2810 2814 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2811 2815 set_term_title('IPython: ' + '~')
2812 2816 cwd = os.getcwd()
2813 2817 dhist = self.shell.user_ns['_dh']
2814 2818
2815 2819 if oldcwd != cwd:
2816 2820 dhist.append(cwd)
2817 2821 self.db['dhist'] = compress_dhist(dhist)[-100:]
2818 2822 if not 'q' in opts and self.shell.user_ns['_dh']:
2819 2823 print self.shell.user_ns['_dh'][-1]
2820 2824
2821 2825
2822 2826 def magic_env(self, parameter_s=''):
2823 2827 """List environment variables."""
2824 2828
2825 2829 return os.environ.data
2826 2830
2827 2831 def magic_pushd(self, parameter_s=''):
2828 2832 """Place the current dir on stack and change directory.
2829 2833
2830 2834 Usage:\\
2831 2835 %pushd ['dirname']
2832 2836 """
2833 2837
2834 2838 dir_s = self.shell.dir_stack
2835 2839 tgt = os.path.expanduser(parameter_s)
2836 2840 cwd = os.getcwd().replace(self.home_dir,'~')
2837 2841 if tgt:
2838 2842 self.magic_cd(parameter_s)
2839 2843 dir_s.insert(0,cwd)
2840 2844 return self.magic_dirs()
2841 2845
2842 2846 def magic_popd(self, parameter_s=''):
2843 2847 """Change to directory popped off the top of the stack.
2844 2848 """
2845 2849 if not self.shell.dir_stack:
2846 2850 raise UsageError("%popd on empty stack")
2847 2851 top = self.shell.dir_stack.pop(0)
2848 2852 self.magic_cd(top)
2849 2853 print "popd ->",top
2850 2854
2851 2855 def magic_dirs(self, parameter_s=''):
2852 2856 """Return the current directory stack."""
2853 2857
2854 2858 return self.shell.dir_stack
2855 2859
2856 2860 def magic_dhist(self, parameter_s=''):
2857 2861 """Print your history of visited directories.
2858 2862
2859 2863 %dhist -> print full history\\
2860 2864 %dhist n -> print last n entries only\\
2861 2865 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2862 2866
2863 2867 This history is automatically maintained by the %cd command, and
2864 2868 always available as the global list variable _dh. You can use %cd -<n>
2865 2869 to go to directory number <n>.
2866 2870
2867 2871 Note that most of time, you should view directory history by entering
2868 2872 cd -<TAB>.
2869 2873
2870 2874 """
2871 2875
2872 2876 dh = self.shell.user_ns['_dh']
2873 2877 if parameter_s:
2874 2878 try:
2875 2879 args = map(int,parameter_s.split())
2876 2880 except:
2877 2881 self.arg_err(Magic.magic_dhist)
2878 2882 return
2879 2883 if len(args) == 1:
2880 2884 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2881 2885 elif len(args) == 2:
2882 2886 ini,fin = args
2883 2887 else:
2884 2888 self.arg_err(Magic.magic_dhist)
2885 2889 return
2886 2890 else:
2887 2891 ini,fin = 0,len(dh)
2888 2892 nlprint(dh,
2889 2893 header = 'Directory history (kept in _dh)',
2890 2894 start=ini,stop=fin)
2891 2895
2892 2896 @testdec.skip_doctest
2893 2897 def magic_sc(self, parameter_s=''):
2894 2898 """Shell capture - execute a shell command and capture its output.
2895 2899
2896 2900 DEPRECATED. Suboptimal, retained for backwards compatibility.
2897 2901
2898 2902 You should use the form 'var = !command' instead. Example:
2899 2903
2900 2904 "%sc -l myfiles = ls ~" should now be written as
2901 2905
2902 2906 "myfiles = !ls ~"
2903 2907
2904 2908 myfiles.s, myfiles.l and myfiles.n still apply as documented
2905 2909 below.
2906 2910
2907 2911 --
2908 2912 %sc [options] varname=command
2909 2913
2910 2914 IPython will run the given command using commands.getoutput(), and
2911 2915 will then update the user's interactive namespace with a variable
2912 2916 called varname, containing the value of the call. Your command can
2913 2917 contain shell wildcards, pipes, etc.
2914 2918
2915 2919 The '=' sign in the syntax is mandatory, and the variable name you
2916 2920 supply must follow Python's standard conventions for valid names.
2917 2921
2918 2922 (A special format without variable name exists for internal use)
2919 2923
2920 2924 Options:
2921 2925
2922 2926 -l: list output. Split the output on newlines into a list before
2923 2927 assigning it to the given variable. By default the output is stored
2924 2928 as a single string.
2925 2929
2926 2930 -v: verbose. Print the contents of the variable.
2927 2931
2928 2932 In most cases you should not need to split as a list, because the
2929 2933 returned value is a special type of string which can automatically
2930 2934 provide its contents either as a list (split on newlines) or as a
2931 2935 space-separated string. These are convenient, respectively, either
2932 2936 for sequential processing or to be passed to a shell command.
2933 2937
2934 2938 For example:
2935 2939
2936 2940 # all-random
2937 2941
2938 2942 # Capture into variable a
2939 2943 In [1]: sc a=ls *py
2940 2944
2941 2945 # a is a string with embedded newlines
2942 2946 In [2]: a
2943 2947 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2944 2948
2945 2949 # which can be seen as a list:
2946 2950 In [3]: a.l
2947 2951 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2948 2952
2949 2953 # or as a whitespace-separated string:
2950 2954 In [4]: a.s
2951 2955 Out[4]: 'setup.py win32_manual_post_install.py'
2952 2956
2953 2957 # a.s is useful to pass as a single command line:
2954 2958 In [5]: !wc -l $a.s
2955 2959 146 setup.py
2956 2960 130 win32_manual_post_install.py
2957 2961 276 total
2958 2962
2959 2963 # while the list form is useful to loop over:
2960 2964 In [6]: for f in a.l:
2961 2965 ...: !wc -l $f
2962 2966 ...:
2963 2967 146 setup.py
2964 2968 130 win32_manual_post_install.py
2965 2969
2966 2970 Similiarly, the lists returned by the -l option are also special, in
2967 2971 the sense that you can equally invoke the .s attribute on them to
2968 2972 automatically get a whitespace-separated string from their contents:
2969 2973
2970 2974 In [7]: sc -l b=ls *py
2971 2975
2972 2976 In [8]: b
2973 2977 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2974 2978
2975 2979 In [9]: b.s
2976 2980 Out[9]: 'setup.py win32_manual_post_install.py'
2977 2981
2978 2982 In summary, both the lists and strings used for ouptut capture have
2979 2983 the following special attributes:
2980 2984
2981 2985 .l (or .list) : value as list.
2982 2986 .n (or .nlstr): value as newline-separated string.
2983 2987 .s (or .spstr): value as space-separated string.
2984 2988 """
2985 2989
2986 2990 opts,args = self.parse_options(parameter_s,'lv')
2987 2991 # Try to get a variable name and command to run
2988 2992 try:
2989 2993 # the variable name must be obtained from the parse_options
2990 2994 # output, which uses shlex.split to strip options out.
2991 2995 var,_ = args.split('=',1)
2992 2996 var = var.strip()
2993 2997 # But the the command has to be extracted from the original input
2994 2998 # parameter_s, not on what parse_options returns, to avoid the
2995 2999 # quote stripping which shlex.split performs on it.
2996 3000 _,cmd = parameter_s.split('=',1)
2997 3001 except ValueError:
2998 3002 var,cmd = '',''
2999 3003 # If all looks ok, proceed
3000 3004 split = 'l' in opts
3001 3005 out = self.shell.getoutput(cmd, split=split)
3002 3006 if opts.has_key('v'):
3003 3007 print '%s ==\n%s' % (var,pformat(out))
3004 3008 if var:
3005 3009 self.shell.user_ns.update({var:out})
3006 3010 else:
3007 3011 return out
3008 3012
3009 3013 def magic_sx(self, parameter_s=''):
3010 3014 """Shell execute - run a shell command and capture its output.
3011 3015
3012 3016 %sx command
3013 3017
3014 3018 IPython will run the given command using commands.getoutput(), and
3015 3019 return the result formatted as a list (split on '\\n'). Since the
3016 3020 output is _returned_, it will be stored in ipython's regular output
3017 3021 cache Out[N] and in the '_N' automatic variables.
3018 3022
3019 3023 Notes:
3020 3024
3021 3025 1) If an input line begins with '!!', then %sx is automatically
3022 3026 invoked. That is, while:
3023 3027 !ls
3024 3028 causes ipython to simply issue system('ls'), typing
3025 3029 !!ls
3026 3030 is a shorthand equivalent to:
3027 3031 %sx ls
3028 3032
3029 3033 2) %sx differs from %sc in that %sx automatically splits into a list,
3030 3034 like '%sc -l'. The reason for this is to make it as easy as possible
3031 3035 to process line-oriented shell output via further python commands.
3032 3036 %sc is meant to provide much finer control, but requires more
3033 3037 typing.
3034 3038
3035 3039 3) Just like %sc -l, this is a list with special attributes:
3036 3040
3037 3041 .l (or .list) : value as list.
3038 3042 .n (or .nlstr): value as newline-separated string.
3039 3043 .s (or .spstr): value as whitespace-separated string.
3040 3044
3041 3045 This is very useful when trying to use such lists as arguments to
3042 3046 system commands."""
3043 3047
3044 3048 if parameter_s:
3045 3049 return self.shell.getoutput(parameter_s)
3046 3050
3047 3051
3048 3052 def magic_bookmark(self, parameter_s=''):
3049 3053 """Manage IPython's bookmark system.
3050 3054
3051 3055 %bookmark <name> - set bookmark to current dir
3052 3056 %bookmark <name> <dir> - set bookmark to <dir>
3053 3057 %bookmark -l - list all bookmarks
3054 3058 %bookmark -d <name> - remove bookmark
3055 3059 %bookmark -r - remove all bookmarks
3056 3060
3057 3061 You can later on access a bookmarked folder with:
3058 3062 %cd -b <name>
3059 3063 or simply '%cd <name>' if there is no directory called <name> AND
3060 3064 there is such a bookmark defined.
3061 3065
3062 3066 Your bookmarks persist through IPython sessions, but they are
3063 3067 associated with each profile."""
3064 3068
3065 3069 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3066 3070 if len(args) > 2:
3067 3071 raise UsageError("%bookmark: too many arguments")
3068 3072
3069 3073 bkms = self.db.get('bookmarks',{})
3070 3074
3071 3075 if opts.has_key('d'):
3072 3076 try:
3073 3077 todel = args[0]
3074 3078 except IndexError:
3075 3079 raise UsageError(
3076 3080 "%bookmark -d: must provide a bookmark to delete")
3077 3081 else:
3078 3082 try:
3079 3083 del bkms[todel]
3080 3084 except KeyError:
3081 3085 raise UsageError(
3082 3086 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3083 3087
3084 3088 elif opts.has_key('r'):
3085 3089 bkms = {}
3086 3090 elif opts.has_key('l'):
3087 3091 bks = bkms.keys()
3088 3092 bks.sort()
3089 3093 if bks:
3090 3094 size = max(map(len,bks))
3091 3095 else:
3092 3096 size = 0
3093 3097 fmt = '%-'+str(size)+'s -> %s'
3094 3098 print 'Current bookmarks:'
3095 3099 for bk in bks:
3096 3100 print fmt % (bk,bkms[bk])
3097 3101 else:
3098 3102 if not args:
3099 3103 raise UsageError("%bookmark: You must specify the bookmark name")
3100 3104 elif len(args)==1:
3101 3105 bkms[args[0]] = os.getcwd()
3102 3106 elif len(args)==2:
3103 3107 bkms[args[0]] = args[1]
3104 3108 self.db['bookmarks'] = bkms
3105 3109
3106 3110 def magic_pycat(self, parameter_s=''):
3107 3111 """Show a syntax-highlighted file through a pager.
3108 3112
3109 3113 This magic is similar to the cat utility, but it will assume the file
3110 3114 to be Python source and will show it with syntax highlighting. """
3111 3115
3112 3116 try:
3113 3117 filename = get_py_filename(parameter_s)
3114 3118 cont = file_read(filename)
3115 3119 except IOError:
3116 3120 try:
3117 3121 cont = eval(parameter_s,self.user_ns)
3118 3122 except NameError:
3119 3123 cont = None
3120 3124 if cont is None:
3121 3125 print "Error: no such file or variable"
3122 3126 return
3123 3127
3124 3128 page.page(self.shell.pycolorize(cont))
3125 3129
3126 3130 def _rerun_pasted(self):
3127 3131 """ Rerun a previously pasted command.
3128 3132 """
3129 3133 b = self.user_ns.get('pasted_block', None)
3130 3134 if b is None:
3131 3135 raise UsageError('No previous pasted block available')
3132 3136 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3133 3137 exec b in self.user_ns
3134 3138
3135 3139 def _get_pasted_lines(self, sentinel):
3136 3140 """ Yield pasted lines until the user enters the given sentinel value.
3137 3141 """
3138 3142 from IPython.core import interactiveshell
3139 3143 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3140 3144 while True:
3141 3145 l = interactiveshell.raw_input_original(':')
3142 3146 if l == sentinel:
3143 3147 return
3144 3148 else:
3145 3149 yield l
3146 3150
3147 3151 def _strip_pasted_lines_for_code(self, raw_lines):
3148 3152 """ Strip non-code parts of a sequence of lines to return a block of
3149 3153 code.
3150 3154 """
3151 3155 # Regular expressions that declare text we strip from the input:
3152 3156 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3153 3157 r'^\s*(\s?>)+', # Python input prompt
3154 3158 r'^\s*\.{3,}', # Continuation prompts
3155 3159 r'^\++',
3156 3160 ]
3157 3161
3158 3162 strip_from_start = map(re.compile,strip_re)
3159 3163
3160 3164 lines = []
3161 3165 for l in raw_lines:
3162 3166 for pat in strip_from_start:
3163 3167 l = pat.sub('',l)
3164 3168 lines.append(l)
3165 3169
3166 3170 block = "\n".join(lines) + '\n'
3167 3171 #print "block:\n",block
3168 3172 return block
3169 3173
3170 3174 def _execute_block(self, block, par):
3171 3175 """ Execute a block, or store it in a variable, per the user's request.
3172 3176 """
3173 3177 if not par:
3174 3178 b = textwrap.dedent(block)
3175 3179 self.user_ns['pasted_block'] = b
3176 3180 exec b in self.user_ns
3177 3181 else:
3178 3182 self.user_ns[par] = SList(block.splitlines())
3179 3183 print "Block assigned to '%s'" % par
3180 3184
3181 3185 def magic_quickref(self,arg):
3182 3186 """ Show a quick reference sheet """
3183 3187 import IPython.core.usage
3184 3188 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3185 3189
3186 3190 page.page(qr)
3187 3191
3188 3192 def magic_doctest_mode(self,parameter_s=''):
3189 3193 """Toggle doctest mode on and off.
3190 3194
3191 3195 This mode is intended to make IPython behave as much as possible like a
3192 3196 plain Python shell, from the perspective of how its prompts, exceptions
3193 3197 and output look. This makes it easy to copy and paste parts of a
3194 3198 session into doctests. It does so by:
3195 3199
3196 3200 - Changing the prompts to the classic ``>>>`` ones.
3197 3201 - Changing the exception reporting mode to 'Plain'.
3198 3202 - Disabling pretty-printing of output.
3199 3203
3200 3204 Note that IPython also supports the pasting of code snippets that have
3201 3205 leading '>>>' and '...' prompts in them. This means that you can paste
3202 3206 doctests from files or docstrings (even if they have leading
3203 3207 whitespace), and the code will execute correctly. You can then use
3204 3208 '%history -t' to see the translated history; this will give you the
3205 3209 input after removal of all the leading prompts and whitespace, which
3206 3210 can be pasted back into an editor.
3207 3211
3208 3212 With these features, you can switch into this mode easily whenever you
3209 3213 need to do testing and changes to doctests, without having to leave
3210 3214 your existing IPython session.
3211 3215 """
3212 3216
3213 3217 from IPython.utils.ipstruct import Struct
3214 3218
3215 3219 # Shorthands
3216 3220 shell = self.shell
3217 3221 oc = shell.displayhook
3218 3222 meta = shell.meta
3219 3223 disp_formatter = self.shell.display_formatter
3220 3224 ptformatter = disp_formatter.formatters['text/plain']
3221 3225 # dstore is a data store kept in the instance metadata bag to track any
3222 3226 # changes we make, so we can undo them later.
3223 3227 dstore = meta.setdefault('doctest_mode',Struct())
3224 3228 save_dstore = dstore.setdefault
3225 3229
3226 3230 # save a few values we'll need to recover later
3227 3231 mode = save_dstore('mode',False)
3228 3232 save_dstore('rc_pprint',ptformatter.pprint)
3229 3233 save_dstore('xmode',shell.InteractiveTB.mode)
3230 3234 save_dstore('rc_separate_out',shell.separate_out)
3231 3235 save_dstore('rc_separate_out2',shell.separate_out2)
3232 3236 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3233 3237 save_dstore('rc_separate_in',shell.separate_in)
3234 3238 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3235 3239
3236 3240 if mode == False:
3237 3241 # turn on
3238 3242 oc.prompt1.p_template = '>>> '
3239 3243 oc.prompt2.p_template = '... '
3240 3244 oc.prompt_out.p_template = ''
3241 3245
3242 3246 # Prompt separators like plain python
3243 3247 oc.input_sep = oc.prompt1.sep = ''
3244 3248 oc.output_sep = ''
3245 3249 oc.output_sep2 = ''
3246 3250
3247 3251 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3248 3252 oc.prompt_out.pad_left = False
3249 3253
3250 3254 ptformatter.pprint = False
3251 3255 disp_formatter.plain_text_only = True
3252 3256
3253 3257 shell.magic_xmode('Plain')
3254 3258 else:
3255 3259 # turn off
3256 3260 oc.prompt1.p_template = shell.prompt_in1
3257 3261 oc.prompt2.p_template = shell.prompt_in2
3258 3262 oc.prompt_out.p_template = shell.prompt_out
3259 3263
3260 3264 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3261 3265
3262 3266 oc.output_sep = dstore.rc_separate_out
3263 3267 oc.output_sep2 = dstore.rc_separate_out2
3264 3268
3265 3269 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3266 3270 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3267 3271
3268 3272 ptformatter.pprint = dstore.rc_pprint
3269 3273 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3270 3274
3271 3275 shell.magic_xmode(dstore.xmode)
3272 3276
3273 3277 # Store new mode and inform
3274 3278 dstore.mode = bool(1-int(mode))
3275 3279 mode_label = ['OFF','ON'][dstore.mode]
3276 3280 print 'Doctest mode is:', mode_label
3277 3281
3278 3282 def magic_gui(self, parameter_s=''):
3279 3283 """Enable or disable IPython GUI event loop integration.
3280 3284
3281 3285 %gui [GUINAME]
3282 3286
3283 3287 This magic replaces IPython's threaded shells that were activated
3284 3288 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3285 3289 can now be enabled, disabled and swtiched at runtime and keyboard
3286 3290 interrupts should work without any problems. The following toolkits
3287 3291 are supported: wxPython, PyQt4, PyGTK, and Tk::
3288 3292
3289 3293 %gui wx # enable wxPython event loop integration
3290 3294 %gui qt4|qt # enable PyQt4 event loop integration
3291 3295 %gui gtk # enable PyGTK event loop integration
3292 3296 %gui tk # enable Tk event loop integration
3293 3297 %gui # disable all event loop integration
3294 3298
3295 3299 WARNING: after any of these has been called you can simply create
3296 3300 an application object, but DO NOT start the event loop yourself, as
3297 3301 we have already handled that.
3298 3302 """
3299 3303 from IPython.lib.inputhook import enable_gui
3300 3304 opts, arg = self.parse_options(parameter_s, '')
3301 3305 if arg=='': arg = None
3302 3306 return enable_gui(arg)
3303 3307
3304 3308 def magic_load_ext(self, module_str):
3305 3309 """Load an IPython extension by its module name."""
3306 3310 return self.extension_manager.load_extension(module_str)
3307 3311
3308 3312 def magic_unload_ext(self, module_str):
3309 3313 """Unload an IPython extension by its module name."""
3310 3314 self.extension_manager.unload_extension(module_str)
3311 3315
3312 3316 def magic_reload_ext(self, module_str):
3313 3317 """Reload an IPython extension by its module name."""
3314 3318 self.extension_manager.reload_extension(module_str)
3315 3319
3316 3320 @testdec.skip_doctest
3317 3321 def magic_install_profiles(self, s):
3318 3322 """Install the default IPython profiles into the .ipython dir.
3319 3323
3320 3324 If the default profiles have already been installed, they will not
3321 3325 be overwritten. You can force overwriting them by using the ``-o``
3322 3326 option::
3323 3327
3324 3328 In [1]: %install_profiles -o
3325 3329 """
3326 3330 if '-o' in s:
3327 3331 overwrite = True
3328 3332 else:
3329 3333 overwrite = False
3330 3334 from IPython.config import profile
3331 3335 profile_dir = os.path.split(profile.__file__)[0]
3332 3336 ipython_dir = self.ipython_dir
3333 3337 files = os.listdir(profile_dir)
3334 3338
3335 3339 to_install = []
3336 3340 for f in files:
3337 3341 if f.startswith('ipython_config'):
3338 3342 src = os.path.join(profile_dir, f)
3339 3343 dst = os.path.join(ipython_dir, f)
3340 3344 if (not os.path.isfile(dst)) or overwrite:
3341 3345 to_install.append((f, src, dst))
3342 3346 if len(to_install)>0:
3343 3347 print "Installing profiles to: ", ipython_dir
3344 3348 for (f, src, dst) in to_install:
3345 3349 shutil.copy(src, dst)
3346 3350 print " %s" % f
3347 3351
3348 3352 def magic_install_default_config(self, s):
3349 3353 """Install IPython's default config file into the .ipython dir.
3350 3354
3351 3355 If the default config file (:file:`ipython_config.py`) is already
3352 3356 installed, it will not be overwritten. You can force overwriting
3353 3357 by using the ``-o`` option::
3354 3358
3355 3359 In [1]: %install_default_config
3356 3360 """
3357 3361 if '-o' in s:
3358 3362 overwrite = True
3359 3363 else:
3360 3364 overwrite = False
3361 3365 from IPython.config import default
3362 3366 config_dir = os.path.split(default.__file__)[0]
3363 3367 ipython_dir = self.ipython_dir
3364 3368 default_config_file_name = 'ipython_config.py'
3365 3369 src = os.path.join(config_dir, default_config_file_name)
3366 3370 dst = os.path.join(ipython_dir, default_config_file_name)
3367 3371 if (not os.path.isfile(dst)) or overwrite:
3368 3372 shutil.copy(src, dst)
3369 3373 print "Installing default config file: %s" % dst
3370 3374
3371 3375 # Pylab support: simple wrappers that activate pylab, load gui input
3372 3376 # handling and modify slightly %run
3373 3377
3374 3378 @testdec.skip_doctest
3375 3379 def _pylab_magic_run(self, parameter_s=''):
3376 3380 Magic.magic_run(self, parameter_s,
3377 3381 runner=mpl_runner(self.shell.safe_execfile))
3378 3382
3379 3383 _pylab_magic_run.__doc__ = magic_run.__doc__
3380 3384
3381 3385 @testdec.skip_doctest
3382 3386 def magic_pylab(self, s):
3383 3387 """Load numpy and matplotlib to work interactively.
3384 3388
3385 3389 %pylab [GUINAME]
3386 3390
3387 3391 This function lets you activate pylab (matplotlib, numpy and
3388 3392 interactive support) at any point during an IPython session.
3389 3393
3390 3394 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3391 3395 pylab and mlab, as well as all names from numpy and pylab.
3392 3396
3393 3397 Parameters
3394 3398 ----------
3395 3399 guiname : optional
3396 3400 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or
3397 3401 'tk'). If given, the corresponding Matplotlib backend is used,
3398 3402 otherwise matplotlib's default (which you can override in your
3399 3403 matplotlib config file) is used.
3400 3404
3401 3405 Examples
3402 3406 --------
3403 3407 In this case, where the MPL default is TkAgg:
3404 3408 In [2]: %pylab
3405 3409
3406 3410 Welcome to pylab, a matplotlib-based Python environment.
3407 3411 Backend in use: TkAgg
3408 3412 For more information, type 'help(pylab)'.
3409 3413
3410 3414 But you can explicitly request a different backend:
3411 3415 In [3]: %pylab qt
3412 3416
3413 3417 Welcome to pylab, a matplotlib-based Python environment.
3414 3418 Backend in use: Qt4Agg
3415 3419 For more information, type 'help(pylab)'.
3416 3420 """
3417 3421 self.shell.enable_pylab(s)
3418 3422
3419 3423 def magic_tb(self, s):
3420 3424 """Print the last traceback with the currently active exception mode.
3421 3425
3422 3426 See %xmode for changing exception reporting modes."""
3423 3427 self.shell.showtraceback()
3424 3428
3425 3429 @testdec.skip_doctest
3426 3430 def magic_precision(self, s=''):
3427 3431 """Set floating point precision for pretty printing.
3428 3432
3429 3433 Can set either integer precision or a format string.
3430 3434
3431 3435 If numpy has been imported and precision is an int,
3432 3436 numpy display precision will also be set, via ``numpy.set_printoptions``.
3433 3437
3434 3438 If no argument is given, defaults will be restored.
3435 3439
3436 3440 Examples
3437 3441 --------
3438 3442 ::
3439 3443
3440 3444 In [1]: from math import pi
3441 3445
3442 3446 In [2]: %precision 3
3443 3447 Out[2]: '%.3f'
3444 3448
3445 3449 In [3]: pi
3446 3450 Out[3]: 3.142
3447 3451
3448 3452 In [4]: %precision %i
3449 3453 Out[4]: '%i'
3450 3454
3451 3455 In [5]: pi
3452 3456 Out[5]: 3
3453 3457
3454 3458 In [6]: %precision %e
3455 3459 Out[6]: '%e'
3456 3460
3457 3461 In [7]: pi**10
3458 3462 Out[7]: 9.364805e+04
3459 3463
3460 3464 In [8]: %precision
3461 3465 Out[8]: '%r'
3462 3466
3463 3467 In [9]: pi**10
3464 3468 Out[9]: 93648.047476082982
3465 3469
3466 3470 """
3467 3471
3468 3472 ptformatter = self.shell.display_formatter.formatters['text/plain']
3469 3473 ptformatter.float_precision = s
3470 3474 return ptformatter.float_format
3471 3475
3472 3476 # end Magic
General Comments 0
You need to be logged in to leave comments. Login now