##// END OF EJS Templates
Merge 'XDG', introducing basic XDG_CONFIG_HOME support...
MinRK -
r3356:15ce9bf5 merge
parent child Browse files
Show More
@@ -1,453 +1,453 b''
1 1 # encoding: utf-8
2 2 """
3 3 An application for IPython.
4 4
5 5 All top-level applications should use the classes in this module for
6 6 handling configuration and creating componenets.
7 7
8 8 The job of an :class:`Application` is to create the master configuration
9 9 object and then create the configurable objects, passing the config to them.
10 10
11 11 Authors:
12 12
13 13 * Brian Granger
14 14 * Fernando Perez
15 15
16 16 Notes
17 17 -----
18 18 """
19 19
20 20 #-----------------------------------------------------------------------------
21 21 # Copyright (C) 2008-2009 The IPython Development Team
22 22 #
23 23 # Distributed under the terms of the BSD License. The full license is in
24 24 # the file COPYING, distributed as part of this software.
25 25 #-----------------------------------------------------------------------------
26 26
27 27 #-----------------------------------------------------------------------------
28 28 # Imports
29 29 #-----------------------------------------------------------------------------
30 30
31 31 import logging
32 32 import os
33 33 import sys
34 34
35 35 from IPython.core import release, crashhandler
36 36 from IPython.utils.path import get_ipython_dir, get_ipython_package_dir
37 37 from IPython.config.loader import (
38 38 PyFileConfigLoader,
39 39 ArgParseConfigLoader,
40 40 Config,
41 41 )
42 42
43 43 #-----------------------------------------------------------------------------
44 44 # Classes and functions
45 45 #-----------------------------------------------------------------------------
46 46
47 47 class ApplicationError(Exception):
48 48 pass
49 49
50 50
51 51 class BaseAppConfigLoader(ArgParseConfigLoader):
52 52 """Default command line options for IPython based applications."""
53 53
54 54 def _add_ipython_dir(self, parser):
55 55 """Add the --ipython-dir option to the parser."""
56 56 paa = parser.add_argument
57 57 paa('--ipython-dir',
58 58 dest='Global.ipython_dir',type=unicode,
59 59 help=
60 60 """Set to override default location of the IPython directory
61 61 IPYTHON_DIR, stored as Global.ipython_dir. This can also be
62 62 specified through the environment variable IPYTHON_DIR.""",
63 63 metavar='Global.ipython_dir')
64 64
65 65 def _add_log_level(self, parser):
66 66 """Add the --log-level option to the parser."""
67 67 paa = parser.add_argument
68 68 paa('--log-level',
69 69 dest="Global.log_level",type=int,
70 70 help='Set the log level (0,10,20,30,40,50). Default is 30.',
71 71 metavar='Global.log_level')
72 72
73 73 def _add_arguments(self):
74 74 self._add_ipython_dir(self.parser)
75 75 self._add_log_level(self.parser)
76 76
77 77
78 78 class Application(object):
79 79 """Load a config, construct configurables and set them running.
80 80
81 81 The configuration of an application can be done via three different Config
82 82 objects, which are loaded and ultimately merged into a single one used
83 83 from that point on by the app. These are:
84 84
85 85 1. default_config: internal defaults, implemented in code.
86 86 2. file_config: read from the filesystem.
87 87 3. command_line_config: read from the system's command line flags.
88 88
89 89 During initialization, 3 is actually read before 2, since at the
90 90 command-line one may override the location of the file to be read. But the
91 91 above is the order in which the merge is made.
92 92 """
93 93
94 94 name = u'ipython'
95 95 description = 'IPython: an enhanced interactive Python shell.'
96 96 #: Usage message printed by argparse. If None, auto-generate
97 97 usage = None
98 98 #: The command line config loader. Subclass of ArgParseConfigLoader.
99 99 command_line_loader = BaseAppConfigLoader
100 100 #: The name of the config file to load, determined at runtime
101 101 config_file_name = None
102 102 #: The name of the default config file. Track separately from the actual
103 103 #: name because some logic happens only if we aren't using the default.
104 104 default_config_file_name = u'ipython_config.py'
105 105 default_log_level = logging.WARN
106 106 #: Set by --profile option
107 107 profile_name = None
108 #: User's ipython directory, typically ~/.ipython/
108 #: User's ipython directory, typically ~/.ipython or ~/.config/ipython/
109 109 ipython_dir = None
110 110 #: Internal defaults, implemented in code.
111 111 default_config = None
112 112 #: Read from the filesystem.
113 113 file_config = None
114 114 #: Read from the system's command line flags.
115 115 command_line_config = None
116 116 #: The final config that will be passed to the main object.
117 117 master_config = None
118 118 #: A reference to the argv to be used (typically ends up being sys.argv[1:])
119 119 argv = None
120 120 #: extra arguments computed by the command-line loader
121 121 extra_args = None
122 122 #: The class to use as the crash handler.
123 123 crash_handler_class = crashhandler.CrashHandler
124 124
125 125 # Private attributes
126 126 _exiting = False
127 127 _initialized = False
128 128
129 129 def __init__(self, argv=None):
130 130 self.argv = sys.argv[1:] if argv is None else argv
131 131 self.init_logger()
132 132
133 133 def init_logger(self):
134 134 self.log = logging.getLogger(self.__class__.__name__)
135 135 # This is used as the default until the command line arguments are read.
136 136 self.log.setLevel(self.default_log_level)
137 137 self._log_handler = logging.StreamHandler()
138 138 self._log_formatter = logging.Formatter("[%(name)s] %(message)s")
139 139 self._log_handler.setFormatter(self._log_formatter)
140 140 self.log.addHandler(self._log_handler)
141 141
142 142 def _set_log_level(self, level):
143 143 self.log.setLevel(level)
144 144
145 145 def _get_log_level(self):
146 146 return self.log.level
147 147
148 148 log_level = property(_get_log_level, _set_log_level)
149 149
150 150 def initialize(self):
151 151 """Initialize the application.
152 152
153 153 Loads all configuration information and sets all application state, but
154 154 does not start any relevant processing (typically some kind of event
155 155 loop).
156 156
157 157 Once this method has been called, the application is flagged as
158 158 initialized and the method becomes a no-op."""
159 159
160 160 if self._initialized:
161 161 return
162 162
163 163 # The first part is protected with an 'attempt' wrapper, that will log
164 164 # failures with the basic system traceback machinery. Once our crash
165 165 # handler is in place, we can let any subsequent exception propagate,
166 166 # as our handler will log it with much better detail than the default.
167 167 self.attempt(self.create_crash_handler)
168 168
169 169 # Configuration phase
170 170 # Default config (internally hardwired in application code)
171 171 self.create_default_config()
172 172 self.log_default_config()
173 173 self.set_default_config_log_level()
174 174
175 175 # Command-line config
176 176 self.pre_load_command_line_config()
177 177 self.load_command_line_config()
178 178 self.set_command_line_config_log_level()
179 179 self.post_load_command_line_config()
180 180 self.log_command_line_config()
181 181
182 182 # Find resources needed for filesystem access, using information from
183 183 # the above two
184 184 self.find_ipython_dir()
185 185 self.find_resources()
186 186 self.find_config_file_name()
187 187 self.find_config_file_paths()
188 188
189 189 # File-based config
190 190 self.pre_load_file_config()
191 191 self.load_file_config()
192 192 self.set_file_config_log_level()
193 193 self.post_load_file_config()
194 194 self.log_file_config()
195 195
196 196 # Merge all config objects into a single one the app can then use
197 197 self.merge_configs()
198 198 self.log_master_config()
199 199
200 200 # Construction phase
201 201 self.pre_construct()
202 202 self.construct()
203 203 self.post_construct()
204 204
205 205 # Done, flag as such and
206 206 self._initialized = True
207 207
208 208 def start(self):
209 209 """Start the application."""
210 210 self.initialize()
211 211 self.start_app()
212 212
213 213 #-------------------------------------------------------------------------
214 214 # Various stages of Application creation
215 215 #-------------------------------------------------------------------------
216 216
217 217 def create_crash_handler(self):
218 218 """Create a crash handler, typically setting sys.excepthook to it."""
219 219 self.crash_handler = self.crash_handler_class(self)
220 220 sys.excepthook = self.crash_handler
221 221
222 222 def create_default_config(self):
223 223 """Create defaults that can't be set elsewhere.
224 224
225 225 For the most part, we try to set default in the class attributes
226 226 of Configurables. But, defaults the top-level Application (which is
227 227 not a HasTraits or Configurables) are not set in this way. Instead
228 228 we set them here. The Global section is for variables like this that
229 229 don't belong to a particular configurable.
230 230 """
231 231 c = Config()
232 232 c.Global.ipython_dir = get_ipython_dir()
233 233 c.Global.log_level = self.log_level
234 234 self.default_config = c
235 235
236 236 def log_default_config(self):
237 237 self.log.debug('Default config loaded:')
238 238 self.log.debug(repr(self.default_config))
239 239
240 240 def set_default_config_log_level(self):
241 241 try:
242 242 self.log_level = self.default_config.Global.log_level
243 243 except AttributeError:
244 244 # Fallback to the default_log_level class attribute
245 245 pass
246 246
247 247 def create_command_line_config(self):
248 248 """Create and return a command line config loader."""
249 249 return self.command_line_loader(
250 250 self.argv,
251 251 description=self.description,
252 252 version=release.version,
253 253 usage=self.usage
254 254 )
255 255
256 256 def pre_load_command_line_config(self):
257 257 """Do actions just before loading the command line config."""
258 258 pass
259 259
260 260 def load_command_line_config(self):
261 261 """Load the command line config."""
262 262 loader = self.create_command_line_config()
263 263 self.command_line_config = loader.load_config()
264 264 self.extra_args = loader.get_extra_args()
265 265
266 266 def set_command_line_config_log_level(self):
267 267 try:
268 268 self.log_level = self.command_line_config.Global.log_level
269 269 except AttributeError:
270 270 pass
271 271
272 272 def post_load_command_line_config(self):
273 273 """Do actions just after loading the command line config."""
274 274 pass
275 275
276 276 def log_command_line_config(self):
277 277 self.log.debug("Command line config loaded:")
278 278 self.log.debug(repr(self.command_line_config))
279 279
280 280 def find_ipython_dir(self):
281 281 """Set the IPython directory.
282 282
283 283 This sets ``self.ipython_dir``, but the actual value that is passed to
284 284 the application is kept in either ``self.default_config`` or
285 285 ``self.command_line_config``. This also adds ``self.ipython_dir`` to
286 286 ``sys.path`` so config files there can be referenced by other config
287 287 files.
288 288 """
289 289
290 290 try:
291 291 self.ipython_dir = self.command_line_config.Global.ipython_dir
292 292 except AttributeError:
293 293 self.ipython_dir = self.default_config.Global.ipython_dir
294 294 sys.path.append(os.path.abspath(self.ipython_dir))
295 295 if not os.path.isdir(self.ipython_dir):
296 296 os.makedirs(self.ipython_dir, mode=0777)
297 297 self.log.debug("IPYTHON_DIR set to: %s" % self.ipython_dir)
298 298
299 299 def find_resources(self):
300 300 """Find other resources that need to be in place.
301 301
302 302 Things like cluster directories need to be in place to find the
303 303 config file. These happen right after the IPython directory has
304 304 been set.
305 305 """
306 306 pass
307 307
308 308 def find_config_file_name(self):
309 309 """Find the config file name for this application.
310 310
311 311 This must set ``self.config_file_name`` to the filename of the
312 312 config file to use (just the filename). The search paths for the
313 313 config file are set in :meth:`find_config_file_paths` and then passed
314 314 to the config file loader where they are resolved to an absolute path.
315 315
316 316 If a profile has been set at the command line, this will resolve it.
317 317 """
318 318 try:
319 319 self.config_file_name = self.command_line_config.Global.config_file
320 320 except AttributeError:
321 321 pass
322 322 else:
323 323 return
324 324
325 325 try:
326 326 self.profile_name = self.command_line_config.Global.profile
327 327 except AttributeError:
328 328 # Just use the default as there is no profile
329 329 self.config_file_name = self.default_config_file_name
330 330 else:
331 331 # Use the default config file name and profile name if set
332 332 # to determine the used config file name.
333 333 name_parts = self.default_config_file_name.split('.')
334 334 name_parts.insert(1, u'_' + self.profile_name + u'.')
335 335 self.config_file_name = ''.join(name_parts)
336 336
337 337 def find_config_file_paths(self):
338 338 """Set the search paths for resolving the config file.
339 339
340 340 This must set ``self.config_file_paths`` to a sequence of search
341 341 paths to pass to the config file loader.
342 342 """
343 343 # Include our own profiles directory last, so that users can still find
344 344 # our shipped copies of builtin profiles even if they don't have them
345 345 # in their local ipython directory.
346 346 prof_dir = os.path.join(get_ipython_package_dir(), 'config', 'profile')
347 347 self.config_file_paths = (os.getcwd(), self.ipython_dir, prof_dir)
348 348
349 349 def pre_load_file_config(self):
350 350 """Do actions before the config file is loaded."""
351 351 pass
352 352
353 353 def load_file_config(self):
354 354 """Load the config file.
355 355
356 356 This tries to load the config file from disk. If successful, the
357 357 ``CONFIG_FILE`` config variable is set to the resolved config file
358 358 location. If not successful, an empty config is used.
359 359 """
360 360 self.log.debug("Attempting to load config file: %s" %
361 361 self.config_file_name)
362 362 loader = PyFileConfigLoader(self.config_file_name,
363 363 path=self.config_file_paths)
364 364 try:
365 365 self.file_config = loader.load_config()
366 366 self.file_config.Global.config_file = loader.full_filename
367 367 except IOError:
368 368 # Only warn if the default config file was NOT being used.
369 369 if not self.config_file_name==self.default_config_file_name:
370 370 self.log.warn("Config file not found, skipping: %s" %
371 371 self.config_file_name, exc_info=True)
372 372 self.file_config = Config()
373 373 except:
374 374 self.log.warn("Error loading config file: %s" %
375 375 self.config_file_name, exc_info=True)
376 376 self.file_config = Config()
377 377
378 378 def set_file_config_log_level(self):
379 379 # We need to keeep self.log_level updated. But we only use the value
380 380 # of the file_config if a value was not specified at the command
381 381 # line, because the command line overrides everything.
382 382 if not hasattr(self.command_line_config.Global, 'log_level'):
383 383 try:
384 384 self.log_level = self.file_config.Global.log_level
385 385 except AttributeError:
386 386 pass # Use existing value
387 387
388 388 def post_load_file_config(self):
389 389 """Do actions after the config file is loaded."""
390 390 pass
391 391
392 392 def log_file_config(self):
393 393 if hasattr(self.file_config.Global, 'config_file'):
394 394 self.log.debug("Config file loaded: %s" %
395 395 self.file_config.Global.config_file)
396 396 self.log.debug(repr(self.file_config))
397 397
398 398 def merge_configs(self):
399 399 """Merge the default, command line and file config objects."""
400 400 config = Config()
401 401 config._merge(self.default_config)
402 402 config._merge(self.file_config)
403 403 config._merge(self.command_line_config)
404 404
405 405 # XXX fperez - propose to Brian we rename master_config to simply
406 406 # config, I think this is going to be heavily used in examples and
407 407 # application code and the name is shorter/easier to find/remember.
408 408 # For now, just alias it...
409 409 self.master_config = config
410 410 self.config = config
411 411
412 412 def log_master_config(self):
413 413 self.log.debug("Master config created:")
414 414 self.log.debug(repr(self.master_config))
415 415
416 416 def pre_construct(self):
417 417 """Do actions after the config has been built, but before construct."""
418 418 pass
419 419
420 420 def construct(self):
421 421 """Construct the main objects that make up this app."""
422 422 self.log.debug("Constructing main objects for application")
423 423
424 424 def post_construct(self):
425 425 """Do actions after construct, but before starting the app."""
426 426 pass
427 427
428 428 def start_app(self):
429 429 """Actually start the app."""
430 430 self.log.debug("Starting application")
431 431
432 432 #-------------------------------------------------------------------------
433 433 # Utility methods
434 434 #-------------------------------------------------------------------------
435 435
436 436 def exit(self, exit_status=0):
437 437 if self._exiting:
438 438 pass
439 439 else:
440 440 self.log.debug("Exiting application: %s" % self.name)
441 441 self._exiting = True
442 442 sys.exit(exit_status)
443 443
444 444 def attempt(self, func):
445 445 try:
446 446 func()
447 447 except SystemExit:
448 448 raise
449 449 except:
450 450 self.log.critical("Aborting application: %s" % self.name,
451 451 exc_info=True)
452 452 self.exit(0)
453 453
@@ -1,3510 +1,3510 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 import types
29 29 from cStringIO import StringIO
30 30 from getopt import getopt,GetoptError
31 31 from pprint import pformat
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.macro import Macro
50 50 from IPython.core import page
51 51 from IPython.core.prefilter import ESC_MAGIC
52 52 from IPython.lib.pylabtools import mpl_runner
53 53 from IPython.external.Itpl import itpl, printpl
54 54 from IPython.testing import decorators as testdec
55 55 from IPython.utils.io import file_read, nlprint
56 56 import IPython.utils.io
57 57 from IPython.utils.path import get_py_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, StringTypes, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 import IPython.utils.generics
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89
90 90 #***************************************************************************
91 91 # Main class implementing Magic functionality
92 92
93 93 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
94 94 # on construction of the main InteractiveShell object. Something odd is going
95 95 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
96 96 # eventually this needs to be clarified.
97 97 # BG: This is because InteractiveShell inherits from this, but is itself a
98 98 # Configurable. This messes up the MRO in some way. The fix is that we need to
99 99 # make Magic a configurable that InteractiveShell does not subclass.
100 100
101 101 class Magic:
102 102 """Magic functions for InteractiveShell.
103 103
104 104 Shell functions which can be reached as %function_name. All magic
105 105 functions should accept a string, which they can parse for their own
106 106 needs. This can make some functions easier to type, eg `%cd ../`
107 107 vs. `%cd("../")`
108 108
109 109 ALL definitions MUST begin with the prefix magic_. The user won't need it
110 110 at the command line, but it is is needed in the definition. """
111 111
112 112 # class globals
113 113 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
114 114 'Automagic is ON, % prefix NOT needed for magic functions.']
115 115
116 116 #......................................................................
117 117 # some utility functions
118 118
119 119 def __init__(self,shell):
120 120
121 121 self.options_table = {}
122 122 if profile is None:
123 123 self.magic_prun = self.profile_missing_notice
124 124 self.shell = shell
125 125
126 126 # namespace for holding state we may need
127 127 self._magic_state = Bunch()
128 128
129 129 def profile_missing_notice(self, *args, **kwargs):
130 130 error("""\
131 131 The profile module could not be found. It has been removed from the standard
132 132 python packages because of its non-free license. To use profiling, install the
133 133 python-profiler package from non-free.""")
134 134
135 135 def default_option(self,fn,optstr):
136 136 """Make an entry in the options_table for fn, with value optstr"""
137 137
138 138 if fn not in self.lsmagic():
139 139 error("%s is not a magic function" % fn)
140 140 self.options_table[fn] = optstr
141 141
142 142 def lsmagic(self):
143 143 """Return a list of currently available magic functions.
144 144
145 145 Gives a list of the bare names after mangling (['ls','cd', ...], not
146 146 ['magic_ls','magic_cd',...]"""
147 147
148 148 # FIXME. This needs a cleanup, in the way the magics list is built.
149 149
150 150 # magics in class definition
151 151 class_magic = lambda fn: fn.startswith('magic_') and \
152 152 callable(Magic.__dict__[fn])
153 153 # in instance namespace (run-time user additions)
154 154 inst_magic = lambda fn: fn.startswith('magic_') and \
155 155 callable(self.__dict__[fn])
156 156 # and bound magics by user (so they can access self):
157 157 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
158 158 callable(self.__class__.__dict__[fn])
159 159 magics = filter(class_magic,Magic.__dict__.keys()) + \
160 160 filter(inst_magic,self.__dict__.keys()) + \
161 161 filter(inst_bound_magic,self.__class__.__dict__.keys())
162 162 out = []
163 163 for fn in set(magics):
164 164 out.append(fn.replace('magic_','',1))
165 165 out.sort()
166 166 return out
167 167
168 168 def extract_input_slices(self,slices,raw=False):
169 169 """Return as a string a set of input history slices.
170 170
171 171 Inputs:
172 172
173 173 - slices: the set of slices is given as a list of strings (like
174 174 ['1','4:8','9'], since this function is for use by magic functions
175 175 which get their arguments as strings.
176 176
177 177 Optional inputs:
178 178
179 179 - raw(False): by default, the processed input is used. If this is
180 180 true, the raw input history is used instead.
181 181
182 182 Note that slices can be called with two notations:
183 183
184 184 N:M -> standard python form, means including items N...(M-1).
185 185
186 186 N-M -> include items N..M (closed endpoint)."""
187 187
188 188 if raw:
189 189 hist = self.shell.history_manager.input_hist_raw
190 190 else:
191 191 hist = self.shell.history_manager.input_hist_parsed
192 192
193 193 cmds = []
194 194 for chunk in slices:
195 195 if ':' in chunk:
196 196 ini,fin = map(int,chunk.split(':'))
197 197 elif '-' in chunk:
198 198 ini,fin = map(int,chunk.split('-'))
199 199 fin += 1
200 200 else:
201 201 ini = int(chunk)
202 202 fin = ini+1
203 203 cmds.append(''.join(hist[ini:fin]))
204 204 return cmds
205 205
206 206 def arg_err(self,func):
207 207 """Print docstring if incorrect arguments were passed"""
208 208 print 'Error in arguments:'
209 209 print oinspect.getdoc(func)
210 210
211 211 def format_latex(self,strng):
212 212 """Format a string for latex inclusion."""
213 213
214 214 # Characters that need to be escaped for latex:
215 215 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
216 216 # Magic command names as headers:
217 217 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
218 218 re.MULTILINE)
219 219 # Magic commands
220 220 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
221 221 re.MULTILINE)
222 222 # Paragraph continue
223 223 par_re = re.compile(r'\\$',re.MULTILINE)
224 224
225 225 # The "\n" symbol
226 226 newline_re = re.compile(r'\\n')
227 227
228 228 # Now build the string for output:
229 229 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
230 230 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
231 231 strng)
232 232 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
233 233 strng = par_re.sub(r'\\\\',strng)
234 234 strng = escape_re.sub(r'\\\1',strng)
235 235 strng = newline_re.sub(r'\\textbackslash{}n',strng)
236 236 return strng
237 237
238 238 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
239 239 """Parse options passed to an argument string.
240 240
241 241 The interface is similar to that of getopt(), but it returns back a
242 242 Struct with the options as keys and the stripped argument string still
243 243 as a string.
244 244
245 245 arg_str is quoted as a true sys.argv vector by using shlex.split.
246 246 This allows us to easily expand variables, glob files, quote
247 247 arguments, etc.
248 248
249 249 Options:
250 250 -mode: default 'string'. If given as 'list', the argument string is
251 251 returned as a list (split on whitespace) instead of a string.
252 252
253 253 -list_all: put all option values in lists. Normally only options
254 254 appearing more than once are put in a list.
255 255
256 256 -posix (True): whether to split the input line in POSIX mode or not,
257 257 as per the conventions outlined in the shlex module from the
258 258 standard library."""
259 259
260 260 # inject default options at the beginning of the input line
261 261 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
262 262 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
263 263
264 264 mode = kw.get('mode','string')
265 265 if mode not in ['string','list']:
266 266 raise ValueError,'incorrect mode given: %s' % mode
267 267 # Get options
268 268 list_all = kw.get('list_all',0)
269 269 posix = kw.get('posix', os.name == 'posix')
270 270
271 271 # Check if we have more than one argument to warrant extra processing:
272 272 odict = {} # Dictionary with options
273 273 args = arg_str.split()
274 274 if len(args) >= 1:
275 275 # If the list of inputs only has 0 or 1 thing in it, there's no
276 276 # need to look for options
277 277 argv = arg_split(arg_str,posix)
278 278 # Do regular option processing
279 279 try:
280 280 opts,args = getopt(argv,opt_str,*long_opts)
281 281 except GetoptError,e:
282 282 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
283 283 " ".join(long_opts)))
284 284 for o,a in opts:
285 285 if o.startswith('--'):
286 286 o = o[2:]
287 287 else:
288 288 o = o[1:]
289 289 try:
290 290 odict[o].append(a)
291 291 except AttributeError:
292 292 odict[o] = [odict[o],a]
293 293 except KeyError:
294 294 if list_all:
295 295 odict[o] = [a]
296 296 else:
297 297 odict[o] = a
298 298
299 299 # Prepare opts,args for return
300 300 opts = Struct(odict)
301 301 if mode == 'string':
302 302 args = ' '.join(args)
303 303
304 304 return opts,args
305 305
306 306 #......................................................................
307 307 # And now the actual magic functions
308 308
309 309 # Functions for IPython shell work (vars,funcs, config, etc)
310 310 def magic_lsmagic(self, parameter_s = ''):
311 311 """List currently available magic functions."""
312 312 mesc = ESC_MAGIC
313 313 print 'Available magic functions:\n'+mesc+\
314 314 (' '+mesc).join(self.lsmagic())
315 315 print '\n' + Magic.auto_status[self.shell.automagic]
316 316 return None
317 317
318 318 def magic_magic(self, parameter_s = ''):
319 319 """Print information about the magic function system.
320 320
321 321 Supported formats: -latex, -brief, -rest
322 322 """
323 323
324 324 mode = ''
325 325 try:
326 326 if parameter_s.split()[0] == '-latex':
327 327 mode = 'latex'
328 328 if parameter_s.split()[0] == '-brief':
329 329 mode = 'brief'
330 330 if parameter_s.split()[0] == '-rest':
331 331 mode = 'rest'
332 332 rest_docs = []
333 333 except:
334 334 pass
335 335
336 336 magic_docs = []
337 337 for fname in self.lsmagic():
338 338 mname = 'magic_' + fname
339 339 for space in (Magic,self,self.__class__):
340 340 try:
341 341 fn = space.__dict__[mname]
342 342 except KeyError:
343 343 pass
344 344 else:
345 345 break
346 346 if mode == 'brief':
347 347 # only first line
348 348 if fn.__doc__:
349 349 fndoc = fn.__doc__.split('\n',1)[0]
350 350 else:
351 351 fndoc = 'No documentation'
352 352 else:
353 353 if fn.__doc__:
354 354 fndoc = fn.__doc__.rstrip()
355 355 else:
356 356 fndoc = 'No documentation'
357 357
358 358
359 359 if mode == 'rest':
360 360 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
361 361 fname,fndoc))
362 362
363 363 else:
364 364 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
365 365 fname,fndoc))
366 366
367 367 magic_docs = ''.join(magic_docs)
368 368
369 369 if mode == 'rest':
370 370 return "".join(rest_docs)
371 371
372 372 if mode == 'latex':
373 373 print self.format_latex(magic_docs)
374 374 return
375 375 else:
376 376 magic_docs = format_screen(magic_docs)
377 377 if mode == 'brief':
378 378 return magic_docs
379 379
380 380 outmsg = """
381 381 IPython's 'magic' functions
382 382 ===========================
383 383
384 384 The magic function system provides a series of functions which allow you to
385 385 control the behavior of IPython itself, plus a lot of system-type
386 386 features. All these functions are prefixed with a % character, but parameters
387 387 are given without parentheses or quotes.
388 388
389 389 NOTE: If you have 'automagic' enabled (via the command line option or with the
390 390 %automagic function), you don't need to type in the % explicitly. By default,
391 391 IPython ships with automagic on, so you should only rarely need the % escape.
392 392
393 393 Example: typing '%cd mydir' (without the quotes) changes you working directory
394 394 to 'mydir', if it exists.
395 395
396 396 You can define your own magic functions to extend the system. See the supplied
397 397 ipythonrc and example-magic.py files for details (in your ipython
398 configuration directory, typically $HOME/.ipython/).
398 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
399 399
400 400 You can also define your own aliased names for magic functions. In your
401 401 ipythonrc file, placing a line like:
402 402
403 403 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
404 404
405 405 will define %pf as a new name for %profile.
406 406
407 407 You can also call magics in code using the magic() function, which IPython
408 408 automatically adds to the builtin namespace. Type 'magic?' for details.
409 409
410 410 For a list of the available magic functions, use %lsmagic. For a description
411 411 of any of them, type %magic_name?, e.g. '%cd?'.
412 412
413 413 Currently the magic system has the following functions:\n"""
414 414
415 415 mesc = ESC_MAGIC
416 416 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
417 417 "\n\n%s%s\n\n%s" % (outmsg,
418 418 magic_docs,mesc,mesc,
419 419 (' '+mesc).join(self.lsmagic()),
420 420 Magic.auto_status[self.shell.automagic] ) )
421 421 page.page(outmsg)
422 422
423 423 def magic_automagic(self, parameter_s = ''):
424 424 """Make magic functions callable without having to type the initial %.
425 425
426 426 Without argumentsl toggles on/off (when off, you must call it as
427 427 %automagic, of course). With arguments it sets the value, and you can
428 428 use any of (case insensitive):
429 429
430 430 - on,1,True: to activate
431 431
432 432 - off,0,False: to deactivate.
433 433
434 434 Note that magic functions have lowest priority, so if there's a
435 435 variable whose name collides with that of a magic fn, automagic won't
436 436 work for that function (you get the variable instead). However, if you
437 437 delete the variable (del var), the previously shadowed magic function
438 438 becomes visible to automagic again."""
439 439
440 440 arg = parameter_s.lower()
441 441 if parameter_s in ('on','1','true'):
442 442 self.shell.automagic = True
443 443 elif parameter_s in ('off','0','false'):
444 444 self.shell.automagic = False
445 445 else:
446 446 self.shell.automagic = not self.shell.automagic
447 447 print '\n' + Magic.auto_status[self.shell.automagic]
448 448
449 449 @testdec.skip_doctest
450 450 def magic_autocall(self, parameter_s = ''):
451 451 """Make functions callable without having to type parentheses.
452 452
453 453 Usage:
454 454
455 455 %autocall [mode]
456 456
457 457 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
458 458 value is toggled on and off (remembering the previous state).
459 459
460 460 In more detail, these values mean:
461 461
462 462 0 -> fully disabled
463 463
464 464 1 -> active, but do not apply if there are no arguments on the line.
465 465
466 466 In this mode, you get:
467 467
468 468 In [1]: callable
469 469 Out[1]: <built-in function callable>
470 470
471 471 In [2]: callable 'hello'
472 472 ------> callable('hello')
473 473 Out[2]: False
474 474
475 475 2 -> Active always. Even if no arguments are present, the callable
476 476 object is called:
477 477
478 478 In [2]: float
479 479 ------> float()
480 480 Out[2]: 0.0
481 481
482 482 Note that even with autocall off, you can still use '/' at the start of
483 483 a line to treat the first argument on the command line as a function
484 484 and add parentheses to it:
485 485
486 486 In [8]: /str 43
487 487 ------> str(43)
488 488 Out[8]: '43'
489 489
490 490 # all-random (note for auto-testing)
491 491 """
492 492
493 493 if parameter_s:
494 494 arg = int(parameter_s)
495 495 else:
496 496 arg = 'toggle'
497 497
498 498 if not arg in (0,1,2,'toggle'):
499 499 error('Valid modes: (0->Off, 1->Smart, 2->Full')
500 500 return
501 501
502 502 if arg in (0,1,2):
503 503 self.shell.autocall = arg
504 504 else: # toggle
505 505 if self.shell.autocall:
506 506 self._magic_state.autocall_save = self.shell.autocall
507 507 self.shell.autocall = 0
508 508 else:
509 509 try:
510 510 self.shell.autocall = self._magic_state.autocall_save
511 511 except AttributeError:
512 512 self.shell.autocall = self._magic_state.autocall_save = 1
513 513
514 514 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
515 515
516 516
517 517 def magic_page(self, parameter_s=''):
518 518 """Pretty print the object and display it through a pager.
519 519
520 520 %page [options] OBJECT
521 521
522 522 If no object is given, use _ (last output).
523 523
524 524 Options:
525 525
526 526 -r: page str(object), don't pretty-print it."""
527 527
528 528 # After a function contributed by Olivier Aubert, slightly modified.
529 529
530 530 # Process options/args
531 531 opts,args = self.parse_options(parameter_s,'r')
532 532 raw = 'r' in opts
533 533
534 534 oname = args and args or '_'
535 535 info = self._ofind(oname)
536 536 if info['found']:
537 537 txt = (raw and str or pformat)( info['obj'] )
538 538 page.page(txt)
539 539 else:
540 540 print 'Object `%s` not found' % oname
541 541
542 542 def magic_profile(self, parameter_s=''):
543 543 """Print your currently active IPython profile."""
544 544 if self.shell.profile:
545 545 printpl('Current IPython profile: $self.shell.profile.')
546 546 else:
547 547 print 'No profile active.'
548 548
549 549 def magic_pinfo(self, parameter_s='', namespaces=None):
550 550 """Provide detailed information about an object.
551 551
552 552 '%pinfo object' is just a synonym for object? or ?object."""
553 553
554 554 #print 'pinfo par: <%s>' % parameter_s # dbg
555 555
556 556
557 557 # detail_level: 0 -> obj? , 1 -> obj??
558 558 detail_level = 0
559 559 # We need to detect if we got called as 'pinfo pinfo foo', which can
560 560 # happen if the user types 'pinfo foo?' at the cmd line.
561 561 pinfo,qmark1,oname,qmark2 = \
562 562 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
563 563 if pinfo or qmark1 or qmark2:
564 564 detail_level = 1
565 565 if "*" in oname:
566 566 self.magic_psearch(oname)
567 567 else:
568 568 self.shell._inspect('pinfo', oname, detail_level=detail_level,
569 569 namespaces=namespaces)
570 570
571 571 def magic_pinfo2(self, parameter_s='', namespaces=None):
572 572 """Provide extra detailed information about an object.
573 573
574 574 '%pinfo2 object' is just a synonym for object?? or ??object."""
575 575 self.shell._inspect('pinfo', parameter_s, detail_level=1,
576 576 namespaces=namespaces)
577 577
578 578 @testdec.skip_doctest
579 579 def magic_pdef(self, parameter_s='', namespaces=None):
580 580 """Print the definition header for any callable object.
581 581
582 582 If the object is a class, print the constructor information.
583 583
584 584 Examples
585 585 --------
586 586 ::
587 587
588 588 In [3]: %pdef urllib.urlopen
589 589 urllib.urlopen(url, data=None, proxies=None)
590 590 """
591 591 self._inspect('pdef',parameter_s, namespaces)
592 592
593 593 def magic_pdoc(self, parameter_s='', namespaces=None):
594 594 """Print the docstring for an object.
595 595
596 596 If the given object is a class, it will print both the class and the
597 597 constructor docstrings."""
598 598 self._inspect('pdoc',parameter_s, namespaces)
599 599
600 600 def magic_psource(self, parameter_s='', namespaces=None):
601 601 """Print (or run through pager) the source code for an object."""
602 602 self._inspect('psource',parameter_s, namespaces)
603 603
604 604 def magic_pfile(self, parameter_s=''):
605 605 """Print (or run through pager) the file where an object is defined.
606 606
607 607 The file opens at the line where the object definition begins. IPython
608 608 will honor the environment variable PAGER if set, and otherwise will
609 609 do its best to print the file in a convenient form.
610 610
611 611 If the given argument is not an object currently defined, IPython will
612 612 try to interpret it as a filename (automatically adding a .py extension
613 613 if needed). You can thus use %pfile as a syntax highlighting code
614 614 viewer."""
615 615
616 616 # first interpret argument as an object name
617 617 out = self._inspect('pfile',parameter_s)
618 618 # if not, try the input as a filename
619 619 if out == 'not found':
620 620 try:
621 621 filename = get_py_filename(parameter_s)
622 622 except IOError,msg:
623 623 print msg
624 624 return
625 625 page.page(self.shell.inspector.format(file(filename).read()))
626 626
627 627 def magic_psearch(self, parameter_s=''):
628 628 """Search for object in namespaces by wildcard.
629 629
630 630 %psearch [options] PATTERN [OBJECT TYPE]
631 631
632 632 Note: ? can be used as a synonym for %psearch, at the beginning or at
633 633 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
634 634 rest of the command line must be unchanged (options come first), so
635 635 for example the following forms are equivalent
636 636
637 637 %psearch -i a* function
638 638 -i a* function?
639 639 ?-i a* function
640 640
641 641 Arguments:
642 642
643 643 PATTERN
644 644
645 645 where PATTERN is a string containing * as a wildcard similar to its
646 646 use in a shell. The pattern is matched in all namespaces on the
647 647 search path. By default objects starting with a single _ are not
648 648 matched, many IPython generated objects have a single
649 649 underscore. The default is case insensitive matching. Matching is
650 650 also done on the attributes of objects and not only on the objects
651 651 in a module.
652 652
653 653 [OBJECT TYPE]
654 654
655 655 Is the name of a python type from the types module. The name is
656 656 given in lowercase without the ending type, ex. StringType is
657 657 written string. By adding a type here only objects matching the
658 658 given type are matched. Using all here makes the pattern match all
659 659 types (this is the default).
660 660
661 661 Options:
662 662
663 663 -a: makes the pattern match even objects whose names start with a
664 664 single underscore. These names are normally ommitted from the
665 665 search.
666 666
667 667 -i/-c: make the pattern case insensitive/sensitive. If neither of
668 668 these options is given, the default is read from your ipythonrc
669 669 file. The option name which sets this value is
670 670 'wildcards_case_sensitive'. If this option is not specified in your
671 671 ipythonrc file, IPython's internal default is to do a case sensitive
672 672 search.
673 673
674 674 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
675 675 specifiy can be searched in any of the following namespaces:
676 676 'builtin', 'user', 'user_global','internal', 'alias', where
677 677 'builtin' and 'user' are the search defaults. Note that you should
678 678 not use quotes when specifying namespaces.
679 679
680 680 'Builtin' contains the python module builtin, 'user' contains all
681 681 user data, 'alias' only contain the shell aliases and no python
682 682 objects, 'internal' contains objects used by IPython. The
683 683 'user_global' namespace is only used by embedded IPython instances,
684 684 and it contains module-level globals. You can add namespaces to the
685 685 search with -s or exclude them with -e (these options can be given
686 686 more than once).
687 687
688 688 Examples:
689 689
690 690 %psearch a* -> objects beginning with an a
691 691 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
692 692 %psearch a* function -> all functions beginning with an a
693 693 %psearch re.e* -> objects beginning with an e in module re
694 694 %psearch r*.e* -> objects that start with e in modules starting in r
695 695 %psearch r*.* string -> all strings in modules beginning with r
696 696
697 697 Case sensitve search:
698 698
699 699 %psearch -c a* list all object beginning with lower case a
700 700
701 701 Show objects beginning with a single _:
702 702
703 703 %psearch -a _* list objects beginning with a single underscore"""
704 704 try:
705 705 parameter_s = parameter_s.encode('ascii')
706 706 except UnicodeEncodeError:
707 707 print 'Python identifiers can only contain ascii characters.'
708 708 return
709 709
710 710 # default namespaces to be searched
711 711 def_search = ['user','builtin']
712 712
713 713 # Process options/args
714 714 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
715 715 opt = opts.get
716 716 shell = self.shell
717 717 psearch = shell.inspector.psearch
718 718
719 719 # select case options
720 720 if opts.has_key('i'):
721 721 ignore_case = True
722 722 elif opts.has_key('c'):
723 723 ignore_case = False
724 724 else:
725 725 ignore_case = not shell.wildcards_case_sensitive
726 726
727 727 # Build list of namespaces to search from user options
728 728 def_search.extend(opt('s',[]))
729 729 ns_exclude = ns_exclude=opt('e',[])
730 730 ns_search = [nm for nm in def_search if nm not in ns_exclude]
731 731
732 732 # Call the actual search
733 733 try:
734 734 psearch(args,shell.ns_table,ns_search,
735 735 show_all=opt('a'),ignore_case=ignore_case)
736 736 except:
737 737 shell.showtraceback()
738 738
739 739 @testdec.skip_doctest
740 740 def magic_who_ls(self, parameter_s=''):
741 741 """Return a sorted list of all interactive variables.
742 742
743 743 If arguments are given, only variables of types matching these
744 744 arguments are returned.
745 745
746 746 Examples
747 747 --------
748 748
749 749 Define two variables and list them with who_ls::
750 750
751 751 In [1]: alpha = 123
752 752
753 753 In [2]: beta = 'test'
754 754
755 755 In [3]: %who_ls
756 756 Out[3]: ['alpha', 'beta']
757 757
758 758 In [4]: %who_ls int
759 759 Out[4]: ['alpha']
760 760
761 761 In [5]: %who_ls str
762 762 Out[5]: ['beta']
763 763 """
764 764
765 765 user_ns = self.shell.user_ns
766 766 internal_ns = self.shell.internal_ns
767 767 user_ns_hidden = self.shell.user_ns_hidden
768 768 out = [ i for i in user_ns
769 769 if not i.startswith('_') \
770 770 and not (i in internal_ns or i in user_ns_hidden) ]
771 771
772 772 typelist = parameter_s.split()
773 773 if typelist:
774 774 typeset = set(typelist)
775 775 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
776 776
777 777 out.sort()
778 778 return out
779 779
780 780 @testdec.skip_doctest
781 781 def magic_who(self, parameter_s=''):
782 782 """Print all interactive variables, with some minimal formatting.
783 783
784 784 If any arguments are given, only variables whose type matches one of
785 785 these are printed. For example:
786 786
787 787 %who function str
788 788
789 789 will only list functions and strings, excluding all other types of
790 790 variables. To find the proper type names, simply use type(var) at a
791 791 command line to see how python prints type names. For example:
792 792
793 793 In [1]: type('hello')\\
794 794 Out[1]: <type 'str'>
795 795
796 796 indicates that the type name for strings is 'str'.
797 797
798 798 %who always excludes executed names loaded through your configuration
799 799 file and things which are internal to IPython.
800 800
801 801 This is deliberate, as typically you may load many modules and the
802 802 purpose of %who is to show you only what you've manually defined.
803 803
804 804 Examples
805 805 --------
806 806
807 807 Define two variables and list them with who::
808 808
809 809 In [1]: alpha = 123
810 810
811 811 In [2]: beta = 'test'
812 812
813 813 In [3]: %who
814 814 alpha beta
815 815
816 816 In [4]: %who int
817 817 alpha
818 818
819 819 In [5]: %who str
820 820 beta
821 821 """
822 822
823 823 varlist = self.magic_who_ls(parameter_s)
824 824 if not varlist:
825 825 if parameter_s:
826 826 print 'No variables match your requested type.'
827 827 else:
828 828 print 'Interactive namespace is empty.'
829 829 return
830 830
831 831 # if we have variables, move on...
832 832 count = 0
833 833 for i in varlist:
834 834 print i+'\t',
835 835 count += 1
836 836 if count > 8:
837 837 count = 0
838 838 print
839 839 print
840 840
841 841 @testdec.skip_doctest
842 842 def magic_whos(self, parameter_s=''):
843 843 """Like %who, but gives some extra information about each variable.
844 844
845 845 The same type filtering of %who can be applied here.
846 846
847 847 For all variables, the type is printed. Additionally it prints:
848 848
849 849 - For {},[],(): their length.
850 850
851 851 - For numpy and Numeric arrays, a summary with shape, number of
852 852 elements, typecode and size in memory.
853 853
854 854 - Everything else: a string representation, snipping their middle if
855 855 too long.
856 856
857 857 Examples
858 858 --------
859 859
860 860 Define two variables and list them with whos::
861 861
862 862 In [1]: alpha = 123
863 863
864 864 In [2]: beta = 'test'
865 865
866 866 In [3]: %whos
867 867 Variable Type Data/Info
868 868 --------------------------------
869 869 alpha int 123
870 870 beta str test
871 871 """
872 872
873 873 varnames = self.magic_who_ls(parameter_s)
874 874 if not varnames:
875 875 if parameter_s:
876 876 print 'No variables match your requested type.'
877 877 else:
878 878 print 'Interactive namespace is empty.'
879 879 return
880 880
881 881 # if we have variables, move on...
882 882
883 883 # for these types, show len() instead of data:
884 884 seq_types = [types.DictType,types.ListType,types.TupleType]
885 885
886 886 # for numpy/Numeric arrays, display summary info
887 887 try:
888 888 import numpy
889 889 except ImportError:
890 890 ndarray_type = None
891 891 else:
892 892 ndarray_type = numpy.ndarray.__name__
893 893 try:
894 894 import Numeric
895 895 except ImportError:
896 896 array_type = None
897 897 else:
898 898 array_type = Numeric.ArrayType.__name__
899 899
900 900 # Find all variable names and types so we can figure out column sizes
901 901 def get_vars(i):
902 902 return self.shell.user_ns[i]
903 903
904 904 # some types are well known and can be shorter
905 905 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
906 906 def type_name(v):
907 907 tn = type(v).__name__
908 908 return abbrevs.get(tn,tn)
909 909
910 910 varlist = map(get_vars,varnames)
911 911
912 912 typelist = []
913 913 for vv in varlist:
914 914 tt = type_name(vv)
915 915
916 916 if tt=='instance':
917 917 typelist.append( abbrevs.get(str(vv.__class__),
918 918 str(vv.__class__)))
919 919 else:
920 920 typelist.append(tt)
921 921
922 922 # column labels and # of spaces as separator
923 923 varlabel = 'Variable'
924 924 typelabel = 'Type'
925 925 datalabel = 'Data/Info'
926 926 colsep = 3
927 927 # variable format strings
928 928 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
929 929 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
930 930 aformat = "%s: %s elems, type `%s`, %s bytes"
931 931 # find the size of the columns to format the output nicely
932 932 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
933 933 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
934 934 # table header
935 935 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
936 936 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
937 937 # and the table itself
938 938 kb = 1024
939 939 Mb = 1048576 # kb**2
940 940 for vname,var,vtype in zip(varnames,varlist,typelist):
941 941 print itpl(vformat),
942 942 if vtype in seq_types:
943 943 print len(var)
944 944 elif vtype in [array_type,ndarray_type]:
945 945 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
946 946 if vtype==ndarray_type:
947 947 # numpy
948 948 vsize = var.size
949 949 vbytes = vsize*var.itemsize
950 950 vdtype = var.dtype
951 951 else:
952 952 # Numeric
953 953 vsize = Numeric.size(var)
954 954 vbytes = vsize*var.itemsize()
955 955 vdtype = var.typecode()
956 956
957 957 if vbytes < 100000:
958 958 print aformat % (vshape,vsize,vdtype,vbytes)
959 959 else:
960 960 print aformat % (vshape,vsize,vdtype,vbytes),
961 961 if vbytes < Mb:
962 962 print '(%s kb)' % (vbytes/kb,)
963 963 else:
964 964 print '(%s Mb)' % (vbytes/Mb,)
965 965 else:
966 966 try:
967 967 vstr = str(var)
968 968 except UnicodeEncodeError:
969 969 vstr = unicode(var).encode(sys.getdefaultencoding(),
970 970 'backslashreplace')
971 971 vstr = vstr.replace('\n','\\n')
972 972 if len(vstr) < 50:
973 973 print vstr
974 974 else:
975 975 printpl(vfmt_short)
976 976
977 977 def magic_reset(self, parameter_s=''):
978 978 """Resets the namespace by removing all names defined by the user.
979 979
980 980 Input/Output history are left around in case you need them.
981 981
982 982 Parameters
983 983 ----------
984 984 -y : force reset without asking for confirmation.
985 985
986 986 Examples
987 987 --------
988 988 In [6]: a = 1
989 989
990 990 In [7]: a
991 991 Out[7]: 1
992 992
993 993 In [8]: 'a' in _ip.user_ns
994 994 Out[8]: True
995 995
996 996 In [9]: %reset -f
997 997
998 998 In [10]: 'a' in _ip.user_ns
999 999 Out[10]: False
1000 1000 """
1001 1001
1002 1002 if parameter_s == '-f':
1003 1003 ans = True
1004 1004 else:
1005 1005 ans = self.shell.ask_yes_no(
1006 1006 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1007 1007 if not ans:
1008 1008 print 'Nothing done.'
1009 1009 return
1010 1010 user_ns = self.shell.user_ns
1011 1011 for i in self.magic_who_ls():
1012 1012 del(user_ns[i])
1013 1013
1014 1014 # Also flush the private list of module references kept for script
1015 1015 # execution protection
1016 1016 self.shell.clear_main_mod_cache()
1017 1017
1018 1018 def magic_reset_selective(self, parameter_s=''):
1019 1019 """Resets the namespace by removing names defined by the user.
1020 1020
1021 1021 Input/Output history are left around in case you need them.
1022 1022
1023 1023 %reset_selective [-f] regex
1024 1024
1025 1025 No action is taken if regex is not included
1026 1026
1027 1027 Options
1028 1028 -f : force reset without asking for confirmation.
1029 1029
1030 1030 Examples
1031 1031 --------
1032 1032
1033 1033 We first fully reset the namespace so your output looks identical to
1034 1034 this example for pedagogical reasons; in practice you do not need a
1035 1035 full reset.
1036 1036
1037 1037 In [1]: %reset -f
1038 1038
1039 1039 Now, with a clean namespace we can make a few variables and use
1040 1040 %reset_selective to only delete names that match our regexp:
1041 1041
1042 1042 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1043 1043
1044 1044 In [3]: who_ls
1045 1045 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1046 1046
1047 1047 In [4]: %reset_selective -f b[2-3]m
1048 1048
1049 1049 In [5]: who_ls
1050 1050 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1051 1051
1052 1052 In [6]: %reset_selective -f d
1053 1053
1054 1054 In [7]: who_ls
1055 1055 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1056 1056
1057 1057 In [8]: %reset_selective -f c
1058 1058
1059 1059 In [9]: who_ls
1060 1060 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1061 1061
1062 1062 In [10]: %reset_selective -f b
1063 1063
1064 1064 In [11]: who_ls
1065 1065 Out[11]: ['a']
1066 1066 """
1067 1067
1068 1068 opts, regex = self.parse_options(parameter_s,'f')
1069 1069
1070 1070 if opts.has_key('f'):
1071 1071 ans = True
1072 1072 else:
1073 1073 ans = self.shell.ask_yes_no(
1074 1074 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1075 1075 if not ans:
1076 1076 print 'Nothing done.'
1077 1077 return
1078 1078 user_ns = self.shell.user_ns
1079 1079 if not regex:
1080 1080 print 'No regex pattern specified. Nothing done.'
1081 1081 return
1082 1082 else:
1083 1083 try:
1084 1084 m = re.compile(regex)
1085 1085 except TypeError:
1086 1086 raise TypeError('regex must be a string or compiled pattern')
1087 1087 for i in self.magic_who_ls():
1088 1088 if m.search(i):
1089 1089 del(user_ns[i])
1090 1090
1091 1091 def magic_logstart(self,parameter_s=''):
1092 1092 """Start logging anywhere in a session.
1093 1093
1094 1094 %logstart [-o|-r|-t] [log_name [log_mode]]
1095 1095
1096 1096 If no name is given, it defaults to a file named 'ipython_log.py' in your
1097 1097 current directory, in 'rotate' mode (see below).
1098 1098
1099 1099 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1100 1100 history up to that point and then continues logging.
1101 1101
1102 1102 %logstart takes a second optional parameter: logging mode. This can be one
1103 1103 of (note that the modes are given unquoted):\\
1104 1104 append: well, that says it.\\
1105 1105 backup: rename (if exists) to name~ and start name.\\
1106 1106 global: single logfile in your home dir, appended to.\\
1107 1107 over : overwrite existing log.\\
1108 1108 rotate: create rotating logs name.1~, name.2~, etc.
1109 1109
1110 1110 Options:
1111 1111
1112 1112 -o: log also IPython's output. In this mode, all commands which
1113 1113 generate an Out[NN] prompt are recorded to the logfile, right after
1114 1114 their corresponding input line. The output lines are always
1115 1115 prepended with a '#[Out]# ' marker, so that the log remains valid
1116 1116 Python code.
1117 1117
1118 1118 Since this marker is always the same, filtering only the output from
1119 1119 a log is very easy, using for example a simple awk call:
1120 1120
1121 1121 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1122 1122
1123 1123 -r: log 'raw' input. Normally, IPython's logs contain the processed
1124 1124 input, so that user lines are logged in their final form, converted
1125 1125 into valid Python. For example, %Exit is logged as
1126 1126 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1127 1127 exactly as typed, with no transformations applied.
1128 1128
1129 1129 -t: put timestamps before each input line logged (these are put in
1130 1130 comments)."""
1131 1131
1132 1132 opts,par = self.parse_options(parameter_s,'ort')
1133 1133 log_output = 'o' in opts
1134 1134 log_raw_input = 'r' in opts
1135 1135 timestamp = 't' in opts
1136 1136
1137 1137 logger = self.shell.logger
1138 1138
1139 1139 # if no args are given, the defaults set in the logger constructor by
1140 1140 # ipytohn remain valid
1141 1141 if par:
1142 1142 try:
1143 1143 logfname,logmode = par.split()
1144 1144 except:
1145 1145 logfname = par
1146 1146 logmode = 'backup'
1147 1147 else:
1148 1148 logfname = logger.logfname
1149 1149 logmode = logger.logmode
1150 1150 # put logfname into rc struct as if it had been called on the command
1151 1151 # line, so it ends up saved in the log header Save it in case we need
1152 1152 # to restore it...
1153 1153 old_logfile = self.shell.logfile
1154 1154 if logfname:
1155 1155 logfname = os.path.expanduser(logfname)
1156 1156 self.shell.logfile = logfname
1157 1157
1158 1158 loghead = '# IPython log file\n\n'
1159 1159 try:
1160 1160 started = logger.logstart(logfname,loghead,logmode,
1161 1161 log_output,timestamp,log_raw_input)
1162 1162 except:
1163 1163 self.shell.logfile = old_logfile
1164 1164 warn("Couldn't start log: %s" % sys.exc_info()[1])
1165 1165 else:
1166 1166 # log input history up to this point, optionally interleaving
1167 1167 # output if requested
1168 1168
1169 1169 if timestamp:
1170 1170 # disable timestamping for the previous history, since we've
1171 1171 # lost those already (no time machine here).
1172 1172 logger.timestamp = False
1173 1173
1174 1174 if log_raw_input:
1175 1175 input_hist = self.shell.history_manager.input_hist_raw
1176 1176 else:
1177 1177 input_hist = self.shell.history_manager.input_hist_parsed
1178 1178
1179 1179 if log_output:
1180 1180 log_write = logger.log_write
1181 1181 output_hist = self.shell.history_manager.output_hist
1182 1182 for n in range(1,len(input_hist)-1):
1183 1183 log_write(input_hist[n].rstrip())
1184 1184 if n in output_hist:
1185 1185 log_write(repr(output_hist[n]),'output')
1186 1186 else:
1187 1187 logger.log_write(''.join(input_hist[1:]))
1188 1188 if timestamp:
1189 1189 # re-enable timestamping
1190 1190 logger.timestamp = True
1191 1191
1192 1192 print ('Activating auto-logging. '
1193 1193 'Current session state plus future input saved.')
1194 1194 logger.logstate()
1195 1195
1196 1196 def magic_logstop(self,parameter_s=''):
1197 1197 """Fully stop logging and close log file.
1198 1198
1199 1199 In order to start logging again, a new %logstart call needs to be made,
1200 1200 possibly (though not necessarily) with a new filename, mode and other
1201 1201 options."""
1202 1202 self.logger.logstop()
1203 1203
1204 1204 def magic_logoff(self,parameter_s=''):
1205 1205 """Temporarily stop logging.
1206 1206
1207 1207 You must have previously started logging."""
1208 1208 self.shell.logger.switch_log(0)
1209 1209
1210 1210 def magic_logon(self,parameter_s=''):
1211 1211 """Restart logging.
1212 1212
1213 1213 This function is for restarting logging which you've temporarily
1214 1214 stopped with %logoff. For starting logging for the first time, you
1215 1215 must use the %logstart function, which allows you to specify an
1216 1216 optional log filename."""
1217 1217
1218 1218 self.shell.logger.switch_log(1)
1219 1219
1220 1220 def magic_logstate(self,parameter_s=''):
1221 1221 """Print the status of the logging system."""
1222 1222
1223 1223 self.shell.logger.logstate()
1224 1224
1225 1225 def magic_pdb(self, parameter_s=''):
1226 1226 """Control the automatic calling of the pdb interactive debugger.
1227 1227
1228 1228 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1229 1229 argument it works as a toggle.
1230 1230
1231 1231 When an exception is triggered, IPython can optionally call the
1232 1232 interactive pdb debugger after the traceback printout. %pdb toggles
1233 1233 this feature on and off.
1234 1234
1235 1235 The initial state of this feature is set in your ipythonrc
1236 1236 configuration file (the variable is called 'pdb').
1237 1237
1238 1238 If you want to just activate the debugger AFTER an exception has fired,
1239 1239 without having to type '%pdb on' and rerunning your code, you can use
1240 1240 the %debug magic."""
1241 1241
1242 1242 par = parameter_s.strip().lower()
1243 1243
1244 1244 if par:
1245 1245 try:
1246 1246 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1247 1247 except KeyError:
1248 1248 print ('Incorrect argument. Use on/1, off/0, '
1249 1249 'or nothing for a toggle.')
1250 1250 return
1251 1251 else:
1252 1252 # toggle
1253 1253 new_pdb = not self.shell.call_pdb
1254 1254
1255 1255 # set on the shell
1256 1256 self.shell.call_pdb = new_pdb
1257 1257 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1258 1258
1259 1259 def magic_debug(self, parameter_s=''):
1260 1260 """Activate the interactive debugger in post-mortem mode.
1261 1261
1262 1262 If an exception has just occurred, this lets you inspect its stack
1263 1263 frames interactively. Note that this will always work only on the last
1264 1264 traceback that occurred, so you must call this quickly after an
1265 1265 exception that you wish to inspect has fired, because if another one
1266 1266 occurs, it clobbers the previous one.
1267 1267
1268 1268 If you want IPython to automatically do this on every exception, see
1269 1269 the %pdb magic for more details.
1270 1270 """
1271 1271 self.shell.debugger(force=True)
1272 1272
1273 1273 @testdec.skip_doctest
1274 1274 def magic_prun(self, parameter_s ='',user_mode=1,
1275 1275 opts=None,arg_lst=None,prog_ns=None):
1276 1276
1277 1277 """Run a statement through the python code profiler.
1278 1278
1279 1279 Usage:
1280 1280 %prun [options] statement
1281 1281
1282 1282 The given statement (which doesn't require quote marks) is run via the
1283 1283 python profiler in a manner similar to the profile.run() function.
1284 1284 Namespaces are internally managed to work correctly; profile.run
1285 1285 cannot be used in IPython because it makes certain assumptions about
1286 1286 namespaces which do not hold under IPython.
1287 1287
1288 1288 Options:
1289 1289
1290 1290 -l <limit>: you can place restrictions on what or how much of the
1291 1291 profile gets printed. The limit value can be:
1292 1292
1293 1293 * A string: only information for function names containing this string
1294 1294 is printed.
1295 1295
1296 1296 * An integer: only these many lines are printed.
1297 1297
1298 1298 * A float (between 0 and 1): this fraction of the report is printed
1299 1299 (for example, use a limit of 0.4 to see the topmost 40% only).
1300 1300
1301 1301 You can combine several limits with repeated use of the option. For
1302 1302 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1303 1303 information about class constructors.
1304 1304
1305 1305 -r: return the pstats.Stats object generated by the profiling. This
1306 1306 object has all the information about the profile in it, and you can
1307 1307 later use it for further analysis or in other functions.
1308 1308
1309 1309 -s <key>: sort profile by given key. You can provide more than one key
1310 1310 by using the option several times: '-s key1 -s key2 -s key3...'. The
1311 1311 default sorting key is 'time'.
1312 1312
1313 1313 The following is copied verbatim from the profile documentation
1314 1314 referenced below:
1315 1315
1316 1316 When more than one key is provided, additional keys are used as
1317 1317 secondary criteria when the there is equality in all keys selected
1318 1318 before them.
1319 1319
1320 1320 Abbreviations can be used for any key names, as long as the
1321 1321 abbreviation is unambiguous. The following are the keys currently
1322 1322 defined:
1323 1323
1324 1324 Valid Arg Meaning
1325 1325 "calls" call count
1326 1326 "cumulative" cumulative time
1327 1327 "file" file name
1328 1328 "module" file name
1329 1329 "pcalls" primitive call count
1330 1330 "line" line number
1331 1331 "name" function name
1332 1332 "nfl" name/file/line
1333 1333 "stdname" standard name
1334 1334 "time" internal time
1335 1335
1336 1336 Note that all sorts on statistics are in descending order (placing
1337 1337 most time consuming items first), where as name, file, and line number
1338 1338 searches are in ascending order (i.e., alphabetical). The subtle
1339 1339 distinction between "nfl" and "stdname" is that the standard name is a
1340 1340 sort of the name as printed, which means that the embedded line
1341 1341 numbers get compared in an odd way. For example, lines 3, 20, and 40
1342 1342 would (if the file names were the same) appear in the string order
1343 1343 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1344 1344 line numbers. In fact, sort_stats("nfl") is the same as
1345 1345 sort_stats("name", "file", "line").
1346 1346
1347 1347 -T <filename>: save profile results as shown on screen to a text
1348 1348 file. The profile is still shown on screen.
1349 1349
1350 1350 -D <filename>: save (via dump_stats) profile statistics to given
1351 1351 filename. This data is in a format understod by the pstats module, and
1352 1352 is generated by a call to the dump_stats() method of profile
1353 1353 objects. The profile is still shown on screen.
1354 1354
1355 1355 If you want to run complete programs under the profiler's control, use
1356 1356 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1357 1357 contains profiler specific options as described here.
1358 1358
1359 1359 You can read the complete documentation for the profile module with::
1360 1360
1361 1361 In [1]: import profile; profile.help()
1362 1362 """
1363 1363
1364 1364 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1365 1365 # protect user quote marks
1366 1366 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1367 1367
1368 1368 if user_mode: # regular user call
1369 1369 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1370 1370 list_all=1)
1371 1371 namespace = self.shell.user_ns
1372 1372 else: # called to run a program by %run -p
1373 1373 try:
1374 1374 filename = get_py_filename(arg_lst[0])
1375 1375 except IOError,msg:
1376 1376 error(msg)
1377 1377 return
1378 1378
1379 1379 arg_str = 'execfile(filename,prog_ns)'
1380 1380 namespace = locals()
1381 1381
1382 1382 opts.merge(opts_def)
1383 1383
1384 1384 prof = profile.Profile()
1385 1385 try:
1386 1386 prof = prof.runctx(arg_str,namespace,namespace)
1387 1387 sys_exit = ''
1388 1388 except SystemExit:
1389 1389 sys_exit = """*** SystemExit exception caught in code being profiled."""
1390 1390
1391 1391 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1392 1392
1393 1393 lims = opts.l
1394 1394 if lims:
1395 1395 lims = [] # rebuild lims with ints/floats/strings
1396 1396 for lim in opts.l:
1397 1397 try:
1398 1398 lims.append(int(lim))
1399 1399 except ValueError:
1400 1400 try:
1401 1401 lims.append(float(lim))
1402 1402 except ValueError:
1403 1403 lims.append(lim)
1404 1404
1405 1405 # Trap output.
1406 1406 stdout_trap = StringIO()
1407 1407
1408 1408 if hasattr(stats,'stream'):
1409 1409 # In newer versions of python, the stats object has a 'stream'
1410 1410 # attribute to write into.
1411 1411 stats.stream = stdout_trap
1412 1412 stats.print_stats(*lims)
1413 1413 else:
1414 1414 # For older versions, we manually redirect stdout during printing
1415 1415 sys_stdout = sys.stdout
1416 1416 try:
1417 1417 sys.stdout = stdout_trap
1418 1418 stats.print_stats(*lims)
1419 1419 finally:
1420 1420 sys.stdout = sys_stdout
1421 1421
1422 1422 output = stdout_trap.getvalue()
1423 1423 output = output.rstrip()
1424 1424
1425 1425 page.page(output)
1426 1426 print sys_exit,
1427 1427
1428 1428 dump_file = opts.D[0]
1429 1429 text_file = opts.T[0]
1430 1430 if dump_file:
1431 1431 prof.dump_stats(dump_file)
1432 1432 print '\n*** Profile stats marshalled to file',\
1433 1433 `dump_file`+'.',sys_exit
1434 1434 if text_file:
1435 1435 pfile = file(text_file,'w')
1436 1436 pfile.write(output)
1437 1437 pfile.close()
1438 1438 print '\n*** Profile printout saved to text file',\
1439 1439 `text_file`+'.',sys_exit
1440 1440
1441 1441 if opts.has_key('r'):
1442 1442 return stats
1443 1443 else:
1444 1444 return None
1445 1445
1446 1446 @testdec.skip_doctest
1447 1447 def magic_run(self, parameter_s ='',runner=None,
1448 1448 file_finder=get_py_filename):
1449 1449 """Run the named file inside IPython as a program.
1450 1450
1451 1451 Usage:\\
1452 1452 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1453 1453
1454 1454 Parameters after the filename are passed as command-line arguments to
1455 1455 the program (put in sys.argv). Then, control returns to IPython's
1456 1456 prompt.
1457 1457
1458 1458 This is similar to running at a system prompt:\\
1459 1459 $ python file args\\
1460 1460 but with the advantage of giving you IPython's tracebacks, and of
1461 1461 loading all variables into your interactive namespace for further use
1462 1462 (unless -p is used, see below).
1463 1463
1464 1464 The file is executed in a namespace initially consisting only of
1465 1465 __name__=='__main__' and sys.argv constructed as indicated. It thus
1466 1466 sees its environment as if it were being run as a stand-alone program
1467 1467 (except for sharing global objects such as previously imported
1468 1468 modules). But after execution, the IPython interactive namespace gets
1469 1469 updated with all variables defined in the program (except for __name__
1470 1470 and sys.argv). This allows for very convenient loading of code for
1471 1471 interactive work, while giving each program a 'clean sheet' to run in.
1472 1472
1473 1473 Options:
1474 1474
1475 1475 -n: __name__ is NOT set to '__main__', but to the running file's name
1476 1476 without extension (as python does under import). This allows running
1477 1477 scripts and reloading the definitions in them without calling code
1478 1478 protected by an ' if __name__ == "__main__" ' clause.
1479 1479
1480 1480 -i: run the file in IPython's namespace instead of an empty one. This
1481 1481 is useful if you are experimenting with code written in a text editor
1482 1482 which depends on variables defined interactively.
1483 1483
1484 1484 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1485 1485 being run. This is particularly useful if IPython is being used to
1486 1486 run unittests, which always exit with a sys.exit() call. In such
1487 1487 cases you are interested in the output of the test results, not in
1488 1488 seeing a traceback of the unittest module.
1489 1489
1490 1490 -t: print timing information at the end of the run. IPython will give
1491 1491 you an estimated CPU time consumption for your script, which under
1492 1492 Unix uses the resource module to avoid the wraparound problems of
1493 1493 time.clock(). Under Unix, an estimate of time spent on system tasks
1494 1494 is also given (for Windows platforms this is reported as 0.0).
1495 1495
1496 1496 If -t is given, an additional -N<N> option can be given, where <N>
1497 1497 must be an integer indicating how many times you want the script to
1498 1498 run. The final timing report will include total and per run results.
1499 1499
1500 1500 For example (testing the script uniq_stable.py):
1501 1501
1502 1502 In [1]: run -t uniq_stable
1503 1503
1504 1504 IPython CPU timings (estimated):\\
1505 1505 User : 0.19597 s.\\
1506 1506 System: 0.0 s.\\
1507 1507
1508 1508 In [2]: run -t -N5 uniq_stable
1509 1509
1510 1510 IPython CPU timings (estimated):\\
1511 1511 Total runs performed: 5\\
1512 1512 Times : Total Per run\\
1513 1513 User : 0.910862 s, 0.1821724 s.\\
1514 1514 System: 0.0 s, 0.0 s.
1515 1515
1516 1516 -d: run your program under the control of pdb, the Python debugger.
1517 1517 This allows you to execute your program step by step, watch variables,
1518 1518 etc. Internally, what IPython does is similar to calling:
1519 1519
1520 1520 pdb.run('execfile("YOURFILENAME")')
1521 1521
1522 1522 with a breakpoint set on line 1 of your file. You can change the line
1523 1523 number for this automatic breakpoint to be <N> by using the -bN option
1524 1524 (where N must be an integer). For example:
1525 1525
1526 1526 %run -d -b40 myscript
1527 1527
1528 1528 will set the first breakpoint at line 40 in myscript.py. Note that
1529 1529 the first breakpoint must be set on a line which actually does
1530 1530 something (not a comment or docstring) for it to stop execution.
1531 1531
1532 1532 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1533 1533 first enter 'c' (without qoutes) to start execution up to the first
1534 1534 breakpoint.
1535 1535
1536 1536 Entering 'help' gives information about the use of the debugger. You
1537 1537 can easily see pdb's full documentation with "import pdb;pdb.help()"
1538 1538 at a prompt.
1539 1539
1540 1540 -p: run program under the control of the Python profiler module (which
1541 1541 prints a detailed report of execution times, function calls, etc).
1542 1542
1543 1543 You can pass other options after -p which affect the behavior of the
1544 1544 profiler itself. See the docs for %prun for details.
1545 1545
1546 1546 In this mode, the program's variables do NOT propagate back to the
1547 1547 IPython interactive namespace (because they remain in the namespace
1548 1548 where the profiler executes them).
1549 1549
1550 1550 Internally this triggers a call to %prun, see its documentation for
1551 1551 details on the options available specifically for profiling.
1552 1552
1553 1553 There is one special usage for which the text above doesn't apply:
1554 1554 if the filename ends with .ipy, the file is run as ipython script,
1555 1555 just as if the commands were written on IPython prompt.
1556 1556 """
1557 1557
1558 1558 # get arguments and set sys.argv for program to be run.
1559 1559 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1560 1560 mode='list',list_all=1)
1561 1561
1562 1562 try:
1563 1563 filename = file_finder(arg_lst[0])
1564 1564 except IndexError:
1565 1565 warn('you must provide at least a filename.')
1566 1566 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1567 1567 return
1568 1568 except IOError,msg:
1569 1569 error(msg)
1570 1570 return
1571 1571
1572 1572 if filename.lower().endswith('.ipy'):
1573 1573 self.shell.safe_execfile_ipy(filename)
1574 1574 return
1575 1575
1576 1576 # Control the response to exit() calls made by the script being run
1577 1577 exit_ignore = opts.has_key('e')
1578 1578
1579 1579 # Make sure that the running script gets a proper sys.argv as if it
1580 1580 # were run from a system shell.
1581 1581 save_argv = sys.argv # save it for later restoring
1582 1582 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1583 1583
1584 1584 if opts.has_key('i'):
1585 1585 # Run in user's interactive namespace
1586 1586 prog_ns = self.shell.user_ns
1587 1587 __name__save = self.shell.user_ns['__name__']
1588 1588 prog_ns['__name__'] = '__main__'
1589 1589 main_mod = self.shell.new_main_mod(prog_ns)
1590 1590 else:
1591 1591 # Run in a fresh, empty namespace
1592 1592 if opts.has_key('n'):
1593 1593 name = os.path.splitext(os.path.basename(filename))[0]
1594 1594 else:
1595 1595 name = '__main__'
1596 1596
1597 1597 main_mod = self.shell.new_main_mod()
1598 1598 prog_ns = main_mod.__dict__
1599 1599 prog_ns['__name__'] = name
1600 1600
1601 1601 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1602 1602 # set the __file__ global in the script's namespace
1603 1603 prog_ns['__file__'] = filename
1604 1604
1605 1605 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1606 1606 # that, if we overwrite __main__, we replace it at the end
1607 1607 main_mod_name = prog_ns['__name__']
1608 1608
1609 1609 if main_mod_name == '__main__':
1610 1610 restore_main = sys.modules['__main__']
1611 1611 else:
1612 1612 restore_main = False
1613 1613
1614 1614 # This needs to be undone at the end to prevent holding references to
1615 1615 # every single object ever created.
1616 1616 sys.modules[main_mod_name] = main_mod
1617 1617
1618 1618 stats = None
1619 1619 try:
1620 1620 self.shell.save_history()
1621 1621
1622 1622 if opts.has_key('p'):
1623 1623 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1624 1624 else:
1625 1625 if opts.has_key('d'):
1626 1626 deb = debugger.Pdb(self.shell.colors)
1627 1627 # reset Breakpoint state, which is moronically kept
1628 1628 # in a class
1629 1629 bdb.Breakpoint.next = 1
1630 1630 bdb.Breakpoint.bplist = {}
1631 1631 bdb.Breakpoint.bpbynumber = [None]
1632 1632 # Set an initial breakpoint to stop execution
1633 1633 maxtries = 10
1634 1634 bp = int(opts.get('b',[1])[0])
1635 1635 checkline = deb.checkline(filename,bp)
1636 1636 if not checkline:
1637 1637 for bp in range(bp+1,bp+maxtries+1):
1638 1638 if deb.checkline(filename,bp):
1639 1639 break
1640 1640 else:
1641 1641 msg = ("\nI failed to find a valid line to set "
1642 1642 "a breakpoint\n"
1643 1643 "after trying up to line: %s.\n"
1644 1644 "Please set a valid breakpoint manually "
1645 1645 "with the -b option." % bp)
1646 1646 error(msg)
1647 1647 return
1648 1648 # if we find a good linenumber, set the breakpoint
1649 1649 deb.do_break('%s:%s' % (filename,bp))
1650 1650 # Start file run
1651 1651 print "NOTE: Enter 'c' at the",
1652 1652 print "%s prompt to start your script." % deb.prompt
1653 1653 try:
1654 1654 deb.run('execfile("%s")' % filename,prog_ns)
1655 1655
1656 1656 except:
1657 1657 etype, value, tb = sys.exc_info()
1658 1658 # Skip three frames in the traceback: the %run one,
1659 1659 # one inside bdb.py, and the command-line typed by the
1660 1660 # user (run by exec in pdb itself).
1661 1661 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1662 1662 else:
1663 1663 if runner is None:
1664 1664 runner = self.shell.safe_execfile
1665 1665 if opts.has_key('t'):
1666 1666 # timed execution
1667 1667 try:
1668 1668 nruns = int(opts['N'][0])
1669 1669 if nruns < 1:
1670 1670 error('Number of runs must be >=1')
1671 1671 return
1672 1672 except (KeyError):
1673 1673 nruns = 1
1674 1674 if nruns == 1:
1675 1675 t0 = clock2()
1676 1676 runner(filename,prog_ns,prog_ns,
1677 1677 exit_ignore=exit_ignore)
1678 1678 t1 = clock2()
1679 1679 t_usr = t1[0]-t0[0]
1680 1680 t_sys = t1[1]-t0[1]
1681 1681 print "\nIPython CPU timings (estimated):"
1682 1682 print " User : %10s s." % t_usr
1683 1683 print " System: %10s s." % t_sys
1684 1684 else:
1685 1685 runs = range(nruns)
1686 1686 t0 = clock2()
1687 1687 for nr in runs:
1688 1688 runner(filename,prog_ns,prog_ns,
1689 1689 exit_ignore=exit_ignore)
1690 1690 t1 = clock2()
1691 1691 t_usr = t1[0]-t0[0]
1692 1692 t_sys = t1[1]-t0[1]
1693 1693 print "\nIPython CPU timings (estimated):"
1694 1694 print "Total runs performed:",nruns
1695 1695 print " Times : %10s %10s" % ('Total','Per run')
1696 1696 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1697 1697 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1698 1698
1699 1699 else:
1700 1700 # regular execution
1701 1701 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1702 1702
1703 1703 if opts.has_key('i'):
1704 1704 self.shell.user_ns['__name__'] = __name__save
1705 1705 else:
1706 1706 # The shell MUST hold a reference to prog_ns so after %run
1707 1707 # exits, the python deletion mechanism doesn't zero it out
1708 1708 # (leaving dangling references).
1709 1709 self.shell.cache_main_mod(prog_ns,filename)
1710 1710 # update IPython interactive namespace
1711 1711
1712 1712 # Some forms of read errors on the file may mean the
1713 1713 # __name__ key was never set; using pop we don't have to
1714 1714 # worry about a possible KeyError.
1715 1715 prog_ns.pop('__name__', None)
1716 1716
1717 1717 self.shell.user_ns.update(prog_ns)
1718 1718 finally:
1719 1719 # It's a bit of a mystery why, but __builtins__ can change from
1720 1720 # being a module to becoming a dict missing some key data after
1721 1721 # %run. As best I can see, this is NOT something IPython is doing
1722 1722 # at all, and similar problems have been reported before:
1723 1723 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1724 1724 # Since this seems to be done by the interpreter itself, the best
1725 1725 # we can do is to at least restore __builtins__ for the user on
1726 1726 # exit.
1727 1727 self.shell.user_ns['__builtins__'] = __builtin__
1728 1728
1729 1729 # Ensure key global structures are restored
1730 1730 sys.argv = save_argv
1731 1731 if restore_main:
1732 1732 sys.modules['__main__'] = restore_main
1733 1733 else:
1734 1734 # Remove from sys.modules the reference to main_mod we'd
1735 1735 # added. Otherwise it will trap references to objects
1736 1736 # contained therein.
1737 1737 del sys.modules[main_mod_name]
1738 1738
1739 1739 self.shell.reload_history()
1740 1740
1741 1741 return stats
1742 1742
1743 1743 @testdec.skip_doctest
1744 1744 def magic_timeit(self, parameter_s =''):
1745 1745 """Time execution of a Python statement or expression
1746 1746
1747 1747 Usage:\\
1748 1748 %timeit [-n<N> -r<R> [-t|-c]] statement
1749 1749
1750 1750 Time execution of a Python statement or expression using the timeit
1751 1751 module.
1752 1752
1753 1753 Options:
1754 1754 -n<N>: execute the given statement <N> times in a loop. If this value
1755 1755 is not given, a fitting value is chosen.
1756 1756
1757 1757 -r<R>: repeat the loop iteration <R> times and take the best result.
1758 1758 Default: 3
1759 1759
1760 1760 -t: use time.time to measure the time, which is the default on Unix.
1761 1761 This function measures wall time.
1762 1762
1763 1763 -c: use time.clock to measure the time, which is the default on
1764 1764 Windows and measures wall time. On Unix, resource.getrusage is used
1765 1765 instead and returns the CPU user time.
1766 1766
1767 1767 -p<P>: use a precision of <P> digits to display the timing result.
1768 1768 Default: 3
1769 1769
1770 1770
1771 1771 Examples:
1772 1772
1773 1773 In [1]: %timeit pass
1774 1774 10000000 loops, best of 3: 53.3 ns per loop
1775 1775
1776 1776 In [2]: u = None
1777 1777
1778 1778 In [3]: %timeit u is None
1779 1779 10000000 loops, best of 3: 184 ns per loop
1780 1780
1781 1781 In [4]: %timeit -r 4 u == None
1782 1782 1000000 loops, best of 4: 242 ns per loop
1783 1783
1784 1784 In [5]: import time
1785 1785
1786 1786 In [6]: %timeit -n1 time.sleep(2)
1787 1787 1 loops, best of 3: 2 s per loop
1788 1788
1789 1789
1790 1790 The times reported by %timeit will be slightly higher than those
1791 1791 reported by the timeit.py script when variables are accessed. This is
1792 1792 due to the fact that %timeit executes the statement in the namespace
1793 1793 of the shell, compared with timeit.py, which uses a single setup
1794 1794 statement to import function or create variables. Generally, the bias
1795 1795 does not matter as long as results from timeit.py are not mixed with
1796 1796 those from %timeit."""
1797 1797
1798 1798 import timeit
1799 1799 import math
1800 1800
1801 1801 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1802 1802 # certain terminals. Until we figure out a robust way of
1803 1803 # auto-detecting if the terminal can deal with it, use plain 'us' for
1804 1804 # microseconds. I am really NOT happy about disabling the proper
1805 1805 # 'micro' prefix, but crashing is worse... If anyone knows what the
1806 1806 # right solution for this is, I'm all ears...
1807 1807 #
1808 1808 # Note: using
1809 1809 #
1810 1810 # s = u'\xb5'
1811 1811 # s.encode(sys.getdefaultencoding())
1812 1812 #
1813 1813 # is not sufficient, as I've seen terminals where that fails but
1814 1814 # print s
1815 1815 #
1816 1816 # succeeds
1817 1817 #
1818 1818 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1819 1819
1820 1820 #units = [u"s", u"ms",u'\xb5',"ns"]
1821 1821 units = [u"s", u"ms",u'us',"ns"]
1822 1822
1823 1823 scaling = [1, 1e3, 1e6, 1e9]
1824 1824
1825 1825 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1826 1826 posix=False)
1827 1827 if stmt == "":
1828 1828 return
1829 1829 timefunc = timeit.default_timer
1830 1830 number = int(getattr(opts, "n", 0))
1831 1831 repeat = int(getattr(opts, "r", timeit.default_repeat))
1832 1832 precision = int(getattr(opts, "p", 3))
1833 1833 if hasattr(opts, "t"):
1834 1834 timefunc = time.time
1835 1835 if hasattr(opts, "c"):
1836 1836 timefunc = clock
1837 1837
1838 1838 timer = timeit.Timer(timer=timefunc)
1839 1839 # this code has tight coupling to the inner workings of timeit.Timer,
1840 1840 # but is there a better way to achieve that the code stmt has access
1841 1841 # to the shell namespace?
1842 1842
1843 1843 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1844 1844 'setup': "pass"}
1845 1845 # Track compilation time so it can be reported if too long
1846 1846 # Minimum time above which compilation time will be reported
1847 1847 tc_min = 0.1
1848 1848
1849 1849 t0 = clock()
1850 1850 code = compile(src, "<magic-timeit>", "exec")
1851 1851 tc = clock()-t0
1852 1852
1853 1853 ns = {}
1854 1854 exec code in self.shell.user_ns, ns
1855 1855 timer.inner = ns["inner"]
1856 1856
1857 1857 if number == 0:
1858 1858 # determine number so that 0.2 <= total time < 2.0
1859 1859 number = 1
1860 1860 for i in range(1, 10):
1861 1861 if timer.timeit(number) >= 0.2:
1862 1862 break
1863 1863 number *= 10
1864 1864
1865 1865 best = min(timer.repeat(repeat, number)) / number
1866 1866
1867 1867 if best > 0.0 and best < 1000.0:
1868 1868 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1869 1869 elif best >= 1000.0:
1870 1870 order = 0
1871 1871 else:
1872 1872 order = 3
1873 1873 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1874 1874 precision,
1875 1875 best * scaling[order],
1876 1876 units[order])
1877 1877 if tc > tc_min:
1878 1878 print "Compiler time: %.2f s" % tc
1879 1879
1880 1880 @testdec.skip_doctest
1881 1881 def magic_time(self,parameter_s = ''):
1882 1882 """Time execution of a Python statement or expression.
1883 1883
1884 1884 The CPU and wall clock times are printed, and the value of the
1885 1885 expression (if any) is returned. Note that under Win32, system time
1886 1886 is always reported as 0, since it can not be measured.
1887 1887
1888 1888 This function provides very basic timing functionality. In Python
1889 1889 2.3, the timeit module offers more control and sophistication, so this
1890 1890 could be rewritten to use it (patches welcome).
1891 1891
1892 1892 Some examples:
1893 1893
1894 1894 In [1]: time 2**128
1895 1895 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1896 1896 Wall time: 0.00
1897 1897 Out[1]: 340282366920938463463374607431768211456L
1898 1898
1899 1899 In [2]: n = 1000000
1900 1900
1901 1901 In [3]: time sum(range(n))
1902 1902 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1903 1903 Wall time: 1.37
1904 1904 Out[3]: 499999500000L
1905 1905
1906 1906 In [4]: time print 'hello world'
1907 1907 hello world
1908 1908 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1909 1909 Wall time: 0.00
1910 1910
1911 1911 Note that the time needed by Python to compile the given expression
1912 1912 will be reported if it is more than 0.1s. In this example, the
1913 1913 actual exponentiation is done by Python at compilation time, so while
1914 1914 the expression can take a noticeable amount of time to compute, that
1915 1915 time is purely due to the compilation:
1916 1916
1917 1917 In [5]: time 3**9999;
1918 1918 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1919 1919 Wall time: 0.00 s
1920 1920
1921 1921 In [6]: time 3**999999;
1922 1922 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1923 1923 Wall time: 0.00 s
1924 1924 Compiler : 0.78 s
1925 1925 """
1926 1926
1927 1927 # fail immediately if the given expression can't be compiled
1928 1928
1929 1929 expr = self.shell.prefilter(parameter_s,False)
1930 1930
1931 1931 # Minimum time above which compilation time will be reported
1932 1932 tc_min = 0.1
1933 1933
1934 1934 try:
1935 1935 mode = 'eval'
1936 1936 t0 = clock()
1937 1937 code = compile(expr,'<timed eval>',mode)
1938 1938 tc = clock()-t0
1939 1939 except SyntaxError:
1940 1940 mode = 'exec'
1941 1941 t0 = clock()
1942 1942 code = compile(expr,'<timed exec>',mode)
1943 1943 tc = clock()-t0
1944 1944 # skew measurement as little as possible
1945 1945 glob = self.shell.user_ns
1946 1946 clk = clock2
1947 1947 wtime = time.time
1948 1948 # time execution
1949 1949 wall_st = wtime()
1950 1950 if mode=='eval':
1951 1951 st = clk()
1952 1952 out = eval(code,glob)
1953 1953 end = clk()
1954 1954 else:
1955 1955 st = clk()
1956 1956 exec code in glob
1957 1957 end = clk()
1958 1958 out = None
1959 1959 wall_end = wtime()
1960 1960 # Compute actual times and report
1961 1961 wall_time = wall_end-wall_st
1962 1962 cpu_user = end[0]-st[0]
1963 1963 cpu_sys = end[1]-st[1]
1964 1964 cpu_tot = cpu_user+cpu_sys
1965 1965 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1966 1966 (cpu_user,cpu_sys,cpu_tot)
1967 1967 print "Wall time: %.2f s" % wall_time
1968 1968 if tc > tc_min:
1969 1969 print "Compiler : %.2f s" % tc
1970 1970 return out
1971 1971
1972 1972 @testdec.skip_doctest
1973 1973 def magic_macro(self,parameter_s = ''):
1974 1974 """Define a set of input lines as a macro for future re-execution.
1975 1975
1976 1976 Usage:\\
1977 1977 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1978 1978
1979 1979 Options:
1980 1980
1981 1981 -r: use 'raw' input. By default, the 'processed' history is used,
1982 1982 so that magics are loaded in their transformed version to valid
1983 1983 Python. If this option is given, the raw input as typed as the
1984 1984 command line is used instead.
1985 1985
1986 1986 This will define a global variable called `name` which is a string
1987 1987 made of joining the slices and lines you specify (n1,n2,... numbers
1988 1988 above) from your input history into a single string. This variable
1989 1989 acts like an automatic function which re-executes those lines as if
1990 1990 you had typed them. You just type 'name' at the prompt and the code
1991 1991 executes.
1992 1992
1993 1993 The notation for indicating number ranges is: n1-n2 means 'use line
1994 1994 numbers n1,...n2' (the endpoint is included). That is, '5-7' means
1995 1995 using the lines numbered 5,6 and 7.
1996 1996
1997 1997 Note: as a 'hidden' feature, you can also use traditional python slice
1998 1998 notation, where N:M means numbers N through M-1.
1999 1999
2000 2000 For example, if your history contains (%hist prints it):
2001 2001
2002 2002 44: x=1
2003 2003 45: y=3
2004 2004 46: z=x+y
2005 2005 47: print x
2006 2006 48: a=5
2007 2007 49: print 'x',x,'y',y
2008 2008
2009 2009 you can create a macro with lines 44 through 47 (included) and line 49
2010 2010 called my_macro with:
2011 2011
2012 2012 In [55]: %macro my_macro 44-47 49
2013 2013
2014 2014 Now, typing `my_macro` (without quotes) will re-execute all this code
2015 2015 in one pass.
2016 2016
2017 2017 You don't need to give the line-numbers in order, and any given line
2018 2018 number can appear multiple times. You can assemble macros with any
2019 2019 lines from your input history in any order.
2020 2020
2021 2021 The macro is a simple object which holds its value in an attribute,
2022 2022 but IPython's display system checks for macros and executes them as
2023 2023 code instead of printing them when you type their name.
2024 2024
2025 2025 You can view a macro's contents by explicitly printing it with:
2026 2026
2027 2027 'print macro_name'.
2028 2028
2029 2029 For one-off cases which DON'T contain magic function calls in them you
2030 2030 can obtain similar results by explicitly executing slices from your
2031 2031 input history with:
2032 2032
2033 2033 In [60]: exec In[44:48]+In[49]"""
2034 2034
2035 2035 opts,args = self.parse_options(parameter_s,'r',mode='list')
2036 2036 if not args:
2037 2037 macs = [k for k,v in self.shell.user_ns.items() if isinstance(v, Macro)]
2038 2038 macs.sort()
2039 2039 return macs
2040 2040 if len(args) == 1:
2041 2041 raise UsageError(
2042 2042 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2043 2043 name,ranges = args[0], args[1:]
2044 2044
2045 2045 #print 'rng',ranges # dbg
2046 2046 lines = self.extract_input_slices(ranges,opts.has_key('r'))
2047 2047 macro = Macro(lines)
2048 2048 self.shell.define_macro(name, macro)
2049 2049 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2050 2050 print 'Macro contents:'
2051 2051 print macro,
2052 2052
2053 2053 def magic_save(self,parameter_s = ''):
2054 2054 """Save a set of lines to a given filename.
2055 2055
2056 2056 Usage:\\
2057 2057 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2058 2058
2059 2059 Options:
2060 2060
2061 2061 -r: use 'raw' input. By default, the 'processed' history is used,
2062 2062 so that magics are loaded in their transformed version to valid
2063 2063 Python. If this option is given, the raw input as typed as the
2064 2064 command line is used instead.
2065 2065
2066 2066 This function uses the same syntax as %macro for line extraction, but
2067 2067 instead of creating a macro it saves the resulting string to the
2068 2068 filename you specify.
2069 2069
2070 2070 It adds a '.py' extension to the file if you don't do so yourself, and
2071 2071 it asks for confirmation before overwriting existing files."""
2072 2072
2073 2073 opts,args = self.parse_options(parameter_s,'r',mode='list')
2074 2074 fname,ranges = args[0], args[1:]
2075 2075 if not fname.endswith('.py'):
2076 2076 fname += '.py'
2077 2077 if os.path.isfile(fname):
2078 2078 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2079 2079 if ans.lower() not in ['y','yes']:
2080 2080 print 'Operation cancelled.'
2081 2081 return
2082 2082 cmds = ''.join(self.extract_input_slices(ranges,opts.has_key('r')))
2083 2083 f = file(fname,'w')
2084 2084 f.write(cmds)
2085 2085 f.close()
2086 2086 print 'The following commands were written to file `%s`:' % fname
2087 2087 print cmds
2088 2088
2089 2089 def _edit_macro(self,mname,macro):
2090 2090 """open an editor with the macro data in a file"""
2091 2091 filename = self.shell.mktempfile(macro.value)
2092 2092 self.shell.hooks.editor(filename)
2093 2093
2094 2094 # and make a new macro object, to replace the old one
2095 2095 mfile = open(filename)
2096 2096 mvalue = mfile.read()
2097 2097 mfile.close()
2098 2098 self.shell.user_ns[mname] = Macro(mvalue)
2099 2099
2100 2100 def magic_ed(self,parameter_s=''):
2101 2101 """Alias to %edit."""
2102 2102 return self.magic_edit(parameter_s)
2103 2103
2104 2104 @testdec.skip_doctest
2105 2105 def magic_edit(self,parameter_s='',last_call=['','']):
2106 2106 """Bring up an editor and execute the resulting code.
2107 2107
2108 2108 Usage:
2109 2109 %edit [options] [args]
2110 2110
2111 2111 %edit runs IPython's editor hook. The default version of this hook is
2112 2112 set to call the __IPYTHON__.rc.editor command. This is read from your
2113 2113 environment variable $EDITOR. If this isn't found, it will default to
2114 2114 vi under Linux/Unix and to notepad under Windows. See the end of this
2115 2115 docstring for how to change the editor hook.
2116 2116
2117 2117 You can also set the value of this editor via the command line option
2118 2118 '-editor' or in your ipythonrc file. This is useful if you wish to use
2119 2119 specifically for IPython an editor different from your typical default
2120 2120 (and for Windows users who typically don't set environment variables).
2121 2121
2122 2122 This command allows you to conveniently edit multi-line code right in
2123 2123 your IPython session.
2124 2124
2125 2125 If called without arguments, %edit opens up an empty editor with a
2126 2126 temporary file and will execute the contents of this file when you
2127 2127 close it (don't forget to save it!).
2128 2128
2129 2129
2130 2130 Options:
2131 2131
2132 2132 -n <number>: open the editor at a specified line number. By default,
2133 2133 the IPython editor hook uses the unix syntax 'editor +N filename', but
2134 2134 you can configure this by providing your own modified hook if your
2135 2135 favorite editor supports line-number specifications with a different
2136 2136 syntax.
2137 2137
2138 2138 -p: this will call the editor with the same data as the previous time
2139 2139 it was used, regardless of how long ago (in your current session) it
2140 2140 was.
2141 2141
2142 2142 -r: use 'raw' input. This option only applies to input taken from the
2143 2143 user's history. By default, the 'processed' history is used, so that
2144 2144 magics are loaded in their transformed version to valid Python. If
2145 2145 this option is given, the raw input as typed as the command line is
2146 2146 used instead. When you exit the editor, it will be executed by
2147 2147 IPython's own processor.
2148 2148
2149 2149 -x: do not execute the edited code immediately upon exit. This is
2150 2150 mainly useful if you are editing programs which need to be called with
2151 2151 command line arguments, which you can then do using %run.
2152 2152
2153 2153
2154 2154 Arguments:
2155 2155
2156 2156 If arguments are given, the following possibilites exist:
2157 2157
2158 2158 - The arguments are numbers or pairs of colon-separated numbers (like
2159 2159 1 4:8 9). These are interpreted as lines of previous input to be
2160 2160 loaded into the editor. The syntax is the same of the %macro command.
2161 2161
2162 2162 - If the argument doesn't start with a number, it is evaluated as a
2163 2163 variable and its contents loaded into the editor. You can thus edit
2164 2164 any string which contains python code (including the result of
2165 2165 previous edits).
2166 2166
2167 2167 - If the argument is the name of an object (other than a string),
2168 2168 IPython will try to locate the file where it was defined and open the
2169 2169 editor at the point where it is defined. You can use `%edit function`
2170 2170 to load an editor exactly at the point where 'function' is defined,
2171 2171 edit it and have the file be executed automatically.
2172 2172
2173 2173 If the object is a macro (see %macro for details), this opens up your
2174 2174 specified editor with a temporary file containing the macro's data.
2175 2175 Upon exit, the macro is reloaded with the contents of the file.
2176 2176
2177 2177 Note: opening at an exact line is only supported under Unix, and some
2178 2178 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2179 2179 '+NUMBER' parameter necessary for this feature. Good editors like
2180 2180 (X)Emacs, vi, jed, pico and joe all do.
2181 2181
2182 2182 - If the argument is not found as a variable, IPython will look for a
2183 2183 file with that name (adding .py if necessary) and load it into the
2184 2184 editor. It will execute its contents with execfile() when you exit,
2185 2185 loading any code in the file into your interactive namespace.
2186 2186
2187 2187 After executing your code, %edit will return as output the code you
2188 2188 typed in the editor (except when it was an existing file). This way
2189 2189 you can reload the code in further invocations of %edit as a variable,
2190 2190 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2191 2191 the output.
2192 2192
2193 2193 Note that %edit is also available through the alias %ed.
2194 2194
2195 2195 This is an example of creating a simple function inside the editor and
2196 2196 then modifying it. First, start up the editor:
2197 2197
2198 2198 In [1]: ed
2199 2199 Editing... done. Executing edited code...
2200 2200 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2201 2201
2202 2202 We can then call the function foo():
2203 2203
2204 2204 In [2]: foo()
2205 2205 foo() was defined in an editing session
2206 2206
2207 2207 Now we edit foo. IPython automatically loads the editor with the
2208 2208 (temporary) file where foo() was previously defined:
2209 2209
2210 2210 In [3]: ed foo
2211 2211 Editing... done. Executing edited code...
2212 2212
2213 2213 And if we call foo() again we get the modified version:
2214 2214
2215 2215 In [4]: foo()
2216 2216 foo() has now been changed!
2217 2217
2218 2218 Here is an example of how to edit a code snippet successive
2219 2219 times. First we call the editor:
2220 2220
2221 2221 In [5]: ed
2222 2222 Editing... done. Executing edited code...
2223 2223 hello
2224 2224 Out[5]: "print 'hello'n"
2225 2225
2226 2226 Now we call it again with the previous output (stored in _):
2227 2227
2228 2228 In [6]: ed _
2229 2229 Editing... done. Executing edited code...
2230 2230 hello world
2231 2231 Out[6]: "print 'hello world'n"
2232 2232
2233 2233 Now we call it with the output #8 (stored in _8, also as Out[8]):
2234 2234
2235 2235 In [7]: ed _8
2236 2236 Editing... done. Executing edited code...
2237 2237 hello again
2238 2238 Out[7]: "print 'hello again'n"
2239 2239
2240 2240
2241 2241 Changing the default editor hook:
2242 2242
2243 2243 If you wish to write your own editor hook, you can put it in a
2244 2244 configuration file which you load at startup time. The default hook
2245 2245 is defined in the IPython.core.hooks module, and you can use that as a
2246 2246 starting example for further modifications. That file also has
2247 2247 general instructions on how to set a new hook for use once you've
2248 2248 defined it."""
2249 2249
2250 2250 # FIXME: This function has become a convoluted mess. It needs a
2251 2251 # ground-up rewrite with clean, simple logic.
2252 2252
2253 2253 def make_filename(arg):
2254 2254 "Make a filename from the given args"
2255 2255 try:
2256 2256 filename = get_py_filename(arg)
2257 2257 except IOError:
2258 2258 if args.endswith('.py'):
2259 2259 filename = arg
2260 2260 else:
2261 2261 filename = None
2262 2262 return filename
2263 2263
2264 2264 # custom exceptions
2265 2265 class DataIsObject(Exception): pass
2266 2266
2267 2267 opts,args = self.parse_options(parameter_s,'prxn:')
2268 2268 # Set a few locals from the options for convenience:
2269 2269 opts_p = opts.has_key('p')
2270 2270 opts_r = opts.has_key('r')
2271 2271
2272 2272 # Default line number value
2273 2273 lineno = opts.get('n',None)
2274 2274
2275 2275 if opts_p:
2276 2276 args = '_%s' % last_call[0]
2277 2277 if not self.shell.user_ns.has_key(args):
2278 2278 args = last_call[1]
2279 2279
2280 2280 # use last_call to remember the state of the previous call, but don't
2281 2281 # let it be clobbered by successive '-p' calls.
2282 2282 try:
2283 2283 last_call[0] = self.shell.displayhook.prompt_count
2284 2284 if not opts_p:
2285 2285 last_call[1] = parameter_s
2286 2286 except:
2287 2287 pass
2288 2288
2289 2289 # by default this is done with temp files, except when the given
2290 2290 # arg is a filename
2291 2291 use_temp = 1
2292 2292
2293 2293 if re.match(r'\d',args):
2294 2294 # Mode where user specifies ranges of lines, like in %macro.
2295 2295 # This means that you can't edit files whose names begin with
2296 2296 # numbers this way. Tough.
2297 2297 ranges = args.split()
2298 2298 data = ''.join(self.extract_input_slices(ranges,opts_r))
2299 2299 elif args.endswith('.py'):
2300 2300 filename = make_filename(args)
2301 2301 data = ''
2302 2302 use_temp = 0
2303 2303 elif args:
2304 2304 try:
2305 2305 # Load the parameter given as a variable. If not a string,
2306 2306 # process it as an object instead (below)
2307 2307
2308 2308 #print '*** args',args,'type',type(args) # dbg
2309 2309 data = eval(args,self.shell.user_ns)
2310 2310 if not type(data) in StringTypes:
2311 2311 raise DataIsObject
2312 2312
2313 2313 except (NameError,SyntaxError):
2314 2314 # given argument is not a variable, try as a filename
2315 2315 filename = make_filename(args)
2316 2316 if filename is None:
2317 2317 warn("Argument given (%s) can't be found as a variable "
2318 2318 "or as a filename." % args)
2319 2319 return
2320 2320
2321 2321 data = ''
2322 2322 use_temp = 0
2323 2323 except DataIsObject:
2324 2324
2325 2325 # macros have a special edit function
2326 2326 if isinstance(data,Macro):
2327 2327 self._edit_macro(args,data)
2328 2328 return
2329 2329
2330 2330 # For objects, try to edit the file where they are defined
2331 2331 try:
2332 2332 filename = inspect.getabsfile(data)
2333 2333 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2334 2334 # class created by %edit? Try to find source
2335 2335 # by looking for method definitions instead, the
2336 2336 # __module__ in those classes is FakeModule.
2337 2337 attrs = [getattr(data, aname) for aname in dir(data)]
2338 2338 for attr in attrs:
2339 2339 if not inspect.ismethod(attr):
2340 2340 continue
2341 2341 filename = inspect.getabsfile(attr)
2342 2342 if filename and 'fakemodule' not in filename.lower():
2343 2343 # change the attribute to be the edit target instead
2344 2344 data = attr
2345 2345 break
2346 2346
2347 2347 datafile = 1
2348 2348 except TypeError:
2349 2349 filename = make_filename(args)
2350 2350 datafile = 1
2351 2351 warn('Could not find file where `%s` is defined.\n'
2352 2352 'Opening a file named `%s`' % (args,filename))
2353 2353 # Now, make sure we can actually read the source (if it was in
2354 2354 # a temp file it's gone by now).
2355 2355 if datafile:
2356 2356 try:
2357 2357 if lineno is None:
2358 2358 lineno = inspect.getsourcelines(data)[1]
2359 2359 except IOError:
2360 2360 filename = make_filename(args)
2361 2361 if filename is None:
2362 2362 warn('The file `%s` where `%s` was defined cannot '
2363 2363 'be read.' % (filename,data))
2364 2364 return
2365 2365 use_temp = 0
2366 2366 else:
2367 2367 data = ''
2368 2368
2369 2369 if use_temp:
2370 2370 filename = self.shell.mktempfile(data)
2371 2371 print 'IPython will make a temporary file named:',filename
2372 2372
2373 2373 # do actual editing here
2374 2374 print 'Editing...',
2375 2375 sys.stdout.flush()
2376 2376 try:
2377 2377 # Quote filenames that may have spaces in them
2378 2378 if ' ' in filename:
2379 2379 filename = "%s" % filename
2380 2380 self.shell.hooks.editor(filename,lineno)
2381 2381 except TryNext:
2382 2382 warn('Could not open editor')
2383 2383 return
2384 2384
2385 2385 # XXX TODO: should this be generalized for all string vars?
2386 2386 # For now, this is special-cased to blocks created by cpaste
2387 2387 if args.strip() == 'pasted_block':
2388 2388 self.shell.user_ns['pasted_block'] = file_read(filename)
2389 2389
2390 2390 if opts.has_key('x'): # -x prevents actual execution
2391 2391 print
2392 2392 else:
2393 2393 print 'done. Executing edited code...'
2394 2394 if opts_r:
2395 2395 self.shell.run_cell(file_read(filename))
2396 2396 else:
2397 2397 self.shell.safe_execfile(filename,self.shell.user_ns,
2398 2398 self.shell.user_ns)
2399 2399
2400 2400
2401 2401 if use_temp:
2402 2402 try:
2403 2403 return open(filename).read()
2404 2404 except IOError,msg:
2405 2405 if msg.filename == filename:
2406 2406 warn('File not found. Did you forget to save?')
2407 2407 return
2408 2408 else:
2409 2409 self.shell.showtraceback()
2410 2410
2411 2411 def magic_xmode(self,parameter_s = ''):
2412 2412 """Switch modes for the exception handlers.
2413 2413
2414 2414 Valid modes: Plain, Context and Verbose.
2415 2415
2416 2416 If called without arguments, acts as a toggle."""
2417 2417
2418 2418 def xmode_switch_err(name):
2419 2419 warn('Error changing %s exception modes.\n%s' %
2420 2420 (name,sys.exc_info()[1]))
2421 2421
2422 2422 shell = self.shell
2423 2423 new_mode = parameter_s.strip().capitalize()
2424 2424 try:
2425 2425 shell.InteractiveTB.set_mode(mode=new_mode)
2426 2426 print 'Exception reporting mode:',shell.InteractiveTB.mode
2427 2427 except:
2428 2428 xmode_switch_err('user')
2429 2429
2430 2430 def magic_colors(self,parameter_s = ''):
2431 2431 """Switch color scheme for prompts, info system and exception handlers.
2432 2432
2433 2433 Currently implemented schemes: NoColor, Linux, LightBG.
2434 2434
2435 2435 Color scheme names are not case-sensitive.
2436 2436
2437 2437 Examples
2438 2438 --------
2439 2439 To get a plain black and white terminal::
2440 2440
2441 2441 %colors nocolor
2442 2442 """
2443 2443
2444 2444 def color_switch_err(name):
2445 2445 warn('Error changing %s color schemes.\n%s' %
2446 2446 (name,sys.exc_info()[1]))
2447 2447
2448 2448
2449 2449 new_scheme = parameter_s.strip()
2450 2450 if not new_scheme:
2451 2451 raise UsageError(
2452 2452 "%colors: you must specify a color scheme. See '%colors?'")
2453 2453 return
2454 2454 # local shortcut
2455 2455 shell = self.shell
2456 2456
2457 2457 import IPython.utils.rlineimpl as readline
2458 2458
2459 2459 if not readline.have_readline and sys.platform == "win32":
2460 2460 msg = """\
2461 2461 Proper color support under MS Windows requires the pyreadline library.
2462 2462 You can find it at:
2463 2463 http://ipython.scipy.org/moin/PyReadline/Intro
2464 2464 Gary's readline needs the ctypes module, from:
2465 2465 http://starship.python.net/crew/theller/ctypes
2466 2466 (Note that ctypes is already part of Python versions 2.5 and newer).
2467 2467
2468 2468 Defaulting color scheme to 'NoColor'"""
2469 2469 new_scheme = 'NoColor'
2470 2470 warn(msg)
2471 2471
2472 2472 # readline option is 0
2473 2473 if not shell.has_readline:
2474 2474 new_scheme = 'NoColor'
2475 2475
2476 2476 # Set prompt colors
2477 2477 try:
2478 2478 shell.displayhook.set_colors(new_scheme)
2479 2479 except:
2480 2480 color_switch_err('prompt')
2481 2481 else:
2482 2482 shell.colors = \
2483 2483 shell.displayhook.color_table.active_scheme_name
2484 2484 # Set exception colors
2485 2485 try:
2486 2486 shell.InteractiveTB.set_colors(scheme = new_scheme)
2487 2487 shell.SyntaxTB.set_colors(scheme = new_scheme)
2488 2488 except:
2489 2489 color_switch_err('exception')
2490 2490
2491 2491 # Set info (for 'object?') colors
2492 2492 if shell.color_info:
2493 2493 try:
2494 2494 shell.inspector.set_active_scheme(new_scheme)
2495 2495 except:
2496 2496 color_switch_err('object inspector')
2497 2497 else:
2498 2498 shell.inspector.set_active_scheme('NoColor')
2499 2499
2500 2500 def magic_pprint(self, parameter_s=''):
2501 2501 """Toggle pretty printing on/off."""
2502 2502 ptformatter = self.shell.display_formatter.formatters['text/plain']
2503 2503 ptformatter.pprint = bool(1 - ptformatter.pprint)
2504 2504 print 'Pretty printing has been turned', \
2505 2505 ['OFF','ON'][ptformatter.pprint]
2506 2506
2507 2507 def magic_Exit(self, parameter_s=''):
2508 2508 """Exit IPython."""
2509 2509
2510 2510 self.shell.ask_exit()
2511 2511
2512 2512 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2513 2513 magic_exit = magic_quit = magic_Quit = magic_Exit
2514 2514
2515 2515 #......................................................................
2516 2516 # Functions to implement unix shell-type things
2517 2517
2518 2518 @testdec.skip_doctest
2519 2519 def magic_alias(self, parameter_s = ''):
2520 2520 """Define an alias for a system command.
2521 2521
2522 2522 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2523 2523
2524 2524 Then, typing 'alias_name params' will execute the system command 'cmd
2525 2525 params' (from your underlying operating system).
2526 2526
2527 2527 Aliases have lower precedence than magic functions and Python normal
2528 2528 variables, so if 'foo' is both a Python variable and an alias, the
2529 2529 alias can not be executed until 'del foo' removes the Python variable.
2530 2530
2531 2531 You can use the %l specifier in an alias definition to represent the
2532 2532 whole line when the alias is called. For example:
2533 2533
2534 2534 In [2]: alias bracket echo "Input in brackets: <%l>"
2535 2535 In [3]: bracket hello world
2536 2536 Input in brackets: <hello world>
2537 2537
2538 2538 You can also define aliases with parameters using %s specifiers (one
2539 2539 per parameter):
2540 2540
2541 2541 In [1]: alias parts echo first %s second %s
2542 2542 In [2]: %parts A B
2543 2543 first A second B
2544 2544 In [3]: %parts A
2545 2545 Incorrect number of arguments: 2 expected.
2546 2546 parts is an alias to: 'echo first %s second %s'
2547 2547
2548 2548 Note that %l and %s are mutually exclusive. You can only use one or
2549 2549 the other in your aliases.
2550 2550
2551 2551 Aliases expand Python variables just like system calls using ! or !!
2552 2552 do: all expressions prefixed with '$' get expanded. For details of
2553 2553 the semantic rules, see PEP-215:
2554 2554 http://www.python.org/peps/pep-0215.html. This is the library used by
2555 2555 IPython for variable expansion. If you want to access a true shell
2556 2556 variable, an extra $ is necessary to prevent its expansion by IPython:
2557 2557
2558 2558 In [6]: alias show echo
2559 2559 In [7]: PATH='A Python string'
2560 2560 In [8]: show $PATH
2561 2561 A Python string
2562 2562 In [9]: show $$PATH
2563 2563 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2564 2564
2565 2565 You can use the alias facility to acess all of $PATH. See the %rehash
2566 2566 and %rehashx functions, which automatically create aliases for the
2567 2567 contents of your $PATH.
2568 2568
2569 2569 If called with no parameters, %alias prints the current alias table."""
2570 2570
2571 2571 par = parameter_s.strip()
2572 2572 if not par:
2573 2573 stored = self.db.get('stored_aliases', {} )
2574 2574 aliases = sorted(self.shell.alias_manager.aliases)
2575 2575 # for k, v in stored:
2576 2576 # atab.append(k, v[0])
2577 2577
2578 2578 print "Total number of aliases:", len(aliases)
2579 2579 sys.stdout.flush()
2580 2580 return aliases
2581 2581
2582 2582 # Now try to define a new one
2583 2583 try:
2584 2584 alias,cmd = par.split(None, 1)
2585 2585 except:
2586 2586 print oinspect.getdoc(self.magic_alias)
2587 2587 else:
2588 2588 self.shell.alias_manager.soft_define_alias(alias, cmd)
2589 2589 # end magic_alias
2590 2590
2591 2591 def magic_unalias(self, parameter_s = ''):
2592 2592 """Remove an alias"""
2593 2593
2594 2594 aname = parameter_s.strip()
2595 2595 self.shell.alias_manager.undefine_alias(aname)
2596 2596 stored = self.db.get('stored_aliases', {} )
2597 2597 if aname in stored:
2598 2598 print "Removing %stored alias",aname
2599 2599 del stored[aname]
2600 2600 self.db['stored_aliases'] = stored
2601 2601
2602 2602 def magic_rehashx(self, parameter_s = ''):
2603 2603 """Update the alias table with all executable files in $PATH.
2604 2604
2605 2605 This version explicitly checks that every entry in $PATH is a file
2606 2606 with execute access (os.X_OK), so it is much slower than %rehash.
2607 2607
2608 2608 Under Windows, it checks executability as a match agains a
2609 2609 '|'-separated string of extensions, stored in the IPython config
2610 2610 variable win_exec_ext. This defaults to 'exe|com|bat'.
2611 2611
2612 2612 This function also resets the root module cache of module completer,
2613 2613 used on slow filesystems.
2614 2614 """
2615 2615 from IPython.core.alias import InvalidAliasError
2616 2616
2617 2617 # for the benefit of module completer in ipy_completers.py
2618 2618 del self.db['rootmodules']
2619 2619
2620 2620 path = [os.path.abspath(os.path.expanduser(p)) for p in
2621 2621 os.environ.get('PATH','').split(os.pathsep)]
2622 2622 path = filter(os.path.isdir,path)
2623 2623
2624 2624 syscmdlist = []
2625 2625 # Now define isexec in a cross platform manner.
2626 2626 if os.name == 'posix':
2627 2627 isexec = lambda fname:os.path.isfile(fname) and \
2628 2628 os.access(fname,os.X_OK)
2629 2629 else:
2630 2630 try:
2631 2631 winext = os.environ['pathext'].replace(';','|').replace('.','')
2632 2632 except KeyError:
2633 2633 winext = 'exe|com|bat|py'
2634 2634 if 'py' not in winext:
2635 2635 winext += '|py'
2636 2636 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2637 2637 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2638 2638 savedir = os.getcwd()
2639 2639
2640 2640 # Now walk the paths looking for executables to alias.
2641 2641 try:
2642 2642 # write the whole loop for posix/Windows so we don't have an if in
2643 2643 # the innermost part
2644 2644 if os.name == 'posix':
2645 2645 for pdir in path:
2646 2646 os.chdir(pdir)
2647 2647 for ff in os.listdir(pdir):
2648 2648 if isexec(ff):
2649 2649 try:
2650 2650 # Removes dots from the name since ipython
2651 2651 # will assume names with dots to be python.
2652 2652 self.shell.alias_manager.define_alias(
2653 2653 ff.replace('.',''), ff)
2654 2654 except InvalidAliasError:
2655 2655 pass
2656 2656 else:
2657 2657 syscmdlist.append(ff)
2658 2658 else:
2659 2659 no_alias = self.shell.alias_manager.no_alias
2660 2660 for pdir in path:
2661 2661 os.chdir(pdir)
2662 2662 for ff in os.listdir(pdir):
2663 2663 base, ext = os.path.splitext(ff)
2664 2664 if isexec(ff) and base.lower() not in no_alias:
2665 2665 if ext.lower() == '.exe':
2666 2666 ff = base
2667 2667 try:
2668 2668 # Removes dots from the name since ipython
2669 2669 # will assume names with dots to be python.
2670 2670 self.shell.alias_manager.define_alias(
2671 2671 base.lower().replace('.',''), ff)
2672 2672 except InvalidAliasError:
2673 2673 pass
2674 2674 syscmdlist.append(ff)
2675 2675 db = self.db
2676 2676 db['syscmdlist'] = syscmdlist
2677 2677 finally:
2678 2678 os.chdir(savedir)
2679 2679
2680 2680 @testdec.skip_doctest
2681 2681 def magic_pwd(self, parameter_s = ''):
2682 2682 """Return the current working directory path.
2683 2683
2684 2684 Examples
2685 2685 --------
2686 2686 ::
2687 2687
2688 2688 In [9]: pwd
2689 2689 Out[9]: '/home/tsuser/sprint/ipython'
2690 2690 """
2691 2691 return os.getcwd()
2692 2692
2693 2693 @testdec.skip_doctest
2694 2694 def magic_cd(self, parameter_s=''):
2695 2695 """Change the current working directory.
2696 2696
2697 2697 This command automatically maintains an internal list of directories
2698 2698 you visit during your IPython session, in the variable _dh. The
2699 2699 command %dhist shows this history nicely formatted. You can also
2700 2700 do 'cd -<tab>' to see directory history conveniently.
2701 2701
2702 2702 Usage:
2703 2703
2704 2704 cd 'dir': changes to directory 'dir'.
2705 2705
2706 2706 cd -: changes to the last visited directory.
2707 2707
2708 2708 cd -<n>: changes to the n-th directory in the directory history.
2709 2709
2710 2710 cd --foo: change to directory that matches 'foo' in history
2711 2711
2712 2712 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2713 2713 (note: cd <bookmark_name> is enough if there is no
2714 2714 directory <bookmark_name>, but a bookmark with the name exists.)
2715 2715 'cd -b <tab>' allows you to tab-complete bookmark names.
2716 2716
2717 2717 Options:
2718 2718
2719 2719 -q: quiet. Do not print the working directory after the cd command is
2720 2720 executed. By default IPython's cd command does print this directory,
2721 2721 since the default prompts do not display path information.
2722 2722
2723 2723 Note that !cd doesn't work for this purpose because the shell where
2724 2724 !command runs is immediately discarded after executing 'command'.
2725 2725
2726 2726 Examples
2727 2727 --------
2728 2728 ::
2729 2729
2730 2730 In [10]: cd parent/child
2731 2731 /home/tsuser/parent/child
2732 2732 """
2733 2733
2734 2734 parameter_s = parameter_s.strip()
2735 2735 #bkms = self.shell.persist.get("bookmarks",{})
2736 2736
2737 2737 oldcwd = os.getcwd()
2738 2738 numcd = re.match(r'(-)(\d+)$',parameter_s)
2739 2739 # jump in directory history by number
2740 2740 if numcd:
2741 2741 nn = int(numcd.group(2))
2742 2742 try:
2743 2743 ps = self.shell.user_ns['_dh'][nn]
2744 2744 except IndexError:
2745 2745 print 'The requested directory does not exist in history.'
2746 2746 return
2747 2747 else:
2748 2748 opts = {}
2749 2749 elif parameter_s.startswith('--'):
2750 2750 ps = None
2751 2751 fallback = None
2752 2752 pat = parameter_s[2:]
2753 2753 dh = self.shell.user_ns['_dh']
2754 2754 # first search only by basename (last component)
2755 2755 for ent in reversed(dh):
2756 2756 if pat in os.path.basename(ent) and os.path.isdir(ent):
2757 2757 ps = ent
2758 2758 break
2759 2759
2760 2760 if fallback is None and pat in ent and os.path.isdir(ent):
2761 2761 fallback = ent
2762 2762
2763 2763 # if we have no last part match, pick the first full path match
2764 2764 if ps is None:
2765 2765 ps = fallback
2766 2766
2767 2767 if ps is None:
2768 2768 print "No matching entry in directory history"
2769 2769 return
2770 2770 else:
2771 2771 opts = {}
2772 2772
2773 2773
2774 2774 else:
2775 2775 #turn all non-space-escaping backslashes to slashes,
2776 2776 # for c:\windows\directory\names\
2777 2777 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2778 2778 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2779 2779 # jump to previous
2780 2780 if ps == '-':
2781 2781 try:
2782 2782 ps = self.shell.user_ns['_dh'][-2]
2783 2783 except IndexError:
2784 2784 raise UsageError('%cd -: No previous directory to change to.')
2785 2785 # jump to bookmark if needed
2786 2786 else:
2787 2787 if not os.path.isdir(ps) or opts.has_key('b'):
2788 2788 bkms = self.db.get('bookmarks', {})
2789 2789
2790 2790 if bkms.has_key(ps):
2791 2791 target = bkms[ps]
2792 2792 print '(bookmark:%s) -> %s' % (ps,target)
2793 2793 ps = target
2794 2794 else:
2795 2795 if opts.has_key('b'):
2796 2796 raise UsageError("Bookmark '%s' not found. "
2797 2797 "Use '%%bookmark -l' to see your bookmarks." % ps)
2798 2798
2799 2799 # at this point ps should point to the target dir
2800 2800 if ps:
2801 2801 try:
2802 2802 os.chdir(os.path.expanduser(ps))
2803 2803 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2804 2804 set_term_title('IPython: ' + abbrev_cwd())
2805 2805 except OSError:
2806 2806 print sys.exc_info()[1]
2807 2807 else:
2808 2808 cwd = os.getcwd()
2809 2809 dhist = self.shell.user_ns['_dh']
2810 2810 if oldcwd != cwd:
2811 2811 dhist.append(cwd)
2812 2812 self.db['dhist'] = compress_dhist(dhist)[-100:]
2813 2813
2814 2814 else:
2815 2815 os.chdir(self.shell.home_dir)
2816 2816 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2817 2817 set_term_title('IPython: ' + '~')
2818 2818 cwd = os.getcwd()
2819 2819 dhist = self.shell.user_ns['_dh']
2820 2820
2821 2821 if oldcwd != cwd:
2822 2822 dhist.append(cwd)
2823 2823 self.db['dhist'] = compress_dhist(dhist)[-100:]
2824 2824 if not 'q' in opts and self.shell.user_ns['_dh']:
2825 2825 print self.shell.user_ns['_dh'][-1]
2826 2826
2827 2827
2828 2828 def magic_env(self, parameter_s=''):
2829 2829 """List environment variables."""
2830 2830
2831 2831 return os.environ.data
2832 2832
2833 2833 def magic_pushd(self, parameter_s=''):
2834 2834 """Place the current dir on stack and change directory.
2835 2835
2836 2836 Usage:\\
2837 2837 %pushd ['dirname']
2838 2838 """
2839 2839
2840 2840 dir_s = self.shell.dir_stack
2841 2841 tgt = os.path.expanduser(parameter_s)
2842 2842 cwd = os.getcwd().replace(self.home_dir,'~')
2843 2843 if tgt:
2844 2844 self.magic_cd(parameter_s)
2845 2845 dir_s.insert(0,cwd)
2846 2846 return self.magic_dirs()
2847 2847
2848 2848 def magic_popd(self, parameter_s=''):
2849 2849 """Change to directory popped off the top of the stack.
2850 2850 """
2851 2851 if not self.shell.dir_stack:
2852 2852 raise UsageError("%popd on empty stack")
2853 2853 top = self.shell.dir_stack.pop(0)
2854 2854 self.magic_cd(top)
2855 2855 print "popd ->",top
2856 2856
2857 2857 def magic_dirs(self, parameter_s=''):
2858 2858 """Return the current directory stack."""
2859 2859
2860 2860 return self.shell.dir_stack
2861 2861
2862 2862 def magic_dhist(self, parameter_s=''):
2863 2863 """Print your history of visited directories.
2864 2864
2865 2865 %dhist -> print full history\\
2866 2866 %dhist n -> print last n entries only\\
2867 2867 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2868 2868
2869 2869 This history is automatically maintained by the %cd command, and
2870 2870 always available as the global list variable _dh. You can use %cd -<n>
2871 2871 to go to directory number <n>.
2872 2872
2873 2873 Note that most of time, you should view directory history by entering
2874 2874 cd -<TAB>.
2875 2875
2876 2876 """
2877 2877
2878 2878 dh = self.shell.user_ns['_dh']
2879 2879 if parameter_s:
2880 2880 try:
2881 2881 args = map(int,parameter_s.split())
2882 2882 except:
2883 2883 self.arg_err(Magic.magic_dhist)
2884 2884 return
2885 2885 if len(args) == 1:
2886 2886 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2887 2887 elif len(args) == 2:
2888 2888 ini,fin = args
2889 2889 else:
2890 2890 self.arg_err(Magic.magic_dhist)
2891 2891 return
2892 2892 else:
2893 2893 ini,fin = 0,len(dh)
2894 2894 nlprint(dh,
2895 2895 header = 'Directory history (kept in _dh)',
2896 2896 start=ini,stop=fin)
2897 2897
2898 2898 @testdec.skip_doctest
2899 2899 def magic_sc(self, parameter_s=''):
2900 2900 """Shell capture - execute a shell command and capture its output.
2901 2901
2902 2902 DEPRECATED. Suboptimal, retained for backwards compatibility.
2903 2903
2904 2904 You should use the form 'var = !command' instead. Example:
2905 2905
2906 2906 "%sc -l myfiles = ls ~" should now be written as
2907 2907
2908 2908 "myfiles = !ls ~"
2909 2909
2910 2910 myfiles.s, myfiles.l and myfiles.n still apply as documented
2911 2911 below.
2912 2912
2913 2913 --
2914 2914 %sc [options] varname=command
2915 2915
2916 2916 IPython will run the given command using commands.getoutput(), and
2917 2917 will then update the user's interactive namespace with a variable
2918 2918 called varname, containing the value of the call. Your command can
2919 2919 contain shell wildcards, pipes, etc.
2920 2920
2921 2921 The '=' sign in the syntax is mandatory, and the variable name you
2922 2922 supply must follow Python's standard conventions for valid names.
2923 2923
2924 2924 (A special format without variable name exists for internal use)
2925 2925
2926 2926 Options:
2927 2927
2928 2928 -l: list output. Split the output on newlines into a list before
2929 2929 assigning it to the given variable. By default the output is stored
2930 2930 as a single string.
2931 2931
2932 2932 -v: verbose. Print the contents of the variable.
2933 2933
2934 2934 In most cases you should not need to split as a list, because the
2935 2935 returned value is a special type of string which can automatically
2936 2936 provide its contents either as a list (split on newlines) or as a
2937 2937 space-separated string. These are convenient, respectively, either
2938 2938 for sequential processing or to be passed to a shell command.
2939 2939
2940 2940 For example:
2941 2941
2942 2942 # all-random
2943 2943
2944 2944 # Capture into variable a
2945 2945 In [1]: sc a=ls *py
2946 2946
2947 2947 # a is a string with embedded newlines
2948 2948 In [2]: a
2949 2949 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2950 2950
2951 2951 # which can be seen as a list:
2952 2952 In [3]: a.l
2953 2953 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2954 2954
2955 2955 # or as a whitespace-separated string:
2956 2956 In [4]: a.s
2957 2957 Out[4]: 'setup.py win32_manual_post_install.py'
2958 2958
2959 2959 # a.s is useful to pass as a single command line:
2960 2960 In [5]: !wc -l $a.s
2961 2961 146 setup.py
2962 2962 130 win32_manual_post_install.py
2963 2963 276 total
2964 2964
2965 2965 # while the list form is useful to loop over:
2966 2966 In [6]: for f in a.l:
2967 2967 ...: !wc -l $f
2968 2968 ...:
2969 2969 146 setup.py
2970 2970 130 win32_manual_post_install.py
2971 2971
2972 2972 Similiarly, the lists returned by the -l option are also special, in
2973 2973 the sense that you can equally invoke the .s attribute on them to
2974 2974 automatically get a whitespace-separated string from their contents:
2975 2975
2976 2976 In [7]: sc -l b=ls *py
2977 2977
2978 2978 In [8]: b
2979 2979 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2980 2980
2981 2981 In [9]: b.s
2982 2982 Out[9]: 'setup.py win32_manual_post_install.py'
2983 2983
2984 2984 In summary, both the lists and strings used for ouptut capture have
2985 2985 the following special attributes:
2986 2986
2987 2987 .l (or .list) : value as list.
2988 2988 .n (or .nlstr): value as newline-separated string.
2989 2989 .s (or .spstr): value as space-separated string.
2990 2990 """
2991 2991
2992 2992 opts,args = self.parse_options(parameter_s,'lv')
2993 2993 # Try to get a variable name and command to run
2994 2994 try:
2995 2995 # the variable name must be obtained from the parse_options
2996 2996 # output, which uses shlex.split to strip options out.
2997 2997 var,_ = args.split('=',1)
2998 2998 var = var.strip()
2999 2999 # But the the command has to be extracted from the original input
3000 3000 # parameter_s, not on what parse_options returns, to avoid the
3001 3001 # quote stripping which shlex.split performs on it.
3002 3002 _,cmd = parameter_s.split('=',1)
3003 3003 except ValueError:
3004 3004 var,cmd = '',''
3005 3005 # If all looks ok, proceed
3006 3006 split = 'l' in opts
3007 3007 out = self.shell.getoutput(cmd, split=split)
3008 3008 if opts.has_key('v'):
3009 3009 print '%s ==\n%s' % (var,pformat(out))
3010 3010 if var:
3011 3011 self.shell.user_ns.update({var:out})
3012 3012 else:
3013 3013 return out
3014 3014
3015 3015 def magic_sx(self, parameter_s=''):
3016 3016 """Shell execute - run a shell command and capture its output.
3017 3017
3018 3018 %sx command
3019 3019
3020 3020 IPython will run the given command using commands.getoutput(), and
3021 3021 return the result formatted as a list (split on '\\n'). Since the
3022 3022 output is _returned_, it will be stored in ipython's regular output
3023 3023 cache Out[N] and in the '_N' automatic variables.
3024 3024
3025 3025 Notes:
3026 3026
3027 3027 1) If an input line begins with '!!', then %sx is automatically
3028 3028 invoked. That is, while:
3029 3029 !ls
3030 3030 causes ipython to simply issue system('ls'), typing
3031 3031 !!ls
3032 3032 is a shorthand equivalent to:
3033 3033 %sx ls
3034 3034
3035 3035 2) %sx differs from %sc in that %sx automatically splits into a list,
3036 3036 like '%sc -l'. The reason for this is to make it as easy as possible
3037 3037 to process line-oriented shell output via further python commands.
3038 3038 %sc is meant to provide much finer control, but requires more
3039 3039 typing.
3040 3040
3041 3041 3) Just like %sc -l, this is a list with special attributes:
3042 3042
3043 3043 .l (or .list) : value as list.
3044 3044 .n (or .nlstr): value as newline-separated string.
3045 3045 .s (or .spstr): value as whitespace-separated string.
3046 3046
3047 3047 This is very useful when trying to use such lists as arguments to
3048 3048 system commands."""
3049 3049
3050 3050 if parameter_s:
3051 3051 return self.shell.getoutput(parameter_s)
3052 3052
3053 3053 def magic_r(self, parameter_s=''):
3054 3054 """Repeat previous input.
3055 3055
3056 3056 Note: Consider using the more powerfull %rep instead!
3057 3057
3058 3058 If given an argument, repeats the previous command which starts with
3059 3059 the same string, otherwise it just repeats the previous input.
3060 3060
3061 3061 Shell escaped commands (with ! as first character) are not recognized
3062 3062 by this system, only pure python code and magic commands.
3063 3063 """
3064 3064
3065 3065 start = parameter_s.strip()
3066 3066 esc_magic = ESC_MAGIC
3067 3067 # Identify magic commands even if automagic is on (which means
3068 3068 # the in-memory version is different from that typed by the user).
3069 3069 if self.shell.automagic:
3070 3070 start_magic = esc_magic+start
3071 3071 else:
3072 3072 start_magic = start
3073 3073 # Look through the input history in reverse
3074 3074 for n in range(len(self.shell.history_manager.input_hist_parsed)-2,0,-1):
3075 3075 input = self.shell.history_manager.input_hist_parsed[n]
3076 3076 # skip plain 'r' lines so we don't recurse to infinity
3077 3077 if input != '_ip.magic("r")\n' and \
3078 3078 (input.startswith(start) or input.startswith(start_magic)):
3079 3079 #print 'match',`input` # dbg
3080 3080 print 'Executing:',input,
3081 3081 self.shell.run_cell(input)
3082 3082 return
3083 3083 print 'No previous input matching `%s` found.' % start
3084 3084
3085 3085
3086 3086 def magic_bookmark(self, parameter_s=''):
3087 3087 """Manage IPython's bookmark system.
3088 3088
3089 3089 %bookmark <name> - set bookmark to current dir
3090 3090 %bookmark <name> <dir> - set bookmark to <dir>
3091 3091 %bookmark -l - list all bookmarks
3092 3092 %bookmark -d <name> - remove bookmark
3093 3093 %bookmark -r - remove all bookmarks
3094 3094
3095 3095 You can later on access a bookmarked folder with:
3096 3096 %cd -b <name>
3097 3097 or simply '%cd <name>' if there is no directory called <name> AND
3098 3098 there is such a bookmark defined.
3099 3099
3100 3100 Your bookmarks persist through IPython sessions, but they are
3101 3101 associated with each profile."""
3102 3102
3103 3103 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3104 3104 if len(args) > 2:
3105 3105 raise UsageError("%bookmark: too many arguments")
3106 3106
3107 3107 bkms = self.db.get('bookmarks',{})
3108 3108
3109 3109 if opts.has_key('d'):
3110 3110 try:
3111 3111 todel = args[0]
3112 3112 except IndexError:
3113 3113 raise UsageError(
3114 3114 "%bookmark -d: must provide a bookmark to delete")
3115 3115 else:
3116 3116 try:
3117 3117 del bkms[todel]
3118 3118 except KeyError:
3119 3119 raise UsageError(
3120 3120 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3121 3121
3122 3122 elif opts.has_key('r'):
3123 3123 bkms = {}
3124 3124 elif opts.has_key('l'):
3125 3125 bks = bkms.keys()
3126 3126 bks.sort()
3127 3127 if bks:
3128 3128 size = max(map(len,bks))
3129 3129 else:
3130 3130 size = 0
3131 3131 fmt = '%-'+str(size)+'s -> %s'
3132 3132 print 'Current bookmarks:'
3133 3133 for bk in bks:
3134 3134 print fmt % (bk,bkms[bk])
3135 3135 else:
3136 3136 if not args:
3137 3137 raise UsageError("%bookmark: You must specify the bookmark name")
3138 3138 elif len(args)==1:
3139 3139 bkms[args[0]] = os.getcwd()
3140 3140 elif len(args)==2:
3141 3141 bkms[args[0]] = args[1]
3142 3142 self.db['bookmarks'] = bkms
3143 3143
3144 3144 def magic_pycat(self, parameter_s=''):
3145 3145 """Show a syntax-highlighted file through a pager.
3146 3146
3147 3147 This magic is similar to the cat utility, but it will assume the file
3148 3148 to be Python source and will show it with syntax highlighting. """
3149 3149
3150 3150 try:
3151 3151 filename = get_py_filename(parameter_s)
3152 3152 cont = file_read(filename)
3153 3153 except IOError:
3154 3154 try:
3155 3155 cont = eval(parameter_s,self.user_ns)
3156 3156 except NameError:
3157 3157 cont = None
3158 3158 if cont is None:
3159 3159 print "Error: no such file or variable"
3160 3160 return
3161 3161
3162 3162 page.page(self.shell.pycolorize(cont))
3163 3163
3164 3164 def _rerun_pasted(self):
3165 3165 """ Rerun a previously pasted command.
3166 3166 """
3167 3167 b = self.user_ns.get('pasted_block', None)
3168 3168 if b is None:
3169 3169 raise UsageError('No previous pasted block available')
3170 3170 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3171 3171 exec b in self.user_ns
3172 3172
3173 3173 def _get_pasted_lines(self, sentinel):
3174 3174 """ Yield pasted lines until the user enters the given sentinel value.
3175 3175 """
3176 3176 from IPython.core import interactiveshell
3177 3177 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3178 3178 while True:
3179 3179 l = interactiveshell.raw_input_original(':')
3180 3180 if l == sentinel:
3181 3181 return
3182 3182 else:
3183 3183 yield l
3184 3184
3185 3185 def _strip_pasted_lines_for_code(self, raw_lines):
3186 3186 """ Strip non-code parts of a sequence of lines to return a block of
3187 3187 code.
3188 3188 """
3189 3189 # Regular expressions that declare text we strip from the input:
3190 3190 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3191 3191 r'^\s*(\s?>)+', # Python input prompt
3192 3192 r'^\s*\.{3,}', # Continuation prompts
3193 3193 r'^\++',
3194 3194 ]
3195 3195
3196 3196 strip_from_start = map(re.compile,strip_re)
3197 3197
3198 3198 lines = []
3199 3199 for l in raw_lines:
3200 3200 for pat in strip_from_start:
3201 3201 l = pat.sub('',l)
3202 3202 lines.append(l)
3203 3203
3204 3204 block = "\n".join(lines) + '\n'
3205 3205 #print "block:\n",block
3206 3206 return block
3207 3207
3208 3208 def _execute_block(self, block, par):
3209 3209 """ Execute a block, or store it in a variable, per the user's request.
3210 3210 """
3211 3211 if not par:
3212 3212 b = textwrap.dedent(block)
3213 3213 self.user_ns['pasted_block'] = b
3214 3214 exec b in self.user_ns
3215 3215 else:
3216 3216 self.user_ns[par] = SList(block.splitlines())
3217 3217 print "Block assigned to '%s'" % par
3218 3218
3219 3219 def magic_quickref(self,arg):
3220 3220 """ Show a quick reference sheet """
3221 3221 import IPython.core.usage
3222 3222 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3223 3223
3224 3224 page.page(qr)
3225 3225
3226 3226 def magic_doctest_mode(self,parameter_s=''):
3227 3227 """Toggle doctest mode on and off.
3228 3228
3229 3229 This mode is intended to make IPython behave as much as possible like a
3230 3230 plain Python shell, from the perspective of how its prompts, exceptions
3231 3231 and output look. This makes it easy to copy and paste parts of a
3232 3232 session into doctests. It does so by:
3233 3233
3234 3234 - Changing the prompts to the classic ``>>>`` ones.
3235 3235 - Changing the exception reporting mode to 'Plain'.
3236 3236 - Disabling pretty-printing of output.
3237 3237
3238 3238 Note that IPython also supports the pasting of code snippets that have
3239 3239 leading '>>>' and '...' prompts in them. This means that you can paste
3240 3240 doctests from files or docstrings (even if they have leading
3241 3241 whitespace), and the code will execute correctly. You can then use
3242 3242 '%history -t' to see the translated history; this will give you the
3243 3243 input after removal of all the leading prompts and whitespace, which
3244 3244 can be pasted back into an editor.
3245 3245
3246 3246 With these features, you can switch into this mode easily whenever you
3247 3247 need to do testing and changes to doctests, without having to leave
3248 3248 your existing IPython session.
3249 3249 """
3250 3250
3251 3251 from IPython.utils.ipstruct import Struct
3252 3252
3253 3253 # Shorthands
3254 3254 shell = self.shell
3255 3255 oc = shell.displayhook
3256 3256 meta = shell.meta
3257 3257 disp_formatter = self.shell.display_formatter
3258 3258 ptformatter = disp_formatter.formatters['text/plain']
3259 3259 # dstore is a data store kept in the instance metadata bag to track any
3260 3260 # changes we make, so we can undo them later.
3261 3261 dstore = meta.setdefault('doctest_mode',Struct())
3262 3262 save_dstore = dstore.setdefault
3263 3263
3264 3264 # save a few values we'll need to recover later
3265 3265 mode = save_dstore('mode',False)
3266 3266 save_dstore('rc_pprint',ptformatter.pprint)
3267 3267 save_dstore('xmode',shell.InteractiveTB.mode)
3268 3268 save_dstore('rc_separate_out',shell.separate_out)
3269 3269 save_dstore('rc_separate_out2',shell.separate_out2)
3270 3270 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3271 3271 save_dstore('rc_separate_in',shell.separate_in)
3272 3272 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3273 3273
3274 3274 if mode == False:
3275 3275 # turn on
3276 3276 oc.prompt1.p_template = '>>> '
3277 3277 oc.prompt2.p_template = '... '
3278 3278 oc.prompt_out.p_template = ''
3279 3279
3280 3280 # Prompt separators like plain python
3281 3281 oc.input_sep = oc.prompt1.sep = ''
3282 3282 oc.output_sep = ''
3283 3283 oc.output_sep2 = ''
3284 3284
3285 3285 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3286 3286 oc.prompt_out.pad_left = False
3287 3287
3288 3288 ptformatter.pprint = False
3289 3289 disp_formatter.plain_text_only = True
3290 3290
3291 3291 shell.magic_xmode('Plain')
3292 3292 else:
3293 3293 # turn off
3294 3294 oc.prompt1.p_template = shell.prompt_in1
3295 3295 oc.prompt2.p_template = shell.prompt_in2
3296 3296 oc.prompt_out.p_template = shell.prompt_out
3297 3297
3298 3298 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3299 3299
3300 3300 oc.output_sep = dstore.rc_separate_out
3301 3301 oc.output_sep2 = dstore.rc_separate_out2
3302 3302
3303 3303 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3304 3304 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3305 3305
3306 3306 ptformatter.pprint = dstore.rc_pprint
3307 3307 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3308 3308
3309 3309 shell.magic_xmode(dstore.xmode)
3310 3310
3311 3311 # Store new mode and inform
3312 3312 dstore.mode = bool(1-int(mode))
3313 3313 mode_label = ['OFF','ON'][dstore.mode]
3314 3314 print 'Doctest mode is:', mode_label
3315 3315
3316 3316 def magic_gui(self, parameter_s=''):
3317 3317 """Enable or disable IPython GUI event loop integration.
3318 3318
3319 3319 %gui [GUINAME]
3320 3320
3321 3321 This magic replaces IPython's threaded shells that were activated
3322 3322 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3323 3323 can now be enabled, disabled and swtiched at runtime and keyboard
3324 3324 interrupts should work without any problems. The following toolkits
3325 3325 are supported: wxPython, PyQt4, PyGTK, and Tk::
3326 3326
3327 3327 %gui wx # enable wxPython event loop integration
3328 3328 %gui qt4|qt # enable PyQt4 event loop integration
3329 3329 %gui gtk # enable PyGTK event loop integration
3330 3330 %gui tk # enable Tk event loop integration
3331 3331 %gui # disable all event loop integration
3332 3332
3333 3333 WARNING: after any of these has been called you can simply create
3334 3334 an application object, but DO NOT start the event loop yourself, as
3335 3335 we have already handled that.
3336 3336 """
3337 3337 from IPython.lib.inputhook import enable_gui
3338 3338 opts, arg = self.parse_options(parameter_s, '')
3339 3339 if arg=='': arg = None
3340 3340 return enable_gui(arg)
3341 3341
3342 3342 def magic_load_ext(self, module_str):
3343 3343 """Load an IPython extension by its module name."""
3344 3344 return self.extension_manager.load_extension(module_str)
3345 3345
3346 3346 def magic_unload_ext(self, module_str):
3347 3347 """Unload an IPython extension by its module name."""
3348 3348 self.extension_manager.unload_extension(module_str)
3349 3349
3350 3350 def magic_reload_ext(self, module_str):
3351 3351 """Reload an IPython extension by its module name."""
3352 3352 self.extension_manager.reload_extension(module_str)
3353 3353
3354 3354 @testdec.skip_doctest
3355 3355 def magic_install_profiles(self, s):
3356 3356 """Install the default IPython profiles into the .ipython dir.
3357 3357
3358 3358 If the default profiles have already been installed, they will not
3359 3359 be overwritten. You can force overwriting them by using the ``-o``
3360 3360 option::
3361 3361
3362 3362 In [1]: %install_profiles -o
3363 3363 """
3364 3364 if '-o' in s:
3365 3365 overwrite = True
3366 3366 else:
3367 3367 overwrite = False
3368 3368 from IPython.config import profile
3369 3369 profile_dir = os.path.split(profile.__file__)[0]
3370 3370 ipython_dir = self.ipython_dir
3371 3371 files = os.listdir(profile_dir)
3372 3372
3373 3373 to_install = []
3374 3374 for f in files:
3375 3375 if f.startswith('ipython_config'):
3376 3376 src = os.path.join(profile_dir, f)
3377 3377 dst = os.path.join(ipython_dir, f)
3378 3378 if (not os.path.isfile(dst)) or overwrite:
3379 3379 to_install.append((f, src, dst))
3380 3380 if len(to_install)>0:
3381 3381 print "Installing profiles to: ", ipython_dir
3382 3382 for (f, src, dst) in to_install:
3383 3383 shutil.copy(src, dst)
3384 3384 print " %s" % f
3385 3385
3386 3386 def magic_install_default_config(self, s):
3387 3387 """Install IPython's default config file into the .ipython dir.
3388 3388
3389 3389 If the default config file (:file:`ipython_config.py`) is already
3390 3390 installed, it will not be overwritten. You can force overwriting
3391 3391 by using the ``-o`` option::
3392 3392
3393 3393 In [1]: %install_default_config
3394 3394 """
3395 3395 if '-o' in s:
3396 3396 overwrite = True
3397 3397 else:
3398 3398 overwrite = False
3399 3399 from IPython.config import default
3400 3400 config_dir = os.path.split(default.__file__)[0]
3401 3401 ipython_dir = self.ipython_dir
3402 3402 default_config_file_name = 'ipython_config.py'
3403 3403 src = os.path.join(config_dir, default_config_file_name)
3404 3404 dst = os.path.join(ipython_dir, default_config_file_name)
3405 3405 if (not os.path.isfile(dst)) or overwrite:
3406 3406 shutil.copy(src, dst)
3407 3407 print "Installing default config file: %s" % dst
3408 3408
3409 3409 # Pylab support: simple wrappers that activate pylab, load gui input
3410 3410 # handling and modify slightly %run
3411 3411
3412 3412 @testdec.skip_doctest
3413 3413 def _pylab_magic_run(self, parameter_s=''):
3414 3414 Magic.magic_run(self, parameter_s,
3415 3415 runner=mpl_runner(self.shell.safe_execfile))
3416 3416
3417 3417 _pylab_magic_run.__doc__ = magic_run.__doc__
3418 3418
3419 3419 @testdec.skip_doctest
3420 3420 def magic_pylab(self, s):
3421 3421 """Load numpy and matplotlib to work interactively.
3422 3422
3423 3423 %pylab [GUINAME]
3424 3424
3425 3425 This function lets you activate pylab (matplotlib, numpy and
3426 3426 interactive support) at any point during an IPython session.
3427 3427
3428 3428 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3429 3429 pylab and mlab, as well as all names from numpy and pylab.
3430 3430
3431 3431 Parameters
3432 3432 ----------
3433 3433 guiname : optional
3434 3434 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk' or
3435 3435 'tk'). If given, the corresponding Matplotlib backend is used,
3436 3436 otherwise matplotlib's default (which you can override in your
3437 3437 matplotlib config file) is used.
3438 3438
3439 3439 Examples
3440 3440 --------
3441 3441 In this case, where the MPL default is TkAgg:
3442 3442 In [2]: %pylab
3443 3443
3444 3444 Welcome to pylab, a matplotlib-based Python environment.
3445 3445 Backend in use: TkAgg
3446 3446 For more information, type 'help(pylab)'.
3447 3447
3448 3448 But you can explicitly request a different backend:
3449 3449 In [3]: %pylab qt
3450 3450
3451 3451 Welcome to pylab, a matplotlib-based Python environment.
3452 3452 Backend in use: Qt4Agg
3453 3453 For more information, type 'help(pylab)'.
3454 3454 """
3455 3455 self.shell.enable_pylab(s)
3456 3456
3457 3457 def magic_tb(self, s):
3458 3458 """Print the last traceback with the currently active exception mode.
3459 3459
3460 3460 See %xmode for changing exception reporting modes."""
3461 3461 self.shell.showtraceback()
3462 3462
3463 3463 @testdec.skip_doctest
3464 3464 def magic_precision(self, s=''):
3465 3465 """Set floating point precision for pretty printing.
3466 3466
3467 3467 Can set either integer precision or a format string.
3468 3468
3469 3469 If numpy has been imported and precision is an int,
3470 3470 numpy display precision will also be set, via ``numpy.set_printoptions``.
3471 3471
3472 3472 If no argument is given, defaults will be restored.
3473 3473
3474 3474 Examples
3475 3475 --------
3476 3476 ::
3477 3477
3478 3478 In [1]: from math import pi
3479 3479
3480 3480 In [2]: %precision 3
3481 3481 Out[2]: '%.3f'
3482 3482
3483 3483 In [3]: pi
3484 3484 Out[3]: 3.142
3485 3485
3486 3486 In [4]: %precision %i
3487 3487 Out[4]: '%i'
3488 3488
3489 3489 In [5]: pi
3490 3490 Out[5]: 3
3491 3491
3492 3492 In [6]: %precision %e
3493 3493 Out[6]: '%e'
3494 3494
3495 3495 In [7]: pi**10
3496 3496 Out[7]: 9.364805e+04
3497 3497
3498 3498 In [8]: %precision
3499 3499 Out[8]: '%r'
3500 3500
3501 3501 In [9]: pi**10
3502 3502 Out[9]: 93648.047476082982
3503 3503
3504 3504 """
3505 3505
3506 3506 ptformatter = self.shell.display_formatter.formatters['text/plain']
3507 3507 ptformatter.float_precision = s
3508 3508 return ptformatter.float_format
3509 3509
3510 3510 # end Magic
@@ -1,507 +1,508 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Usage information for the main IPython applications.
3 3 """
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2008-2010 The IPython Development Team
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 #
8 8 # Distributed under the terms of the BSD License. The full license is in
9 9 # the file COPYING, distributed as part of this software.
10 10 #-----------------------------------------------------------------------------
11 11
12 12 import sys
13 13 from IPython.core import release
14 14
15 15 cl_usage = """\
16 16 ipython [options] [files]
17 17
18 18 IPython: an enhanced interactive Python shell.
19 19
20 20 A Python shell with automatic history (input and output), dynamic object
21 21 introspection, easier configuration, command completion, access to the
22 22 system shell and more. IPython can also be embedded in running programs.
23 23
24 24 If invoked with no options, it executes all the files listed in sequence
25 25 and exits, use -i to enter interactive mode after running the files. Files
26 26 ending in .py will be treated as normal Python, but files ending in .ipy
27 27 can contain special IPython syntax (magic commands, shell expansions, etc.)
28 28
29 29 Please note that some of the configuration options are not available at the
30 30 command line, simply because they are not practical here. Look into your
31 31 ipython_config.py configuration file for details on those.
32 32
33 This file typically installed in the $HOME/.ipython directory. For Windows
34 users, $HOME resolves to C:\\Documents and Settings\\YourUserName in most
35 instances.
33 This file is typically installed in the IPYTHON_DIR directory. For Linux
34 users, this will be $HOME/.config/ipython, and for other users it will be
35 $HOME/.ipython. For Windows users, $HOME resolves to C:\\Documents and
36 Settings\\YourUserName in most instances.
36 37
37 38 In IPython's documentation, we will refer to this directory as IPYTHON_DIR,
38 39 you can change its default location by setting any path you want in this
39 40 environment variable.
40 41
41 42 For more information, see the manual available in HTML and PDF in your
42 43 installation, or online at http://ipython.scipy.org.
43 44 """
44 45
45 46 interactive_usage = """
46 47 IPython -- An enhanced Interactive Python
47 48 =========================================
48 49
49 50 IPython offers a combination of convenient shell features, special commands
50 51 and a history mechanism for both input (command history) and output (results
51 52 caching, similar to Mathematica). It is intended to be a fully compatible
52 53 replacement for the standard Python interpreter, while offering vastly
53 54 improved functionality and flexibility.
54 55
55 56 At your system command line, type 'ipython -help' to see the command line
56 57 options available. This document only describes interactive features.
57 58
58 59 Warning: IPython relies on the existence of a global variable called __IP which
59 60 controls the shell itself. If you redefine __IP to anything, bizarre behavior
60 61 will quickly occur.
61 62
62 63 MAIN FEATURES
63 64
64 65 * Access to the standard Python help. As of Python 2.1, a help system is
65 66 available with access to object docstrings and the Python manuals. Simply
66 67 type 'help' (no quotes) to access it.
67 68
68 69 * Magic commands: type %magic for information on the magic subsystem.
69 70
70 71 * System command aliases, via the %alias command or the ipythonrc config file.
71 72
72 73 * Dynamic object information:
73 74
74 75 Typing ?word or word? prints detailed information about an object. If
75 76 certain strings in the object are too long (docstrings, code, etc.) they get
76 77 snipped in the center for brevity.
77 78
78 79 Typing ??word or word?? gives access to the full information without
79 80 snipping long strings. Long strings are sent to the screen through the less
80 81 pager if longer than the screen, printed otherwise.
81 82
82 83 The ?/?? system gives access to the full source code for any object (if
83 84 available), shows function prototypes and other useful information.
84 85
85 86 If you just want to see an object's docstring, type '%pdoc object' (without
86 87 quotes, and without % if you have automagic on).
87 88
88 89 Both %pdoc and ?/?? give you access to documentation even on things which are
89 90 not explicitely defined. Try for example typing {}.get? or after import os,
90 91 type os.path.abspath??. The magic functions %pdef, %source and %file operate
91 92 similarly.
92 93
93 94 * Completion in the local namespace, by typing TAB at the prompt.
94 95
95 96 At any time, hitting tab will complete any available python commands or
96 97 variable names, and show you a list of the possible completions if there's
97 98 no unambiguous one. It will also complete filenames in the current directory.
98 99
99 100 This feature requires the readline and rlcomplete modules, so it won't work
100 101 if your Python lacks readline support (such as under Windows).
101 102
102 103 * Search previous command history in two ways (also requires readline):
103 104
104 105 - Start typing, and then use Ctrl-p (previous,up) and Ctrl-n (next,down) to
105 106 search through only the history items that match what you've typed so
106 107 far. If you use Ctrl-p/Ctrl-n at a blank prompt, they just behave like
107 108 normal arrow keys.
108 109
109 110 - Hit Ctrl-r: opens a search prompt. Begin typing and the system searches
110 111 your history for lines that match what you've typed so far, completing as
111 112 much as it can.
112 113
113 114 * Persistent command history across sessions (readline required).
114 115
115 116 * Logging of input with the ability to save and restore a working session.
116 117
117 118 * System escape with !. Typing !ls will run 'ls' in the current directory.
118 119
119 120 * The reload command does a 'deep' reload of a module: changes made to the
120 121 module since you imported will actually be available without having to exit.
121 122
122 123 * Verbose and colored exception traceback printouts. See the magic xmode and
123 124 xcolor functions for details (just type %magic).
124 125
125 126 * Input caching system:
126 127
127 128 IPython offers numbered prompts (In/Out) with input and output caching. All
128 129 input is saved and can be retrieved as variables (besides the usual arrow
129 130 key recall).
130 131
131 132 The following GLOBAL variables always exist (so don't overwrite them!):
132 133 _i: stores previous input.
133 134 _ii: next previous.
134 135 _iii: next-next previous.
135 136 _ih : a list of all input _ih[n] is the input from line n.
136 137
137 138 Additionally, global variables named _i<n> are dynamically created (<n>
138 139 being the prompt counter), such that _i<n> == _ih[<n>]
139 140
140 141 For example, what you typed at prompt 14 is available as _i14 and _ih[14].
141 142
142 143 You can create macros which contain multiple input lines from this history,
143 144 for later re-execution, with the %macro function.
144 145
145 146 The history function %hist allows you to see any part of your input history
146 147 by printing a range of the _i variables. Note that inputs which contain
147 148 magic functions (%) appear in the history with a prepended comment. This is
148 149 because they aren't really valid Python code, so you can't exec them.
149 150
150 151 * Output caching system:
151 152
152 153 For output that is returned from actions, a system similar to the input
153 154 cache exists but using _ instead of _i. Only actions that produce a result
154 155 (NOT assignments, for example) are cached. If you are familiar with
155 156 Mathematica, IPython's _ variables behave exactly like Mathematica's %
156 157 variables.
157 158
158 159 The following GLOBAL variables always exist (so don't overwrite them!):
159 160 _ (one underscore): previous output.
160 161 __ (two underscores): next previous.
161 162 ___ (three underscores): next-next previous.
162 163
163 164 Global variables named _<n> are dynamically created (<n> being the prompt
164 165 counter), such that the result of output <n> is always available as _<n>.
165 166
166 167 Finally, a global dictionary named _oh exists with entries for all lines
167 168 which generated output.
168 169
169 170 * Directory history:
170 171
171 172 Your history of visited directories is kept in the global list _dh, and the
172 173 magic %cd command can be used to go to any entry in that list.
173 174
174 175 * Auto-parentheses and auto-quotes (adapted from Nathan Gray's LazyPython)
175 176
176 177 1. Auto-parentheses
177 178 Callable objects (i.e. functions, methods, etc) can be invoked like
178 179 this (notice the commas between the arguments):
179 180 >>> callable_ob arg1, arg2, arg3
180 181 and the input will be translated to this:
181 182 --> callable_ob(arg1, arg2, arg3)
182 183 You can force auto-parentheses by using '/' as the first character
183 184 of a line. For example:
184 185 >>> /globals # becomes 'globals()'
185 186 Note that the '/' MUST be the first character on the line! This
186 187 won't work:
187 188 >>> print /globals # syntax error
188 189
189 190 In most cases the automatic algorithm should work, so you should
190 191 rarely need to explicitly invoke /. One notable exception is if you
191 192 are trying to call a function with a list of tuples as arguments (the
192 193 parenthesis will confuse IPython):
193 194 In [1]: zip (1,2,3),(4,5,6) # won't work
194 195 but this will work:
195 196 In [2]: /zip (1,2,3),(4,5,6)
196 197 ------> zip ((1,2,3),(4,5,6))
197 198 Out[2]= [(1, 4), (2, 5), (3, 6)]
198 199
199 200 IPython tells you that it has altered your command line by
200 201 displaying the new command line preceded by -->. e.g.:
201 202 In [18]: callable list
202 203 -------> callable (list)
203 204
204 205 2. Auto-Quoting
205 206 You can force auto-quoting of a function's arguments by using ',' as
206 207 the first character of a line. For example:
207 208 >>> ,my_function /home/me # becomes my_function("/home/me")
208 209
209 210 If you use ';' instead, the whole argument is quoted as a single
210 211 string (while ',' splits on whitespace):
211 212 >>> ,my_function a b c # becomes my_function("a","b","c")
212 213 >>> ;my_function a b c # becomes my_function("a b c")
213 214
214 215 Note that the ',' MUST be the first character on the line! This
215 216 won't work:
216 217 >>> x = ,my_function /home/me # syntax error
217 218 """
218 219
219 220 interactive_usage_min = """\
220 221 An enhanced console for Python.
221 222 Some of its features are:
222 223 - Readline support if the readline library is present.
223 224 - Tab completion in the local namespace.
224 225 - Logging of input, see command-line options.
225 226 - System shell escape via ! , eg !ls.
226 227 - Magic commands, starting with a % (like %ls, %pwd, %cd, etc.)
227 228 - Keeps track of locally defined variables via %who, %whos.
228 229 - Show object information with a ? eg ?x or x? (use ?? for more info).
229 230 """
230 231
231 232 quick_reference = r"""
232 233 IPython -- An enhanced Interactive Python - Quick Reference Card
233 234 ================================================================
234 235
235 236 obj?, obj?? : Get help, or more help for object (also works as
236 237 ?obj, ??obj).
237 238 ?foo.*abc* : List names in 'foo' containing 'abc' in them.
238 239 %magic : Information about IPython's 'magic' % functions.
239 240
240 241 Magic functions are prefixed by %, and typically take their arguments without
241 242 parentheses, quotes or even commas for convenience.
242 243
243 244 Example magic function calls:
244 245
245 246 %alias d ls -F : 'd' is now an alias for 'ls -F'
246 247 alias d ls -F : Works if 'alias' not a python name
247 248 alist = %alias : Get list of aliases to 'alist'
248 249 cd /usr/share : Obvious. cd -<tab> to choose from visited dirs.
249 250 %cd?? : See help AND source for magic %cd
250 251
251 252 System commands:
252 253
253 254 !cp a.txt b/ : System command escape, calls os.system()
254 255 cp a.txt b/ : after %rehashx, most system commands work without !
255 256 cp ${f}.txt $bar : Variable expansion in magics and system commands
256 257 files = !ls /usr : Capture sytem command output
257 258 files.s, files.l, files.n: "a b c", ['a','b','c'], 'a\nb\nc'
258 259
259 260 History:
260 261
261 262 _i, _ii, _iii : Previous, next previous, next next previous input
262 263 _i4, _ih[2:5] : Input history line 4, lines 2-4
263 264 exec _i81 : Execute input history line #81 again
264 265 %rep 81 : Edit input history line #81
265 266 _, __, ___ : previous, next previous, next next previous output
266 267 _dh : Directory history
267 268 _oh : Output history
268 269 %hist : Command history. '%hist -g foo' search history for 'foo'
269 270
270 271 Autocall:
271 272
272 273 f 1,2 : f(1,2)
273 274 /f 1,2 : f(1,2) (forced autoparen)
274 275 ,f 1 2 : f("1","2")
275 276 ;f 1 2 : f("1 2")
276 277
277 278 Remember: TAB completion works in many contexts, not just file names
278 279 or python names.
279 280
280 281 The following magic functions are currently available:
281 282
282 283 """
283 284
284 285 gui_reference = """\
285 286 ===============================
286 287 The graphical IPython console
287 288 ===============================
288 289
289 290 This console is designed to emulate the look, feel and workflow of a terminal
290 291 environment, while adding a number of enhancements that are simply not possible
291 292 in a real terminal, such as inline syntax highlighting, true multiline editing,
292 293 inline graphics and much more.
293 294
294 295 This quick reference document contains the basic information you'll need to
295 296 know to make the most efficient use of it. For the various command line
296 297 options available at startup, type ``--help`` at the command line.
297 298
298 299
299 300 Multiline editing
300 301 =================
301 302
302 303 The graphical console is capable of true multiline editing, but it also tries
303 304 to behave intuitively like a terminal when possible. If you are used to
304 305 IPyhton's old terminal behavior, you should find the transition painless, and
305 306 once you learn a few basic keybindings it will be a much more efficient
306 307 environment.
307 308
308 309 For single expressions or indented blocks, the console behaves almost like the
309 310 terminal IPython: single expressions are immediately evaluated, and indented
310 311 blocks are evaluated once a single blank line is entered::
311 312
312 313 In [1]: print "Hello IPython!" # Enter was pressed at the end of the line
313 314 Hello IPython!
314 315
315 316 In [2]: for i in range(10):
316 317 ...: print i,
317 318 ...:
318 319 0 1 2 3 4 5 6 7 8 9
319 320
320 321 If you want to enter more than one expression in a single input block
321 322 (something not possible in the terminal), you can use ``Control-Enter`` at the
322 323 end of your first line instead of ``Enter``. At that point the console goes
323 324 into 'cell mode' and even if your inputs are not indented, it will continue
324 325 accepting arbitrarily many lines until either you enter an extra blank line or
325 326 you hit ``Shift-Enter`` (the key binding that forces execution). When a
326 327 multiline cell is entered, IPython analyzes it and executes its code producing
327 328 an ``Out[n]`` prompt only for the last expression in it, while the rest of the
328 329 cell is executed as if it was a script. An example should clarify this::
329 330
330 331 In [3]: x=1 # Hit C-Enter here
331 332 ...: y=2 # from now on, regular Enter is sufficient
332 333 ...: z=3
333 334 ...: x**2 # This does *not* produce an Out[] value
334 335 ...: x+y+z # Only the last expression does
335 336 ...:
336 337 Out[3]: 6
337 338
338 339 The behavior where an extra blank line forces execution is only active if you
339 340 are actually typing at the keyboard each line, and is meant to make it mimic
340 341 the IPython terminal behavior. If you paste a long chunk of input (for example
341 342 a long script copied form an editor or web browser), it can contain arbitrarily
342 343 many intermediate blank lines and they won't cause any problems. As always,
343 344 you can then make it execute by appending a blank line *at the end* or hitting
344 345 ``Shift-Enter`` anywhere within the cell.
345 346
346 347 With the up arrow key, you can retrieve previous blocks of input that contain
347 348 multiple lines. You can move inside of a multiline cell like you would in any
348 349 text editor. When you want it executed, the simplest thing to do is to hit the
349 350 force execution key, ``Shift-Enter`` (though you can also navigate to the end
350 351 and append a blank line by using ``Enter`` twice).
351 352
352 353 If you've edited a multiline cell and accidentally navigate out of it with the
353 354 up or down arrow keys, IPython will clear the cell and replace it with the
354 355 contents of the one above or below that you navigated to. If this was an
355 356 accident and you want to retrieve the cell you were editing, use the Undo
356 357 keybinding, ``Control-z``.
357 358
358 359
359 360 Key bindings
360 361 ============
361 362
362 363 The IPython console supports most of the basic Emacs line-oriented keybindings,
363 364 in addition to some of its own.
364 365
365 366 The keybinding prefixes mean:
366 367
367 368 - ``C``: Control
368 369 - ``S``: Shift
369 370 - ``M``: Meta (typically the Alt key)
370 371
371 372 The keybindings themselves are:
372 373
373 374 - ``Enter``: insert new line (may cause execution, see above).
374 375 - ``C-Enter``: force new line, *never* causes execution.
375 376 - ``S-Enter``: *force* execution regardless of where cursor is, no newline added.
376 377 - ``C-c``: copy highlighted text to clipboard (prompts are automatically stripped).
377 378 - ``C-S-c``: copy highlighted text to clipboard (prompts are not stripped).
378 379 - ``C-v``: paste text from clipboard.
379 380 - ``C-z``: undo (retrieves lost text if you move out of a cell with the arrows).
380 381 - ``C-S-z``: redo.
381 382 - ``C-o``: move to 'other' area, between pager and terminal.
382 383 - ``C-l``: clear terminal.
383 384 - ``C-a``: go to beginning of line.
384 385 - ``C-e``: go to end of line.
385 386 - ``C-k``: kill from cursor to the end of the line.
386 387 - ``C-y``: yank (paste)
387 388 - ``C-p``: previous line (like up arrow)
388 389 - ``C-n``: next line (like down arrow)
389 390 - ``C-f``: forward (like right arrow)
390 391 - ``C-b``: back (like left arrow)
391 392 - ``C-d``: delete next character.
392 393 - ``M-<``: move to the beginning of the input region.
393 394 - ``M->``: move to the end of the input region.
394 395 - ``M-d``: delete next word.
395 396 - ``M-Backspace``: delete previous word.
396 397 - ``C-.``: force a kernel restart (a confirmation dialog appears).
397 398 - ``C-+``: increase font size.
398 399 - ``C--``: decrease font size.
399 400
400 401 The IPython pager
401 402 =================
402 403
403 404 IPython will show long blocks of text from many sources using a builtin pager.
404 405 You can control where this pager appears with the ``--paging`` command-line
405 406 flag:
406 407
407 408 - default: it is overlaid on top of the main terminal. You must quit the pager
408 409 to get back to the terminal (similar to how a pager such as ``less`` or
409 410 ``more`` works).
410 411
411 412 - vertical: the console is made double-tall, and the pager appears on the
412 413 bottom area when needed. You can view its contents while using the terminal.
413 414
414 415 - horizontal: the console is made double-wide, and the pager appears on the
415 416 right area when needed. You can view its contents while using the terminal.
416 417
417 418 If you use the vertical or horizontal paging modes, you can navigate between
418 419 terminal and pager as follows:
419 420
420 421 - Tab key: goes from pager to terminal (but not the other way around).
421 422 - Control-o: goes from one to another always.
422 423 - Mouse: click on either.
423 424
424 425 In all cases, the ``q`` or ``Escape`` keys quit the pager (when used with the
425 426 focus on the pager area).
426 427
427 428
428 429 Running subprocesses
429 430 ====================
430 431
431 432 The graphical IPython console uses the ``pexpect`` module to run subprocesses
432 433 when you type ``!command``. This has a number of advantages (true asynchronous
433 434 output from subprocesses as well as very robust termination of rogue
434 435 subprocesses with ``Control-C``), as well as some limitations. The main
435 436 limitation is that you can *not* interact back with the subprocess, so anything
436 437 that invokes a pager or expects you to type input into it will block and hang
437 438 (you can kill it with ``Control-C``).
438 439
439 440 We have provided as magics ``%less`` to page files (aliased to ``%more``),
440 441 ``%clear`` to clear the terminal, and ``%man`` on Linux/OSX. These cover the
441 442 most common commands you'd want to call in your subshell and that would cause
442 443 problems if invoked via ``!cmd``, but you need to be aware of this limitation.
443 444
444 445 Display
445 446 =======
446 447
447 448 The IPython console can now display objects in a variety of formats, including
448 449 HTML, PNG and SVG. This is accomplished using the display functions in
449 450 ``IPython.core.display``::
450 451
451 452 In [4]: from IPython.core.display import display, display_html
452 453
453 454 In [5]: from IPython.core.display import display_png, display_svg
454 455
455 456 Python objects can simply be passed to these functions and the appropriate
456 457 representations will be displayed in the console as long as the objects know
457 458 how to compute those representations. The easiest way of teaching objects how
458 459 to format themselves in various representations is to define special methods
459 460 such as: ``__html``, ``__svg__`` and ``__png__``. IPython's display formatters
460 461 can also be given custom formatter functions for various types::
461 462
462 463 In [6]: ip = get_ipython()
463 464
464 465 In [7]: html_formatter = ip.display_formatter.formatters['text/html']
465 466
466 467 In [8]: html_formatter.for_type(Foo, foo_to_html)
467 468
468 469 For further details, see ``IPython.core.formatters``.
469 470
470 471 Inline matplotlib graphics
471 472 ==========================
472 473
473 474 The IPython console is capable of displaying matplotlib figures inline, in SVG
474 475 format. If started with the ``--pylab inline`` flag, then all figures are
475 476 rendered inline automatically. If started with ``--pylab`` or ``--pylab <your
476 477 backend>``, then a GUI backend will be used, but IPython's ``display()`` and
477 478 ``getfigs()`` functions can be used to view plots inline::
478 479
479 480 In [9]: display(*getfigs()) # display all figures inline
480 481
481 482 In[10]: display(*getfigs(1,2)) # display figures 1 and 2 inline
482 483 """
483 484
484 485
485 486 quick_guide = """\
486 487 ? -> Introduction and overview of IPython's features.
487 488 %quickref -> Quick reference.
488 489 help -> Python's own help system.
489 490 object? -> Details about 'object', use 'object??' for extra details.
490 491 """
491 492
492 493 gui_note = """\
493 494 %guiref -> A brief reference about the graphical user interface.
494 495 """
495 496
496 497 default_banner_parts = [
497 498 'Python %s\n' % (sys.version.split('\n')[0],),
498 499 'Type "copyright", "credits" or "license" for more information.\n\n',
499 500 'IPython %s -- An enhanced Interactive Python.\n' % (release.version,),
500 501 quick_guide
501 502 ]
502 503
503 504 default_gui_banner_parts = default_banner_parts + [gui_note]
504 505
505 506 default_banner = ''.join(default_banner_parts)
506 507
507 508 default_gui_banner = ''.join(default_gui_banner_parts)
@@ -1,374 +1,374 b''
1 1 # encoding: utf-8
2 2 # -*- test-case-name: IPython.kernel.test.test_controllerservice -*-
3 3
4 4 """A Twisted Service for the IPython Controller.
5 5
6 6 The IPython Controller:
7 7
8 8 * Listens for Engines to connect and then manages access to those engines.
9 9 * Listens for clients and passes commands from client to the Engines.
10 10 * Exposes an asynchronous interfaces to the Engines which themselves can block.
11 11 * Acts as a gateway to the Engines.
12 12
13 13 The design of the controller is somewhat abstract to allow flexibility in how
14 14 the controller is presented to clients. This idea is that there is a basic
15 15 ControllerService class that allows engines to connect to it. But, this
16 16 basic class has no client interfaces. To expose client interfaces developers
17 17 provide an adapter that makes the ControllerService look like something. For
18 18 example, one client interface might support task farming and another might
19 19 support interactive usage. The important thing is that by using interfaces
20 20 and adapters, a single controller can be accessed from multiple interfaces.
21 21 Furthermore, by adapting various client interfaces to various network
22 22 protocols, each client interface can be exposed to multiple network protocols.
23 23 See multiengine.py for an example of how to adapt the ControllerService
24 24 to a client interface.
25 25 """
26 26
27 27 __docformat__ = "restructuredtext en"
28 28
29 29 #-------------------------------------------------------------------------------
30 30 # Copyright (C) 2008 The IPython Development Team
31 31 #
32 32 # Distributed under the terms of the BSD License. The full license is in
33 33 # the file COPYING, distributed as part of this software.
34 34 #-------------------------------------------------------------------------------
35 35
36 36 #-------------------------------------------------------------------------------
37 37 # Imports
38 38 #-------------------------------------------------------------------------------
39 39
40 40 import os
41 41
42 42 from twisted.application import service
43 43 from twisted.python import log
44 44 from zope.interface import Interface, implements, Attribute
45 45
46 46 from IPython.kernel.engineservice import \
47 47 IEngineCore, \
48 48 IEngineSerialized, \
49 49 IEngineQueued
50 50
51 51 from IPython.utils.path import get_ipython_dir
52 52 from IPython.kernel import codeutil
53 53
54 54 #-------------------------------------------------------------------------------
55 55 # Interfaces for the Controller
56 56 #-------------------------------------------------------------------------------
57 57
58 58 class IControllerCore(Interface):
59 59 """Basic methods any controller must have.
60 60
61 61 This is basically the aspect of the controller relevant to the
62 62 engines and does not assume anything about how the engines will
63 63 be presented to a client.
64 64 """
65 65
66 66 engines = Attribute("A dict of engine ids and engine instances.")
67 67
68 68 def register_engine(remoteEngine, id=None, ip=None, port=None,
69 69 pid=None):
70 70 """Register new remote engine.
71 71
72 72 The controller can use the ip, port, pid of the engine to do useful things
73 73 like kill the engines.
74 74
75 75 :Parameters:
76 76 remoteEngine
77 77 An implementer of IEngineCore, IEngineSerialized and IEngineQueued.
78 78 id : int
79 79 Requested id.
80 80 ip : str
81 81 IP address the engine is running on.
82 82 port : int
83 83 Port the engine is on.
84 84 pid : int
85 85 pid of the running engine.
86 86
87 87 :Returns: A dict of {'id':id} and possibly other key, value pairs.
88 88 """
89 89
90 90 def unregister_engine(id):
91 91 """Handle a disconnecting engine.
92 92
93 93 :Parameters:
94 94 id
95 95 The integer engine id of the engine to unregister.
96 96 """
97 97
98 98 def on_register_engine_do(f, includeID, *args, **kwargs):
99 99 """Call ``f(*args, **kwargs)`` when an engine is registered.
100 100
101 101 :Parameters:
102 102 includeID : int
103 103 If True the first argument to f will be the id of the engine.
104 104 """
105 105
106 106 def on_unregister_engine_do(f, includeID, *args, **kwargs):
107 107 """Call ``f(*args, **kwargs)`` when an engine is unregistered.
108 108
109 109 :Parameters:
110 110 includeID : int
111 111 If True the first argument to f will be the id of the engine.
112 112 """
113 113
114 114 def on_register_engine_do_not(f):
115 115 """Stop calling f on engine registration"""
116 116
117 117 def on_unregister_engine_do_not(f):
118 118 """Stop calling f on engine unregistration"""
119 119
120 120 def on_n_engines_registered_do(n, f, *arg, **kwargs):
121 121 """Call f(*args, **kwargs) the first time the nth engine registers."""
122 122
123 123 class IControllerBase(IControllerCore):
124 124 """The basic controller interface."""
125 125 pass
126 126
127 127
128 128 #-------------------------------------------------------------------------------
129 129 # Implementation of the ControllerService
130 130 #-------------------------------------------------------------------------------
131 131
132 132 class ControllerService(object, service.Service):
133 133 """A basic Controller represented as a Twisted Service.
134 134
135 135 This class doesn't implement any client notification mechanism. That
136 136 is up to adapted subclasses.
137 137 """
138 138
139 139 # I also pick up the IService interface by inheritance from service.Service
140 140 implements(IControllerBase)
141 141 name = 'ControllerService'
142 142
143 143 def __init__(self, maxEngines=511, saveIDs=False):
144 144 self.saveIDs = saveIDs
145 145 self.engines = {}
146 146 self.availableIDs = range(maxEngines,-1,-1) # [511,...,0]
147 147 self._onRegister = []
148 148 self._onUnregister = []
149 149 self._onNRegistered = []
150 150
151 151 #---------------------------------------------------------------------------
152 152 # Methods used to save the engine info to a log file
153 153 #---------------------------------------------------------------------------
154 154
155 155 def _buildEngineInfoString(self, id, ip, port, pid):
156 156 if id is None:
157 157 id = -99
158 158 if ip is None:
159 159 ip = "-99"
160 160 if port is None:
161 161 port = -99
162 162 if pid is None:
163 163 pid = -99
164 164 return "Engine Info: %d %s %d %d" % (id, ip , port, pid)
165 165
166 166 def _logEngineInfo(self, id, ip, port, pid):
167 167 log.msg(self._buildEngineInfoString(id,ip,port,pid))
168 168
169 169 def _getEngineInfoLogFile(self):
170 170 # Store all logs inside the ipython directory
171 171 ipdir = get_ipython_dir()
172 172 pjoin = os.path.join
173 173 logdir_base = pjoin(ipdir,'log')
174 174 if not os.path.isdir(logdir_base):
175 175 os.makedirs(logdir_base)
176 176 logfile = os.path.join(logdir_base,'ipcontroller-%s-engine-info.log' % os.getpid())
177 177 return logfile
178 178
179 179 def _logEngineInfoToFile(self, id, ip, port, pid):
180 180 """Log info about an engine to a log file.
181 181
182 182 When an engine registers with a ControllerService, the ControllerService
183 183 saves information about the engine to a log file. That information
184 184 can be useful for various purposes, such as killing hung engines, etc.
185 185
186 186 This method takes the assigned id, ip/port and pid of the engine
187 187 and saves it to a file of the form:
188 188
189 ~/.ipython/log/ipcontroller-###-engine-info.log
189 IPYTHON_DIR/log/ipcontroller-###-engine-info.log
190 190
191 191 where ### is the pid of the controller.
192 192
193 193 Each line of this file has the form:
194 194
195 195 Engine Info: ip ip port pid
196 196
197 197 If any of the entries are not known, they are replaced by -99.
198 198 """
199 199
200 200 fname = self._getEngineInfoLogFile()
201 201 f = open(fname, 'a')
202 202 s = self._buildEngineInfoString(id,ip,port,pid)
203 203 f.write(s + '\n')
204 204 f.close()
205 205
206 206 #---------------------------------------------------------------------------
207 207 # IControllerCore methods
208 208 #---------------------------------------------------------------------------
209 209
210 210 def register_engine(self, remoteEngine, id=None,
211 211 ip=None, port=None, pid=None):
212 212 """Register new engine connection"""
213 213
214 214 # What happens if these assertions fail?
215 215 assert IEngineCore.providedBy(remoteEngine), \
216 216 "engine passed to register_engine doesn't provide IEngineCore"
217 217 assert IEngineSerialized.providedBy(remoteEngine), \
218 218 "engine passed to register_engine doesn't provide IEngineSerialized"
219 219 assert IEngineQueued.providedBy(remoteEngine), \
220 220 "engine passed to register_engine doesn't provide IEngineQueued"
221 221 assert isinstance(id, int) or id is None, \
222 222 "id to register_engine must be an integer or None"
223 223 assert isinstance(ip, str) or ip is None, \
224 224 "ip to register_engine must be a string or None"
225 225 assert isinstance(port, int) or port is None, \
226 226 "port to register_engine must be an integer or None"
227 227 assert isinstance(pid, int) or pid is None, \
228 228 "pid to register_engine must be an integer or None"
229 229
230 230 desiredID = id
231 231 if desiredID in self.engines.keys():
232 232 desiredID = None
233 233
234 234 if desiredID in self.availableIDs:
235 235 getID = desiredID
236 236 self.availableIDs.remove(desiredID)
237 237 else:
238 238 getID = self.availableIDs.pop()
239 239 remoteEngine.id = getID
240 240 remoteEngine.service = self
241 241 self.engines[getID] = remoteEngine
242 242
243 243 # Log the Engine Information for monitoring purposes
244 244 self._logEngineInfoToFile(getID, ip, port, pid)
245 245
246 246 msg = "registered engine with id: %i" %getID
247 247 log.msg(msg)
248 248
249 249 for i in range(len(self._onRegister)):
250 250 (f,args,kwargs,ifid) = self._onRegister[i]
251 251 try:
252 252 if ifid:
253 253 f(getID, *args, **kwargs)
254 254 else:
255 255 f(*args, **kwargs)
256 256 except:
257 257 self._onRegister.pop(i)
258 258
259 259 # Call functions when the nth engine is registered and them remove them
260 260 for i, (n, f, args, kwargs) in enumerate(self._onNRegistered):
261 261 if len(self.engines.keys()) == n:
262 262 try:
263 263 try:
264 264 f(*args, **kwargs)
265 265 except:
266 266 log.msg("Function %r failed when the %ith engine registered" % (f, n))
267 267 finally:
268 268 self._onNRegistered.pop(i)
269 269
270 270 return {'id':getID}
271 271
272 272 def unregister_engine(self, id):
273 273 """Unregister engine by id."""
274 274
275 275 assert isinstance(id, int) or id is None, \
276 276 "id to unregister_engine must be an integer or None"
277 277
278 278 msg = "unregistered engine with id: %i" %id
279 279 log.msg(msg)
280 280 try:
281 281 del self.engines[id]
282 282 except KeyError:
283 283 log.msg("engine with id %i was not registered" % id)
284 284 else:
285 285 if not self.saveIDs:
286 286 self.availableIDs.append(id)
287 287 # Sort to assign lower ids first
288 288 self.availableIDs.sort(reverse=True)
289 289 else:
290 290 log.msg("preserving id %i" %id)
291 291
292 292 for i in range(len(self._onUnregister)):
293 293 (f,args,kwargs,ifid) = self._onUnregister[i]
294 294 try:
295 295 if ifid:
296 296 f(id, *args, **kwargs)
297 297 else:
298 298 f(*args, **kwargs)
299 299 except:
300 300 self._onUnregister.pop(i)
301 301
302 302 def on_register_engine_do(self, f, includeID, *args, **kwargs):
303 303 assert callable(f), "f must be callable"
304 304 self._onRegister.append((f,args,kwargs,includeID))
305 305
306 306 def on_unregister_engine_do(self, f, includeID, *args, **kwargs):
307 307 assert callable(f), "f must be callable"
308 308 self._onUnregister.append((f,args,kwargs,includeID))
309 309
310 310 def on_register_engine_do_not(self, f):
311 311 for i in range(len(self._onRegister)):
312 312 g = self._onRegister[i][0]
313 313 if f == g:
314 314 self._onRegister.pop(i)
315 315 return
316 316
317 317 def on_unregister_engine_do_not(self, f):
318 318 for i in range(len(self._onUnregister)):
319 319 g = self._onUnregister[i][0]
320 320 if f == g:
321 321 self._onUnregister.pop(i)
322 322 return
323 323
324 324 def on_n_engines_registered_do(self, n, f, *args, **kwargs):
325 325 if len(self.engines.keys()) >= n:
326 326 f(*args, **kwargs)
327 327 else:
328 328 self._onNRegistered.append((n,f,args,kwargs))
329 329
330 330
331 331 #-------------------------------------------------------------------------------
332 332 # Base class for adapting controller to different client APIs
333 333 #-------------------------------------------------------------------------------
334 334
335 335 class ControllerAdapterBase(object):
336 336 """All Controller adapters should inherit from this class.
337 337
338 338 This class provides a wrapped version of the IControllerBase interface that
339 339 can be used to easily create new custom controllers. Subclasses of this
340 340 will provide a full implementation of IControllerBase.
341 341
342 342 This class doesn't implement any client notification mechanism. That
343 343 is up to subclasses.
344 344 """
345 345
346 346 implements(IControllerBase)
347 347
348 348 def __init__(self, controller):
349 349 self.controller = controller
350 350 # Needed for IControllerCore
351 351 self.engines = self.controller.engines
352 352
353 353 def register_engine(self, remoteEngine, id=None,
354 354 ip=None, port=None, pid=None):
355 355 return self.controller.register_engine(remoteEngine,
356 356 id, ip, port, pid)
357 357
358 358 def unregister_engine(self, id):
359 359 return self.controller.unregister_engine(id)
360 360
361 361 def on_register_engine_do(self, f, includeID, *args, **kwargs):
362 362 return self.controller.on_register_engine_do(f, includeID, *args, **kwargs)
363 363
364 364 def on_unregister_engine_do(self, f, includeID, *args, **kwargs):
365 365 return self.controller.on_unregister_engine_do(f, includeID, *args, **kwargs)
366 366
367 367 def on_register_engine_do_not(self, f):
368 368 return self.controller.on_register_engine_do_not(f)
369 369
370 370 def on_unregister_engine_do_not(self, f):
371 371 return self.controller.on_unregister_engine_do_not(f)
372 372
373 373 def on_n_engines_registered_do(self, n, f, *args, **kwargs):
374 374 return self.controller.on_n_engines_registered_do(n, f, *args, **kwargs)
@@ -1,271 +1,271 b''
1 1 #!/usr/bin/env python
2 2 # encoding: utf-8
3 3 """
4 4 The IPython controller application.
5 5 """
6 6
7 7 #-----------------------------------------------------------------------------
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9 #
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 from __future__ import with_statement
19 19
20 20 import copy
21 21 import sys
22 22
23 23 from twisted.application import service
24 24 from twisted.internet import reactor
25 25 from twisted.python import log
26 26
27 27 from IPython.config.loader import Config
28 28 from IPython.kernel import controllerservice
29 29 from IPython.kernel.clusterdir import (
30 30 ApplicationWithClusterDir,
31 31 ClusterDirConfigLoader
32 32 )
33 33 from IPython.kernel.fcutil import FCServiceFactory, FURLError
34 34 from IPython.utils.traitlets import Instance, Unicode
35 35
36 36
37 37 #-----------------------------------------------------------------------------
38 38 # Module level variables
39 39 #-----------------------------------------------------------------------------
40 40
41 41
42 42 #: The default config file name for this application
43 43 default_config_file_name = u'ipcontroller_config.py'
44 44
45 45
46 46 _description = """Start the IPython controller for parallel computing.
47 47
48 48 The IPython controller provides a gateway between the IPython engines and
49 49 clients. The controller needs to be started before the engines and can be
50 50 configured using command line options or using a cluster directory. Cluster
51 51 directories contain config, log and security files and are usually located in
52 your .ipython directory and named as "cluster_<profile>". See the --profile
52 your ipython directory and named as "cluster_<profile>". See the --profile
53 53 and --cluster-dir options for details.
54 54 """
55 55
56 56 #-----------------------------------------------------------------------------
57 57 # Default interfaces
58 58 #-----------------------------------------------------------------------------
59 59
60 60 # The default client interfaces for FCClientServiceFactory.interfaces
61 61 default_client_interfaces = Config()
62 62 default_client_interfaces.Task.interface_chain = [
63 63 'IPython.kernel.task.ITaskController',
64 64 'IPython.kernel.taskfc.IFCTaskController'
65 65 ]
66 66
67 67 default_client_interfaces.Task.furl_file = 'ipcontroller-tc.furl'
68 68
69 69 default_client_interfaces.MultiEngine.interface_chain = [
70 70 'IPython.kernel.multiengine.IMultiEngine',
71 71 'IPython.kernel.multienginefc.IFCSynchronousMultiEngine'
72 72 ]
73 73
74 74 default_client_interfaces.MultiEngine.furl_file = u'ipcontroller-mec.furl'
75 75
76 76 # Make this a dict we can pass to Config.__init__ for the default
77 77 default_client_interfaces = dict(copy.deepcopy(default_client_interfaces.items()))
78 78
79 79
80 80
81 81 # The default engine interfaces for FCEngineServiceFactory.interfaces
82 82 default_engine_interfaces = Config()
83 83 default_engine_interfaces.Default.interface_chain = [
84 84 'IPython.kernel.enginefc.IFCControllerBase'
85 85 ]
86 86
87 87 default_engine_interfaces.Default.furl_file = u'ipcontroller-engine.furl'
88 88
89 89 # Make this a dict we can pass to Config.__init__ for the default
90 90 default_engine_interfaces = dict(copy.deepcopy(default_engine_interfaces.items()))
91 91
92 92
93 93 #-----------------------------------------------------------------------------
94 94 # Service factories
95 95 #-----------------------------------------------------------------------------
96 96
97 97
98 98 class FCClientServiceFactory(FCServiceFactory):
99 99 """A Foolscap implementation of the client services."""
100 100
101 101 cert_file = Unicode(u'ipcontroller-client.pem', config=True)
102 102 interfaces = Instance(klass=Config, kw=default_client_interfaces,
103 103 allow_none=False, config=True)
104 104
105 105
106 106 class FCEngineServiceFactory(FCServiceFactory):
107 107 """A Foolscap implementation of the engine services."""
108 108
109 109 cert_file = Unicode(u'ipcontroller-engine.pem', config=True)
110 110 interfaces = Instance(klass=dict, kw=default_engine_interfaces,
111 111 allow_none=False, config=True)
112 112
113 113
114 114 #-----------------------------------------------------------------------------
115 115 # Command line options
116 116 #-----------------------------------------------------------------------------
117 117
118 118
119 119 class IPControllerAppConfigLoader(ClusterDirConfigLoader):
120 120
121 121 def _add_arguments(self):
122 122 super(IPControllerAppConfigLoader, self)._add_arguments()
123 123 paa = self.parser.add_argument
124 124 # Client config
125 125 paa('--client-ip',
126 126 type=str, dest='FCClientServiceFactory.ip',
127 127 help='The IP address or hostname the controller will listen on for '
128 128 'client connections.',
129 129 metavar='FCClientServiceFactory.ip')
130 130 paa('--client-port',
131 131 type=int, dest='FCClientServiceFactory.port',
132 132 help='The port the controller will listen on for client connections. '
133 133 'The default is to use 0, which will autoselect an open port.',
134 134 metavar='FCClientServiceFactory.port')
135 135 paa('--client-location',), dict(
136 136 type=str, dest='FCClientServiceFactory.location',
137 137 help='The hostname or IP that clients should connect to. This does '
138 138 'not control which interface the controller listens on. Instead, this '
139 139 'determines the hostname/IP that is listed in the FURL, which is how '
140 140 'clients know where to connect. Useful if the controller is listening '
141 141 'on multiple interfaces.',
142 142 metavar='FCClientServiceFactory.location')
143 143 # Engine config
144 144 paa('--engine-ip',
145 145 type=str, dest='FCEngineServiceFactory.ip',
146 146 help='The IP address or hostname the controller will listen on for '
147 147 'engine connections.',
148 148 metavar='FCEngineServiceFactory.ip')
149 149 paa('--engine-port',
150 150 type=int, dest='FCEngineServiceFactory.port',
151 151 help='The port the controller will listen on for engine connections. '
152 152 'The default is to use 0, which will autoselect an open port.',
153 153 metavar='FCEngineServiceFactory.port')
154 154 paa('--engine-location',
155 155 type=str, dest='FCEngineServiceFactory.location',
156 156 help='The hostname or IP that engines should connect to. This does '
157 157 'not control which interface the controller listens on. Instead, this '
158 158 'determines the hostname/IP that is listed in the FURL, which is how '
159 159 'engines know where to connect. Useful if the controller is listening '
160 160 'on multiple interfaces.',
161 161 metavar='FCEngineServiceFactory.location')
162 162 # Global config
163 163 paa('--log-to-file',
164 164 action='store_true', dest='Global.log_to_file',
165 165 help='Log to a file in the log directory (default is stdout)')
166 166 paa('-r','--reuse-furls',
167 167 action='store_true', dest='Global.reuse_furls',
168 168 help='Try to reuse all FURL files. If this is not set all FURL files '
169 169 'are deleted before the controller starts. This must be set if '
170 170 'specific ports are specified by --engine-port or --client-port.')
171 171 paa('--no-secure',
172 172 action='store_false', dest='Global.secure',
173 173 help='Turn off SSL encryption for all connections.')
174 174 paa('--secure',
175 175 action='store_true', dest='Global.secure',
176 176 help='Turn off SSL encryption for all connections.')
177 177
178 178
179 179 #-----------------------------------------------------------------------------
180 180 # The main application
181 181 #-----------------------------------------------------------------------------
182 182
183 183
184 184 class IPControllerApp(ApplicationWithClusterDir):
185 185
186 186 name = u'ipcontroller'
187 187 description = _description
188 188 command_line_loader = IPControllerAppConfigLoader
189 189 default_config_file_name = default_config_file_name
190 190 auto_create_cluster_dir = True
191 191
192 192 def create_default_config(self):
193 193 super(IPControllerApp, self).create_default_config()
194 194 # Don't set defaults for Global.secure or Global.reuse_furls
195 195 # as those are set in a component.
196 196 self.default_config.Global.import_statements = []
197 197 self.default_config.Global.clean_logs = True
198 198
199 199 def pre_construct(self):
200 200 super(IPControllerApp, self).pre_construct()
201 201 c = self.master_config
202 202 # The defaults for these are set in FCClientServiceFactory and
203 203 # FCEngineServiceFactory, so we only set them here if the global
204 204 # options have be set to override the class level defaults.
205 205 if hasattr(c.Global, 'reuse_furls'):
206 206 c.FCClientServiceFactory.reuse_furls = c.Global.reuse_furls
207 207 c.FCEngineServiceFactory.reuse_furls = c.Global.reuse_furls
208 208 del c.Global.reuse_furls
209 209 if hasattr(c.Global, 'secure'):
210 210 c.FCClientServiceFactory.secure = c.Global.secure
211 211 c.FCEngineServiceFactory.secure = c.Global.secure
212 212 del c.Global.secure
213 213
214 214 def construct(self):
215 215 # This is the working dir by now.
216 216 sys.path.insert(0, '')
217 217
218 218 self.start_logging()
219 219 self.import_statements()
220 220
221 221 # Create the service hierarchy
222 222 self.main_service = service.MultiService()
223 223 # The controller service
224 224 controller_service = controllerservice.ControllerService()
225 225 controller_service.setServiceParent(self.main_service)
226 226 # The client tub and all its refereceables
227 227 try:
228 228 csfactory = FCClientServiceFactory(config=self.master_config, adaptee=controller_service)
229 229 except FURLError, e:
230 230 log.err(e)
231 231 self.exit(0)
232 232 client_service = csfactory.create()
233 233 client_service.setServiceParent(self.main_service)
234 234 # The engine tub
235 235 try:
236 236 esfactory = FCEngineServiceFactory(config=self.master_config, adaptee=controller_service)
237 237 except FURLError, e:
238 238 log.err(e)
239 239 self.exit(0)
240 240 engine_service = esfactory.create()
241 241 engine_service.setServiceParent(self.main_service)
242 242
243 243 def import_statements(self):
244 244 statements = self.master_config.Global.import_statements
245 245 for s in statements:
246 246 try:
247 247 log.msg("Executing statement: '%s'" % s)
248 248 exec s in globals(), locals()
249 249 except:
250 250 log.msg("Error running statement: %s" % s)
251 251
252 252 def start_app(self):
253 253 # Start the controller service.
254 254 self.main_service.startService()
255 255 # Write the .pid file overwriting old ones. This allow multiple
256 256 # controllers to clober each other. But Windows is not cleaning
257 257 # these up properly.
258 258 self.write_pid_file(overwrite=True)
259 259 # Add a trigger to delete the .pid file upon shutting down.
260 260 reactor.addSystemEventTrigger('during','shutdown', self.remove_pid_file)
261 261 reactor.run()
262 262
263 263
264 264 def launch_new_instance():
265 265 """Create and run the IPython controller"""
266 266 app = IPControllerApp()
267 267 app.start()
268 268
269 269
270 270 if __name__ == '__main__':
271 271 launch_new_instance()
@@ -1,242 +1,242 b''
1 1 #!/usr/bin/env python
2 2 # encoding: utf-8
3 3 """
4 4 The IPython controller application
5 5 """
6 6
7 7 #-----------------------------------------------------------------------------
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9 #
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import os
19 19 import sys
20 20
21 21 from twisted.application import service
22 22 from twisted.internet import reactor
23 23 from twisted.python import log
24 24
25 25 from IPython.kernel.clusterdir import (
26 26 ApplicationWithClusterDir,
27 27 ClusterDirConfigLoader
28 28 )
29 29 from IPython.kernel.engineconnector import EngineConnector
30 30 from IPython.kernel.engineservice import EngineService
31 31 from IPython.kernel.fcutil import Tub
32 32 from IPython.utils.importstring import import_item
33 33
34 34 #-----------------------------------------------------------------------------
35 35 # Module level variables
36 36 #-----------------------------------------------------------------------------
37 37
38 38 #: The default config file name for this application
39 39 default_config_file_name = u'ipengine_config.py'
40 40
41 41
42 42 mpi4py_init = """from mpi4py import MPI as mpi
43 43 mpi.size = mpi.COMM_WORLD.Get_size()
44 44 mpi.rank = mpi.COMM_WORLD.Get_rank()
45 45 """
46 46
47 47
48 48 pytrilinos_init = """from PyTrilinos import Epetra
49 49 class SimpleStruct:
50 50 pass
51 51 mpi = SimpleStruct()
52 52 mpi.rank = 0
53 53 mpi.size = 0
54 54 """
55 55
56 56
57 57 _description = """Start an IPython engine for parallel computing.\n\n
58 58
59 59 IPython engines run in parallel and perform computations on behalf of a client
60 60 and controller. A controller needs to be started before the engines. The
61 61 engine can be configured using command line options or using a cluster
62 62 directory. Cluster directories contain config, log and security files and are
63 usually located in your .ipython directory and named as "cluster_<profile>".
63 usually located in your ipython directory and named as "cluster_<profile>".
64 64 See the --profile and --cluster-dir options for details.
65 65 """
66 66
67 67 #-----------------------------------------------------------------------------
68 68 # Command line options
69 69 #-----------------------------------------------------------------------------
70 70
71 71
72 72 class IPEngineAppConfigLoader(ClusterDirConfigLoader):
73 73
74 74 def _add_arguments(self):
75 75 super(IPEngineAppConfigLoader, self)._add_arguments()
76 76 paa = self.parser.add_argument
77 77 # Controller config
78 78 paa('--furl-file',
79 79 type=unicode, dest='Global.furl_file',
80 80 help='The full location of the file containing the FURL of the '
81 81 'controller. If this is not given, the FURL file must be in the '
82 82 'security directory of the cluster directory. This location is '
83 83 'resolved using the --profile and --app-dir options.',
84 84 metavar='Global.furl_file')
85 85 # MPI
86 86 paa('--mpi',
87 87 type=str, dest='MPI.use',
88 88 help='How to enable MPI (mpi4py, pytrilinos, or empty string to disable).',
89 89 metavar='MPI.use')
90 90 # Global config
91 91 paa('--log-to-file',
92 92 action='store_true', dest='Global.log_to_file',
93 93 help='Log to a file in the log directory (default is stdout)')
94 94
95 95
96 96 #-----------------------------------------------------------------------------
97 97 # Main application
98 98 #-----------------------------------------------------------------------------
99 99
100 100
101 101 class IPEngineApp(ApplicationWithClusterDir):
102 102
103 103 name = u'ipengine'
104 104 description = _description
105 105 command_line_loader = IPEngineAppConfigLoader
106 106 default_config_file_name = default_config_file_name
107 107 auto_create_cluster_dir = True
108 108
109 109 def create_default_config(self):
110 110 super(IPEngineApp, self).create_default_config()
111 111
112 112 # The engine should not clean logs as we don't want to remove the
113 113 # active log files of other running engines.
114 114 self.default_config.Global.clean_logs = False
115 115
116 116 # Global config attributes
117 117 self.default_config.Global.exec_lines = []
118 118 self.default_config.Global.shell_class = 'IPython.kernel.core.interpreter.Interpreter'
119 119
120 120 # Configuration related to the controller
121 121 # This must match the filename (path not included) that the controller
122 122 # used for the FURL file.
123 123 self.default_config.Global.furl_file_name = u'ipcontroller-engine.furl'
124 124 # If given, this is the actual location of the controller's FURL file.
125 125 # If not, this is computed using the profile, app_dir and furl_file_name
126 126 self.default_config.Global.furl_file = u''
127 127
128 128 # The max number of connection attemps and the initial delay between
129 129 # those attemps.
130 130 self.default_config.Global.connect_delay = 0.1
131 131 self.default_config.Global.connect_max_tries = 15
132 132
133 133 # MPI related config attributes
134 134 self.default_config.MPI.use = ''
135 135 self.default_config.MPI.mpi4py = mpi4py_init
136 136 self.default_config.MPI.pytrilinos = pytrilinos_init
137 137
138 138 def post_load_command_line_config(self):
139 139 pass
140 140
141 141 def pre_construct(self):
142 142 super(IPEngineApp, self).pre_construct()
143 143 self.find_cont_furl_file()
144 144
145 145 def find_cont_furl_file(self):
146 146 """Set the furl file.
147 147
148 148 Here we don't try to actually see if it exists for is valid as that
149 149 is hadled by the connection logic.
150 150 """
151 151 config = self.master_config
152 152 # Find the actual controller FURL file
153 153 if not config.Global.furl_file:
154 154 try_this = os.path.join(
155 155 config.Global.cluster_dir,
156 156 config.Global.security_dir,
157 157 config.Global.furl_file_name
158 158 )
159 159 config.Global.furl_file = try_this
160 160
161 161 def construct(self):
162 162 # This is the working dir by now.
163 163 sys.path.insert(0, '')
164 164
165 165 self.start_mpi()
166 166 self.start_logging()
167 167
168 168 # Create the underlying shell class and EngineService
169 169 shell_class = import_item(self.master_config.Global.shell_class)
170 170 self.engine_service = EngineService(shell_class, mpi=mpi)
171 171
172 172 self.exec_lines()
173 173
174 174 # Create the service hierarchy
175 175 self.main_service = service.MultiService()
176 176 self.engine_service.setServiceParent(self.main_service)
177 177 self.tub_service = Tub()
178 178 self.tub_service.setServiceParent(self.main_service)
179 179 # This needs to be called before the connection is initiated
180 180 self.main_service.startService()
181 181
182 182 # This initiates the connection to the controller and calls
183 183 # register_engine to tell the controller we are ready to do work
184 184 self.engine_connector = EngineConnector(self.tub_service)
185 185
186 186 log.msg("Using furl file: %s" % self.master_config.Global.furl_file)
187 187
188 188 reactor.callWhenRunning(self.call_connect)
189 189
190 190 def call_connect(self):
191 191 d = self.engine_connector.connect_to_controller(
192 192 self.engine_service,
193 193 self.master_config.Global.furl_file,
194 194 self.master_config.Global.connect_delay,
195 195 self.master_config.Global.connect_max_tries
196 196 )
197 197
198 198 def handle_error(f):
199 199 log.msg('Error connecting to controller. This usually means that '
200 200 'i) the controller was not started, ii) a firewall was blocking '
201 201 'the engine from connecting to the controller or iii) the engine '
202 202 ' was not pointed at the right FURL file:')
203 203 log.msg(f.getErrorMessage())
204 204 reactor.callLater(0.1, reactor.stop)
205 205
206 206 d.addErrback(handle_error)
207 207
208 208 def start_mpi(self):
209 209 global mpi
210 210 mpikey = self.master_config.MPI.use
211 211 mpi_import_statement = self.master_config.MPI.get(mpikey, None)
212 212 if mpi_import_statement is not None:
213 213 try:
214 214 self.log.info("Initializing MPI:")
215 215 self.log.info(mpi_import_statement)
216 216 exec mpi_import_statement in globals()
217 217 except:
218 218 mpi = None
219 219 else:
220 220 mpi = None
221 221
222 222 def exec_lines(self):
223 223 for line in self.master_config.Global.exec_lines:
224 224 try:
225 225 log.msg("Executing statement: '%s'" % line)
226 226 self.engine_service.execute(line)
227 227 except:
228 228 log.msg("Error executing statement: %s" % line)
229 229
230 230 def start_app(self):
231 231 reactor.run()
232 232
233 233
234 234 def launch_new_instance():
235 235 """Create and run the IPython controller"""
236 236 app = IPEngineApp()
237 237 app.start()
238 238
239 239
240 240 if __name__ == '__main__':
241 241 launch_new_instance()
242 242
@@ -1,345 +1,383 b''
1 1 # encoding: utf-8
2 2 """
3 3 Utilities for path handling.
4 4 """
5 5
6 6 #-----------------------------------------------------------------------------
7 7 # Copyright (C) 2008-2009 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 import os
18 18 import sys
19 19
20 20 import IPython
21 21 from IPython.utils.process import system
22 22 from IPython.utils.importstring import import_item
23 23
24 24 #-----------------------------------------------------------------------------
25 25 # Code
26 26 #-----------------------------------------------------------------------------
27 27
28 28
29 29 def _get_long_path_name(path):
30 30 """Dummy no-op."""
31 31 return path
32 32
33 33
34 34 if sys.platform == 'win32':
35 35 def _get_long_path_name(path):
36 36 """Get a long path name (expand ~) on Windows using ctypes.
37 37
38 38 Examples
39 39 --------
40 40
41 41 >>> get_long_path_name('c:\\docume~1')
42 42 u'c:\\\\Documents and Settings'
43 43
44 44 """
45 45 try:
46 46 import ctypes
47 47 except ImportError:
48 48 raise ImportError('you need to have ctypes installed for this to work')
49 49 _GetLongPathName = ctypes.windll.kernel32.GetLongPathNameW
50 50 _GetLongPathName.argtypes = [ctypes.c_wchar_p, ctypes.c_wchar_p,
51 51 ctypes.c_uint ]
52 52
53 53 buf = ctypes.create_unicode_buffer(260)
54 54 rv = _GetLongPathName(path, buf, 260)
55 55 if rv == 0 or rv > 260:
56 56 return path
57 57 else:
58 58 return buf.value
59 59
60 60
61 61 def get_long_path_name(path):
62 62 """Expand a path into its long form.
63 63
64 64 On Windows this expands any ~ in the paths. On other platforms, it is
65 65 a null operation.
66 66 """
67 67 return _get_long_path_name(path)
68 68
69 69
70 70 def get_py_filename(name):
71 71 """Return a valid python filename in the current directory.
72 72
73 73 If the given name is not a file, it adds '.py' and searches again.
74 74 Raises IOError with an informative message if the file isn't found."""
75 75
76 76 name = os.path.expanduser(name)
77 77 if not os.path.isfile(name) and not name.endswith('.py'):
78 78 name += '.py'
79 79 if os.path.isfile(name):
80 80 return name
81 81 else:
82 82 raise IOError,'File `%s` not found.' % name
83 83
84 84
85 85 def filefind(filename, path_dirs=None):
86 86 """Find a file by looking through a sequence of paths.
87 87
88 88 This iterates through a sequence of paths looking for a file and returns
89 89 the full, absolute path of the first occurence of the file. If no set of
90 90 path dirs is given, the filename is tested as is, after running through
91 91 :func:`expandvars` and :func:`expanduser`. Thus a simple call::
92 92
93 93 filefind('myfile.txt')
94 94
95 95 will find the file in the current working dir, but::
96 96
97 97 filefind('~/myfile.txt')
98 98
99 99 Will find the file in the users home directory. This function does not
100 100 automatically try any paths, such as the cwd or the user's home directory.
101 101
102 102 Parameters
103 103 ----------
104 104 filename : str
105 105 The filename to look for.
106 106 path_dirs : str, None or sequence of str
107 107 The sequence of paths to look for the file in. If None, the filename
108 108 need to be absolute or be in the cwd. If a string, the string is
109 109 put into a sequence and the searched. If a sequence, walk through
110 110 each element and join with ``filename``, calling :func:`expandvars`
111 111 and :func:`expanduser` before testing for existence.
112 112
113 113 Returns
114 114 -------
115 115 Raises :exc:`IOError` or returns absolute path to file.
116 116 """
117 117
118 118 # If paths are quoted, abspath gets confused, strip them...
119 119 filename = filename.strip('"').strip("'")
120 120 # If the input is an absolute path, just check it exists
121 121 if os.path.isabs(filename) and os.path.isfile(filename):
122 122 return filename
123 123
124 124 if path_dirs is None:
125 125 path_dirs = ("",)
126 126 elif isinstance(path_dirs, basestring):
127 127 path_dirs = (path_dirs,)
128 128
129 129 for path in path_dirs:
130 130 if path == '.': path = os.getcwd()
131 131 testname = expand_path(os.path.join(path, filename))
132 132 if os.path.isfile(testname):
133 133 return os.path.abspath(testname)
134 134
135 135 raise IOError("File %r does not exist in any of the search paths: %r" %
136 136 (filename, path_dirs) )
137 137
138 138
139 139 class HomeDirError(Exception):
140 140 pass
141 141
142 142
143 143 def get_home_dir():
144 144 """Return the closest possible equivalent to a 'home' directory.
145 145
146 146 * On POSIX, we try $HOME.
147 147 * On Windows we try:
148 148 - %HOMESHARE%
149 149 - %HOMEDRIVE\%HOMEPATH%
150 150 - %USERPROFILE%
151 151 - Registry hack for My Documents
152 152 - %HOME%: rare, but some people with unix-like setups may have defined it
153 153 * On Dos C:\
154 154
155 155 Currently only Posix and NT are implemented, a HomeDirError exception is
156 156 raised for all other OSes.
157 157 """
158 158
159 159 isdir = os.path.isdir
160 160 env = os.environ
161 161
162 162 # first, check py2exe distribution root directory for _ipython.
163 163 # This overrides all. Normally does not exist.
164 164
165 165 if hasattr(sys, "frozen"): #Is frozen by py2exe
166 166 if '\\library.zip\\' in IPython.__file__.lower():#libraries compressed to zip-file
167 167 root, rest = IPython.__file__.lower().split('library.zip')
168 168 else:
169 169 root=os.path.join(os.path.split(IPython.__file__)[0],"../../")
170 170 root=os.path.abspath(root).rstrip('\\')
171 171 if isdir(os.path.join(root, '_ipython')):
172 172 os.environ["IPYKITROOT"] = root
173 173 return root.decode(sys.getfilesystemencoding())
174 174
175 175 if os.name == 'posix':
176 176 # Linux, Unix, AIX, OS X
177 177 try:
178 178 homedir = env['HOME']
179 179 except KeyError:
180 180 raise HomeDirError('Undefined $HOME, IPython cannot proceed.')
181 181 else:
182 182 return homedir.decode(sys.getfilesystemencoding())
183 183 elif os.name == 'nt':
184 184 # Now for win9x, XP, Vista, 7?
185 185 # For some strange reason all of these return 'nt' for os.name.
186 186 # First look for a network home directory. This will return the UNC
187 187 # path (\\server\\Users\%username%) not the mapped path (Z:\). This
188 188 # is needed when running IPython on cluster where all paths have to
189 189 # be UNC.
190 190 try:
191 191 homedir = env['HOMESHARE']
192 192 except KeyError:
193 193 pass
194 194 else:
195 195 if isdir(homedir):
196 196 return homedir.decode(sys.getfilesystemencoding())
197 197
198 198 # Now look for a local home directory
199 199 try:
200 200 homedir = os.path.join(env['HOMEDRIVE'],env['HOMEPATH'])
201 201 except KeyError:
202 202 pass
203 203 else:
204 204 if isdir(homedir):
205 205 return homedir.decode(sys.getfilesystemencoding())
206 206
207 207 # Now the users profile directory
208 208 try:
209 209 homedir = os.path.join(env['USERPROFILE'])
210 210 except KeyError:
211 211 pass
212 212 else:
213 213 if isdir(homedir):
214 214 return homedir.decode(sys.getfilesystemencoding())
215 215
216 216 # Use the registry to get the 'My Documents' folder.
217 217 try:
218 218 import _winreg as wreg
219 219 key = wreg.OpenKey(
220 220 wreg.HKEY_CURRENT_USER,
221 221 "Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders"
222 222 )
223 223 homedir = wreg.QueryValueEx(key,'Personal')[0]
224 224 key.Close()
225 225 except:
226 226 pass
227 227 else:
228 228 if isdir(homedir):
229 229 return homedir.decode(sys.getfilesystemencoding())
230 230
231 231 # A user with a lot of unix tools in win32 may have defined $HOME.
232 232 # Try this as a last ditch option.
233 233 try:
234 234 homedir = env['HOME']
235 235 except KeyError:
236 236 pass
237 237 else:
238 238 if isdir(homedir):
239 239 return homedir.decode(sys.getfilesystemencoding())
240 240
241 241 # If all else fails, raise HomeDirError
242 242 raise HomeDirError('No valid home directory could be found')
243 243 elif os.name == 'dos':
244 244 # Desperate, may do absurd things in classic MacOS. May work under DOS.
245 245 return 'C:\\'.decode(sys.getfilesystemencoding())
246 246 else:
247 247 raise HomeDirError('No valid home directory could be found for your OS')
248 248
249 def get_xdg_dir():
250 """Return the XDG_CONFIG_HOME, if it is defined and exists, else None.
251
252 This is only for posix (Linux,Unix,OS X, etc) systems.
253 """
254
255 isdir = os.path.isdir
256 env = os.environ
257
258 if os.name == 'posix':
259 # Linux, Unix, AIX, OS X
260 # use ~/.config if not set OR empty
261 xdg = env.get("XDG_CONFIG_HOME", None) or os.path.join(get_home_dir(), '.config')
262 if xdg and isdir(xdg):
263 return xdg.decode(sys.getfilesystemencoding())
264
265 return None
266
249 267
250 268 def get_ipython_dir():
251 269 """Get the IPython directory for this platform and user.
252 270
253 271 This uses the logic in `get_home_dir` to find the home directory
254 272 and the adds .ipython to the end of the path.
255 273 """
274
275 env = os.environ
276 pjoin = os.path.join
277 exists = os.path.exists
278
256 279 ipdir_def = '.ipython'
280 xdg_def = 'ipython'
281
257 282 home_dir = get_home_dir()
283 xdg_dir = get_xdg_dir()
258 284 # import pdb; pdb.set_trace() # dbg
259 ipdir = os.environ.get(
260 'IPYTHON_DIR', os.environ.get(
261 'IPYTHONDIR', os.path.join(home_dir, ipdir_def)
262 )
263 )
285 ipdir = env.get('IPYTHON_DIR', env.get('IPYTHONDIR', None))
286 if ipdir is None:
287 # not set explicitly, use XDG_CONFIG_HOME or HOME
288 home_ipdir = pjoin(home_dir, ipdir_def)
289 if xdg_dir:
290 # use XDG, as long as the user isn't already
291 # using $HOME/.ipython and *not* XDG/ipython
292
293 xdg_ipdir = pjoin(xdg_dir, xdg_def)
294
295 if exists(xdg_ipdir) or not exists(home_ipdir):
296 ipdir = xdg_ipdir
297
298 if ipdir is None:
299 # not using XDG
300 ipdir = home_ipdir
301
264 302 return ipdir.decode(sys.getfilesystemencoding())
265 303
266 304
267 305 def get_ipython_package_dir():
268 306 """Get the base directory where IPython itself is installed."""
269 307 ipdir = os.path.dirname(IPython.__file__)
270 308 return ipdir.decode(sys.getfilesystemencoding())
271 309
272 310
273 311 def get_ipython_module_path(module_str):
274 312 """Find the path to an IPython module in this version of IPython.
275 313
276 314 This will always find the version of the module that is in this importable
277 315 IPython package. This will always return the path to the ``.py``
278 316 version of the module.
279 317 """
280 318 if module_str == 'IPython':
281 319 return os.path.join(get_ipython_package_dir(), '__init__.py')
282 320 mod = import_item(module_str)
283 321 the_path = mod.__file__.replace('.pyc', '.py')
284 322 the_path = the_path.replace('.pyo', '.py')
285 323 return the_path.decode(sys.getfilesystemencoding())
286 324
287 325
288 326 def expand_path(s):
289 327 """Expand $VARS and ~names in a string, like a shell
290 328
291 329 :Examples:
292 330
293 331 In [2]: os.environ['FOO']='test'
294 332
295 333 In [3]: expand_path('variable FOO is $FOO')
296 334 Out[3]: 'variable FOO is test'
297 335 """
298 336 # This is a pretty subtle hack. When expand user is given a UNC path
299 337 # on Windows (\\server\share$\%username%), os.path.expandvars, removes
300 338 # the $ to get (\\server\share\%username%). I think it considered $
301 339 # alone an empty var. But, we need the $ to remains there (it indicates
302 340 # a hidden share).
303 341 if os.name=='nt':
304 342 s = s.replace('$\\', 'IPYTHON_TEMP')
305 343 s = os.path.expandvars(os.path.expanduser(s))
306 344 if os.name=='nt':
307 345 s = s.replace('IPYTHON_TEMP', '$\\')
308 346 return s
309 347
310 348
311 349 def target_outdated(target,deps):
312 350 """Determine whether a target is out of date.
313 351
314 352 target_outdated(target,deps) -> 1/0
315 353
316 354 deps: list of filenames which MUST exist.
317 355 target: single filename which may or may not exist.
318 356
319 357 If target doesn't exist or is older than any file listed in deps, return
320 358 true, otherwise return false.
321 359 """
322 360 try:
323 361 target_time = os.path.getmtime(target)
324 362 except os.error:
325 363 return 1
326 364 for dep in deps:
327 365 dep_time = os.path.getmtime(dep)
328 366 if dep_time > target_time:
329 367 #print "For target",target,"Dep failed:",dep # dbg
330 368 #print "times (dep,tar):",dep_time,target_time # dbg
331 369 return 1
332 370 return 0
333 371
334 372
335 373 def target_update(target,deps,cmd):
336 374 """Update a target with a given command given a list of dependencies.
337 375
338 376 target_update(target,deps,cmd) -> runs cmd if target is outdated.
339 377
340 378 This is just a wrapper around target_outdated() which calls the given
341 379 command if target is outdated."""
342 380
343 381 if target_outdated(target,deps):
344 382 system(cmd)
345 383
@@ -1,272 +1,358 b''
1 1 # encoding: utf-8
2 2 """Tests for IPython.utils.path.py"""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2008 The IPython Development Team
6 6 #
7 7 # Distributed under the terms of the BSD License. The full license is in
8 8 # the file COPYING, distributed as part of this software.
9 9 #-----------------------------------------------------------------------------
10 10
11 11 #-----------------------------------------------------------------------------
12 12 # Imports
13 13 #-----------------------------------------------------------------------------
14 14
15 15 import os
16 16 import shutil
17 17 import sys
18 18 import tempfile
19 19
20 20 from os.path import join, abspath, split
21 21
22 22 import nose.tools as nt
23 23
24 24 from nose import with_setup
25 25
26 26 import IPython
27 27 from IPython.testing import decorators as dec
28 28 from IPython.testing.decorators import skip_if_not_win32, skip_win32
29 29 from IPython.utils import path
30 30
31 31 # Platform-dependent imports
32 32 try:
33 33 import _winreg as wreg
34 34 except ImportError:
35 35 #Fake _winreg module on none windows platforms
36 36 import new
37 37 sys.modules["_winreg"] = new.module("_winreg")
38 38 import _winreg as wreg
39 39 #Add entries that needs to be stubbed by the testing code
40 40 (wreg.OpenKey, wreg.QueryValueEx,) = (None, None)
41 41
42 42 #-----------------------------------------------------------------------------
43 43 # Globals
44 44 #-----------------------------------------------------------------------------
45 45 env = os.environ
46 46 TEST_FILE_PATH = split(abspath(__file__))[0]
47 47 TMP_TEST_DIR = tempfile.mkdtemp()
48 48 HOME_TEST_DIR = join(TMP_TEST_DIR, "home_test_dir")
49 XDG_TEST_DIR = join(HOME_TEST_DIR, "xdg_test_dir")
49 50 IP_TEST_DIR = join(HOME_TEST_DIR,'.ipython')
50 51 #
51 52 # Setup/teardown functions/decorators
52 53 #
53 54
54 55 def setup():
55 56 """Setup testenvironment for the module:
56 57
57 58 - Adds dummy home dir tree
58 59 """
59 60 # Do not mask exceptions here. In particular, catching WindowsError is a
60 61 # problem because that exception is only defined on Windows...
61 62 os.makedirs(IP_TEST_DIR)
63 os.makedirs(os.path.join(XDG_TEST_DIR, 'ipython'))
62 64
63 65
64 66 def teardown():
65 67 """Teardown testenvironment for the module:
66 68
67 69 - Remove dummy home dir tree
68 70 """
69 71 # Note: we remove the parent test dir, which is the root of all test
70 72 # subdirs we may have created. Use shutil instead of os.removedirs, so
71 73 # that non-empty directories are all recursively removed.
72 74 shutil.rmtree(TMP_TEST_DIR)
73 75
74 76
75 77 def setup_environment():
76 78 """Setup testenvironment for some functions that are tested
77 79 in this module. In particular this functions stores attributes
78 80 and other things that we need to stub in some test functions.
79 81 This needs to be done on a function level and not module level because
80 82 each testfunction needs a pristine environment.
81 83 """
82 84 global oldstuff, platformstuff
83 85 oldstuff = (env.copy(), os.name, path.get_home_dir, IPython.__file__)
84 86
85 87 if os.name == 'nt':
86 88 platformstuff = (wreg.OpenKey, wreg.QueryValueEx,)
87 89
88 90
89 91 def teardown_environment():
90 92 """Restore things that were remebered by the setup_environment function
91 93 """
92 94 (oldenv, os.name, get_home_dir, IPython.__file__,) = oldstuff
93 95
94 96 for key in env.keys():
95 97 if key not in oldenv:
96 98 del env[key]
97 99 env.update(oldenv)
98 100 if hasattr(sys, 'frozen'):
99 101 del sys.frozen
100 102 if os.name == 'nt':
101 103 (wreg.OpenKey, wreg.QueryValueEx,) = platformstuff
102 104
103 105 # Build decorator that uses the setup_environment/setup_environment
104 106 with_environment = with_setup(setup_environment, teardown_environment)
105 107
106 108
107 109 @skip_if_not_win32
108 110 @with_environment
109 111 def test_get_home_dir_1():
110 112 """Testcase for py2exe logic, un-compressed lib
111 113 """
112 114 sys.frozen = True
113 115
114 116 #fake filename for IPython.__init__
115 117 IPython.__file__ = abspath(join(HOME_TEST_DIR, "Lib/IPython/__init__.py"))
116 118
117 119 home_dir = path.get_home_dir()
118 120 nt.assert_equal(home_dir, abspath(HOME_TEST_DIR))
119 121
120 122
121 123 @skip_if_not_win32
122 124 @with_environment
123 125 def test_get_home_dir_2():
124 126 """Testcase for py2exe logic, compressed lib
125 127 """
126 128 sys.frozen = True
127 129 #fake filename for IPython.__init__
128 130 IPython.__file__ = abspath(join(HOME_TEST_DIR, "Library.zip/IPython/__init__.py")).lower()
129 131
130 132 home_dir = path.get_home_dir()
131 133 nt.assert_equal(home_dir, abspath(HOME_TEST_DIR).lower())
132 134
133 135
134 136 @with_environment
135 137 @skip_win32
136 138 def test_get_home_dir_3():
137 139 """Testcase $HOME is set, then use its value as home directory."""
138 140 env["HOME"] = HOME_TEST_DIR
139 141 home_dir = path.get_home_dir()
140 142 nt.assert_equal(home_dir, env["HOME"])
141 143
142 144
143 145 @with_environment
144 146 def test_get_home_dir_4():
145 147 """Testcase $HOME is not set, os=='posix'.
146 148 This should fail with HomeDirError"""
147 149
148 150 os.name = 'posix'
149 151 if 'HOME' in env: del env['HOME']
150 152 nt.assert_raises(path.HomeDirError, path.get_home_dir)
151 153
152 154
153 155 @skip_if_not_win32
154 156 @with_environment
155 157 def test_get_home_dir_5():
156 158 """Using HOMEDRIVE + HOMEPATH, os=='nt'.
157 159
158 160 HOMESHARE is missing.
159 161 """
160 162
161 163 os.name = 'nt'
162 164 env.pop('HOMESHARE', None)
163 165 env['HOMEDRIVE'], env['HOMEPATH'] = os.path.splitdrive(HOME_TEST_DIR)
164 166 home_dir = path.get_home_dir()
165 167 nt.assert_equal(home_dir, abspath(HOME_TEST_DIR))
166 168
167 169
168 170 @skip_if_not_win32
169 171 @with_environment
170 172 def test_get_home_dir_6():
171 173 """Using USERPROFILE, os=='nt'.
172 174
173 175 HOMESHARE, HOMEDRIVE, HOMEPATH are missing.
174 176 """
175 177
176 178 os.name = 'nt'
177 179 env.pop('HOMESHARE', None)
178 180 env.pop('HOMEDRIVE', None)
179 181 env.pop('HOMEPATH', None)
180 182 env["USERPROFILE"] = abspath(HOME_TEST_DIR)
181 183 home_dir = path.get_home_dir()
182 184 nt.assert_equal(home_dir, abspath(HOME_TEST_DIR))
183 185
184 186
185 187 @skip_if_not_win32
186 188 @with_environment
187 189 def test_get_home_dir_7():
188 190 """Using HOMESHARE, os=='nt'."""
189 191
190 192 os.name = 'nt'
191 193 env["HOMESHARE"] = abspath(HOME_TEST_DIR)
192 194 home_dir = path.get_home_dir()
193 195 nt.assert_equal(home_dir, abspath(HOME_TEST_DIR))
194 196
195 197 # Should we stub wreg fully so we can run the test on all platforms?
196 198 @skip_if_not_win32
197 199 @with_environment
198 200 def test_get_home_dir_8():
199 201 """Using registry hack for 'My Documents', os=='nt'
200 202
201 203 HOMESHARE, HOMEDRIVE, HOMEPATH, USERPROFILE and others are missing.
202 204 """
203 205 os.name = 'nt'
204 206 # Remove from stub environment all keys that may be set
205 207 for key in ['HOME', 'HOMESHARE', 'HOMEDRIVE', 'HOMEPATH', 'USERPROFILE']:
206 208 env.pop(key, None)
207 209
208 210 #Stub windows registry functions
209 211 def OpenKey(x, y):
210 212 class key:
211 213 def Close(self):
212 214 pass
213 215 return key()
214 216 def QueryValueEx(x, y):
215 217 return [abspath(HOME_TEST_DIR)]
216 218
217 219 wreg.OpenKey = OpenKey
218 220 wreg.QueryValueEx = QueryValueEx
219 221
220 222 home_dir = path.get_home_dir()
221 223 nt.assert_equal(home_dir, abspath(HOME_TEST_DIR))
222 224
223 225
224 226 @with_environment
225 227 def test_get_ipython_dir_1():
226 228 """test_get_ipython_dir_1, Testcase to see if we can call get_ipython_dir without Exceptions."""
227 229 env['IPYTHON_DIR'] = "someplace/.ipython"
228 230 ipdir = path.get_ipython_dir()
229 231 nt.assert_equal(ipdir, "someplace/.ipython")
230 232
231 233
232 234 @with_environment
233 235 def test_get_ipython_dir_2():
234 236 """test_get_ipython_dir_2, Testcase to see if we can call get_ipython_dir without Exceptions."""
235 237 path.get_home_dir = lambda : "someplace"
236 238 os.name = "posix"
237 239 env.pop('IPYTHON_DIR', None)
238 240 env.pop('IPYTHONDIR', None)
241 env.pop('XDG_CONFIG_HOME', None)
239 242 ipdir = path.get_ipython_dir()
240 243 nt.assert_equal(ipdir, os.path.join("someplace", ".ipython"))
241 244
245 @with_environment
246 def test_get_ipython_dir_3():
247 """test_get_ipython_dir_3, use XDG if defined, and .ipython doesn't exist."""
248 path.get_home_dir = lambda : "someplace"
249 os.name = "posix"
250 env.pop('IPYTHON_DIR', None)
251 env.pop('IPYTHONDIR', None)
252 env['XDG_CONFIG_HOME'] = XDG_TEST_DIR
253 ipdir = path.get_ipython_dir()
254 nt.assert_equal(ipdir, os.path.join(XDG_TEST_DIR, "ipython"))
255
256 @with_environment
257 def test_get_ipython_dir_4():
258 """test_get_ipython_dir_4, use XDG if both exist."""
259 path.get_home_dir = lambda : HOME_TEST_DIR
260 os.name = "posix"
261 env.pop('IPYTHON_DIR', None)
262 env.pop('IPYTHONDIR', None)
263 env['XDG_CONFIG_HOME'] = XDG_TEST_DIR
264 xdg_ipdir = os.path.join(XDG_TEST_DIR, "ipython")
265 ipdir = path.get_ipython_dir()
266 nt.assert_equal(ipdir, xdg_ipdir)
267
268 @with_environment
269 def test_get_ipython_dir_5():
270 """test_get_ipython_dir_5, use .ipython if exists and XDG defined, but doesn't exist."""
271 os.name = "posix"
272 env.pop('IPYTHON_DIR', None)
273 env.pop('IPYTHONDIR', None)
274 env['XDG_CONFIG_HOME'] = XDG_TEST_DIR
275 os.rmdir(os.path.join(XDG_TEST_DIR, 'ipython'))
276 ipdir = path.get_ipython_dir()
277 nt.assert_equal(ipdir, IP_TEST_DIR)
278
279 @with_environment
280 def test_get_ipython_dir_6():
281 """test_get_ipython_dir_6, use XDG if defined and neither exist."""
282 path.get_home_dir = lambda : 'somehome'
283 path.get_xdg_dir = lambda : 'somexdg'
284 os.name = "posix"
285 env.pop('IPYTHON_DIR', None)
286 env.pop('IPYTHONDIR', None)
287 xdg_ipdir = os.path.join("somexdg", "ipython")
288 ipdir = path.get_ipython_dir()
289 nt.assert_equal(ipdir, xdg_ipdir)
290
291 @with_environment
292 def test_get_xdg_dir_1():
293 """test_get_xdg_dir_1, check xdg_dir"""
294 reload(path)
295 path.get_home_dir = lambda : 'somewhere'
296 os.name = "posix"
297 env.pop('IPYTHON_DIR', None)
298 env.pop('IPYTHONDIR', None)
299 env.pop('XDG_CONFIG_HOME', None)
300
301 nt.assert_equal(path.get_xdg_dir(), os.path.join('somewhere', '.config'))
302
303
304 @with_environment
305 def test_get_xdg_dir_1():
306 """test_get_xdg_dir_1, check nonexistant xdg_dir"""
307 reload(path)
308 path.get_home_dir = lambda : HOME_TEST_DIR
309 os.name = "posix"
310 env.pop('IPYTHON_DIR', None)
311 env.pop('IPYTHONDIR', None)
312 env.pop('XDG_CONFIG_HOME', None)
313 nt.assert_equal(path.get_xdg_dir(), None)
314
315 @with_environment
316 def test_get_xdg_dir_2():
317 """test_get_xdg_dir_2, check xdg_dir default to ~/.config"""
318 reload(path)
319 path.get_home_dir = lambda : HOME_TEST_DIR
320 os.name = "posix"
321 env.pop('IPYTHON_DIR', None)
322 env.pop('IPYTHONDIR', None)
323 env.pop('XDG_CONFIG_HOME', None)
324 cfgdir=os.path.join(path.get_home_dir(), '.config')
325 os.makedirs(cfgdir)
326
327 nt.assert_equal(path.get_xdg_dir(), cfgdir)
242 328
243 329 def test_filefind():
244 330 """Various tests for filefind"""
245 331 f = tempfile.NamedTemporaryFile()
246 332 # print 'fname:',f.name
247 333 alt_dirs = path.get_ipython_dir()
248 334 t = path.filefind(f.name, alt_dirs)
249 335 # print 'found:',t
250 336
251 337
252 338 def test_get_ipython_package_dir():
253 339 ipdir = path.get_ipython_package_dir()
254 340 nt.assert_true(os.path.isdir(ipdir))
255 341
256 342
257 343 def test_get_ipython_module_path():
258 344 ipapp_path = path.get_ipython_module_path('IPython.frontend.terminal.ipapp')
259 345 nt.assert_true(os.path.isfile(ipapp_path))
260 346
261 347
262 348 @dec.skip_if_not_win32
263 349 def test_get_long_path_name_win32():
264 350 p = path.get_long_path_name('c:\\docume~1')
265 351 nt.assert_equals(p,u'c:\\Documents and Settings')
266 352
267 353
268 354 @dec.skip_win32
269 355 def test_get_long_path_name():
270 356 p = path.get_long_path_name('/usr/local')
271 357 nt.assert_equals(p,'/usr/local')
272 358
@@ -1,230 +1,231 b''
1 1 .. _initial config:
2 2
3 3 =============================================================
4 4 Outdated configuration information that might still be useful
5 5 =============================================================
6 6
7 7 .. warning::
8 8
9 9 All of the information in this file is outdated. Until the new
10 10 configuration system is better documented, this material is being kept.
11 11
12 12 This section will help you set various things in your environment for
13 13 your IPython sessions to be as efficient as possible. All of IPython's
14 14 configuration information, along with several example files, is stored
15 in a directory named by default $HOME/.ipython. You can change this by
15 in a directory named by default $HOME/.config/ipython if $HOME/.config
16 exists (Linux), or $HOME/.ipython as a secondary default. You can change this by
16 17 defining the environment variable IPYTHONDIR, or at runtime with the
17 18 command line option -ipythondir.
18 19
19 20 If all goes well, the first time you run IPython it should automatically create
20 21 a user copy of the config directory for you, based on its builtin defaults. You
21 22 can look at the files it creates to learn more about configuring the
22 23 system. The main file you will modify to configure IPython's behavior is called
23 24 ipythonrc (with a .ini extension under Windows), included for reference
24 25 :ref:`here <ipythonrc>`. This file is very commented and has many variables you
25 26 can change to suit your taste, you can find more details :ref:`here
26 27 <customization>`. Here we discuss the basic things you will want to make sure
27 28 things are working properly from the beginning.
28 29
29 30 Color
30 31 =====
31 32
32 33 The default IPython configuration has most bells and whistles turned on
33 34 (they're pretty safe). But there's one that may cause problems on some
34 35 systems: the use of color on screen for displaying information. This is
35 36 very useful, since IPython can show prompts and exception tracebacks
36 37 with various colors, display syntax-highlighted source code, and in
37 38 general make it easier to visually parse information.
38 39
39 40 The following terminals seem to handle the color sequences fine:
40 41
41 42 * Linux main text console, KDE Konsole, Gnome Terminal, E-term,
42 43 rxvt, xterm.
43 44 * CDE terminal (tested under Solaris). This one boldfaces light colors.
44 45 * (X)Emacs buffers. See the emacs_ section for more details on
45 46 using IPython with (X)Emacs.
46 47 * A Windows (XP/2k) command prompt with pyreadline_.
47 48 * A Windows (XP/2k) CygWin shell. Although some users have reported
48 49 problems; it is not clear whether there is an issue for everyone
49 50 or only under specific configurations. If you have full color
50 51 support under cygwin, please post to the IPython mailing list so
51 52 this issue can be resolved for all users.
52 53
53 54 .. _pyreadline: https://code.launchpad.net/pyreadline
54 55
55 56 These have shown problems:
56 57
57 58 * Windows command prompt in WinXP/2k logged into a Linux machine via
58 59 telnet or ssh.
59 60 * Windows native command prompt in WinXP/2k, without Gary Bishop's
60 61 extensions. Once Gary's readline library is installed, the normal
61 62 WinXP/2k command prompt works perfectly.
62 63
63 64 Currently the following color schemes are available:
64 65
65 66 * NoColor: uses no color escapes at all (all escapes are empty '' ''
66 67 strings). This 'scheme' is thus fully safe to use in any terminal.
67 68 * Linux: works well in Linux console type environments: dark
68 69 background with light fonts. It uses bright colors for
69 70 information, so it is difficult to read if you have a light
70 71 colored background.
71 72 * LightBG: the basic colors are similar to those in the Linux scheme
72 73 but darker. It is easy to read in terminals with light backgrounds.
73 74
74 75 IPython uses colors for two main groups of things: prompts and
75 76 tracebacks which are directly printed to the terminal, and the object
76 77 introspection system which passes large sets of data through a pager.
77 78
78 79 Input/Output prompts and exception tracebacks
79 80 =============================================
80 81
81 82 You can test whether the colored prompts and tracebacks work on your
82 83 system interactively by typing '%colors Linux' at the prompt (use
83 84 '%colors LightBG' if your terminal has a light background). If the input
84 85 prompt shows garbage like::
85 86
86 87 [0;32mIn [[1;32m1[0;32m]: [0;00m
87 88
88 89 instead of (in color) something like::
89 90
90 91 In [1]:
91 92
92 93 this means that your terminal doesn't properly handle color escape
93 94 sequences. You can go to a 'no color' mode by typing '%colors NoColor'.
94 95
95 96 You can try using a different terminal emulator program (Emacs users,
96 97 see below). To permanently set your color preferences, edit the file
97 $HOME/.ipython/ipythonrc and set the colors option to the desired value.
98 $IPYTHON_DIR/ipythonrc and set the colors option to the desired value.
98 99
99 100
100 101 Object details (types, docstrings, source code, etc.)
101 102 =====================================================
102 103
103 104 IPython has a set of special functions for studying the objects you are working
104 105 with, discussed in detail :ref:`here <dynamic_object_info>`. But this system
105 106 relies on passing information which is longer than your screen through a data
106 107 pager, such as the common Unix less and more programs. In order to be able to
107 108 see this information in color, your pager needs to be properly configured. I
108 109 strongly recommend using less instead of more, as it seems that more simply can
109 110 not understand colored text correctly.
110 111
111 112 In order to configure less as your default pager, do the following:
112 113
113 114 1. Set the environment PAGER variable to less.
114 115 2. Set the environment LESS variable to -r (plus any other options
115 116 you always want to pass to less by default). This tells less to
116 117 properly interpret control sequences, which is how color
117 118 information is given to your terminal.
118 119
119 120 For the bash shell, add to your ~/.bashrc file the lines::
120 121
121 122 export PAGER=less
122 123 export LESS=-r
123 124
124 125 For the csh or tcsh shells, add to your ~/.cshrc file the lines::
125 126
126 127 setenv PAGER less
127 128 setenv LESS -r
128 129
129 130 There is similar syntax for other Unix shells, look at your system
130 131 documentation for details.
131 132
132 133 If you are on a system which lacks proper data pagers (such as Windows),
133 134 IPython will use a very limited builtin pager.
134 135
135 136 .. _Prompts:
136 137
137 138 Fine-tuning your prompt
138 139 =======================
139 140
140 141 IPython's prompts can be customized using a syntax similar to that of
141 142 the bash shell. Many of bash's escapes are supported, as well as a few
142 143 additional ones. We list them below::
143 144
144 145 \#
145 146 the prompt/history count number. This escape is automatically
146 147 wrapped in the coloring codes for the currently active color scheme.
147 148 \N
148 149 the 'naked' prompt/history count number: this is just the number
149 150 itself, without any coloring applied to it. This lets you produce
150 151 numbered prompts with your own colors.
151 152 \D
152 153 the prompt/history count, with the actual digits replaced by dots.
153 154 Used mainly in continuation prompts (prompt_in2)
154 155 \w
155 156 the current working directory
156 157 \W
157 158 the basename of current working directory
158 159 \Xn
159 160 where $n=0\ldots5.$ The current working directory, with $HOME
160 161 replaced by ~, and filtered out to contain only $n$ path elements
161 162 \Yn
162 163 Similar to \Xn, but with the $n+1$ element included if it is ~ (this
163 164 is similar to the behavior of the %cn escapes in tcsh)
164 165 \u
165 166 the username of the current user
166 167 \$
167 168 if the effective UID is 0, a #, otherwise a $
168 169 \h
169 170 the hostname up to the first '.'
170 171 \H
171 172 the hostname
172 173 \n
173 174 a newline
174 175 \r
175 176 a carriage return
176 177 \v
177 178 IPython version string
178 179
179 180 In addition to these, ANSI color escapes can be insterted into the
180 181 prompts, as \C_ColorName. The list of valid color names is: Black, Blue,
181 182 Brown, Cyan, DarkGray, Green, LightBlue, LightCyan, LightGray,
182 183 LightGreen, LightPurple, LightRed, NoColor, Normal, Purple, Red, White,
183 184 Yellow.
184 185
185 186 Finally, IPython supports the evaluation of arbitrary expressions in
186 187 your prompt string. The prompt strings are evaluated through the syntax
187 188 of PEP 215, but basically you can use $x.y to expand the value of x.y,
188 189 and for more complicated expressions you can use braces: ${foo()+x} will
189 190 call function foo and add to it the value of x, before putting the
190 191 result into your prompt. For example, using
191 192 prompt_in1 '${commands.getoutput("uptime")}\nIn [\#]: '
192 193 will print the result of the uptime command on each prompt (assuming the
193 194 commands module has been imported in your ipythonrc file).
194 195
195 196
196 197 Prompt examples
197 198
198 199 The following options in an ipythonrc file will give you IPython's
199 200 default prompts::
200 201
201 202 prompt_in1 'In [\#]:'
202 203 prompt_in2 ' .\D.:'
203 204 prompt_out 'Out[\#]:'
204 205
205 206 which look like this::
206 207
207 208 In [1]: 1+2
208 209 Out[1]: 3
209 210
210 211 In [2]: for i in (1,2,3):
211 212 ...: print i,
212 213 ...:
213 214 1 2 3
214 215
215 216 These will give you a very colorful prompt with path information::
216 217
217 218 #prompt_in1 '\C_Red\u\C_Blue[\C_Cyan\Y1\C_Blue]\C_LightGreen\#>'
218 219 prompt_in2 ' ..\D>'
219 220 prompt_out '<\#>'
220 221
221 222 which look like this::
222 223
223 224 fperez[~/ipython]1> 1+2
224 225 <1> 3
225 226 fperez[~/ipython]2> for i in (1,2,3):
226 227 ...> print i,
227 228 ...>
228 229 1 2 3
229 230
230 231
@@ -1,329 +1,342 b''
1 1 .. _config_overview:
2 2
3 3 ============================================
4 4 Overview of the IPython configuration system
5 5 ============================================
6 6
7 7 This section describes the IPython configuration system. Starting with version
8 8 0.11, IPython has a completely new configuration system that is quite
9 9 different from the older :file:`ipythonrc` or :file:`ipy_user_conf.py`
10 10 approaches. The new configuration system was designed from scratch to address
11 11 the particular configuration needs of IPython. While there are many
12 12 other excellent configuration systems out there, we found that none of them
13 13 met our requirements.
14 14
15 15 .. warning::
16 16
17 17 If you are upgrading to version 0.11 of IPython, you will need to migrate
18 18 your old :file:`ipythonrc` or :file:`ipy_user_conf.py` configuration files
19 19 to the new system. Read on for information on how to do this.
20 20
21 21 The discussion that follows is focused on teaching user's how to configure
22 22 IPython to their liking. Developer's who want to know more about how they
23 23 can enable their objects to take advantage of the configuration system
24 24 should consult our :ref:`developer guide <developer_guide>`
25 25
26 26 The main concepts
27 27 =================
28 28
29 29 There are a number of abstractions that the IPython configuration system uses.
30 30 Each of these abstractions is represented by a Python class.
31 31
32 32 Configuration object: :class:`~IPython.config.loader.Config`
33 33 A configuration object is a simple dictionary-like class that holds
34 34 configuration attributes and sub-configuration objects. These classes
35 35 support dotted attribute style access (``Foo.bar``) in addition to the
36 36 regular dictionary style access (``Foo['bar']``). Configuration objects
37 37 are smart. They know how to merge themselves with other configuration
38 38 objects and they automatically create sub-configuration objects.
39 39
40 40 Application: :class:`~IPython.core.application.Application`
41 41 An application is a process that does a specific job. The most obvious
42 42 application is the :command:`ipython` command line program. Each
43 43 application reads a *single* configuration file and command line options
44 44 and then produces a master configuration object for the application. This
45 45 configuration object is then passed to the configurable objects that the
46 46 application creates. These configurable objects implement the actual logic
47 47 of the application and know how to configure themselves given the
48 48 configuration object.
49 49
50 50 Component: :class:`~IPython.config.configurable.Configurable`
51 51 A configurable is a regular Python class that serves as a base class for
52 52 all main classes in an application. The
53 53 :class:`~IPython.config.configurable.Configurable` base class is
54 54 lightweight and only does one things.
55 55
56 56 This :class:`~IPython.config.configurable.Configurable` is a subclass
57 57 of :class:`~IPython.utils.traitlets.HasTraits` that knows how to configure
58 58 itself. Class level traits with the metadata ``config=True`` become
59 59 values that can be configured from the command line and configuration
60 60 files.
61 61
62 62 Developers create :class:`~IPython.config.configurable.Configurable`
63 63 subclasses that implement all of the logic in the application. Each of
64 64 these subclasses has its own configuration information that controls how
65 65 instances are created.
66 66
67 67 Having described these main concepts, we can now state the main idea in our
68 68 configuration system: *"configuration" allows the default values of class
69 69 attributes to be controlled on a class by class basis*. Thus all instances of
70 70 a given class are configured in the same way. Furthermore, if two instances
71 71 need to be configured differently, they need to be instances of two different
72 72 classes. While this model may seem a bit restrictive, we have found that it
73 73 expresses most things that need to be configured extremely well. However, it
74 74 is possible to create two instances of the same class that have different
75 75 trait values. This is done by overriding the configuration.
76 76
77 77 Now, we show what our configuration objects and files look like.
78 78
79 79 Configuration objects and files
80 80 ===============================
81 81
82 82 A configuration file is simply a pure Python file that sets the attributes
83 83 of a global, pre-created configuration object. This configuration object is a
84 84 :class:`~IPython.config.loader.Config` instance. While in a configuration
85 85 file, to get a reference to this object, simply call the :func:`get_config`
86 86 function. We inject this function into the global namespace that the
87 87 configuration file is executed in.
88 88
89 89 Here is an example of a super simple configuration file that does nothing::
90 90
91 91 c = get_config()
92 92
93 93 Once you get a reference to the configuration object, you simply set
94 94 attributes on it. All you have to know is:
95 95
96 96 * The name of each attribute.
97 97 * The type of each attribute.
98 98
99 99 The answers to these two questions are provided by the various
100 100 :class:`~IPython.config.configurable.Configurable` subclasses that an
101 101 application uses. Let's look at how this would work for a simple component
102 102 subclass::
103 103
104 104 # Sample component that can be configured.
105 105 from IPython.config.configurable import Configurable
106 106 from IPython.utils.traitlets import Int, Float, Str, Bool
107 107
108 108 class MyClass(Configurable):
109 109 name = Str('defaultname', config=True)
110 110 ranking = Int(0, config=True)
111 111 value = Float(99.0)
112 112 # The rest of the class implementation would go here..
113 113
114 114 In this example, we see that :class:`MyClass` has three attributes, two
115 115 of whom (``name``, ``ranking``) can be configured. All of the attributes
116 116 are given types and default values. If a :class:`MyClass` is instantiated,
117 117 but not configured, these default values will be used. But let's see how
118 118 to configure this class in a configuration file::
119 119
120 120 # Sample config file
121 121 c = get_config()
122 122
123 123 c.MyClass.name = 'coolname'
124 124 c.MyClass.ranking = 10
125 125
126 126 After this configuration file is loaded, the values set in it will override
127 127 the class defaults anytime a :class:`MyClass` is created. Furthermore,
128 128 these attributes will be type checked and validated anytime they are set.
129 129 This type checking is handled by the :mod:`IPython.utils.traitlets` module,
130 130 which provides the :class:`Str`, :class:`Int` and :class:`Float` types. In
131 131 addition to these traitlets, the :mod:`IPython.utils.traitlets` provides
132 132 traitlets for a number of other types.
133 133
134 134 .. note::
135 135
136 136 Underneath the hood, the :class:`Configurable` base class is a subclass of
137 137 :class:`IPython.utils.traitlets.HasTraits`. The
138 138 :mod:`IPython.utils.traitlets` module is a lightweight version of
139 139 :mod:`enthought.traits`. Our implementation is a pure Python subset
140 140 (mostly API compatible) of :mod:`enthought.traits` that does not have any
141 141 of the automatic GUI generation capabilities. Our plan is to achieve 100%
142 142 API compatibility to enable the actual :mod:`enthought.traits` to
143 143 eventually be used instead. Currently, we cannot use
144 144 :mod:`enthought.traits` as we are committed to the core of IPython being
145 145 pure Python.
146 146
147 147 It should be very clear at this point what the naming convention is for
148 148 configuration attributes::
149 149
150 150 c.ClassName.attribute_name = attribute_value
151 151
152 152 Here, ``ClassName`` is the name of the class whose configuration attribute you
153 153 want to set, ``attribute_name`` is the name of the attribute you want to set
154 154 and ``attribute_value`` the the value you want it to have. The ``ClassName``
155 155 attribute of ``c`` is not the actual class, but instead is another
156 156 :class:`~IPython.config.loader.Config` instance.
157 157
158 158 .. note::
159 159
160 160 The careful reader may wonder how the ``ClassName`` (``MyClass`` in
161 161 the above example) attribute of the configuration object ``c`` gets
162 162 created. These attributes are created on the fly by the
163 163 :class:`~IPython.config.loader.Config` instance, using a simple naming
164 164 convention. Any attribute of a :class:`~IPython.config.loader.Config`
165 165 instance whose name begins with an uppercase character is assumed to be a
166 166 sub-configuration and a new empty :class:`~IPython.config.loader.Config`
167 167 instance is dynamically created for that attribute. This allows deeply
168 168 hierarchical information created easily (``c.Foo.Bar.value``) on the fly.
169 169
170 170 Configuration files inheritance
171 171 ===============================
172 172
173 173 Let's say you want to have different configuration files for various purposes.
174 174 Our configuration system makes it easy for one configuration file to inherit
175 175 the information in another configuration file. The :func:`load_subconfig`
176 176 command can be used in a configuration file for this purpose. Here is a simple
177 177 example that loads all of the values from the file :file:`base_config.py`::
178 178
179 179 # base_config.py
180 180 c = get_config()
181 181 c.MyClass.name = 'coolname'
182 182 c.MyClass.ranking = 100
183 183
184 184 into the configuration file :file:`main_config.py`::
185 185
186 186 # main_config.py
187 187 c = get_config()
188 188
189 189 # Load everything from base_config.py
190 190 load_subconfig('base_config.py')
191 191
192 192 # Now override one of the values
193 193 c.MyClass.name = 'bettername'
194 194
195 195 In a situation like this the :func:`load_subconfig` makes sure that the
196 196 search path for sub-configuration files is inherited from that of the parent.
197 197 Thus, you can typically put the two in the same directory and everything will
198 198 just work.
199 199
200 200 Class based configuration inheritance
201 201 =====================================
202 202
203 203 There is another aspect of configuration where inheritance comes into play.
204 204 Sometimes, your classes will have an inheritance hierarchy that you want
205 205 to be reflected in the configuration system. Here is a simple example::
206 206
207 207 from IPython.config.configurable import Configurable
208 208 from IPython.utils.traitlets import Int, Float, Str, Bool
209 209
210 210 class Foo(Configurable):
211 211 name = Str('fooname', config=True)
212 212 value = Float(100.0, config=True)
213 213
214 214 class Bar(Foo):
215 215 name = Str('barname', config=True)
216 216 othervalue = Int(0, config=True)
217 217
218 218 Now, we can create a configuration file to configure instances of :class:`Foo`
219 219 and :class:`Bar`::
220 220
221 221 # config file
222 222 c = get_config()
223 223
224 224 c.Foo.name = 'bestname'
225 225 c.Bar.othervalue = 10
226 226
227 227 This class hierarchy and configuration file accomplishes the following:
228 228
229 229 * The default value for :attr:`Foo.name` and :attr:`Bar.name` will be
230 230 'bestname'. Because :class:`Bar` is a :class:`Foo` subclass it also
231 231 picks up the configuration information for :class:`Foo`.
232 232 * The default value for :attr:`Foo.value` and :attr:`Bar.value` will be
233 233 ``100.0``, which is the value specified as the class default.
234 234 * The default value for :attr:`Bar.othervalue` will be 10 as set in the
235 235 configuration file. Because :class:`Foo` is the parent of :class:`Bar`
236 236 it doesn't know anything about the :attr:`othervalue` attribute.
237 237
238
239 .. _ipython_dir:
240
238 241 Configuration file location
239 242 ===========================
240 243
241 244 So where should you put your configuration files? By default, all IPython
242 245 applications look in the so called "IPython directory". The location of
243 246 this directory is determined by the following algorithm:
244 247
245 248 * If the ``--ipython-dir`` command line flag is given, its value is used.
246 249
247 250 * If not, the value returned by :func:`IPython.utils.path.get_ipython_dir`
248 251 is used. This function will first look at the :envvar:`IPYTHON_DIR`
249 environment variable and then default to the directory
250 :file:`$HOME/.ipython`.
252 environment variable and then default to a platform-specific default.
253
254 On posix systems (Linux, Unix, etc.), IPython respects the ``$XDG_CONFIG_HOME``
255 part of the `XDG Base Directory`_ specification. If ``$XDG_CONFIG_HOME`` is
256 defined and exists ( ``XDG_CONFIG_HOME`` has a default interpretation of
257 :file:`$HOME/.config`), then IPython's config directory will be located in
258 :file:`$XDG_CONFIG_HOME/ipython`. If users still have an IPython directory
259 in :file:`$HOME/.ipython`, then that will be used. in preference to the
260 system default.
251 261
252 262 For most users, the default value will simply be something like
253 :file:`$HOME/.ipython`.
263 :file:`$HOME/.config/ipython` on Linux, or :file:`$HOME/.ipython`
264 elsewhere.
254 265
255 266 Once the location of the IPython directory has been determined, you need to
256 267 know what filename to use for the configuration file. The basic idea is that
257 268 each application has its own default configuration filename. The default named
258 269 used by the :command:`ipython` command line program is
259 270 :file:`ipython_config.py`. This value can be overriden by the ``-config_file``
260 271 command line flag. A sample :file:`ipython_config.py` file can be found
261 272 in :mod:`IPython.config.default.ipython_config.py`. Simple copy it to your
262 273 IPython directory to begin using it.
263 274
264 275 .. _Profiles:
265 276
266 277 Profiles
267 278 ========
268 279
269 280 A profile is simply a configuration file that follows a simple naming
270 281 convention and can be loaded using a simplified syntax. The idea is
271 282 that users often want to maintain a set of configuration files for different
272 283 purposes: one for doing numerical computing with NumPy and SciPy and
273 284 another for doing symbolic computing with SymPy. Profiles make it easy
274 285 to keep a separate configuration file for each of these purposes.
275 286
276 287 Let's start by showing how a profile is used:
277 288
278 289 .. code-block:: bash
279 290
280 291 $ ipython -p sympy
281 292
282 293 This tells the :command:`ipython` command line program to get its
283 294 configuration from the "sympy" profile. The search path for profiles is the
284 295 same as that of regular configuration files. The only difference is that
285 296 profiles are named in a special way. In the case above, the "sympy" profile
286 297 would need to have the name :file:`ipython_config_sympy.py`.
287 298
288 299 The general pattern is this: simply add ``_profilename`` to the end of the
289 300 normal configuration file name. Then load the profile by adding ``-p
290 301 profilename`` to your command line options.
291 302
292 303 IPython ships with some sample profiles in :mod:`IPython.config.profile`.
293 304 Simply copy these to your IPython directory to begin using them.
294 305
295 306 Design requirements
296 307 ===================
297 308
298 309 Here are the main requirements we wanted our configuration system to have:
299 310
300 311 * Support for hierarchical configuration information.
301 312
302 313 * Full integration with command line option parsers. Often, you want to read
303 314 a configuration file, but then override some of the values with command line
304 315 options. Our configuration system automates this process and allows each
305 316 command line option to be linked to a particular attribute in the
306 317 configuration hierarchy that it will override.
307 318
308 319 * Configuration files that are themselves valid Python code. This accomplishes
309 320 many things. First, it becomes possible to put logic in your configuration
310 321 files that sets attributes based on your operating system, network setup,
311 322 Python version, etc. Second, Python has a super simple syntax for accessing
312 323 hierarchical data structures, namely regular attribute access
313 324 (``Foo.Bar.Bam.name``). Third, using Python makes it easy for users to
314 325 import configuration attributes from one configuration file to another.
315 326 Forth, even though Python is dynamically typed, it does have types that can
316 327 be checked at runtime. Thus, a ``1`` in a config file is the integer '1',
317 328 while a ``'1'`` is a string.
318 329
319 330 * A fully automated method for getting the configuration information to the
320 331 classes that need it at runtime. Writing code that walks a configuration
321 332 hierarchy to extract a particular attribute is painful. When you have
322 333 complex configuration information with hundreds of attributes, this makes
323 334 you want to cry.
324 335
325 336 * Type checking and validation that doesn't require the entire configuration
326 337 hierarchy to be specified statically before runtime. Python is a very
327 338 dynamic language and you don't always know everything that needs to be
328 339 configured when a program starts.
329 340
341
342 .. _`XDG Base Directory`: http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
@@ -1,167 +1,167 b''
1 1 .. _documenting-ipython:
2 2
3 3 =====================
4 4 Documenting IPython
5 5 =====================
6 6
7 7 When contributing code to IPython, you should strive for clarity and
8 8 consistency, without falling prey to a style straitjacket. Basically,
9 9 'document everything, try to be consistent, do what makes sense.'
10 10
11 11 By and large we follow existing Python practices in major projects like Python
12 12 itself or NumPy, this document provides some additional detail for IPython.
13 13
14 14
15 15 Standalone documentation
16 16 ========================
17 17
18 18 All standalone documentation should be written in plain text (``.txt``) files
19 19 using reStructuredText [reStructuredText]_ for markup and formatting. All such
20 20 documentation should be placed in the directory :file:`docs/source` of the
21 21 IPython source tree. Or, when appropriate, a suitably named subdirectory
22 22 should be used. The documentation in this location will serve as the main
23 23 source for IPython documentation.
24 24
25 25 The actual HTML and PDF docs are built using the Sphinx [Sphinx]_
26 26 documentation generation tool. Once you have Sphinx installed, you can build
27 27 the html docs yourself by doing:
28 28
29 29 .. code-block:: bash
30 30
31 31 $ cd ipython-mybranch/docs
32 32 $ make html
33 33
34 34 Our usage of Sphinx follows that of matplotlib [Matplotlib]_ closely. We are
35 35 using a number of Sphinx tools and extensions written by the matplotlib team
36 36 and will mostly follow their conventions, which are nicely spelled out in
37 37 their documentation guide [MatplotlibDocGuide]_. What follows is thus a
38 38 abridged version of the matplotlib documentation guide, taken with permission
39 39 from the matplotlib team.
40 40
41 41 If you are reading this in a web browser, you can click on the "Show Source"
42 42 link to see the original reStricturedText for the following examples.
43 43
44 44 A bit of Python code::
45 45
46 46 for i in range(10):
47 47 print i,
48 48 print "A big number:",2**34
49 49
50 50 An interactive Python session::
51 51
52 52 >>> from IPython.utils.path import get_ipython_dir
53 53 >>> get_ipython_dir()
54 '/home/fperez/.ipython'
54 '/home/fperez/.config/ipython'
55 55
56 56 An IPython session:
57 57
58 58 .. code-block:: ipython
59 59
60 60 In [7]: import IPython
61 61
62 62 In [8]: print "This IPython is version:",IPython.__version__
63 63 This IPython is version: 0.9.1
64 64
65 65 In [9]: 2+4
66 66 Out[9]: 6
67 67
68 68
69 69 A bit of shell code:
70 70
71 71 .. code-block:: bash
72 72
73 73 cd /tmp
74 74 echo "My home directory is: $HOME"
75 75 ls
76 76
77 77 Docstring format
78 78 ================
79 79
80 80 Good docstrings are very important. Unfortunately, Python itself only provides
81 81 a rather loose standard for docstrings [PEP257]_, and there is no universally
82 82 accepted convention for all the different parts of a complete docstring.
83 83 However, the NumPy project has established a very reasonable standard, and has
84 84 developed some tools to support the smooth inclusion of such docstrings in
85 85 Sphinx-generated manuals. Rather than inventing yet another pseudo-standard,
86 86 IPython will be henceforth documented using the NumPy conventions; we carry
87 87 copies of some of the NumPy support tools to remain self-contained, but share
88 88 back upstream with NumPy any improvements or fixes we may make to the tools.
89 89
90 90 The NumPy documentation guidelines [NumPyDocGuide]_ contain detailed
91 91 information on this standard, and for a quick overview, the NumPy example
92 92 docstring [NumPyExampleDocstring]_ is a useful read.
93 93
94 94
95 95 For user-facing APIs, we try to be fairly strict about following the above
96 96 standards (even though they mean more verbose and detailed docstrings).
97 97 Wherever you can reasonably expect people to do introspection with::
98 98
99 99 In [1]: some_function?
100 100
101 101 the docstring should follow the NumPy style and be fairly detailed.
102 102
103 103 For purely internal methods that are only likely to be read by others extending
104 104 IPython itself we are a bit more relaxed, especially for small/short methods
105 105 and functions whose intent is reasonably obvious. We still expect docstrings
106 106 to be written, but they can be simpler. For very short functions with a
107 107 single-line docstring you can use something like::
108 108
109 109 def add(a, b):
110 110 """The sum of two numbers.
111 111 """
112 112 code
113 113
114 114 and for longer multiline strings::
115 115
116 116 def add(a, b):
117 117 """The sum of two numbers.
118 118
119 119 Here is the rest of the docs.
120 120 """
121 121 code
122 122
123 123
124 124 Here are two additional PEPs of interest regarding documentation of code.
125 125 While both of these were rejected, the ideas therein form much of the basis of
126 126 docutils (the machinery to process reStructuredText):
127 127
128 128 * `Docstring Processing System Framework <http://www.python.org/peps/pep-0256.html>`_
129 129 * `Docutils Design Specification <http://www.python.org/peps/pep-0258.html>`_
130 130
131 131 .. note::
132 132
133 133 In the past IPython used epydoc so currently many docstrings still use
134 134 epydoc conventions. We will update them as we go, but all new code should
135 135 be documented using the NumPy standard.
136 136
137 137 Building and uploading
138 138 ======================
139 139 The built docs are stored in a separate repository. Through some github magic,
140 140 they're automatically exposed as a website. It works like this:
141 141
142 142 * You will need to have sphinx and latex installed. In Ubuntu, install
143 143 ``texlive-latex-recommended texlive-latex-extra texlive-fonts-recommended``.
144 144 Install the latest version of sphinx from PyPI (``pip install sphinx``).
145 145 * Ensure that the development version of IPython is the first in your system
146 146 path. You can either use a virtualenv, or modify your PYTHONPATH.
147 147 * Switch into the docs directory, and run ``make gh-pages``. This will build
148 148 your updated docs as html and pdf, then automatically check out the latest
149 149 version of the docs repository, copy the built docs into it, and commit your
150 150 changes.
151 151 * Open the built docs in a web browser, and check that they're as expected.
152 152 * (When building the docs for a new tagged release, you will have to add its link to
153 153 index.rst, then run ``python build_index.py`` to update index.html. Commit the
154 154 change.)
155 155 * Upload the docs with ``git push``. This only works if you have write access to
156 156 the docs repository.
157 157 * If you are building a version that is not the current dev branch, nor a tagged release,
158 158 then you must run gh-pages.py directly with ``python gh-pages.py <version>``, and *not*
159 159 with ``make gh-pages``.
160 160
161 161 .. [reStructuredText] reStructuredText. http://docutils.sourceforge.net/rst.html
162 162 .. [Sphinx] Sphinx. http://sphinx.pocoo.org/
163 163 .. [MatplotlibDocGuide] http://matplotlib.sourceforge.net/devel/documenting_mpl.html
164 164 .. [PEP257] PEP 257. http://www.python.org/peps/pep-0257.html
165 165 .. [NumPyDocGuide] NumPy documentation guide. http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines
166 166 .. [NumPyExampleDocstring] NumPy example docstring. http://projects.scipy.org/numpy/browser/trunk/doc/EXAMPLE_DOCSTRING.txt
167 167
@@ -1,1577 +1,1578 b''
1 1 =================
2 2 IPython reference
3 3 =================
4 4
5 5 .. warning::
6 6
7 7 As of the 0.11 version of IPython, some of the features and APIs
8 8 described in this section have been deprecated or are broken. Our plan
9 9 is to continue to support these features, but they need to be updated
10 10 to take advantage of recent API changes. Furthermore, this section
11 11 of the documentation need to be updated to reflect all of these changes.
12 12
13 13 .. _command_line_options:
14 14
15 15 Command-line usage
16 16 ==================
17 17
18 18 You start IPython with the command::
19 19
20 20 $ ipython [options] files
21 21
22 22 If invoked with no options, it executes all the files listed in sequence
23 23 and drops you into the interpreter while still acknowledging any options
24 24 you may have set in your ipythonrc file. This behavior is different from
25 25 standard Python, which when called as python -i will only execute one
26 26 file and ignore your configuration setup.
27 27
28 28 Please note that some of the configuration options are not available at
29 29 the command line, simply because they are not practical here. Look into
30 your ipythonrc configuration file for details on those. This file
31 typically installed in the $HOME/.ipython directory. For Windows users,
32 $HOME resolves to C:\\Documents and Settings\\YourUserName in most
33 instances. In the rest of this text, we will refer to this directory as
34 IPYTHON_DIR.
30 your ipythonrc configuration file for details on those. This file is typically
31 installed in the IPYTHON_DIR directory. For Linux
32 users, this will be $HOME/.config/ipython, and for other users it will be
33 $HOME/.ipython. For Windows users, $HOME resolves to C:\\Documents and
34 Settings\\YourUserName in most instances.
35
35 36
36 37
37 38
38 39 Special Threading Options
39 40 -------------------------
40 41
41 42 Previously IPython had command line options for controlling GUI event loop
42 43 integration (-gthread, -qthread, -q4thread, -wthread, -pylab). As of IPython
43 44 version 0.11, these have been deprecated. Please see the new ``%gui``
44 45 magic command or :ref:`this section <gui_support>` for details on the new
45 46 interface.
46 47
47 48 Regular Options
48 49 ---------------
49 50
50 51 After the above threading options have been given, regular options can
51 52 follow in any order. All options can be abbreviated to their shortest
52 53 non-ambiguous form and are case-sensitive. One or two dashes can be
53 54 used. Some options have an alternate short form, indicated after a ``|``.
54 55
55 56 Most options can also be set from your ipythonrc configuration file. See
56 57 the provided example for more details on what the options do. Options
57 58 given at the command line override the values set in the ipythonrc file.
58 59
59 60 All options with a [no] prepended can be specified in negated form
60 61 (-nooption instead of -option) to turn the feature off.
61 62
62 63 -help print a help message and exit.
63 64
64 65 -pylab
65 66 Deprecated. See :ref:`Matplotlib support <matplotlib_support>`
66 67 for more details.
67 68
68 69 -autocall <val>
69 70 Make IPython automatically call any callable object even if you
70 71 didn't type explicit parentheses. For example, 'str 43' becomes
71 72 'str(43)' automatically. The value can be '0' to disable the feature,
72 73 '1' for smart autocall, where it is not applied if there are no more
73 74 arguments on the line, and '2' for full autocall, where all callable
74 75 objects are automatically called (even if no arguments are
75 76 present). The default is '1'.
76 77
77 78 -[no]autoindent
78 79 Turn automatic indentation on/off.
79 80
80 81 -[no]automagic
81 82 make magic commands automatic (without needing their first character
82 83 to be %). Type %magic at the IPython prompt for more information.
83 84
84 85 -[no]autoedit_syntax
85 86 When a syntax error occurs after editing a file, automatically
86 87 open the file to the trouble causing line for convenient
87 88 fixing.
88 89
89 90 -[no]banner Print the initial information banner (default on).
90 91
91 92 -c <command>
92 93 execute the given command string. This is similar to the -c
93 94 option in the normal Python interpreter.
94 95
95 96 -cache_size, cs <n>
96 97 size of the output cache (maximum number of entries to hold in
97 98 memory). The default is 1000, you can change it permanently in your
98 99 config file. Setting it to 0 completely disables the caching system,
99 100 and the minimum value accepted is 20 (if you provide a value less than
100 101 20, it is reset to 0 and a warning is issued) This limit is defined
101 102 because otherwise you'll spend more time re-flushing a too small cache
102 103 than working.
103 104
104 105 -classic, cl
105 106 Gives IPython a similar feel to the classic Python
106 107 prompt.
107 108
108 109 -colors <scheme>
109 110 Color scheme for prompts and exception reporting. Currently
110 111 implemented: NoColor, Linux and LightBG.
111 112
112 113 -[no]color_info
113 114 IPython can display information about objects via a set of functions,
114 115 and optionally can use colors for this, syntax highlighting source
115 116 code and various other elements. However, because this information is
116 117 passed through a pager (like 'less') and many pagers get confused with
117 118 color codes, this option is off by default. You can test it and turn
118 119 it on permanently in your ipythonrc file if it works for you. As a
119 120 reference, the 'less' pager supplied with Mandrake 8.2 works ok, but
120 121 that in RedHat 7.2 doesn't.
121 122
122 123 Test it and turn it on permanently if it works with your
123 124 system. The magic function %color_info allows you to toggle this
124 125 interactively for testing.
125 126
126 127 -[no]debug
127 128 Show information about the loading process. Very useful to pin down
128 129 problems with your configuration files or to get details about
129 130 session restores.
130 131
131 132 -[no]deep_reload:
132 133 IPython can use the deep_reload module which reloads changes in
133 134 modules recursively (it replaces the reload() function, so you don't
134 135 need to change anything to use it). deep_reload() forces a full
135 136 reload of modules whose code may have changed, which the default
136 137 reload() function does not.
137 138
138 139 When deep_reload is off, IPython will use the normal reload(),
139 140 but deep_reload will still be available as dreload(). This
140 141 feature is off by default [which means that you have both
141 142 normal reload() and dreload()].
142 143
143 144 -editor <name>
144 145 Which editor to use with the %edit command. By default,
145 146 IPython will honor your EDITOR environment variable (if not
146 147 set, vi is the Unix default and notepad the Windows one).
147 148 Since this editor is invoked on the fly by IPython and is
148 149 meant for editing small code snippets, you may want to use a
149 150 small, lightweight editor here (in case your default EDITOR is
150 151 something like Emacs).
151 152
152 153 -ipythondir <name>
153 154 name of your IPython configuration directory IPYTHON_DIR. This
154 155 can also be specified through the environment variable
155 156 IPYTHON_DIR.
156 157
157 158 -log, l
158 159 generate a log file of all input. The file is named
159 160 ipython_log.py in your current directory (which prevents logs
160 161 from multiple IPython sessions from trampling each other). You
161 162 can use this to later restore a session by loading your
162 163 logfile as a file to be executed with option -logplay (see
163 164 below).
164 165
165 166 -logfile, lf <name> specify the name of your logfile.
166 167
167 168 -logplay, lp <name>
168 169
169 170 you can replay a previous log. For restoring a session as close as
170 171 possible to the state you left it in, use this option (don't just run
171 172 the logfile). With -logplay, IPython will try to reconstruct the
172 173 previous working environment in full, not just execute the commands in
173 174 the logfile.
174 175
175 176 When a session is restored, logging is automatically turned on
176 177 again with the name of the logfile it was invoked with (it is
177 178 read from the log header). So once you've turned logging on for
178 179 a session, you can quit IPython and reload it as many times as
179 180 you want and it will continue to log its history and restore
180 181 from the beginning every time.
181 182
182 183 Caveats: there are limitations in this option. The history
183 184 variables _i*,_* and _dh don't get restored properly. In the
184 185 future we will try to implement full session saving by writing
185 186 and retrieving a 'snapshot' of the memory state of IPython. But
186 187 our first attempts failed because of inherent limitations of
187 188 Python's Pickle module, so this may have to wait.
188 189
189 190 -[no]messages
190 191 Print messages which IPython collects about its startup
191 192 process (default on).
192 193
193 194 -[no]pdb
194 195 Automatically call the pdb debugger after every uncaught
195 196 exception. If you are used to debugging using pdb, this puts
196 197 you automatically inside of it after any call (either in
197 198 IPython or in code called by it) which triggers an exception
198 199 which goes uncaught.
199 200
200 201 -pydb
201 202 Makes IPython use the third party "pydb" package as debugger,
202 203 instead of pdb. Requires that pydb is installed.
203 204
204 205 -[no]pprint
205 206 ipython can optionally use the pprint (pretty printer) module
206 207 for displaying results. pprint tends to give a nicer display
207 208 of nested data structures. If you like it, you can turn it on
208 209 permanently in your config file (default off).
209 210
210 211 -profile, p <name>
211 212
212 213 assume that your config file is ipythonrc-<name> or
213 214 ipy_profile_<name>.py (looks in current dir first, then in
214 215 IPYTHON_DIR). This is a quick way to keep and load multiple
215 216 config files for different tasks, especially if you use the
216 217 include option of config files. You can keep a basic
217 218 IPYTHON_DIR/ipythonrc file and then have other 'profiles' which
218 219 include this one and load extra things for particular
219 220 tasks. For example:
220 221
221 1. $HOME/.ipython/ipythonrc : load basic things you always want.
222 2. $HOME/.ipython/ipythonrc-math : load (1) and basic math-related modules.
223 3. $HOME/.ipython/ipythonrc-numeric : load (1) and Numeric and plotting modules.
222 1. $IPYTHON_DIR/ipythonrc : load basic things you always want.
223 2. $IPYTHON_DIR/ipythonrc-math : load (1) and basic math-related modules.
224 3. $IPYTHON_DIR/ipythonrc-numeric : load (1) and Numeric and plotting modules.
224 225
225 226 Since it is possible to create an endless loop by having
226 227 circular file inclusions, IPython will stop if it reaches 15
227 228 recursive inclusions.
228 229
229 230 -prompt_in1, pi1 <string>
230 231
231 232 Specify the string used for input prompts. Note that if you are using
232 233 numbered prompts, the number is represented with a '\#' in the
233 234 string. Don't forget to quote strings with spaces embedded in
234 235 them. Default: 'In [\#]:'. The :ref:`prompts section <prompts>`
235 236 discusses in detail all the available escapes to customize your
236 237 prompts.
237 238
238 239 -prompt_in2, pi2 <string>
239 240 Similar to the previous option, but used for the continuation
240 241 prompts. The special sequence '\D' is similar to '\#', but
241 242 with all digits replaced dots (so you can have your
242 243 continuation prompt aligned with your input prompt). Default:
243 244 ' .\D.:' (note three spaces at the start for alignment with
244 245 'In [\#]').
245 246
246 247 -prompt_out,po <string>
247 248 String used for output prompts, also uses numbers like
248 249 prompt_in1. Default: 'Out[\#]:'
249 250
250 251 -quick start in bare bones mode (no config file loaded).
251 252
252 253 -rcfile <name>
253 254 name of your IPython resource configuration file. Normally
254 255 IPython loads ipythonrc (from current directory) or
255 256 IPYTHON_DIR/ipythonrc.
256 257
257 258 If the loading of your config file fails, IPython starts with
258 259 a bare bones configuration (no modules loaded at all).
259 260
260 261 -[no]readline
261 262 use the readline library, which is needed to support name
262 263 completion and command history, among other things. It is
263 264 enabled by default, but may cause problems for users of
264 265 X/Emacs in Python comint or shell buffers.
265 266
266 267 Note that X/Emacs 'eterm' buffers (opened with M-x term) support
267 268 IPython's readline and syntax coloring fine, only 'emacs' (M-x
268 269 shell and C-c !) buffers do not.
269 270
270 271 -screen_length, sl <n>
271 272 number of lines of your screen. This is used to control
272 273 printing of very long strings. Strings longer than this number
273 274 of lines will be sent through a pager instead of directly
274 275 printed.
275 276
276 277 The default value for this is 0, which means IPython will
277 278 auto-detect your screen size every time it needs to print certain
278 279 potentially long strings (this doesn't change the behavior of the
279 280 'print' keyword, it's only triggered internally). If for some
280 281 reason this isn't working well (it needs curses support), specify
281 282 it yourself. Otherwise don't change the default.
282 283
283 284 -separate_in, si <string>
284 285
285 286 separator before input prompts.
286 287 Default: '\n'
287 288
288 289 -separate_out, so <string>
289 290 separator before output prompts.
290 291 Default: nothing.
291 292
292 293 -separate_out2, so2
293 294 separator after output prompts.
294 295 Default: nothing.
295 296 For these three options, use the value 0 to specify no separator.
296 297
297 298 -nosep
298 299 shorthand for '-SeparateIn 0 -SeparateOut 0 -SeparateOut2
299 300 0'. Simply removes all input/output separators.
300 301
301 302 -upgrade
302 303 allows you to upgrade your IPYTHON_DIR configuration when you
303 304 install a new version of IPython. Since new versions may
304 305 include new command line options or example files, this copies
305 306 updated ipythonrc-type files. However, it backs up (with a
306 307 .old extension) all files which it overwrites so that you can
307 308 merge back any customizations you might have in your personal
308 309 files. Note that you should probably use %upgrade instead,
309 310 it's a safer alternative.
310 311
311 312
312 313 -Version print version information and exit.
313 314
314 315 -wxversion <string>
315 316 Deprecated.
316 317
317 318 -xmode <modename>
318 319
319 320 Mode for exception reporting.
320 321
321 322 Valid modes: Plain, Context and Verbose.
322 323
323 324 * Plain: similar to python's normal traceback printing.
324 325 * Context: prints 5 lines of context source code around each
325 326 line in the traceback.
326 327 * Verbose: similar to Context, but additionally prints the
327 328 variables currently visible where the exception happened
328 329 (shortening their strings if too long). This can potentially be
329 330 very slow, if you happen to have a huge data structure whose
330 331 string representation is complex to compute. Your computer may
331 332 appear to freeze for a while with cpu usage at 100%. If this
332 333 occurs, you can cancel the traceback with Ctrl-C (maybe hitting it
333 334 more than once).
334 335
335 336 Interactive use
336 337 ===============
337 338
338 339 Warning: IPython relies on the existence of a global variable called
339 340 _ip which controls the shell itself. If you redefine _ip to anything,
340 341 bizarre behavior will quickly occur.
341 342
342 343 Other than the above warning, IPython is meant to work as a drop-in
343 344 replacement for the standard interactive interpreter. As such, any code
344 345 which is valid python should execute normally under IPython (cases where
345 346 this is not true should be reported as bugs). It does, however, offer
346 347 many features which are not available at a standard python prompt. What
347 348 follows is a list of these.
348 349
349 350
350 351 Caution for Windows users
351 352 -------------------------
352 353
353 354 Windows, unfortunately, uses the '\' character as a path
354 355 separator. This is a terrible choice, because '\' also represents the
355 356 escape character in most modern programming languages, including
356 357 Python. For this reason, using '/' character is recommended if you
357 358 have problems with ``\``. However, in Windows commands '/' flags
358 359 options, so you can not use it for the root directory. This means that
359 360 paths beginning at the root must be typed in a contrived manner like:
360 361 ``%copy \opt/foo/bar.txt \tmp``
361 362
362 363 .. _magic:
363 364
364 365 Magic command system
365 366 --------------------
366 367
367 368 IPython will treat any line whose first character is a % as a special
368 369 call to a 'magic' function. These allow you to control the behavior of
369 370 IPython itself, plus a lot of system-type features. They are all
370 371 prefixed with a % character, but parameters are given without
371 372 parentheses or quotes.
372 373
373 374 Example: typing '%cd mydir' (without the quotes) changes you working
374 375 directory to 'mydir', if it exists.
375 376
376 377 If you have 'automagic' enabled (in your ipythonrc file, via the command
377 378 line option -automagic or with the %automagic function), you don't need
378 379 to type in the % explicitly. IPython will scan its internal list of
379 380 magic functions and call one if it exists. With automagic on you can
380 381 then just type 'cd mydir' to go to directory 'mydir'. The automagic
381 382 system has the lowest possible precedence in name searches, so defining
382 383 an identifier with the same name as an existing magic function will
383 384 shadow it for automagic use. You can still access the shadowed magic
384 385 function by explicitly using the % character at the beginning of the line.
385 386
386 387 An example (with automagic on) should clarify all this::
387 388
388 389 In [1]: cd ipython # %cd is called by automagic
389 390
390 391 /home/fperez/ipython
391 392
392 393 In [2]: cd=1 # now cd is just a variable
393 394
394 395 In [3]: cd .. # and doesn't work as a function anymore
395 396
396 397 ------------------------------
397 398
398 399 File "<console>", line 1
399 400
400 401 cd ..
401 402
402 403 ^
403 404
404 405 SyntaxError: invalid syntax
405 406
406 407 In [4]: %cd .. # but %cd always works
407 408
408 409 /home/fperez
409 410
410 411 In [5]: del cd # if you remove the cd variable
411 412
412 413 In [6]: cd ipython # automagic can work again
413 414
414 415 /home/fperez/ipython
415 416
416 417 You can define your own magic functions to extend the system. The
417 418 following example defines a new magic command, %impall::
418 419
419 420 import IPython.ipapi
420 421
421 422 ip = IPython.ipapi.get()
422 423
423 424 def doimp(self, arg):
424 425
425 426 ip = self.api
426 427
427 428 ip.ex("import %s; reload(%s); from %s import *" % (
428 429
429 430 arg,arg,arg)
430 431
431 432 )
432 433
433 434 ip.expose_magic('impall', doimp)
434 435
435 436 You can also define your own aliased names for magic functions. In your
436 437 ipythonrc file, placing a line like::
437 438
438 439 execute __IP.magic_cl = __IP.magic_clear
439 440
440 441 will define %cl as a new name for %clear.
441 442
442 443 Type %magic for more information, including a list of all available
443 444 magic functions at any time and their docstrings. You can also type
444 445 %magic_function_name? (see sec. 6.4 <#sec:dyn-object-info> for
445 446 information on the '?' system) to get information about any particular
446 447 magic function you are interested in.
447 448
448 449 The API documentation for the :mod:`IPython.Magic` module contains the full
449 450 docstrings of all currently available magic commands.
450 451
451 452
452 453 Access to the standard Python help
453 454 ----------------------------------
454 455
455 456 As of Python 2.1, a help system is available with access to object docstrings
456 457 and the Python manuals. Simply type 'help' (no quotes) to access it. You can
457 458 also type help(object) to obtain information about a given object, and
458 459 help('keyword') for information on a keyword. As noted :ref:`here
459 460 <accessing_help>`, you need to properly configure your environment variable
460 461 PYTHONDOCS for this feature to work correctly.
461 462
462 463 .. _dynamic_object_info:
463 464
464 465 Dynamic object information
465 466 --------------------------
466 467
467 468 Typing ?word or word? prints detailed information about an object. If
468 469 certain strings in the object are too long (docstrings, code, etc.) they
469 470 get snipped in the center for brevity. This system gives access variable
470 471 types and values, full source code for any object (if available),
471 472 function prototypes and other useful information.
472 473
473 474 Typing ??word or word?? gives access to the full information without
474 475 snipping long strings. Long strings are sent to the screen through the
475 476 less pager if longer than the screen and printed otherwise. On systems
476 477 lacking the less command, IPython uses a very basic internal pager.
477 478
478 479 The following magic functions are particularly useful for gathering
479 480 information about your working environment. You can get more details by
480 481 typing %magic or querying them individually (use %function_name? with or
481 482 without the %), this is just a summary:
482 483
483 484 * **%pdoc <object>**: Print (or run through a pager if too long) the
484 485 docstring for an object. If the given object is a class, it will
485 486 print both the class and the constructor docstrings.
486 487 * **%pdef <object>**: Print the definition header for any callable
487 488 object. If the object is a class, print the constructor information.
488 489 * **%psource <object>**: Print (or run through a pager if too long)
489 490 the source code for an object.
490 491 * **%pfile <object>**: Show the entire source file where an object was
491 492 defined via a pager, opening it at the line where the object
492 493 definition begins.
493 494 * **%who/%whos**: These functions give information about identifiers
494 495 you have defined interactively (not things you loaded or defined
495 496 in your configuration files). %who just prints a list of
496 497 identifiers and %whos prints a table with some basic details about
497 498 each identifier.
498 499
499 500 Note that the dynamic object information functions (?/??, %pdoc, %pfile,
500 501 %pdef, %psource) give you access to documentation even on things which
501 502 are not really defined as separate identifiers. Try for example typing
502 503 {}.get? or after doing import os, type os.path.abspath??.
503 504
504 505
505 506 .. _readline:
506 507
507 508 Readline-based features
508 509 -----------------------
509 510
510 511 These features require the GNU readline library, so they won't work if
511 512 your Python installation lacks readline support. We will first describe
512 513 the default behavior IPython uses, and then how to change it to suit
513 514 your preferences.
514 515
515 516
516 517 Command line completion
517 518 +++++++++++++++++++++++
518 519
519 520 At any time, hitting TAB will complete any available python commands or
520 521 variable names, and show you a list of the possible completions if
521 522 there's no unambiguous one. It will also complete filenames in the
522 523 current directory if no python names match what you've typed so far.
523 524
524 525
525 526 Search command history
526 527 ++++++++++++++++++++++
527 528
528 529 IPython provides two ways for searching through previous input and thus
529 530 reduce the need for repetitive typing:
530 531
531 532 1. Start typing, and then use Ctrl-p (previous,up) and Ctrl-n
532 533 (next,down) to search through only the history items that match
533 534 what you've typed so far. If you use Ctrl-p/Ctrl-n at a blank
534 535 prompt, they just behave like normal arrow keys.
535 536 2. Hit Ctrl-r: opens a search prompt. Begin typing and the system
536 537 searches your history for lines that contain what you've typed so
537 538 far, completing as much as it can.
538 539
539 540
540 541 Persistent command history across sessions
541 542 ++++++++++++++++++++++++++++++++++++++++++
542 543
543 544 IPython will save your input history when it leaves and reload it next
544 545 time you restart it. By default, the history file is named
545 546 $IPYTHON_DIR/history, but if you've loaded a named profile,
546 547 '-PROFILE_NAME' is appended to the name. This allows you to keep
547 548 separate histories related to various tasks: commands related to
548 549 numerical work will not be clobbered by a system shell history, for
549 550 example.
550 551
551 552
552 553 Autoindent
553 554 ++++++++++
554 555
555 556 IPython can recognize lines ending in ':' and indent the next line,
556 557 while also un-indenting automatically after 'raise' or 'return'.
557 558
558 559 This feature uses the readline library, so it will honor your ~/.inputrc
559 560 configuration (or whatever file your INPUTRC variable points to). Adding
560 561 the following lines to your .inputrc file can make indenting/unindenting
561 562 more convenient (M-i indents, M-u unindents)::
562 563
563 564 $if Python
564 565 "\M-i": " "
565 566 "\M-u": "\d\d\d\d"
566 567 $endif
567 568
568 569 Note that there are 4 spaces between the quote marks after "M-i" above.
569 570
570 571 Warning: this feature is ON by default, but it can cause problems with
571 572 the pasting of multi-line indented code (the pasted code gets
572 573 re-indented on each line). A magic function %autoindent allows you to
573 574 toggle it on/off at runtime. You can also disable it permanently on in
574 575 your ipythonrc file (set autoindent 0).
575 576
576 577
577 578 Customizing readline behavior
578 579 +++++++++++++++++++++++++++++
579 580
580 581 All these features are based on the GNU readline library, which has an
581 582 extremely customizable interface. Normally, readline is configured via a
582 583 file which defines the behavior of the library; the details of the
583 584 syntax for this can be found in the readline documentation available
584 585 with your system or on the Internet. IPython doesn't read this file (if
585 586 it exists) directly, but it does support passing to readline valid
586 587 options via a simple interface. In brief, you can customize readline by
587 588 setting the following options in your ipythonrc configuration file (note
588 589 that these options can not be specified at the command line):
589 590
590 591 * **readline_parse_and_bind**: this option can appear as many times as
591 592 you want, each time defining a string to be executed via a
592 593 readline.parse_and_bind() command. The syntax for valid commands
593 594 of this kind can be found by reading the documentation for the GNU
594 595 readline library, as these commands are of the kind which readline
595 596 accepts in its configuration file.
596 597 * **readline_remove_delims**: a string of characters to be removed
597 598 from the default word-delimiters list used by readline, so that
598 599 completions may be performed on strings which contain them. Do not
599 600 change the default value unless you know what you're doing.
600 601 * **readline_omit__names**: when tab-completion is enabled, hitting
601 602 <tab> after a '.' in a name will complete all attributes of an
602 603 object, including all the special methods whose names include
603 604 double underscores (like __getitem__ or __class__). If you'd
604 605 rather not see these names by default, you can set this option to
605 606 1. Note that even when this option is set, you can still see those
606 607 names by explicitly typing a _ after the period and hitting <tab>:
607 608 'name._<tab>' will always complete attribute names starting with '_'.
608 609
609 610 This option is off by default so that new users see all
610 611 attributes of any objects they are dealing with.
611 612
612 613 You will find the default values along with a corresponding detailed
613 614 explanation in your ipythonrc file.
614 615
615 616
616 617 Session logging and restoring
617 618 -----------------------------
618 619
619 620 You can log all input from a session either by starting IPython with the
620 621 command line switches -log or -logfile (see :ref:`here <command_line_options>`)
621 622 or by activating the logging at any moment with the magic function %logstart.
622 623
623 624 Log files can later be reloaded with the -logplay option and IPython
624 625 will attempt to 'replay' the log by executing all the lines in it, thus
625 626 restoring the state of a previous session. This feature is not quite
626 627 perfect, but can still be useful in many cases.
627 628
628 629 The log files can also be used as a way to have a permanent record of
629 630 any code you wrote while experimenting. Log files are regular text files
630 631 which you can later open in your favorite text editor to extract code or
631 632 to 'clean them up' before using them to replay a session.
632 633
633 634 The %logstart function for activating logging in mid-session is used as
634 635 follows:
635 636
636 637 %logstart [log_name [log_mode]]
637 638
638 639 If no name is given, it defaults to a file named 'log' in your
639 640 IPYTHON_DIR directory, in 'rotate' mode (see below).
640 641
641 642 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
642 643 history up to that point and then continues logging.
643 644
644 645 %logstart takes a second optional parameter: logging mode. This can be
645 646 one of (note that the modes are given unquoted):
646 647
647 648 * [over:] overwrite existing log_name.
648 649 * [backup:] rename (if exists) to log_name~ and start log_name.
649 650 * [append:] well, that says it.
650 651 * [rotate:] create rotating logs log_name.1~, log_name.2~, etc.
651 652
652 653 The %logoff and %logon functions allow you to temporarily stop and
653 654 resume logging to a file which had previously been started with
654 655 %logstart. They will fail (with an explanation) if you try to use them
655 656 before logging has been started.
656 657
657 658 .. _system_shell_access:
658 659
659 660 System shell access
660 661 -------------------
661 662
662 663 Any input line beginning with a ! character is passed verbatim (minus
663 664 the !, of course) to the underlying operating system. For example,
664 665 typing !ls will run 'ls' in the current directory.
665 666
666 667 Manual capture of command output
667 668 --------------------------------
668 669
669 670 If the input line begins with two exclamation marks, !!, the command is
670 671 executed but its output is captured and returned as a python list, split
671 672 on newlines. Any output sent by the subprocess to standard error is
672 673 printed separately, so that the resulting list only captures standard
673 674 output. The !! syntax is a shorthand for the %sx magic command.
674 675
675 676 Finally, the %sc magic (short for 'shell capture') is similar to %sx,
676 677 but allowing more fine-grained control of the capture details, and
677 678 storing the result directly into a named variable. The direct use of
678 679 %sc is now deprecated, and you should ise the ``var = !cmd`` syntax
679 680 instead.
680 681
681 682 IPython also allows you to expand the value of python variables when
682 683 making system calls. Any python variable or expression which you prepend
683 684 with $ will get expanded before the system call is made::
684 685
685 686 In [1]: pyvar='Hello world'
686 687 In [2]: !echo "A python variable: $pyvar"
687 688 A python variable: Hello world
688 689
689 690 If you want the shell to actually see a literal $, you need to type it
690 691 twice::
691 692
692 693 In [3]: !echo "A system variable: $$HOME"
693 694 A system variable: /home/fperez
694 695
695 696 You can pass arbitrary expressions, though you'll need to delimit them
696 697 with {} if there is ambiguity as to the extent of the expression::
697 698
698 699 In [5]: x=10
699 700 In [6]: y=20
700 701 In [13]: !echo $x+y
701 702 10+y
702 703 In [7]: !echo ${x+y}
703 704 30
704 705
705 706 Even object attributes can be expanded::
706 707
707 708 In [12]: !echo $sys.argv
708 709 [/home/fperez/usr/bin/ipython]
709 710
710 711
711 712 System command aliases
712 713 ----------------------
713 714
714 715 The %alias magic function and the alias option in the ipythonrc
715 716 configuration file allow you to define magic functions which are in fact
716 717 system shell commands. These aliases can have parameters.
717 718
718 719 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
719 720
720 721 Then, typing '%alias_name params' will execute the system command 'cmd
721 722 params' (from your underlying operating system).
722 723
723 724 You can also define aliases with parameters using %s specifiers (one per
724 725 parameter). The following example defines the %parts function as an
725 726 alias to the command 'echo first %s second %s' where each %s will be
726 727 replaced by a positional parameter to the call to %parts::
727 728
728 729 In [1]: alias parts echo first %s second %s
729 730 In [2]: %parts A B
730 731 first A second B
731 732 In [3]: %parts A
732 733 Incorrect number of arguments: 2 expected.
733 734 parts is an alias to: 'echo first %s second %s'
734 735
735 736 If called with no parameters, %alias prints the table of currently
736 737 defined aliases.
737 738
738 739 The %rehash/rehashx magics allow you to load your entire $PATH as
739 740 ipython aliases. See their respective docstrings (or sec. 6.2
740 741 <#sec:magic> for further details).
741 742
742 743
743 744 .. _dreload:
744 745
745 746 Recursive reload
746 747 ----------------
747 748
748 749 The dreload function does a recursive reload of a module: changes made
749 750 to the module since you imported will actually be available without
750 751 having to exit.
751 752
752 753
753 754 Verbose and colored exception traceback printouts
754 755 -------------------------------------------------
755 756
756 757 IPython provides the option to see very detailed exception tracebacks,
757 758 which can be especially useful when debugging large programs. You can
758 759 run any Python file with the %run function to benefit from these
759 760 detailed tracebacks. Furthermore, both normal and verbose tracebacks can
760 761 be colored (if your terminal supports it) which makes them much easier
761 762 to parse visually.
762 763
763 764 See the magic xmode and colors functions for details (just type %magic).
764 765
765 766 These features are basically a terminal version of Ka-Ping Yee's cgitb
766 767 module, now part of the standard Python library.
767 768
768 769
769 770 .. _input_caching:
770 771
771 772 Input caching system
772 773 --------------------
773 774
774 775 IPython offers numbered prompts (In/Out) with input and output caching
775 776 (also referred to as 'input history'). All input is saved and can be
776 777 retrieved as variables (besides the usual arrow key recall), in
777 778 addition to the %rep magic command that brings a history entry
778 779 up for editing on the next command line.
779 780
780 781 The following GLOBAL variables always exist (so don't overwrite them!):
781 782 _i: stores previous input. _ii: next previous. _iii: next-next previous.
782 783 _ih : a list of all input _ih[n] is the input from line n and this list
783 784 is aliased to the global variable In. If you overwrite In with a
784 785 variable of your own, you can remake the assignment to the internal list
785 786 with a simple 'In=_ih'.
786 787
787 788 Additionally, global variables named _i<n> are dynamically created (<n>
788 789 being the prompt counter), such that
789 790 _i<n> == _ih[<n>] == In[<n>].
790 791
791 792 For example, what you typed at prompt 14 is available as _i14, _ih[14]
792 793 and In[14].
793 794
794 795 This allows you to easily cut and paste multi line interactive prompts
795 796 by printing them out: they print like a clean string, without prompt
796 797 characters. You can also manipulate them like regular variables (they
797 798 are strings), modify or exec them (typing 'exec _i9' will re-execute the
798 799 contents of input prompt 9, 'exec In[9:14]+In[18]' will re-execute lines
799 800 9 through 13 and line 18).
800 801
801 802 You can also re-execute multiple lines of input easily by using the
802 803 magic %macro function (which automates the process and allows
803 804 re-execution without having to type 'exec' every time). The macro system
804 805 also allows you to re-execute previous lines which include magic
805 806 function calls (which require special processing). Type %macro? or see
806 807 sec. 6.2 <#sec:magic> for more details on the macro system.
807 808
808 809 A history function %hist allows you to see any part of your input
809 810 history by printing a range of the _i variables.
810 811
811 812 You can also search ('grep') through your history by typing
812 813 '%hist -g somestring'. This also searches through the so called *shadow history*,
813 814 which remembers all the commands (apart from multiline code blocks)
814 815 you have ever entered. Handy for searching for svn/bzr URL's, IP adrresses
815 816 etc. You can bring shadow history entries listed by '%hist -g' up for editing
816 817 (or re-execution by just pressing ENTER) with %rep command. Shadow history
817 818 entries are not available as _iNUMBER variables, and they are identified by
818 819 the '0' prefix in %hist -g output. That is, history entry 12 is a normal
819 820 history entry, but 0231 is a shadow history entry.
820 821
821 822 Shadow history was added because the readline history is inherently very
822 823 unsafe - if you have multiple IPython sessions open, the last session
823 824 to close will overwrite the history of previountly closed session. Likewise,
824 825 if a crash occurs, history is never saved, whereas shadow history entries
825 826 are added after entering every command (so a command executed
826 827 in another IPython session is immediately available in other IPython
827 828 sessions that are open).
828 829
829 830 To conserve space, a command can exist in shadow history only once - it doesn't
830 831 make sense to store a common line like "cd .." a thousand times. The idea is
831 832 mainly to provide a reliable place where valuable, hard-to-remember commands can
832 833 always be retrieved, as opposed to providing an exact sequence of commands
833 834 you have entered in actual order.
834 835
835 836 Because shadow history has all the commands you have ever executed,
836 837 time taken by %hist -g will increase oven time. If it ever starts to take
837 838 too long (or it ends up containing sensitive information like passwords),
838 839 clear the shadow history by `%clear shadow_nuke`.
839 840
840 841 Time taken to add entries to shadow history should be negligible, but
841 842 in any case, if you start noticing performance degradation after using
842 843 IPython for a long time (or running a script that floods the shadow history!),
843 844 you can 'compress' the shadow history by executing
844 845 `%clear shadow_compress`. In practice, this should never be necessary
845 846 in normal use.
846 847
847 848 .. _output_caching:
848 849
849 850 Output caching system
850 851 ---------------------
851 852
852 853 For output that is returned from actions, a system similar to the input
853 854 cache exists but using _ instead of _i. Only actions that produce a
854 855 result (NOT assignments, for example) are cached. If you are familiar
855 856 with Mathematica, IPython's _ variables behave exactly like
856 857 Mathematica's % variables.
857 858
858 859 The following GLOBAL variables always exist (so don't overwrite them!):
859 860
860 861 * [_] (a single underscore) : stores previous output, like Python's
861 862 default interpreter.
862 863 * [__] (two underscores): next previous.
863 864 * [___] (three underscores): next-next previous.
864 865
865 866 Additionally, global variables named _<n> are dynamically created (<n>
866 867 being the prompt counter), such that the result of output <n> is always
867 868 available as _<n> (don't use the angle brackets, just the number, e.g.
868 869 _21).
869 870
870 871 These global variables are all stored in a global dictionary (not a
871 872 list, since it only has entries for lines which returned a result)
872 873 available under the names _oh and Out (similar to _ih and In). So the
873 874 output from line 12 can be obtained as _12, Out[12] or _oh[12]. If you
874 875 accidentally overwrite the Out variable you can recover it by typing
875 876 'Out=_oh' at the prompt.
876 877
877 878 This system obviously can potentially put heavy memory demands on your
878 879 system, since it prevents Python's garbage collector from removing any
879 880 previously computed results. You can control how many results are kept
880 881 in memory with the option (at the command line or in your ipythonrc
881 882 file) cache_size. If you set it to 0, the whole system is completely
882 883 disabled and the prompts revert to the classic '>>>' of normal Python.
883 884
884 885
885 886 Directory history
886 887 -----------------
887 888
888 889 Your history of visited directories is kept in the global list _dh, and
889 890 the magic %cd command can be used to go to any entry in that list. The
890 891 %dhist command allows you to view this history. Do ``cd -<TAB`` to
891 892 conventiently view the directory history.
892 893
893 894
894 895 Automatic parentheses and quotes
895 896 --------------------------------
896 897
897 898 These features were adapted from Nathan Gray's LazyPython. They are
898 899 meant to allow less typing for common situations.
899 900
900 901
901 902 Automatic parentheses
902 903 ---------------------
903 904
904 905 Callable objects (i.e. functions, methods, etc) can be invoked like this
905 906 (notice the commas between the arguments)::
906 907
907 908 >>> callable_ob arg1, arg2, arg3
908 909
909 910 and the input will be translated to this::
910 911
911 912 -> callable_ob(arg1, arg2, arg3)
912 913
913 914 You can force automatic parentheses by using '/' as the first character
914 915 of a line. For example::
915 916
916 917 >>> /globals # becomes 'globals()'
917 918
918 919 Note that the '/' MUST be the first character on the line! This won't work::
919 920
920 921 >>> print /globals # syntax error
921 922
922 923 In most cases the automatic algorithm should work, so you should rarely
923 924 need to explicitly invoke /. One notable exception is if you are trying
924 925 to call a function with a list of tuples as arguments (the parenthesis
925 926 will confuse IPython)::
926 927
927 928 In [1]: zip (1,2,3),(4,5,6) # won't work
928 929
929 930 but this will work::
930 931
931 932 In [2]: /zip (1,2,3),(4,5,6)
932 933 ---> zip ((1,2,3),(4,5,6))
933 934 Out[2]= [(1, 4), (2, 5), (3, 6)]
934 935
935 936 IPython tells you that it has altered your command line by displaying
936 937 the new command line preceded by ->. e.g.::
937 938
938 939 In [18]: callable list
939 940 ----> callable (list)
940 941
941 942
942 943 Automatic quoting
943 944 -----------------
944 945
945 946 You can force automatic quoting of a function's arguments by using ','
946 947 or ';' as the first character of a line. For example::
947 948
948 949 >>> ,my_function /home/me # becomes my_function("/home/me")
949 950
950 951 If you use ';' instead, the whole argument is quoted as a single string
951 952 (while ',' splits on whitespace)::
952 953
953 954 >>> ,my_function a b c # becomes my_function("a","b","c")
954 955
955 956 >>> ;my_function a b c # becomes my_function("a b c")
956 957
957 958 Note that the ',' or ';' MUST be the first character on the line! This
958 959 won't work::
959 960
960 961 >>> x = ,my_function /home/me # syntax error
961 962
962 963 IPython as your default Python environment
963 964 ==========================================
964 965
965 966 Python honors the environment variable PYTHONSTARTUP and will execute at
966 967 startup the file referenced by this variable. If you put at the end of
967 968 this file the following two lines of code::
968 969
969 970 import IPython
970 971 IPython.Shell.IPShell().mainloop(sys_exit=1)
971 972
972 973 then IPython will be your working environment anytime you start Python.
973 974 The sys_exit=1 is needed to have IPython issue a call to sys.exit() when
974 975 it finishes, otherwise you'll be back at the normal Python '>>>'
975 976 prompt.
976 977
977 978 This is probably useful to developers who manage multiple Python
978 979 versions and don't want to have correspondingly multiple IPython
979 980 versions. Note that in this mode, there is no way to pass IPython any
980 981 command-line options, as those are trapped first by Python itself.
981 982
982 983 .. _Embedding:
983 984
984 985 Embedding IPython
985 986 =================
986 987
987 988 It is possible to start an IPython instance inside your own Python
988 989 programs. This allows you to evaluate dynamically the state of your
989 990 code, operate with your variables, analyze them, etc. Note however that
990 991 any changes you make to values while in the shell do not propagate back
991 992 to the running code, so it is safe to modify your values because you
992 993 won't break your code in bizarre ways by doing so.
993 994
994 995 This feature allows you to easily have a fully functional python
995 996 environment for doing object introspection anywhere in your code with a
996 997 simple function call. In some cases a simple print statement is enough,
997 998 but if you need to do more detailed analysis of a code fragment this
998 999 feature can be very valuable.
999 1000
1000 1001 It can also be useful in scientific computing situations where it is
1001 1002 common to need to do some automatic, computationally intensive part and
1002 1003 then stop to look at data, plots, etc.
1003 1004 Opening an IPython instance will give you full access to your data and
1004 1005 functions, and you can resume program execution once you are done with
1005 1006 the interactive part (perhaps to stop again later, as many times as
1006 1007 needed).
1007 1008
1008 1009 The following code snippet is the bare minimum you need to include in
1009 1010 your Python programs for this to work (detailed examples follow later)::
1010 1011
1011 1012 from IPython.Shell import IPShellEmbed
1012 1013
1013 1014 ipshell = IPShellEmbed()
1014 1015
1015 1016 ipshell() # this call anywhere in your program will start IPython
1016 1017
1017 1018 You can run embedded instances even in code which is itself being run at
1018 1019 the IPython interactive prompt with '%run <filename>'. Since it's easy
1019 1020 to get lost as to where you are (in your top-level IPython or in your
1020 1021 embedded one), it's a good idea in such cases to set the in/out prompts
1021 1022 to something different for the embedded instances. The code examples
1022 1023 below illustrate this.
1023 1024
1024 1025 You can also have multiple IPython instances in your program and open
1025 1026 them separately, for example with different options for data
1026 1027 presentation. If you close and open the same instance multiple times,
1027 1028 its prompt counters simply continue from each execution to the next.
1028 1029
1029 1030 Please look at the docstrings in the Shell.py module for more details on
1030 1031 the use of this system.
1031 1032
1032 1033 The following sample file illustrating how to use the embedding
1033 1034 functionality is provided in the examples directory as example-embed.py.
1034 1035 It should be fairly self-explanatory::
1035 1036
1036 1037
1037 1038 #!/usr/bin/env python
1038 1039
1039 1040 """An example of how to embed an IPython shell into a running program.
1040 1041
1041 1042 Please see the documentation in the IPython.Shell module for more details.
1042 1043
1043 1044 The accompanying file example-embed-short.py has quick code fragments for
1044 1045 embedding which you can cut and paste in your code once you understand how
1045 1046 things work.
1046 1047
1047 1048 The code in this file is deliberately extra-verbose, meant for learning."""
1048 1049
1049 1050 # The basics to get you going:
1050 1051
1051 1052 # IPython sets the __IPYTHON__ variable so you can know if you have nested
1052 1053 # copies running.
1053 1054
1054 1055 # Try running this code both at the command line and from inside IPython (with
1055 1056 # %run example-embed.py)
1056 1057 try:
1057 1058 __IPYTHON__
1058 1059 except NameError:
1059 1060 nested = 0
1060 1061 args = ['']
1061 1062 else:
1062 1063 print "Running nested copies of IPython."
1063 1064 print "The prompts for the nested copy have been modified"
1064 1065 nested = 1
1065 1066 # what the embedded instance will see as sys.argv:
1066 1067 args = ['-pi1','In <\\#>: ','-pi2',' .\\D.: ',
1067 1068 '-po','Out<\\#>: ','-nosep']
1068 1069
1069 1070 # First import the embeddable shell class
1070 1071 from IPython.Shell import IPShellEmbed
1071 1072
1072 1073 # Now create an instance of the embeddable shell. The first argument is a
1073 1074 # string with options exactly as you would type them if you were starting
1074 1075 # IPython at the system command line. Any parameters you want to define for
1075 1076 # configuration can thus be specified here.
1076 1077 ipshell = IPShellEmbed(args,
1077 1078 banner = 'Dropping into IPython',
1078 1079 exit_msg = 'Leaving Interpreter, back to program.')
1079 1080
1080 1081 # Make a second instance, you can have as many as you want.
1081 1082 if nested:
1082 1083 args[1] = 'In2<\\#>'
1083 1084 else:
1084 1085 args = ['-pi1','In2<\\#>: ','-pi2',' .\\D.: ',
1085 1086 '-po','Out<\\#>: ','-nosep']
1086 1087 ipshell2 = IPShellEmbed(args,banner = 'Second IPython instance.')
1087 1088
1088 1089 print '\nHello. This is printed from the main controller program.\n'
1089 1090
1090 1091 # You can then call ipshell() anywhere you need it (with an optional
1091 1092 # message):
1092 1093 ipshell('***Called from top level. '
1093 1094 'Hit Ctrl-D to exit interpreter and continue program.\n'
1094 1095 'Note that if you use %kill_embedded, you can fully deactivate\n'
1095 1096 'This embedded instance so it will never turn on again')
1096 1097
1097 1098 print '\nBack in caller program, moving along...\n'
1098 1099
1099 1100 #---------------------------------------------------------------------------
1100 1101 # More details:
1101 1102
1102 1103 # IPShellEmbed instances don't print the standard system banner and
1103 1104 # messages. The IPython banner (which actually may contain initialization
1104 1105 # messages) is available as <instance>.IP.BANNER in case you want it.
1105 1106
1106 1107 # IPShellEmbed instances print the following information everytime they
1107 1108 # start:
1108 1109
1109 1110 # - A global startup banner.
1110 1111
1111 1112 # - A call-specific header string, which you can use to indicate where in the
1112 1113 # execution flow the shell is starting.
1113 1114
1114 1115 # They also print an exit message every time they exit.
1115 1116
1116 1117 # Both the startup banner and the exit message default to None, and can be set
1117 1118 # either at the instance constructor or at any other time with the
1118 1119 # set_banner() and set_exit_msg() methods.
1119 1120
1120 1121 # The shell instance can be also put in 'dummy' mode globally or on a per-call
1121 1122 # basis. This gives you fine control for debugging without having to change
1122 1123 # code all over the place.
1123 1124
1124 1125 # The code below illustrates all this.
1125 1126
1126 1127
1127 1128 # This is how the global banner and exit_msg can be reset at any point
1128 1129 ipshell.set_banner('Entering interpreter - New Banner')
1129 1130 ipshell.set_exit_msg('Leaving interpreter - New exit_msg')
1130 1131
1131 1132 def foo(m):
1132 1133 s = 'spam'
1133 1134 ipshell('***In foo(). Try @whos, or print s or m:')
1134 1135 print 'foo says m = ',m
1135 1136
1136 1137 def bar(n):
1137 1138 s = 'eggs'
1138 1139 ipshell('***In bar(). Try @whos, or print s or n:')
1139 1140 print 'bar says n = ',n
1140 1141
1141 1142 # Some calls to the above functions which will trigger IPython:
1142 1143 print 'Main program calling foo("eggs")\n'
1143 1144 foo('eggs')
1144 1145
1145 1146 # The shell can be put in 'dummy' mode where calls to it silently return. This
1146 1147 # allows you, for example, to globally turn off debugging for a program with a
1147 1148 # single call.
1148 1149 ipshell.set_dummy_mode(1)
1149 1150 print '\nTrying to call IPython which is now "dummy":'
1150 1151 ipshell()
1151 1152 print 'Nothing happened...'
1152 1153 # The global 'dummy' mode can still be overridden for a single call
1153 1154 print '\nOverriding dummy mode manually:'
1154 1155 ipshell(dummy=0)
1155 1156
1156 1157 # Reactivate the IPython shell
1157 1158 ipshell.set_dummy_mode(0)
1158 1159
1159 1160 print 'You can even have multiple embedded instances:'
1160 1161 ipshell2()
1161 1162
1162 1163 print '\nMain program calling bar("spam")\n'
1163 1164 bar('spam')
1164 1165
1165 1166 print 'Main program finished. Bye!'
1166 1167
1167 1168 #********************** End of file <example-embed.py> ***********************
1168 1169
1169 1170 Once you understand how the system functions, you can use the following
1170 1171 code fragments in your programs which are ready for cut and paste::
1171 1172
1172 1173
1173 1174 """Quick code snippets for embedding IPython into other programs.
1174 1175
1175 1176 See example-embed.py for full details, this file has the bare minimum code for
1176 1177 cut and paste use once you understand how to use the system."""
1177 1178
1178 1179 #---------------------------------------------------------------------------
1179 1180 # This code loads IPython but modifies a few things if it detects it's running
1180 1181 # embedded in another IPython session (helps avoid confusion)
1181 1182
1182 1183 try:
1183 1184 __IPYTHON__
1184 1185 except NameError:
1185 1186 argv = ['']
1186 1187 banner = exit_msg = ''
1187 1188 else:
1188 1189 # Command-line options for IPython (a list like sys.argv)
1189 1190 argv = ['-pi1','In <\\#>:','-pi2',' .\\D.:','-po','Out<\\#>:']
1190 1191 banner = '*** Nested interpreter ***'
1191 1192 exit_msg = '*** Back in main IPython ***'
1192 1193
1193 1194 # First import the embeddable shell class
1194 1195 from IPython.Shell import IPShellEmbed
1195 1196 # Now create the IPython shell instance. Put ipshell() anywhere in your code
1196 1197 # where you want it to open.
1197 1198 ipshell = IPShellEmbed(argv,banner=banner,exit_msg=exit_msg)
1198 1199
1199 1200 #---------------------------------------------------------------------------
1200 1201 # This code will load an embeddable IPython shell always with no changes for
1201 1202 # nested embededings.
1202 1203
1203 1204 from IPython.Shell import IPShellEmbed
1204 1205 ipshell = IPShellEmbed()
1205 1206 # Now ipshell() will open IPython anywhere in the code.
1206 1207
1207 1208 #---------------------------------------------------------------------------
1208 1209 # This code loads an embeddable shell only if NOT running inside
1209 1210 # IPython. Inside IPython, the embeddable shell variable ipshell is just a
1210 1211 # dummy function.
1211 1212
1212 1213 try:
1213 1214 __IPYTHON__
1214 1215 except NameError:
1215 1216 from IPython.Shell import IPShellEmbed
1216 1217 ipshell = IPShellEmbed()
1217 1218 # Now ipshell() will open IPython anywhere in the code
1218 1219 else:
1219 1220 # Define a dummy ipshell() so the same code doesn't crash inside an
1220 1221 # interactive IPython
1221 1222 def ipshell(): pass
1222 1223
1223 1224 #******************* End of file <example-embed-short.py> ********************
1224 1225
1225 1226 Using the Python debugger (pdb)
1226 1227 ===============================
1227 1228
1228 1229 Running entire programs via pdb
1229 1230 -------------------------------
1230 1231
1231 1232 pdb, the Python debugger, is a powerful interactive debugger which
1232 1233 allows you to step through code, set breakpoints, watch variables,
1233 1234 etc. IPython makes it very easy to start any script under the control
1234 1235 of pdb, regardless of whether you have wrapped it into a 'main()'
1235 1236 function or not. For this, simply type '%run -d myscript' at an
1236 1237 IPython prompt. See the %run command's documentation (via '%run?' or
1237 1238 in Sec. magic_ for more details, including how to control where pdb
1238 1239 will stop execution first.
1239 1240
1240 1241 For more information on the use of the pdb debugger, read the included
1241 1242 pdb.doc file (part of the standard Python distribution). On a stock
1242 1243 Linux system it is located at /usr/lib/python2.3/pdb.doc, but the
1243 1244 easiest way to read it is by using the help() function of the pdb module
1244 1245 as follows (in an IPython prompt):
1245 1246
1246 1247 In [1]: import pdb
1247 1248 In [2]: pdb.help()
1248 1249
1249 1250 This will load the pdb.doc document in a file viewer for you automatically.
1250 1251
1251 1252
1252 1253 Automatic invocation of pdb on exceptions
1253 1254 -----------------------------------------
1254 1255
1255 1256 IPython, if started with the -pdb option (or if the option is set in
1256 1257 your rc file) can call the Python pdb debugger every time your code
1257 1258 triggers an uncaught exception. This feature
1258 1259 can also be toggled at any time with the %pdb magic command. This can be
1259 1260 extremely useful in order to find the origin of subtle bugs, because pdb
1260 1261 opens up at the point in your code which triggered the exception, and
1261 1262 while your program is at this point 'dead', all the data is still
1262 1263 available and you can walk up and down the stack frame and understand
1263 1264 the origin of the problem.
1264 1265
1265 1266 Furthermore, you can use these debugging facilities both with the
1266 1267 embedded IPython mode and without IPython at all. For an embedded shell
1267 1268 (see sec. Embedding_), simply call the constructor with
1268 1269 '-pdb' in the argument string and automatically pdb will be called if an
1269 1270 uncaught exception is triggered by your code.
1270 1271
1271 1272 For stand-alone use of the feature in your programs which do not use
1272 1273 IPython at all, put the following lines toward the top of your 'main'
1273 1274 routine::
1274 1275
1275 1276 import sys
1276 1277 from IPython.core import ultratb
1277 1278 sys.excepthook = ultratb.FormattedTB(mode='Verbose',
1278 1279 color_scheme='Linux', call_pdb=1)
1279 1280
1280 1281 The mode keyword can be either 'Verbose' or 'Plain', giving either very
1281 1282 detailed or normal tracebacks respectively. The color_scheme keyword can
1282 1283 be one of 'NoColor', 'Linux' (default) or 'LightBG'. These are the same
1283 1284 options which can be set in IPython with -colors and -xmode.
1284 1285
1285 1286 This will give any of your programs detailed, colored tracebacks with
1286 1287 automatic invocation of pdb.
1287 1288
1288 1289
1289 1290 Extensions for syntax processing
1290 1291 ================================
1291 1292
1292 1293 This isn't for the faint of heart, because the potential for breaking
1293 1294 things is quite high. But it can be a very powerful and useful feature.
1294 1295 In a nutshell, you can redefine the way IPython processes the user input
1295 1296 line to accept new, special extensions to the syntax without needing to
1296 1297 change any of IPython's own code.
1297 1298
1298 1299 In the IPython/extensions directory you will find some examples
1299 1300 supplied, which we will briefly describe now. These can be used 'as is'
1300 1301 (and both provide very useful functionality), or you can use them as a
1301 1302 starting point for writing your own extensions.
1302 1303
1303 1304
1304 1305 Pasting of code starting with '>>> ' or '... '
1305 1306 ----------------------------------------------
1306 1307
1307 1308 In the python tutorial it is common to find code examples which have
1308 1309 been taken from real python sessions. The problem with those is that all
1309 1310 the lines begin with either '>>> ' or '... ', which makes it impossible
1310 1311 to paste them all at once. One must instead do a line by line manual
1311 1312 copying, carefully removing the leading extraneous characters.
1312 1313
1313 1314 This extension identifies those starting characters and removes them
1314 1315 from the input automatically, so that one can paste multi-line examples
1315 1316 directly into IPython, saving a lot of time. Please look at the file
1316 1317 InterpreterPasteInput.py in the IPython/extensions directory for details
1317 1318 on how this is done.
1318 1319
1319 1320 IPython comes with a special profile enabling this feature, called
1320 1321 tutorial. Simply start IPython via 'ipython -p tutorial' and the feature
1321 1322 will be available. In a normal IPython session you can activate the
1322 1323 feature by importing the corresponding module with:
1323 1324 In [1]: import IPython.extensions.InterpreterPasteInput
1324 1325
1325 1326 The following is a 'screenshot' of how things work when this extension
1326 1327 is on, copying an example from the standard tutorial::
1327 1328
1328 1329 IPython profile: tutorial
1329 1330
1330 1331 *** Pasting of code with ">>>" or "..." has been enabled.
1331 1332
1332 1333 In [1]: >>> def fib2(n): # return Fibonacci series up to n
1333 1334 ...: ... """Return a list containing the Fibonacci series up to
1334 1335 n."""
1335 1336 ...: ... result = []
1336 1337 ...: ... a, b = 0, 1
1337 1338 ...: ... while b < n:
1338 1339 ...: ... result.append(b) # see below
1339 1340 ...: ... a, b = b, a+b
1340 1341 ...: ... return result
1341 1342 ...:
1342 1343
1343 1344 In [2]: fib2(10)
1344 1345 Out[2]: [1, 1, 2, 3, 5, 8]
1345 1346
1346 1347 Note that as currently written, this extension does not recognize
1347 1348 IPython's prompts for pasting. Those are more complicated, since the
1348 1349 user can change them very easily, they involve numbers and can vary in
1349 1350 length. One could however extract all the relevant information from the
1350 1351 IPython instance and build an appropriate regular expression. This is
1351 1352 left as an exercise for the reader.
1352 1353
1353 1354
1354 1355 Input of physical quantities with units
1355 1356 ---------------------------------------
1356 1357
1357 1358 The module PhysicalQInput allows a simplified form of input for physical
1358 1359 quantities with units. This file is meant to be used in conjunction with
1359 1360 the PhysicalQInteractive module (in the same directory) and
1360 1361 Physics.PhysicalQuantities from Konrad Hinsen's ScientificPython
1361 1362 (http://dirac.cnrs-orleans.fr/ScientificPython/).
1362 1363
1363 1364 The Physics.PhysicalQuantities module defines PhysicalQuantity objects,
1364 1365 but these must be declared as instances of a class. For example, to
1365 1366 define v as a velocity of 3 m/s, normally you would write::
1366 1367
1367 1368 In [1]: v = PhysicalQuantity(3,'m/s')
1368 1369
1369 1370 Using the PhysicalQ_Input extension this can be input instead as:
1370 1371 In [1]: v = 3 m/s
1371 1372 which is much more convenient for interactive use (even though it is
1372 1373 blatantly invalid Python syntax).
1373 1374
1374 1375 The physics profile supplied with IPython (enabled via 'ipython -p
1375 1376 physics') uses these extensions, which you can also activate with:
1376 1377
1377 1378 from math import * # math MUST be imported BEFORE PhysicalQInteractive
1378 1379 from IPython.extensions.PhysicalQInteractive import *
1379 1380 import IPython.extensions.PhysicalQInput
1380 1381
1381 1382 .. _gui_support:
1382 1383
1383 1384 GUI event loop support support
1384 1385 ==============================
1385 1386
1386 1387 .. versionadded:: 0.11
1387 1388 The ``%gui`` magic and :mod:`IPython.lib.inputhook`.
1388 1389
1389 1390 IPython has excellent support for working interactively with Graphical User
1390 1391 Interface (GUI) toolkits, such as wxPython, PyQt4, PyGTK and Tk. This is
1391 1392 implemented using Python's builtin ``PyOSInputHook`` hook. This implementation
1392 1393 is extremely robust compared to our previous threaded based version. The
1393 1394 advantages of this are:
1394 1395
1395 1396 * GUIs can be enabled and disabled dynamically at runtime.
1396 1397 * The active GUI can be switched dynamically at runtime.
1397 1398 * In some cases, multiple GUIs can run simultaneously with no problems.
1398 1399 * There is a developer API in :mod:`IPython.lib.inputhook` for customizing
1399 1400 all of these things.
1400 1401
1401 1402 For users, enabling GUI event loop integration is simple. You simple use the
1402 1403 ``%gui`` magic as follows::
1403 1404
1404 1405 %gui [-a] [GUINAME]
1405 1406
1406 1407 With no arguments, ``%gui`` removes all GUI support. Valid ``GUINAME``
1407 1408 arguments are ``wx``, ``qt4``, ``gtk`` and ``tk``. The ``-a`` option will
1408 1409 create and return a running application object for the selected GUI toolkit.
1409 1410
1410 1411 Thus, to use wxPython interactively and create a running :class:`wx.App`
1411 1412 object, do::
1412 1413
1413 1414 %gui -a wx
1414 1415
1415 1416 For information on IPython's Matplotlib integration (and the ``pylab`` mode)
1416 1417 see :ref:`this section <matplotlib_support>`.
1417 1418
1418 1419 For developers that want to use IPython's GUI event loop integration in
1419 1420 the form of a library, these capabilities are exposed in library form
1420 1421 in the :mod:`IPython.lib.inputhook`. Interested developers should see the
1421 1422 module docstrings for more information, but there are a few points that
1422 1423 should be mentioned here.
1423 1424
1424 1425 First, the ``PyOSInputHook`` approach only works in command line settings
1425 1426 where readline is activated.
1426 1427
1427 1428 Second, when using the ``PyOSInputHook`` approach, a GUI application should
1428 1429 *not* start its event loop. Instead all of this is handled by the
1429 1430 ``PyOSInputHook``. This means that applications that are meant to be used both
1430 1431 in IPython and as standalone apps need to have special code to detects how the
1431 1432 application is being run. We highly recommend using IPython's
1432 1433 :func:`appstart_` functions for this. Here is a simple example that shows the
1433 1434 recommended code that should be at the bottom of a wxPython using GUI
1434 1435 application::
1435 1436
1436 1437 try:
1437 1438 from IPython import appstart_wx
1438 1439 appstart_wx(app)
1439 1440 except ImportError:
1440 1441 app.MainLoop()
1441 1442
1442 1443 This pattern should be used instead of the simple ``app.MainLoop()`` code
1443 1444 that a standalone wxPython application would have.
1444 1445
1445 1446 Third, unlike previous versions of IPython, we no longer "hijack" (replace
1446 1447 them with no-ops) the event loops. This is done to allow applications that
1447 1448 actually need to run the real event loops to do so. This is often needed to
1448 1449 process pending events at critical points.
1449 1450
1450 1451 Finally, we also have a number of examples in our source directory
1451 1452 :file:`docs/examples/lib` that demonstrate these capabilities.
1452 1453
1453 1454 .. _matplotlib_support:
1454 1455
1455 1456 Plotting with matplotlib
1456 1457 ========================
1457 1458
1458 1459
1459 1460 `Matplotlib`_ provides high quality 2D and
1460 1461 3D plotting for Python. Matplotlib can produce plots on screen using a variety
1461 1462 of GUI toolkits, including Tk, PyGTK, PyQt4 and wxPython. It also provides a
1462 1463 number of commands useful for scientific computing, all with a syntax
1463 1464 compatible with that of the popular Matlab program.
1464 1465
1465 1466 Many IPython users have come to rely on IPython's ``-pylab`` mode which
1466 1467 automates the integration of Matplotlib with IPython. We are still in the
1467 1468 process of working with the Matplotlib developers to finalize the new pylab
1468 1469 API, but for now you can use Matplotlib interactively using the following
1469 1470 commands::
1470 1471
1471 1472 %gui -a wx
1472 1473 import matplotlib
1473 1474 matplotlib.use('wxagg')
1474 1475 from matplotlib import pylab
1475 1476 pylab.interactive(True)
1476 1477
1477 1478 All of this will soon be automated as Matplotlib beings to include
1478 1479 new logic that uses our new GUI support.
1479 1480
1480 1481 .. _interactive_demos:
1481 1482
1482 1483 Interactive demos with IPython
1483 1484 ==============================
1484 1485
1485 1486 IPython ships with a basic system for running scripts interactively in
1486 1487 sections, useful when presenting code to audiences. A few tags embedded
1487 1488 in comments (so that the script remains valid Python code) divide a file
1488 1489 into separate blocks, and the demo can be run one block at a time, with
1489 1490 IPython printing (with syntax highlighting) the block before executing
1490 1491 it, and returning to the interactive prompt after each block. The
1491 1492 interactive namespace is updated after each block is run with the
1492 1493 contents of the demo's namespace.
1493 1494
1494 1495 This allows you to show a piece of code, run it and then execute
1495 1496 interactively commands based on the variables just created. Once you
1496 1497 want to continue, you simply execute the next block of the demo. The
1497 1498 following listing shows the markup necessary for dividing a script into
1498 1499 sections for execution as a demo::
1499 1500
1500 1501
1501 1502 """A simple interactive demo to illustrate the use of IPython's Demo class.
1502 1503
1503 1504 Any python script can be run as a demo, but that does little more than showing
1504 1505 it on-screen, syntax-highlighted in one shot. If you add a little simple
1505 1506 markup, you can stop at specified intervals and return to the ipython prompt,
1506 1507 resuming execution later.
1507 1508 """
1508 1509
1509 1510 print 'Hello, welcome to an interactive IPython demo.'
1510 1511 print 'Executing this block should require confirmation before proceeding,'
1511 1512 print 'unless auto_all has been set to true in the demo object'
1512 1513
1513 1514 # The mark below defines a block boundary, which is a point where IPython will
1514 1515 # stop execution and return to the interactive prompt.
1515 1516 # Note that in actual interactive execution,
1516 1517 # <demo> --- stop ---
1517 1518
1518 1519 x = 1
1519 1520 y = 2
1520 1521
1521 1522 # <demo> --- stop ---
1522 1523
1523 1524 # the mark below makes this block as silent
1524 1525 # <demo> silent
1525 1526
1526 1527 print 'This is a silent block, which gets executed but not printed.'
1527 1528
1528 1529 # <demo> --- stop ---
1529 1530 # <demo> auto
1530 1531 print 'This is an automatic block.'
1531 1532 print 'It is executed without asking for confirmation, but printed.'
1532 1533 z = x+y
1533 1534
1534 1535 print 'z=',x
1535 1536
1536 1537 # <demo> --- stop ---
1537 1538 # This is just another normal block.
1538 1539 print 'z is now:', z
1539 1540
1540 1541 print 'bye!'
1541 1542
1542 1543 In order to run a file as a demo, you must first make a Demo object out
1543 1544 of it. If the file is named myscript.py, the following code will make a
1544 1545 demo::
1545 1546
1546 1547 from IPython.demo import Demo
1547 1548
1548 1549 mydemo = Demo('myscript.py')
1549 1550
1550 1551 This creates the mydemo object, whose blocks you run one at a time by
1551 1552 simply calling the object with no arguments. If you have autocall active
1552 1553 in IPython (the default), all you need to do is type::
1553 1554
1554 1555 mydemo
1555 1556
1556 1557 and IPython will call it, executing each block. Demo objects can be
1557 1558 restarted, you can move forward or back skipping blocks, re-execute the
1558 1559 last block, etc. Simply use the Tab key on a demo object to see its
1559 1560 methods, and call '?' on them to see their docstrings for more usage
1560 1561 details. In addition, the demo module itself contains a comprehensive
1561 1562 docstring, which you can access via::
1562 1563
1563 1564 from IPython import demo
1564 1565
1565 1566 demo?
1566 1567
1567 1568 Limitations: It is important to note that these demos are limited to
1568 1569 fairly simple uses. In particular, you can not put division marks in
1569 1570 indented code (loops, if statements, function definitions, etc.)
1570 1571 Supporting something like this would basically require tracking the
1571 1572 internal execution state of the Python interpreter, so only top-level
1572 1573 divisions are allowed. If you want to be able to open an IPython
1573 1574 instance at an arbitrary point in a program, you can use IPython's
1574 1575 embedding facilities, described in detail in Sec. 9
1575 1576
1576 1577 .. [Matplotlib] Matplotlib. http://matplotlib.sourceforge.net
1577 1578
@@ -1,293 +1,293 b''
1 1 .. _ipython_as_shell:
2 2
3 3 =========================
4 4 IPython as a system shell
5 5 =========================
6 6
7 7 .. warning::
8 8
9 9 As of the 0.11 version of IPython, some of the features and APIs
10 10 described in this section have been deprecated or are broken. Our plan
11 11 is to continue to support these features, but they need to be updated
12 12 to take advantage of recent API changes. Furthermore, this section
13 13 of the documentation need to be updated to reflect all of these changes.
14 14
15 15 Overview
16 16 ========
17 17
18 18 The 'sh' profile optimizes IPython for system shell usage. Apart from
19 19 certain job control functionality that is present in unix (ctrl+z does
20 20 "suspend"), the sh profile should provide you with most of the
21 21 functionality you use daily in system shell, and more. Invoke IPython
22 22 in 'sh' profile by doing 'ipython -p sh', or (in win32) by launching
23 23 the "pysh" shortcut in start menu.
24 24
25 25 If you want to use the features of sh profile as your defaults (which
26 26 might be a good idea if you use other profiles a lot of the time but
27 27 still want the convenience of sh profile), add ``import ipy_profile_sh``
28 to your ~/.ipython/ipy_user_conf.py.
28 to your $IPYTHON_DIR/ipy_user_conf.py.
29 29
30 30 The 'sh' profile is different from the default profile in that:
31 31
32 32 * Prompt shows the current directory
33 33 * Spacing between prompts and input is more compact (no padding with
34 34 empty lines). The startup banner is more compact as well.
35 35 * System commands are directly available (in alias table) without
36 36 requesting %rehashx - however, if you install new programs along
37 37 your PATH, you might want to run %rehashx to update the persistent
38 38 alias table
39 39 * Macros are stored in raw format by default. That is, instead of
40 40 '_ip.system("cat foo"), the macro will contain text 'cat foo')
41 41 * Autocall is in full mode
42 42 * Calling "up" does "cd .."
43 43
44 44 The 'sh' profile is different from the now-obsolete (and unavailable)
45 45 'pysh' profile in that:
46 46
47 47 * '$$var = command' and '$var = command' syntax is not supported
48 48 * anymore. Use 'var = !command' instead (incidentally, this is
49 49 * available in all IPython profiles). Note that !!command *will*
50 50 * work.
51 51
52 52 Aliases
53 53 =======
54 54
55 55 All of your $PATH has been loaded as IPython aliases, so you should be
56 56 able to type any normal system command and have it executed. See
57 57 %alias? and %unalias? for details on the alias facilities. See also
58 58 %rehashx? for details on the mechanism used to load $PATH.
59 59
60 60
61 61 Directory management
62 62 ====================
63 63
64 64 Since each command passed by ipython to the underlying system is executed
65 65 in a subshell which exits immediately, you can NOT use !cd to navigate
66 66 the filesystem.
67 67
68 68 IPython provides its own builtin '%cd' magic command to move in the
69 69 filesystem (the % is not required with automagic on). It also maintains
70 70 a list of visited directories (use %dhist to see it) and allows direct
71 71 switching to any of them. Type 'cd?' for more details.
72 72
73 73 %pushd, %popd and %dirs are provided for directory stack handling.
74 74
75 75
76 76 Enabled extensions
77 77 ==================
78 78
79 79 Some extensions, listed below, are enabled as default in this profile.
80 80
81 81 envpersist
82 82 ----------
83 83
84 84 %env can be used to "remember" environment variable manipulations. Examples::
85 85
86 86 %env - Show all environment variables
87 87 %env VISUAL=jed - set VISUAL to jed
88 88 %env PATH+=;/foo - append ;foo to PATH
89 89 %env PATH+=;/bar - also append ;bar to PATH
90 90 %env PATH-=/wbin; - prepend /wbin; to PATH
91 91 %env -d VISUAL - forget VISUAL persistent val
92 92 %env -p - print all persistent env modifications
93 93
94 94 ipy_which
95 95 ---------
96 96
97 97 %which magic command. Like 'which' in unix, but knows about ipython aliases.
98 98
99 99 Example::
100 100
101 101 [C:/ipython]|14> %which st
102 102 st -> start .
103 103 [C:/ipython]|15> %which d
104 104 d -> dir /w /og /on
105 105 [C:/ipython]|16> %which cp
106 106 cp -> cp
107 107 == c:\bin\cp.exe
108 108 c:\bin\cp.exe
109 109
110 110 ipy_app_completers
111 111 ------------------
112 112
113 113 Custom tab completers for some apps like svn, hg, bzr, apt-get. Try 'apt-get install <TAB>' in debian/ubuntu.
114 114
115 115 ipy_rehashdir
116 116 -------------
117 117
118 118 Allows you to add system command aliases for commands that are not along your path. Let's say that you just installed Putty and want to be able to invoke it without adding it to path, you can create the alias for it with rehashdir::
119 119
120 120 [~]|22> cd c:/opt/PuTTY/
121 121 [c:opt/PuTTY]|23> rehashdir .
122 122 <23> ['pageant', 'plink', 'pscp', 'psftp', 'putty', 'puttygen', 'unins000']
123 123
124 124 Now, you can execute any of those commams directly::
125 125
126 126 [c:opt/PuTTY]|24> cd
127 127 [~]|25> putty
128 128
129 129 (the putty window opens).
130 130
131 131 If you want to store the alias so that it will always be available, do '%store putty'. If you want to %store all these aliases persistently, just do it in a for loop::
132 132
133 133 [~]|27> for a in _23:
134 134 |..> %store $a
135 135 |..>
136 136 |..>
137 137 Alias stored: pageant (0, 'c:\\opt\\PuTTY\\pageant.exe')
138 138 Alias stored: plink (0, 'c:\\opt\\PuTTY\\plink.exe')
139 139 Alias stored: pscp (0, 'c:\\opt\\PuTTY\\pscp.exe')
140 140 Alias stored: psftp (0, 'c:\\opt\\PuTTY\\psftp.exe')
141 141 ...
142 142
143 143 mglob
144 144 -----
145 145
146 146 Provide the magic function %mglob, which makes it easier (than the 'find' command) to collect (possibly recursive) file lists. Examples::
147 147
148 148 [c:/ipython]|9> mglob *.py
149 149 [c:/ipython]|10> mglob *.py rec:*.txt
150 150 [c:/ipython]|19> workfiles = %mglob !.svn/ !.hg/ !*_Data/ !*.bak rec:.
151 151
152 152 Note that the first 2 calls will put the file list in result history (_, _9, _10), and the last one will assign it to 'workfiles'.
153 153
154 154
155 155 Prompt customization
156 156 ====================
157 157
158 158 The sh profile uses the following prompt configurations::
159 159
160 160 o.prompt_in1= r'\C_LightBlue[\C_LightCyan\Y2\C_LightBlue]\C_Green|\#>'
161 161 o.prompt_in2= r'\C_Green|\C_LightGreen\D\C_Green>'
162 162
163 163 You can change the prompt configuration to your liking by editing
164 164 ipy_user_conf.py.
165 165
166 166 String lists
167 167 ============
168 168
169 169 String lists (IPython.utils.text.SList) are handy way to process output
170 170 from system commands. They are produced by ``var = !cmd`` syntax.
171 171
172 172 First, we acquire the output of 'ls -l'::
173 173
174 174 [Q:doc/examples]|2> lines = !ls -l
175 175 ==
176 176 ['total 23',
177 177 '-rw-rw-rw- 1 ville None 1163 Sep 30 2006 example-demo.py',
178 178 '-rw-rw-rw- 1 ville None 1927 Sep 30 2006 example-embed-short.py',
179 179 '-rwxrwxrwx 1 ville None 4606 Sep 1 17:15 example-embed.py',
180 180 '-rwxrwxrwx 1 ville None 1017 Sep 30 2006 example-gnuplot.py',
181 181 '-rwxrwxrwx 1 ville None 339 Jun 11 18:01 extension.py',
182 182 '-rwxrwxrwx 1 ville None 113 Dec 20 2006 seteditor.py',
183 183 '-rwxrwxrwx 1 ville None 245 Dec 12 2006 seteditor.pyc']
184 184
185 185 Now, let's take a look at the contents of 'lines' (the first number is
186 186 the list element number)::
187 187
188 188 [Q:doc/examples]|3> lines
189 189 <3> SList (.p, .n, .l, .s, .grep(), .fields() available). Value:
190 190
191 191 0: total 23
192 192 1: -rw-rw-rw- 1 ville None 1163 Sep 30 2006 example-demo.py
193 193 2: -rw-rw-rw- 1 ville None 1927 Sep 30 2006 example-embed-short.py
194 194 3: -rwxrwxrwx 1 ville None 4606 Sep 1 17:15 example-embed.py
195 195 4: -rwxrwxrwx 1 ville None 1017 Sep 30 2006 example-gnuplot.py
196 196 5: -rwxrwxrwx 1 ville None 339 Jun 11 18:01 extension.py
197 197 6: -rwxrwxrwx 1 ville None 113 Dec 20 2006 seteditor.py
198 198 7: -rwxrwxrwx 1 ville None 245 Dec 12 2006 seteditor.pyc
199 199
200 200 Now, let's filter out the 'embed' lines::
201 201
202 202 [Q:doc/examples]|4> l2 = lines.grep('embed',prune=1)
203 203 [Q:doc/examples]|5> l2
204 204 <5> SList (.p, .n, .l, .s, .grep(), .fields() available). Value:
205 205
206 206 0: total 23
207 207 1: -rw-rw-rw- 1 ville None 1163 Sep 30 2006 example-demo.py
208 208 2: -rwxrwxrwx 1 ville None 1017 Sep 30 2006 example-gnuplot.py
209 209 3: -rwxrwxrwx 1 ville None 339 Jun 11 18:01 extension.py
210 210 4: -rwxrwxrwx 1 ville None 113 Dec 20 2006 seteditor.py
211 211 5: -rwxrwxrwx 1 ville None 245 Dec 12 2006 seteditor.pyc
212 212
213 213 Now, we want strings having just file names and permissions::
214 214
215 215 [Q:doc/examples]|6> l2.fields(8,0)
216 216 <6> SList (.p, .n, .l, .s, .grep(), .fields() available). Value:
217 217
218 218 0: total
219 219 1: example-demo.py -rw-rw-rw-
220 220 2: example-gnuplot.py -rwxrwxrwx
221 221 3: extension.py -rwxrwxrwx
222 222 4: seteditor.py -rwxrwxrwx
223 223 5: seteditor.pyc -rwxrwxrwx
224 224
225 225 Note how the line with 'total' does not raise IndexError.
226 226
227 227 If you want to split these (yielding lists), call fields() without
228 228 arguments::
229 229
230 230 [Q:doc/examples]|7> _.fields()
231 231 <7>
232 232 [['total'],
233 233 ['example-demo.py', '-rw-rw-rw-'],
234 234 ['example-gnuplot.py', '-rwxrwxrwx'],
235 235 ['extension.py', '-rwxrwxrwx'],
236 236 ['seteditor.py', '-rwxrwxrwx'],
237 237 ['seteditor.pyc', '-rwxrwxrwx']]
238 238
239 239 If you want to pass these separated with spaces to a command (typical
240 240 for lists if files), use the .s property::
241 241
242 242
243 243 [Q:doc/examples]|13> files = l2.fields(8).s
244 244 [Q:doc/examples]|14> files
245 245 <14> 'example-demo.py example-gnuplot.py extension.py seteditor.py seteditor.pyc'
246 246 [Q:doc/examples]|15> ls $files
247 247 example-demo.py example-gnuplot.py extension.py seteditor.py seteditor.pyc
248 248
249 249 SLists are inherited from normal python lists, so every list method is
250 250 available::
251 251
252 252 [Q:doc/examples]|21> lines.append('hey')
253 253
254 254
255 255 Real world example: remove all files outside version control
256 256 ============================================================
257 257
258 258 First, capture output of "hg status"::
259 259
260 260 [Q:/ipython]|28> out = !hg status
261 261 ==
262 262 ['M IPython\\extensions\\ipy_kitcfg.py',
263 263 'M IPython\\extensions\\ipy_rehashdir.py',
264 264 ...
265 265 '? build\\lib\\IPython\\Debugger.py',
266 266 '? build\\lib\\IPython\\extensions\\InterpreterExec.py',
267 267 '? build\\lib\\IPython\\extensions\\InterpreterPasteInput.py',
268 268 ...
269 269
270 270 (lines starting with ? are not under version control).
271 271
272 272 ::
273 273
274 274 [Q:/ipython]|35> junk = out.grep(r'^\?').fields(1)
275 275 [Q:/ipython]|36> junk
276 276 <36> SList (.p, .n, .l, .s, .grep(), .fields() availab
277 277 ...
278 278 10: build\bdist.win32\winexe\temp\_ctypes.py
279 279 11: build\bdist.win32\winexe\temp\_hashlib.py
280 280 12: build\bdist.win32\winexe\temp\_socket.py
281 281
282 282 Now we can just remove these files by doing 'rm $junk.s'.
283 283
284 284 The .s, .n, .p properties
285 285 =========================
286 286
287 287 The '.s' property returns one string where lines are separated by
288 288 single space (for convenient passing to system commands). The '.n'
289 289 property return one string where the lines are separated by '\n'
290 290 (i.e. the original output of the function). If the items in string
291 291 list are file names, '.p' can be used to get a list of "path" objects
292 292 for convenient file manipulation.
293 293
@@ -1,237 +1,237 b''
1 1 .. _ip1par:
2 2
3 3 ============================
4 4 Overview and getting started
5 5 ============================
6 6
7 7 Introduction
8 8 ============
9 9
10 10 This section gives an overview of IPython's sophisticated and powerful
11 11 architecture for parallel and distributed computing. This architecture
12 12 abstracts out parallelism in a very general way, which enables IPython to
13 13 support many different styles of parallelism including:
14 14
15 15 * Single program, multiple data (SPMD) parallelism.
16 16 * Multiple program, multiple data (MPMD) parallelism.
17 17 * Message passing using MPI.
18 18 * Task farming.
19 19 * Data parallel.
20 20 * Combinations of these approaches.
21 21 * Custom user defined approaches.
22 22
23 23 Most importantly, IPython enables all types of parallel applications to
24 24 be developed, executed, debugged and monitored *interactively*. Hence,
25 25 the ``I`` in IPython. The following are some example usage cases for IPython:
26 26
27 27 * Quickly parallelize algorithms that are embarrassingly parallel
28 28 using a number of simple approaches. Many simple things can be
29 29 parallelized interactively in one or two lines of code.
30 30
31 31 * Steer traditional MPI applications on a supercomputer from an
32 32 IPython session on your laptop.
33 33
34 34 * Analyze and visualize large datasets (that could be remote and/or
35 35 distributed) interactively using IPython and tools like
36 36 matplotlib/TVTK.
37 37
38 38 * Develop, test and debug new parallel algorithms
39 39 (that may use MPI) interactively.
40 40
41 41 * Tie together multiple MPI jobs running on different systems into
42 42 one giant distributed and parallel system.
43 43
44 44 * Start a parallel job on your cluster and then have a remote
45 45 collaborator connect to it and pull back data into their
46 46 local IPython session for plotting and analysis.
47 47
48 48 * Run a set of tasks on a set of CPUs using dynamic load balancing.
49 49
50 50 Architecture overview
51 51 =====================
52 52
53 53 The IPython architecture consists of three components:
54 54
55 55 * The IPython engine.
56 56 * The IPython controller.
57 57 * Various controller clients.
58 58
59 59 These components live in the :mod:`IPython.kernel` package and are
60 60 installed with IPython. They do, however, have additional dependencies
61 61 that must be installed. For more information, see our
62 62 :ref:`installation documentation <install_index>`.
63 63
64 64 IPython engine
65 65 ---------------
66 66
67 67 The IPython engine is a Python instance that takes Python commands over a
68 68 network connection. Eventually, the IPython engine will be a full IPython
69 69 interpreter, but for now, it is a regular Python interpreter. The engine
70 70 can also handle incoming and outgoing Python objects sent over a network
71 71 connection. When multiple engines are started, parallel and distributed
72 72 computing becomes possible. An important feature of an IPython engine is
73 73 that it blocks while user code is being executed. Read on for how the
74 74 IPython controller solves this problem to expose a clean asynchronous API
75 75 to the user.
76 76
77 77 IPython controller
78 78 ------------------
79 79
80 80 The IPython controller provides an interface for working with a set of
81 81 engines. At an general level, the controller is a process to which
82 82 IPython engines can connect. For each connected engine, the controller
83 83 manages a queue. All actions that can be performed on the engine go
84 84 through this queue. While the engines themselves block when user code is
85 85 run, the controller hides that from the user to provide a fully
86 86 asynchronous interface to a set of engines.
87 87
88 88 .. note::
89 89
90 90 Because the controller listens on a network port for engines to
91 91 connect to it, it must be started *before* any engines are started.
92 92
93 93 The controller also provides a single point of contact for users who wish to
94 94 utilize the engines connected to the controller. There are different ways of
95 95 working with a controller. In IPython these ways correspond to different
96 96 interfaces that the controller is adapted to. Currently we have two default
97 97 interfaces to the controller:
98 98
99 99 * The MultiEngine interface, which provides the simplest possible way of
100 100 working with engines interactively.
101 101 * The Task interface, which presents the engines as a load balanced
102 102 task farming system.
103 103
104 104 Advanced users can easily add new custom interfaces to enable other
105 105 styles of parallelism.
106 106
107 107 .. note::
108 108
109 109 A single controller and set of engines can be accessed
110 110 through multiple interfaces simultaneously. This opens the
111 111 door for lots of interesting things.
112 112
113 113 Controller clients
114 114 ------------------
115 115
116 116 For each controller interface, there is a corresponding client. These
117 117 clients allow users to interact with a set of engines through the
118 118 interface. Here are the two default clients:
119 119
120 120 * The :class:`MultiEngineClient` class.
121 121 * The :class:`TaskClient` class.
122 122
123 123 Security
124 124 --------
125 125
126 126 By default (as long as `pyOpenSSL` is installed) all network connections
127 127 between the controller and engines and the controller and clients are secure.
128 128 What does this mean? First of all, all of the connections will be encrypted
129 129 using SSL. Second, the connections are authenticated. We handle authentication
130 130 in a capability based security model [Capability]_. In this model, a
131 131 "capability (known in some systems as a key) is a communicable, unforgeable
132 132 token of authority". Put simply, a capability is like a key to your house. If
133 133 you have the key to your house, you can get in. If not, you can't.
134 134
135 135 In our architecture, the controller is the only process that listens on
136 136 network ports, and is thus responsible to creating these keys. In IPython,
137 137 these keys are known as Foolscap URLs, or FURLs, because of the underlying
138 138 network protocol we are using. As a user, you don't need to know anything
139 139 about the details of these FURLs, other than that when the controller starts,
140 140 it saves a set of FURLs to files named :file:`something.furl`. The default
141 location of these files is the :file:`~./ipython/security` directory.
141 location of these files is the :file:`$IPYTHON_DIR/cluster_<profile>/security` directory.
142 142
143 143 To connect and authenticate to the controller an engine or client simply needs
144 144 to present an appropriate FURL (that was originally created by the controller)
145 145 to the controller. Thus, the FURL files need to be copied to a location where
146 146 the clients and engines can find them. Typically, this is the
147 :file:`~./ipython/security` directory on the host where the client/engine is
147 :file:`$IPYTHON_DIR/cluster_<profile>/security` directory on the host where the client/engine is
148 148 running (which could be a different host than the controller). Once the FURL
149 149 files are copied over, everything should work fine.
150 150
151 151 Currently, there are three FURL files that the controller creates:
152 152
153 153 ipcontroller-engine.furl
154 154 This FURL file is the key that gives an engine the ability to connect
155 155 to a controller.
156 156
157 157 ipcontroller-tc.furl
158 158 This FURL file is the key that a :class:`TaskClient` must use to
159 159 connect to the task interface of a controller.
160 160
161 161 ipcontroller-mec.furl
162 162 This FURL file is the key that a :class:`MultiEngineClient` must use
163 163 to connect to the multiengine interface of a controller.
164 164
165 165 More details of how these FURL files are used are given below.
166 166
167 167 A detailed description of the security model and its implementation in IPython
168 168 can be found :ref:`here <parallelsecurity>`.
169 169
170 170 Getting Started
171 171 ===============
172 172
173 173 To use IPython for parallel computing, you need to start one instance of the
174 174 controller and one or more instances of the engine. Initially, it is best to
175 175 simply start a controller and engines on a single host using the
176 176 :command:`ipcluster` command. To start a controller and 4 engines on your
177 177 localhost, just do::
178 178
179 179 $ ipcluster local -n 4
180 180
181 181 More details about starting the IPython controller and engines can be found
182 182 :ref:`here <parallel_process>`
183 183
184 184 Once you have started the IPython controller and one or more engines, you
185 185 are ready to use the engines to do something useful. To make sure
186 186 everything is working correctly, try the following commands:
187 187
188 188 .. sourcecode:: ipython
189 189
190 190 In [1]: from IPython.kernel import client
191 191
192 192 In [2]: mec = client.MultiEngineClient()
193 193
194 194 In [4]: mec.get_ids()
195 195 Out[4]: [0, 1, 2, 3]
196 196
197 197 In [5]: mec.execute('print "Hello World"')
198 198 Out[5]:
199 199 <Results List>
200 200 [0] In [1]: print "Hello World"
201 201 [0] Out[1]: Hello World
202 202
203 203 [1] In [1]: print "Hello World"
204 204 [1] Out[1]: Hello World
205 205
206 206 [2] In [1]: print "Hello World"
207 207 [2] Out[1]: Hello World
208 208
209 209 [3] In [1]: print "Hello World"
210 210 [3] Out[1]: Hello World
211 211
212 212 Remember, a client also needs to present a FURL file to the controller. How
213 213 does this happen? When a multiengine client is created with no arguments, the
214 214 client tries to find the corresponding FURL file in the local
215 :file:`~./ipython/security` directory. If it finds it, you are set. If you
215 :file:`$IPYTHON_DIR/cluster_<profile>/security` directory. If it finds it, you are set. If you
216 216 have put the FURL file in a different location or it has a different name,
217 217 create the client like this::
218 218
219 219 mec = client.MultiEngineClient('/path/to/my/ipcontroller-mec.furl')
220 220
221 221 Same thing hold true of creating a task client::
222 222
223 223 tc = client.TaskClient('/path/to/my/ipcontroller-tc.furl')
224 224
225 225 You are now ready to learn more about the :ref:`MultiEngine
226 226 <parallelmultiengine>` and :ref:`Task <paralleltask>` interfaces to the
227 227 controller.
228 228
229 229 .. note::
230 230
231 231 Don't forget that the engine, multiengine client and task client all have
232 232 *different* furl files. You must move *each* of these around to an
233 233 appropriate location so that the engines and clients can use them to
234 234 connect to the controller.
235 235
236 236 .. [Capability] Capability-based security, http://en.wikipedia.org/wiki/Capability-based_security
237 237
@@ -1,835 +1,835 b''
1 1 .. _parallelmultiengine:
2 2
3 3 ===============================
4 4 IPython's multiengine interface
5 5 ===============================
6 6
7 7 The multiengine interface represents one possible way of working with a set of
8 8 IPython engines. The basic idea behind the multiengine interface is that the
9 9 capabilities of each engine are directly and explicitly exposed to the user.
10 10 Thus, in the multiengine interface, each engine is given an id that is used to
11 11 identify the engine and give it work to do. This interface is very intuitive
12 12 and is designed with interactive usage in mind, and is thus the best place for
13 13 new users of IPython to begin.
14 14
15 15 Starting the IPython controller and engines
16 16 ===========================================
17 17
18 18 To follow along with this tutorial, you will need to start the IPython
19 19 controller and four IPython engines. The simplest way of doing this is to use
20 20 the :command:`ipcluster` command::
21 21
22 22 $ ipcluster local -n 4
23 23
24 24 For more detailed information about starting the controller and engines, see
25 25 our :ref:`introduction <ip1par>` to using IPython for parallel computing.
26 26
27 27 Creating a ``MultiEngineClient`` instance
28 28 =========================================
29 29
30 30 The first step is to import the IPython :mod:`IPython.kernel.client` module
31 31 and then create a :class:`MultiEngineClient` instance:
32 32
33 33 .. sourcecode:: ipython
34 34
35 35 In [1]: from IPython.kernel import client
36 36
37 37 In [2]: mec = client.MultiEngineClient()
38 38
39 39 This form assumes that the :file:`ipcontroller-mec.furl` is in the
40 :file:`~./ipython/security` directory on the client's host. If not, the
40 :file:`$IPYTHON_DIR/cluster_<profile>/security` directory on the client's host. If not, the
41 41 location of the FURL file must be given as an argument to the
42 42 constructor:
43 43
44 44 .. sourcecode:: ipython
45 45
46 46 In [2]: mec = client.MultiEngineClient('/path/to/my/ipcontroller-mec.furl')
47 47
48 48 To make sure there are engines connected to the controller, use can get a list
49 49 of engine ids:
50 50
51 51 .. sourcecode:: ipython
52 52
53 53 In [3]: mec.get_ids()
54 54 Out[3]: [0, 1, 2, 3]
55 55
56 56 Here we see that there are four engines ready to do work for us.
57 57
58 58 Quick and easy parallelism
59 59 ==========================
60 60
61 61 In many cases, you simply want to apply a Python function to a sequence of
62 62 objects, but *in parallel*. The multiengine interface provides two simple ways
63 63 of accomplishing this: a parallel version of :func:`map` and ``@parallel``
64 64 function decorator.
65 65
66 66 Parallel map
67 67 ------------
68 68
69 69 Python's builtin :func:`map` functions allows a function to be applied to a
70 70 sequence element-by-element. This type of code is typically trivial to
71 71 parallelize. In fact, the multiengine interface in IPython already has a
72 72 parallel version of :meth:`map` that works just like its serial counterpart:
73 73
74 74 .. sourcecode:: ipython
75 75
76 76 In [63]: serial_result = map(lambda x:x**10, range(32))
77 77
78 78 In [64]: parallel_result = mec.map(lambda x:x**10, range(32))
79 79
80 80 In [65]: serial_result==parallel_result
81 81 Out[65]: True
82 82
83 83 .. note::
84 84
85 85 The multiengine interface version of :meth:`map` does not do any load
86 86 balancing. For a load balanced version, see the task interface.
87 87
88 88 .. seealso::
89 89
90 90 The :meth:`map` method has a number of options that can be controlled by
91 91 the :meth:`mapper` method. See its docstring for more information.
92 92
93 93 Parallel function decorator
94 94 ---------------------------
95 95
96 96 Parallel functions are just like normal function, but they can be called on
97 97 sequences and *in parallel*. The multiengine interface provides a decorator
98 98 that turns any Python function into a parallel function:
99 99
100 100 .. sourcecode:: ipython
101 101
102 102 In [10]: @mec.parallel()
103 103 ....: def f(x):
104 104 ....: return 10.0*x**4
105 105 ....:
106 106
107 107 In [11]: f(range(32)) # this is done in parallel
108 108 Out[11]:
109 109 [0.0,10.0,160.0,...]
110 110
111 111 See the docstring for the :meth:`parallel` decorator for options.
112 112
113 113 Running Python commands
114 114 =======================
115 115
116 116 The most basic type of operation that can be performed on the engines is to
117 117 execute Python code. Executing Python code can be done in blocking or
118 118 non-blocking mode (blocking is default) using the :meth:`execute` method.
119 119
120 120 Blocking execution
121 121 ------------------
122 122
123 123 In blocking mode, the :class:`MultiEngineClient` object (called ``mec`` in
124 124 these examples) submits the command to the controller, which places the
125 125 command in the engines' queues for execution. The :meth:`execute` call then
126 126 blocks until the engines are done executing the command:
127 127
128 128 .. sourcecode:: ipython
129 129
130 130 # The default is to run on all engines
131 131 In [4]: mec.execute('a=5')
132 132 Out[4]:
133 133 <Results List>
134 134 [0] In [1]: a=5
135 135 [1] In [1]: a=5
136 136 [2] In [1]: a=5
137 137 [3] In [1]: a=5
138 138
139 139 In [5]: mec.execute('b=10')
140 140 Out[5]:
141 141 <Results List>
142 142 [0] In [2]: b=10
143 143 [1] In [2]: b=10
144 144 [2] In [2]: b=10
145 145 [3] In [2]: b=10
146 146
147 147 Python commands can be executed on specific engines by calling execute using
148 148 the ``targets`` keyword argument:
149 149
150 150 .. sourcecode:: ipython
151 151
152 152 In [6]: mec.execute('c=a+b',targets=[0,2])
153 153 Out[6]:
154 154 <Results List>
155 155 [0] In [3]: c=a+b
156 156 [2] In [3]: c=a+b
157 157
158 158
159 159 In [7]: mec.execute('c=a-b',targets=[1,3])
160 160 Out[7]:
161 161 <Results List>
162 162 [1] In [3]: c=a-b
163 163 [3] In [3]: c=a-b
164 164
165 165
166 166 In [8]: mec.execute('print c')
167 167 Out[8]:
168 168 <Results List>
169 169 [0] In [4]: print c
170 170 [0] Out[4]: 15
171 171
172 172 [1] In [4]: print c
173 173 [1] Out[4]: -5
174 174
175 175 [2] In [4]: print c
176 176 [2] Out[4]: 15
177 177
178 178 [3] In [4]: print c
179 179 [3] Out[4]: -5
180 180
181 181 This example also shows one of the most important things about the IPython
182 182 engines: they have a persistent user namespaces. The :meth:`execute` method
183 183 returns a Python ``dict`` that contains useful information:
184 184
185 185 .. sourcecode:: ipython
186 186
187 187 In [9]: result_dict = mec.execute('d=10; print d')
188 188
189 189 In [10]: for r in result_dict:
190 190 ....: print r
191 191 ....:
192 192 ....:
193 193 {'input': {'translated': 'd=10; print d', 'raw': 'd=10; print d'}, 'number': 5, 'id': 0, 'stdout': '10\n'}
194 194 {'input': {'translated': 'd=10; print d', 'raw': 'd=10; print d'}, 'number': 5, 'id': 1, 'stdout': '10\n'}
195 195 {'input': {'translated': 'd=10; print d', 'raw': 'd=10; print d'}, 'number': 5, 'id': 2, 'stdout': '10\n'}
196 196 {'input': {'translated': 'd=10; print d', 'raw': 'd=10; print d'}, 'number': 5, 'id': 3, 'stdout': '10\n'}
197 197
198 198 Non-blocking execution
199 199 ----------------------
200 200
201 201 In non-blocking mode, :meth:`execute` submits the command to be executed and
202 202 then returns a :class:`PendingResult` object immediately. The
203 203 :class:`PendingResult` object gives you a way of getting a result at a later
204 204 time through its :meth:`get_result` method or :attr:`r` attribute. This allows
205 205 you to quickly submit long running commands without blocking your local
206 206 Python/IPython session:
207 207
208 208 .. sourcecode:: ipython
209 209
210 210 # In blocking mode
211 211 In [6]: mec.execute('import time')
212 212 Out[6]:
213 213 <Results List>
214 214 [0] In [1]: import time
215 215 [1] In [1]: import time
216 216 [2] In [1]: import time
217 217 [3] In [1]: import time
218 218
219 219 # In non-blocking mode
220 220 In [7]: pr = mec.execute('time.sleep(10)',block=False)
221 221
222 222 # Now block for the result
223 223 In [8]: pr.get_result()
224 224 Out[8]:
225 225 <Results List>
226 226 [0] In [2]: time.sleep(10)
227 227 [1] In [2]: time.sleep(10)
228 228 [2] In [2]: time.sleep(10)
229 229 [3] In [2]: time.sleep(10)
230 230
231 231 # Again in non-blocking mode
232 232 In [9]: pr = mec.execute('time.sleep(10)',block=False)
233 233
234 234 # Poll to see if the result is ready
235 235 In [10]: pr.get_result(block=False)
236 236
237 237 # A shorthand for get_result(block=True)
238 238 In [11]: pr.r
239 239 Out[11]:
240 240 <Results List>
241 241 [0] In [3]: time.sleep(10)
242 242 [1] In [3]: time.sleep(10)
243 243 [2] In [3]: time.sleep(10)
244 244 [3] In [3]: time.sleep(10)
245 245
246 246 Often, it is desirable to wait until a set of :class:`PendingResult` objects
247 247 are done. For this, there is a the method :meth:`barrier`. This method takes a
248 248 tuple of :class:`PendingResult` objects and blocks until all of the associated
249 249 results are ready:
250 250
251 251 .. sourcecode:: ipython
252 252
253 253 In [72]: mec.block=False
254 254
255 255 # A trivial list of PendingResults objects
256 256 In [73]: pr_list = [mec.execute('time.sleep(3)') for i in range(10)]
257 257
258 258 # Wait until all of them are done
259 259 In [74]: mec.barrier(pr_list)
260 260
261 261 # Then, their results are ready using get_result or the r attribute
262 262 In [75]: pr_list[0].r
263 263 Out[75]:
264 264 <Results List>
265 265 [0] In [20]: time.sleep(3)
266 266 [1] In [19]: time.sleep(3)
267 267 [2] In [20]: time.sleep(3)
268 268 [3] In [19]: time.sleep(3)
269 269
270 270
271 271 The ``block`` and ``targets`` keyword arguments and attributes
272 272 --------------------------------------------------------------
273 273
274 274 Most methods in the multiengine interface (like :meth:`execute`) accept
275 275 ``block`` and ``targets`` as keyword arguments. As we have seen above, these
276 276 keyword arguments control the blocking mode and which engines the command is
277 277 applied to. The :class:`MultiEngineClient` class also has :attr:`block` and
278 278 :attr:`targets` attributes that control the default behavior when the keyword
279 279 arguments are not provided. Thus the following logic is used for :attr:`block`
280 280 and :attr:`targets`:
281 281
282 282 * If no keyword argument is provided, the instance attributes are used.
283 283 * Keyword argument, if provided override the instance attributes.
284 284
285 285 The following examples demonstrate how to use the instance attributes:
286 286
287 287 .. sourcecode:: ipython
288 288
289 289 In [16]: mec.targets = [0,2]
290 290
291 291 In [17]: mec.block = False
292 292
293 293 In [18]: pr = mec.execute('a=5')
294 294
295 295 In [19]: pr.r
296 296 Out[19]:
297 297 <Results List>
298 298 [0] In [6]: a=5
299 299 [2] In [6]: a=5
300 300
301 301 # Note targets='all' means all engines
302 302 In [20]: mec.targets = 'all'
303 303
304 304 In [21]: mec.block = True
305 305
306 306 In [22]: mec.execute('b=10; print b')
307 307 Out[22]:
308 308 <Results List>
309 309 [0] In [7]: b=10; print b
310 310 [0] Out[7]: 10
311 311
312 312 [1] In [6]: b=10; print b
313 313 [1] Out[6]: 10
314 314
315 315 [2] In [7]: b=10; print b
316 316 [2] Out[7]: 10
317 317
318 318 [3] In [6]: b=10; print b
319 319 [3] Out[6]: 10
320 320
321 321 The :attr:`block` and :attr:`targets` instance attributes also determine the
322 322 behavior of the parallel magic commands.
323 323
324 324
325 325 Parallel magic commands
326 326 -----------------------
327 327
328 328 We provide a few IPython magic commands (``%px``, ``%autopx`` and ``%result``)
329 329 that make it more pleasant to execute Python commands on the engines
330 330 interactively. These are simply shortcuts to :meth:`execute` and
331 331 :meth:`get_result`. The ``%px`` magic executes a single Python command on the
332 332 engines specified by the :attr:`targets` attribute of the
333 333 :class:`MultiEngineClient` instance (by default this is ``'all'``):
334 334
335 335 .. sourcecode:: ipython
336 336
337 337 # Make this MultiEngineClient active for parallel magic commands
338 338 In [23]: mec.activate()
339 339
340 340 In [24]: mec.block=True
341 341
342 342 In [25]: import numpy
343 343
344 344 In [26]: %px import numpy
345 345 Executing command on Controller
346 346 Out[26]:
347 347 <Results List>
348 348 [0] In [8]: import numpy
349 349 [1] In [7]: import numpy
350 350 [2] In [8]: import numpy
351 351 [3] In [7]: import numpy
352 352
353 353
354 354 In [27]: %px a = numpy.random.rand(2,2)
355 355 Executing command on Controller
356 356 Out[27]:
357 357 <Results List>
358 358 [0] In [9]: a = numpy.random.rand(2,2)
359 359 [1] In [8]: a = numpy.random.rand(2,2)
360 360 [2] In [9]: a = numpy.random.rand(2,2)
361 361 [3] In [8]: a = numpy.random.rand(2,2)
362 362
363 363
364 364 In [28]: %px print numpy.linalg.eigvals(a)
365 365 Executing command on Controller
366 366 Out[28]:
367 367 <Results List>
368 368 [0] In [10]: print numpy.linalg.eigvals(a)
369 369 [0] Out[10]: [ 1.28167017 0.14197338]
370 370
371 371 [1] In [9]: print numpy.linalg.eigvals(a)
372 372 [1] Out[9]: [-0.14093616 1.27877273]
373 373
374 374 [2] In [10]: print numpy.linalg.eigvals(a)
375 375 [2] Out[10]: [-0.37023573 1.06779409]
376 376
377 377 [3] In [9]: print numpy.linalg.eigvals(a)
378 378 [3] Out[9]: [ 0.83664764 -0.25602658]
379 379
380 380 The ``%result`` magic gets and prints the stdin/stdout/stderr of the last
381 381 command executed on each engine. It is simply a shortcut to the
382 382 :meth:`get_result` method:
383 383
384 384 .. sourcecode:: ipython
385 385
386 386 In [29]: %result
387 387 Out[29]:
388 388 <Results List>
389 389 [0] In [10]: print numpy.linalg.eigvals(a)
390 390 [0] Out[10]: [ 1.28167017 0.14197338]
391 391
392 392 [1] In [9]: print numpy.linalg.eigvals(a)
393 393 [1] Out[9]: [-0.14093616 1.27877273]
394 394
395 395 [2] In [10]: print numpy.linalg.eigvals(a)
396 396 [2] Out[10]: [-0.37023573 1.06779409]
397 397
398 398 [3] In [9]: print numpy.linalg.eigvals(a)
399 399 [3] Out[9]: [ 0.83664764 -0.25602658]
400 400
401 401 The ``%autopx`` magic switches to a mode where everything you type is executed
402 402 on the engines given by the :attr:`targets` attribute:
403 403
404 404 .. sourcecode:: ipython
405 405
406 406 In [30]: mec.block=False
407 407
408 408 In [31]: %autopx
409 409 Auto Parallel Enabled
410 410 Type %autopx to disable
411 411
412 412 In [32]: max_evals = []
413 413 <IPython.kernel.multiengineclient.PendingResult object at 0x17b8a70>
414 414
415 415 In [33]: for i in range(100):
416 416 ....: a = numpy.random.rand(10,10)
417 417 ....: a = a+a.transpose()
418 418 ....: evals = numpy.linalg.eigvals(a)
419 419 ....: max_evals.append(evals[0].real)
420 420 ....:
421 421 ....:
422 422 <IPython.kernel.multiengineclient.PendingResult object at 0x17af8f0>
423 423
424 424 In [34]: %autopx
425 425 Auto Parallel Disabled
426 426
427 427 In [35]: mec.block=True
428 428
429 429 In [36]: px print "Average max eigenvalue is: ", sum(max_evals)/len(max_evals)
430 430 Executing command on Controller
431 431 Out[36]:
432 432 <Results List>
433 433 [0] In [13]: print "Average max eigenvalue is: ", sum(max_evals)/len(max_evals)
434 434 [0] Out[13]: Average max eigenvalue is: 10.1387247332
435 435
436 436 [1] In [12]: print "Average max eigenvalue is: ", sum(max_evals)/len(max_evals)
437 437 [1] Out[12]: Average max eigenvalue is: 10.2076902286
438 438
439 439 [2] In [13]: print "Average max eigenvalue is: ", sum(max_evals)/len(max_evals)
440 440 [2] Out[13]: Average max eigenvalue is: 10.1891484655
441 441
442 442 [3] In [12]: print "Average max eigenvalue is: ", sum(max_evals)/len(max_evals)
443 443 [3] Out[12]: Average max eigenvalue is: 10.1158837784
444 444
445 445
446 446 Moving Python objects around
447 447 ============================
448 448
449 449 In addition to executing code on engines, you can transfer Python objects to
450 450 and from your IPython session and the engines. In IPython, these operations
451 451 are called :meth:`push` (sending an object to the engines) and :meth:`pull`
452 452 (getting an object from the engines).
453 453
454 454 Basic push and pull
455 455 -------------------
456 456
457 457 Here are some examples of how you use :meth:`push` and :meth:`pull`:
458 458
459 459 .. sourcecode:: ipython
460 460
461 461 In [38]: mec.push(dict(a=1.03234,b=3453))
462 462 Out[38]: [None, None, None, None]
463 463
464 464 In [39]: mec.pull('a')
465 465 Out[39]: [1.03234, 1.03234, 1.03234, 1.03234]
466 466
467 467 In [40]: mec.pull('b',targets=0)
468 468 Out[40]: [3453]
469 469
470 470 In [41]: mec.pull(('a','b'))
471 471 Out[41]: [[1.03234, 3453], [1.03234, 3453], [1.03234, 3453], [1.03234, 3453]]
472 472
473 473 In [42]: mec.zip_pull(('a','b'))
474 474 Out[42]: [(1.03234, 1.03234, 1.03234, 1.03234), (3453, 3453, 3453, 3453)]
475 475
476 476 In [43]: mec.push(dict(c='speed'))
477 477 Out[43]: [None, None, None, None]
478 478
479 479 In [44]: %px print c
480 480 Executing command on Controller
481 481 Out[44]:
482 482 <Results List>
483 483 [0] In [14]: print c
484 484 [0] Out[14]: speed
485 485
486 486 [1] In [13]: print c
487 487 [1] Out[13]: speed
488 488
489 489 [2] In [14]: print c
490 490 [2] Out[14]: speed
491 491
492 492 [3] In [13]: print c
493 493 [3] Out[13]: speed
494 494
495 495 In non-blocking mode :meth:`push` and :meth:`pull` also return
496 496 :class:`PendingResult` objects:
497 497
498 498 .. sourcecode:: ipython
499 499
500 500 In [47]: mec.block=False
501 501
502 502 In [48]: pr = mec.pull('a')
503 503
504 504 In [49]: pr.r
505 505 Out[49]: [1.03234, 1.03234, 1.03234, 1.03234]
506 506
507 507
508 508 Push and pull for functions
509 509 ---------------------------
510 510
511 511 Functions can also be pushed and pulled using :meth:`push_function` and
512 512 :meth:`pull_function`:
513 513
514 514 .. sourcecode:: ipython
515 515
516 516 In [52]: mec.block=True
517 517
518 518 In [53]: def f(x):
519 519 ....: return 2.0*x**4
520 520 ....:
521 521
522 522 In [54]: mec.push_function(dict(f=f))
523 523 Out[54]: [None, None, None, None]
524 524
525 525 In [55]: mec.execute('y = f(4.0)')
526 526 Out[55]:
527 527 <Results List>
528 528 [0] In [15]: y = f(4.0)
529 529 [1] In [14]: y = f(4.0)
530 530 [2] In [15]: y = f(4.0)
531 531 [3] In [14]: y = f(4.0)
532 532
533 533
534 534 In [56]: px print y
535 535 Executing command on Controller
536 536 Out[56]:
537 537 <Results List>
538 538 [0] In [16]: print y
539 539 [0] Out[16]: 512.0
540 540
541 541 [1] In [15]: print y
542 542 [1] Out[15]: 512.0
543 543
544 544 [2] In [16]: print y
545 545 [2] Out[16]: 512.0
546 546
547 547 [3] In [15]: print y
548 548 [3] Out[15]: 512.0
549 549
550 550
551 551 Dictionary interface
552 552 --------------------
553 553
554 554 As a shorthand to :meth:`push` and :meth:`pull`, the
555 555 :class:`MultiEngineClient` class implements some of the Python dictionary
556 556 interface. This make the remote namespaces of the engines appear as a local
557 557 dictionary. Underneath, this uses :meth:`push` and :meth:`pull`:
558 558
559 559 .. sourcecode:: ipython
560 560
561 561 In [50]: mec.block=True
562 562
563 563 In [51]: mec['a']=['foo','bar']
564 564
565 565 In [52]: mec['a']
566 566 Out[52]: [['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar']]
567 567
568 568 Scatter and gather
569 569 ------------------
570 570
571 571 Sometimes it is useful to partition a sequence and push the partitions to
572 572 different engines. In MPI language, this is know as scatter/gather and we
573 573 follow that terminology. However, it is important to remember that in
574 574 IPython's :class:`MultiEngineClient` class, :meth:`scatter` is from the
575 575 interactive IPython session to the engines and :meth:`gather` is from the
576 576 engines back to the interactive IPython session. For scatter/gather operations
577 577 between engines, MPI should be used:
578 578
579 579 .. sourcecode:: ipython
580 580
581 581 In [58]: mec.scatter('a',range(16))
582 582 Out[58]: [None, None, None, None]
583 583
584 584 In [59]: px print a
585 585 Executing command on Controller
586 586 Out[59]:
587 587 <Results List>
588 588 [0] In [17]: print a
589 589 [0] Out[17]: [0, 1, 2, 3]
590 590
591 591 [1] In [16]: print a
592 592 [1] Out[16]: [4, 5, 6, 7]
593 593
594 594 [2] In [17]: print a
595 595 [2] Out[17]: [8, 9, 10, 11]
596 596
597 597 [3] In [16]: print a
598 598 [3] Out[16]: [12, 13, 14, 15]
599 599
600 600
601 601 In [60]: mec.gather('a')
602 602 Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
603 603
604 604 Other things to look at
605 605 =======================
606 606
607 607 How to do parallel list comprehensions
608 608 --------------------------------------
609 609
610 610 In many cases list comprehensions are nicer than using the map function. While
611 611 we don't have fully parallel list comprehensions, it is simple to get the
612 612 basic effect using :meth:`scatter` and :meth:`gather`:
613 613
614 614 .. sourcecode:: ipython
615 615
616 616 In [66]: mec.scatter('x',range(64))
617 617 Out[66]: [None, None, None, None]
618 618
619 619 In [67]: px y = [i**10 for i in x]
620 620 Executing command on Controller
621 621 Out[67]:
622 622 <Results List>
623 623 [0] In [19]: y = [i**10 for i in x]
624 624 [1] In [18]: y = [i**10 for i in x]
625 625 [2] In [19]: y = [i**10 for i in x]
626 626 [3] In [18]: y = [i**10 for i in x]
627 627
628 628
629 629 In [68]: y = mec.gather('y')
630 630
631 631 In [69]: print y
632 632 [0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824,...]
633 633
634 634 Parallel exceptions
635 635 -------------------
636 636
637 637 In the multiengine interface, parallel commands can raise Python exceptions,
638 638 just like serial commands. But, it is a little subtle, because a single
639 639 parallel command can actually raise multiple exceptions (one for each engine
640 640 the command was run on). To express this idea, the MultiEngine interface has a
641 641 :exc:`CompositeError` exception class that will be raised in most cases. The
642 642 :exc:`CompositeError` class is a special type of exception that wraps one or
643 643 more other types of exceptions. Here is how it works:
644 644
645 645 .. sourcecode:: ipython
646 646
647 647 In [76]: mec.block=True
648 648
649 649 In [77]: mec.execute('1/0')
650 650 ---------------------------------------------------------------------------
651 651 CompositeError Traceback (most recent call last)
652 652
653 653 /ipython1-client-r3021/docs/examples/<ipython console> in <module>()
654 654
655 655 /ipython1-client-r3021/ipython1/kernel/multiengineclient.pyc in execute(self, lines, targets, block)
656 656 432 targets, block = self._findTargetsAndBlock(targets, block)
657 657 433 result = blockingCallFromThread(self.smultiengine.execute, lines,
658 658 --> 434 targets=targets, block=block)
659 659 435 if block:
660 660 436 result = ResultList(result)
661 661
662 662 /ipython1-client-r3021/ipython1/kernel/twistedutil.pyc in blockingCallFromThread(f, *a, **kw)
663 663 72 result.raiseException()
664 664 73 except Exception, e:
665 665 ---> 74 raise e
666 666 75 return result
667 667 76
668 668
669 669 CompositeError: one or more exceptions from call to method: execute
670 670 [0:execute]: ZeroDivisionError: integer division or modulo by zero
671 671 [1:execute]: ZeroDivisionError: integer division or modulo by zero
672 672 [2:execute]: ZeroDivisionError: integer division or modulo by zero
673 673 [3:execute]: ZeroDivisionError: integer division or modulo by zero
674 674
675 675 Notice how the error message printed when :exc:`CompositeError` is raised has
676 676 information about the individual exceptions that were raised on each engine.
677 677 If you want, you can even raise one of these original exceptions:
678 678
679 679 .. sourcecode:: ipython
680 680
681 681 In [80]: try:
682 682 ....: mec.execute('1/0')
683 683 ....: except client.CompositeError, e:
684 684 ....: e.raise_exception()
685 685 ....:
686 686 ....:
687 687 ---------------------------------------------------------------------------
688 688 ZeroDivisionError Traceback (most recent call last)
689 689
690 690 /ipython1-client-r3021/docs/examples/<ipython console> in <module>()
691 691
692 692 /ipython1-client-r3021/ipython1/kernel/error.pyc in raise_exception(self, excid)
693 693 156 raise IndexError("an exception with index %i does not exist"%excid)
694 694 157 else:
695 695 --> 158 raise et, ev, etb
696 696 159
697 697 160 def collect_exceptions(rlist, method):
698 698
699 699 ZeroDivisionError: integer division or modulo by zero
700 700
701 701 If you are working in IPython, you can simple type ``%debug`` after one of
702 702 these :exc:`CompositeError` exceptions is raised, and inspect the exception
703 703 instance:
704 704
705 705 .. sourcecode:: ipython
706 706
707 707 In [81]: mec.execute('1/0')
708 708 ---------------------------------------------------------------------------
709 709 CompositeError Traceback (most recent call last)
710 710
711 711 /ipython1-client-r3021/docs/examples/<ipython console> in <module>()
712 712
713 713 /ipython1-client-r3021/ipython1/kernel/multiengineclient.pyc in execute(self, lines, targets, block)
714 714 432 targets, block = self._findTargetsAndBlock(targets, block)
715 715 433 result = blockingCallFromThread(self.smultiengine.execute, lines,
716 716 --> 434 targets=targets, block=block)
717 717 435 if block:
718 718 436 result = ResultList(result)
719 719
720 720 /ipython1-client-r3021/ipython1/kernel/twistedutil.pyc in blockingCallFromThread(f, *a, **kw)
721 721 72 result.raiseException()
722 722 73 except Exception, e:
723 723 ---> 74 raise e
724 724 75 return result
725 725 76
726 726
727 727 CompositeError: one or more exceptions from call to method: execute
728 728 [0:execute]: ZeroDivisionError: integer division or modulo by zero
729 729 [1:execute]: ZeroDivisionError: integer division or modulo by zero
730 730 [2:execute]: ZeroDivisionError: integer division or modulo by zero
731 731 [3:execute]: ZeroDivisionError: integer division or modulo by zero
732 732
733 733 In [82]: %debug
734 734 >
735 735
736 736 /ipython1-client-r3021/ipython1/kernel/twistedutil.py(74)blockingCallFromThread()
737 737 73 except Exception, e:
738 738 ---> 74 raise e
739 739 75 return result
740 740
741 741 # With the debugger running, e is the exceptions instance. We can tab complete
742 742 # on it and see the extra methods that are available.
743 743 ipdb> e.
744 744 e.__class__ e.__getitem__ e.__new__ e.__setstate__ e.args
745 745 e.__delattr__ e.__getslice__ e.__reduce__ e.__str__ e.elist
746 746 e.__dict__ e.__hash__ e.__reduce_ex__ e.__weakref__ e.message
747 747 e.__doc__ e.__init__ e.__repr__ e._get_engine_str e.print_tracebacks
748 748 e.__getattribute__ e.__module__ e.__setattr__ e._get_traceback e.raise_exception
749 749 ipdb> e.print_tracebacks()
750 750 [0:execute]:
751 751 ---------------------------------------------------------------------------
752 752 ZeroDivisionError Traceback (most recent call last)
753 753
754 754 /ipython1-client-r3021/docs/examples/<string> in <module>()
755 755
756 756 ZeroDivisionError: integer division or modulo by zero
757 757
758 758 [1:execute]:
759 759 ---------------------------------------------------------------------------
760 760 ZeroDivisionError Traceback (most recent call last)
761 761
762 762 /ipython1-client-r3021/docs/examples/<string> in <module>()
763 763
764 764 ZeroDivisionError: integer division or modulo by zero
765 765
766 766 [2:execute]:
767 767 ---------------------------------------------------------------------------
768 768 ZeroDivisionError Traceback (most recent call last)
769 769
770 770 /ipython1-client-r3021/docs/examples/<string> in <module>()
771 771
772 772 ZeroDivisionError: integer division or modulo by zero
773 773
774 774 [3:execute]:
775 775 ---------------------------------------------------------------------------
776 776 ZeroDivisionError Traceback (most recent call last)
777 777
778 778 /ipython1-client-r3021/docs/examples/<string> in <module>()
779 779
780 780 ZeroDivisionError: integer division or modulo by zero
781 781
782 782 .. note::
783 783
784 784 The above example appears to be broken right now because of a change in
785 785 how we are using Twisted.
786 786
787 787 All of this same error handling magic even works in non-blocking mode:
788 788
789 789 .. sourcecode:: ipython
790 790
791 791 In [83]: mec.block=False
792 792
793 793 In [84]: pr = mec.execute('1/0')
794 794
795 795 In [85]: pr.r
796 796 ---------------------------------------------------------------------------
797 797 CompositeError Traceback (most recent call last)
798 798
799 799 /ipython1-client-r3021/docs/examples/<ipython console> in <module>()
800 800
801 801 /ipython1-client-r3021/ipython1/kernel/multiengineclient.pyc in _get_r(self)
802 802 170
803 803 171 def _get_r(self):
804 804 --> 172 return self.get_result(block=True)
805 805 173
806 806 174 r = property(_get_r)
807 807
808 808 /ipython1-client-r3021/ipython1/kernel/multiengineclient.pyc in get_result(self, default, block)
809 809 131 return self.result
810 810 132 try:
811 811 --> 133 result = self.client.get_pending_deferred(self.result_id, block)
812 812 134 except error.ResultNotCompleted:
813 813 135 return default
814 814
815 815 /ipython1-client-r3021/ipython1/kernel/multiengineclient.pyc in get_pending_deferred(self, deferredID, block)
816 816 385
817 817 386 def get_pending_deferred(self, deferredID, block):
818 818 --> 387 return blockingCallFromThread(self.smultiengine.get_pending_deferred, deferredID, block)
819 819 388
820 820 389 def barrier(self, pendingResults):
821 821
822 822 /ipython1-client-r3021/ipython1/kernel/twistedutil.pyc in blockingCallFromThread(f, *a, **kw)
823 823 72 result.raiseException()
824 824 73 except Exception, e:
825 825 ---> 74 raise e
826 826 75 return result
827 827 76
828 828
829 829 CompositeError: one or more exceptions from call to method: execute
830 830 [0:execute]: ZeroDivisionError: integer division or modulo by zero
831 831 [1:execute]: ZeroDivisionError: integer division or modulo by zero
832 832 [2:execute]: ZeroDivisionError: integer division or modulo by zero
833 833 [3:execute]: ZeroDivisionError: integer division or modulo by zero
834 834
835 835
@@ -1,389 +1,389 b''
1 1 .. _parallel_process:
2 2
3 3 ===========================================
4 4 Starting the IPython controller and engines
5 5 ===========================================
6 6
7 7 To use IPython for parallel computing, you need to start one instance of
8 8 the controller and one or more instances of the engine. The controller
9 9 and each engine can run on different machines or on the same machine.
10 10 Because of this, there are many different possibilities.
11 11
12 12 Broadly speaking, there are two ways of going about starting a controller and engines:
13 13
14 14 * In an automated manner using the :command:`ipcluster` command.
15 15 * In a more manual way using the :command:`ipcontroller` and
16 16 :command:`ipengine` commands.
17 17
18 18 This document describes both of these methods. We recommend that new users
19 19 start with the :command:`ipcluster` command as it simplifies many common usage
20 20 cases.
21 21
22 22 General considerations
23 23 ======================
24 24
25 25 Before delving into the details about how you can start a controller and
26 26 engines using the various methods, we outline some of the general issues that
27 27 come up when starting the controller and engines. These things come up no
28 28 matter which method you use to start your IPython cluster.
29 29
30 30 Let's say that you want to start the controller on ``host0`` and engines on
31 31 hosts ``host1``-``hostn``. The following steps are then required:
32 32
33 33 1. Start the controller on ``host0`` by running :command:`ipcontroller` on
34 34 ``host0``.
35 35 2. Move the FURL file (:file:`ipcontroller-engine.furl`) created by the
36 36 controller from ``host0`` to hosts ``host1``-``hostn``.
37 37 3. Start the engines on hosts ``host1``-``hostn`` by running
38 38 :command:`ipengine`. This command has to be told where the FURL file
39 39 (:file:`ipcontroller-engine.furl`) is located.
40 40
41 41 At this point, the controller and engines will be connected. By default, the
42 42 FURL files created by the controller are put into the
43 :file:`~/.ipython/security` directory. If the engines share a filesystem with
43 :file:`$IPYTHON_DIR/cluster_<profile>/security` directory. If the engines share a filesystem with
44 44 the controller, step 2 can be skipped as the engines will automatically look
45 45 at that location.
46 46
47 47 The final step required required to actually use the running controller from a
48 48 client is to move the FURL files :file:`ipcontroller-mec.furl` and
49 49 :file:`ipcontroller-tc.furl` from ``host0`` to the host where the clients will
50 be run. If these file are put into the :file:`~/.ipython/security` directory
50 be run. If these file are put into the :file:`$IPYTHON_DIR/cluster_<profile>/security` directory
51 51 of the client's host, they will be found automatically. Otherwise, the full
52 52 path to them has to be passed to the client's constructor.
53 53
54 54 Using :command:`ipcluster`
55 55 ==========================
56 56
57 57 The :command:`ipcluster` command provides a simple way of starting a
58 58 controller and engines in the following situations:
59 59
60 60 1. When the controller and engines are all run on localhost. This is useful
61 61 for testing or running on a multicore computer.
62 62 2. When engines are started using the :command:`mpirun` command that comes
63 63 with most MPI [MPI]_ implementations
64 64 3. When engines are started using the PBS [PBS]_ batch system.
65 65 4. When the controller is started on localhost and the engines are started on
66 66 remote nodes using :command:`ssh`.
67 67
68 68 .. note::
69 69
70 70 It is also possible for advanced users to add support to
71 71 :command:`ipcluster` for starting controllers and engines using other
72 72 methods (like Sun's Grid Engine for example).
73 73
74 74 .. note::
75 75
76 76 Currently :command:`ipcluster` requires that the
77 :file:`~/.ipython/security` directory live on a shared filesystem that is
77 :file:`$IPYTHON_DIR/cluster_<profile>/security` directory live on a shared filesystem that is
78 78 seen by both the controller and engines. If you don't have a shared file
79 79 system you will need to use :command:`ipcontroller` and
80 80 :command:`ipengine` directly. This constraint can be relaxed if you are
81 81 using the :command:`ssh` method to start the cluster.
82 82
83 83 Underneath the hood, :command:`ipcluster` just uses :command:`ipcontroller`
84 84 and :command:`ipengine` to perform the steps described above.
85 85
86 86 Using :command:`ipcluster` in local mode
87 87 ----------------------------------------
88 88
89 89 To start one controller and 4 engines on localhost, just do::
90 90
91 91 $ ipcluster local -n 4
92 92
93 93 To see other command line options for the local mode, do::
94 94
95 95 $ ipcluster local -h
96 96
97 97 Using :command:`ipcluster` in mpiexec/mpirun mode
98 98 -------------------------------------------------
99 99
100 100 The mpiexec/mpirun mode is useful if you:
101 101
102 102 1. Have MPI installed.
103 103 2. Your systems are configured to use the :command:`mpiexec` or
104 104 :command:`mpirun` commands to start MPI processes.
105 105
106 106 .. note::
107 107
108 108 The preferred command to use is :command:`mpiexec`. However, we also
109 109 support :command:`mpirun` for backwards compatibility. The underlying
110 110 logic used is exactly the same, the only difference being the name of the
111 111 command line program that is called.
112 112
113 113 If these are satisfied, you can start an IPython cluster using::
114 114
115 115 $ ipcluster mpiexec -n 4
116 116
117 117 This does the following:
118 118
119 119 1. Starts the IPython controller on current host.
120 120 2. Uses :command:`mpiexec` to start 4 engines.
121 121
122 122 On newer MPI implementations (such as OpenMPI), this will work even if you
123 123 don't make any calls to MPI or call :func:`MPI_Init`. However, older MPI
124 124 implementations actually require each process to call :func:`MPI_Init` upon
125 125 starting. The easiest way of having this done is to install the mpi4py
126 126 [mpi4py]_ package and then call ipcluster with the ``--mpi`` option::
127 127
128 128 $ ipcluster mpiexec -n 4 --mpi=mpi4py
129 129
130 130 Unfortunately, even this won't work for some MPI implementations. If you are
131 131 having problems with this, you will likely have to use a custom Python
132 132 executable that itself calls :func:`MPI_Init` at the appropriate time.
133 133 Fortunately, mpi4py comes with such a custom Python executable that is easy to
134 134 install and use. However, this custom Python executable approach will not work
135 135 with :command:`ipcluster` currently.
136 136
137 137 Additional command line options for this mode can be found by doing::
138 138
139 139 $ ipcluster mpiexec -h
140 140
141 141 More details on using MPI with IPython can be found :ref:`here <parallelmpi>`.
142 142
143 143
144 144 Using :command:`ipcluster` in PBS mode
145 145 --------------------------------------
146 146
147 147 The PBS mode uses the Portable Batch System [PBS]_ to start the engines. To
148 148 use this mode, you first need to create a PBS script template that will be
149 149 used to start the engines. Here is a sample PBS script template:
150 150
151 151 .. sourcecode:: bash
152 152
153 153 #PBS -N ipython
154 154 #PBS -j oe
155 155 #PBS -l walltime=00:10:00
156 156 #PBS -l nodes=${n/4}:ppn=4
157 157 #PBS -q parallel
158 158
159 159 cd $$PBS_O_WORKDIR
160 160 export PATH=$$HOME/usr/local/bin
161 161 export PYTHONPATH=$$HOME/usr/local/lib/python2.4/site-packages
162 162 /usr/local/bin/mpiexec -n ${n} ipengine --logfile=$$PBS_O_WORKDIR/ipengine
163 163
164 164 There are a few important points about this template:
165 165
166 166 1. This template will be rendered at runtime using IPython's :mod:`Itpl`
167 167 template engine.
168 168
169 169 2. Instead of putting in the actual number of engines, use the notation
170 170 ``${n}`` to indicate the number of engines to be started. You can also uses
171 171 expressions like ``${n/4}`` in the template to indicate the number of
172 172 nodes.
173 173
174 174 3. Because ``$`` is a special character used by the template engine, you must
175 175 escape any ``$`` by using ``$$``. This is important when referring to
176 176 environment variables in the template.
177 177
178 178 4. Any options to :command:`ipengine` should be given in the batch script
179 179 template.
180 180
181 181 5. Depending on the configuration of you system, you may have to set
182 182 environment variables in the script template.
183 183
184 184 Once you have created such a script, save it with a name like
185 185 :file:`pbs.template`. Now you are ready to start your job::
186 186
187 187 $ ipcluster pbs -n 128 --pbs-script=pbs.template
188 188
189 189 Additional command line options for this mode can be found by doing::
190 190
191 191 $ ipcluster pbs -h
192 192
193 193 Using :command:`ipcluster` in SSH mode
194 194 --------------------------------------
195 195
196 196 The SSH mode uses :command:`ssh` to execute :command:`ipengine` on remote
197 197 nodes and the :command:`ipcontroller` on localhost.
198 198
199 199 When using using this mode it highly recommended that you have set up SSH keys
200 200 and are using ssh-agent [SSH]_ for password-less logins.
201 201
202 202 To use this mode you need a python file describing the cluster, here is an
203 203 example of such a "clusterfile":
204 204
205 205 .. sourcecode:: python
206 206
207 207 send_furl = True
208 208 engines = { 'host1.example.com' : 2,
209 209 'host2.example.com' : 5,
210 210 'host3.example.com' : 1,
211 211 'host4.example.com' : 8 }
212 212
213 213 Since this is a regular python file usual python syntax applies. Things to
214 214 note:
215 215
216 216 * The `engines` dict, where the keys is the host we want to run engines on and
217 217 the value is the number of engines to run on that host.
218 218 * send_furl can either be `True` or `False`, if `True` it will copy over the
219 219 furl needed for :command:`ipengine` to each host.
220 220
221 221 The ``--clusterfile`` command line option lets you specify the file to use for
222 222 the cluster definition. Once you have your cluster file and you can
223 223 :command:`ssh` into the remote hosts with out an password you are ready to
224 224 start your cluster like so:
225 225
226 226 .. sourcecode:: bash
227 227
228 228 $ ipcluster ssh --clusterfile /path/to/my/clusterfile.py
229 229
230 230
231 231 Two helper shell scripts are used to start and stop :command:`ipengine` on
232 232 remote hosts:
233 233
234 234 * sshx.sh
235 235 * engine_killer.sh
236 236
237 237 Defaults for both of these are contained in the source code for
238 238 :command:`ipcluster`. The default scripts are written to a local file in a
239 239 tmep directory and then copied to a temp directory on the remote host and
240 240 executed from there. On most Unix, Linux and OS X systems this is /tmp.
241 241
242 242 The default sshx.sh is the following:
243 243
244 244 .. sourcecode:: bash
245 245
246 246 #!/bin/sh
247 247 "$@" &> /dev/null &
248 248 echo $!
249 249
250 250 If you want to use a custom sshx.sh script you need to use the ``--sshx``
251 251 option and specify the file to use. Using a custom sshx.sh file could be
252 252 helpful when you need to setup the environment on the remote host before
253 253 executing :command:`ipengine`.
254 254
255 255 For a detailed options list:
256 256
257 257 .. sourcecode:: bash
258 258
259 259 $ ipcluster ssh -h
260 260
261 261 Current limitations of the SSH mode of :command:`ipcluster` are:
262 262
263 263 * Untested on Windows. Would require a working :command:`ssh` on Windows.
264 264 Also, we are using shell scripts to setup and execute commands on remote
265 265 hosts.
266 266 * :command:`ipcontroller` is started on localhost, with no option to start it
267 267 on a remote node.
268 268
269 269 Using the :command:`ipcontroller` and :command:`ipengine` commands
270 270 ==================================================================
271 271
272 272 It is also possible to use the :command:`ipcontroller` and :command:`ipengine`
273 273 commands to start your controller and engines. This approach gives you full
274 274 control over all aspects of the startup process.
275 275
276 276 Starting the controller and engine on your local machine
277 277 --------------------------------------------------------
278 278
279 279 To use :command:`ipcontroller` and :command:`ipengine` to start things on your
280 280 local machine, do the following.
281 281
282 282 First start the controller::
283 283
284 284 $ ipcontroller
285 285
286 286 Next, start however many instances of the engine you want using (repeatedly)
287 287 the command::
288 288
289 289 $ ipengine
290 290
291 291 The engines should start and automatically connect to the controller using the
292 FURL files in :file:`~./ipython/security`. You are now ready to use the
292 FURL files in :file:`$IPYTHON_DIR/cluster_<profile>/security`. You are now ready to use the
293 293 controller and engines from IPython.
294 294
295 295 .. warning::
296 296
297 297 The order of the above operations is very important. You *must*
298 298 start the controller before the engines, since the engines connect
299 299 to the controller as they get started.
300 300
301 301 .. note::
302 302
303 303 On some platforms (OS X), to put the controller and engine into the
304 304 background you may need to give these commands in the form ``(ipcontroller
305 305 &)`` and ``(ipengine &)`` (with the parentheses) for them to work
306 306 properly.
307 307
308 308 Starting the controller and engines on different hosts
309 309 ------------------------------------------------------
310 310
311 311 When the controller and engines are running on different hosts, things are
312 312 slightly more complicated, but the underlying ideas are the same:
313 313
314 314 1. Start the controller on a host using :command:`ipcontroller`.
315 2. Copy :file:`ipcontroller-engine.furl` from :file:`~./ipython/security` on
315 2. Copy :file:`ipcontroller-engine.furl` from :file:`$IPYTHON_DIR/cluster_<profile>/security` on
316 316 the controller's host to the host where the engines will run.
317 317 3. Use :command:`ipengine` on the engine's hosts to start the engines.
318 318
319 319 The only thing you have to be careful of is to tell :command:`ipengine` where
320 320 the :file:`ipcontroller-engine.furl` file is located. There are two ways you
321 321 can do this:
322 322
323 * Put :file:`ipcontroller-engine.furl` in the :file:`~./ipython/security`
323 * Put :file:`ipcontroller-engine.furl` in the :file:`$IPYTHON_DIR/cluster_<profile>/security`
324 324 directory on the engine's host, where it will be found automatically.
325 325 * Call :command:`ipengine` with the ``--furl-file=full_path_to_the_file``
326 326 flag.
327 327
328 328 The ``--furl-file`` flag works like this::
329 329
330 330 $ ipengine --furl-file=/path/to/my/ipcontroller-engine.furl
331 331
332 332 .. note::
333 333
334 334 If the controller's and engine's hosts all have a shared file system
335 (:file:`~./ipython/security` is the same on all of them), then things
335 (:file:`$IPYTHON_DIR/cluster_<profile>/security` is the same on all of them), then things
336 336 will just work!
337 337
338 338 Make FURL files persistent
339 339 ---------------------------
340 340
341 341 At fist glance it may seem that that managing the FURL files is a bit
342 342 annoying. Going back to the house and key analogy, copying the FURL around
343 343 each time you start the controller is like having to make a new key every time
344 344 you want to unlock the door and enter your house. As with your house, you want
345 345 to be able to create the key (or FURL file) once, and then simply use it at
346 346 any point in the future.
347 347
348 348 This is possible, but before you do this, you **must** remove any old FURL
349 files in the :file:`~/.ipython/security` directory.
349 files in the :file:`$IPYTHON_DIR/cluster_<profile>/security` directory.
350 350
351 351 .. warning::
352 352
353 353 You **must** remove old FURL files before using persistent FURL files.
354 354
355 355 Then, The only thing you have to do is decide what ports the controller will
356 356 listen on for the engines and clients. This is done as follows::
357 357
358 358 $ ipcontroller -r --client-port=10101 --engine-port=10102
359 359
360 360 These options also work with all of the various modes of
361 361 :command:`ipcluster`::
362 362
363 363 $ ipcluster local -n 2 -r --client-port=10101 --engine-port=10102
364 364
365 365 Then, just copy the furl files over the first time and you are set. You can
366 366 start and stop the controller and engines any many times as you want in the
367 367 future, just make sure to tell the controller to use the *same* ports.
368 368
369 369 .. note::
370 370
371 371 You may ask the question: what ports does the controller listen on if you
372 372 don't tell is to use specific ones? The default is to use high random port
373 373 numbers. We do this for two reasons: i) to increase security through
374 374 obscurity and ii) to multiple controllers on a given host to start and
375 375 automatically use different ports.
376 376
377 377 Log files
378 378 ---------
379 379
380 380 All of the components of IPython have log files associated with them.
381 381 These log files can be extremely useful in debugging problems with
382 IPython and can be found in the directory :file:`~/.ipython/log`. Sending
382 IPython and can be found in the directory :file:`$IPYTHON_DIR/cluster_<profile>/log`. Sending
383 383 the log files to us will often help us to debug any problems.
384 384
385 385
386 386 .. [PBS] Portable Batch System. http://www.openpbs.org/
387 387 .. [SSH] SSH-Agent http://en.wikipedia.org/wiki/Ssh-agent
388 388
389 389
@@ -1,366 +1,366 b''
1 1 .. _parallelsecurity:
2 2
3 3 ===========================
4 4 Security details of IPython
5 5 ===========================
6 6
7 7 IPython's :mod:`IPython.kernel` package exposes the full power of the Python
8 8 interpreter over a TCP/IP network for the purposes of parallel computing. This
9 9 feature brings up the important question of IPython's security model. This
10 10 document gives details about this model and how it is implemented in IPython's
11 11 architecture.
12 12
13 13 Processs and network topology
14 14 =============================
15 15
16 16 To enable parallel computing, IPython has a number of different processes that
17 17 run. These processes are discussed at length in the IPython documentation and
18 18 are summarized here:
19 19
20 20 * The IPython *engine*. This process is a full blown Python
21 21 interpreter in which user code is executed. Multiple
22 22 engines are started to make parallel computing possible.
23 23 * The IPython *controller*. This process manages a set of
24 24 engines, maintaining a queue for each and presenting
25 25 an asynchronous interface to the set of engines.
26 26 * The IPython *client*. This process is typically an
27 27 interactive Python process that is used to coordinate the
28 28 engines to get a parallel computation done.
29 29
30 30 Collectively, these three processes are called the IPython *kernel*.
31 31
32 32 These three processes communicate over TCP/IP connections with a well defined
33 33 topology. The IPython controller is the only process that listens on TCP/IP
34 34 sockets. Upon starting, an engine connects to a controller and registers
35 35 itself with the controller. These engine/controller TCP/IP connections persist
36 36 for the lifetime of each engine.
37 37
38 38 The IPython client also connects to the controller using one or more TCP/IP
39 39 connections. These connections persist for the lifetime of the client only.
40 40
41 41 A given IPython controller and set of engines typically has a relatively short
42 42 lifetime. Typically this lifetime corresponds to the duration of a single
43 43 parallel simulation performed by a single user. Finally, the controller,
44 44 engines and client processes typically execute with the permissions of that
45 45 same user. More specifically, the controller and engines are *not* executed as
46 46 root or with any other superuser permissions.
47 47
48 48 Application logic
49 49 =================
50 50
51 51 When running the IPython kernel to perform a parallel computation, a user
52 52 utilizes the IPython client to send Python commands and data through the
53 53 IPython controller to the IPython engines, where those commands are executed
54 54 and the data processed. The design of IPython ensures that the client is the
55 55 only access point for the capabilities of the engines. That is, the only way
56 56 of addressing the engines is through a client.
57 57
58 58 A user can utilize the client to instruct the IPython engines to execute
59 59 arbitrary Python commands. These Python commands can include calls to the
60 60 system shell, access the filesystem, etc., as required by the user's
61 61 application code. From this perspective, when a user runs an IPython engine on
62 62 a host, that engine has the same capabilities and permissions as the user
63 63 themselves (as if they were logged onto the engine's host with a terminal).
64 64
65 65 Secure network connections
66 66 ==========================
67 67
68 68 Overview
69 69 --------
70 70
71 71 All TCP/IP connections between the client and controller as well as the
72 72 engines and controller are fully encrypted and authenticated. This section
73 73 describes the details of the encryption and authentication approached used
74 74 within IPython.
75 75
76 76 IPython uses the Foolscap network protocol [Foolscap]_ for all communications
77 77 between processes. Thus, the details of IPython's security model are directly
78 78 related to those of Foolscap. Thus, much of the following discussion is
79 79 actually just a discussion of the security that is built in to Foolscap.
80 80
81 81 Encryption
82 82 ----------
83 83
84 84 For encryption purposes, IPython and Foolscap use the well known Secure Socket
85 85 Layer (SSL) protocol [RFC5246]_. We use the implementation of this protocol
86 86 provided by the OpenSSL project through the pyOpenSSL [pyOpenSSL]_ Python
87 87 bindings to OpenSSL.
88 88
89 89 Authentication
90 90 --------------
91 91
92 92 IPython clients and engines must also authenticate themselves with the
93 93 controller. This is handled in a capabilities based security model
94 94 [Capability]_. In this model, the controller creates a strong cryptographic
95 95 key or token that represents each set of capability that the controller
96 96 offers. Any party who has this key and presents it to the controller has full
97 97 access to the corresponding capabilities of the controller. This model is
98 98 analogous to using a physical key to gain access to physical items
99 99 (capabilities) behind a locked door.
100 100
101 101 For a capabilities based authentication system to prevent unauthorized access,
102 102 two things must be ensured:
103 103
104 104 * The keys must be cryptographically strong. Otherwise attackers could gain
105 105 access by a simple brute force key guessing attack.
106 106 * The actual keys must be distributed only to authorized parties.
107 107
108 108 The keys in Foolscap are called Foolscap URL's or FURLs. The following section
109 109 gives details about how these FURLs are created in Foolscap. The IPython
110 110 controller creates a number of FURLs for different purposes:
111 111
112 112 * One FURL that grants IPython engines access to the controller. Also
113 113 implicit in this access is permission to execute code sent by an
114 114 authenticated IPython client.
115 115 * Two or more FURLs that grant IPython clients access to the controller.
116 116 Implicit in this access is permission to give the controller's engine code
117 117 to execute.
118 118
119 119 Upon starting, the controller creates these different FURLS and writes them
120 files in the user-read-only directory :file:`$HOME/.ipython/security`. Thus,
120 files in the user-read-only directory :file:`$IPYTHON_DIR/cluster_default/security`. Thus,
121 121 only the user who starts the controller has access to the FURLs.
122 122
123 123 For an IPython client or engine to authenticate with a controller, it must
124 124 present the appropriate FURL to the controller upon connecting. If the
125 125 FURL matches what the controller expects for a given capability, access is
126 126 granted. If not, access is denied. The exchange of FURLs is done after
127 127 encrypted communications channels have been established to prevent attackers
128 128 from capturing them.
129 129
130 130 .. note::
131 131
132 132 The FURL is similar to an unsigned private key in SSH.
133 133
134 134 Details of the Foolscap handshake
135 135 ---------------------------------
136 136
137 137 In this section we detail the precise security handshake that takes place at
138 138 the beginning of any network connection in IPython. For the purposes of this
139 139 discussion, the SERVER is the IPython controller process and the CLIENT is the
140 140 IPython engine or client process.
141 141
142 142 Upon starting, all IPython processes do the following:
143 143
144 144 1. Create a public key x509 certificate (ISO/IEC 9594).
145 145 2. Create a hash of the contents of the certificate using the SHA-1 algorithm.
146 146 The base-32 encoded version of this hash is saved by the process as its
147 147 process id (actually in Foolscap, this is the Tub id, but here refer to
148 148 it as the process id).
149 149
150 150 Upon starting, the IPython controller also does the following:
151 151
152 152 1. Save the x509 certificate to disk in a secure location. The CLIENT
153 153 certificate is never saved to disk.
154 154 2. Create a FURL for each capability that the controller has. There are
155 155 separate capabilities the controller offers for clients and engines. The
156 156 FURL is created using: a) the process id of the SERVER, b) the IP
157 157 address and port the SERVER is listening on and c) a 160 bit,
158 158 cryptographically secure string that represents the capability (the
159 159 "capability id").
160 160 3. The FURLs are saved to disk in a secure location on the SERVER's host.
161 161
162 162 For a CLIENT to be able to connect to the SERVER and access a capability of
163 163 that SERVER, the CLIENT must have knowledge of the FURL for that SERVER's
164 164 capability. This typically requires that the file containing the FURL be
165 165 moved from the SERVER's host to the CLIENT's host. This is done by the end
166 166 user who started the SERVER and wishes to have a CLIENT connect to the SERVER.
167 167
168 168 When a CLIENT connects to the SERVER, the following handshake protocol takes
169 169 place:
170 170
171 171 1. The CLIENT tells the SERVER what process (or Tub) id it expects the SERVER
172 172 to have.
173 173 2. If the SERVER has that process id, it notifies the CLIENT that it will now
174 174 enter encrypted mode. If the SERVER has a different id, the SERVER aborts.
175 175 3. Both CLIENT and SERVER initiate the SSL handshake protocol.
176 176 4. Both CLIENT and SERVER request the certificate of their peer and verify
177 177 that certificate. If this succeeds, all further communications are
178 178 encrypted.
179 179 5. Both CLIENT and SERVER send a hello block containing connection parameters
180 180 and their process id.
181 181 6. The CLIENT and SERVER check that their peer's stated process id matches the
182 182 hash of the x509 certificate the peer presented. If not, the connection is
183 183 aborted.
184 184 7. The CLIENT verifies that the SERVER's stated id matches the id of the
185 185 SERVER the CLIENT is intending to connect to. If not, the connection is
186 186 aborted.
187 187 8. The CLIENT and SERVER elect a master who decides on the final connection
188 188 parameters.
189 189
190 190 The public/private key pair associated with each process's x509 certificate
191 191 are completely hidden from this handshake protocol. There are however, used
192 192 internally by OpenSSL as part of the SSL handshake protocol. Each process
193 193 keeps their own private key hidden and sends its peer only the public key
194 194 (embedded in the certificate).
195 195
196 196 Finally, when the CLIENT requests access to a particular SERVER capability,
197 197 the following happens:
198 198
199 199 1. The CLIENT asks the SERVER for access to a capability by presenting that
200 200 capabilities id.
201 201 2. If the SERVER has a capability with that id, access is granted. If not,
202 202 access is not granted.
203 203 3. Once access has been gained, the CLIENT can use the capability.
204 204
205 205 Specific security vulnerabilities
206 206 =================================
207 207
208 208 There are a number of potential security vulnerabilities present in IPython's
209 209 architecture. In this section we discuss those vulnerabilities and detail how
210 210 the security architecture described above prevents them from being exploited.
211 211
212 212 Unauthorized clients
213 213 --------------------
214 214
215 215 The IPython client can instruct the IPython engines to execute arbitrary
216 216 Python code with the permissions of the user who started the engines. If an
217 217 attacker were able to connect their own hostile IPython client to the IPython
218 218 controller, they could instruct the engines to execute code.
219 219
220 220 This attack is prevented by the capabilities based client authentication
221 221 performed after the encrypted channel has been established. The relevant
222 222 authentication information is encoded into the FURL that clients must
223 223 present to gain access to the IPython controller. By limiting the distribution
224 224 of those FURLs, a user can grant access to only authorized persons.
225 225
226 226 It is highly unlikely that a client FURL could be guessed by an attacker
227 227 in a brute force guessing attack. A given instance of the IPython controller
228 228 only runs for a relatively short amount of time (on the order of hours). Thus
229 229 an attacker would have only a limited amount of time to test a search space of
230 230 size 2**320. Furthermore, even if a controller were to run for a longer amount
231 231 of time, this search space is quite large (larger for instance than that of
232 232 typical username/password pair).
233 233
234 234 Unauthorized engines
235 235 --------------------
236 236
237 237 If an attacker were able to connect a hostile engine to a user's controller,
238 238 the user might unknowingly send sensitive code or data to the hostile engine.
239 239 This attacker's engine would then have full access to that code and data.
240 240
241 241 This type of attack is prevented in the same way as the unauthorized client
242 242 attack, through the usage of the capabilities based authentication scheme.
243 243
244 244 Unauthorized controllers
245 245 ------------------------
246 246
247 247 It is also possible that an attacker could try to convince a user's IPython
248 248 client or engine to connect to a hostile IPython controller. That controller
249 249 would then have full access to the code and data sent between the IPython
250 250 client and the IPython engines.
251 251
252 252 Again, this attack is prevented through the FURLs, which ensure that a
253 253 client or engine connects to the correct controller. It is also important to
254 254 note that the FURLs also encode the IP address and port that the
255 255 controller is listening on, so there is little chance of mistakenly connecting
256 256 to a controller running on a different IP address and port.
257 257
258 258 When starting an engine or client, a user must specify which FURL to use
259 259 for that connection. Thus, in order to introduce a hostile controller, the
260 260 attacker must convince the user to use the FURLs associated with the
261 261 hostile controller. As long as a user is diligent in only using FURLs from
262 262 trusted sources, this attack is not possible.
263 263
264 264 Other security measures
265 265 =======================
266 266
267 267 A number of other measures are taken to further limit the security risks
268 268 involved in running the IPython kernel.
269 269
270 270 First, by default, the IPython controller listens on random port numbers.
271 271 While this can be overridden by the user, in the default configuration, an
272 272 attacker would have to do a port scan to even find a controller to attack.
273 273 When coupled with the relatively short running time of a typical controller
274 274 (on the order of hours), an attacker would have to work extremely hard and
275 275 extremely *fast* to even find a running controller to attack.
276 276
277 277 Second, much of the time, especially when run on supercomputers or clusters,
278 278 the controller is running behind a firewall. Thus, for engines or client to
279 279 connect to the controller:
280 280
281 281 * The different processes have to all be behind the firewall.
282 282
283 283 or:
284 284
285 285 * The user has to use SSH port forwarding to tunnel the
286 286 connections through the firewall.
287 287
288 288 In either case, an attacker is presented with addition barriers that prevent
289 289 attacking or even probing the system.
290 290
291 291 Summary
292 292 =======
293 293
294 294 IPython's architecture has been carefully designed with security in mind. The
295 295 capabilities based authentication model, in conjunction with the encrypted
296 296 TCP/IP channels, address the core potential vulnerabilities in the system,
297 297 while still enabling user's to use the system in open networks.
298 298
299 299 Other questions
300 300 ===============
301 301
302 302 About keys
303 303 ----------
304 304
305 305 Can you clarify the roles of the certificate and its keys versus the FURL,
306 306 which is also called a key?
307 307
308 308 The certificate created by IPython processes is a standard public key x509
309 309 certificate, that is used by the SSL handshake protocol to setup encrypted
310 310 channel between the controller and the IPython engine or client. This public
311 311 and private key associated with this certificate are used only by the SSL
312 312 handshake protocol in setting up this encrypted channel.
313 313
314 314 The FURL serves a completely different and independent purpose from the
315 315 key pair associated with the certificate. When we refer to a FURL as a
316 316 key, we are using the word "key" in the capabilities based security model
317 317 sense. This has nothing to do with "key" in the public/private key sense used
318 318 in the SSL protocol.
319 319
320 320 With that said the FURL is used as an cryptographic key, to grant
321 321 IPython engines and clients access to particular capabilities that the
322 322 controller offers.
323 323
324 324 Self signed certificates
325 325 ------------------------
326 326
327 327 Is the controller creating a self-signed certificate? Is this created for per
328 328 instance/session, one-time-setup or each-time the controller is started?
329 329
330 330 The Foolscap network protocol, which handles the SSL protocol details, creates
331 331 a self-signed x509 certificate using OpenSSL for each IPython process. The
332 332 lifetime of the certificate is handled differently for the IPython controller
333 333 and the engines/client.
334 334
335 335 For the IPython engines and client, the certificate is only held in memory for
336 336 the lifetime of its process. It is never written to disk.
337 337
338 338 For the controller, the certificate can be created anew each time the
339 339 controller starts or it can be created once and reused each time the
340 340 controller starts. If at any point, the certificate is deleted, a new one is
341 341 created the next time the controller starts.
342 342
343 343 SSL private key
344 344 ---------------
345 345
346 346 How the private key (associated with the certificate) is distributed?
347 347
348 348 In the usual implementation of the SSL protocol, the private key is never
349 349 distributed. We follow this standard always.
350 350
351 351 SSL versus Foolscap authentication
352 352 ----------------------------------
353 353
354 354 Many SSL connections only perform one sided authentication (the server to the
355 355 client). How is the client authentication in IPython's system related to SSL
356 356 authentication?
357 357
358 358 We perform a two way SSL handshake in which both parties request and verify
359 359 the certificate of their peer. This mutual authentication is handled by the
360 360 SSL handshake and is separate and independent from the additional
361 361 authentication steps that the CLIENT and SERVER perform after an encrypted
362 362 channel is established.
363 363
364 364 .. [RFC5246] <http://tools.ietf.org/html/rfc5246>
365 365
366 366
@@ -1,121 +1,121 b''
1 1 .. _paralleltask:
2 2
3 3 ==========================
4 4 The IPython task interface
5 5 ==========================
6 6
7 7 The task interface to the controller presents the engines as a fault tolerant,
8 8 dynamic load-balanced system or workers. Unlike the multiengine interface, in
9 9 the task interface, the user have no direct access to individual engines. In
10 10 some ways, this interface is simpler, but in other ways it is more powerful.
11 11
12 12 Best of all the user can use both of these interfaces running at the same time
13 13 to take advantage or both of their strengths. When the user can break up the
14 14 user's work into segments that do not depend on previous execution, the task
15 15 interface is ideal. But it also has more power and flexibility, allowing the
16 16 user to guide the distribution of jobs, without having to assign tasks to
17 17 engines explicitly.
18 18
19 19 Starting the IPython controller and engines
20 20 ===========================================
21 21
22 22 To follow along with this tutorial, you will need to start the IPython
23 23 controller and four IPython engines. The simplest way of doing this is to use
24 24 the :command:`ipcluster` command::
25 25
26 26 $ ipcluster local -n 4
27 27
28 28 For more detailed information about starting the controller and engines, see
29 29 our :ref:`introduction <ip1par>` to using IPython for parallel computing.
30 30
31 31 Creating a ``TaskClient`` instance
32 32 =========================================
33 33
34 34 The first step is to import the IPython :mod:`IPython.kernel.client` module
35 35 and then create a :class:`TaskClient` instance:
36 36
37 37 .. sourcecode:: ipython
38 38
39 39 In [1]: from IPython.kernel import client
40 40
41 41 In [2]: tc = client.TaskClient()
42 42
43 43 This form assumes that the :file:`ipcontroller-tc.furl` is in the
44 :file:`~./ipython/security` directory on the client's host. If not, the
44 :file:`$IPYTHON_DIR/cluster_<profile>/security` directory on the client's host. If not, the
45 45 location of the FURL file must be given as an argument to the
46 46 constructor:
47 47
48 48 .. sourcecode:: ipython
49 49
50 50 In [2]: mec = client.TaskClient('/path/to/my/ipcontroller-tc.furl')
51 51
52 52 Quick and easy parallelism
53 53 ==========================
54 54
55 55 In many cases, you simply want to apply a Python function to a sequence of
56 56 objects, but *in parallel*. Like the multiengine interface, the task interface
57 57 provides two simple ways of accomplishing this: a parallel version of
58 58 :func:`map` and ``@parallel`` function decorator. However, the verions in the
59 59 task interface have one important difference: they are dynamically load
60 60 balanced. Thus, if the execution time per item varies significantly, you
61 61 should use the versions in the task interface.
62 62
63 63 Parallel map
64 64 ------------
65 65
66 66 The parallel :meth:`map` in the task interface is similar to that in the
67 67 multiengine interface:
68 68
69 69 .. sourcecode:: ipython
70 70
71 71 In [63]: serial_result = map(lambda x:x**10, range(32))
72 72
73 73 In [64]: parallel_result = tc.map(lambda x:x**10, range(32))
74 74
75 75 In [65]: serial_result==parallel_result
76 76 Out[65]: True
77 77
78 78 Parallel function decorator
79 79 ---------------------------
80 80
81 81 Parallel functions are just like normal function, but they can be called on
82 82 sequences and *in parallel*. The multiengine interface provides a decorator
83 83 that turns any Python function into a parallel function:
84 84
85 85 .. sourcecode:: ipython
86 86
87 87 In [10]: @tc.parallel()
88 88 ....: def f(x):
89 89 ....: return 10.0*x**4
90 90 ....:
91 91
92 92 In [11]: f(range(32)) # this is done in parallel
93 93 Out[11]:
94 94 [0.0,10.0,160.0,...]
95 95
96 96 More details
97 97 ============
98 98
99 99 The :class:`TaskClient` has many more powerful features that allow quite a bit
100 100 of flexibility in how tasks are defined and run. The next places to look are
101 101 in the following classes:
102 102
103 103 * :class:`IPython.kernel.client.TaskClient`
104 104 * :class:`IPython.kernel.client.StringTask`
105 105 * :class:`IPython.kernel.client.MapTask`
106 106
107 107 The following is an overview of how to use these classes together:
108 108
109 109 1. Create a :class:`TaskClient`.
110 110 2. Create one or more instances of :class:`StringTask` or :class:`MapTask`
111 111 to define your tasks.
112 112 3. Submit your tasks to using the :meth:`run` method of your
113 113 :class:`TaskClient` instance.
114 114 4. Use :meth:`TaskClient.get_task_result` to get the results of the
115 115 tasks.
116 116
117 117 We are in the process of developing more detailed information about the task
118 118 interface. For now, the docstrings of the :class:`TaskClient`,
119 119 :class:`StringTask` and :class:`MapTask` classes should be consulted.
120 120
121 121
General Comments 0
You need to be logged in to leave comments. Login now