##// END OF EJS Templates
Give .run_cell a store_history option, so that it can be used to run raw IPython code outside of the sequence of commands making the session. This also doesn't incremement the execution_count.
Thomas Kluyver -
Show More
@@ -1,665 +1,667 b''
1 1 """ History related magics and functionality """
2 2 #-----------------------------------------------------------------------------
3 3 # Copyright (C) 2010 The IPython Development Team.
4 4 #
5 5 # Distributed under the terms of the BSD License.
6 6 #
7 7 # The full license is in the file COPYING.txt, distributed with this software.
8 8 #-----------------------------------------------------------------------------
9 9
10 10 #-----------------------------------------------------------------------------
11 11 # Imports
12 12 #-----------------------------------------------------------------------------
13 13 from __future__ import print_function
14 14
15 15 # Stdlib imports
16 16 import datetime
17 17 import json
18 18 import os
19 19 import re
20 20 import sqlite3
21 21
22 22 from collections import defaultdict
23 23
24 24 # Our own packages
25 25 from IPython.config.configurable import Configurable
26 26 import IPython.utils.io
27 27
28 28 from IPython.testing import decorators as testdec
29 29 from IPython.utils.io import ask_yes_no
30 30 from IPython.utils.traitlets import Bool, Dict, Instance, Int, List, Unicode
31 31 from IPython.utils.warn import warn
32 32
33 33 #-----------------------------------------------------------------------------
34 34 # Classes and functions
35 35 #-----------------------------------------------------------------------------
36 36
37 37 class HistoryManager(Configurable):
38 38 """A class to organize all history-related functionality in one place.
39 39 """
40 40 # Public interface
41 41
42 42 # An instance of the IPython shell we are attached to
43 43 shell = Instance('IPython.core.interactiveshell.InteractiveShellABC')
44 44 # Lists to hold processed and raw history. These start with a blank entry
45 45 # so that we can index them starting from 1
46 46 input_hist_parsed = List([""])
47 47 input_hist_raw = List([""])
48 48 # A list of directories visited during session
49 49 dir_hist = List()
50 50 # A dict of output history, keyed with ints from the shell's
51 51 # execution count. If there are several outputs from one command,
52 52 # only the last one is stored.
53 53 output_hist = Dict()
54 54 # Contains all outputs, in lists of reprs.
55 55 output_hist_reprs = Instance(defaultdict)
56 56
57 57 # String holding the path to the history file
58 58 hist_file = Unicode()
59 59 # The SQLite database
60 60 db = Instance(sqlite3.Connection)
61 61 # The number of the current session in the history database
62 62 session_number = Int()
63 63 # Should we log output to the database? (default no)
64 64 db_log_output = Bool(False, config=True)
65 65 # Write to database every x commands (higher values save disk access & power)
66 66 # Values of 1 or less effectively disable caching.
67 67 db_cache_size = Int(0, config=True)
68 68 # The input and output caches
69 69 db_input_cache = List()
70 70 db_output_cache = List()
71 71
72 72 # Private interface
73 73 # Variables used to store the three last inputs from the user. On each new
74 74 # history update, we populate the user's namespace with these, shifted as
75 75 # necessary.
76 76 _i00, _i, _ii, _iii = '','','',''
77 77
78 78 # A set with all forms of the exit command, so that we don't store them in
79 79 # the history (it's annoying to rewind the first entry and land on an exit
80 80 # call).
81 81 _exit_commands = None
82 82
83 83 def __init__(self, shell, config=None):
84 84 """Create a new history manager associated with a shell instance.
85 85 """
86 86 # We need a pointer back to the shell for various tasks.
87 87 super(HistoryManager, self).__init__(shell=shell, config=config)
88 88
89 89 # list of visited directories
90 90 try:
91 91 self.dir_hist = [os.getcwd()]
92 92 except OSError:
93 93 self.dir_hist = []
94 94
95 95 # Now the history file
96 96 if shell.profile:
97 97 histfname = 'history-%s' % shell.profile
98 98 else:
99 99 histfname = 'history'
100 100 self.hist_file = os.path.join(shell.ipython_dir, histfname + '.sqlite')
101 101 self.init_db()
102 102 self.new_session()
103 103
104 104 self._i00, self._i, self._ii, self._iii = '','','',''
105 105 self.output_hist_reprs = defaultdict(list)
106 106
107 107 self._exit_commands = set(['Quit', 'quit', 'Exit', 'exit', '%Quit',
108 108 '%quit', '%Exit', '%exit'])
109 109
110 110 def init_db(self):
111 111 """Connect to the database, and create tables if necessary."""
112 112 self.db = sqlite3.connect(self.hist_file)
113 113 self.db.execute("""CREATE TABLE IF NOT EXISTS sessions (session integer
114 114 primary key autoincrement, start timestamp,
115 115 end timestamp, num_cmds integer, remark text)""")
116 116 self.db.execute("""CREATE TABLE IF NOT EXISTS history
117 117 (session integer, line integer, source text, source_raw text,
118 118 PRIMARY KEY (session, line))""")
119 119 # Output history is optional, but ensure the table's there so it can be
120 120 # enabled later.
121 121 self.db.execute("""CREATE TABLE IF NOT EXISTS output_history
122 122 (session integer, line integer, output text,
123 123 PRIMARY KEY (session, line))""")
124 124 self.db.commit()
125 125
126 126 def new_session(self):
127 127 """Get a new session number."""
128 128 with self.db:
129 129 cur = self.db.execute("""INSERT INTO sessions VALUES (NULL, ?, NULL,
130 130 NULL, "") """, (datetime.datetime.now(),))
131 131 self.session_number = cur.lastrowid
132 132
133 133 def end_session(self):
134 134 """Close the database session, filling in the end time and line count."""
135 135 self.writeout_cache()
136 136 with self.db:
137 137 self.db.execute("""UPDATE sessions SET end=?, num_cmds=? WHERE
138 138 session==?""", (datetime.datetime.now(),
139 139 len(self.input_hist_parsed)-1, self.session_number))
140 140 self.session_number = 0
141 141
142 142 def name_session(self, name):
143 143 """Give the current session a name in the history database."""
144 144 with self.db:
145 145 self.db.execute("UPDATE sessions SET remark=? WHERE session==?",
146 146 (name, self.session_number))
147 147
148 148 def reset(self, new_session=True):
149 149 """Clear the session history, releasing all object references, and
150 150 optionally open a new session."""
151 151 if self.session_number:
152 152 self.end_session()
153 153 self.input_hist_parsed[:] = [""]
154 154 self.input_hist_raw[:] = [""]
155 155 self.output_hist.clear()
156 156 # The directory history can't be completely empty
157 157 self.dir_hist[:] = [os.getcwd()]
158 158
159 159 if new_session:
160 160 self.new_session()
161 161
162 162 ## -------------------------------
163 163 ## Methods for retrieving history:
164 164 ## -------------------------------
165 165 def _get_hist_sql(self, sql, params, raw=True, output=False):
166 166 """Prepares and runs an SQL query for the history database.
167 167
168 168 Parameters
169 169 ----------
170 170 sql : str
171 171 Any filtering expressions to go after SELECT ... FROM ...
172 172 params : tuple
173 173 Parameters passed to the SQL query (to replace "?")
174 174 raw : bool
175 175 If True, get raw input.
176 176 output : bool
177 177 If True, include output where available.
178 178
179 179 Returns
180 180 -------
181 181 An iterator over 3-tuples: (session, line_number, command), or if output
182 182 is True, (session, line_number, (command, output)).
183 183 """
184 184 toget = 'source_raw' if raw else 'source'
185 185 sqlfrom = "history"
186 186 if output:
187 187 sqlfrom = "history LEFT JOIN output_history USING (session, line)"
188 188 toget = "history.%s, output_history.output" % toget
189 189 cur = self.db.execute("SELECT session, line, %s FROM %s " %\
190 190 (toget, sqlfrom) + sql, params)
191 191 if output: # Regroup into 3-tuples, and parse JSON
192 192 loads = lambda out: json.loads(out) if out else None
193 193 return ((ses, lin, (inp, loads(out))) \
194 194 for ses, lin, inp, out in cur)
195 195 return cur
196 196
197 197
198 198 def get_hist_tail(self, n=10, raw=True, output=False, include_latest=False):
199 199 """Get the last n lines from the history database.
200 200
201 201 If include_latest is False (default), n+1 lines are fetched, and
202 202 the latest one is discarded. This is intended to be used where
203 203 the function is called by a user command, which it should not
204 204 return."""
205 205 self.writeout_cache()
206 206 if not include_latest:
207 207 n += 1
208 208 cur = self._get_hist_sql("ORDER BY session DESC, line DESC LIMIT ?",
209 209 (n,), raw=raw, output=output)
210 210 if not include_latest:
211 211 return reversed(list(cur)[1:])
212 212 return reversed(list(cur))
213 213
214 214 def get_hist_search(self, pattern="*", raw=True, search_raw=True,
215 215 output=False):
216 216 """Search the database using unix glob-style matching (wildcards
217 217 * and ?).
218 218
219 219 Returns
220 220 -------
221 221 An iterator over tuples: (session, line_number, command)
222 222 """
223 223 tosearch = "source_raw" if search_raw else "source"
224 224 if output:
225 225 tosearch = "history." + tosearch
226 226 self.writeout_cache()
227 227 return self._get_hist_sql("WHERE %s GLOB ?" % tosearch, (pattern,),
228 228 raw=raw, output=output)
229 229
230 230 def _get_hist_session(self, start=1, stop=None, raw=True, output=False):
231 231 """Get input and output history from the current session. Called by
232 232 get_history, and takes similar parameters."""
233 233 input_hist = self.input_hist_raw if raw else self.input_hist_parsed
234 234
235 235 n = len(input_hist)
236 236 if start < 0:
237 237 start += n
238 238 if not stop:
239 239 stop = n
240 240 elif stop < 0:
241 241 stop += n
242 242
243 243 for i in range(start, stop):
244 244 if output:
245 245 line = (input_hist[i], self.output_hist_reprs.get(i))
246 246 else:
247 247 line = input_hist[i]
248 248 yield (0, i, line)
249 249
250 250 def get_history(self, session=0, start=1, stop=None, raw=True,output=False):
251 251 """Retrieve input by session.
252 252
253 253 Parameters
254 254 ----------
255 255 session : int
256 256 Session number to retrieve. The current session is 0, and negative
257 257 numbers count back from current session, so -1 is previous session.
258 258 start : int
259 259 First line to retrieve.
260 260 stop : int
261 261 End of line range (excluded from output itself). If None, retrieve
262 262 to the end of the session.
263 263 raw : bool
264 264 If True, return untranslated input
265 265 output : bool
266 266 If True, attempt to include output. This will be 'real' Python
267 267 objects for the current session, or text reprs from previous
268 268 sessions if db_log_output was enabled at the time. Where no output
269 269 is found, None is used.
270 270
271 271 Returns
272 272 -------
273 273 An iterator over the desired lines. Each line is a 3-tuple, either
274 274 (session, line, input) if output is False, or
275 275 (session, line, (input, output)) if output is True.
276 276 """
277 277 if session == 0 or session==self.session_number: # Current session
278 278 return self._get_hist_session(start, stop, raw, output)
279 279 if session < 0:
280 280 session += self.session_number
281 281
282 282 if stop:
283 283 lineclause = "line >= ? AND line < ?"
284 284 params = (session, start, stop)
285 285 else:
286 286 lineclause = "line>=?"
287 287 params = (session, start)
288 288
289 289 return self._get_hist_sql("WHERE session==? AND %s""" % lineclause,
290 290 params, raw=raw, output=output)
291 291
292 292 def get_hist_from_rangestr(self, rangestr, raw=True, output=False):
293 293 """Get lines of history from a string of ranges, as used by magic
294 294 commands %hist, %save, %macro, etc."""
295 295 for sess, s, e in extract_hist_ranges(rangestr):
296 296 for line in self.get_history(sess, s, e, raw=raw, output=output):
297 297 yield line
298 298
299 299 ## ----------------------------
300 300 ## Methods for storing history:
301 301 ## ----------------------------
302 302 def store_inputs(self, line_num, source, source_raw=None):
303 303 """Store source and raw input in history and create input cache
304 304 variables _i*.
305 305
306 306 Parameters
307 307 ----------
308 308 line_num : int
309 309 The prompt number of this input.
310 310
311 311 source : str
312 312 Python input.
313 313
314 314 source_raw : str, optional
315 315 If given, this is the raw input without any IPython transformations
316 316 applied to it. If not given, ``source`` is used.
317 317 """
318 318 if source_raw is None:
319 319 source_raw = source
320 320 source = source.rstrip('\n')
321 321 source_raw = source_raw.rstrip('\n')
322 322
323 323 # do not store exit/quit commands
324 324 if source_raw.strip() in self._exit_commands:
325 325 return
326 326
327 327 self.input_hist_parsed.append(source)
328 328 self.input_hist_raw.append(source_raw)
329 329
330 330 self.db_input_cache.append((self.session_number, line_num,
331 331 source, source_raw))
332 332 # Trigger to flush cache and write to DB.
333 333 if len(self.db_input_cache) >= self.db_cache_size:
334 334 self.writeout_cache()
335 335
336 336 # update the auto _i variables
337 337 self._iii = self._ii
338 338 self._ii = self._i
339 339 self._i = self._i00
340 340 self._i00 = source_raw
341 341
342 342 # hackish access to user namespace to create _i1,_i2... dynamically
343 343 new_i = '_i%s' % line_num
344 344 to_main = {'_i': self._i,
345 345 '_ii': self._ii,
346 346 '_iii': self._iii,
347 347 new_i : self._i00 }
348 348 self.shell.user_ns.update(to_main)
349 349
350 350 def store_output(self, line_num):
351 351 """If database output logging is enabled, this saves all the
352 352 outputs from the indicated prompt number to the database. It's
353 353 called by run_cell after code has been executed."""
354 354 if (not self.db_log_output) or not self.output_hist_reprs[line_num]:
355 355 return
356 356 output = json.dumps(self.output_hist_reprs[line_num])
357 357 db_row = (self.session_number, line_num, output)
358 358 if self.db_cache_size > 1:
359 359 self.db_output_cache.append(db_row)
360 360 else:
361 361 with self.db:
362 362 self.db.execute("INSERT INTO output_history VALUES (?,?,?)", db_row)
363 363
364 364 def writeout_cache(self):
365 365 #print(self.db_input_cache)
366 366 with self.db:
367 367 self.db.executemany("INSERT INTO history VALUES (?, ?, ?, ?)",
368 368 self.db_input_cache)
369 369 self.db.executemany("INSERT INTO output_history VALUES (?, ?, ?)",
370 370 self.db_output_cache)
371 371 self.db_input_cache = []
372 372 self.db_output_cache = []
373 373
374 374
375 375 # To match, e.g. ~5/8-~2/3
376 376 range_re = re.compile(r"""
377 377 ((?P<startsess>~?\d+)/)?
378 378 (?P<start>\d+) # Only the start line num is compulsory
379 379 ((?P<sep>[\-:])
380 380 ((?P<endsess>~?\d+)/)?
381 381 (?P<end>\d+))?
382 382 """, re.VERBOSE)
383 383
384 384 def extract_hist_ranges(ranges_str):
385 385 """Turn a string of history ranges into 3-tuples of (session, start, stop).
386 386
387 387 Examples
388 388 --------
389 389 list(extract_input_ranges("~8/5-~7/4 2"))
390 390 [(-8, 5, None), (-7, 1, 4), (0, 2, 3)]
391 391 """
392 392 for range_str in ranges_str.split():
393 393 rmatch = range_re.match(range_str)
394 394 if not rmatch:
395 395 continue
396 396 start = int(rmatch.group("start"))
397 397 end = rmatch.group("end")
398 398 end = int(end) if end else start+1 # If no end specified, get (a, a+1)
399 399 if rmatch.group("sep") == "-": # 1-3 == 1:4 --> [1, 2, 3]
400 400 end += 1
401 401 startsess = rmatch.group("startsess") or "0"
402 402 endsess = rmatch.group("endsess") or startsess
403 403 startsess = int(startsess.replace("~","-"))
404 404 endsess = int(endsess.replace("~","-"))
405 405 assert endsess >= startsess
406 406
407 407 if endsess == startsess:
408 408 yield (startsess, start, end)
409 409 continue
410 410 # Multiple sessions in one range:
411 411 yield (startsess, start, None)
412 412 for sess in range(startsess+1, endsess):
413 413 yield (sess, 1, None)
414 414 yield (endsess, 1, end)
415 415
416 416 def _format_lineno(session, line):
417 417 """Helper function to format line numbers properly."""
418 418 if session == 0:
419 419 return str(line)
420 420 return "%s#%s" % (session, line)
421 421
422 422 @testdec.skip_doctest
423 423 def magic_history(self, parameter_s = ''):
424 424 """Print input history (_i<n> variables), with most recent last.
425 425
426 426 %history -> print at most 40 inputs (some may be multi-line)\\
427 427 %history n -> print at most n inputs\\
428 428 %history n1 n2 -> print inputs between n1 and n2 (n2 not included)\\
429 429
430 430 By default, input history is printed without line numbers so it can be
431 431 directly pasted into an editor.
432 432
433 433 With -n, each input's number <n> is shown, and is accessible as the
434 434 automatically generated variable _i<n> as well as In[<n>]. Multi-line
435 435 statements are printed starting at a new line for easy copy/paste.
436 436
437 437 Options:
438 438
439 439 -n: print line numbers for each input.
440 440 This feature is only available if numbered prompts are in use.
441 441
442 442 -o: also print outputs for each input.
443 443
444 444 -p: print classic '>>>' python prompts before each input. This is useful
445 445 for making documentation, and in conjunction with -o, for producing
446 446 doctest-ready output.
447 447
448 448 -r: (default) print the 'raw' history, i.e. the actual commands you typed.
449 449
450 450 -t: print the 'translated' history, as IPython understands it. IPython
451 451 filters your input and converts it all into valid Python source before
452 452 executing it (things like magics or aliases are turned into function
453 453 calls, for example). With this option, you'll see the native history
454 454 instead of the user-entered version: '%cd /' will be seen as
455 455 'get_ipython().magic("%cd /")' instead of '%cd /'.
456 456
457 457 -g: treat the arg as a pattern to grep for in (full) history.
458 458 This includes the saved history (almost all commands ever written).
459 459 Use '%hist -g' to show full saved history (may be very long).
460 460
461 461 -l: get the last n lines from all sessions. Specify n as a single arg, or
462 462 the default is the last 10 lines.
463 463
464 464 -f FILENAME: instead of printing the output to the screen, redirect it to
465 465 the given file. The file is always overwritten, though IPython asks for
466 466 confirmation first if it already exists.
467 467
468 468 Examples
469 469 --------
470 470 ::
471 471
472 472 In [6]: %hist -n 4 6
473 473 4:a = 12
474 474 5:print a**2
475 475
476 476 """
477 477
478 478 if not self.shell.displayhook.do_full_cache:
479 479 print('This feature is only available if numbered prompts are in use.')
480 480 return
481 481 opts,args = self.parse_options(parameter_s,'noprtglf:',mode='string')
482 482
483 483 # For brevity
484 484 history_manager = self.shell.history_manager
485 485
486 486 def _format_lineno(session, line):
487 487 """Helper function to format line numbers properly."""
488 488 if session in (0, history_manager.session_number):
489 489 return str(line)
490 490 return "%s/%s" % (session, line)
491 491
492 492 # Check if output to specific file was requested.
493 493 try:
494 494 outfname = opts['f']
495 495 except KeyError:
496 496 outfile = IPython.utils.io.Term.cout # default
497 497 # We don't want to close stdout at the end!
498 498 close_at_end = False
499 499 else:
500 500 if os.path.exists(outfname):
501 501 if not ask_yes_no("File %r exists. Overwrite?" % outfname):
502 502 print('Aborting.')
503 503 return
504 504
505 505 outfile = open(outfname,'w')
506 506 close_at_end = True
507 507
508 508 print_nums = 'n' in opts
509 509 get_output = 'o' in opts
510 510 pyprompts = 'p' in opts
511 511 # Raw history is the default
512 512 raw = not('t' in opts)
513 513
514 514 default_length = 40
515 515 pattern = None
516 516
517 517 if 'g' in opts: # Glob search
518 518 pattern = "*" + args + "*" if args else "*"
519 519 hist = history_manager.get_hist_search(pattern, raw=raw,
520 520 output=get_output)
521 521 elif 'l' in opts: # Get 'tail'
522 522 try:
523 523 n = int(args)
524 524 except ValueError, IndexError:
525 525 n = 10
526 526 hist = history_manager.get_hist_tail(n, raw=raw, output=get_output)
527 527 else:
528 528 if args: # Get history by ranges
529 529 hist = history_manager.get_hist_from_rangestr(args, raw, get_output)
530 530 else: # Just get history for the current session
531 531 hist = history_manager.get_history(raw=raw, output=get_output)
532 532
533 533 # We could be displaying the entire history, so let's not try to pull it
534 534 # into a list in memory. Anything that needs more space will just misalign.
535 535 width = 4
536 536
537 537 for session, lineno, inline in hist:
538 538 # Print user history with tabs expanded to 4 spaces. The GUI clients
539 539 # use hard tabs for easier usability in auto-indented code, but we want
540 540 # to produce PEP-8 compliant history for safe pasting into an editor.
541 541 if get_output:
542 542 inline, output = inline
543 543 inline = inline.expandtabs(4).rstrip()
544 544
545 545 multiline = "\n" in inline
546 546 line_sep = '\n' if multiline else ' '
547 547 if print_nums:
548 548 print('%s:%s' % (_format_lineno(session, lineno).rjust(width),
549 549 line_sep), file=outfile, end='')
550 550 if pyprompts:
551 551 print(">>> ", end="", file=outfile)
552 552 if multiline:
553 553 inline = "\n... ".join(inline.splitlines()) + "\n..."
554 554 print(inline, file=outfile)
555 555 if get_output and output:
556 556 print("\n".join(output), file=outfile)
557 557
558 558 if close_at_end:
559 559 outfile.close()
560 560
561 561
562 562 def magic_rep(self, arg):
563 563 r""" Repeat a command, or get command to input line for editing
564 564
565 565 - %rep (no arguments):
566 566
567 567 Place a string version of last computation result (stored in the special '_'
568 568 variable) to the next input prompt. Allows you to create elaborate command
569 569 lines without using copy-paste::
570 570
571 571 In[1]: l = ["hei", "vaan"]
572 572 In[2]: "".join(l)
573 573 Out[2]: heivaan
574 574 In[3]: %rep
575 575 In[4]: heivaan_ <== cursor blinking
576 576
577 577 %rep 45
578 578
579 579 Place history line 45 on the next input prompt. Use %hist to find
580 580 out the number.
581 581
582 582 %rep 1-4 6-7 3
583 583
584 584 Combine the specified lines into one cell, and place it on the next
585 585 input prompt. History slice syntax is the same as in %macro and %save.
586 586
587 587 %rep foo+bar
588 588
589 589 If foo+bar can be evaluated in the user namespace, the result is
590 590 placed at the next input prompt. Otherwise, the history is searched
591 591 for lines which contain that substring, and the most recent one is
592 592 placed at the next input prompt.
593 593 """
594 594 if not arg: # Last output
595 595 self.set_next_input(str(self.shell.user_ns["_"]))
596 596 return
597 597 # Get history range
598 598 histlines = self.history_manager.get_hist_from_rangestr(arg)
599 599 cmd = "\n".join(x[2] for x in histlines)
600 600 if cmd:
601 601 self.set_next_input(cmd.rstrip())
602 602 return
603 603
604 604 try: # Variable in user namespace
605 605 cmd = str(eval(arg, self.shell.user_ns))
606 606 except Exception: # Search for term in history
607 607 histlines = self.history_manager.get_hist_search("*"+arg+"*")
608 608 for h in reversed([x[2] for x in histlines]):
609 609 if 'rep' in h:
610 610 continue
611 611 self.set_next_input(h.rstrip())
612 612 return
613 613 else:
614 614 self.set_next_input(cmd.rstrip())
615 615 print("Couldn't evaluate or find in history:", arg)
616 616
617 617 def magic_rerun(self, parameter_s=''):
618 618 """Re-run previous input
619 619
620 620 By default, you can specify ranges of input history to be repeated
621 621 (as with %hist). With no arguments, it will repeat the last line.
622 622
623 623 Options:
624 624
625 625 -l <n> : Repeat the last n lines of input, not including the
626 626 current command.
627 627
628 628 -g foo : Repeat the most recent line which contains foo
629 629 """
630 630 opts, args = self.parse_options(parameter_s, 'l:g:', mode='string')
631 631 if "l" in opts: # Last n lines
632 632 n = int(opts['l'])
633 hist = self.history_manager.get_hist_tail(n, raw=False)
633 hist = self.history_manager.get_hist_tail(n)
634 634 elif "g" in opts: # Search
635 635 p = "*"+opts['g']+"*"
636 hist = self.history_manager.get_hist_search(p, raw=False)
637 hist = list(hist)
638 if 'magic("rerun' in hist[-1][2]:
639 hist = hist[:-1] # We can ignore the current line
640 hist = hist[-1:] # Just get the last match
636 hist = list(self.history_manager.get_hist_search(p))
637 for l in reversed(hist):
638 if "rerun" not in l[2]:
639 hist = [l] # The last match which isn't a %rerun
640 break
641 else:
642 hist = [] # No matches except %rerun
641 643 elif args: # Specify history ranges
642 644 hist = self.history_manager.get_hist_from_rangestr(args)
643 645 else: # Last line
644 hist = self.history_manager.get_hist_tail(1, raw=False)
646 hist = self.history_manager.get_hist_tail(1)
645 647 hist = [x[2] for x in hist]
646 648 if not hist:
647 649 print("No lines in history match specification")
648 650 return
649 651 histlines = "\n".join(hist)
650 652 print("=== Executing: ===")
651 653 print(histlines)
652 654 print("=== Output: ===")
653 self.run_source("\n".join(hist), symbol="exec")
655 self.run_cell("\n".join(hist), store_history=False)
654 656
655 657
656 658 def init_ipython(ip):
657 659 ip.define_magic("rep", magic_rep)
658 660 ip.define_magic("recall", magic_rep)
659 661 ip.define_magic("rerun", magic_rerun)
660 662 ip.define_magic("hist",magic_history) # Alternative name
661 663 ip.define_magic("history",magic_history)
662 664
663 665 # XXX - ipy_completers are in quarantine, need to be updated to new apis
664 666 #import ipy_completers
665 667 #ipy_completers.quick_completer('%hist' ,'-g -t -r -n')
@@ -1,2523 +1,2527 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import os
26 26 import re
27 27 import sys
28 28 import tempfile
29 29 import types
30 30 from contextlib import nested
31 31
32 32 from IPython.config.configurable import Configurable
33 33 from IPython.core import debugger, oinspect
34 34 from IPython.core import history as ipcorehist
35 35 from IPython.core import page
36 36 from IPython.core import prefilter
37 37 from IPython.core import shadowns
38 38 from IPython.core import ultratb
39 39 from IPython.core.alias import AliasManager
40 40 from IPython.core.builtin_trap import BuiltinTrap
41 41 from IPython.core.compilerop import CachingCompiler
42 42 from IPython.core.display_trap import DisplayTrap
43 43 from IPython.core.displayhook import DisplayHook
44 44 from IPython.core.displaypub import DisplayPublisher
45 45 from IPython.core.error import TryNext, UsageError
46 46 from IPython.core.extensions import ExtensionManager
47 47 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 48 from IPython.core.formatters import DisplayFormatter
49 49 from IPython.core.history import HistoryManager
50 50 from IPython.core.inputsplitter import IPythonInputSplitter
51 51 from IPython.core.logger import Logger
52 52 from IPython.core.magic import Magic
53 53 from IPython.core.payload import PayloadManager
54 54 from IPython.core.plugin import PluginManager
55 55 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
56 56 from IPython.external.Itpl import ItplNS
57 57 from IPython.utils import PyColorize
58 58 from IPython.utils import io
59 59 from IPython.utils.doctestreload import doctest_reload
60 60 from IPython.utils.io import ask_yes_no, rprint
61 61 from IPython.utils.ipstruct import Struct
62 62 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
63 63 from IPython.utils.pickleshare import PickleShareDB
64 64 from IPython.utils.process import system, getoutput
65 65 from IPython.utils.strdispatch import StrDispatch
66 66 from IPython.utils.syspathcontext import prepended_to_syspath
67 67 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
68 68 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
69 69 List, Unicode, Instance, Type)
70 70 from IPython.utils.warn import warn, error, fatal
71 71 import IPython.core.hooks
72 72
73 73 #-----------------------------------------------------------------------------
74 74 # Globals
75 75 #-----------------------------------------------------------------------------
76 76
77 77 # compiled regexps for autoindent management
78 78 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
79 79
80 80 #-----------------------------------------------------------------------------
81 81 # Utilities
82 82 #-----------------------------------------------------------------------------
83 83
84 84 # store the builtin raw_input globally, and use this always, in case user code
85 85 # overwrites it (like wx.py.PyShell does)
86 86 raw_input_original = raw_input
87 87
88 88 def softspace(file, newvalue):
89 89 """Copied from code.py, to remove the dependency"""
90 90
91 91 oldvalue = 0
92 92 try:
93 93 oldvalue = file.softspace
94 94 except AttributeError:
95 95 pass
96 96 try:
97 97 file.softspace = newvalue
98 98 except (AttributeError, TypeError):
99 99 # "attribute-less object" or "read-only attributes"
100 100 pass
101 101 return oldvalue
102 102
103 103
104 104 def no_op(*a, **kw): pass
105 105
106 106 class SpaceInInput(Exception): pass
107 107
108 108 class Bunch: pass
109 109
110 110
111 111 def get_default_colors():
112 112 if sys.platform=='darwin':
113 113 return "LightBG"
114 114 elif os.name=='nt':
115 115 return 'Linux'
116 116 else:
117 117 return 'Linux'
118 118
119 119
120 120 class SeparateStr(Str):
121 121 """A Str subclass to validate separate_in, separate_out, etc.
122 122
123 123 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
124 124 """
125 125
126 126 def validate(self, obj, value):
127 127 if value == '0': value = ''
128 128 value = value.replace('\\n','\n')
129 129 return super(SeparateStr, self).validate(obj, value)
130 130
131 131 class MultipleInstanceError(Exception):
132 132 pass
133 133
134 134
135 135 #-----------------------------------------------------------------------------
136 136 # Main IPython class
137 137 #-----------------------------------------------------------------------------
138 138
139 139 class InteractiveShell(Configurable, Magic):
140 140 """An enhanced, interactive shell for Python."""
141 141
142 142 _instance = None
143 143 autocall = Enum((0,1,2), default_value=1, config=True)
144 144 # TODO: remove all autoindent logic and put into frontends.
145 145 # We can't do this yet because even runlines uses the autoindent.
146 146 autoindent = CBool(True, config=True)
147 147 automagic = CBool(True, config=True)
148 148 cache_size = Int(1000, config=True)
149 149 color_info = CBool(True, config=True)
150 150 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
151 151 default_value=get_default_colors(), config=True)
152 152 debug = CBool(False, config=True)
153 153 deep_reload = CBool(False, config=True)
154 154 display_formatter = Instance(DisplayFormatter)
155 155 displayhook_class = Type(DisplayHook)
156 156 display_pub_class = Type(DisplayPublisher)
157 157
158 158 exit_now = CBool(False)
159 159 # Monotonically increasing execution counter
160 160 execution_count = Int(1)
161 161 filename = Str("<ipython console>")
162 162 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
163 163
164 164 # Input splitter, to split entire cells of input into either individual
165 165 # interactive statements or whole blocks.
166 166 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
167 167 (), {})
168 168 logstart = CBool(False, config=True)
169 169 logfile = Str('', config=True)
170 170 logappend = Str('', config=True)
171 171 object_info_string_level = Enum((0,1,2), default_value=0,
172 172 config=True)
173 173 pdb = CBool(False, config=True)
174 174
175 175 profile = Str('', config=True)
176 176 prompt_in1 = Str('In [\\#]: ', config=True)
177 177 prompt_in2 = Str(' .\\D.: ', config=True)
178 178 prompt_out = Str('Out[\\#]: ', config=True)
179 179 prompts_pad_left = CBool(True, config=True)
180 180 quiet = CBool(False, config=True)
181 181
182 182 history_length = Int(10000, config=True)
183 183
184 184 # The readline stuff will eventually be moved to the terminal subclass
185 185 # but for now, we can't do that as readline is welded in everywhere.
186 186 readline_use = CBool(True, config=True)
187 187 readline_merge_completions = CBool(True, config=True)
188 188 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
189 189 readline_remove_delims = Str('-/~', config=True)
190 190 readline_parse_and_bind = List([
191 191 'tab: complete',
192 192 '"\C-l": clear-screen',
193 193 'set show-all-if-ambiguous on',
194 194 '"\C-o": tab-insert',
195 195 '"\M-i": " "',
196 196 '"\M-o": "\d\d\d\d"',
197 197 '"\M-I": "\d\d\d\d"',
198 198 '"\C-r": reverse-search-history',
199 199 '"\C-s": forward-search-history',
200 200 '"\C-p": history-search-backward',
201 201 '"\C-n": history-search-forward',
202 202 '"\e[A": history-search-backward',
203 203 '"\e[B": history-search-forward',
204 204 '"\C-k": kill-line',
205 205 '"\C-u": unix-line-discard',
206 206 ], allow_none=False, config=True)
207 207
208 208 # TODO: this part of prompt management should be moved to the frontends.
209 209 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
210 210 separate_in = SeparateStr('\n', config=True)
211 211 separate_out = SeparateStr('', config=True)
212 212 separate_out2 = SeparateStr('', config=True)
213 213 wildcards_case_sensitive = CBool(True, config=True)
214 214 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
215 215 default_value='Context', config=True)
216 216
217 217 # Subcomponents of InteractiveShell
218 218 alias_manager = Instance('IPython.core.alias.AliasManager')
219 219 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
220 220 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
221 221 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
222 222 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
223 223 plugin_manager = Instance('IPython.core.plugin.PluginManager')
224 224 payload_manager = Instance('IPython.core.payload.PayloadManager')
225 225 history_manager = Instance('IPython.core.history.HistoryManager')
226 226
227 227 # Private interface
228 228 _post_execute = set()
229 229
230 230 def __init__(self, config=None, ipython_dir=None,
231 231 user_ns=None, user_global_ns=None,
232 232 custom_exceptions=((), None)):
233 233
234 234 # This is where traits with a config_key argument are updated
235 235 # from the values on config.
236 236 super(InteractiveShell, self).__init__(config=config)
237 237
238 238 # These are relatively independent and stateless
239 239 self.init_ipython_dir(ipython_dir)
240 240 self.init_instance_attrs()
241 241 self.init_environment()
242 242
243 243 # Create namespaces (user_ns, user_global_ns, etc.)
244 244 self.init_create_namespaces(user_ns, user_global_ns)
245 245 # This has to be done after init_create_namespaces because it uses
246 246 # something in self.user_ns, but before init_sys_modules, which
247 247 # is the first thing to modify sys.
248 248 # TODO: When we override sys.stdout and sys.stderr before this class
249 249 # is created, we are saving the overridden ones here. Not sure if this
250 250 # is what we want to do.
251 251 self.save_sys_module_state()
252 252 self.init_sys_modules()
253 253
254 254 # While we're trying to have each part of the code directly access what
255 255 # it needs without keeping redundant references to objects, we have too
256 256 # much legacy code that expects ip.db to exist.
257 257 self.db = PickleShareDB(os.path.join(self.ipython_dir, 'db'))
258 258
259 259 self.init_history()
260 260 self.init_encoding()
261 261 self.init_prefilter()
262 262
263 263 Magic.__init__(self, self)
264 264
265 265 self.init_syntax_highlighting()
266 266 self.init_hooks()
267 267 self.init_pushd_popd_magic()
268 268 # self.init_traceback_handlers use to be here, but we moved it below
269 269 # because it and init_io have to come after init_readline.
270 270 self.init_user_ns()
271 271 self.init_logger()
272 272 self.init_alias()
273 273 self.init_builtins()
274 274
275 275 # pre_config_initialization
276 276
277 277 # The next section should contain everything that was in ipmaker.
278 278 self.init_logstart()
279 279
280 280 # The following was in post_config_initialization
281 281 self.init_inspector()
282 282 # init_readline() must come before init_io(), because init_io uses
283 283 # readline related things.
284 284 self.init_readline()
285 285 # init_completer must come after init_readline, because it needs to
286 286 # know whether readline is present or not system-wide to configure the
287 287 # completers, since the completion machinery can now operate
288 288 # independently of readline (e.g. over the network)
289 289 self.init_completer()
290 290 # TODO: init_io() needs to happen before init_traceback handlers
291 291 # because the traceback handlers hardcode the stdout/stderr streams.
292 292 # This logic in in debugger.Pdb and should eventually be changed.
293 293 self.init_io()
294 294 self.init_traceback_handlers(custom_exceptions)
295 295 self.init_prompts()
296 296 self.init_display_formatter()
297 297 self.init_display_pub()
298 298 self.init_displayhook()
299 299 self.init_reload_doctest()
300 300 self.init_magics()
301 301 self.init_pdb()
302 302 self.init_extension_manager()
303 303 self.init_plugin_manager()
304 304 self.init_payload()
305 305 self.hooks.late_startup_hook()
306 306 atexit.register(self.atexit_operations)
307 307
308 308 @classmethod
309 309 def instance(cls, *args, **kwargs):
310 310 """Returns a global InteractiveShell instance."""
311 311 if cls._instance is None:
312 312 inst = cls(*args, **kwargs)
313 313 # Now make sure that the instance will also be returned by
314 314 # the subclasses instance attribute.
315 315 for subclass in cls.mro():
316 316 if issubclass(cls, subclass) and \
317 317 issubclass(subclass, InteractiveShell):
318 318 subclass._instance = inst
319 319 else:
320 320 break
321 321 if isinstance(cls._instance, cls):
322 322 return cls._instance
323 323 else:
324 324 raise MultipleInstanceError(
325 325 'Multiple incompatible subclass instances of '
326 326 'InteractiveShell are being created.'
327 327 )
328 328
329 329 @classmethod
330 330 def initialized(cls):
331 331 return hasattr(cls, "_instance")
332 332
333 333 def get_ipython(self):
334 334 """Return the currently running IPython instance."""
335 335 return self
336 336
337 337 #-------------------------------------------------------------------------
338 338 # Trait changed handlers
339 339 #-------------------------------------------------------------------------
340 340
341 341 def _ipython_dir_changed(self, name, new):
342 342 if not os.path.isdir(new):
343 343 os.makedirs(new, mode = 0777)
344 344
345 345 def set_autoindent(self,value=None):
346 346 """Set the autoindent flag, checking for readline support.
347 347
348 348 If called with no arguments, it acts as a toggle."""
349 349
350 350 if not self.has_readline:
351 351 if os.name == 'posix':
352 352 warn("The auto-indent feature requires the readline library")
353 353 self.autoindent = 0
354 354 return
355 355 if value is None:
356 356 self.autoindent = not self.autoindent
357 357 else:
358 358 self.autoindent = value
359 359
360 360 #-------------------------------------------------------------------------
361 361 # init_* methods called by __init__
362 362 #-------------------------------------------------------------------------
363 363
364 364 def init_ipython_dir(self, ipython_dir):
365 365 if ipython_dir is not None:
366 366 self.ipython_dir = ipython_dir
367 367 self.config.Global.ipython_dir = self.ipython_dir
368 368 return
369 369
370 370 if hasattr(self.config.Global, 'ipython_dir'):
371 371 self.ipython_dir = self.config.Global.ipython_dir
372 372 else:
373 373 self.ipython_dir = get_ipython_dir()
374 374
375 375 # All children can just read this
376 376 self.config.Global.ipython_dir = self.ipython_dir
377 377
378 378 def init_instance_attrs(self):
379 379 self.more = False
380 380
381 381 # command compiler
382 382 self.compile = CachingCompiler()
383 383
384 384 # User input buffers
385 385 # NOTE: these variables are slated for full removal, once we are 100%
386 386 # sure that the new execution logic is solid. We will delte runlines,
387 387 # push_line and these buffers, as all input will be managed by the
388 388 # frontends via an inputsplitter instance.
389 389 self.buffer = []
390 390 self.buffer_raw = []
391 391
392 392 # Make an empty namespace, which extension writers can rely on both
393 393 # existing and NEVER being used by ipython itself. This gives them a
394 394 # convenient location for storing additional information and state
395 395 # their extensions may require, without fear of collisions with other
396 396 # ipython names that may develop later.
397 397 self.meta = Struct()
398 398
399 399 # Object variable to store code object waiting execution. This is
400 400 # used mainly by the multithreaded shells, but it can come in handy in
401 401 # other situations. No need to use a Queue here, since it's a single
402 402 # item which gets cleared once run.
403 403 self.code_to_run = None
404 404
405 405 # Temporary files used for various purposes. Deleted at exit.
406 406 self.tempfiles = []
407 407
408 408 # Keep track of readline usage (later set by init_readline)
409 409 self.has_readline = False
410 410
411 411 # keep track of where we started running (mainly for crash post-mortem)
412 412 # This is not being used anywhere currently.
413 413 self.starting_dir = os.getcwd()
414 414
415 415 # Indentation management
416 416 self.indent_current_nsp = 0
417 417
418 418 def init_environment(self):
419 419 """Any changes we need to make to the user's environment."""
420 420 pass
421 421
422 422 def init_encoding(self):
423 423 # Get system encoding at startup time. Certain terminals (like Emacs
424 424 # under Win32 have it set to None, and we need to have a known valid
425 425 # encoding to use in the raw_input() method
426 426 try:
427 427 self.stdin_encoding = sys.stdin.encoding or 'ascii'
428 428 except AttributeError:
429 429 self.stdin_encoding = 'ascii'
430 430
431 431 def init_syntax_highlighting(self):
432 432 # Python source parser/formatter for syntax highlighting
433 433 pyformat = PyColorize.Parser().format
434 434 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
435 435
436 436 def init_pushd_popd_magic(self):
437 437 # for pushd/popd management
438 438 try:
439 439 self.home_dir = get_home_dir()
440 440 except HomeDirError, msg:
441 441 fatal(msg)
442 442
443 443 self.dir_stack = []
444 444
445 445 def init_logger(self):
446 446 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
447 447 logmode='rotate')
448 448
449 449 def init_logstart(self):
450 450 """Initialize logging in case it was requested at the command line.
451 451 """
452 452 if self.logappend:
453 453 self.magic_logstart(self.logappend + ' append')
454 454 elif self.logfile:
455 455 self.magic_logstart(self.logfile)
456 456 elif self.logstart:
457 457 self.magic_logstart()
458 458
459 459 def init_builtins(self):
460 460 self.builtin_trap = BuiltinTrap(shell=self)
461 461
462 462 def init_inspector(self):
463 463 # Object inspector
464 464 self.inspector = oinspect.Inspector(oinspect.InspectColors,
465 465 PyColorize.ANSICodeColors,
466 466 'NoColor',
467 467 self.object_info_string_level)
468 468
469 469 def init_io(self):
470 470 # This will just use sys.stdout and sys.stderr. If you want to
471 471 # override sys.stdout and sys.stderr themselves, you need to do that
472 472 # *before* instantiating this class, because Term holds onto
473 473 # references to the underlying streams.
474 474 if sys.platform == 'win32' and self.has_readline:
475 475 Term = io.IOTerm(cout=self.readline._outputfile,
476 476 cerr=self.readline._outputfile)
477 477 else:
478 478 Term = io.IOTerm()
479 479 io.Term = Term
480 480
481 481 def init_prompts(self):
482 482 # TODO: This is a pass for now because the prompts are managed inside
483 483 # the DisplayHook. Once there is a separate prompt manager, this
484 484 # will initialize that object and all prompt related information.
485 485 pass
486 486
487 487 def init_display_formatter(self):
488 488 self.display_formatter = DisplayFormatter(config=self.config)
489 489
490 490 def init_display_pub(self):
491 491 self.display_pub = self.display_pub_class(config=self.config)
492 492
493 493 def init_displayhook(self):
494 494 # Initialize displayhook, set in/out prompts and printing system
495 495 self.displayhook = self.displayhook_class(
496 496 config=self.config,
497 497 shell=self,
498 498 cache_size=self.cache_size,
499 499 input_sep = self.separate_in,
500 500 output_sep = self.separate_out,
501 501 output_sep2 = self.separate_out2,
502 502 ps1 = self.prompt_in1,
503 503 ps2 = self.prompt_in2,
504 504 ps_out = self.prompt_out,
505 505 pad_left = self.prompts_pad_left
506 506 )
507 507 # This is a context manager that installs/revmoes the displayhook at
508 508 # the appropriate time.
509 509 self.display_trap = DisplayTrap(hook=self.displayhook)
510 510
511 511 def init_reload_doctest(self):
512 512 # Do a proper resetting of doctest, including the necessary displayhook
513 513 # monkeypatching
514 514 try:
515 515 doctest_reload()
516 516 except ImportError:
517 517 warn("doctest module does not exist.")
518 518
519 519 #-------------------------------------------------------------------------
520 520 # Things related to injections into the sys module
521 521 #-------------------------------------------------------------------------
522 522
523 523 def save_sys_module_state(self):
524 524 """Save the state of hooks in the sys module.
525 525
526 526 This has to be called after self.user_ns is created.
527 527 """
528 528 self._orig_sys_module_state = {}
529 529 self._orig_sys_module_state['stdin'] = sys.stdin
530 530 self._orig_sys_module_state['stdout'] = sys.stdout
531 531 self._orig_sys_module_state['stderr'] = sys.stderr
532 532 self._orig_sys_module_state['excepthook'] = sys.excepthook
533 533 try:
534 534 self._orig_sys_modules_main_name = self.user_ns['__name__']
535 535 except KeyError:
536 536 pass
537 537
538 538 def restore_sys_module_state(self):
539 539 """Restore the state of the sys module."""
540 540 try:
541 541 for k, v in self._orig_sys_module_state.iteritems():
542 542 setattr(sys, k, v)
543 543 except AttributeError:
544 544 pass
545 545 # Reset what what done in self.init_sys_modules
546 546 try:
547 547 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
548 548 except (AttributeError, KeyError):
549 549 pass
550 550
551 551 #-------------------------------------------------------------------------
552 552 # Things related to hooks
553 553 #-------------------------------------------------------------------------
554 554
555 555 def init_hooks(self):
556 556 # hooks holds pointers used for user-side customizations
557 557 self.hooks = Struct()
558 558
559 559 self.strdispatchers = {}
560 560
561 561 # Set all default hooks, defined in the IPython.hooks module.
562 562 hooks = IPython.core.hooks
563 563 for hook_name in hooks.__all__:
564 564 # default hooks have priority 100, i.e. low; user hooks should have
565 565 # 0-100 priority
566 566 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
567 567
568 568 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
569 569 """set_hook(name,hook) -> sets an internal IPython hook.
570 570
571 571 IPython exposes some of its internal API as user-modifiable hooks. By
572 572 adding your function to one of these hooks, you can modify IPython's
573 573 behavior to call at runtime your own routines."""
574 574
575 575 # At some point in the future, this should validate the hook before it
576 576 # accepts it. Probably at least check that the hook takes the number
577 577 # of args it's supposed to.
578 578
579 579 f = types.MethodType(hook,self)
580 580
581 581 # check if the hook is for strdispatcher first
582 582 if str_key is not None:
583 583 sdp = self.strdispatchers.get(name, StrDispatch())
584 584 sdp.add_s(str_key, f, priority )
585 585 self.strdispatchers[name] = sdp
586 586 return
587 587 if re_key is not None:
588 588 sdp = self.strdispatchers.get(name, StrDispatch())
589 589 sdp.add_re(re.compile(re_key), f, priority )
590 590 self.strdispatchers[name] = sdp
591 591 return
592 592
593 593 dp = getattr(self.hooks, name, None)
594 594 if name not in IPython.core.hooks.__all__:
595 595 print "Warning! Hook '%s' is not one of %s" % \
596 596 (name, IPython.core.hooks.__all__ )
597 597 if not dp:
598 598 dp = IPython.core.hooks.CommandChainDispatcher()
599 599
600 600 try:
601 601 dp.add(f,priority)
602 602 except AttributeError:
603 603 # it was not commandchain, plain old func - replace
604 604 dp = f
605 605
606 606 setattr(self.hooks,name, dp)
607 607
608 608 def register_post_execute(self, func):
609 609 """Register a function for calling after code execution.
610 610 """
611 611 if not callable(func):
612 612 raise ValueError('argument %s must be callable' % func)
613 613 self._post_execute.add(func)
614 614
615 615 #-------------------------------------------------------------------------
616 616 # Things related to the "main" module
617 617 #-------------------------------------------------------------------------
618 618
619 619 def new_main_mod(self,ns=None):
620 620 """Return a new 'main' module object for user code execution.
621 621 """
622 622 main_mod = self._user_main_module
623 623 init_fakemod_dict(main_mod,ns)
624 624 return main_mod
625 625
626 626 def cache_main_mod(self,ns,fname):
627 627 """Cache a main module's namespace.
628 628
629 629 When scripts are executed via %run, we must keep a reference to the
630 630 namespace of their __main__ module (a FakeModule instance) around so
631 631 that Python doesn't clear it, rendering objects defined therein
632 632 useless.
633 633
634 634 This method keeps said reference in a private dict, keyed by the
635 635 absolute path of the module object (which corresponds to the script
636 636 path). This way, for multiple executions of the same script we only
637 637 keep one copy of the namespace (the last one), thus preventing memory
638 638 leaks from old references while allowing the objects from the last
639 639 execution to be accessible.
640 640
641 641 Note: we can not allow the actual FakeModule instances to be deleted,
642 642 because of how Python tears down modules (it hard-sets all their
643 643 references to None without regard for reference counts). This method
644 644 must therefore make a *copy* of the given namespace, to allow the
645 645 original module's __dict__ to be cleared and reused.
646 646
647 647
648 648 Parameters
649 649 ----------
650 650 ns : a namespace (a dict, typically)
651 651
652 652 fname : str
653 653 Filename associated with the namespace.
654 654
655 655 Examples
656 656 --------
657 657
658 658 In [10]: import IPython
659 659
660 660 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
661 661
662 662 In [12]: IPython.__file__ in _ip._main_ns_cache
663 663 Out[12]: True
664 664 """
665 665 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
666 666
667 667 def clear_main_mod_cache(self):
668 668 """Clear the cache of main modules.
669 669
670 670 Mainly for use by utilities like %reset.
671 671
672 672 Examples
673 673 --------
674 674
675 675 In [15]: import IPython
676 676
677 677 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
678 678
679 679 In [17]: len(_ip._main_ns_cache) > 0
680 680 Out[17]: True
681 681
682 682 In [18]: _ip.clear_main_mod_cache()
683 683
684 684 In [19]: len(_ip._main_ns_cache) == 0
685 685 Out[19]: True
686 686 """
687 687 self._main_ns_cache.clear()
688 688
689 689 #-------------------------------------------------------------------------
690 690 # Things related to debugging
691 691 #-------------------------------------------------------------------------
692 692
693 693 def init_pdb(self):
694 694 # Set calling of pdb on exceptions
695 695 # self.call_pdb is a property
696 696 self.call_pdb = self.pdb
697 697
698 698 def _get_call_pdb(self):
699 699 return self._call_pdb
700 700
701 701 def _set_call_pdb(self,val):
702 702
703 703 if val not in (0,1,False,True):
704 704 raise ValueError,'new call_pdb value must be boolean'
705 705
706 706 # store value in instance
707 707 self._call_pdb = val
708 708
709 709 # notify the actual exception handlers
710 710 self.InteractiveTB.call_pdb = val
711 711
712 712 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
713 713 'Control auto-activation of pdb at exceptions')
714 714
715 715 def debugger(self,force=False):
716 716 """Call the pydb/pdb debugger.
717 717
718 718 Keywords:
719 719
720 720 - force(False): by default, this routine checks the instance call_pdb
721 721 flag and does not actually invoke the debugger if the flag is false.
722 722 The 'force' option forces the debugger to activate even if the flag
723 723 is false.
724 724 """
725 725
726 726 if not (force or self.call_pdb):
727 727 return
728 728
729 729 if not hasattr(sys,'last_traceback'):
730 730 error('No traceback has been produced, nothing to debug.')
731 731 return
732 732
733 733 # use pydb if available
734 734 if debugger.has_pydb:
735 735 from pydb import pm
736 736 else:
737 737 # fallback to our internal debugger
738 738 pm = lambda : self.InteractiveTB.debugger(force=True)
739 739 self.history_saving_wrapper(pm)()
740 740
741 741 #-------------------------------------------------------------------------
742 742 # Things related to IPython's various namespaces
743 743 #-------------------------------------------------------------------------
744 744
745 745 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
746 746 # Create the namespace where the user will operate. user_ns is
747 747 # normally the only one used, and it is passed to the exec calls as
748 748 # the locals argument. But we do carry a user_global_ns namespace
749 749 # given as the exec 'globals' argument, This is useful in embedding
750 750 # situations where the ipython shell opens in a context where the
751 751 # distinction between locals and globals is meaningful. For
752 752 # non-embedded contexts, it is just the same object as the user_ns dict.
753 753
754 754 # FIXME. For some strange reason, __builtins__ is showing up at user
755 755 # level as a dict instead of a module. This is a manual fix, but I
756 756 # should really track down where the problem is coming from. Alex
757 757 # Schmolck reported this problem first.
758 758
759 759 # A useful post by Alex Martelli on this topic:
760 760 # Re: inconsistent value from __builtins__
761 761 # Von: Alex Martelli <aleaxit@yahoo.com>
762 762 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
763 763 # Gruppen: comp.lang.python
764 764
765 765 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
766 766 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
767 767 # > <type 'dict'>
768 768 # > >>> print type(__builtins__)
769 769 # > <type 'module'>
770 770 # > Is this difference in return value intentional?
771 771
772 772 # Well, it's documented that '__builtins__' can be either a dictionary
773 773 # or a module, and it's been that way for a long time. Whether it's
774 774 # intentional (or sensible), I don't know. In any case, the idea is
775 775 # that if you need to access the built-in namespace directly, you
776 776 # should start with "import __builtin__" (note, no 's') which will
777 777 # definitely give you a module. Yeah, it's somewhat confusing:-(.
778 778
779 779 # These routines return properly built dicts as needed by the rest of
780 780 # the code, and can also be used by extension writers to generate
781 781 # properly initialized namespaces.
782 782 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
783 783 user_global_ns)
784 784
785 785 # Assign namespaces
786 786 # This is the namespace where all normal user variables live
787 787 self.user_ns = user_ns
788 788 self.user_global_ns = user_global_ns
789 789
790 790 # An auxiliary namespace that checks what parts of the user_ns were
791 791 # loaded at startup, so we can list later only variables defined in
792 792 # actual interactive use. Since it is always a subset of user_ns, it
793 793 # doesn't need to be separately tracked in the ns_table.
794 794 self.user_ns_hidden = {}
795 795
796 796 # A namespace to keep track of internal data structures to prevent
797 797 # them from cluttering user-visible stuff. Will be updated later
798 798 self.internal_ns = {}
799 799
800 800 # Now that FakeModule produces a real module, we've run into a nasty
801 801 # problem: after script execution (via %run), the module where the user
802 802 # code ran is deleted. Now that this object is a true module (needed
803 803 # so docetst and other tools work correctly), the Python module
804 804 # teardown mechanism runs over it, and sets to None every variable
805 805 # present in that module. Top-level references to objects from the
806 806 # script survive, because the user_ns is updated with them. However,
807 807 # calling functions defined in the script that use other things from
808 808 # the script will fail, because the function's closure had references
809 809 # to the original objects, which are now all None. So we must protect
810 810 # these modules from deletion by keeping a cache.
811 811 #
812 812 # To avoid keeping stale modules around (we only need the one from the
813 813 # last run), we use a dict keyed with the full path to the script, so
814 814 # only the last version of the module is held in the cache. Note,
815 815 # however, that we must cache the module *namespace contents* (their
816 816 # __dict__). Because if we try to cache the actual modules, old ones
817 817 # (uncached) could be destroyed while still holding references (such as
818 818 # those held by GUI objects that tend to be long-lived)>
819 819 #
820 820 # The %reset command will flush this cache. See the cache_main_mod()
821 821 # and clear_main_mod_cache() methods for details on use.
822 822
823 823 # This is the cache used for 'main' namespaces
824 824 self._main_ns_cache = {}
825 825 # And this is the single instance of FakeModule whose __dict__ we keep
826 826 # copying and clearing for reuse on each %run
827 827 self._user_main_module = FakeModule()
828 828
829 829 # A table holding all the namespaces IPython deals with, so that
830 830 # introspection facilities can search easily.
831 831 self.ns_table = {'user':user_ns,
832 832 'user_global':user_global_ns,
833 833 'internal':self.internal_ns,
834 834 'builtin':__builtin__.__dict__
835 835 }
836 836
837 837 # Similarly, track all namespaces where references can be held and that
838 838 # we can safely clear (so it can NOT include builtin). This one can be
839 839 # a simple list. Note that the main execution namespaces, user_ns and
840 840 # user_global_ns, can NOT be listed here, as clearing them blindly
841 841 # causes errors in object __del__ methods. Instead, the reset() method
842 842 # clears them manually and carefully.
843 843 self.ns_refs_table = [ self.user_ns_hidden,
844 844 self.internal_ns, self._main_ns_cache ]
845 845
846 846 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
847 847 """Return a valid local and global user interactive namespaces.
848 848
849 849 This builds a dict with the minimal information needed to operate as a
850 850 valid IPython user namespace, which you can pass to the various
851 851 embedding classes in ipython. The default implementation returns the
852 852 same dict for both the locals and the globals to allow functions to
853 853 refer to variables in the namespace. Customized implementations can
854 854 return different dicts. The locals dictionary can actually be anything
855 855 following the basic mapping protocol of a dict, but the globals dict
856 856 must be a true dict, not even a subclass. It is recommended that any
857 857 custom object for the locals namespace synchronize with the globals
858 858 dict somehow.
859 859
860 860 Raises TypeError if the provided globals namespace is not a true dict.
861 861
862 862 Parameters
863 863 ----------
864 864 user_ns : dict-like, optional
865 865 The current user namespace. The items in this namespace should
866 866 be included in the output. If None, an appropriate blank
867 867 namespace should be created.
868 868 user_global_ns : dict, optional
869 869 The current user global namespace. The items in this namespace
870 870 should be included in the output. If None, an appropriate
871 871 blank namespace should be created.
872 872
873 873 Returns
874 874 -------
875 875 A pair of dictionary-like object to be used as the local namespace
876 876 of the interpreter and a dict to be used as the global namespace.
877 877 """
878 878
879 879
880 880 # We must ensure that __builtin__ (without the final 's') is always
881 881 # available and pointing to the __builtin__ *module*. For more details:
882 882 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
883 883
884 884 if user_ns is None:
885 885 # Set __name__ to __main__ to better match the behavior of the
886 886 # normal interpreter.
887 887 user_ns = {'__name__' :'__main__',
888 888 '__builtin__' : __builtin__,
889 889 '__builtins__' : __builtin__,
890 890 }
891 891 else:
892 892 user_ns.setdefault('__name__','__main__')
893 893 user_ns.setdefault('__builtin__',__builtin__)
894 894 user_ns.setdefault('__builtins__',__builtin__)
895 895
896 896 if user_global_ns is None:
897 897 user_global_ns = user_ns
898 898 if type(user_global_ns) is not dict:
899 899 raise TypeError("user_global_ns must be a true dict; got %r"
900 900 % type(user_global_ns))
901 901
902 902 return user_ns, user_global_ns
903 903
904 904 def init_sys_modules(self):
905 905 # We need to insert into sys.modules something that looks like a
906 906 # module but which accesses the IPython namespace, for shelve and
907 907 # pickle to work interactively. Normally they rely on getting
908 908 # everything out of __main__, but for embedding purposes each IPython
909 909 # instance has its own private namespace, so we can't go shoving
910 910 # everything into __main__.
911 911
912 912 # note, however, that we should only do this for non-embedded
913 913 # ipythons, which really mimic the __main__.__dict__ with their own
914 914 # namespace. Embedded instances, on the other hand, should not do
915 915 # this because they need to manage the user local/global namespaces
916 916 # only, but they live within a 'normal' __main__ (meaning, they
917 917 # shouldn't overtake the execution environment of the script they're
918 918 # embedded in).
919 919
920 920 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
921 921
922 922 try:
923 923 main_name = self.user_ns['__name__']
924 924 except KeyError:
925 925 raise KeyError('user_ns dictionary MUST have a "__name__" key')
926 926 else:
927 927 sys.modules[main_name] = FakeModule(self.user_ns)
928 928
929 929 def init_user_ns(self):
930 930 """Initialize all user-visible namespaces to their minimum defaults.
931 931
932 932 Certain history lists are also initialized here, as they effectively
933 933 act as user namespaces.
934 934
935 935 Notes
936 936 -----
937 937 All data structures here are only filled in, they are NOT reset by this
938 938 method. If they were not empty before, data will simply be added to
939 939 therm.
940 940 """
941 941 # This function works in two parts: first we put a few things in
942 942 # user_ns, and we sync that contents into user_ns_hidden so that these
943 943 # initial variables aren't shown by %who. After the sync, we add the
944 944 # rest of what we *do* want the user to see with %who even on a new
945 945 # session (probably nothing, so theye really only see their own stuff)
946 946
947 947 # The user dict must *always* have a __builtin__ reference to the
948 948 # Python standard __builtin__ namespace, which must be imported.
949 949 # This is so that certain operations in prompt evaluation can be
950 950 # reliably executed with builtins. Note that we can NOT use
951 951 # __builtins__ (note the 's'), because that can either be a dict or a
952 952 # module, and can even mutate at runtime, depending on the context
953 953 # (Python makes no guarantees on it). In contrast, __builtin__ is
954 954 # always a module object, though it must be explicitly imported.
955 955
956 956 # For more details:
957 957 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
958 958 ns = dict(__builtin__ = __builtin__)
959 959
960 960 # Put 'help' in the user namespace
961 961 try:
962 962 from site import _Helper
963 963 ns['help'] = _Helper()
964 964 except ImportError:
965 965 warn('help() not available - check site.py')
966 966
967 967 # make global variables for user access to the histories
968 968 ns['_ih'] = self.history_manager.input_hist_parsed
969 969 ns['_oh'] = self.history_manager.output_hist
970 970 ns['_dh'] = self.history_manager.dir_hist
971 971
972 972 ns['_sh'] = shadowns
973 973
974 974 # user aliases to input and output histories. These shouldn't show up
975 975 # in %who, as they can have very large reprs.
976 976 ns['In'] = self.history_manager.input_hist_parsed
977 977 ns['Out'] = self.history_manager.output_hist
978 978
979 979 # Store myself as the public api!!!
980 980 ns['get_ipython'] = self.get_ipython
981 981
982 982 # Sync what we've added so far to user_ns_hidden so these aren't seen
983 983 # by %who
984 984 self.user_ns_hidden.update(ns)
985 985
986 986 # Anything put into ns now would show up in %who. Think twice before
987 987 # putting anything here, as we really want %who to show the user their
988 988 # stuff, not our variables.
989 989
990 990 # Finally, update the real user's namespace
991 991 self.user_ns.update(ns)
992 992
993 993 def reset(self, new_session=True):
994 994 """Clear all internal namespaces.
995 995
996 996 Note that this is much more aggressive than %reset, since it clears
997 997 fully all namespaces, as well as all input/output lists.
998 998
999 999 If new_session is True, a new history session will be opened.
1000 1000 """
1001 1001 # Clear histories
1002 1002 self.history_manager.reset(new_session)
1003 1003
1004 1004 # Reset counter used to index all histories
1005 1005 self.execution_count = 0
1006 1006
1007 1007 # Restore the user namespaces to minimal usability
1008 1008 for ns in self.ns_refs_table:
1009 1009 ns.clear()
1010 1010
1011 1011 # The main execution namespaces must be cleared very carefully,
1012 1012 # skipping the deletion of the builtin-related keys, because doing so
1013 1013 # would cause errors in many object's __del__ methods.
1014 1014 for ns in [self.user_ns, self.user_global_ns]:
1015 1015 drop_keys = set(ns.keys())
1016 1016 drop_keys.discard('__builtin__')
1017 1017 drop_keys.discard('__builtins__')
1018 1018 for k in drop_keys:
1019 1019 del ns[k]
1020 1020
1021 1021 # Restore the user namespaces to minimal usability
1022 1022 self.init_user_ns()
1023 1023
1024 1024 # Restore the default and user aliases
1025 1025 self.alias_manager.clear_aliases()
1026 1026 self.alias_manager.init_aliases()
1027 1027
1028 1028 def reset_selective(self, regex=None):
1029 1029 """Clear selective variables from internal namespaces based on a
1030 1030 specified regular expression.
1031 1031
1032 1032 Parameters
1033 1033 ----------
1034 1034 regex : string or compiled pattern, optional
1035 1035 A regular expression pattern that will be used in searching
1036 1036 variable names in the users namespaces.
1037 1037 """
1038 1038 if regex is not None:
1039 1039 try:
1040 1040 m = re.compile(regex)
1041 1041 except TypeError:
1042 1042 raise TypeError('regex must be a string or compiled pattern')
1043 1043 # Search for keys in each namespace that match the given regex
1044 1044 # If a match is found, delete the key/value pair.
1045 1045 for ns in self.ns_refs_table:
1046 1046 for var in ns:
1047 1047 if m.search(var):
1048 1048 del ns[var]
1049 1049
1050 1050 def push(self, variables, interactive=True):
1051 1051 """Inject a group of variables into the IPython user namespace.
1052 1052
1053 1053 Parameters
1054 1054 ----------
1055 1055 variables : dict, str or list/tuple of str
1056 1056 The variables to inject into the user's namespace. If a dict, a
1057 1057 simple update is done. If a str, the string is assumed to have
1058 1058 variable names separated by spaces. A list/tuple of str can also
1059 1059 be used to give the variable names. If just the variable names are
1060 1060 give (list/tuple/str) then the variable values looked up in the
1061 1061 callers frame.
1062 1062 interactive : bool
1063 1063 If True (default), the variables will be listed with the ``who``
1064 1064 magic.
1065 1065 """
1066 1066 vdict = None
1067 1067
1068 1068 # We need a dict of name/value pairs to do namespace updates.
1069 1069 if isinstance(variables, dict):
1070 1070 vdict = variables
1071 1071 elif isinstance(variables, (basestring, list, tuple)):
1072 1072 if isinstance(variables, basestring):
1073 1073 vlist = variables.split()
1074 1074 else:
1075 1075 vlist = variables
1076 1076 vdict = {}
1077 1077 cf = sys._getframe(1)
1078 1078 for name in vlist:
1079 1079 try:
1080 1080 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1081 1081 except:
1082 1082 print ('Could not get variable %s from %s' %
1083 1083 (name,cf.f_code.co_name))
1084 1084 else:
1085 1085 raise ValueError('variables must be a dict/str/list/tuple')
1086 1086
1087 1087 # Propagate variables to user namespace
1088 1088 self.user_ns.update(vdict)
1089 1089
1090 1090 # And configure interactive visibility
1091 1091 config_ns = self.user_ns_hidden
1092 1092 if interactive:
1093 1093 for name, val in vdict.iteritems():
1094 1094 config_ns.pop(name, None)
1095 1095 else:
1096 1096 for name,val in vdict.iteritems():
1097 1097 config_ns[name] = val
1098 1098
1099 1099 #-------------------------------------------------------------------------
1100 1100 # Things related to object introspection
1101 1101 #-------------------------------------------------------------------------
1102 1102
1103 1103 def _ofind(self, oname, namespaces=None):
1104 1104 """Find an object in the available namespaces.
1105 1105
1106 1106 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1107 1107
1108 1108 Has special code to detect magic functions.
1109 1109 """
1110 1110 #oname = oname.strip()
1111 1111 #print '1- oname: <%r>' % oname # dbg
1112 1112 try:
1113 1113 oname = oname.strip().encode('ascii')
1114 1114 #print '2- oname: <%r>' % oname # dbg
1115 1115 except UnicodeEncodeError:
1116 1116 print 'Python identifiers can only contain ascii characters.'
1117 1117 return dict(found=False)
1118 1118
1119 1119 alias_ns = None
1120 1120 if namespaces is None:
1121 1121 # Namespaces to search in:
1122 1122 # Put them in a list. The order is important so that we
1123 1123 # find things in the same order that Python finds them.
1124 1124 namespaces = [ ('Interactive', self.user_ns),
1125 1125 ('IPython internal', self.internal_ns),
1126 1126 ('Python builtin', __builtin__.__dict__),
1127 1127 ('Alias', self.alias_manager.alias_table),
1128 1128 ]
1129 1129 alias_ns = self.alias_manager.alias_table
1130 1130
1131 1131 # initialize results to 'null'
1132 1132 found = False; obj = None; ospace = None; ds = None;
1133 1133 ismagic = False; isalias = False; parent = None
1134 1134
1135 1135 # We need to special-case 'print', which as of python2.6 registers as a
1136 1136 # function but should only be treated as one if print_function was
1137 1137 # loaded with a future import. In this case, just bail.
1138 1138 if (oname == 'print' and not (self.compile.compiler_flags &
1139 1139 __future__.CO_FUTURE_PRINT_FUNCTION)):
1140 1140 return {'found':found, 'obj':obj, 'namespace':ospace,
1141 1141 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1142 1142
1143 1143 # Look for the given name by splitting it in parts. If the head is
1144 1144 # found, then we look for all the remaining parts as members, and only
1145 1145 # declare success if we can find them all.
1146 1146 oname_parts = oname.split('.')
1147 1147 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1148 1148 for nsname,ns in namespaces:
1149 1149 try:
1150 1150 obj = ns[oname_head]
1151 1151 except KeyError:
1152 1152 continue
1153 1153 else:
1154 1154 #print 'oname_rest:', oname_rest # dbg
1155 1155 for part in oname_rest:
1156 1156 try:
1157 1157 parent = obj
1158 1158 obj = getattr(obj,part)
1159 1159 except:
1160 1160 # Blanket except b/c some badly implemented objects
1161 1161 # allow __getattr__ to raise exceptions other than
1162 1162 # AttributeError, which then crashes IPython.
1163 1163 break
1164 1164 else:
1165 1165 # If we finish the for loop (no break), we got all members
1166 1166 found = True
1167 1167 ospace = nsname
1168 1168 if ns == alias_ns:
1169 1169 isalias = True
1170 1170 break # namespace loop
1171 1171
1172 1172 # Try to see if it's magic
1173 1173 if not found:
1174 1174 if oname.startswith(ESC_MAGIC):
1175 1175 oname = oname[1:]
1176 1176 obj = getattr(self,'magic_'+oname,None)
1177 1177 if obj is not None:
1178 1178 found = True
1179 1179 ospace = 'IPython internal'
1180 1180 ismagic = True
1181 1181
1182 1182 # Last try: special-case some literals like '', [], {}, etc:
1183 1183 if not found and oname_head in ["''",'""','[]','{}','()']:
1184 1184 obj = eval(oname_head)
1185 1185 found = True
1186 1186 ospace = 'Interactive'
1187 1187
1188 1188 return {'found':found, 'obj':obj, 'namespace':ospace,
1189 1189 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1190 1190
1191 1191 def _ofind_property(self, oname, info):
1192 1192 """Second part of object finding, to look for property details."""
1193 1193 if info.found:
1194 1194 # Get the docstring of the class property if it exists.
1195 1195 path = oname.split('.')
1196 1196 root = '.'.join(path[:-1])
1197 1197 if info.parent is not None:
1198 1198 try:
1199 1199 target = getattr(info.parent, '__class__')
1200 1200 # The object belongs to a class instance.
1201 1201 try:
1202 1202 target = getattr(target, path[-1])
1203 1203 # The class defines the object.
1204 1204 if isinstance(target, property):
1205 1205 oname = root + '.__class__.' + path[-1]
1206 1206 info = Struct(self._ofind(oname))
1207 1207 except AttributeError: pass
1208 1208 except AttributeError: pass
1209 1209
1210 1210 # We return either the new info or the unmodified input if the object
1211 1211 # hadn't been found
1212 1212 return info
1213 1213
1214 1214 def _object_find(self, oname, namespaces=None):
1215 1215 """Find an object and return a struct with info about it."""
1216 1216 inf = Struct(self._ofind(oname, namespaces))
1217 1217 return Struct(self._ofind_property(oname, inf))
1218 1218
1219 1219 def _inspect(self, meth, oname, namespaces=None, **kw):
1220 1220 """Generic interface to the inspector system.
1221 1221
1222 1222 This function is meant to be called by pdef, pdoc & friends."""
1223 1223 info = self._object_find(oname)
1224 1224 if info.found:
1225 1225 pmethod = getattr(self.inspector, meth)
1226 1226 formatter = format_screen if info.ismagic else None
1227 1227 if meth == 'pdoc':
1228 1228 pmethod(info.obj, oname, formatter)
1229 1229 elif meth == 'pinfo':
1230 1230 pmethod(info.obj, oname, formatter, info, **kw)
1231 1231 else:
1232 1232 pmethod(info.obj, oname)
1233 1233 else:
1234 1234 print 'Object `%s` not found.' % oname
1235 1235 return 'not found' # so callers can take other action
1236 1236
1237 1237 def object_inspect(self, oname):
1238 1238 info = self._object_find(oname)
1239 1239 if info.found:
1240 1240 return self.inspector.info(info.obj, oname, info=info)
1241 1241 else:
1242 1242 return oinspect.object_info(name=oname, found=False)
1243 1243
1244 1244 #-------------------------------------------------------------------------
1245 1245 # Things related to history management
1246 1246 #-------------------------------------------------------------------------
1247 1247
1248 1248 def init_history(self):
1249 1249 """Sets up the command history, and starts regular autosaves."""
1250 1250 self.history_manager = HistoryManager(shell=self, config=self.config)
1251 1251
1252 1252 def history_saving_wrapper(self, func):
1253 1253 """ Wrap func for readline history saving
1254 1254
1255 1255 Convert func into callable that saves & restores
1256 1256 history around the call """
1257 1257
1258 1258 if self.has_readline:
1259 1259 from IPython.utils import rlineimpl as readline
1260 1260 else:
1261 1261 return func
1262 1262
1263 1263 def wrapper():
1264 1264 self.save_history()
1265 1265 try:
1266 1266 func()
1267 1267 finally:
1268 1268 self.reload_history()
1269 1269 return wrapper
1270 1270
1271 1271
1272 1272 #-------------------------------------------------------------------------
1273 1273 # Things related to exception handling and tracebacks (not debugging)
1274 1274 #-------------------------------------------------------------------------
1275 1275
1276 1276 def init_traceback_handlers(self, custom_exceptions):
1277 1277 # Syntax error handler.
1278 1278 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1279 1279
1280 1280 # The interactive one is initialized with an offset, meaning we always
1281 1281 # want to remove the topmost item in the traceback, which is our own
1282 1282 # internal code. Valid modes: ['Plain','Context','Verbose']
1283 1283 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1284 1284 color_scheme='NoColor',
1285 1285 tb_offset = 1,
1286 1286 check_cache=self.compile.check_cache)
1287 1287
1288 1288 # The instance will store a pointer to the system-wide exception hook,
1289 1289 # so that runtime code (such as magics) can access it. This is because
1290 1290 # during the read-eval loop, it may get temporarily overwritten.
1291 1291 self.sys_excepthook = sys.excepthook
1292 1292
1293 1293 # and add any custom exception handlers the user may have specified
1294 1294 self.set_custom_exc(*custom_exceptions)
1295 1295
1296 1296 # Set the exception mode
1297 1297 self.InteractiveTB.set_mode(mode=self.xmode)
1298 1298
1299 1299 def set_custom_exc(self, exc_tuple, handler):
1300 1300 """set_custom_exc(exc_tuple,handler)
1301 1301
1302 1302 Set a custom exception handler, which will be called if any of the
1303 1303 exceptions in exc_tuple occur in the mainloop (specifically, in the
1304 1304 run_code() method.
1305 1305
1306 1306 Inputs:
1307 1307
1308 1308 - exc_tuple: a *tuple* of valid exceptions to call the defined
1309 1309 handler for. It is very important that you use a tuple, and NOT A
1310 1310 LIST here, because of the way Python's except statement works. If
1311 1311 you only want to trap a single exception, use a singleton tuple:
1312 1312
1313 1313 exc_tuple == (MyCustomException,)
1314 1314
1315 1315 - handler: this must be defined as a function with the following
1316 1316 basic interface::
1317 1317
1318 1318 def my_handler(self, etype, value, tb, tb_offset=None)
1319 1319 ...
1320 1320 # The return value must be
1321 1321 return structured_traceback
1322 1322
1323 1323 This will be made into an instance method (via types.MethodType)
1324 1324 of IPython itself, and it will be called if any of the exceptions
1325 1325 listed in the exc_tuple are caught. If the handler is None, an
1326 1326 internal basic one is used, which just prints basic info.
1327 1327
1328 1328 WARNING: by putting in your own exception handler into IPython's main
1329 1329 execution loop, you run a very good chance of nasty crashes. This
1330 1330 facility should only be used if you really know what you are doing."""
1331 1331
1332 1332 assert type(exc_tuple)==type(()) , \
1333 1333 "The custom exceptions must be given AS A TUPLE."
1334 1334
1335 1335 def dummy_handler(self,etype,value,tb):
1336 1336 print '*** Simple custom exception handler ***'
1337 1337 print 'Exception type :',etype
1338 1338 print 'Exception value:',value
1339 1339 print 'Traceback :',tb
1340 1340 print 'Source code :','\n'.join(self.buffer)
1341 1341
1342 1342 if handler is None: handler = dummy_handler
1343 1343
1344 1344 self.CustomTB = types.MethodType(handler,self)
1345 1345 self.custom_exceptions = exc_tuple
1346 1346
1347 1347 def excepthook(self, etype, value, tb):
1348 1348 """One more defense for GUI apps that call sys.excepthook.
1349 1349
1350 1350 GUI frameworks like wxPython trap exceptions and call
1351 1351 sys.excepthook themselves. I guess this is a feature that
1352 1352 enables them to keep running after exceptions that would
1353 1353 otherwise kill their mainloop. This is a bother for IPython
1354 1354 which excepts to catch all of the program exceptions with a try:
1355 1355 except: statement.
1356 1356
1357 1357 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1358 1358 any app directly invokes sys.excepthook, it will look to the user like
1359 1359 IPython crashed. In order to work around this, we can disable the
1360 1360 CrashHandler and replace it with this excepthook instead, which prints a
1361 1361 regular traceback using our InteractiveTB. In this fashion, apps which
1362 1362 call sys.excepthook will generate a regular-looking exception from
1363 1363 IPython, and the CrashHandler will only be triggered by real IPython
1364 1364 crashes.
1365 1365
1366 1366 This hook should be used sparingly, only in places which are not likely
1367 1367 to be true IPython errors.
1368 1368 """
1369 1369 self.showtraceback((etype,value,tb),tb_offset=0)
1370 1370
1371 1371 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1372 1372 exception_only=False):
1373 1373 """Display the exception that just occurred.
1374 1374
1375 1375 If nothing is known about the exception, this is the method which
1376 1376 should be used throughout the code for presenting user tracebacks,
1377 1377 rather than directly invoking the InteractiveTB object.
1378 1378
1379 1379 A specific showsyntaxerror() also exists, but this method can take
1380 1380 care of calling it if needed, so unless you are explicitly catching a
1381 1381 SyntaxError exception, don't try to analyze the stack manually and
1382 1382 simply call this method."""
1383 1383
1384 1384 try:
1385 1385 if exc_tuple is None:
1386 1386 etype, value, tb = sys.exc_info()
1387 1387 else:
1388 1388 etype, value, tb = exc_tuple
1389 1389
1390 1390 if etype is None:
1391 1391 if hasattr(sys, 'last_type'):
1392 1392 etype, value, tb = sys.last_type, sys.last_value, \
1393 1393 sys.last_traceback
1394 1394 else:
1395 1395 self.write_err('No traceback available to show.\n')
1396 1396 return
1397 1397
1398 1398 if etype is SyntaxError:
1399 1399 # Though this won't be called by syntax errors in the input
1400 1400 # line, there may be SyntaxError cases whith imported code.
1401 1401 self.showsyntaxerror(filename)
1402 1402 elif etype is UsageError:
1403 1403 print "UsageError:", value
1404 1404 else:
1405 1405 # WARNING: these variables are somewhat deprecated and not
1406 1406 # necessarily safe to use in a threaded environment, but tools
1407 1407 # like pdb depend on their existence, so let's set them. If we
1408 1408 # find problems in the field, we'll need to revisit their use.
1409 1409 sys.last_type = etype
1410 1410 sys.last_value = value
1411 1411 sys.last_traceback = tb
1412 1412
1413 1413 if etype in self.custom_exceptions:
1414 1414 # FIXME: Old custom traceback objects may just return a
1415 1415 # string, in that case we just put it into a list
1416 1416 stb = self.CustomTB(etype, value, tb, tb_offset)
1417 1417 if isinstance(ctb, basestring):
1418 1418 stb = [stb]
1419 1419 else:
1420 1420 if exception_only:
1421 1421 stb = ['An exception has occurred, use %tb to see '
1422 1422 'the full traceback.\n']
1423 1423 stb.extend(self.InteractiveTB.get_exception_only(etype,
1424 1424 value))
1425 1425 else:
1426 1426 stb = self.InteractiveTB.structured_traceback(etype,
1427 1427 value, tb, tb_offset=tb_offset)
1428 1428 # FIXME: the pdb calling should be done by us, not by
1429 1429 # the code computing the traceback.
1430 1430 if self.InteractiveTB.call_pdb:
1431 1431 # pdb mucks up readline, fix it back
1432 1432 self.set_readline_completer()
1433 1433
1434 1434 # Actually show the traceback
1435 1435 self._showtraceback(etype, value, stb)
1436 1436
1437 1437 except KeyboardInterrupt:
1438 1438 self.write_err("\nKeyboardInterrupt\n")
1439 1439
1440 1440 def _showtraceback(self, etype, evalue, stb):
1441 1441 """Actually show a traceback.
1442 1442
1443 1443 Subclasses may override this method to put the traceback on a different
1444 1444 place, like a side channel.
1445 1445 """
1446 1446 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1447 1447
1448 1448 def showsyntaxerror(self, filename=None):
1449 1449 """Display the syntax error that just occurred.
1450 1450
1451 1451 This doesn't display a stack trace because there isn't one.
1452 1452
1453 1453 If a filename is given, it is stuffed in the exception instead
1454 1454 of what was there before (because Python's parser always uses
1455 1455 "<string>" when reading from a string).
1456 1456 """
1457 1457 etype, value, last_traceback = sys.exc_info()
1458 1458
1459 1459 # See note about these variables in showtraceback() above
1460 1460 sys.last_type = etype
1461 1461 sys.last_value = value
1462 1462 sys.last_traceback = last_traceback
1463 1463
1464 1464 if filename and etype is SyntaxError:
1465 1465 # Work hard to stuff the correct filename in the exception
1466 1466 try:
1467 1467 msg, (dummy_filename, lineno, offset, line) = value
1468 1468 except:
1469 1469 # Not the format we expect; leave it alone
1470 1470 pass
1471 1471 else:
1472 1472 # Stuff in the right filename
1473 1473 try:
1474 1474 # Assume SyntaxError is a class exception
1475 1475 value = SyntaxError(msg, (filename, lineno, offset, line))
1476 1476 except:
1477 1477 # If that failed, assume SyntaxError is a string
1478 1478 value = msg, (filename, lineno, offset, line)
1479 1479 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1480 1480 self._showtraceback(etype, value, stb)
1481 1481
1482 1482 #-------------------------------------------------------------------------
1483 1483 # Things related to readline
1484 1484 #-------------------------------------------------------------------------
1485 1485
1486 1486 def init_readline(self):
1487 1487 """Command history completion/saving/reloading."""
1488 1488
1489 1489 if self.readline_use:
1490 1490 import IPython.utils.rlineimpl as readline
1491 1491
1492 1492 self.rl_next_input = None
1493 1493 self.rl_do_indent = False
1494 1494
1495 1495 if not self.readline_use or not readline.have_readline:
1496 1496 self.has_readline = False
1497 1497 self.readline = None
1498 1498 # Set a number of methods that depend on readline to be no-op
1499 1499 self.set_readline_completer = no_op
1500 1500 self.set_custom_completer = no_op
1501 1501 self.set_completer_frame = no_op
1502 1502 warn('Readline services not available or not loaded.')
1503 1503 else:
1504 1504 self.has_readline = True
1505 1505 self.readline = readline
1506 1506 sys.modules['readline'] = readline
1507 1507
1508 1508 # Platform-specific configuration
1509 1509 if os.name == 'nt':
1510 1510 # FIXME - check with Frederick to see if we can harmonize
1511 1511 # naming conventions with pyreadline to avoid this
1512 1512 # platform-dependent check
1513 1513 self.readline_startup_hook = readline.set_pre_input_hook
1514 1514 else:
1515 1515 self.readline_startup_hook = readline.set_startup_hook
1516 1516
1517 1517 # Load user's initrc file (readline config)
1518 1518 # Or if libedit is used, load editrc.
1519 1519 inputrc_name = os.environ.get('INPUTRC')
1520 1520 if inputrc_name is None:
1521 1521 home_dir = get_home_dir()
1522 1522 if home_dir is not None:
1523 1523 inputrc_name = '.inputrc'
1524 1524 if readline.uses_libedit:
1525 1525 inputrc_name = '.editrc'
1526 1526 inputrc_name = os.path.join(home_dir, inputrc_name)
1527 1527 if os.path.isfile(inputrc_name):
1528 1528 try:
1529 1529 readline.read_init_file(inputrc_name)
1530 1530 except:
1531 1531 warn('Problems reading readline initialization file <%s>'
1532 1532 % inputrc_name)
1533 1533
1534 1534 # Configure readline according to user's prefs
1535 1535 # This is only done if GNU readline is being used. If libedit
1536 1536 # is being used (as on Leopard) the readline config is
1537 1537 # not run as the syntax for libedit is different.
1538 1538 if not readline.uses_libedit:
1539 1539 for rlcommand in self.readline_parse_and_bind:
1540 1540 #print "loading rl:",rlcommand # dbg
1541 1541 readline.parse_and_bind(rlcommand)
1542 1542
1543 1543 # Remove some chars from the delimiters list. If we encounter
1544 1544 # unicode chars, discard them.
1545 1545 delims = readline.get_completer_delims().encode("ascii", "ignore")
1546 1546 delims = delims.translate(None, self.readline_remove_delims)
1547 1547 delims = delims.replace(ESC_MAGIC, '')
1548 1548 readline.set_completer_delims(delims)
1549 1549 # otherwise we end up with a monster history after a while:
1550 1550 readline.set_history_length(self.history_length)
1551 1551
1552 1552 # Load the last 1000 lines from history
1553 1553 for _, _, cell in self.history_manager.get_hist_tail(1000,
1554 1554 include_latest=True):
1555 1555 if cell.strip(): # Ignore blank lines
1556 1556 for line in cell.splitlines():
1557 1557 readline.add_history(line)
1558 1558
1559 1559 # Configure auto-indent for all platforms
1560 1560 self.set_autoindent(self.autoindent)
1561 1561
1562 1562 def set_next_input(self, s):
1563 1563 """ Sets the 'default' input string for the next command line.
1564 1564
1565 1565 Requires readline.
1566 1566
1567 1567 Example:
1568 1568
1569 1569 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1570 1570 [D:\ipython]|2> Hello Word_ # cursor is here
1571 1571 """
1572 1572
1573 1573 self.rl_next_input = s
1574 1574
1575 1575 # Maybe move this to the terminal subclass?
1576 1576 def pre_readline(self):
1577 1577 """readline hook to be used at the start of each line.
1578 1578
1579 1579 Currently it handles auto-indent only."""
1580 1580
1581 1581 if self.rl_do_indent:
1582 1582 self.readline.insert_text(self._indent_current_str())
1583 1583 if self.rl_next_input is not None:
1584 1584 self.readline.insert_text(self.rl_next_input)
1585 1585 self.rl_next_input = None
1586 1586
1587 1587 def _indent_current_str(self):
1588 1588 """return the current level of indentation as a string"""
1589 1589 return self.input_splitter.indent_spaces * ' '
1590 1590
1591 1591 #-------------------------------------------------------------------------
1592 1592 # Things related to text completion
1593 1593 #-------------------------------------------------------------------------
1594 1594
1595 1595 def init_completer(self):
1596 1596 """Initialize the completion machinery.
1597 1597
1598 1598 This creates completion machinery that can be used by client code,
1599 1599 either interactively in-process (typically triggered by the readline
1600 1600 library), programatically (such as in test suites) or out-of-prcess
1601 1601 (typically over the network by remote frontends).
1602 1602 """
1603 1603 from IPython.core.completer import IPCompleter
1604 1604 from IPython.core.completerlib import (module_completer,
1605 1605 magic_run_completer, cd_completer)
1606 1606
1607 1607 self.Completer = IPCompleter(self,
1608 1608 self.user_ns,
1609 1609 self.user_global_ns,
1610 1610 self.readline_omit__names,
1611 1611 self.alias_manager.alias_table,
1612 1612 self.has_readline)
1613 1613
1614 1614 # Add custom completers to the basic ones built into IPCompleter
1615 1615 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1616 1616 self.strdispatchers['complete_command'] = sdisp
1617 1617 self.Completer.custom_completers = sdisp
1618 1618
1619 1619 self.set_hook('complete_command', module_completer, str_key = 'import')
1620 1620 self.set_hook('complete_command', module_completer, str_key = 'from')
1621 1621 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1622 1622 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1623 1623
1624 1624 # Only configure readline if we truly are using readline. IPython can
1625 1625 # do tab-completion over the network, in GUIs, etc, where readline
1626 1626 # itself may be absent
1627 1627 if self.has_readline:
1628 1628 self.set_readline_completer()
1629 1629
1630 1630 def complete(self, text, line=None, cursor_pos=None):
1631 1631 """Return the completed text and a list of completions.
1632 1632
1633 1633 Parameters
1634 1634 ----------
1635 1635
1636 1636 text : string
1637 1637 A string of text to be completed on. It can be given as empty and
1638 1638 instead a line/position pair are given. In this case, the
1639 1639 completer itself will split the line like readline does.
1640 1640
1641 1641 line : string, optional
1642 1642 The complete line that text is part of.
1643 1643
1644 1644 cursor_pos : int, optional
1645 1645 The position of the cursor on the input line.
1646 1646
1647 1647 Returns
1648 1648 -------
1649 1649 text : string
1650 1650 The actual text that was completed.
1651 1651
1652 1652 matches : list
1653 1653 A sorted list with all possible completions.
1654 1654
1655 1655 The optional arguments allow the completion to take more context into
1656 1656 account, and are part of the low-level completion API.
1657 1657
1658 1658 This is a wrapper around the completion mechanism, similar to what
1659 1659 readline does at the command line when the TAB key is hit. By
1660 1660 exposing it as a method, it can be used by other non-readline
1661 1661 environments (such as GUIs) for text completion.
1662 1662
1663 1663 Simple usage example:
1664 1664
1665 1665 In [1]: x = 'hello'
1666 1666
1667 1667 In [2]: _ip.complete('x.l')
1668 1668 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1669 1669 """
1670 1670
1671 1671 # Inject names into __builtin__ so we can complete on the added names.
1672 1672 with self.builtin_trap:
1673 1673 return self.Completer.complete(text, line, cursor_pos)
1674 1674
1675 1675 def set_custom_completer(self, completer, pos=0):
1676 1676 """Adds a new custom completer function.
1677 1677
1678 1678 The position argument (defaults to 0) is the index in the completers
1679 1679 list where you want the completer to be inserted."""
1680 1680
1681 1681 newcomp = types.MethodType(completer,self.Completer)
1682 1682 self.Completer.matchers.insert(pos,newcomp)
1683 1683
1684 1684 def set_readline_completer(self):
1685 1685 """Reset readline's completer to be our own."""
1686 1686 self.readline.set_completer(self.Completer.rlcomplete)
1687 1687
1688 1688 def set_completer_frame(self, frame=None):
1689 1689 """Set the frame of the completer."""
1690 1690 if frame:
1691 1691 self.Completer.namespace = frame.f_locals
1692 1692 self.Completer.global_namespace = frame.f_globals
1693 1693 else:
1694 1694 self.Completer.namespace = self.user_ns
1695 1695 self.Completer.global_namespace = self.user_global_ns
1696 1696
1697 1697 #-------------------------------------------------------------------------
1698 1698 # Things related to magics
1699 1699 #-------------------------------------------------------------------------
1700 1700
1701 1701 def init_magics(self):
1702 1702 # FIXME: Move the color initialization to the DisplayHook, which
1703 1703 # should be split into a prompt manager and displayhook. We probably
1704 1704 # even need a centralize colors management object.
1705 1705 self.magic_colors(self.colors)
1706 1706 # History was moved to a separate module
1707 1707 from . import history
1708 1708 history.init_ipython(self)
1709 1709
1710 1710 def magic(self,arg_s):
1711 1711 """Call a magic function by name.
1712 1712
1713 1713 Input: a string containing the name of the magic function to call and
1714 1714 any additional arguments to be passed to the magic.
1715 1715
1716 1716 magic('name -opt foo bar') is equivalent to typing at the ipython
1717 1717 prompt:
1718 1718
1719 1719 In[1]: %name -opt foo bar
1720 1720
1721 1721 To call a magic without arguments, simply use magic('name').
1722 1722
1723 1723 This provides a proper Python function to call IPython's magics in any
1724 1724 valid Python code you can type at the interpreter, including loops and
1725 1725 compound statements.
1726 1726 """
1727 1727 args = arg_s.split(' ',1)
1728 1728 magic_name = args[0]
1729 1729 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1730 1730
1731 1731 try:
1732 1732 magic_args = args[1]
1733 1733 except IndexError:
1734 1734 magic_args = ''
1735 1735 fn = getattr(self,'magic_'+magic_name,None)
1736 1736 if fn is None:
1737 1737 error("Magic function `%s` not found." % magic_name)
1738 1738 else:
1739 1739 magic_args = self.var_expand(magic_args,1)
1740 1740 with nested(self.builtin_trap,):
1741 1741 result = fn(magic_args)
1742 1742 return result
1743 1743
1744 1744 def define_magic(self, magicname, func):
1745 1745 """Expose own function as magic function for ipython
1746 1746
1747 1747 def foo_impl(self,parameter_s=''):
1748 1748 'My very own magic!. (Use docstrings, IPython reads them).'
1749 1749 print 'Magic function. Passed parameter is between < >:'
1750 1750 print '<%s>' % parameter_s
1751 1751 print 'The self object is:',self
1752 1752
1753 1753 self.define_magic('foo',foo_impl)
1754 1754 """
1755 1755
1756 1756 import new
1757 1757 im = types.MethodType(func,self)
1758 1758 old = getattr(self, "magic_" + magicname, None)
1759 1759 setattr(self, "magic_" + magicname, im)
1760 1760 return old
1761 1761
1762 1762 #-------------------------------------------------------------------------
1763 1763 # Things related to macros
1764 1764 #-------------------------------------------------------------------------
1765 1765
1766 1766 def define_macro(self, name, themacro):
1767 1767 """Define a new macro
1768 1768
1769 1769 Parameters
1770 1770 ----------
1771 1771 name : str
1772 1772 The name of the macro.
1773 1773 themacro : str or Macro
1774 1774 The action to do upon invoking the macro. If a string, a new
1775 1775 Macro object is created by passing the string to it.
1776 1776 """
1777 1777
1778 1778 from IPython.core import macro
1779 1779
1780 1780 if isinstance(themacro, basestring):
1781 1781 themacro = macro.Macro(themacro)
1782 1782 if not isinstance(themacro, macro.Macro):
1783 1783 raise ValueError('A macro must be a string or a Macro instance.')
1784 1784 self.user_ns[name] = themacro
1785 1785
1786 1786 #-------------------------------------------------------------------------
1787 1787 # Things related to the running of system commands
1788 1788 #-------------------------------------------------------------------------
1789 1789
1790 1790 def system(self, cmd):
1791 1791 """Call the given cmd in a subprocess.
1792 1792
1793 1793 Parameters
1794 1794 ----------
1795 1795 cmd : str
1796 1796 Command to execute (can not end in '&', as bacground processes are
1797 1797 not supported.
1798 1798 """
1799 1799 # We do not support backgrounding processes because we either use
1800 1800 # pexpect or pipes to read from. Users can always just call
1801 1801 # os.system() if they really want a background process.
1802 1802 if cmd.endswith('&'):
1803 1803 raise OSError("Background processes not supported.")
1804 1804
1805 1805 return system(self.var_expand(cmd, depth=2))
1806 1806
1807 1807 def getoutput(self, cmd, split=True):
1808 1808 """Get output (possibly including stderr) from a subprocess.
1809 1809
1810 1810 Parameters
1811 1811 ----------
1812 1812 cmd : str
1813 1813 Command to execute (can not end in '&', as background processes are
1814 1814 not supported.
1815 1815 split : bool, optional
1816 1816
1817 1817 If True, split the output into an IPython SList. Otherwise, an
1818 1818 IPython LSString is returned. These are objects similar to normal
1819 1819 lists and strings, with a few convenience attributes for easier
1820 1820 manipulation of line-based output. You can use '?' on them for
1821 1821 details.
1822 1822 """
1823 1823 if cmd.endswith('&'):
1824 1824 raise OSError("Background processes not supported.")
1825 1825 out = getoutput(self.var_expand(cmd, depth=2))
1826 1826 if split:
1827 1827 out = SList(out.splitlines())
1828 1828 else:
1829 1829 out = LSString(out)
1830 1830 return out
1831 1831
1832 1832 #-------------------------------------------------------------------------
1833 1833 # Things related to aliases
1834 1834 #-------------------------------------------------------------------------
1835 1835
1836 1836 def init_alias(self):
1837 1837 self.alias_manager = AliasManager(shell=self, config=self.config)
1838 1838 self.ns_table['alias'] = self.alias_manager.alias_table,
1839 1839
1840 1840 #-------------------------------------------------------------------------
1841 1841 # Things related to extensions and plugins
1842 1842 #-------------------------------------------------------------------------
1843 1843
1844 1844 def init_extension_manager(self):
1845 1845 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1846 1846
1847 1847 def init_plugin_manager(self):
1848 1848 self.plugin_manager = PluginManager(config=self.config)
1849 1849
1850 1850 #-------------------------------------------------------------------------
1851 1851 # Things related to payloads
1852 1852 #-------------------------------------------------------------------------
1853 1853
1854 1854 def init_payload(self):
1855 1855 self.payload_manager = PayloadManager(config=self.config)
1856 1856
1857 1857 #-------------------------------------------------------------------------
1858 1858 # Things related to the prefilter
1859 1859 #-------------------------------------------------------------------------
1860 1860
1861 1861 def init_prefilter(self):
1862 1862 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1863 1863 # Ultimately this will be refactored in the new interpreter code, but
1864 1864 # for now, we should expose the main prefilter method (there's legacy
1865 1865 # code out there that may rely on this).
1866 1866 self.prefilter = self.prefilter_manager.prefilter_lines
1867 1867
1868 1868 def auto_rewrite_input(self, cmd):
1869 1869 """Print to the screen the rewritten form of the user's command.
1870 1870
1871 1871 This shows visual feedback by rewriting input lines that cause
1872 1872 automatic calling to kick in, like::
1873 1873
1874 1874 /f x
1875 1875
1876 1876 into::
1877 1877
1878 1878 ------> f(x)
1879 1879
1880 1880 after the user's input prompt. This helps the user understand that the
1881 1881 input line was transformed automatically by IPython.
1882 1882 """
1883 1883 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1884 1884
1885 1885 try:
1886 1886 # plain ascii works better w/ pyreadline, on some machines, so
1887 1887 # we use it and only print uncolored rewrite if we have unicode
1888 1888 rw = str(rw)
1889 1889 print >> IPython.utils.io.Term.cout, rw
1890 1890 except UnicodeEncodeError:
1891 1891 print "------> " + cmd
1892 1892
1893 1893 #-------------------------------------------------------------------------
1894 1894 # Things related to extracting values/expressions from kernel and user_ns
1895 1895 #-------------------------------------------------------------------------
1896 1896
1897 1897 def _simple_error(self):
1898 1898 etype, value = sys.exc_info()[:2]
1899 1899 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1900 1900
1901 1901 def user_variables(self, names):
1902 1902 """Get a list of variable names from the user's namespace.
1903 1903
1904 1904 Parameters
1905 1905 ----------
1906 1906 names : list of strings
1907 1907 A list of names of variables to be read from the user namespace.
1908 1908
1909 1909 Returns
1910 1910 -------
1911 1911 A dict, keyed by the input names and with the repr() of each value.
1912 1912 """
1913 1913 out = {}
1914 1914 user_ns = self.user_ns
1915 1915 for varname in names:
1916 1916 try:
1917 1917 value = repr(user_ns[varname])
1918 1918 except:
1919 1919 value = self._simple_error()
1920 1920 out[varname] = value
1921 1921 return out
1922 1922
1923 1923 def user_expressions(self, expressions):
1924 1924 """Evaluate a dict of expressions in the user's namespace.
1925 1925
1926 1926 Parameters
1927 1927 ----------
1928 1928 expressions : dict
1929 1929 A dict with string keys and string values. The expression values
1930 1930 should be valid Python expressions, each of which will be evaluated
1931 1931 in the user namespace.
1932 1932
1933 1933 Returns
1934 1934 -------
1935 1935 A dict, keyed like the input expressions dict, with the repr() of each
1936 1936 value.
1937 1937 """
1938 1938 out = {}
1939 1939 user_ns = self.user_ns
1940 1940 global_ns = self.user_global_ns
1941 1941 for key, expr in expressions.iteritems():
1942 1942 try:
1943 1943 value = repr(eval(expr, global_ns, user_ns))
1944 1944 except:
1945 1945 value = self._simple_error()
1946 1946 out[key] = value
1947 1947 return out
1948 1948
1949 1949 #-------------------------------------------------------------------------
1950 1950 # Things related to the running of code
1951 1951 #-------------------------------------------------------------------------
1952 1952
1953 1953 def ex(self, cmd):
1954 1954 """Execute a normal python statement in user namespace."""
1955 1955 with nested(self.builtin_trap,):
1956 1956 exec cmd in self.user_global_ns, self.user_ns
1957 1957
1958 1958 def ev(self, expr):
1959 1959 """Evaluate python expression expr in user namespace.
1960 1960
1961 1961 Returns the result of evaluation
1962 1962 """
1963 1963 with nested(self.builtin_trap,):
1964 1964 return eval(expr, self.user_global_ns, self.user_ns)
1965 1965
1966 1966 def safe_execfile(self, fname, *where, **kw):
1967 1967 """A safe version of the builtin execfile().
1968 1968
1969 1969 This version will never throw an exception, but instead print
1970 1970 helpful error messages to the screen. This only works on pure
1971 1971 Python files with the .py extension.
1972 1972
1973 1973 Parameters
1974 1974 ----------
1975 1975 fname : string
1976 1976 The name of the file to be executed.
1977 1977 where : tuple
1978 1978 One or two namespaces, passed to execfile() as (globals,locals).
1979 1979 If only one is given, it is passed as both.
1980 1980 exit_ignore : bool (False)
1981 1981 If True, then silence SystemExit for non-zero status (it is always
1982 1982 silenced for zero status, as it is so common).
1983 1983 """
1984 1984 kw.setdefault('exit_ignore', False)
1985 1985
1986 1986 fname = os.path.abspath(os.path.expanduser(fname))
1987 1987
1988 1988 # Make sure we have a .py file
1989 1989 if not fname.endswith('.py'):
1990 1990 warn('File must end with .py to be run using execfile: <%s>' % fname)
1991 1991
1992 1992 # Make sure we can open the file
1993 1993 try:
1994 1994 with open(fname) as thefile:
1995 1995 pass
1996 1996 except:
1997 1997 warn('Could not open file <%s> for safe execution.' % fname)
1998 1998 return
1999 1999
2000 2000 # Find things also in current directory. This is needed to mimic the
2001 2001 # behavior of running a script from the system command line, where
2002 2002 # Python inserts the script's directory into sys.path
2003 2003 dname = os.path.dirname(fname)
2004 2004
2005 2005 with prepended_to_syspath(dname):
2006 2006 try:
2007 2007 execfile(fname,*where)
2008 2008 except SystemExit, status:
2009 2009 # If the call was made with 0 or None exit status (sys.exit(0)
2010 2010 # or sys.exit() ), don't bother showing a traceback, as both of
2011 2011 # these are considered normal by the OS:
2012 2012 # > python -c'import sys;sys.exit(0)'; echo $?
2013 2013 # 0
2014 2014 # > python -c'import sys;sys.exit()'; echo $?
2015 2015 # 0
2016 2016 # For other exit status, we show the exception unless
2017 2017 # explicitly silenced, but only in short form.
2018 2018 if status.code not in (0, None) and not kw['exit_ignore']:
2019 2019 self.showtraceback(exception_only=True)
2020 2020 except:
2021 2021 self.showtraceback()
2022 2022
2023 2023 def safe_execfile_ipy(self, fname):
2024 2024 """Like safe_execfile, but for .ipy files with IPython syntax.
2025 2025
2026 2026 Parameters
2027 2027 ----------
2028 2028 fname : str
2029 2029 The name of the file to execute. The filename must have a
2030 2030 .ipy extension.
2031 2031 """
2032 2032 fname = os.path.abspath(os.path.expanduser(fname))
2033 2033
2034 2034 # Make sure we have a .py file
2035 2035 if not fname.endswith('.ipy'):
2036 2036 warn('File must end with .py to be run using execfile: <%s>' % fname)
2037 2037
2038 2038 # Make sure we can open the file
2039 2039 try:
2040 2040 with open(fname) as thefile:
2041 2041 pass
2042 2042 except:
2043 2043 warn('Could not open file <%s> for safe execution.' % fname)
2044 2044 return
2045 2045
2046 2046 # Find things also in current directory. This is needed to mimic the
2047 2047 # behavior of running a script from the system command line, where
2048 2048 # Python inserts the script's directory into sys.path
2049 2049 dname = os.path.dirname(fname)
2050 2050
2051 2051 with prepended_to_syspath(dname):
2052 2052 try:
2053 2053 with open(fname) as thefile:
2054 2054 # self.run_cell currently captures all exceptions
2055 2055 # raised in user code. It would be nice if there were
2056 2056 # versions of runlines, execfile that did raise, so
2057 2057 # we could catch the errors.
2058 2058 self.run_cell(thefile.read())
2059 2059 except:
2060 2060 self.showtraceback()
2061 2061 warn('Unknown failure executing file: <%s>' % fname)
2062 2062
2063 def run_cell(self, cell):
2063 def run_cell(self, cell, store_history=True):
2064 2064 """Run the contents of an entire multiline 'cell' of code, and store it
2065 2065 in the history.
2066 2066
2067 2067 The cell is split into separate blocks which can be executed
2068 2068 individually. Then, based on how many blocks there are, they are
2069 2069 executed as follows:
2070 2070
2071 2071 - A single block: 'single' mode. If it is also a single line, dynamic
2072 2072 transformations, including automagic and macros, will be applied.
2073 2073
2074 2074 If there's more than one block, it depends:
2075 2075
2076 2076 - if the last one is no more than two lines long, run all but the last
2077 2077 in 'exec' mode and the very last one in 'single' mode. This makes it
2078 2078 easy to type simple expressions at the end to see computed values. -
2079 2079 otherwise (last one is also multiline), run all in 'exec' mode
2080 2080
2081 2081 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2082 2082 results are displayed and output prompts are computed. In 'exec' mode,
2083 2083 no results are displayed unless :func:`print` is called explicitly;
2084 2084 this mode is more akin to running a script.
2085 2085
2086 2086 Parameters
2087 2087 ----------
2088 2088 cell : str
2089 2089 A single or multiline string.
2090 2090 """
2091 2091 # Store the untransformed code
2092 2092 raw_cell = cell
2093 2093
2094 2094 # We only do dynamic transforms on a single line. We need to do this
2095 2095 # first, because a macro can be expanded to several lines, which then
2096 2096 # need to be split into blocks again.
2097 2097 if len(cell.splitlines()) <= 1:
2098 2098 temp = self.input_splitter.split_blocks(cell)
2099 2099 cell = self.prefilter_manager.prefilter_line(temp[0])
2100 2100
2101 2101 # We need to break up the input into executable blocks that can be run
2102 2102 # in 'single' mode, to provide comfortable user behavior.
2103 2103 blocks = self.input_splitter.split_blocks(cell)
2104 2104
2105 2105 if not blocks:
2106 2106 return
2107 2107
2108 2108 # Store the 'ipython' version of the cell as well, since that's what
2109 2109 # needs to go into the translated history and get executed (the
2110 2110 # original cell may contain non-python syntax).
2111 2111 cell = ''.join(blocks)
2112 2112
2113 2113 # Store raw and processed history
2114 self.history_manager.store_inputs(self.execution_count, cell, raw_cell)
2114 if store_history:
2115 self.history_manager.store_inputs(self.execution_count,
2116 cell, raw_cell)
2115 2117
2116 2118 self.logger.log(cell, raw_cell)
2117 2119
2118 2120 # All user code execution must happen with our context managers active
2119 2121 with nested(self.builtin_trap, self.display_trap):
2120 2122
2121 2123 # Single-block input should behave like an interactive prompt
2122 2124 if len(blocks) == 1:
2123 2125 out = self.run_source(blocks[0])
2124 2126 # Write output to the database. Does nothing unless
2125 2127 # history output logging is enabled.
2126 self.history_manager.store_output(self.execution_count)
2127 # since we return here, we need to update the execution count
2128 self.execution_count += 1
2128 if store_history:
2129 self.history_manager.store_output(self.execution_count)
2130 # since we return here, we need to update the execution count
2131 self.execution_count += 1
2129 2132 return out
2130 2133
2131 2134 # In multi-block input, if the last block is a simple (one-two
2132 2135 # lines) expression, run it in single mode so it produces output.
2133 2136 # Otherwise just run it all in 'exec' mode. This seems like a
2134 2137 # reasonable usability design.
2135 2138 last = blocks[-1]
2136 2139 last_nlines = len(last.splitlines())
2137 2140
2138 2141 if last_nlines < 2:
2139 2142 # Here we consider the cell split between 'body' and 'last',
2140 2143 # store all history and execute 'body', and if successful, then
2141 2144 # proceed to execute 'last'.
2142 2145
2143 2146 # Get the main body to run as a cell
2144 2147 ipy_body = ''.join(blocks[:-1])
2145 2148 retcode = self.run_source(ipy_body, symbol='exec',
2146 2149 post_execute=False)
2147 2150 if retcode==0:
2148 2151 # Last expression compiled as 'single' so it produces output
2149 2152 self.run_source(last)
2150 2153 else:
2151 2154 # Run the whole cell as one entity, storing both raw and
2152 2155 # processed input in history
2153 2156 self.run_source(ipy_cell, symbol='exec')
2154 2157
2155 2158 # Write output to the database. Does nothing unless
2156 2159 # history output logging is enabled.
2157 self.history_manager.store_output(self.execution_count)
2158 # Each cell is a *single* input, regardless of how many lines it has
2159 self.execution_count += 1
2160 if store_history:
2161 self.history_manager.store_output(self.execution_count)
2162 # Each cell is a *single* input, regardless of how many lines it has
2163 self.execution_count += 1
2160 2164
2161 2165 # PENDING REMOVAL: this method is slated for deletion, once our new
2162 2166 # input logic has been 100% moved to frontends and is stable.
2163 2167 def runlines(self, lines, clean=False):
2164 2168 """Run a string of one or more lines of source.
2165 2169
2166 2170 This method is capable of running a string containing multiple source
2167 2171 lines, as if they had been entered at the IPython prompt. Since it
2168 2172 exposes IPython's processing machinery, the given strings can contain
2169 2173 magic calls (%magic), special shell access (!cmd), etc.
2170 2174 """
2171 2175
2172 2176 if not isinstance(lines, (list, tuple)):
2173 2177 lines = lines.splitlines()
2174 2178
2175 2179 if clean:
2176 2180 lines = self._cleanup_ipy_script(lines)
2177 2181
2178 2182 # We must start with a clean buffer, in case this is run from an
2179 2183 # interactive IPython session (via a magic, for example).
2180 2184 self.reset_buffer()
2181 2185
2182 2186 # Since we will prefilter all lines, store the user's raw input too
2183 2187 # before we apply any transformations
2184 2188 self.buffer_raw[:] = [ l+'\n' for l in lines]
2185 2189
2186 2190 more = False
2187 2191 prefilter_lines = self.prefilter_manager.prefilter_lines
2188 2192 with nested(self.builtin_trap, self.display_trap):
2189 2193 for line in lines:
2190 2194 # skip blank lines so we don't mess up the prompt counter, but
2191 2195 # do NOT skip even a blank line if we are in a code block (more
2192 2196 # is true)
2193 2197
2194 2198 if line or more:
2195 2199 more = self.push_line(prefilter_lines(line, more))
2196 2200 # IPython's run_source returns None if there was an error
2197 2201 # compiling the code. This allows us to stop processing
2198 2202 # right away, so the user gets the error message at the
2199 2203 # right place.
2200 2204 if more is None:
2201 2205 break
2202 2206 # final newline in case the input didn't have it, so that the code
2203 2207 # actually does get executed
2204 2208 if more:
2205 2209 self.push_line('\n')
2206 2210
2207 2211 def run_source(self, source, filename=None,
2208 2212 symbol='single', post_execute=True):
2209 2213 """Compile and run some source in the interpreter.
2210 2214
2211 2215 Arguments are as for compile_command().
2212 2216
2213 2217 One several things can happen:
2214 2218
2215 2219 1) The input is incorrect; compile_command() raised an
2216 2220 exception (SyntaxError or OverflowError). A syntax traceback
2217 2221 will be printed by calling the showsyntaxerror() method.
2218 2222
2219 2223 2) The input is incomplete, and more input is required;
2220 2224 compile_command() returned None. Nothing happens.
2221 2225
2222 2226 3) The input is complete; compile_command() returned a code
2223 2227 object. The code is executed by calling self.run_code() (which
2224 2228 also handles run-time exceptions, except for SystemExit).
2225 2229
2226 2230 The return value is:
2227 2231
2228 2232 - True in case 2
2229 2233
2230 2234 - False in the other cases, unless an exception is raised, where
2231 2235 None is returned instead. This can be used by external callers to
2232 2236 know whether to continue feeding input or not.
2233 2237
2234 2238 The return value can be used to decide whether to use sys.ps1 or
2235 2239 sys.ps2 to prompt the next line."""
2236 2240
2237 2241 # We need to ensure that the source is unicode from here on.
2238 2242 if type(source)==str:
2239 2243 usource = source.decode(self.stdin_encoding)
2240 2244 else:
2241 2245 usource = source
2242 2246
2243 2247 if 0: # dbg
2244 2248 print 'Source:', repr(source) # dbg
2245 2249 print 'USource:', repr(usource) # dbg
2246 2250 print 'type:', type(source) # dbg
2247 2251 print 'encoding', self.stdin_encoding # dbg
2248 2252
2249 2253 try:
2250 2254 code = self.compile(usource, symbol, self.execution_count)
2251 2255 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2252 2256 # Case 1
2253 2257 self.showsyntaxerror(filename)
2254 2258 return None
2255 2259
2256 2260 if code is None:
2257 2261 # Case 2
2258 2262 return True
2259 2263
2260 2264 # Case 3
2261 2265 # We store the code object so that threaded shells and
2262 2266 # custom exception handlers can access all this info if needed.
2263 2267 # The source corresponding to this can be obtained from the
2264 2268 # buffer attribute as '\n'.join(self.buffer).
2265 2269 self.code_to_run = code
2266 2270 # now actually execute the code object
2267 2271 if self.run_code(code, post_execute) == 0:
2268 2272 return False
2269 2273 else:
2270 2274 return None
2271 2275
2272 2276 # For backwards compatibility
2273 2277 runsource = run_source
2274 2278
2275 2279 def run_code(self, code_obj, post_execute=True):
2276 2280 """Execute a code object.
2277 2281
2278 2282 When an exception occurs, self.showtraceback() is called to display a
2279 2283 traceback.
2280 2284
2281 2285 Return value: a flag indicating whether the code to be run completed
2282 2286 successfully:
2283 2287
2284 2288 - 0: successful execution.
2285 2289 - 1: an error occurred.
2286 2290 """
2287 2291
2288 2292 # Set our own excepthook in case the user code tries to call it
2289 2293 # directly, so that the IPython crash handler doesn't get triggered
2290 2294 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2291 2295
2292 2296 # we save the original sys.excepthook in the instance, in case config
2293 2297 # code (such as magics) needs access to it.
2294 2298 self.sys_excepthook = old_excepthook
2295 2299 outflag = 1 # happens in more places, so it's easier as default
2296 2300 try:
2297 2301 try:
2298 2302 self.hooks.pre_run_code_hook()
2299 2303 #rprint('Running code', repr(code_obj)) # dbg
2300 2304 exec code_obj in self.user_global_ns, self.user_ns
2301 2305 finally:
2302 2306 # Reset our crash handler in place
2303 2307 sys.excepthook = old_excepthook
2304 2308 except SystemExit:
2305 2309 self.reset_buffer()
2306 2310 self.showtraceback(exception_only=True)
2307 2311 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2308 2312 except self.custom_exceptions:
2309 2313 etype,value,tb = sys.exc_info()
2310 2314 self.CustomTB(etype,value,tb)
2311 2315 except:
2312 2316 self.showtraceback()
2313 2317 else:
2314 2318 outflag = 0
2315 2319 if softspace(sys.stdout, 0):
2316 2320 print
2317 2321
2318 2322 # Execute any registered post-execution functions. Here, any errors
2319 2323 # are reported only minimally and just on the terminal, because the
2320 2324 # main exception channel may be occupied with a user traceback.
2321 2325 # FIXME: we need to think this mechanism a little more carefully.
2322 2326 if post_execute:
2323 2327 for func in self._post_execute:
2324 2328 try:
2325 2329 func()
2326 2330 except:
2327 2331 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2328 2332 func
2329 2333 print >> io.Term.cout, head
2330 2334 print >> io.Term.cout, self._simple_error()
2331 2335 print >> io.Term.cout, 'Removing from post_execute'
2332 2336 self._post_execute.remove(func)
2333 2337
2334 2338 # Flush out code object which has been run (and source)
2335 2339 self.code_to_run = None
2336 2340 return outflag
2337 2341
2338 2342 # For backwards compatibility
2339 2343 runcode = run_code
2340 2344
2341 2345 # PENDING REMOVAL: this method is slated for deletion, once our new
2342 2346 # input logic has been 100% moved to frontends and is stable.
2343 2347 def push_line(self, line):
2344 2348 """Push a line to the interpreter.
2345 2349
2346 2350 The line should not have a trailing newline; it may have
2347 2351 internal newlines. The line is appended to a buffer and the
2348 2352 interpreter's run_source() method is called with the
2349 2353 concatenated contents of the buffer as source. If this
2350 2354 indicates that the command was executed or invalid, the buffer
2351 2355 is reset; otherwise, the command is incomplete, and the buffer
2352 2356 is left as it was after the line was appended. The return
2353 2357 value is 1 if more input is required, 0 if the line was dealt
2354 2358 with in some way (this is the same as run_source()).
2355 2359 """
2356 2360
2357 2361 # autoindent management should be done here, and not in the
2358 2362 # interactive loop, since that one is only seen by keyboard input. We
2359 2363 # need this done correctly even for code run via runlines (which uses
2360 2364 # push).
2361 2365
2362 2366 #print 'push line: <%s>' % line # dbg
2363 2367 self.buffer.append(line)
2364 2368 full_source = '\n'.join(self.buffer)
2365 2369 more = self.run_source(full_source, self.filename)
2366 2370 if not more:
2367 2371 self.history_manager.store_inputs(self.execution_count,
2368 2372 '\n'.join(self.buffer_raw), full_source)
2369 2373 self.reset_buffer()
2370 2374 self.execution_count += 1
2371 2375 return more
2372 2376
2373 2377 def reset_buffer(self):
2374 2378 """Reset the input buffer."""
2375 2379 self.buffer[:] = []
2376 2380 self.buffer_raw[:] = []
2377 2381 self.input_splitter.reset()
2378 2382
2379 2383 # For backwards compatibility
2380 2384 resetbuffer = reset_buffer
2381 2385
2382 2386 def _is_secondary_block_start(self, s):
2383 2387 if not s.endswith(':'):
2384 2388 return False
2385 2389 if (s.startswith('elif') or
2386 2390 s.startswith('else') or
2387 2391 s.startswith('except') or
2388 2392 s.startswith('finally')):
2389 2393 return True
2390 2394
2391 2395 def _cleanup_ipy_script(self, script):
2392 2396 """Make a script safe for self.runlines()
2393 2397
2394 2398 Currently, IPython is lines based, with blocks being detected by
2395 2399 empty lines. This is a problem for block based scripts that may
2396 2400 not have empty lines after blocks. This script adds those empty
2397 2401 lines to make scripts safe for running in the current line based
2398 2402 IPython.
2399 2403 """
2400 2404 res = []
2401 2405 lines = script.splitlines()
2402 2406 level = 0
2403 2407
2404 2408 for l in lines:
2405 2409 lstripped = l.lstrip()
2406 2410 stripped = l.strip()
2407 2411 if not stripped:
2408 2412 continue
2409 2413 newlevel = len(l) - len(lstripped)
2410 2414 if level > 0 and newlevel == 0 and \
2411 2415 not self._is_secondary_block_start(stripped):
2412 2416 # add empty line
2413 2417 res.append('')
2414 2418 res.append(l)
2415 2419 level = newlevel
2416 2420
2417 2421 return '\n'.join(res) + '\n'
2418 2422
2419 2423 #-------------------------------------------------------------------------
2420 2424 # Things related to GUI support and pylab
2421 2425 #-------------------------------------------------------------------------
2422 2426
2423 2427 def enable_pylab(self, gui=None):
2424 2428 raise NotImplementedError('Implement enable_pylab in a subclass')
2425 2429
2426 2430 #-------------------------------------------------------------------------
2427 2431 # Utilities
2428 2432 #-------------------------------------------------------------------------
2429 2433
2430 2434 def var_expand(self,cmd,depth=0):
2431 2435 """Expand python variables in a string.
2432 2436
2433 2437 The depth argument indicates how many frames above the caller should
2434 2438 be walked to look for the local namespace where to expand variables.
2435 2439
2436 2440 The global namespace for expansion is always the user's interactive
2437 2441 namespace.
2438 2442 """
2439 2443
2440 2444 return str(ItplNS(cmd,
2441 2445 self.user_ns, # globals
2442 2446 # Skip our own frame in searching for locals:
2443 2447 sys._getframe(depth+1).f_locals # locals
2444 2448 ))
2445 2449
2446 2450 def mktempfile(self, data=None, prefix='ipython_edit_'):
2447 2451 """Make a new tempfile and return its filename.
2448 2452
2449 2453 This makes a call to tempfile.mktemp, but it registers the created
2450 2454 filename internally so ipython cleans it up at exit time.
2451 2455
2452 2456 Optional inputs:
2453 2457
2454 2458 - data(None): if data is given, it gets written out to the temp file
2455 2459 immediately, and the file is closed again."""
2456 2460
2457 2461 filename = tempfile.mktemp('.py', prefix)
2458 2462 self.tempfiles.append(filename)
2459 2463
2460 2464 if data:
2461 2465 tmp_file = open(filename,'w')
2462 2466 tmp_file.write(data)
2463 2467 tmp_file.close()
2464 2468 return filename
2465 2469
2466 2470 # TODO: This should be removed when Term is refactored.
2467 2471 def write(self,data):
2468 2472 """Write a string to the default output"""
2469 2473 io.Term.cout.write(data)
2470 2474
2471 2475 # TODO: This should be removed when Term is refactored.
2472 2476 def write_err(self,data):
2473 2477 """Write a string to the default error output"""
2474 2478 io.Term.cerr.write(data)
2475 2479
2476 2480 def ask_yes_no(self,prompt,default=True):
2477 2481 if self.quiet:
2478 2482 return True
2479 2483 return ask_yes_no(prompt,default)
2480 2484
2481 2485 def show_usage(self):
2482 2486 """Show a usage message"""
2483 2487 page.page(IPython.core.usage.interactive_usage)
2484 2488
2485 2489 #-------------------------------------------------------------------------
2486 2490 # Things related to IPython exiting
2487 2491 #-------------------------------------------------------------------------
2488 2492 def atexit_operations(self):
2489 2493 """This will be executed at the time of exit.
2490 2494
2491 2495 Cleanup operations and saving of persistent data that is done
2492 2496 unconditionally by IPython should be performed here.
2493 2497
2494 2498 For things that may depend on startup flags or platform specifics (such
2495 2499 as having readline or not), register a separate atexit function in the
2496 2500 code that has the appropriate information, rather than trying to
2497 2501 clutter
2498 2502 """
2499 2503 # Cleanup all tempfiles left around
2500 2504 for tfile in self.tempfiles:
2501 2505 try:
2502 2506 os.unlink(tfile)
2503 2507 except OSError:
2504 2508 pass
2505 2509
2506 2510 # Close the history session (this stores the end time and line count)
2507 2511 self.history_manager.end_session()
2508 2512
2509 2513 # Clear all user namespaces to release all references cleanly.
2510 2514 self.reset(new_session=False)
2511 2515
2512 2516 # Run user hooks
2513 2517 self.hooks.shutdown_hook()
2514 2518
2515 2519 def cleanup(self):
2516 2520 self.restore_sys_module_state()
2517 2521
2518 2522
2519 2523 class InteractiveShellABC(object):
2520 2524 """An abstract base class for InteractiveShell."""
2521 2525 __metaclass__ = abc.ABCMeta
2522 2526
2523 2527 InteractiveShellABC.register(InteractiveShell)
@@ -1,3455 +1,3456 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 import types
29 29 from cStringIO import StringIO
30 30 from getopt import getopt,GetoptError
31 31 from pprint import pformat
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.macro import Macro
50 50 from IPython.core import page
51 51 from IPython.core.prefilter import ESC_MAGIC
52 52 from IPython.lib.pylabtools import mpl_runner
53 53 from IPython.external.Itpl import itpl, printpl
54 54 from IPython.testing import decorators as testdec
55 55 from IPython.utils.io import file_read, nlprint
56 56 import IPython.utils.io
57 57 from IPython.utils.path import get_py_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 import IPython.utils.generics
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89
90 90 #***************************************************************************
91 91 # Main class implementing Magic functionality
92 92
93 93 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
94 94 # on construction of the main InteractiveShell object. Something odd is going
95 95 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
96 96 # eventually this needs to be clarified.
97 97 # BG: This is because InteractiveShell inherits from this, but is itself a
98 98 # Configurable. This messes up the MRO in some way. The fix is that we need to
99 99 # make Magic a configurable that InteractiveShell does not subclass.
100 100
101 101 class Magic:
102 102 """Magic functions for InteractiveShell.
103 103
104 104 Shell functions which can be reached as %function_name. All magic
105 105 functions should accept a string, which they can parse for their own
106 106 needs. This can make some functions easier to type, eg `%cd ../`
107 107 vs. `%cd("../")`
108 108
109 109 ALL definitions MUST begin with the prefix magic_. The user won't need it
110 110 at the command line, but it is is needed in the definition. """
111 111
112 112 # class globals
113 113 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
114 114 'Automagic is ON, % prefix NOT needed for magic functions.']
115 115
116 116 #......................................................................
117 117 # some utility functions
118 118
119 119 def __init__(self,shell):
120 120
121 121 self.options_table = {}
122 122 if profile is None:
123 123 self.magic_prun = self.profile_missing_notice
124 124 self.shell = shell
125 125
126 126 # namespace for holding state we may need
127 127 self._magic_state = Bunch()
128 128
129 129 def profile_missing_notice(self, *args, **kwargs):
130 130 error("""\
131 131 The profile module could not be found. It has been removed from the standard
132 132 python packages because of its non-free license. To use profiling, install the
133 133 python-profiler package from non-free.""")
134 134
135 135 def default_option(self,fn,optstr):
136 136 """Make an entry in the options_table for fn, with value optstr"""
137 137
138 138 if fn not in self.lsmagic():
139 139 error("%s is not a magic function" % fn)
140 140 self.options_table[fn] = optstr
141 141
142 142 def lsmagic(self):
143 143 """Return a list of currently available magic functions.
144 144
145 145 Gives a list of the bare names after mangling (['ls','cd', ...], not
146 146 ['magic_ls','magic_cd',...]"""
147 147
148 148 # FIXME. This needs a cleanup, in the way the magics list is built.
149 149
150 150 # magics in class definition
151 151 class_magic = lambda fn: fn.startswith('magic_') and \
152 152 callable(Magic.__dict__[fn])
153 153 # in instance namespace (run-time user additions)
154 154 inst_magic = lambda fn: fn.startswith('magic_') and \
155 155 callable(self.__dict__[fn])
156 156 # and bound magics by user (so they can access self):
157 157 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
158 158 callable(self.__class__.__dict__[fn])
159 159 magics = filter(class_magic,Magic.__dict__.keys()) + \
160 160 filter(inst_magic,self.__dict__.keys()) + \
161 161 filter(inst_bound_magic,self.__class__.__dict__.keys())
162 162 out = []
163 163 for fn in set(magics):
164 164 out.append(fn.replace('magic_','',1))
165 165 out.sort()
166 166 return out
167 167
168 168 def extract_input_lines(self, range_str, raw=False):
169 169 """Return as a string a set of input history slices.
170 170
171 171 Inputs:
172 172
173 173 - range_str: the set of slices is given as a string, like
174 174 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
175 175 which get their arguments as strings. The number before the / is the
176 176 session number: ~n goes n back from the current session.
177 177
178 178 Optional inputs:
179 179
180 180 - raw(False): by default, the processed input is used. If this is
181 181 true, the raw input history is used instead.
182 182
183 183 Note that slices can be called with two notations:
184 184
185 185 N:M -> standard python form, means including items N...(M-1).
186 186
187 187 N-M -> include items N..M (closed endpoint)."""
188 188 lines = self.shell.history_manager.\
189 189 get_hist_from_rangestr(range_str, raw=raw)
190 190 return "\n".join(x for _, _, x in lines)
191 191
192 192 def arg_err(self,func):
193 193 """Print docstring if incorrect arguments were passed"""
194 194 print 'Error in arguments:'
195 195 print oinspect.getdoc(func)
196 196
197 197 def format_latex(self,strng):
198 198 """Format a string for latex inclusion."""
199 199
200 200 # Characters that need to be escaped for latex:
201 201 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
202 202 # Magic command names as headers:
203 203 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
204 204 re.MULTILINE)
205 205 # Magic commands
206 206 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
207 207 re.MULTILINE)
208 208 # Paragraph continue
209 209 par_re = re.compile(r'\\$',re.MULTILINE)
210 210
211 211 # The "\n" symbol
212 212 newline_re = re.compile(r'\\n')
213 213
214 214 # Now build the string for output:
215 215 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
216 216 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
217 217 strng)
218 218 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
219 219 strng = par_re.sub(r'\\\\',strng)
220 220 strng = escape_re.sub(r'\\\1',strng)
221 221 strng = newline_re.sub(r'\\textbackslash{}n',strng)
222 222 return strng
223 223
224 224 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
225 225 """Parse options passed to an argument string.
226 226
227 227 The interface is similar to that of getopt(), but it returns back a
228 228 Struct with the options as keys and the stripped argument string still
229 229 as a string.
230 230
231 231 arg_str is quoted as a true sys.argv vector by using shlex.split.
232 232 This allows us to easily expand variables, glob files, quote
233 233 arguments, etc.
234 234
235 235 Options:
236 236 -mode: default 'string'. If given as 'list', the argument string is
237 237 returned as a list (split on whitespace) instead of a string.
238 238
239 239 -list_all: put all option values in lists. Normally only options
240 240 appearing more than once are put in a list.
241 241
242 242 -posix (True): whether to split the input line in POSIX mode or not,
243 243 as per the conventions outlined in the shlex module from the
244 244 standard library."""
245 245
246 246 # inject default options at the beginning of the input line
247 247 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
248 248 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
249 249
250 250 mode = kw.get('mode','string')
251 251 if mode not in ['string','list']:
252 252 raise ValueError,'incorrect mode given: %s' % mode
253 253 # Get options
254 254 list_all = kw.get('list_all',0)
255 255 posix = kw.get('posix', os.name == 'posix')
256 256
257 257 # Check if we have more than one argument to warrant extra processing:
258 258 odict = {} # Dictionary with options
259 259 args = arg_str.split()
260 260 if len(args) >= 1:
261 261 # If the list of inputs only has 0 or 1 thing in it, there's no
262 262 # need to look for options
263 263 argv = arg_split(arg_str,posix)
264 264 # Do regular option processing
265 265 try:
266 266 opts,args = getopt(argv,opt_str,*long_opts)
267 267 except GetoptError,e:
268 268 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
269 269 " ".join(long_opts)))
270 270 for o,a in opts:
271 271 if o.startswith('--'):
272 272 o = o[2:]
273 273 else:
274 274 o = o[1:]
275 275 try:
276 276 odict[o].append(a)
277 277 except AttributeError:
278 278 odict[o] = [odict[o],a]
279 279 except KeyError:
280 280 if list_all:
281 281 odict[o] = [a]
282 282 else:
283 283 odict[o] = a
284 284
285 285 # Prepare opts,args for return
286 286 opts = Struct(odict)
287 287 if mode == 'string':
288 288 args = ' '.join(args)
289 289
290 290 return opts,args
291 291
292 292 #......................................................................
293 293 # And now the actual magic functions
294 294
295 295 # Functions for IPython shell work (vars,funcs, config, etc)
296 296 def magic_lsmagic(self, parameter_s = ''):
297 297 """List currently available magic functions."""
298 298 mesc = ESC_MAGIC
299 299 print 'Available magic functions:\n'+mesc+\
300 300 (' '+mesc).join(self.lsmagic())
301 301 print '\n' + Magic.auto_status[self.shell.automagic]
302 302 return None
303 303
304 304 def magic_magic(self, parameter_s = ''):
305 305 """Print information about the magic function system.
306 306
307 307 Supported formats: -latex, -brief, -rest
308 308 """
309 309
310 310 mode = ''
311 311 try:
312 312 if parameter_s.split()[0] == '-latex':
313 313 mode = 'latex'
314 314 if parameter_s.split()[0] == '-brief':
315 315 mode = 'brief'
316 316 if parameter_s.split()[0] == '-rest':
317 317 mode = 'rest'
318 318 rest_docs = []
319 319 except:
320 320 pass
321 321
322 322 magic_docs = []
323 323 for fname in self.lsmagic():
324 324 mname = 'magic_' + fname
325 325 for space in (Magic,self,self.__class__):
326 326 try:
327 327 fn = space.__dict__[mname]
328 328 except KeyError:
329 329 pass
330 330 else:
331 331 break
332 332 if mode == 'brief':
333 333 # only first line
334 334 if fn.__doc__:
335 335 fndoc = fn.__doc__.split('\n',1)[0]
336 336 else:
337 337 fndoc = 'No documentation'
338 338 else:
339 339 if fn.__doc__:
340 340 fndoc = fn.__doc__.rstrip()
341 341 else:
342 342 fndoc = 'No documentation'
343 343
344 344
345 345 if mode == 'rest':
346 346 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
347 347 fname,fndoc))
348 348
349 349 else:
350 350 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
351 351 fname,fndoc))
352 352
353 353 magic_docs = ''.join(magic_docs)
354 354
355 355 if mode == 'rest':
356 356 return "".join(rest_docs)
357 357
358 358 if mode == 'latex':
359 359 print self.format_latex(magic_docs)
360 360 return
361 361 else:
362 362 magic_docs = format_screen(magic_docs)
363 363 if mode == 'brief':
364 364 return magic_docs
365 365
366 366 outmsg = """
367 367 IPython's 'magic' functions
368 368 ===========================
369 369
370 370 The magic function system provides a series of functions which allow you to
371 371 control the behavior of IPython itself, plus a lot of system-type
372 372 features. All these functions are prefixed with a % character, but parameters
373 373 are given without parentheses or quotes.
374 374
375 375 NOTE: If you have 'automagic' enabled (via the command line option or with the
376 376 %automagic function), you don't need to type in the % explicitly. By default,
377 377 IPython ships with automagic on, so you should only rarely need the % escape.
378 378
379 379 Example: typing '%cd mydir' (without the quotes) changes you working directory
380 380 to 'mydir', if it exists.
381 381
382 382 You can define your own magic functions to extend the system. See the supplied
383 383 ipythonrc and example-magic.py files for details (in your ipython
384 384 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
385 385
386 386 You can also define your own aliased names for magic functions. In your
387 387 ipythonrc file, placing a line like:
388 388
389 389 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
390 390
391 391 will define %pf as a new name for %profile.
392 392
393 393 You can also call magics in code using the magic() function, which IPython
394 394 automatically adds to the builtin namespace. Type 'magic?' for details.
395 395
396 396 For a list of the available magic functions, use %lsmagic. For a description
397 397 of any of them, type %magic_name?, e.g. '%cd?'.
398 398
399 399 Currently the magic system has the following functions:\n"""
400 400
401 401 mesc = ESC_MAGIC
402 402 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
403 403 "\n\n%s%s\n\n%s" % (outmsg,
404 404 magic_docs,mesc,mesc,
405 405 (' '+mesc).join(self.lsmagic()),
406 406 Magic.auto_status[self.shell.automagic] ) )
407 407 page.page(outmsg)
408 408
409 409 def magic_automagic(self, parameter_s = ''):
410 410 """Make magic functions callable without having to type the initial %.
411 411
412 412 Without argumentsl toggles on/off (when off, you must call it as
413 413 %automagic, of course). With arguments it sets the value, and you can
414 414 use any of (case insensitive):
415 415
416 416 - on,1,True: to activate
417 417
418 418 - off,0,False: to deactivate.
419 419
420 420 Note that magic functions have lowest priority, so if there's a
421 421 variable whose name collides with that of a magic fn, automagic won't
422 422 work for that function (you get the variable instead). However, if you
423 423 delete the variable (del var), the previously shadowed magic function
424 424 becomes visible to automagic again."""
425 425
426 426 arg = parameter_s.lower()
427 427 if parameter_s in ('on','1','true'):
428 428 self.shell.automagic = True
429 429 elif parameter_s in ('off','0','false'):
430 430 self.shell.automagic = False
431 431 else:
432 432 self.shell.automagic = not self.shell.automagic
433 433 print '\n' + Magic.auto_status[self.shell.automagic]
434 434
435 435 @testdec.skip_doctest
436 436 def magic_autocall(self, parameter_s = ''):
437 437 """Make functions callable without having to type parentheses.
438 438
439 439 Usage:
440 440
441 441 %autocall [mode]
442 442
443 443 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
444 444 value is toggled on and off (remembering the previous state).
445 445
446 446 In more detail, these values mean:
447 447
448 448 0 -> fully disabled
449 449
450 450 1 -> active, but do not apply if there are no arguments on the line.
451 451
452 452 In this mode, you get:
453 453
454 454 In [1]: callable
455 455 Out[1]: <built-in function callable>
456 456
457 457 In [2]: callable 'hello'
458 458 ------> callable('hello')
459 459 Out[2]: False
460 460
461 461 2 -> Active always. Even if no arguments are present, the callable
462 462 object is called:
463 463
464 464 In [2]: float
465 465 ------> float()
466 466 Out[2]: 0.0
467 467
468 468 Note that even with autocall off, you can still use '/' at the start of
469 469 a line to treat the first argument on the command line as a function
470 470 and add parentheses to it:
471 471
472 472 In [8]: /str 43
473 473 ------> str(43)
474 474 Out[8]: '43'
475 475
476 476 # all-random (note for auto-testing)
477 477 """
478 478
479 479 if parameter_s:
480 480 arg = int(parameter_s)
481 481 else:
482 482 arg = 'toggle'
483 483
484 484 if not arg in (0,1,2,'toggle'):
485 485 error('Valid modes: (0->Off, 1->Smart, 2->Full')
486 486 return
487 487
488 488 if arg in (0,1,2):
489 489 self.shell.autocall = arg
490 490 else: # toggle
491 491 if self.shell.autocall:
492 492 self._magic_state.autocall_save = self.shell.autocall
493 493 self.shell.autocall = 0
494 494 else:
495 495 try:
496 496 self.shell.autocall = self._magic_state.autocall_save
497 497 except AttributeError:
498 498 self.shell.autocall = self._magic_state.autocall_save = 1
499 499
500 500 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
501 501
502 502
503 503 def magic_page(self, parameter_s=''):
504 504 """Pretty print the object and display it through a pager.
505 505
506 506 %page [options] OBJECT
507 507
508 508 If no object is given, use _ (last output).
509 509
510 510 Options:
511 511
512 512 -r: page str(object), don't pretty-print it."""
513 513
514 514 # After a function contributed by Olivier Aubert, slightly modified.
515 515
516 516 # Process options/args
517 517 opts,args = self.parse_options(parameter_s,'r')
518 518 raw = 'r' in opts
519 519
520 520 oname = args and args or '_'
521 521 info = self._ofind(oname)
522 522 if info['found']:
523 523 txt = (raw and str or pformat)( info['obj'] )
524 524 page.page(txt)
525 525 else:
526 526 print 'Object `%s` not found' % oname
527 527
528 528 def magic_profile(self, parameter_s=''):
529 529 """Print your currently active IPython profile."""
530 530 if self.shell.profile:
531 531 printpl('Current IPython profile: $self.shell.profile.')
532 532 else:
533 533 print 'No profile active.'
534 534
535 535 def magic_pinfo(self, parameter_s='', namespaces=None):
536 536 """Provide detailed information about an object.
537 537
538 538 '%pinfo object' is just a synonym for object? or ?object."""
539 539
540 540 #print 'pinfo par: <%s>' % parameter_s # dbg
541 541
542 542
543 543 # detail_level: 0 -> obj? , 1 -> obj??
544 544 detail_level = 0
545 545 # We need to detect if we got called as 'pinfo pinfo foo', which can
546 546 # happen if the user types 'pinfo foo?' at the cmd line.
547 547 pinfo,qmark1,oname,qmark2 = \
548 548 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
549 549 if pinfo or qmark1 or qmark2:
550 550 detail_level = 1
551 551 if "*" in oname:
552 552 self.magic_psearch(oname)
553 553 else:
554 554 self.shell._inspect('pinfo', oname, detail_level=detail_level,
555 555 namespaces=namespaces)
556 556
557 557 def magic_pinfo2(self, parameter_s='', namespaces=None):
558 558 """Provide extra detailed information about an object.
559 559
560 560 '%pinfo2 object' is just a synonym for object?? or ??object."""
561 561 self.shell._inspect('pinfo', parameter_s, detail_level=1,
562 562 namespaces=namespaces)
563 563
564 564 @testdec.skip_doctest
565 565 def magic_pdef(self, parameter_s='', namespaces=None):
566 566 """Print the definition header for any callable object.
567 567
568 568 If the object is a class, print the constructor information.
569 569
570 570 Examples
571 571 --------
572 572 ::
573 573
574 574 In [3]: %pdef urllib.urlopen
575 575 urllib.urlopen(url, data=None, proxies=None)
576 576 """
577 577 self._inspect('pdef',parameter_s, namespaces)
578 578
579 579 def magic_pdoc(self, parameter_s='', namespaces=None):
580 580 """Print the docstring for an object.
581 581
582 582 If the given object is a class, it will print both the class and the
583 583 constructor docstrings."""
584 584 self._inspect('pdoc',parameter_s, namespaces)
585 585
586 586 def magic_psource(self, parameter_s='', namespaces=None):
587 587 """Print (or run through pager) the source code for an object."""
588 588 self._inspect('psource',parameter_s, namespaces)
589 589
590 590 def magic_pfile(self, parameter_s=''):
591 591 """Print (or run through pager) the file where an object is defined.
592 592
593 593 The file opens at the line where the object definition begins. IPython
594 594 will honor the environment variable PAGER if set, and otherwise will
595 595 do its best to print the file in a convenient form.
596 596
597 597 If the given argument is not an object currently defined, IPython will
598 598 try to interpret it as a filename (automatically adding a .py extension
599 599 if needed). You can thus use %pfile as a syntax highlighting code
600 600 viewer."""
601 601
602 602 # first interpret argument as an object name
603 603 out = self._inspect('pfile',parameter_s)
604 604 # if not, try the input as a filename
605 605 if out == 'not found':
606 606 try:
607 607 filename = get_py_filename(parameter_s)
608 608 except IOError,msg:
609 609 print msg
610 610 return
611 611 page.page(self.shell.inspector.format(file(filename).read()))
612 612
613 613 def magic_psearch(self, parameter_s=''):
614 614 """Search for object in namespaces by wildcard.
615 615
616 616 %psearch [options] PATTERN [OBJECT TYPE]
617 617
618 618 Note: ? can be used as a synonym for %psearch, at the beginning or at
619 619 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
620 620 rest of the command line must be unchanged (options come first), so
621 621 for example the following forms are equivalent
622 622
623 623 %psearch -i a* function
624 624 -i a* function?
625 625 ?-i a* function
626 626
627 627 Arguments:
628 628
629 629 PATTERN
630 630
631 631 where PATTERN is a string containing * as a wildcard similar to its
632 632 use in a shell. The pattern is matched in all namespaces on the
633 633 search path. By default objects starting with a single _ are not
634 634 matched, many IPython generated objects have a single
635 635 underscore. The default is case insensitive matching. Matching is
636 636 also done on the attributes of objects and not only on the objects
637 637 in a module.
638 638
639 639 [OBJECT TYPE]
640 640
641 641 Is the name of a python type from the types module. The name is
642 642 given in lowercase without the ending type, ex. StringType is
643 643 written string. By adding a type here only objects matching the
644 644 given type are matched. Using all here makes the pattern match all
645 645 types (this is the default).
646 646
647 647 Options:
648 648
649 649 -a: makes the pattern match even objects whose names start with a
650 650 single underscore. These names are normally ommitted from the
651 651 search.
652 652
653 653 -i/-c: make the pattern case insensitive/sensitive. If neither of
654 654 these options is given, the default is read from your ipythonrc
655 655 file. The option name which sets this value is
656 656 'wildcards_case_sensitive'. If this option is not specified in your
657 657 ipythonrc file, IPython's internal default is to do a case sensitive
658 658 search.
659 659
660 660 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
661 661 specifiy can be searched in any of the following namespaces:
662 662 'builtin', 'user', 'user_global','internal', 'alias', where
663 663 'builtin' and 'user' are the search defaults. Note that you should
664 664 not use quotes when specifying namespaces.
665 665
666 666 'Builtin' contains the python module builtin, 'user' contains all
667 667 user data, 'alias' only contain the shell aliases and no python
668 668 objects, 'internal' contains objects used by IPython. The
669 669 'user_global' namespace is only used by embedded IPython instances,
670 670 and it contains module-level globals. You can add namespaces to the
671 671 search with -s or exclude them with -e (these options can be given
672 672 more than once).
673 673
674 674 Examples:
675 675
676 676 %psearch a* -> objects beginning with an a
677 677 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
678 678 %psearch a* function -> all functions beginning with an a
679 679 %psearch re.e* -> objects beginning with an e in module re
680 680 %psearch r*.e* -> objects that start with e in modules starting in r
681 681 %psearch r*.* string -> all strings in modules beginning with r
682 682
683 683 Case sensitve search:
684 684
685 685 %psearch -c a* list all object beginning with lower case a
686 686
687 687 Show objects beginning with a single _:
688 688
689 689 %psearch -a _* list objects beginning with a single underscore"""
690 690 try:
691 691 parameter_s = parameter_s.encode('ascii')
692 692 except UnicodeEncodeError:
693 693 print 'Python identifiers can only contain ascii characters.'
694 694 return
695 695
696 696 # default namespaces to be searched
697 697 def_search = ['user','builtin']
698 698
699 699 # Process options/args
700 700 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
701 701 opt = opts.get
702 702 shell = self.shell
703 703 psearch = shell.inspector.psearch
704 704
705 705 # select case options
706 706 if opts.has_key('i'):
707 707 ignore_case = True
708 708 elif opts.has_key('c'):
709 709 ignore_case = False
710 710 else:
711 711 ignore_case = not shell.wildcards_case_sensitive
712 712
713 713 # Build list of namespaces to search from user options
714 714 def_search.extend(opt('s',[]))
715 715 ns_exclude = ns_exclude=opt('e',[])
716 716 ns_search = [nm for nm in def_search if nm not in ns_exclude]
717 717
718 718 # Call the actual search
719 719 try:
720 720 psearch(args,shell.ns_table,ns_search,
721 721 show_all=opt('a'),ignore_case=ignore_case)
722 722 except:
723 723 shell.showtraceback()
724 724
725 725 @testdec.skip_doctest
726 726 def magic_who_ls(self, parameter_s=''):
727 727 """Return a sorted list of all interactive variables.
728 728
729 729 If arguments are given, only variables of types matching these
730 730 arguments are returned.
731 731
732 732 Examples
733 733 --------
734 734
735 735 Define two variables and list them with who_ls::
736 736
737 737 In [1]: alpha = 123
738 738
739 739 In [2]: beta = 'test'
740 740
741 741 In [3]: %who_ls
742 742 Out[3]: ['alpha', 'beta']
743 743
744 744 In [4]: %who_ls int
745 745 Out[4]: ['alpha']
746 746
747 747 In [5]: %who_ls str
748 748 Out[5]: ['beta']
749 749 """
750 750
751 751 user_ns = self.shell.user_ns
752 752 internal_ns = self.shell.internal_ns
753 753 user_ns_hidden = self.shell.user_ns_hidden
754 754 out = [ i for i in user_ns
755 755 if not i.startswith('_') \
756 756 and not (i in internal_ns or i in user_ns_hidden) ]
757 757
758 758 typelist = parameter_s.split()
759 759 if typelist:
760 760 typeset = set(typelist)
761 761 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
762 762
763 763 out.sort()
764 764 return out
765 765
766 766 @testdec.skip_doctest
767 767 def magic_who(self, parameter_s=''):
768 768 """Print all interactive variables, with some minimal formatting.
769 769
770 770 If any arguments are given, only variables whose type matches one of
771 771 these are printed. For example:
772 772
773 773 %who function str
774 774
775 775 will only list functions and strings, excluding all other types of
776 776 variables. To find the proper type names, simply use type(var) at a
777 777 command line to see how python prints type names. For example:
778 778
779 779 In [1]: type('hello')\\
780 780 Out[1]: <type 'str'>
781 781
782 782 indicates that the type name for strings is 'str'.
783 783
784 784 %who always excludes executed names loaded through your configuration
785 785 file and things which are internal to IPython.
786 786
787 787 This is deliberate, as typically you may load many modules and the
788 788 purpose of %who is to show you only what you've manually defined.
789 789
790 790 Examples
791 791 --------
792 792
793 793 Define two variables and list them with who::
794 794
795 795 In [1]: alpha = 123
796 796
797 797 In [2]: beta = 'test'
798 798
799 799 In [3]: %who
800 800 alpha beta
801 801
802 802 In [4]: %who int
803 803 alpha
804 804
805 805 In [5]: %who str
806 806 beta
807 807 """
808 808
809 809 varlist = self.magic_who_ls(parameter_s)
810 810 if not varlist:
811 811 if parameter_s:
812 812 print 'No variables match your requested type.'
813 813 else:
814 814 print 'Interactive namespace is empty.'
815 815 return
816 816
817 817 # if we have variables, move on...
818 818 count = 0
819 819 for i in varlist:
820 820 print i+'\t',
821 821 count += 1
822 822 if count > 8:
823 823 count = 0
824 824 print
825 825 print
826 826
827 827 @testdec.skip_doctest
828 828 def magic_whos(self, parameter_s=''):
829 829 """Like %who, but gives some extra information about each variable.
830 830
831 831 The same type filtering of %who can be applied here.
832 832
833 833 For all variables, the type is printed. Additionally it prints:
834 834
835 835 - For {},[],(): their length.
836 836
837 837 - For numpy and Numeric arrays, a summary with shape, number of
838 838 elements, typecode and size in memory.
839 839
840 840 - Everything else: a string representation, snipping their middle if
841 841 too long.
842 842
843 843 Examples
844 844 --------
845 845
846 846 Define two variables and list them with whos::
847 847
848 848 In [1]: alpha = 123
849 849
850 850 In [2]: beta = 'test'
851 851
852 852 In [3]: %whos
853 853 Variable Type Data/Info
854 854 --------------------------------
855 855 alpha int 123
856 856 beta str test
857 857 """
858 858
859 859 varnames = self.magic_who_ls(parameter_s)
860 860 if not varnames:
861 861 if parameter_s:
862 862 print 'No variables match your requested type.'
863 863 else:
864 864 print 'Interactive namespace is empty.'
865 865 return
866 866
867 867 # if we have variables, move on...
868 868
869 869 # for these types, show len() instead of data:
870 870 seq_types = [types.DictType,types.ListType,types.TupleType]
871 871
872 872 # for numpy/Numeric arrays, display summary info
873 873 try:
874 874 import numpy
875 875 except ImportError:
876 876 ndarray_type = None
877 877 else:
878 878 ndarray_type = numpy.ndarray.__name__
879 879 try:
880 880 import Numeric
881 881 except ImportError:
882 882 array_type = None
883 883 else:
884 884 array_type = Numeric.ArrayType.__name__
885 885
886 886 # Find all variable names and types so we can figure out column sizes
887 887 def get_vars(i):
888 888 return self.shell.user_ns[i]
889 889
890 890 # some types are well known and can be shorter
891 891 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
892 892 def type_name(v):
893 893 tn = type(v).__name__
894 894 return abbrevs.get(tn,tn)
895 895
896 896 varlist = map(get_vars,varnames)
897 897
898 898 typelist = []
899 899 for vv in varlist:
900 900 tt = type_name(vv)
901 901
902 902 if tt=='instance':
903 903 typelist.append( abbrevs.get(str(vv.__class__),
904 904 str(vv.__class__)))
905 905 else:
906 906 typelist.append(tt)
907 907
908 908 # column labels and # of spaces as separator
909 909 varlabel = 'Variable'
910 910 typelabel = 'Type'
911 911 datalabel = 'Data/Info'
912 912 colsep = 3
913 913 # variable format strings
914 914 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
915 915 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
916 916 aformat = "%s: %s elems, type `%s`, %s bytes"
917 917 # find the size of the columns to format the output nicely
918 918 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
919 919 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
920 920 # table header
921 921 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
922 922 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
923 923 # and the table itself
924 924 kb = 1024
925 925 Mb = 1048576 # kb**2
926 926 for vname,var,vtype in zip(varnames,varlist,typelist):
927 927 print itpl(vformat),
928 928 if vtype in seq_types:
929 929 print len(var)
930 930 elif vtype in [array_type,ndarray_type]:
931 931 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
932 932 if vtype==ndarray_type:
933 933 # numpy
934 934 vsize = var.size
935 935 vbytes = vsize*var.itemsize
936 936 vdtype = var.dtype
937 937 else:
938 938 # Numeric
939 939 vsize = Numeric.size(var)
940 940 vbytes = vsize*var.itemsize()
941 941 vdtype = var.typecode()
942 942
943 943 if vbytes < 100000:
944 944 print aformat % (vshape,vsize,vdtype,vbytes)
945 945 else:
946 946 print aformat % (vshape,vsize,vdtype,vbytes),
947 947 if vbytes < Mb:
948 948 print '(%s kb)' % (vbytes/kb,)
949 949 else:
950 950 print '(%s Mb)' % (vbytes/Mb,)
951 951 else:
952 952 try:
953 953 vstr = str(var)
954 954 except UnicodeEncodeError:
955 955 vstr = unicode(var).encode(sys.getdefaultencoding(),
956 956 'backslashreplace')
957 957 vstr = vstr.replace('\n','\\n')
958 958 if len(vstr) < 50:
959 959 print vstr
960 960 else:
961 961 printpl(vfmt_short)
962 962
963 963 def magic_reset(self, parameter_s=''):
964 964 """Resets the namespace by removing all names defined by the user.
965 965
966 966 Input/Output history are left around in case you need them.
967 967
968 968 Parameters
969 969 ----------
970 970 -y : force reset without asking for confirmation.
971 971
972 972 Examples
973 973 --------
974 974 In [6]: a = 1
975 975
976 976 In [7]: a
977 977 Out[7]: 1
978 978
979 979 In [8]: 'a' in _ip.user_ns
980 980 Out[8]: True
981 981
982 982 In [9]: %reset -f
983 983
984 984 In [10]: 'a' in _ip.user_ns
985 985 Out[10]: False
986 986 """
987 987
988 988 if parameter_s == '-f':
989 989 ans = True
990 990 else:
991 991 ans = self.shell.ask_yes_no(
992 992 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
993 993 if not ans:
994 994 print 'Nothing done.'
995 995 return
996 996 user_ns = self.shell.user_ns
997 997 for i in self.magic_who_ls():
998 998 del(user_ns[i])
999 999
1000 1000 # Also flush the private list of module references kept for script
1001 1001 # execution protection
1002 1002 self.shell.clear_main_mod_cache()
1003 1003
1004 1004 def magic_reset_selective(self, parameter_s=''):
1005 1005 """Resets the namespace by removing names defined by the user.
1006 1006
1007 1007 Input/Output history are left around in case you need them.
1008 1008
1009 1009 %reset_selective [-f] regex
1010 1010
1011 1011 No action is taken if regex is not included
1012 1012
1013 1013 Options
1014 1014 -f : force reset without asking for confirmation.
1015 1015
1016 1016 Examples
1017 1017 --------
1018 1018
1019 1019 We first fully reset the namespace so your output looks identical to
1020 1020 this example for pedagogical reasons; in practice you do not need a
1021 1021 full reset.
1022 1022
1023 1023 In [1]: %reset -f
1024 1024
1025 1025 Now, with a clean namespace we can make a few variables and use
1026 1026 %reset_selective to only delete names that match our regexp:
1027 1027
1028 1028 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1029 1029
1030 1030 In [3]: who_ls
1031 1031 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1032 1032
1033 1033 In [4]: %reset_selective -f b[2-3]m
1034 1034
1035 1035 In [5]: who_ls
1036 1036 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1037 1037
1038 1038 In [6]: %reset_selective -f d
1039 1039
1040 1040 In [7]: who_ls
1041 1041 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1042 1042
1043 1043 In [8]: %reset_selective -f c
1044 1044
1045 1045 In [9]: who_ls
1046 1046 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1047 1047
1048 1048 In [10]: %reset_selective -f b
1049 1049
1050 1050 In [11]: who_ls
1051 1051 Out[11]: ['a']
1052 1052 """
1053 1053
1054 1054 opts, regex = self.parse_options(parameter_s,'f')
1055 1055
1056 1056 if opts.has_key('f'):
1057 1057 ans = True
1058 1058 else:
1059 1059 ans = self.shell.ask_yes_no(
1060 1060 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1061 1061 if not ans:
1062 1062 print 'Nothing done.'
1063 1063 return
1064 1064 user_ns = self.shell.user_ns
1065 1065 if not regex:
1066 1066 print 'No regex pattern specified. Nothing done.'
1067 1067 return
1068 1068 else:
1069 1069 try:
1070 1070 m = re.compile(regex)
1071 1071 except TypeError:
1072 1072 raise TypeError('regex must be a string or compiled pattern')
1073 1073 for i in self.magic_who_ls():
1074 1074 if m.search(i):
1075 1075 del(user_ns[i])
1076 1076
1077 1077 def magic_logstart(self,parameter_s=''):
1078 1078 """Start logging anywhere in a session.
1079 1079
1080 1080 %logstart [-o|-r|-t] [log_name [log_mode]]
1081 1081
1082 1082 If no name is given, it defaults to a file named 'ipython_log.py' in your
1083 1083 current directory, in 'rotate' mode (see below).
1084 1084
1085 1085 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1086 1086 history up to that point and then continues logging.
1087 1087
1088 1088 %logstart takes a second optional parameter: logging mode. This can be one
1089 1089 of (note that the modes are given unquoted):\\
1090 1090 append: well, that says it.\\
1091 1091 backup: rename (if exists) to name~ and start name.\\
1092 1092 global: single logfile in your home dir, appended to.\\
1093 1093 over : overwrite existing log.\\
1094 1094 rotate: create rotating logs name.1~, name.2~, etc.
1095 1095
1096 1096 Options:
1097 1097
1098 1098 -o: log also IPython's output. In this mode, all commands which
1099 1099 generate an Out[NN] prompt are recorded to the logfile, right after
1100 1100 their corresponding input line. The output lines are always
1101 1101 prepended with a '#[Out]# ' marker, so that the log remains valid
1102 1102 Python code.
1103 1103
1104 1104 Since this marker is always the same, filtering only the output from
1105 1105 a log is very easy, using for example a simple awk call:
1106 1106
1107 1107 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1108 1108
1109 1109 -r: log 'raw' input. Normally, IPython's logs contain the processed
1110 1110 input, so that user lines are logged in their final form, converted
1111 1111 into valid Python. For example, %Exit is logged as
1112 1112 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1113 1113 exactly as typed, with no transformations applied.
1114 1114
1115 1115 -t: put timestamps before each input line logged (these are put in
1116 1116 comments)."""
1117 1117
1118 1118 opts,par = self.parse_options(parameter_s,'ort')
1119 1119 log_output = 'o' in opts
1120 1120 log_raw_input = 'r' in opts
1121 1121 timestamp = 't' in opts
1122 1122
1123 1123 logger = self.shell.logger
1124 1124
1125 1125 # if no args are given, the defaults set in the logger constructor by
1126 1126 # ipytohn remain valid
1127 1127 if par:
1128 1128 try:
1129 1129 logfname,logmode = par.split()
1130 1130 except:
1131 1131 logfname = par
1132 1132 logmode = 'backup'
1133 1133 else:
1134 1134 logfname = logger.logfname
1135 1135 logmode = logger.logmode
1136 1136 # put logfname into rc struct as if it had been called on the command
1137 1137 # line, so it ends up saved in the log header Save it in case we need
1138 1138 # to restore it...
1139 1139 old_logfile = self.shell.logfile
1140 1140 if logfname:
1141 1141 logfname = os.path.expanduser(logfname)
1142 1142 self.shell.logfile = logfname
1143 1143
1144 1144 loghead = '# IPython log file\n\n'
1145 1145 try:
1146 1146 started = logger.logstart(logfname,loghead,logmode,
1147 1147 log_output,timestamp,log_raw_input)
1148 1148 except:
1149 1149 self.shell.logfile = old_logfile
1150 1150 warn("Couldn't start log: %s" % sys.exc_info()[1])
1151 1151 else:
1152 1152 # log input history up to this point, optionally interleaving
1153 1153 # output if requested
1154 1154
1155 1155 if timestamp:
1156 1156 # disable timestamping for the previous history, since we've
1157 1157 # lost those already (no time machine here).
1158 1158 logger.timestamp = False
1159 1159
1160 1160 if log_raw_input:
1161 1161 input_hist = self.shell.history_manager.input_hist_raw
1162 1162 else:
1163 1163 input_hist = self.shell.history_manager.input_hist_parsed
1164 1164
1165 1165 if log_output:
1166 1166 log_write = logger.log_write
1167 1167 output_hist = self.shell.history_manager.output_hist
1168 1168 for n in range(1,len(input_hist)-1):
1169 1169 log_write(input_hist[n].rstrip())
1170 1170 if n in output_hist:
1171 1171 log_write(repr(output_hist[n]),'output')
1172 1172 else:
1173 1173 logger.log_write(''.join(input_hist[1:]))
1174 1174 if timestamp:
1175 1175 # re-enable timestamping
1176 1176 logger.timestamp = True
1177 1177
1178 1178 print ('Activating auto-logging. '
1179 1179 'Current session state plus future input saved.')
1180 1180 logger.logstate()
1181 1181
1182 1182 def magic_logstop(self,parameter_s=''):
1183 1183 """Fully stop logging and close log file.
1184 1184
1185 1185 In order to start logging again, a new %logstart call needs to be made,
1186 1186 possibly (though not necessarily) with a new filename, mode and other
1187 1187 options."""
1188 1188 self.logger.logstop()
1189 1189
1190 1190 def magic_logoff(self,parameter_s=''):
1191 1191 """Temporarily stop logging.
1192 1192
1193 1193 You must have previously started logging."""
1194 1194 self.shell.logger.switch_log(0)
1195 1195
1196 1196 def magic_logon(self,parameter_s=''):
1197 1197 """Restart logging.
1198 1198
1199 1199 This function is for restarting logging which you've temporarily
1200 1200 stopped with %logoff. For starting logging for the first time, you
1201 1201 must use the %logstart function, which allows you to specify an
1202 1202 optional log filename."""
1203 1203
1204 1204 self.shell.logger.switch_log(1)
1205 1205
1206 1206 def magic_logstate(self,parameter_s=''):
1207 1207 """Print the status of the logging system."""
1208 1208
1209 1209 self.shell.logger.logstate()
1210 1210
1211 1211 def magic_pdb(self, parameter_s=''):
1212 1212 """Control the automatic calling of the pdb interactive debugger.
1213 1213
1214 1214 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1215 1215 argument it works as a toggle.
1216 1216
1217 1217 When an exception is triggered, IPython can optionally call the
1218 1218 interactive pdb debugger after the traceback printout. %pdb toggles
1219 1219 this feature on and off.
1220 1220
1221 1221 The initial state of this feature is set in your ipythonrc
1222 1222 configuration file (the variable is called 'pdb').
1223 1223
1224 1224 If you want to just activate the debugger AFTER an exception has fired,
1225 1225 without having to type '%pdb on' and rerunning your code, you can use
1226 1226 the %debug magic."""
1227 1227
1228 1228 par = parameter_s.strip().lower()
1229 1229
1230 1230 if par:
1231 1231 try:
1232 1232 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1233 1233 except KeyError:
1234 1234 print ('Incorrect argument. Use on/1, off/0, '
1235 1235 'or nothing for a toggle.')
1236 1236 return
1237 1237 else:
1238 1238 # toggle
1239 1239 new_pdb = not self.shell.call_pdb
1240 1240
1241 1241 # set on the shell
1242 1242 self.shell.call_pdb = new_pdb
1243 1243 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1244 1244
1245 1245 def magic_debug(self, parameter_s=''):
1246 1246 """Activate the interactive debugger in post-mortem mode.
1247 1247
1248 1248 If an exception has just occurred, this lets you inspect its stack
1249 1249 frames interactively. Note that this will always work only on the last
1250 1250 traceback that occurred, so you must call this quickly after an
1251 1251 exception that you wish to inspect has fired, because if another one
1252 1252 occurs, it clobbers the previous one.
1253 1253
1254 1254 If you want IPython to automatically do this on every exception, see
1255 1255 the %pdb magic for more details.
1256 1256 """
1257 1257 self.shell.debugger(force=True)
1258 1258
1259 1259 @testdec.skip_doctest
1260 1260 def magic_prun(self, parameter_s ='',user_mode=1,
1261 1261 opts=None,arg_lst=None,prog_ns=None):
1262 1262
1263 1263 """Run a statement through the python code profiler.
1264 1264
1265 1265 Usage:
1266 1266 %prun [options] statement
1267 1267
1268 1268 The given statement (which doesn't require quote marks) is run via the
1269 1269 python profiler in a manner similar to the profile.run() function.
1270 1270 Namespaces are internally managed to work correctly; profile.run
1271 1271 cannot be used in IPython because it makes certain assumptions about
1272 1272 namespaces which do not hold under IPython.
1273 1273
1274 1274 Options:
1275 1275
1276 1276 -l <limit>: you can place restrictions on what or how much of the
1277 1277 profile gets printed. The limit value can be:
1278 1278
1279 1279 * A string: only information for function names containing this string
1280 1280 is printed.
1281 1281
1282 1282 * An integer: only these many lines are printed.
1283 1283
1284 1284 * A float (between 0 and 1): this fraction of the report is printed
1285 1285 (for example, use a limit of 0.4 to see the topmost 40% only).
1286 1286
1287 1287 You can combine several limits with repeated use of the option. For
1288 1288 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1289 1289 information about class constructors.
1290 1290
1291 1291 -r: return the pstats.Stats object generated by the profiling. This
1292 1292 object has all the information about the profile in it, and you can
1293 1293 later use it for further analysis or in other functions.
1294 1294
1295 1295 -s <key>: sort profile by given key. You can provide more than one key
1296 1296 by using the option several times: '-s key1 -s key2 -s key3...'. The
1297 1297 default sorting key is 'time'.
1298 1298
1299 1299 The following is copied verbatim from the profile documentation
1300 1300 referenced below:
1301 1301
1302 1302 When more than one key is provided, additional keys are used as
1303 1303 secondary criteria when the there is equality in all keys selected
1304 1304 before them.
1305 1305
1306 1306 Abbreviations can be used for any key names, as long as the
1307 1307 abbreviation is unambiguous. The following are the keys currently
1308 1308 defined:
1309 1309
1310 1310 Valid Arg Meaning
1311 1311 "calls" call count
1312 1312 "cumulative" cumulative time
1313 1313 "file" file name
1314 1314 "module" file name
1315 1315 "pcalls" primitive call count
1316 1316 "line" line number
1317 1317 "name" function name
1318 1318 "nfl" name/file/line
1319 1319 "stdname" standard name
1320 1320 "time" internal time
1321 1321
1322 1322 Note that all sorts on statistics are in descending order (placing
1323 1323 most time consuming items first), where as name, file, and line number
1324 1324 searches are in ascending order (i.e., alphabetical). The subtle
1325 1325 distinction between "nfl" and "stdname" is that the standard name is a
1326 1326 sort of the name as printed, which means that the embedded line
1327 1327 numbers get compared in an odd way. For example, lines 3, 20, and 40
1328 1328 would (if the file names were the same) appear in the string order
1329 1329 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1330 1330 line numbers. In fact, sort_stats("nfl") is the same as
1331 1331 sort_stats("name", "file", "line").
1332 1332
1333 1333 -T <filename>: save profile results as shown on screen to a text
1334 1334 file. The profile is still shown on screen.
1335 1335
1336 1336 -D <filename>: save (via dump_stats) profile statistics to given
1337 1337 filename. This data is in a format understod by the pstats module, and
1338 1338 is generated by a call to the dump_stats() method of profile
1339 1339 objects. The profile is still shown on screen.
1340 1340
1341 1341 If you want to run complete programs under the profiler's control, use
1342 1342 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1343 1343 contains profiler specific options as described here.
1344 1344
1345 1345 You can read the complete documentation for the profile module with::
1346 1346
1347 1347 In [1]: import profile; profile.help()
1348 1348 """
1349 1349
1350 1350 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1351 1351 # protect user quote marks
1352 1352 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1353 1353
1354 1354 if user_mode: # regular user call
1355 1355 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1356 1356 list_all=1)
1357 1357 namespace = self.shell.user_ns
1358 1358 else: # called to run a program by %run -p
1359 1359 try:
1360 1360 filename = get_py_filename(arg_lst[0])
1361 1361 except IOError,msg:
1362 1362 error(msg)
1363 1363 return
1364 1364
1365 1365 arg_str = 'execfile(filename,prog_ns)'
1366 1366 namespace = locals()
1367 1367
1368 1368 opts.merge(opts_def)
1369 1369
1370 1370 prof = profile.Profile()
1371 1371 try:
1372 1372 prof = prof.runctx(arg_str,namespace,namespace)
1373 1373 sys_exit = ''
1374 1374 except SystemExit:
1375 1375 sys_exit = """*** SystemExit exception caught in code being profiled."""
1376 1376
1377 1377 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1378 1378
1379 1379 lims = opts.l
1380 1380 if lims:
1381 1381 lims = [] # rebuild lims with ints/floats/strings
1382 1382 for lim in opts.l:
1383 1383 try:
1384 1384 lims.append(int(lim))
1385 1385 except ValueError:
1386 1386 try:
1387 1387 lims.append(float(lim))
1388 1388 except ValueError:
1389 1389 lims.append(lim)
1390 1390
1391 1391 # Trap output.
1392 1392 stdout_trap = StringIO()
1393 1393
1394 1394 if hasattr(stats,'stream'):
1395 1395 # In newer versions of python, the stats object has a 'stream'
1396 1396 # attribute to write into.
1397 1397 stats.stream = stdout_trap
1398 1398 stats.print_stats(*lims)
1399 1399 else:
1400 1400 # For older versions, we manually redirect stdout during printing
1401 1401 sys_stdout = sys.stdout
1402 1402 try:
1403 1403 sys.stdout = stdout_trap
1404 1404 stats.print_stats(*lims)
1405 1405 finally:
1406 1406 sys.stdout = sys_stdout
1407 1407
1408 1408 output = stdout_trap.getvalue()
1409 1409 output = output.rstrip()
1410 1410
1411 1411 page.page(output)
1412 1412 print sys_exit,
1413 1413
1414 1414 dump_file = opts.D[0]
1415 1415 text_file = opts.T[0]
1416 1416 if dump_file:
1417 1417 prof.dump_stats(dump_file)
1418 1418 print '\n*** Profile stats marshalled to file',\
1419 1419 `dump_file`+'.',sys_exit
1420 1420 if text_file:
1421 1421 pfile = file(text_file,'w')
1422 1422 pfile.write(output)
1423 1423 pfile.close()
1424 1424 print '\n*** Profile printout saved to text file',\
1425 1425 `text_file`+'.',sys_exit
1426 1426
1427 1427 if opts.has_key('r'):
1428 1428 return stats
1429 1429 else:
1430 1430 return None
1431 1431
1432 1432 @testdec.skip_doctest
1433 1433 def magic_run(self, parameter_s ='',runner=None,
1434 1434 file_finder=get_py_filename):
1435 1435 """Run the named file inside IPython as a program.
1436 1436
1437 1437 Usage:\\
1438 1438 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1439 1439
1440 1440 Parameters after the filename are passed as command-line arguments to
1441 1441 the program (put in sys.argv). Then, control returns to IPython's
1442 1442 prompt.
1443 1443
1444 1444 This is similar to running at a system prompt:\\
1445 1445 $ python file args\\
1446 1446 but with the advantage of giving you IPython's tracebacks, and of
1447 1447 loading all variables into your interactive namespace for further use
1448 1448 (unless -p is used, see below).
1449 1449
1450 1450 The file is executed in a namespace initially consisting only of
1451 1451 __name__=='__main__' and sys.argv constructed as indicated. It thus
1452 1452 sees its environment as if it were being run as a stand-alone program
1453 1453 (except for sharing global objects such as previously imported
1454 1454 modules). But after execution, the IPython interactive namespace gets
1455 1455 updated with all variables defined in the program (except for __name__
1456 1456 and sys.argv). This allows for very convenient loading of code for
1457 1457 interactive work, while giving each program a 'clean sheet' to run in.
1458 1458
1459 1459 Options:
1460 1460
1461 1461 -n: __name__ is NOT set to '__main__', but to the running file's name
1462 1462 without extension (as python does under import). This allows running
1463 1463 scripts and reloading the definitions in them without calling code
1464 1464 protected by an ' if __name__ == "__main__" ' clause.
1465 1465
1466 1466 -i: run the file in IPython's namespace instead of an empty one. This
1467 1467 is useful if you are experimenting with code written in a text editor
1468 1468 which depends on variables defined interactively.
1469 1469
1470 1470 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1471 1471 being run. This is particularly useful if IPython is being used to
1472 1472 run unittests, which always exit with a sys.exit() call. In such
1473 1473 cases you are interested in the output of the test results, not in
1474 1474 seeing a traceback of the unittest module.
1475 1475
1476 1476 -t: print timing information at the end of the run. IPython will give
1477 1477 you an estimated CPU time consumption for your script, which under
1478 1478 Unix uses the resource module to avoid the wraparound problems of
1479 1479 time.clock(). Under Unix, an estimate of time spent on system tasks
1480 1480 is also given (for Windows platforms this is reported as 0.0).
1481 1481
1482 1482 If -t is given, an additional -N<N> option can be given, where <N>
1483 1483 must be an integer indicating how many times you want the script to
1484 1484 run. The final timing report will include total and per run results.
1485 1485
1486 1486 For example (testing the script uniq_stable.py):
1487 1487
1488 1488 In [1]: run -t uniq_stable
1489 1489
1490 1490 IPython CPU timings (estimated):\\
1491 1491 User : 0.19597 s.\\
1492 1492 System: 0.0 s.\\
1493 1493
1494 1494 In [2]: run -t -N5 uniq_stable
1495 1495
1496 1496 IPython CPU timings (estimated):\\
1497 1497 Total runs performed: 5\\
1498 1498 Times : Total Per run\\
1499 1499 User : 0.910862 s, 0.1821724 s.\\
1500 1500 System: 0.0 s, 0.0 s.
1501 1501
1502 1502 -d: run your program under the control of pdb, the Python debugger.
1503 1503 This allows you to execute your program step by step, watch variables,
1504 1504 etc. Internally, what IPython does is similar to calling:
1505 1505
1506 1506 pdb.run('execfile("YOURFILENAME")')
1507 1507
1508 1508 with a breakpoint set on line 1 of your file. You can change the line
1509 1509 number for this automatic breakpoint to be <N> by using the -bN option
1510 1510 (where N must be an integer). For example:
1511 1511
1512 1512 %run -d -b40 myscript
1513 1513
1514 1514 will set the first breakpoint at line 40 in myscript.py. Note that
1515 1515 the first breakpoint must be set on a line which actually does
1516 1516 something (not a comment or docstring) for it to stop execution.
1517 1517
1518 1518 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1519 1519 first enter 'c' (without qoutes) to start execution up to the first
1520 1520 breakpoint.
1521 1521
1522 1522 Entering 'help' gives information about the use of the debugger. You
1523 1523 can easily see pdb's full documentation with "import pdb;pdb.help()"
1524 1524 at a prompt.
1525 1525
1526 1526 -p: run program under the control of the Python profiler module (which
1527 1527 prints a detailed report of execution times, function calls, etc).
1528 1528
1529 1529 You can pass other options after -p which affect the behavior of the
1530 1530 profiler itself. See the docs for %prun for details.
1531 1531
1532 1532 In this mode, the program's variables do NOT propagate back to the
1533 1533 IPython interactive namespace (because they remain in the namespace
1534 1534 where the profiler executes them).
1535 1535
1536 1536 Internally this triggers a call to %prun, see its documentation for
1537 1537 details on the options available specifically for profiling.
1538 1538
1539 1539 There is one special usage for which the text above doesn't apply:
1540 1540 if the filename ends with .ipy, the file is run as ipython script,
1541 1541 just as if the commands were written on IPython prompt.
1542 1542 """
1543 1543
1544 1544 # get arguments and set sys.argv for program to be run.
1545 1545 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1546 1546 mode='list',list_all=1)
1547 1547
1548 1548 try:
1549 1549 filename = file_finder(arg_lst[0])
1550 1550 except IndexError:
1551 1551 warn('you must provide at least a filename.')
1552 1552 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1553 1553 return
1554 1554 except IOError,msg:
1555 1555 error(msg)
1556 1556 return
1557 1557
1558 1558 if filename.lower().endswith('.ipy'):
1559 1559 self.shell.safe_execfile_ipy(filename)
1560 1560 return
1561 1561
1562 1562 # Control the response to exit() calls made by the script being run
1563 1563 exit_ignore = opts.has_key('e')
1564 1564
1565 1565 # Make sure that the running script gets a proper sys.argv as if it
1566 1566 # were run from a system shell.
1567 1567 save_argv = sys.argv # save it for later restoring
1568 1568 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1569 1569
1570 1570 if opts.has_key('i'):
1571 1571 # Run in user's interactive namespace
1572 1572 prog_ns = self.shell.user_ns
1573 1573 __name__save = self.shell.user_ns['__name__']
1574 1574 prog_ns['__name__'] = '__main__'
1575 1575 main_mod = self.shell.new_main_mod(prog_ns)
1576 1576 else:
1577 1577 # Run in a fresh, empty namespace
1578 1578 if opts.has_key('n'):
1579 1579 name = os.path.splitext(os.path.basename(filename))[0]
1580 1580 else:
1581 1581 name = '__main__'
1582 1582
1583 1583 main_mod = self.shell.new_main_mod()
1584 1584 prog_ns = main_mod.__dict__
1585 1585 prog_ns['__name__'] = name
1586 1586
1587 1587 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1588 1588 # set the __file__ global in the script's namespace
1589 1589 prog_ns['__file__'] = filename
1590 1590
1591 1591 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1592 1592 # that, if we overwrite __main__, we replace it at the end
1593 1593 main_mod_name = prog_ns['__name__']
1594 1594
1595 1595 if main_mod_name == '__main__':
1596 1596 restore_main = sys.modules['__main__']
1597 1597 else:
1598 1598 restore_main = False
1599 1599
1600 1600 # This needs to be undone at the end to prevent holding references to
1601 1601 # every single object ever created.
1602 1602 sys.modules[main_mod_name] = main_mod
1603 1603
1604 1604 stats = None
1605 1605 try:
1606 1606 #self.shell.save_history()
1607 1607
1608 1608 if opts.has_key('p'):
1609 1609 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1610 1610 else:
1611 1611 if opts.has_key('d'):
1612 1612 deb = debugger.Pdb(self.shell.colors)
1613 1613 # reset Breakpoint state, which is moronically kept
1614 1614 # in a class
1615 1615 bdb.Breakpoint.next = 1
1616 1616 bdb.Breakpoint.bplist = {}
1617 1617 bdb.Breakpoint.bpbynumber = [None]
1618 1618 # Set an initial breakpoint to stop execution
1619 1619 maxtries = 10
1620 1620 bp = int(opts.get('b',[1])[0])
1621 1621 checkline = deb.checkline(filename,bp)
1622 1622 if not checkline:
1623 1623 for bp in range(bp+1,bp+maxtries+1):
1624 1624 if deb.checkline(filename,bp):
1625 1625 break
1626 1626 else:
1627 1627 msg = ("\nI failed to find a valid line to set "
1628 1628 "a breakpoint\n"
1629 1629 "after trying up to line: %s.\n"
1630 1630 "Please set a valid breakpoint manually "
1631 1631 "with the -b option." % bp)
1632 1632 error(msg)
1633 1633 return
1634 1634 # if we find a good linenumber, set the breakpoint
1635 1635 deb.do_break('%s:%s' % (filename,bp))
1636 1636 # Start file run
1637 1637 print "NOTE: Enter 'c' at the",
1638 1638 print "%s prompt to start your script." % deb.prompt
1639 1639 try:
1640 1640 deb.run('execfile("%s")' % filename,prog_ns)
1641 1641
1642 1642 except:
1643 1643 etype, value, tb = sys.exc_info()
1644 1644 # Skip three frames in the traceback: the %run one,
1645 1645 # one inside bdb.py, and the command-line typed by the
1646 1646 # user (run by exec in pdb itself).
1647 1647 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1648 1648 else:
1649 1649 if runner is None:
1650 1650 runner = self.shell.safe_execfile
1651 1651 if opts.has_key('t'):
1652 1652 # timed execution
1653 1653 try:
1654 1654 nruns = int(opts['N'][0])
1655 1655 if nruns < 1:
1656 1656 error('Number of runs must be >=1')
1657 1657 return
1658 1658 except (KeyError):
1659 1659 nruns = 1
1660 1660 if nruns == 1:
1661 1661 t0 = clock2()
1662 1662 runner(filename,prog_ns,prog_ns,
1663 1663 exit_ignore=exit_ignore)
1664 1664 t1 = clock2()
1665 1665 t_usr = t1[0]-t0[0]
1666 1666 t_sys = t1[1]-t0[1]
1667 1667 print "\nIPython CPU timings (estimated):"
1668 1668 print " User : %10s s." % t_usr
1669 1669 print " System: %10s s." % t_sys
1670 1670 else:
1671 1671 runs = range(nruns)
1672 1672 t0 = clock2()
1673 1673 for nr in runs:
1674 1674 runner(filename,prog_ns,prog_ns,
1675 1675 exit_ignore=exit_ignore)
1676 1676 t1 = clock2()
1677 1677 t_usr = t1[0]-t0[0]
1678 1678 t_sys = t1[1]-t0[1]
1679 1679 print "\nIPython CPU timings (estimated):"
1680 1680 print "Total runs performed:",nruns
1681 1681 print " Times : %10s %10s" % ('Total','Per run')
1682 1682 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1683 1683 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1684 1684
1685 1685 else:
1686 1686 # regular execution
1687 1687 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1688 1688
1689 1689 if opts.has_key('i'):
1690 1690 self.shell.user_ns['__name__'] = __name__save
1691 1691 else:
1692 1692 # The shell MUST hold a reference to prog_ns so after %run
1693 1693 # exits, the python deletion mechanism doesn't zero it out
1694 1694 # (leaving dangling references).
1695 1695 self.shell.cache_main_mod(prog_ns,filename)
1696 1696 # update IPython interactive namespace
1697 1697
1698 1698 # Some forms of read errors on the file may mean the
1699 1699 # __name__ key was never set; using pop we don't have to
1700 1700 # worry about a possible KeyError.
1701 1701 prog_ns.pop('__name__', None)
1702 1702
1703 1703 self.shell.user_ns.update(prog_ns)
1704 1704 finally:
1705 1705 # It's a bit of a mystery why, but __builtins__ can change from
1706 1706 # being a module to becoming a dict missing some key data after
1707 1707 # %run. As best I can see, this is NOT something IPython is doing
1708 1708 # at all, and similar problems have been reported before:
1709 1709 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1710 1710 # Since this seems to be done by the interpreter itself, the best
1711 1711 # we can do is to at least restore __builtins__ for the user on
1712 1712 # exit.
1713 1713 self.shell.user_ns['__builtins__'] = __builtin__
1714 1714
1715 1715 # Ensure key global structures are restored
1716 1716 sys.argv = save_argv
1717 1717 if restore_main:
1718 1718 sys.modules['__main__'] = restore_main
1719 1719 else:
1720 1720 # Remove from sys.modules the reference to main_mod we'd
1721 1721 # added. Otherwise it will trap references to objects
1722 1722 # contained therein.
1723 1723 del sys.modules[main_mod_name]
1724 1724
1725 1725 #self.shell.reload_history()
1726 1726
1727 1727 return stats
1728 1728
1729 1729 @testdec.skip_doctest
1730 1730 def magic_timeit(self, parameter_s =''):
1731 1731 """Time execution of a Python statement or expression
1732 1732
1733 1733 Usage:\\
1734 1734 %timeit [-n<N> -r<R> [-t|-c]] statement
1735 1735
1736 1736 Time execution of a Python statement or expression using the timeit
1737 1737 module.
1738 1738
1739 1739 Options:
1740 1740 -n<N>: execute the given statement <N> times in a loop. If this value
1741 1741 is not given, a fitting value is chosen.
1742 1742
1743 1743 -r<R>: repeat the loop iteration <R> times and take the best result.
1744 1744 Default: 3
1745 1745
1746 1746 -t: use time.time to measure the time, which is the default on Unix.
1747 1747 This function measures wall time.
1748 1748
1749 1749 -c: use time.clock to measure the time, which is the default on
1750 1750 Windows and measures wall time. On Unix, resource.getrusage is used
1751 1751 instead and returns the CPU user time.
1752 1752
1753 1753 -p<P>: use a precision of <P> digits to display the timing result.
1754 1754 Default: 3
1755 1755
1756 1756
1757 1757 Examples:
1758 1758
1759 1759 In [1]: %timeit pass
1760 1760 10000000 loops, best of 3: 53.3 ns per loop
1761 1761
1762 1762 In [2]: u = None
1763 1763
1764 1764 In [3]: %timeit u is None
1765 1765 10000000 loops, best of 3: 184 ns per loop
1766 1766
1767 1767 In [4]: %timeit -r 4 u == None
1768 1768 1000000 loops, best of 4: 242 ns per loop
1769 1769
1770 1770 In [5]: import time
1771 1771
1772 1772 In [6]: %timeit -n1 time.sleep(2)
1773 1773 1 loops, best of 3: 2 s per loop
1774 1774
1775 1775
1776 1776 The times reported by %timeit will be slightly higher than those
1777 1777 reported by the timeit.py script when variables are accessed. This is
1778 1778 due to the fact that %timeit executes the statement in the namespace
1779 1779 of the shell, compared with timeit.py, which uses a single setup
1780 1780 statement to import function or create variables. Generally, the bias
1781 1781 does not matter as long as results from timeit.py are not mixed with
1782 1782 those from %timeit."""
1783 1783
1784 1784 import timeit
1785 1785 import math
1786 1786
1787 1787 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1788 1788 # certain terminals. Until we figure out a robust way of
1789 1789 # auto-detecting if the terminal can deal with it, use plain 'us' for
1790 1790 # microseconds. I am really NOT happy about disabling the proper
1791 1791 # 'micro' prefix, but crashing is worse... If anyone knows what the
1792 1792 # right solution for this is, I'm all ears...
1793 1793 #
1794 1794 # Note: using
1795 1795 #
1796 1796 # s = u'\xb5'
1797 1797 # s.encode(sys.getdefaultencoding())
1798 1798 #
1799 1799 # is not sufficient, as I've seen terminals where that fails but
1800 1800 # print s
1801 1801 #
1802 1802 # succeeds
1803 1803 #
1804 1804 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1805 1805
1806 1806 #units = [u"s", u"ms",u'\xb5',"ns"]
1807 1807 units = [u"s", u"ms",u'us',"ns"]
1808 1808
1809 1809 scaling = [1, 1e3, 1e6, 1e9]
1810 1810
1811 1811 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1812 1812 posix=False)
1813 1813 if stmt == "":
1814 1814 return
1815 1815 timefunc = timeit.default_timer
1816 1816 number = int(getattr(opts, "n", 0))
1817 1817 repeat = int(getattr(opts, "r", timeit.default_repeat))
1818 1818 precision = int(getattr(opts, "p", 3))
1819 1819 if hasattr(opts, "t"):
1820 1820 timefunc = time.time
1821 1821 if hasattr(opts, "c"):
1822 1822 timefunc = clock
1823 1823
1824 1824 timer = timeit.Timer(timer=timefunc)
1825 1825 # this code has tight coupling to the inner workings of timeit.Timer,
1826 1826 # but is there a better way to achieve that the code stmt has access
1827 1827 # to the shell namespace?
1828 1828
1829 1829 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1830 1830 'setup': "pass"}
1831 1831 # Track compilation time so it can be reported if too long
1832 1832 # Minimum time above which compilation time will be reported
1833 1833 tc_min = 0.1
1834 1834
1835 1835 t0 = clock()
1836 1836 code = compile(src, "<magic-timeit>", "exec")
1837 1837 tc = clock()-t0
1838 1838
1839 1839 ns = {}
1840 1840 exec code in self.shell.user_ns, ns
1841 1841 timer.inner = ns["inner"]
1842 1842
1843 1843 if number == 0:
1844 1844 # determine number so that 0.2 <= total time < 2.0
1845 1845 number = 1
1846 1846 for i in range(1, 10):
1847 1847 if timer.timeit(number) >= 0.2:
1848 1848 break
1849 1849 number *= 10
1850 1850
1851 1851 best = min(timer.repeat(repeat, number)) / number
1852 1852
1853 1853 if best > 0.0 and best < 1000.0:
1854 1854 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1855 1855 elif best >= 1000.0:
1856 1856 order = 0
1857 1857 else:
1858 1858 order = 3
1859 1859 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1860 1860 precision,
1861 1861 best * scaling[order],
1862 1862 units[order])
1863 1863 if tc > tc_min:
1864 1864 print "Compiler time: %.2f s" % tc
1865 1865
1866 1866 @testdec.skip_doctest
1867 1867 def magic_time(self,parameter_s = ''):
1868 1868 """Time execution of a Python statement or expression.
1869 1869
1870 1870 The CPU and wall clock times are printed, and the value of the
1871 1871 expression (if any) is returned. Note that under Win32, system time
1872 1872 is always reported as 0, since it can not be measured.
1873 1873
1874 1874 This function provides very basic timing functionality. In Python
1875 1875 2.3, the timeit module offers more control and sophistication, so this
1876 1876 could be rewritten to use it (patches welcome).
1877 1877
1878 1878 Some examples:
1879 1879
1880 1880 In [1]: time 2**128
1881 1881 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1882 1882 Wall time: 0.00
1883 1883 Out[1]: 340282366920938463463374607431768211456L
1884 1884
1885 1885 In [2]: n = 1000000
1886 1886
1887 1887 In [3]: time sum(range(n))
1888 1888 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1889 1889 Wall time: 1.37
1890 1890 Out[3]: 499999500000L
1891 1891
1892 1892 In [4]: time print 'hello world'
1893 1893 hello world
1894 1894 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1895 1895 Wall time: 0.00
1896 1896
1897 1897 Note that the time needed by Python to compile the given expression
1898 1898 will be reported if it is more than 0.1s. In this example, the
1899 1899 actual exponentiation is done by Python at compilation time, so while
1900 1900 the expression can take a noticeable amount of time to compute, that
1901 1901 time is purely due to the compilation:
1902 1902
1903 1903 In [5]: time 3**9999;
1904 1904 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1905 1905 Wall time: 0.00 s
1906 1906
1907 1907 In [6]: time 3**999999;
1908 1908 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1909 1909 Wall time: 0.00 s
1910 1910 Compiler : 0.78 s
1911 1911 """
1912 1912
1913 1913 # fail immediately if the given expression can't be compiled
1914 1914
1915 1915 expr = self.shell.prefilter(parameter_s,False)
1916 1916
1917 1917 # Minimum time above which compilation time will be reported
1918 1918 tc_min = 0.1
1919 1919
1920 1920 try:
1921 1921 mode = 'eval'
1922 1922 t0 = clock()
1923 1923 code = compile(expr,'<timed eval>',mode)
1924 1924 tc = clock()-t0
1925 1925 except SyntaxError:
1926 1926 mode = 'exec'
1927 1927 t0 = clock()
1928 1928 code = compile(expr,'<timed exec>',mode)
1929 1929 tc = clock()-t0
1930 1930 # skew measurement as little as possible
1931 1931 glob = self.shell.user_ns
1932 1932 clk = clock2
1933 1933 wtime = time.time
1934 1934 # time execution
1935 1935 wall_st = wtime()
1936 1936 if mode=='eval':
1937 1937 st = clk()
1938 1938 out = eval(code,glob)
1939 1939 end = clk()
1940 1940 else:
1941 1941 st = clk()
1942 1942 exec code in glob
1943 1943 end = clk()
1944 1944 out = None
1945 1945 wall_end = wtime()
1946 1946 # Compute actual times and report
1947 1947 wall_time = wall_end-wall_st
1948 1948 cpu_user = end[0]-st[0]
1949 1949 cpu_sys = end[1]-st[1]
1950 1950 cpu_tot = cpu_user+cpu_sys
1951 1951 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1952 1952 (cpu_user,cpu_sys,cpu_tot)
1953 1953 print "Wall time: %.2f s" % wall_time
1954 1954 if tc > tc_min:
1955 1955 print "Compiler : %.2f s" % tc
1956 1956 return out
1957 1957
1958 1958 @testdec.skip_doctest
1959 1959 def magic_macro(self,parameter_s = ''):
1960 1960 """Define a set of input lines as a macro for future re-execution.
1961 1961
1962 1962 Usage:\\
1963 1963 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1964 1964
1965 1965 Options:
1966 1966
1967 1967 -r: use 'raw' input. By default, the 'processed' history is used,
1968 1968 so that magics are loaded in their transformed version to valid
1969 1969 Python. If this option is given, the raw input as typed as the
1970 1970 command line is used instead.
1971 1971
1972 1972 This will define a global variable called `name` which is a string
1973 1973 made of joining the slices and lines you specify (n1,n2,... numbers
1974 1974 above) from your input history into a single string. This variable
1975 1975 acts like an automatic function which re-executes those lines as if
1976 1976 you had typed them. You just type 'name' at the prompt and the code
1977 1977 executes.
1978 1978
1979 1979 The notation for indicating number ranges is: n1-n2 means 'use line
1980 1980 numbers n1,...n2' (the endpoint is included). That is, '5-7' means
1981 1981 using the lines numbered 5,6 and 7.
1982 1982
1983 1983 Note: as a 'hidden' feature, you can also use traditional python slice
1984 1984 notation, where N:M means numbers N through M-1.
1985 1985
1986 1986 For example, if your history contains (%hist prints it):
1987 1987
1988 1988 44: x=1
1989 1989 45: y=3
1990 1990 46: z=x+y
1991 1991 47: print x
1992 1992 48: a=5
1993 1993 49: print 'x',x,'y',y
1994 1994
1995 1995 you can create a macro with lines 44 through 47 (included) and line 49
1996 1996 called my_macro with:
1997 1997
1998 1998 In [55]: %macro my_macro 44-47 49
1999 1999
2000 2000 Now, typing `my_macro` (without quotes) will re-execute all this code
2001 2001 in one pass.
2002 2002
2003 2003 You don't need to give the line-numbers in order, and any given line
2004 2004 number can appear multiple times. You can assemble macros with any
2005 2005 lines from your input history in any order.
2006 2006
2007 2007 The macro is a simple object which holds its value in an attribute,
2008 2008 but IPython's display system checks for macros and executes them as
2009 2009 code instead of printing them when you type their name.
2010 2010
2011 2011 You can view a macro's contents by explicitly printing it with:
2012 2012
2013 2013 'print macro_name'.
2014 2014
2015 2015 For one-off cases which DON'T contain magic function calls in them you
2016 2016 can obtain similar results by explicitly executing slices from your
2017 2017 input history with:
2018 2018
2019 2019 In [60]: exec In[44:48]+In[49]"""
2020 2020
2021 2021 opts,args = self.parse_options(parameter_s,'r',mode='list')
2022 2022 if not args: # List existing macros
2023 2023 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2024 2024 isinstance(v, Macro))
2025 2025 if len(args) == 1:
2026 2026 raise UsageError(
2027 2027 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2028 2028 name, ranges = args[0], " ".join(args[1:])
2029 2029
2030 2030 #print 'rng',ranges # dbg
2031 2031 lines = self.extract_input_lines(ranges,'r' in opts)
2032 2032 macro = Macro(lines)
2033 2033 self.shell.define_macro(name, macro)
2034 2034 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2035 2035 print 'Macro contents:'
2036 2036 print macro,
2037 2037
2038 2038 def magic_save(self,parameter_s = ''):
2039 2039 """Save a set of lines to a given filename.
2040 2040
2041 2041 Usage:\\
2042 2042 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2043 2043
2044 2044 Options:
2045 2045
2046 2046 -r: use 'raw' input. By default, the 'processed' history is used,
2047 2047 so that magics are loaded in their transformed version to valid
2048 2048 Python. If this option is given, the raw input as typed as the
2049 2049 command line is used instead.
2050 2050
2051 2051 This function uses the same syntax as %macro for line extraction, but
2052 2052 instead of creating a macro it saves the resulting string to the
2053 2053 filename you specify.
2054 2054
2055 2055 It adds a '.py' extension to the file if you don't do so yourself, and
2056 2056 it asks for confirmation before overwriting existing files."""
2057 2057
2058 2058 opts,args = self.parse_options(parameter_s,'r',mode='list')
2059 2059 fname,ranges = args[0], " ".join(args[1:])
2060 2060 if not fname.endswith('.py'):
2061 2061 fname += '.py'
2062 2062 if os.path.isfile(fname):
2063 2063 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2064 2064 if ans.lower() not in ['y','yes']:
2065 2065 print 'Operation cancelled.'
2066 2066 return
2067 2067 cmds = self.extract_input_lines(ranges, 'r' in opts)
2068 2068 with open(fname,'w') as f:
2069 2069 f.write(cmds)
2070 2070 print 'The following commands were written to file `%s`:' % fname
2071 2071 print cmds
2072 2072
2073 2073 def _edit_macro(self,mname,macro):
2074 2074 """open an editor with the macro data in a file"""
2075 2075 filename = self.shell.mktempfile(macro.value)
2076 2076 self.shell.hooks.editor(filename)
2077 2077
2078 2078 # and make a new macro object, to replace the old one
2079 2079 mfile = open(filename)
2080 2080 mvalue = mfile.read()
2081 2081 mfile.close()
2082 2082 self.shell.user_ns[mname] = Macro(mvalue)
2083 2083
2084 2084 def magic_ed(self,parameter_s=''):
2085 2085 """Alias to %edit."""
2086 2086 return self.magic_edit(parameter_s)
2087 2087
2088 2088 @testdec.skip_doctest
2089 2089 def magic_edit(self,parameter_s='',last_call=['','']):
2090 2090 """Bring up an editor and execute the resulting code.
2091 2091
2092 2092 Usage:
2093 2093 %edit [options] [args]
2094 2094
2095 2095 %edit runs IPython's editor hook. The default version of this hook is
2096 2096 set to call the __IPYTHON__.rc.editor command. This is read from your
2097 2097 environment variable $EDITOR. If this isn't found, it will default to
2098 2098 vi under Linux/Unix and to notepad under Windows. See the end of this
2099 2099 docstring for how to change the editor hook.
2100 2100
2101 2101 You can also set the value of this editor via the command line option
2102 2102 '-editor' or in your ipythonrc file. This is useful if you wish to use
2103 2103 specifically for IPython an editor different from your typical default
2104 2104 (and for Windows users who typically don't set environment variables).
2105 2105
2106 2106 This command allows you to conveniently edit multi-line code right in
2107 2107 your IPython session.
2108 2108
2109 2109 If called without arguments, %edit opens up an empty editor with a
2110 2110 temporary file and will execute the contents of this file when you
2111 2111 close it (don't forget to save it!).
2112 2112
2113 2113
2114 2114 Options:
2115 2115
2116 2116 -n <number>: open the editor at a specified line number. By default,
2117 2117 the IPython editor hook uses the unix syntax 'editor +N filename', but
2118 2118 you can configure this by providing your own modified hook if your
2119 2119 favorite editor supports line-number specifications with a different
2120 2120 syntax.
2121 2121
2122 2122 -p: this will call the editor with the same data as the previous time
2123 2123 it was used, regardless of how long ago (in your current session) it
2124 2124 was.
2125 2125
2126 2126 -r: use 'raw' input. This option only applies to input taken from the
2127 2127 user's history. By default, the 'processed' history is used, so that
2128 2128 magics are loaded in their transformed version to valid Python. If
2129 2129 this option is given, the raw input as typed as the command line is
2130 2130 used instead. When you exit the editor, it will be executed by
2131 2131 IPython's own processor.
2132 2132
2133 2133 -x: do not execute the edited code immediately upon exit. This is
2134 2134 mainly useful if you are editing programs which need to be called with
2135 2135 command line arguments, which you can then do using %run.
2136 2136
2137 2137
2138 2138 Arguments:
2139 2139
2140 2140 If arguments are given, the following possibilites exist:
2141 2141
2142 2142 - The arguments are numbers or pairs of colon-separated numbers (like
2143 2143 1 4:8 9). These are interpreted as lines of previous input to be
2144 2144 loaded into the editor. The syntax is the same of the %macro command.
2145 2145
2146 2146 - If the argument doesn't start with a number, it is evaluated as a
2147 2147 variable and its contents loaded into the editor. You can thus edit
2148 2148 any string which contains python code (including the result of
2149 2149 previous edits).
2150 2150
2151 2151 - If the argument is the name of an object (other than a string),
2152 2152 IPython will try to locate the file where it was defined and open the
2153 2153 editor at the point where it is defined. You can use `%edit function`
2154 2154 to load an editor exactly at the point where 'function' is defined,
2155 2155 edit it and have the file be executed automatically.
2156 2156
2157 2157 If the object is a macro (see %macro for details), this opens up your
2158 2158 specified editor with a temporary file containing the macro's data.
2159 2159 Upon exit, the macro is reloaded with the contents of the file.
2160 2160
2161 2161 Note: opening at an exact line is only supported under Unix, and some
2162 2162 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2163 2163 '+NUMBER' parameter necessary for this feature. Good editors like
2164 2164 (X)Emacs, vi, jed, pico and joe all do.
2165 2165
2166 2166 - If the argument is not found as a variable, IPython will look for a
2167 2167 file with that name (adding .py if necessary) and load it into the
2168 2168 editor. It will execute its contents with execfile() when you exit,
2169 2169 loading any code in the file into your interactive namespace.
2170 2170
2171 2171 After executing your code, %edit will return as output the code you
2172 2172 typed in the editor (except when it was an existing file). This way
2173 2173 you can reload the code in further invocations of %edit as a variable,
2174 2174 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2175 2175 the output.
2176 2176
2177 2177 Note that %edit is also available through the alias %ed.
2178 2178
2179 2179 This is an example of creating a simple function inside the editor and
2180 2180 then modifying it. First, start up the editor:
2181 2181
2182 2182 In [1]: ed
2183 2183 Editing... done. Executing edited code...
2184 2184 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2185 2185
2186 2186 We can then call the function foo():
2187 2187
2188 2188 In [2]: foo()
2189 2189 foo() was defined in an editing session
2190 2190
2191 2191 Now we edit foo. IPython automatically loads the editor with the
2192 2192 (temporary) file where foo() was previously defined:
2193 2193
2194 2194 In [3]: ed foo
2195 2195 Editing... done. Executing edited code...
2196 2196
2197 2197 And if we call foo() again we get the modified version:
2198 2198
2199 2199 In [4]: foo()
2200 2200 foo() has now been changed!
2201 2201
2202 2202 Here is an example of how to edit a code snippet successive
2203 2203 times. First we call the editor:
2204 2204
2205 2205 In [5]: ed
2206 2206 Editing... done. Executing edited code...
2207 2207 hello
2208 2208 Out[5]: "print 'hello'n"
2209 2209
2210 2210 Now we call it again with the previous output (stored in _):
2211 2211
2212 2212 In [6]: ed _
2213 2213 Editing... done. Executing edited code...
2214 2214 hello world
2215 2215 Out[6]: "print 'hello world'n"
2216 2216
2217 2217 Now we call it with the output #8 (stored in _8, also as Out[8]):
2218 2218
2219 2219 In [7]: ed _8
2220 2220 Editing... done. Executing edited code...
2221 2221 hello again
2222 2222 Out[7]: "print 'hello again'n"
2223 2223
2224 2224
2225 2225 Changing the default editor hook:
2226 2226
2227 2227 If you wish to write your own editor hook, you can put it in a
2228 2228 configuration file which you load at startup time. The default hook
2229 2229 is defined in the IPython.core.hooks module, and you can use that as a
2230 2230 starting example for further modifications. That file also has
2231 2231 general instructions on how to set a new hook for use once you've
2232 2232 defined it."""
2233 2233
2234 2234 # FIXME: This function has become a convoluted mess. It needs a
2235 2235 # ground-up rewrite with clean, simple logic.
2236 2236
2237 2237 def make_filename(arg):
2238 2238 "Make a filename from the given args"
2239 2239 try:
2240 2240 filename = get_py_filename(arg)
2241 2241 except IOError:
2242 2242 if args.endswith('.py'):
2243 2243 filename = arg
2244 2244 else:
2245 2245 filename = None
2246 2246 return filename
2247 2247
2248 2248 # custom exceptions
2249 2249 class DataIsObject(Exception): pass
2250 2250
2251 2251 opts,args = self.parse_options(parameter_s,'prxn:')
2252 2252 # Set a few locals from the options for convenience:
2253 2253 opts_prev = 'p' in opts
2254 2254 opts_raw = 'r' in opts
2255 2255
2256 2256 # Default line number value
2257 2257 lineno = opts.get('n',None)
2258 2258
2259 2259 if opts_prev:
2260 2260 args = '_%s' % last_call[0]
2261 2261 if not self.shell.user_ns.has_key(args):
2262 2262 args = last_call[1]
2263 2263
2264 2264 # use last_call to remember the state of the previous call, but don't
2265 2265 # let it be clobbered by successive '-p' calls.
2266 2266 try:
2267 2267 last_call[0] = self.shell.displayhook.prompt_count
2268 2268 if not opts_prev:
2269 2269 last_call[1] = parameter_s
2270 2270 except:
2271 2271 pass
2272 2272
2273 2273 # by default this is done with temp files, except when the given
2274 2274 # arg is a filename
2275 2275 use_temp = True
2276 2276
2277 2277 data = ''
2278 2278 if args.endswith('.py'):
2279 2279 filename = make_filename(args)
2280 2280 use_temp = False
2281 2281 elif args:
2282 2282 # Mode where user specifies ranges of lines, like in %macro.
2283 2283 data = self.extract_input_lines(args, opts_raw)
2284 2284 if not data:
2285 2285 try:
2286 2286 # Load the parameter given as a variable. If not a string,
2287 2287 # process it as an object instead (below)
2288 2288
2289 2289 #print '*** args',args,'type',type(args) # dbg
2290 2290 data = eval(args, self.shell.user_ns)
2291 2291 if not isinstance(data, basestring):
2292 2292 raise DataIsObject
2293 2293
2294 2294 except (NameError,SyntaxError):
2295 2295 # given argument is not a variable, try as a filename
2296 2296 filename = make_filename(args)
2297 2297 if filename is None:
2298 2298 warn("Argument given (%s) can't be found as a variable "
2299 2299 "or as a filename." % args)
2300 2300 return
2301 2301 use_temp = False
2302 2302
2303 2303 except DataIsObject:
2304 2304 # macros have a special edit function
2305 2305 if isinstance(data, Macro):
2306 2306 self._edit_macro(args,data)
2307 2307 return
2308 2308
2309 2309 # For objects, try to edit the file where they are defined
2310 2310 try:
2311 2311 filename = inspect.getabsfile(data)
2312 2312 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2313 2313 # class created by %edit? Try to find source
2314 2314 # by looking for method definitions instead, the
2315 2315 # __module__ in those classes is FakeModule.
2316 2316 attrs = [getattr(data, aname) for aname in dir(data)]
2317 2317 for attr in attrs:
2318 2318 if not inspect.ismethod(attr):
2319 2319 continue
2320 2320 filename = inspect.getabsfile(attr)
2321 2321 if filename and 'fakemodule' not in filename.lower():
2322 2322 # change the attribute to be the edit target instead
2323 2323 data = attr
2324 2324 break
2325 2325
2326 2326 datafile = 1
2327 2327 except TypeError:
2328 2328 filename = make_filename(args)
2329 2329 datafile = 1
2330 2330 warn('Could not find file where `%s` is defined.\n'
2331 2331 'Opening a file named `%s`' % (args,filename))
2332 2332 # Now, make sure we can actually read the source (if it was in
2333 2333 # a temp file it's gone by now).
2334 2334 if datafile:
2335 2335 try:
2336 2336 if lineno is None:
2337 2337 lineno = inspect.getsourcelines(data)[1]
2338 2338 except IOError:
2339 2339 filename = make_filename(args)
2340 2340 if filename is None:
2341 2341 warn('The file `%s` where `%s` was defined cannot '
2342 2342 'be read.' % (filename,data))
2343 2343 return
2344 2344 use_temp = False
2345 2345
2346 2346 if use_temp:
2347 2347 filename = self.shell.mktempfile(data)
2348 2348 print 'IPython will make a temporary file named:',filename
2349 2349
2350 2350 # do actual editing here
2351 2351 print 'Editing...',
2352 2352 sys.stdout.flush()
2353 2353 try:
2354 2354 # Quote filenames that may have spaces in them
2355 2355 if ' ' in filename:
2356 2356 filename = "%s" % filename
2357 2357 self.shell.hooks.editor(filename,lineno)
2358 2358 except TryNext:
2359 2359 warn('Could not open editor')
2360 2360 return
2361 2361
2362 2362 # XXX TODO: should this be generalized for all string vars?
2363 2363 # For now, this is special-cased to blocks created by cpaste
2364 2364 if args.strip() == 'pasted_block':
2365 2365 self.shell.user_ns['pasted_block'] = file_read(filename)
2366 2366
2367 2367 if 'x' in opts: # -x prevents actual execution
2368 2368 print
2369 2369 else:
2370 2370 print 'done. Executing edited code...'
2371 2371 if opts_raw:
2372 self.shell.run_cell(file_read(filename))
2372 self.shell.run_cell(file_read(filename),
2373 store_history=False)
2373 2374 else:
2374 2375 self.shell.safe_execfile(filename,self.shell.user_ns,
2375 2376 self.shell.user_ns)
2376 2377
2377 2378
2378 2379 if use_temp:
2379 2380 try:
2380 2381 return open(filename).read()
2381 2382 except IOError,msg:
2382 2383 if msg.filename == filename:
2383 2384 warn('File not found. Did you forget to save?')
2384 2385 return
2385 2386 else:
2386 2387 self.shell.showtraceback()
2387 2388
2388 2389 def magic_xmode(self,parameter_s = ''):
2389 2390 """Switch modes for the exception handlers.
2390 2391
2391 2392 Valid modes: Plain, Context and Verbose.
2392 2393
2393 2394 If called without arguments, acts as a toggle."""
2394 2395
2395 2396 def xmode_switch_err(name):
2396 2397 warn('Error changing %s exception modes.\n%s' %
2397 2398 (name,sys.exc_info()[1]))
2398 2399
2399 2400 shell = self.shell
2400 2401 new_mode = parameter_s.strip().capitalize()
2401 2402 try:
2402 2403 shell.InteractiveTB.set_mode(mode=new_mode)
2403 2404 print 'Exception reporting mode:',shell.InteractiveTB.mode
2404 2405 except:
2405 2406 xmode_switch_err('user')
2406 2407
2407 2408 def magic_colors(self,parameter_s = ''):
2408 2409 """Switch color scheme for prompts, info system and exception handlers.
2409 2410
2410 2411 Currently implemented schemes: NoColor, Linux, LightBG.
2411 2412
2412 2413 Color scheme names are not case-sensitive.
2413 2414
2414 2415 Examples
2415 2416 --------
2416 2417 To get a plain black and white terminal::
2417 2418
2418 2419 %colors nocolor
2419 2420 """
2420 2421
2421 2422 def color_switch_err(name):
2422 2423 warn('Error changing %s color schemes.\n%s' %
2423 2424 (name,sys.exc_info()[1]))
2424 2425
2425 2426
2426 2427 new_scheme = parameter_s.strip()
2427 2428 if not new_scheme:
2428 2429 raise UsageError(
2429 2430 "%colors: you must specify a color scheme. See '%colors?'")
2430 2431 return
2431 2432 # local shortcut
2432 2433 shell = self.shell
2433 2434
2434 2435 import IPython.utils.rlineimpl as readline
2435 2436
2436 2437 if not readline.have_readline and sys.platform == "win32":
2437 2438 msg = """\
2438 2439 Proper color support under MS Windows requires the pyreadline library.
2439 2440 You can find it at:
2440 2441 http://ipython.scipy.org/moin/PyReadline/Intro
2441 2442 Gary's readline needs the ctypes module, from:
2442 2443 http://starship.python.net/crew/theller/ctypes
2443 2444 (Note that ctypes is already part of Python versions 2.5 and newer).
2444 2445
2445 2446 Defaulting color scheme to 'NoColor'"""
2446 2447 new_scheme = 'NoColor'
2447 2448 warn(msg)
2448 2449
2449 2450 # readline option is 0
2450 2451 if not shell.has_readline:
2451 2452 new_scheme = 'NoColor'
2452 2453
2453 2454 # Set prompt colors
2454 2455 try:
2455 2456 shell.displayhook.set_colors(new_scheme)
2456 2457 except:
2457 2458 color_switch_err('prompt')
2458 2459 else:
2459 2460 shell.colors = \
2460 2461 shell.displayhook.color_table.active_scheme_name
2461 2462 # Set exception colors
2462 2463 try:
2463 2464 shell.InteractiveTB.set_colors(scheme = new_scheme)
2464 2465 shell.SyntaxTB.set_colors(scheme = new_scheme)
2465 2466 except:
2466 2467 color_switch_err('exception')
2467 2468
2468 2469 # Set info (for 'object?') colors
2469 2470 if shell.color_info:
2470 2471 try:
2471 2472 shell.inspector.set_active_scheme(new_scheme)
2472 2473 except:
2473 2474 color_switch_err('object inspector')
2474 2475 else:
2475 2476 shell.inspector.set_active_scheme('NoColor')
2476 2477
2477 2478 def magic_pprint(self, parameter_s=''):
2478 2479 """Toggle pretty printing on/off."""
2479 2480 ptformatter = self.shell.display_formatter.formatters['text/plain']
2480 2481 ptformatter.pprint = bool(1 - ptformatter.pprint)
2481 2482 print 'Pretty printing has been turned', \
2482 2483 ['OFF','ON'][ptformatter.pprint]
2483 2484
2484 2485 def magic_Exit(self, parameter_s=''):
2485 2486 """Exit IPython."""
2486 2487
2487 2488 self.shell.ask_exit()
2488 2489
2489 2490 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2490 2491 magic_exit = magic_quit = magic_Quit = magic_Exit
2491 2492
2492 2493 #......................................................................
2493 2494 # Functions to implement unix shell-type things
2494 2495
2495 2496 @testdec.skip_doctest
2496 2497 def magic_alias(self, parameter_s = ''):
2497 2498 """Define an alias for a system command.
2498 2499
2499 2500 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2500 2501
2501 2502 Then, typing 'alias_name params' will execute the system command 'cmd
2502 2503 params' (from your underlying operating system).
2503 2504
2504 2505 Aliases have lower precedence than magic functions and Python normal
2505 2506 variables, so if 'foo' is both a Python variable and an alias, the
2506 2507 alias can not be executed until 'del foo' removes the Python variable.
2507 2508
2508 2509 You can use the %l specifier in an alias definition to represent the
2509 2510 whole line when the alias is called. For example:
2510 2511
2511 2512 In [2]: alias bracket echo "Input in brackets: <%l>"
2512 2513 In [3]: bracket hello world
2513 2514 Input in brackets: <hello world>
2514 2515
2515 2516 You can also define aliases with parameters using %s specifiers (one
2516 2517 per parameter):
2517 2518
2518 2519 In [1]: alias parts echo first %s second %s
2519 2520 In [2]: %parts A B
2520 2521 first A second B
2521 2522 In [3]: %parts A
2522 2523 Incorrect number of arguments: 2 expected.
2523 2524 parts is an alias to: 'echo first %s second %s'
2524 2525
2525 2526 Note that %l and %s are mutually exclusive. You can only use one or
2526 2527 the other in your aliases.
2527 2528
2528 2529 Aliases expand Python variables just like system calls using ! or !!
2529 2530 do: all expressions prefixed with '$' get expanded. For details of
2530 2531 the semantic rules, see PEP-215:
2531 2532 http://www.python.org/peps/pep-0215.html. This is the library used by
2532 2533 IPython for variable expansion. If you want to access a true shell
2533 2534 variable, an extra $ is necessary to prevent its expansion by IPython:
2534 2535
2535 2536 In [6]: alias show echo
2536 2537 In [7]: PATH='A Python string'
2537 2538 In [8]: show $PATH
2538 2539 A Python string
2539 2540 In [9]: show $$PATH
2540 2541 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2541 2542
2542 2543 You can use the alias facility to acess all of $PATH. See the %rehash
2543 2544 and %rehashx functions, which automatically create aliases for the
2544 2545 contents of your $PATH.
2545 2546
2546 2547 If called with no parameters, %alias prints the current alias table."""
2547 2548
2548 2549 par = parameter_s.strip()
2549 2550 if not par:
2550 2551 stored = self.db.get('stored_aliases', {} )
2551 2552 aliases = sorted(self.shell.alias_manager.aliases)
2552 2553 # for k, v in stored:
2553 2554 # atab.append(k, v[0])
2554 2555
2555 2556 print "Total number of aliases:", len(aliases)
2556 2557 sys.stdout.flush()
2557 2558 return aliases
2558 2559
2559 2560 # Now try to define a new one
2560 2561 try:
2561 2562 alias,cmd = par.split(None, 1)
2562 2563 except:
2563 2564 print oinspect.getdoc(self.magic_alias)
2564 2565 else:
2565 2566 self.shell.alias_manager.soft_define_alias(alias, cmd)
2566 2567 # end magic_alias
2567 2568
2568 2569 def magic_unalias(self, parameter_s = ''):
2569 2570 """Remove an alias"""
2570 2571
2571 2572 aname = parameter_s.strip()
2572 2573 self.shell.alias_manager.undefine_alias(aname)
2573 2574 stored = self.db.get('stored_aliases', {} )
2574 2575 if aname in stored:
2575 2576 print "Removing %stored alias",aname
2576 2577 del stored[aname]
2577 2578 self.db['stored_aliases'] = stored
2578 2579
2579 2580 def magic_rehashx(self, parameter_s = ''):
2580 2581 """Update the alias table with all executable files in $PATH.
2581 2582
2582 2583 This version explicitly checks that every entry in $PATH is a file
2583 2584 with execute access (os.X_OK), so it is much slower than %rehash.
2584 2585
2585 2586 Under Windows, it checks executability as a match agains a
2586 2587 '|'-separated string of extensions, stored in the IPython config
2587 2588 variable win_exec_ext. This defaults to 'exe|com|bat'.
2588 2589
2589 2590 This function also resets the root module cache of module completer,
2590 2591 used on slow filesystems.
2591 2592 """
2592 2593 from IPython.core.alias import InvalidAliasError
2593 2594
2594 2595 # for the benefit of module completer in ipy_completers.py
2595 2596 del self.db['rootmodules']
2596 2597
2597 2598 path = [os.path.abspath(os.path.expanduser(p)) for p in
2598 2599 os.environ.get('PATH','').split(os.pathsep)]
2599 2600 path = filter(os.path.isdir,path)
2600 2601
2601 2602 syscmdlist = []
2602 2603 # Now define isexec in a cross platform manner.
2603 2604 if os.name == 'posix':
2604 2605 isexec = lambda fname:os.path.isfile(fname) and \
2605 2606 os.access(fname,os.X_OK)
2606 2607 else:
2607 2608 try:
2608 2609 winext = os.environ['pathext'].replace(';','|').replace('.','')
2609 2610 except KeyError:
2610 2611 winext = 'exe|com|bat|py'
2611 2612 if 'py' not in winext:
2612 2613 winext += '|py'
2613 2614 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2614 2615 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2615 2616 savedir = os.getcwd()
2616 2617
2617 2618 # Now walk the paths looking for executables to alias.
2618 2619 try:
2619 2620 # write the whole loop for posix/Windows so we don't have an if in
2620 2621 # the innermost part
2621 2622 if os.name == 'posix':
2622 2623 for pdir in path:
2623 2624 os.chdir(pdir)
2624 2625 for ff in os.listdir(pdir):
2625 2626 if isexec(ff):
2626 2627 try:
2627 2628 # Removes dots from the name since ipython
2628 2629 # will assume names with dots to be python.
2629 2630 self.shell.alias_manager.define_alias(
2630 2631 ff.replace('.',''), ff)
2631 2632 except InvalidAliasError:
2632 2633 pass
2633 2634 else:
2634 2635 syscmdlist.append(ff)
2635 2636 else:
2636 2637 no_alias = self.shell.alias_manager.no_alias
2637 2638 for pdir in path:
2638 2639 os.chdir(pdir)
2639 2640 for ff in os.listdir(pdir):
2640 2641 base, ext = os.path.splitext(ff)
2641 2642 if isexec(ff) and base.lower() not in no_alias:
2642 2643 if ext.lower() == '.exe':
2643 2644 ff = base
2644 2645 try:
2645 2646 # Removes dots from the name since ipython
2646 2647 # will assume names with dots to be python.
2647 2648 self.shell.alias_manager.define_alias(
2648 2649 base.lower().replace('.',''), ff)
2649 2650 except InvalidAliasError:
2650 2651 pass
2651 2652 syscmdlist.append(ff)
2652 2653 db = self.db
2653 2654 db['syscmdlist'] = syscmdlist
2654 2655 finally:
2655 2656 os.chdir(savedir)
2656 2657
2657 2658 @testdec.skip_doctest
2658 2659 def magic_pwd(self, parameter_s = ''):
2659 2660 """Return the current working directory path.
2660 2661
2661 2662 Examples
2662 2663 --------
2663 2664 ::
2664 2665
2665 2666 In [9]: pwd
2666 2667 Out[9]: '/home/tsuser/sprint/ipython'
2667 2668 """
2668 2669 return os.getcwd()
2669 2670
2670 2671 @testdec.skip_doctest
2671 2672 def magic_cd(self, parameter_s=''):
2672 2673 """Change the current working directory.
2673 2674
2674 2675 This command automatically maintains an internal list of directories
2675 2676 you visit during your IPython session, in the variable _dh. The
2676 2677 command %dhist shows this history nicely formatted. You can also
2677 2678 do 'cd -<tab>' to see directory history conveniently.
2678 2679
2679 2680 Usage:
2680 2681
2681 2682 cd 'dir': changes to directory 'dir'.
2682 2683
2683 2684 cd -: changes to the last visited directory.
2684 2685
2685 2686 cd -<n>: changes to the n-th directory in the directory history.
2686 2687
2687 2688 cd --foo: change to directory that matches 'foo' in history
2688 2689
2689 2690 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2690 2691 (note: cd <bookmark_name> is enough if there is no
2691 2692 directory <bookmark_name>, but a bookmark with the name exists.)
2692 2693 'cd -b <tab>' allows you to tab-complete bookmark names.
2693 2694
2694 2695 Options:
2695 2696
2696 2697 -q: quiet. Do not print the working directory after the cd command is
2697 2698 executed. By default IPython's cd command does print this directory,
2698 2699 since the default prompts do not display path information.
2699 2700
2700 2701 Note that !cd doesn't work for this purpose because the shell where
2701 2702 !command runs is immediately discarded after executing 'command'.
2702 2703
2703 2704 Examples
2704 2705 --------
2705 2706 ::
2706 2707
2707 2708 In [10]: cd parent/child
2708 2709 /home/tsuser/parent/child
2709 2710 """
2710 2711
2711 2712 parameter_s = parameter_s.strip()
2712 2713 #bkms = self.shell.persist.get("bookmarks",{})
2713 2714
2714 2715 oldcwd = os.getcwd()
2715 2716 numcd = re.match(r'(-)(\d+)$',parameter_s)
2716 2717 # jump in directory history by number
2717 2718 if numcd:
2718 2719 nn = int(numcd.group(2))
2719 2720 try:
2720 2721 ps = self.shell.user_ns['_dh'][nn]
2721 2722 except IndexError:
2722 2723 print 'The requested directory does not exist in history.'
2723 2724 return
2724 2725 else:
2725 2726 opts = {}
2726 2727 elif parameter_s.startswith('--'):
2727 2728 ps = None
2728 2729 fallback = None
2729 2730 pat = parameter_s[2:]
2730 2731 dh = self.shell.user_ns['_dh']
2731 2732 # first search only by basename (last component)
2732 2733 for ent in reversed(dh):
2733 2734 if pat in os.path.basename(ent) and os.path.isdir(ent):
2734 2735 ps = ent
2735 2736 break
2736 2737
2737 2738 if fallback is None and pat in ent and os.path.isdir(ent):
2738 2739 fallback = ent
2739 2740
2740 2741 # if we have no last part match, pick the first full path match
2741 2742 if ps is None:
2742 2743 ps = fallback
2743 2744
2744 2745 if ps is None:
2745 2746 print "No matching entry in directory history"
2746 2747 return
2747 2748 else:
2748 2749 opts = {}
2749 2750
2750 2751
2751 2752 else:
2752 2753 #turn all non-space-escaping backslashes to slashes,
2753 2754 # for c:\windows\directory\names\
2754 2755 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2755 2756 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2756 2757 # jump to previous
2757 2758 if ps == '-':
2758 2759 try:
2759 2760 ps = self.shell.user_ns['_dh'][-2]
2760 2761 except IndexError:
2761 2762 raise UsageError('%cd -: No previous directory to change to.')
2762 2763 # jump to bookmark if needed
2763 2764 else:
2764 2765 if not os.path.isdir(ps) or opts.has_key('b'):
2765 2766 bkms = self.db.get('bookmarks', {})
2766 2767
2767 2768 if bkms.has_key(ps):
2768 2769 target = bkms[ps]
2769 2770 print '(bookmark:%s) -> %s' % (ps,target)
2770 2771 ps = target
2771 2772 else:
2772 2773 if opts.has_key('b'):
2773 2774 raise UsageError("Bookmark '%s' not found. "
2774 2775 "Use '%%bookmark -l' to see your bookmarks." % ps)
2775 2776
2776 2777 # at this point ps should point to the target dir
2777 2778 if ps:
2778 2779 try:
2779 2780 os.chdir(os.path.expanduser(ps))
2780 2781 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2781 2782 set_term_title('IPython: ' + abbrev_cwd())
2782 2783 except OSError:
2783 2784 print sys.exc_info()[1]
2784 2785 else:
2785 2786 cwd = os.getcwd()
2786 2787 dhist = self.shell.user_ns['_dh']
2787 2788 if oldcwd != cwd:
2788 2789 dhist.append(cwd)
2789 2790 self.db['dhist'] = compress_dhist(dhist)[-100:]
2790 2791
2791 2792 else:
2792 2793 os.chdir(self.shell.home_dir)
2793 2794 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2794 2795 set_term_title('IPython: ' + '~')
2795 2796 cwd = os.getcwd()
2796 2797 dhist = self.shell.user_ns['_dh']
2797 2798
2798 2799 if oldcwd != cwd:
2799 2800 dhist.append(cwd)
2800 2801 self.db['dhist'] = compress_dhist(dhist)[-100:]
2801 2802 if not 'q' in opts and self.shell.user_ns['_dh']:
2802 2803 print self.shell.user_ns['_dh'][-1]
2803 2804
2804 2805
2805 2806 def magic_env(self, parameter_s=''):
2806 2807 """List environment variables."""
2807 2808
2808 2809 return os.environ.data
2809 2810
2810 2811 def magic_pushd(self, parameter_s=''):
2811 2812 """Place the current dir on stack and change directory.
2812 2813
2813 2814 Usage:\\
2814 2815 %pushd ['dirname']
2815 2816 """
2816 2817
2817 2818 dir_s = self.shell.dir_stack
2818 2819 tgt = os.path.expanduser(parameter_s)
2819 2820 cwd = os.getcwd().replace(self.home_dir,'~')
2820 2821 if tgt:
2821 2822 self.magic_cd(parameter_s)
2822 2823 dir_s.insert(0,cwd)
2823 2824 return self.magic_dirs()
2824 2825
2825 2826 def magic_popd(self, parameter_s=''):
2826 2827 """Change to directory popped off the top of the stack.
2827 2828 """
2828 2829 if not self.shell.dir_stack:
2829 2830 raise UsageError("%popd on empty stack")
2830 2831 top = self.shell.dir_stack.pop(0)
2831 2832 self.magic_cd(top)
2832 2833 print "popd ->",top
2833 2834
2834 2835 def magic_dirs(self, parameter_s=''):
2835 2836 """Return the current directory stack."""
2836 2837
2837 2838 return self.shell.dir_stack
2838 2839
2839 2840 def magic_dhist(self, parameter_s=''):
2840 2841 """Print your history of visited directories.
2841 2842
2842 2843 %dhist -> print full history\\
2843 2844 %dhist n -> print last n entries only\\
2844 2845 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2845 2846
2846 2847 This history is automatically maintained by the %cd command, and
2847 2848 always available as the global list variable _dh. You can use %cd -<n>
2848 2849 to go to directory number <n>.
2849 2850
2850 2851 Note that most of time, you should view directory history by entering
2851 2852 cd -<TAB>.
2852 2853
2853 2854 """
2854 2855
2855 2856 dh = self.shell.user_ns['_dh']
2856 2857 if parameter_s:
2857 2858 try:
2858 2859 args = map(int,parameter_s.split())
2859 2860 except:
2860 2861 self.arg_err(Magic.magic_dhist)
2861 2862 return
2862 2863 if len(args) == 1:
2863 2864 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2864 2865 elif len(args) == 2:
2865 2866 ini,fin = args
2866 2867 else:
2867 2868 self.arg_err(Magic.magic_dhist)
2868 2869 return
2869 2870 else:
2870 2871 ini,fin = 0,len(dh)
2871 2872 nlprint(dh,
2872 2873 header = 'Directory history (kept in _dh)',
2873 2874 start=ini,stop=fin)
2874 2875
2875 2876 @testdec.skip_doctest
2876 2877 def magic_sc(self, parameter_s=''):
2877 2878 """Shell capture - execute a shell command and capture its output.
2878 2879
2879 2880 DEPRECATED. Suboptimal, retained for backwards compatibility.
2880 2881
2881 2882 You should use the form 'var = !command' instead. Example:
2882 2883
2883 2884 "%sc -l myfiles = ls ~" should now be written as
2884 2885
2885 2886 "myfiles = !ls ~"
2886 2887
2887 2888 myfiles.s, myfiles.l and myfiles.n still apply as documented
2888 2889 below.
2889 2890
2890 2891 --
2891 2892 %sc [options] varname=command
2892 2893
2893 2894 IPython will run the given command using commands.getoutput(), and
2894 2895 will then update the user's interactive namespace with a variable
2895 2896 called varname, containing the value of the call. Your command can
2896 2897 contain shell wildcards, pipes, etc.
2897 2898
2898 2899 The '=' sign in the syntax is mandatory, and the variable name you
2899 2900 supply must follow Python's standard conventions for valid names.
2900 2901
2901 2902 (A special format without variable name exists for internal use)
2902 2903
2903 2904 Options:
2904 2905
2905 2906 -l: list output. Split the output on newlines into a list before
2906 2907 assigning it to the given variable. By default the output is stored
2907 2908 as a single string.
2908 2909
2909 2910 -v: verbose. Print the contents of the variable.
2910 2911
2911 2912 In most cases you should not need to split as a list, because the
2912 2913 returned value is a special type of string which can automatically
2913 2914 provide its contents either as a list (split on newlines) or as a
2914 2915 space-separated string. These are convenient, respectively, either
2915 2916 for sequential processing or to be passed to a shell command.
2916 2917
2917 2918 For example:
2918 2919
2919 2920 # all-random
2920 2921
2921 2922 # Capture into variable a
2922 2923 In [1]: sc a=ls *py
2923 2924
2924 2925 # a is a string with embedded newlines
2925 2926 In [2]: a
2926 2927 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2927 2928
2928 2929 # which can be seen as a list:
2929 2930 In [3]: a.l
2930 2931 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2931 2932
2932 2933 # or as a whitespace-separated string:
2933 2934 In [4]: a.s
2934 2935 Out[4]: 'setup.py win32_manual_post_install.py'
2935 2936
2936 2937 # a.s is useful to pass as a single command line:
2937 2938 In [5]: !wc -l $a.s
2938 2939 146 setup.py
2939 2940 130 win32_manual_post_install.py
2940 2941 276 total
2941 2942
2942 2943 # while the list form is useful to loop over:
2943 2944 In [6]: for f in a.l:
2944 2945 ...: !wc -l $f
2945 2946 ...:
2946 2947 146 setup.py
2947 2948 130 win32_manual_post_install.py
2948 2949
2949 2950 Similiarly, the lists returned by the -l option are also special, in
2950 2951 the sense that you can equally invoke the .s attribute on them to
2951 2952 automatically get a whitespace-separated string from their contents:
2952 2953
2953 2954 In [7]: sc -l b=ls *py
2954 2955
2955 2956 In [8]: b
2956 2957 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2957 2958
2958 2959 In [9]: b.s
2959 2960 Out[9]: 'setup.py win32_manual_post_install.py'
2960 2961
2961 2962 In summary, both the lists and strings used for ouptut capture have
2962 2963 the following special attributes:
2963 2964
2964 2965 .l (or .list) : value as list.
2965 2966 .n (or .nlstr): value as newline-separated string.
2966 2967 .s (or .spstr): value as space-separated string.
2967 2968 """
2968 2969
2969 2970 opts,args = self.parse_options(parameter_s,'lv')
2970 2971 # Try to get a variable name and command to run
2971 2972 try:
2972 2973 # the variable name must be obtained from the parse_options
2973 2974 # output, which uses shlex.split to strip options out.
2974 2975 var,_ = args.split('=',1)
2975 2976 var = var.strip()
2976 2977 # But the the command has to be extracted from the original input
2977 2978 # parameter_s, not on what parse_options returns, to avoid the
2978 2979 # quote stripping which shlex.split performs on it.
2979 2980 _,cmd = parameter_s.split('=',1)
2980 2981 except ValueError:
2981 2982 var,cmd = '',''
2982 2983 # If all looks ok, proceed
2983 2984 split = 'l' in opts
2984 2985 out = self.shell.getoutput(cmd, split=split)
2985 2986 if opts.has_key('v'):
2986 2987 print '%s ==\n%s' % (var,pformat(out))
2987 2988 if var:
2988 2989 self.shell.user_ns.update({var:out})
2989 2990 else:
2990 2991 return out
2991 2992
2992 2993 def magic_sx(self, parameter_s=''):
2993 2994 """Shell execute - run a shell command and capture its output.
2994 2995
2995 2996 %sx command
2996 2997
2997 2998 IPython will run the given command using commands.getoutput(), and
2998 2999 return the result formatted as a list (split on '\\n'). Since the
2999 3000 output is _returned_, it will be stored in ipython's regular output
3000 3001 cache Out[N] and in the '_N' automatic variables.
3001 3002
3002 3003 Notes:
3003 3004
3004 3005 1) If an input line begins with '!!', then %sx is automatically
3005 3006 invoked. That is, while:
3006 3007 !ls
3007 3008 causes ipython to simply issue system('ls'), typing
3008 3009 !!ls
3009 3010 is a shorthand equivalent to:
3010 3011 %sx ls
3011 3012
3012 3013 2) %sx differs from %sc in that %sx automatically splits into a list,
3013 3014 like '%sc -l'. The reason for this is to make it as easy as possible
3014 3015 to process line-oriented shell output via further python commands.
3015 3016 %sc is meant to provide much finer control, but requires more
3016 3017 typing.
3017 3018
3018 3019 3) Just like %sc -l, this is a list with special attributes:
3019 3020
3020 3021 .l (or .list) : value as list.
3021 3022 .n (or .nlstr): value as newline-separated string.
3022 3023 .s (or .spstr): value as whitespace-separated string.
3023 3024
3024 3025 This is very useful when trying to use such lists as arguments to
3025 3026 system commands."""
3026 3027
3027 3028 if parameter_s:
3028 3029 return self.shell.getoutput(parameter_s)
3029 3030
3030 3031
3031 3032 def magic_bookmark(self, parameter_s=''):
3032 3033 """Manage IPython's bookmark system.
3033 3034
3034 3035 %bookmark <name> - set bookmark to current dir
3035 3036 %bookmark <name> <dir> - set bookmark to <dir>
3036 3037 %bookmark -l - list all bookmarks
3037 3038 %bookmark -d <name> - remove bookmark
3038 3039 %bookmark -r - remove all bookmarks
3039 3040
3040 3041 You can later on access a bookmarked folder with:
3041 3042 %cd -b <name>
3042 3043 or simply '%cd <name>' if there is no directory called <name> AND
3043 3044 there is such a bookmark defined.
3044 3045
3045 3046 Your bookmarks persist through IPython sessions, but they are
3046 3047 associated with each profile."""
3047 3048
3048 3049 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3049 3050 if len(args) > 2:
3050 3051 raise UsageError("%bookmark: too many arguments")
3051 3052
3052 3053 bkms = self.db.get('bookmarks',{})
3053 3054
3054 3055 if opts.has_key('d'):
3055 3056 try:
3056 3057 todel = args[0]
3057 3058 except IndexError:
3058 3059 raise UsageError(
3059 3060 "%bookmark -d: must provide a bookmark to delete")
3060 3061 else:
3061 3062 try:
3062 3063 del bkms[todel]
3063 3064 except KeyError:
3064 3065 raise UsageError(
3065 3066 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3066 3067
3067 3068 elif opts.has_key('r'):
3068 3069 bkms = {}
3069 3070 elif opts.has_key('l'):
3070 3071 bks = bkms.keys()
3071 3072 bks.sort()
3072 3073 if bks:
3073 3074 size = max(map(len,bks))
3074 3075 else:
3075 3076 size = 0
3076 3077 fmt = '%-'+str(size)+'s -> %s'
3077 3078 print 'Current bookmarks:'
3078 3079 for bk in bks:
3079 3080 print fmt % (bk,bkms[bk])
3080 3081 else:
3081 3082 if not args:
3082 3083 raise UsageError("%bookmark: You must specify the bookmark name")
3083 3084 elif len(args)==1:
3084 3085 bkms[args[0]] = os.getcwd()
3085 3086 elif len(args)==2:
3086 3087 bkms[args[0]] = args[1]
3087 3088 self.db['bookmarks'] = bkms
3088 3089
3089 3090 def magic_pycat(self, parameter_s=''):
3090 3091 """Show a syntax-highlighted file through a pager.
3091 3092
3092 3093 This magic is similar to the cat utility, but it will assume the file
3093 3094 to be Python source and will show it with syntax highlighting. """
3094 3095
3095 3096 try:
3096 3097 filename = get_py_filename(parameter_s)
3097 3098 cont = file_read(filename)
3098 3099 except IOError:
3099 3100 try:
3100 3101 cont = eval(parameter_s,self.user_ns)
3101 3102 except NameError:
3102 3103 cont = None
3103 3104 if cont is None:
3104 3105 print "Error: no such file or variable"
3105 3106 return
3106 3107
3107 3108 page.page(self.shell.pycolorize(cont))
3108 3109
3109 3110 def _rerun_pasted(self):
3110 3111 """ Rerun a previously pasted command.
3111 3112 """
3112 3113 b = self.user_ns.get('pasted_block', None)
3113 3114 if b is None:
3114 3115 raise UsageError('No previous pasted block available')
3115 3116 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3116 3117 exec b in self.user_ns
3117 3118
3118 3119 def _get_pasted_lines(self, sentinel):
3119 3120 """ Yield pasted lines until the user enters the given sentinel value.
3120 3121 """
3121 3122 from IPython.core import interactiveshell
3122 3123 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3123 3124 while True:
3124 3125 l = interactiveshell.raw_input_original(':')
3125 3126 if l == sentinel:
3126 3127 return
3127 3128 else:
3128 3129 yield l
3129 3130
3130 3131 def _strip_pasted_lines_for_code(self, raw_lines):
3131 3132 """ Strip non-code parts of a sequence of lines to return a block of
3132 3133 code.
3133 3134 """
3134 3135 # Regular expressions that declare text we strip from the input:
3135 3136 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3136 3137 r'^\s*(\s?>)+', # Python input prompt
3137 3138 r'^\s*\.{3,}', # Continuation prompts
3138 3139 r'^\++',
3139 3140 ]
3140 3141
3141 3142 strip_from_start = map(re.compile,strip_re)
3142 3143
3143 3144 lines = []
3144 3145 for l in raw_lines:
3145 3146 for pat in strip_from_start:
3146 3147 l = pat.sub('',l)
3147 3148 lines.append(l)
3148 3149
3149 3150 block = "\n".join(lines) + '\n'
3150 3151 #print "block:\n",block
3151 3152 return block
3152 3153
3153 3154 def _execute_block(self, block, par):
3154 3155 """ Execute a block, or store it in a variable, per the user's request.
3155 3156 """
3156 3157 if not par:
3157 3158 b = textwrap.dedent(block)
3158 3159 self.user_ns['pasted_block'] = b
3159 3160 exec b in self.user_ns
3160 3161 else:
3161 3162 self.user_ns[par] = SList(block.splitlines())
3162 3163 print "Block assigned to '%s'" % par
3163 3164
3164 3165 def magic_quickref(self,arg):
3165 3166 """ Show a quick reference sheet """
3166 3167 import IPython.core.usage
3167 3168 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3168 3169
3169 3170 page.page(qr)
3170 3171
3171 3172 def magic_doctest_mode(self,parameter_s=''):
3172 3173 """Toggle doctest mode on and off.
3173 3174
3174 3175 This mode is intended to make IPython behave as much as possible like a
3175 3176 plain Python shell, from the perspective of how its prompts, exceptions
3176 3177 and output look. This makes it easy to copy and paste parts of a
3177 3178 session into doctests. It does so by:
3178 3179
3179 3180 - Changing the prompts to the classic ``>>>`` ones.
3180 3181 - Changing the exception reporting mode to 'Plain'.
3181 3182 - Disabling pretty-printing of output.
3182 3183
3183 3184 Note that IPython also supports the pasting of code snippets that have
3184 3185 leading '>>>' and '...' prompts in them. This means that you can paste
3185 3186 doctests from files or docstrings (even if they have leading
3186 3187 whitespace), and the code will execute correctly. You can then use
3187 3188 '%history -t' to see the translated history; this will give you the
3188 3189 input after removal of all the leading prompts and whitespace, which
3189 3190 can be pasted back into an editor.
3190 3191
3191 3192 With these features, you can switch into this mode easily whenever you
3192 3193 need to do testing and changes to doctests, without having to leave
3193 3194 your existing IPython session.
3194 3195 """
3195 3196
3196 3197 from IPython.utils.ipstruct import Struct
3197 3198
3198 3199 # Shorthands
3199 3200 shell = self.shell
3200 3201 oc = shell.displayhook
3201 3202 meta = shell.meta
3202 3203 disp_formatter = self.shell.display_formatter
3203 3204 ptformatter = disp_formatter.formatters['text/plain']
3204 3205 # dstore is a data store kept in the instance metadata bag to track any
3205 3206 # changes we make, so we can undo them later.
3206 3207 dstore = meta.setdefault('doctest_mode',Struct())
3207 3208 save_dstore = dstore.setdefault
3208 3209
3209 3210 # save a few values we'll need to recover later
3210 3211 mode = save_dstore('mode',False)
3211 3212 save_dstore('rc_pprint',ptformatter.pprint)
3212 3213 save_dstore('xmode',shell.InteractiveTB.mode)
3213 3214 save_dstore('rc_separate_out',shell.separate_out)
3214 3215 save_dstore('rc_separate_out2',shell.separate_out2)
3215 3216 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3216 3217 save_dstore('rc_separate_in',shell.separate_in)
3217 3218 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3218 3219
3219 3220 if mode == False:
3220 3221 # turn on
3221 3222 oc.prompt1.p_template = '>>> '
3222 3223 oc.prompt2.p_template = '... '
3223 3224 oc.prompt_out.p_template = ''
3224 3225
3225 3226 # Prompt separators like plain python
3226 3227 oc.input_sep = oc.prompt1.sep = ''
3227 3228 oc.output_sep = ''
3228 3229 oc.output_sep2 = ''
3229 3230
3230 3231 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3231 3232 oc.prompt_out.pad_left = False
3232 3233
3233 3234 ptformatter.pprint = False
3234 3235 disp_formatter.plain_text_only = True
3235 3236
3236 3237 shell.magic_xmode('Plain')
3237 3238 else:
3238 3239 # turn off
3239 3240 oc.prompt1.p_template = shell.prompt_in1
3240 3241 oc.prompt2.p_template = shell.prompt_in2
3241 3242 oc.prompt_out.p_template = shell.prompt_out
3242 3243
3243 3244 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3244 3245
3245 3246 oc.output_sep = dstore.rc_separate_out
3246 3247 oc.output_sep2 = dstore.rc_separate_out2
3247 3248
3248 3249 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3249 3250 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3250 3251
3251 3252 ptformatter.pprint = dstore.rc_pprint
3252 3253 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3253 3254
3254 3255 shell.magic_xmode(dstore.xmode)
3255 3256
3256 3257 # Store new mode and inform
3257 3258 dstore.mode = bool(1-int(mode))
3258 3259 mode_label = ['OFF','ON'][dstore.mode]
3259 3260 print 'Doctest mode is:', mode_label
3260 3261
3261 3262 def magic_gui(self, parameter_s=''):
3262 3263 """Enable or disable IPython GUI event loop integration.
3263 3264
3264 3265 %gui [GUINAME]
3265 3266
3266 3267 This magic replaces IPython's threaded shells that were activated
3267 3268 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3268 3269 can now be enabled, disabled and swtiched at runtime and keyboard
3269 3270 interrupts should work without any problems. The following toolkits
3270 3271 are supported: wxPython, PyQt4, PyGTK, and Tk::
3271 3272
3272 3273 %gui wx # enable wxPython event loop integration
3273 3274 %gui qt4|qt # enable PyQt4 event loop integration
3274 3275 %gui gtk # enable PyGTK event loop integration
3275 3276 %gui tk # enable Tk event loop integration
3276 3277 %gui # disable all event loop integration
3277 3278
3278 3279 WARNING: after any of these has been called you can simply create
3279 3280 an application object, but DO NOT start the event loop yourself, as
3280 3281 we have already handled that.
3281 3282 """
3282 3283 from IPython.lib.inputhook import enable_gui
3283 3284 opts, arg = self.parse_options(parameter_s, '')
3284 3285 if arg=='': arg = None
3285 3286 return enable_gui(arg)
3286 3287
3287 3288 def magic_load_ext(self, module_str):
3288 3289 """Load an IPython extension by its module name."""
3289 3290 return self.extension_manager.load_extension(module_str)
3290 3291
3291 3292 def magic_unload_ext(self, module_str):
3292 3293 """Unload an IPython extension by its module name."""
3293 3294 self.extension_manager.unload_extension(module_str)
3294 3295
3295 3296 def magic_reload_ext(self, module_str):
3296 3297 """Reload an IPython extension by its module name."""
3297 3298 self.extension_manager.reload_extension(module_str)
3298 3299
3299 3300 @testdec.skip_doctest
3300 3301 def magic_install_profiles(self, s):
3301 3302 """Install the default IPython profiles into the .ipython dir.
3302 3303
3303 3304 If the default profiles have already been installed, they will not
3304 3305 be overwritten. You can force overwriting them by using the ``-o``
3305 3306 option::
3306 3307
3307 3308 In [1]: %install_profiles -o
3308 3309 """
3309 3310 if '-o' in s:
3310 3311 overwrite = True
3311 3312 else:
3312 3313 overwrite = False
3313 3314 from IPython.config import profile
3314 3315 profile_dir = os.path.split(profile.__file__)[0]
3315 3316 ipython_dir = self.ipython_dir
3316 3317 files = os.listdir(profile_dir)
3317 3318
3318 3319 to_install = []
3319 3320 for f in files:
3320 3321 if f.startswith('ipython_config'):
3321 3322 src = os.path.join(profile_dir, f)
3322 3323 dst = os.path.join(ipython_dir, f)
3323 3324 if (not os.path.isfile(dst)) or overwrite:
3324 3325 to_install.append((f, src, dst))
3325 3326 if len(to_install)>0:
3326 3327 print "Installing profiles to: ", ipython_dir
3327 3328 for (f, src, dst) in to_install:
3328 3329 shutil.copy(src, dst)
3329 3330 print " %s" % f
3330 3331
3331 3332 def magic_install_default_config(self, s):
3332 3333 """Install IPython's default config file into the .ipython dir.
3333 3334
3334 3335 If the default config file (:file:`ipython_config.py`) is already
3335 3336 installed, it will not be overwritten. You can force overwriting
3336 3337 by using the ``-o`` option::
3337 3338
3338 3339 In [1]: %install_default_config
3339 3340 """
3340 3341 if '-o' in s:
3341 3342 overwrite = True
3342 3343 else:
3343 3344 overwrite = False
3344 3345 from IPython.config import default
3345 3346 config_dir = os.path.split(default.__file__)[0]
3346 3347 ipython_dir = self.ipython_dir
3347 3348 default_config_file_name = 'ipython_config.py'
3348 3349 src = os.path.join(config_dir, default_config_file_name)
3349 3350 dst = os.path.join(ipython_dir, default_config_file_name)
3350 3351 if (not os.path.isfile(dst)) or overwrite:
3351 3352 shutil.copy(src, dst)
3352 3353 print "Installing default config file: %s" % dst
3353 3354
3354 3355 # Pylab support: simple wrappers that activate pylab, load gui input
3355 3356 # handling and modify slightly %run
3356 3357
3357 3358 @testdec.skip_doctest
3358 3359 def _pylab_magic_run(self, parameter_s=''):
3359 3360 Magic.magic_run(self, parameter_s,
3360 3361 runner=mpl_runner(self.shell.safe_execfile))
3361 3362
3362 3363 _pylab_magic_run.__doc__ = magic_run.__doc__
3363 3364
3364 3365 @testdec.skip_doctest
3365 3366 def magic_pylab(self, s):
3366 3367 """Load numpy and matplotlib to work interactively.
3367 3368
3368 3369 %pylab [GUINAME]
3369 3370
3370 3371 This function lets you activate pylab (matplotlib, numpy and
3371 3372 interactive support) at any point during an IPython session.
3372 3373
3373 3374 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3374 3375 pylab and mlab, as well as all names from numpy and pylab.
3375 3376
3376 3377 Parameters
3377 3378 ----------
3378 3379 guiname : optional
3379 3380 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk' or
3380 3381 'tk'). If given, the corresponding Matplotlib backend is used,
3381 3382 otherwise matplotlib's default (which you can override in your
3382 3383 matplotlib config file) is used.
3383 3384
3384 3385 Examples
3385 3386 --------
3386 3387 In this case, where the MPL default is TkAgg:
3387 3388 In [2]: %pylab
3388 3389
3389 3390 Welcome to pylab, a matplotlib-based Python environment.
3390 3391 Backend in use: TkAgg
3391 3392 For more information, type 'help(pylab)'.
3392 3393
3393 3394 But you can explicitly request a different backend:
3394 3395 In [3]: %pylab qt
3395 3396
3396 3397 Welcome to pylab, a matplotlib-based Python environment.
3397 3398 Backend in use: Qt4Agg
3398 3399 For more information, type 'help(pylab)'.
3399 3400 """
3400 3401 self.shell.enable_pylab(s)
3401 3402
3402 3403 def magic_tb(self, s):
3403 3404 """Print the last traceback with the currently active exception mode.
3404 3405
3405 3406 See %xmode for changing exception reporting modes."""
3406 3407 self.shell.showtraceback()
3407 3408
3408 3409 @testdec.skip_doctest
3409 3410 def magic_precision(self, s=''):
3410 3411 """Set floating point precision for pretty printing.
3411 3412
3412 3413 Can set either integer precision or a format string.
3413 3414
3414 3415 If numpy has been imported and precision is an int,
3415 3416 numpy display precision will also be set, via ``numpy.set_printoptions``.
3416 3417
3417 3418 If no argument is given, defaults will be restored.
3418 3419
3419 3420 Examples
3420 3421 --------
3421 3422 ::
3422 3423
3423 3424 In [1]: from math import pi
3424 3425
3425 3426 In [2]: %precision 3
3426 3427 Out[2]: '%.3f'
3427 3428
3428 3429 In [3]: pi
3429 3430 Out[3]: 3.142
3430 3431
3431 3432 In [4]: %precision %i
3432 3433 Out[4]: '%i'
3433 3434
3434 3435 In [5]: pi
3435 3436 Out[5]: 3
3436 3437
3437 3438 In [6]: %precision %e
3438 3439 Out[6]: '%e'
3439 3440
3440 3441 In [7]: pi**10
3441 3442 Out[7]: 9.364805e+04
3442 3443
3443 3444 In [8]: %precision
3444 3445 Out[8]: '%r'
3445 3446
3446 3447 In [9]: pi**10
3447 3448 Out[9]: 93648.047476082982
3448 3449
3449 3450 """
3450 3451
3451 3452 ptformatter = self.shell.display_formatter.formatters['text/plain']
3452 3453 ptformatter.float_precision = s
3453 3454 return ptformatter.float_format
3454 3455
3455 3456 # end Magic
General Comments 0
You need to be logged in to leave comments. Login now