##// END OF EJS Templates
Stop-gap fix for crash with unicode input....
Fernando Perez -
Show More
@@ -1,1010 +1,1014 b''
1 1 """Analysis of text input into executable blocks.
2 2
3 3 The main class in this module, :class:`InputSplitter`, is designed to break
4 4 input from either interactive, line-by-line environments or block-based ones,
5 5 into standalone blocks that can be executed by Python as 'single' statements
6 6 (thus triggering sys.displayhook).
7 7
8 8 A companion, :class:`IPythonInputSplitter`, provides the same functionality but
9 9 with full support for the extended IPython syntax (magics, system calls, etc).
10 10
11 11 For more details, see the class docstring below.
12 12
13 13 Syntax Transformations
14 14 ----------------------
15 15
16 16 One of the main jobs of the code in this file is to apply all syntax
17 17 transformations that make up 'the IPython language', i.e. magics, shell
18 18 escapes, etc. All transformations should be implemented as *fully stateless*
19 19 entities, that simply take one line as their input and return a line.
20 20 Internally for implementation purposes they may be a normal function or a
21 21 callable object, but the only input they receive will be a single line and they
22 22 should only return a line, without holding any data-dependent state between
23 23 calls.
24 24
25 25 As an example, the EscapedTransformer is a class so we can more clearly group
26 26 together the functionality of dispatching to individual functions based on the
27 27 starting escape character, but the only method for public use is its call
28 28 method.
29 29
30 30
31 31 ToDo
32 32 ----
33 33
34 34 - Should we make push() actually raise an exception once push_accepts_more()
35 35 returns False?
36 36
37 37 - Naming cleanups. The tr_* names aren't the most elegant, though now they are
38 38 at least just attributes of a class so not really very exposed.
39 39
40 40 - Think about the best way to support dynamic things: automagic, autocall,
41 41 macros, etc.
42 42
43 43 - Think of a better heuristic for the application of the transforms in
44 44 IPythonInputSplitter.push() than looking at the buffer ending in ':'. Idea:
45 45 track indentation change events (indent, dedent, nothing) and apply them only
46 46 if the indentation went up, but not otherwise.
47 47
48 48 - Think of the cleanest way for supporting user-specified transformations (the
49 49 user prefilters we had before).
50 50
51 51 Authors
52 52 -------
53 53
54 54 * Fernando Perez
55 55 * Brian Granger
56 56 """
57 57 #-----------------------------------------------------------------------------
58 58 # Copyright (C) 2010 The IPython Development Team
59 59 #
60 60 # Distributed under the terms of the BSD License. The full license is in
61 61 # the file COPYING, distributed as part of this software.
62 62 #-----------------------------------------------------------------------------
63 63 from __future__ import print_function
64 64
65 65 #-----------------------------------------------------------------------------
66 66 # Imports
67 67 #-----------------------------------------------------------------------------
68 68 # stdlib
69 69 import codeop
70 70 import re
71 71 import sys
72 72
73 73 # IPython modules
74 74 from IPython.utils.text import make_quoted_expr
75 75
76 76 #-----------------------------------------------------------------------------
77 77 # Globals
78 78 #-----------------------------------------------------------------------------
79 79
80 80 # The escape sequences that define the syntax transformations IPython will
81 81 # apply to user input. These can NOT be just changed here: many regular
82 82 # expressions and other parts of the code may use their hardcoded values, and
83 83 # for all intents and purposes they constitute the 'IPython syntax', so they
84 84 # should be considered fixed.
85 85
86 86 ESC_SHELL = '!' # Send line to underlying system shell
87 87 ESC_SH_CAP = '!!' # Send line to system shell and capture output
88 88 ESC_HELP = '?' # Find information about object
89 89 ESC_HELP2 = '??' # Find extra-detailed information about object
90 90 ESC_MAGIC = '%' # Call magic function
91 91 ESC_QUOTE = ',' # Split args on whitespace, quote each as string and call
92 92 ESC_QUOTE2 = ';' # Quote all args as a single string, call
93 93 ESC_PAREN = '/' # Call first argument with rest of line as arguments
94 94
95 95 #-----------------------------------------------------------------------------
96 96 # Utilities
97 97 #-----------------------------------------------------------------------------
98 98
99 99 # FIXME: These are general-purpose utilities that later can be moved to the
100 100 # general ward. Kept here for now because we're being very strict about test
101 101 # coverage with this code, and this lets us ensure that we keep 100% coverage
102 102 # while developing.
103 103
104 104 # compiled regexps for autoindent management
105 105 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
106 106 ini_spaces_re = re.compile(r'^([ \t\r\f\v]+)')
107 107
108 108 # regexp to match pure comment lines so we don't accidentally insert 'if 1:'
109 109 # before pure comments
110 110 comment_line_re = re.compile('^\s*\#')
111 111
112 112
113 113 def num_ini_spaces(s):
114 114 """Return the number of initial spaces in a string.
115 115
116 116 Note that tabs are counted as a single space. For now, we do *not* support
117 117 mixing of tabs and spaces in the user's input.
118 118
119 119 Parameters
120 120 ----------
121 121 s : string
122 122
123 123 Returns
124 124 -------
125 125 n : int
126 126 """
127 127
128 128 ini_spaces = ini_spaces_re.match(s)
129 129 if ini_spaces:
130 130 return ini_spaces.end()
131 131 else:
132 132 return 0
133 133
134 134
135 135 def remove_comments(src):
136 136 """Remove all comments from input source.
137 137
138 138 Note: comments are NOT recognized inside of strings!
139 139
140 140 Parameters
141 141 ----------
142 142 src : string
143 143 A single or multiline input string.
144 144
145 145 Returns
146 146 -------
147 147 String with all Python comments removed.
148 148 """
149 149
150 150 return re.sub('#.*', '', src)
151 151
152 152
153 153 def get_input_encoding():
154 154 """Return the default standard input encoding.
155 155
156 156 If sys.stdin has no encoding, 'ascii' is returned."""
157 157 # There are strange environments for which sys.stdin.encoding is None. We
158 158 # ensure that a valid encoding is returned.
159 159 encoding = getattr(sys.stdin, 'encoding', None)
160 160 if encoding is None:
161 161 encoding = 'ascii'
162 162 return encoding
163 163
164 164 #-----------------------------------------------------------------------------
165 165 # Classes and functions for normal Python syntax handling
166 166 #-----------------------------------------------------------------------------
167 167
168 168 # HACK! This implementation, written by Robert K a while ago using the
169 169 # compiler module, is more robust than the other one below, but it expects its
170 170 # input to be pure python (no ipython syntax). For now we're using it as a
171 171 # second-pass splitter after the first pass transforms the input to pure
172 172 # python.
173 173
174 174 def split_blocks(python):
175 175 """ Split multiple lines of code into discrete commands that can be
176 176 executed singly.
177 177
178 178 Parameters
179 179 ----------
180 180 python : str
181 181 Pure, exec'able Python code.
182 182
183 183 Returns
184 184 -------
185 185 commands : list of str
186 186 Separate commands that can be exec'ed independently.
187 187 """
188 188
189 189 import compiler
190 190
191 191 # compiler.parse treats trailing spaces after a newline as a
192 192 # SyntaxError. This is different than codeop.CommandCompiler, which
193 193 # will compile the trailng spaces just fine. We simply strip any
194 194 # trailing whitespace off. Passing a string with trailing whitespace
195 195 # to exec will fail however. There seems to be some inconsistency in
196 196 # how trailing whitespace is handled, but this seems to work.
197 197 python_ori = python # save original in case we bail on error
198 198 python = python.strip()
199 199
200 200 # The compiler module does not like unicode. We need to convert
201 201 # it encode it:
202 202 if isinstance(python, unicode):
203 203 # Use the utf-8-sig BOM so the compiler detects this a UTF-8
204 204 # encode string.
205 205 python = '\xef\xbb\xbf' + python.encode('utf-8')
206 206
207 207 # The compiler module will parse the code into an abstract syntax tree.
208 208 # This has a bug with str("a\nb"), but not str("""a\nb""")!!!
209 209 try:
210 210 ast = compiler.parse(python)
211 211 except:
212 212 return [python_ori]
213 213
214 214 # Uncomment to help debug the ast tree
215 215 # for n in ast.node:
216 216 # print n.lineno,'->',n
217 217
218 218 # Each separate command is available by iterating over ast.node. The
219 219 # lineno attribute is the line number (1-indexed) beginning the commands
220 220 # suite.
221 221 # lines ending with ";" yield a Discard Node that doesn't have a lineno
222 222 # attribute. These nodes can and should be discarded. But there are
223 223 # other situations that cause Discard nodes that shouldn't be discarded.
224 224 # We might eventually discover other cases where lineno is None and have
225 225 # to put in a more sophisticated test.
226 226 linenos = [x.lineno-1 for x in ast.node if x.lineno is not None]
227 227
228 228 # When we finally get the slices, we will need to slice all the way to
229 229 # the end even though we don't have a line number for it. Fortunately,
230 230 # None does the job nicely.
231 231 linenos.append(None)
232 232
233 233 # Same problem at the other end: sometimes the ast tree has its
234 234 # first complete statement not starting on line 0. In this case
235 235 # we might miss part of it. This fixes ticket 266993. Thanks Gael!
236 236 linenos[0] = 0
237 237
238 238 lines = python.splitlines()
239 239
240 240 # Create a list of atomic commands.
241 241 cmds = []
242 242 for i, j in zip(linenos[:-1], linenos[1:]):
243 243 cmd = lines[i:j]
244 244 if cmd:
245 245 cmds.append('\n'.join(cmd)+'\n')
246 246
247 247 return cmds
248 248
249 249
250 250 class InputSplitter(object):
251 251 """An object that can split Python source input in executable blocks.
252 252
253 253 This object is designed to be used in one of two basic modes:
254 254
255 255 1. By feeding it python source line-by-line, using :meth:`push`. In this
256 256 mode, it will return on each push whether the currently pushed code
257 257 could be executed already. In addition, it provides a method called
258 258 :meth:`push_accepts_more` that can be used to query whether more input
259 259 can be pushed into a single interactive block.
260 260
261 261 2. By calling :meth:`split_blocks` with a single, multiline Python string,
262 262 that is then split into blocks each of which can be executed
263 263 interactively as a single statement.
264 264
265 265 This is a simple example of how an interactive terminal-based client can use
266 266 this tool::
267 267
268 268 isp = InputSplitter()
269 269 while isp.push_accepts_more():
270 270 indent = ' '*isp.indent_spaces
271 271 prompt = '>>> ' + indent
272 272 line = indent + raw_input(prompt)
273 273 isp.push(line)
274 274 print 'Input source was:\n', isp.source_reset(),
275 275 """
276 276 # Number of spaces of indentation computed from input that has been pushed
277 277 # so far. This is the attributes callers should query to get the current
278 278 # indentation level, in order to provide auto-indent facilities.
279 279 indent_spaces = 0
280 280 # String, indicating the default input encoding. It is computed by default
281 281 # at initialization time via get_input_encoding(), but it can be reset by a
282 282 # client with specific knowledge of the encoding.
283 283 encoding = ''
284 284 # String where the current full source input is stored, properly encoded.
285 285 # Reading this attribute is the normal way of querying the currently pushed
286 286 # source code, that has been properly encoded.
287 287 source = ''
288 288 # Code object corresponding to the current source. It is automatically
289 289 # synced to the source, so it can be queried at any time to obtain the code
290 290 # object; it will be None if the source doesn't compile to valid Python.
291 291 code = None
292 292 # Input mode
293 293 input_mode = 'line'
294 294
295 295 # Private attributes
296 296
297 297 # List with lines of input accumulated so far
298 298 _buffer = None
299 299 # Command compiler
300 300 _compile = None
301 301 # Mark when input has changed indentation all the way back to flush-left
302 302 _full_dedent = False
303 303 # Boolean indicating whether the current block is complete
304 304 _is_complete = None
305 305
306 306 def __init__(self, input_mode=None):
307 307 """Create a new InputSplitter instance.
308 308
309 309 Parameters
310 310 ----------
311 311 input_mode : str
312 312
313 313 One of ['line', 'cell']; default is 'line'.
314 314
315 315 The input_mode parameter controls how new inputs are used when fed via
316 316 the :meth:`push` method:
317 317
318 318 - 'line': meant for line-oriented clients, inputs are appended one at a
319 319 time to the internal buffer and the whole buffer is compiled.
320 320
321 321 - 'cell': meant for clients that can edit multi-line 'cells' of text at
322 322 a time. A cell can contain one or more blocks that can be compile in
323 323 'single' mode by Python. In this mode, each new input new input
324 324 completely replaces all prior inputs. Cell mode is thus equivalent
325 325 to prepending a full reset() to every push() call.
326 326 """
327 327 self._buffer = []
328 328 self._compile = codeop.CommandCompiler()
329 329 self.encoding = get_input_encoding()
330 330 self.input_mode = InputSplitter.input_mode if input_mode is None \
331 331 else input_mode
332 332
333 333 def reset(self):
334 334 """Reset the input buffer and associated state."""
335 335 self.indent_spaces = 0
336 336 self._buffer[:] = []
337 337 self.source = ''
338 338 self.code = None
339 339 self._is_complete = False
340 340 self._full_dedent = False
341 341
342 342 def source_reset(self):
343 343 """Return the input source and perform a full reset.
344 344 """
345 345 out = self.source
346 346 self.reset()
347 347 return out
348 348
349 349 def push(self, lines):
350 350 """Push one ore more lines of input.
351 351
352 352 This stores the given lines and returns a status code indicating
353 353 whether the code forms a complete Python block or not.
354 354
355 355 Any exceptions generated in compilation are swallowed, but if an
356 356 exception was produced, the method returns True.
357 357
358 358 Parameters
359 359 ----------
360 360 lines : string
361 361 One or more lines of Python input.
362 362
363 363 Returns
364 364 -------
365 365 is_complete : boolean
366 366 True if the current input source (the result of the current input
367 367 plus prior inputs) forms a complete Python execution block. Note that
368 368 this value is also stored as a private attribute (_is_complete), so it
369 369 can be queried at any time.
370 370 """
371 371 if self.input_mode == 'cell':
372 372 self.reset()
373 373
374 374 self._store(lines)
375 375 source = self.source
376 376
377 377 # Before calling _compile(), reset the code object to None so that if an
378 378 # exception is raised in compilation, we don't mislead by having
379 379 # inconsistent code/source attributes.
380 380 self.code, self._is_complete = None, None
381 381
382 382 # Honor termination lines properly
383 383 if source.rstrip().endswith('\\'):
384 384 return False
385 385
386 386 self._update_indent(lines)
387 387 try:
388 388 self.code = self._compile(source)
389 389 # Invalid syntax can produce any of a number of different errors from
390 390 # inside the compiler, so we have to catch them all. Syntax errors
391 391 # immediately produce a 'ready' block, so the invalid Python can be
392 392 # sent to the kernel for evaluation with possible ipython
393 393 # special-syntax conversion.
394 394 except (SyntaxError, OverflowError, ValueError, TypeError,
395 395 MemoryError):
396 396 self._is_complete = True
397 397 else:
398 398 # Compilation didn't produce any exceptions (though it may not have
399 399 # given a complete code object)
400 400 self._is_complete = self.code is not None
401 401
402 402 return self._is_complete
403 403
404 404 def push_accepts_more(self):
405 405 """Return whether a block of interactive input can accept more input.
406 406
407 407 This method is meant to be used by line-oriented frontends, who need to
408 408 guess whether a block is complete or not based solely on prior and
409 409 current input lines. The InputSplitter considers it has a complete
410 410 interactive block and will not accept more input only when either a
411 411 SyntaxError is raised, or *all* of the following are true:
412 412
413 413 1. The input compiles to a complete statement.
414 414
415 415 2. The indentation level is flush-left (because if we are indented,
416 416 like inside a function definition or for loop, we need to keep
417 417 reading new input).
418 418
419 419 3. There is one extra line consisting only of whitespace.
420 420
421 421 Because of condition #3, this method should be used only by
422 422 *line-oriented* frontends, since it means that intermediate blank lines
423 423 are not allowed in function definitions (or any other indented block).
424 424
425 425 Block-oriented frontends that have a separate keyboard event to
426 426 indicate execution should use the :meth:`split_blocks` method instead.
427 427
428 428 If the current input produces a syntax error, this method immediately
429 429 returns False but does *not* raise the syntax error exception, as
430 430 typically clients will want to send invalid syntax to an execution
431 431 backend which might convert the invalid syntax into valid Python via
432 432 one of the dynamic IPython mechanisms.
433 433 """
434 434
435 435 # With incomplete input, unconditionally accept more
436 436 if not self._is_complete:
437 437 return True
438 438
439 439 # If we already have complete input and we're flush left, the answer
440 440 # depends. In line mode, we're done. But in cell mode, we need to
441 441 # check how many blocks the input so far compiles into, because if
442 442 # there's already more than one full independent block of input, then
443 443 # the client has entered full 'cell' mode and is feeding lines that
444 444 # each is complete. In this case we should then keep accepting.
445 445 # The Qt terminal-like console does precisely this, to provide the
446 446 # convenience of terminal-like input of single expressions, but
447 447 # allowing the user (with a separate keystroke) to switch to 'cell'
448 448 # mode and type multiple expressions in one shot.
449 449 if self.indent_spaces==0:
450 450 if self.input_mode=='line':
451 451 return False
452 452 else:
453 453 nblocks = len(split_blocks(''.join(self._buffer)))
454 454 if nblocks==1:
455 455 return False
456 456
457 457 # When input is complete, then termination is marked by an extra blank
458 458 # line at the end.
459 459 last_line = self.source.splitlines()[-1]
460 460 return bool(last_line and not last_line.isspace())
461 461
462 462 def split_blocks(self, lines):
463 463 """Split a multiline string into multiple input blocks.
464 464
465 465 Note: this method starts by performing a full reset().
466 466
467 467 Parameters
468 468 ----------
469 469 lines : str
470 470 A possibly multiline string.
471 471
472 472 Returns
473 473 -------
474 474 blocks : list
475 475 A list of strings, each possibly multiline. Each string corresponds
476 476 to a single block that can be compiled in 'single' mode (unless it
477 477 has a syntax error)."""
478 478
479 479 # This code is fairly delicate. If you make any changes here, make
480 480 # absolutely sure that you do run the full test suite and ALL tests
481 481 # pass.
482 482
483 483 self.reset()
484 484 blocks = []
485 485
486 486 # Reversed copy so we can use pop() efficiently and consume the input
487 487 # as a stack
488 488 lines = lines.splitlines()[::-1]
489 489 # Outer loop over all input
490 490 while lines:
491 491 #print 'Current lines:', lines # dbg
492 492 # Inner loop to build each block
493 493 while True:
494 494 # Safety exit from inner loop
495 495 if not lines:
496 496 break
497 497 # Grab next line but don't push it yet
498 498 next_line = lines.pop()
499 499 # Blank/empty lines are pushed as-is
500 500 if not next_line or next_line.isspace():
501 501 self.push(next_line)
502 502 continue
503 503
504 504 # Check indentation changes caused by the *next* line
505 505 indent_spaces, _full_dedent = self._find_indent(next_line)
506 506
507 507 # If the next line causes a dedent, it can be for two differnt
508 508 # reasons: either an explicit de-dent by the user or a
509 509 # return/raise/pass statement. These MUST be handled
510 510 # separately:
511 511 #
512 512 # 1. the first case is only detected when the actual explicit
513 513 # dedent happens, and that would be the *first* line of a *new*
514 514 # block. Thus, we must put the line back into the input buffer
515 515 # so that it starts a new block on the next pass.
516 516 #
517 517 # 2. the second case is detected in the line before the actual
518 518 # dedent happens, so , we consume the line and we can break out
519 519 # to start a new block.
520 520
521 521 # Case 1, explicit dedent causes a break.
522 522 # Note: check that we weren't on the very last line, else we'll
523 523 # enter an infinite loop adding/removing the last line.
524 524 if _full_dedent and lines and not next_line.startswith(' '):
525 525 lines.append(next_line)
526 526 break
527 527
528 528 # Otherwise any line is pushed
529 529 self.push(next_line)
530 530
531 531 # Case 2, full dedent with full block ready:
532 532 if _full_dedent or \
533 533 self.indent_spaces==0 and not self.push_accepts_more():
534 534 break
535 535 # Form the new block with the current source input
536 536 blocks.append(self.source_reset())
537 537
538 538 #return blocks
539 539 # HACK!!! Now that our input is in blocks but guaranteed to be pure
540 540 # python syntax, feed it back a second time through the AST-based
541 541 # splitter, which is more accurate than ours.
542 542 return split_blocks(''.join(blocks))
543 543
544 544 #------------------------------------------------------------------------
545 545 # Private interface
546 546 #------------------------------------------------------------------------
547 547
548 548 def _find_indent(self, line):
549 549 """Compute the new indentation level for a single line.
550 550
551 551 Parameters
552 552 ----------
553 553 line : str
554 554 A single new line of non-whitespace, non-comment Python input.
555 555
556 556 Returns
557 557 -------
558 558 indent_spaces : int
559 559 New value for the indent level (it may be equal to self.indent_spaces
560 560 if indentation doesn't change.
561 561
562 562 full_dedent : boolean
563 563 Whether the new line causes a full flush-left dedent.
564 564 """
565 565 indent_spaces = self.indent_spaces
566 566 full_dedent = self._full_dedent
567 567
568 568 inisp = num_ini_spaces(line)
569 569 if inisp < indent_spaces:
570 570 indent_spaces = inisp
571 571 if indent_spaces <= 0:
572 572 #print 'Full dedent in text',self.source # dbg
573 573 full_dedent = True
574 574
575 575 if line[-1] == ':':
576 576 indent_spaces += 4
577 577 elif dedent_re.match(line):
578 578 indent_spaces -= 4
579 579 if indent_spaces <= 0:
580 580 full_dedent = True
581 581
582 582 # Safety
583 583 if indent_spaces < 0:
584 584 indent_spaces = 0
585 585 #print 'safety' # dbg
586 586
587 587 return indent_spaces, full_dedent
588 588
589 589 def _update_indent(self, lines):
590 590 for line in remove_comments(lines).splitlines():
591 591 if line and not line.isspace():
592 592 self.indent_spaces, self._full_dedent = self._find_indent(line)
593 593
594 594 def _store(self, lines, buffer=None, store='source'):
595 595 """Store one or more lines of input.
596 596
597 597 If input lines are not newline-terminated, a newline is automatically
598 598 appended."""
599 599
600 600 if buffer is None:
601 601 buffer = self._buffer
602 602
603 603 if lines.endswith('\n'):
604 604 buffer.append(lines)
605 605 else:
606 606 buffer.append(lines+'\n')
607 607 setattr(self, store, self._set_source(buffer))
608 608
609 609 def _set_source(self, buffer):
610 610 return ''.join(buffer).encode(self.encoding)
611 611
612 612
613 613 #-----------------------------------------------------------------------------
614 614 # Functions and classes for IPython-specific syntactic support
615 615 #-----------------------------------------------------------------------------
616 616
617 617 # RegExp for splitting line contents into pre-char//first word-method//rest.
618 618 # For clarity, each group in on one line.
619 619
620 620 line_split = re.compile("""
621 621 ^(\s*) # any leading space
622 622 ([,;/%]|!!?|\?\??) # escape character or characters
623 623 \s*(%?[\w\.\*]*) # function/method, possibly with leading %
624 624 # to correctly treat things like '?%magic'
625 625 (\s+.*$|$) # rest of line
626 626 """, re.VERBOSE)
627 627
628 628
629 629 def split_user_input(line):
630 630 """Split user input into early whitespace, esc-char, function part and rest.
631 631
632 632 This is currently handles lines with '=' in them in a very inconsistent
633 633 manner.
634 634
635 635 Examples
636 636 ========
637 637 >>> split_user_input('x=1')
638 638 ('', '', 'x=1', '')
639 639 >>> split_user_input('?')
640 640 ('', '?', '', '')
641 641 >>> split_user_input('??')
642 642 ('', '??', '', '')
643 643 >>> split_user_input(' ?')
644 644 (' ', '?', '', '')
645 645 >>> split_user_input(' ??')
646 646 (' ', '??', '', '')
647 647 >>> split_user_input('??x')
648 648 ('', '??', 'x', '')
649 649 >>> split_user_input('?x=1')
650 650 ('', '', '?x=1', '')
651 651 >>> split_user_input('!ls')
652 652 ('', '!', 'ls', '')
653 653 >>> split_user_input(' !ls')
654 654 (' ', '!', 'ls', '')
655 655 >>> split_user_input('!!ls')
656 656 ('', '!!', 'ls', '')
657 657 >>> split_user_input(' !!ls')
658 658 (' ', '!!', 'ls', '')
659 659 >>> split_user_input(',ls')
660 660 ('', ',', 'ls', '')
661 661 >>> split_user_input(';ls')
662 662 ('', ';', 'ls', '')
663 663 >>> split_user_input(' ;ls')
664 664 (' ', ';', 'ls', '')
665 665 >>> split_user_input('f.g(x)')
666 666 ('', '', 'f.g(x)', '')
667 667 >>> split_user_input('f.g (x)')
668 668 ('', '', 'f.g', '(x)')
669 669 >>> split_user_input('?%hist')
670 670 ('', '?', '%hist', '')
671 671 >>> split_user_input('?x*')
672 672 ('', '?', 'x*', '')
673 673 """
674 674 match = line_split.match(line)
675 675 if match:
676 676 lspace, esc, fpart, rest = match.groups()
677 677 else:
678 678 # print "match failed for line '%s'" % line
679 679 try:
680 680 fpart, rest = line.split(None, 1)
681 681 except ValueError:
682 682 # print "split failed for line '%s'" % line
683 683 fpart, rest = line,''
684 684 lspace = re.match('^(\s*)(.*)', line).groups()[0]
685 685 esc = ''
686 686
687 687 # fpart has to be a valid python identifier, so it better be only pure
688 688 # ascii, no unicode:
689 689 try:
690 690 fpart = fpart.encode('ascii')
691 691 except UnicodeEncodeError:
692 692 lspace = unicode(lspace)
693 693 rest = fpart + u' ' + rest
694 694 fpart = u''
695 695
696 696 #print 'line:<%s>' % line # dbg
697 697 #print 'esc <%s> fpart <%s> rest <%s>' % (esc,fpart.strip(),rest) # dbg
698 698 return lspace, esc, fpart.strip(), rest.lstrip()
699 699
700 700
701 701 # The escaped translators ALL receive a line where their own escape has been
702 702 # stripped. Only '?' is valid at the end of the line, all others can only be
703 703 # placed at the start.
704 704
705 705 class LineInfo(object):
706 706 """A single line of input and associated info.
707 707
708 708 This is a utility class that mostly wraps the output of
709 709 :func:`split_user_input` into a convenient object to be passed around
710 710 during input transformations.
711 711
712 712 Includes the following as properties:
713 713
714 714 line
715 715 The original, raw line
716 716
717 717 lspace
718 718 Any early whitespace before actual text starts.
719 719
720 720 esc
721 721 The initial esc character (or characters, for double-char escapes like
722 722 '??' or '!!').
723 723
724 724 fpart
725 725 The 'function part', which is basically the maximal initial sequence
726 726 of valid python identifiers and the '.' character. This is what is
727 727 checked for alias and magic transformations, used for auto-calling,
728 728 etc.
729 729
730 730 rest
731 731 Everything else on the line.
732 732 """
733 733 def __init__(self, line):
734 734 self.line = line
735 735 self.lspace, self.esc, self.fpart, self.rest = \
736 736 split_user_input(line)
737 737
738 738 def __str__(self):
739 739 return "LineInfo [%s|%s|%s|%s]" % (self.lspace, self.esc,
740 740 self.fpart, self.rest)
741 741
742 742
743 743 # Transformations of the special syntaxes that don't rely on an explicit escape
744 744 # character but instead on patterns on the input line
745 745
746 746 # The core transformations are implemented as standalone functions that can be
747 747 # tested and validated in isolation. Each of these uses a regexp, we
748 748 # pre-compile these and keep them close to each function definition for clarity
749 749
750 750 _assign_system_re = re.compile(r'(?P<lhs>(\s*)([\w\.]+)((\s*,\s*[\w\.]+)*))'
751 751 r'\s*=\s*!\s*(?P<cmd>.*)')
752 752
753 753 def transform_assign_system(line):
754 754 """Handle the `files = !ls` syntax."""
755 755 m = _assign_system_re.match(line)
756 756 if m is not None:
757 757 cmd = m.group('cmd')
758 758 lhs = m.group('lhs')
759 759 expr = make_quoted_expr(cmd)
760 760 new_line = '%s = get_ipython().getoutput(%s)' % (lhs, expr)
761 761 return new_line
762 762 return line
763 763
764 764
765 765 _assign_magic_re = re.compile(r'(?P<lhs>(\s*)([\w\.]+)((\s*,\s*[\w\.]+)*))'
766 766 r'\s*=\s*%\s*(?P<cmd>.*)')
767 767
768 768 def transform_assign_magic(line):
769 769 """Handle the `a = %who` syntax."""
770 770 m = _assign_magic_re.match(line)
771 771 if m is not None:
772 772 cmd = m.group('cmd')
773 773 lhs = m.group('lhs')
774 774 expr = make_quoted_expr(cmd)
775 775 new_line = '%s = get_ipython().magic(%s)' % (lhs, expr)
776 776 return new_line
777 777 return line
778 778
779 779
780 780 _classic_prompt_re = re.compile(r'^([ \t]*>>> |^[ \t]*\.\.\. )')
781 781
782 782 def transform_classic_prompt(line):
783 783 """Handle inputs that start with '>>> ' syntax."""
784 784
785 785 if not line or line.isspace():
786 786 return line
787 787 m = _classic_prompt_re.match(line)
788 788 if m:
789 789 return line[len(m.group(0)):]
790 790 else:
791 791 return line
792 792
793 793
794 794 _ipy_prompt_re = re.compile(r'^([ \t]*In \[\d+\]: |^[ \t]*\ \ \ \.\.\.+: )')
795 795
796 796 def transform_ipy_prompt(line):
797 797 """Handle inputs that start classic IPython prompt syntax."""
798 798
799 799 if not line or line.isspace():
800 800 return line
801 801 #print 'LINE: %r' % line # dbg
802 802 m = _ipy_prompt_re.match(line)
803 803 if m:
804 804 #print 'MATCH! %r -> %r' % (line, line[len(m.group(0)):]) # dbg
805 805 return line[len(m.group(0)):]
806 806 else:
807 807 return line
808 808
809 809
810 810 class EscapedTransformer(object):
811 811 """Class to transform lines that are explicitly escaped out."""
812 812
813 813 def __init__(self):
814 814 tr = { ESC_SHELL : self._tr_system,
815 815 ESC_SH_CAP : self._tr_system2,
816 816 ESC_HELP : self._tr_help,
817 817 ESC_HELP2 : self._tr_help,
818 818 ESC_MAGIC : self._tr_magic,
819 819 ESC_QUOTE : self._tr_quote,
820 820 ESC_QUOTE2 : self._tr_quote2,
821 821 ESC_PAREN : self._tr_paren }
822 822 self.tr = tr
823 823
824 824 # Support for syntax transformations that use explicit escapes typed by the
825 825 # user at the beginning of a line
826 826 @staticmethod
827 827 def _tr_system(line_info):
828 828 "Translate lines escaped with: !"
829 829 cmd = line_info.line.lstrip().lstrip(ESC_SHELL)
830 830 return '%sget_ipython().system(%s)' % (line_info.lspace,
831 831 make_quoted_expr(cmd))
832 832
833 833 @staticmethod
834 834 def _tr_system2(line_info):
835 835 "Translate lines escaped with: !!"
836 836 cmd = line_info.line.lstrip()[2:]
837 837 return '%sget_ipython().getoutput(%s)' % (line_info.lspace,
838 838 make_quoted_expr(cmd))
839 839
840 840 @staticmethod
841 841 def _tr_help(line_info):
842 842 "Translate lines escaped with: ?/??"
843 843 # A naked help line should just fire the intro help screen
844 844 if not line_info.line[1:]:
845 845 return 'get_ipython().show_usage()'
846 846
847 847 # There may be one or two '?' at the end, move them to the front so that
848 848 # the rest of the logic can assume escapes are at the start
849 849 l_ori = line_info
850 850 line = line_info.line
851 851 if line.endswith('?'):
852 852 line = line[-1] + line[:-1]
853 853 if line.endswith('?'):
854 854 line = line[-1] + line[:-1]
855 855 line_info = LineInfo(line)
856 856
857 857 # From here on, simply choose which level of detail to get, and
858 858 # special-case the psearch syntax
859 859 pinfo = 'pinfo' # default
860 860 if '*' in line_info.line:
861 861 pinfo = 'psearch'
862 862 elif line_info.esc == '??':
863 863 pinfo = 'pinfo2'
864 864
865 865 tpl = '%sget_ipython().magic("%s %s")'
866 866 return tpl % (line_info.lspace, pinfo,
867 867 ' '.join([line_info.fpart, line_info.rest]).strip())
868 868
869 869 @staticmethod
870 870 def _tr_magic(line_info):
871 871 "Translate lines escaped with: %"
872 872 tpl = '%sget_ipython().magic(%s)'
873 873 cmd = make_quoted_expr(' '.join([line_info.fpart,
874 874 line_info.rest]).strip())
875 875 return tpl % (line_info.lspace, cmd)
876 876
877 877 @staticmethod
878 878 def _tr_quote(line_info):
879 879 "Translate lines escaped with: ,"
880 880 return '%s%s("%s")' % (line_info.lspace, line_info.fpart,
881 881 '", "'.join(line_info.rest.split()) )
882 882
883 883 @staticmethod
884 884 def _tr_quote2(line_info):
885 885 "Translate lines escaped with: ;"
886 886 return '%s%s("%s")' % (line_info.lspace, line_info.fpart,
887 887 line_info.rest)
888 888
889 889 @staticmethod
890 890 def _tr_paren(line_info):
891 891 "Translate lines escaped with: /"
892 892 return '%s%s(%s)' % (line_info.lspace, line_info.fpart,
893 893 ", ".join(line_info.rest.split()))
894 894
895 895 def __call__(self, line):
896 896 """Class to transform lines that are explicitly escaped out.
897 897
898 898 This calls the above _tr_* static methods for the actual line
899 899 translations."""
900 900
901 901 # Empty lines just get returned unmodified
902 902 if not line or line.isspace():
903 903 return line
904 904
905 905 # Get line endpoints, where the escapes can be
906 906 line_info = LineInfo(line)
907 907
908 908 # If the escape is not at the start, only '?' needs to be special-cased.
909 909 # All other escapes are only valid at the start
910 910 if not line_info.esc in self.tr:
911 911 if line.endswith(ESC_HELP):
912 912 return self._tr_help(line_info)
913 913 else:
914 914 # If we don't recognize the escape, don't modify the line
915 915 return line
916 916
917 917 return self.tr[line_info.esc](line_info)
918 918
919 919
920 920 # A function-looking object to be used by the rest of the code. The purpose of
921 921 # the class in this case is to organize related functionality, more than to
922 922 # manage state.
923 923 transform_escaped = EscapedTransformer()
924 924
925 925
926 926 class IPythonInputSplitter(InputSplitter):
927 927 """An input splitter that recognizes all of IPython's special syntax."""
928 928
929 929 # String with raw, untransformed input.
930 930 source_raw = ''
931 931
932 932 # Private attributes
933 933
934 934 # List with lines of raw input accumulated so far.
935 935 _buffer_raw = None
936 936
937 937 def __init__(self, input_mode=None):
938 938 InputSplitter.__init__(self, input_mode)
939 939 self._buffer_raw = []
940 940
941 941 def reset(self):
942 942 """Reset the input buffer and associated state."""
943 943 InputSplitter.reset(self)
944 944 self._buffer_raw[:] = []
945 945 self.source_raw = ''
946 946
947 947 def source_raw_reset(self):
948 948 """Return input and raw source and perform a full reset.
949 949 """
950 950 out = self.source
951 951 out_r = self.source_raw
952 952 self.reset()
953 953 return out, out_r
954 954
955 955 def push(self, lines):
956 956 """Push one or more lines of IPython input.
957 957 """
958 958 if not lines:
959 959 return super(IPythonInputSplitter, self).push(lines)
960 960
961 # We must ensure all input is pure unicode
962 if type(lines)==str:
963 lines = lines.decode(self.encoding)
964
961 965 lines_list = lines.splitlines()
962 966
963 967 transforms = [transform_escaped, transform_assign_system,
964 968 transform_assign_magic, transform_ipy_prompt,
965 969 transform_classic_prompt]
966 970
967 971 # Transform logic
968 972 #
969 973 # We only apply the line transformers to the input if we have either no
970 974 # input yet, or complete input, or if the last line of the buffer ends
971 975 # with ':' (opening an indented block). This prevents the accidental
972 976 # transformation of escapes inside multiline expressions like
973 977 # triple-quoted strings or parenthesized expressions.
974 978 #
975 979 # The last heuristic, while ugly, ensures that the first line of an
976 980 # indented block is correctly transformed.
977 981 #
978 982 # FIXME: try to find a cleaner approach for this last bit.
979 983
980 984 # If we were in 'block' mode, since we're going to pump the parent
981 985 # class by hand line by line, we need to temporarily switch out to
982 986 # 'line' mode, do a single manual reset and then feed the lines one
983 987 # by one. Note that this only matters if the input has more than one
984 988 # line.
985 989 changed_input_mode = False
986 990
987 991 if self.input_mode == 'cell':
988 992 self.reset()
989 993 changed_input_mode = True
990 994 saved_input_mode = 'cell'
991 995 self.input_mode = 'line'
992 996
993 997 # Store raw source before applying any transformations to it. Note
994 998 # that this must be done *after* the reset() call that would otherwise
995 999 # flush the buffer.
996 1000 self._store(lines, self._buffer_raw, 'source_raw')
997 1001
998 1002 try:
999 1003 push = super(IPythonInputSplitter, self).push
1000 1004 for line in lines_list:
1001 1005 if self._is_complete or not self._buffer or \
1002 1006 (self._buffer and self._buffer[-1].rstrip().endswith(':')):
1003 1007 for f in transforms:
1004 1008 line = f(line)
1005 1009
1006 1010 out = push(line)
1007 1011 finally:
1008 1012 if changed_input_mode:
1009 1013 self.input_mode = saved_input_mode
1010 1014 return out
@@ -1,2530 +1,2538 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2010 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import exceptions
26 26 import new
27 27 import os
28 28 import re
29 29 import string
30 30 import sys
31 31 import tempfile
32 32 from contextlib import nested
33 33
34 34 from IPython.config.configurable import Configurable
35 35 from IPython.core import debugger, oinspect
36 36 from IPython.core import history as ipcorehist
37 37 from IPython.core import page
38 38 from IPython.core import prefilter
39 39 from IPython.core import shadowns
40 40 from IPython.core import ultratb
41 41 from IPython.core.alias import AliasManager
42 42 from IPython.core.builtin_trap import BuiltinTrap
43 43 from IPython.core.display_trap import DisplayTrap
44 44 from IPython.core.displayhook import DisplayHook
45 45 from IPython.core.error import TryNext, UsageError
46 46 from IPython.core.extensions import ExtensionManager
47 47 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 48 from IPython.core.history import HistoryManager
49 49 from IPython.core.inputlist import InputList
50 50 from IPython.core.inputsplitter import IPythonInputSplitter
51 51 from IPython.core.logger import Logger
52 52 from IPython.core.magic import Magic
53 53 from IPython.core.payload import PayloadManager
54 54 from IPython.core.plugin import PluginManager
55 55 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
56 56 from IPython.external.Itpl import ItplNS
57 57 from IPython.utils import PyColorize
58 58 from IPython.utils import io
59 59 from IPython.utils import pickleshare
60 60 from IPython.utils.doctestreload import doctest_reload
61 61 from IPython.utils.io import ask_yes_no, rprint
62 62 from IPython.utils.ipstruct import Struct
63 63 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
64 64 from IPython.utils.process import system, getoutput
65 65 from IPython.utils.strdispatch import StrDispatch
66 66 from IPython.utils.syspathcontext import prepended_to_syspath
67 67 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
68 68 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
69 69 List, Unicode, Instance, Type)
70 70 from IPython.utils.warn import warn, error, fatal
71 71 import IPython.core.hooks
72 72
73 73 #-----------------------------------------------------------------------------
74 74 # Globals
75 75 #-----------------------------------------------------------------------------
76 76
77 77 # compiled regexps for autoindent management
78 78 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
79 79
80 80 #-----------------------------------------------------------------------------
81 81 # Utilities
82 82 #-----------------------------------------------------------------------------
83 83
84 84 # store the builtin raw_input globally, and use this always, in case user code
85 85 # overwrites it (like wx.py.PyShell does)
86 86 raw_input_original = raw_input
87 87
88 88 def softspace(file, newvalue):
89 89 """Copied from code.py, to remove the dependency"""
90 90
91 91 oldvalue = 0
92 92 try:
93 93 oldvalue = file.softspace
94 94 except AttributeError:
95 95 pass
96 96 try:
97 97 file.softspace = newvalue
98 98 except (AttributeError, TypeError):
99 99 # "attribute-less object" or "read-only attributes"
100 100 pass
101 101 return oldvalue
102 102
103 103
104 104 def no_op(*a, **kw): pass
105 105
106 106 class SpaceInInput(exceptions.Exception): pass
107 107
108 108 class Bunch: pass
109 109
110 110
111 111 def get_default_colors():
112 112 if sys.platform=='darwin':
113 113 return "LightBG"
114 114 elif os.name=='nt':
115 115 return 'Linux'
116 116 else:
117 117 return 'Linux'
118 118
119 119
120 120 class SeparateStr(Str):
121 121 """A Str subclass to validate separate_in, separate_out, etc.
122 122
123 123 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
124 124 """
125 125
126 126 def validate(self, obj, value):
127 127 if value == '0': value = ''
128 128 value = value.replace('\\n','\n')
129 129 return super(SeparateStr, self).validate(obj, value)
130 130
131 131 class MultipleInstanceError(Exception):
132 132 pass
133 133
134 134
135 135 #-----------------------------------------------------------------------------
136 136 # Main IPython class
137 137 #-----------------------------------------------------------------------------
138 138
139 139
140 140 class InteractiveShell(Configurable, Magic):
141 141 """An enhanced, interactive shell for Python."""
142 142
143 143 _instance = None
144 144 autocall = Enum((0,1,2), default_value=1, config=True)
145 145 # TODO: remove all autoindent logic and put into frontends.
146 146 # We can't do this yet because even runlines uses the autoindent.
147 147 autoindent = CBool(True, config=True)
148 148 automagic = CBool(True, config=True)
149 149 cache_size = Int(1000, config=True)
150 150 color_info = CBool(True, config=True)
151 151 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
152 152 default_value=get_default_colors(), config=True)
153 153 debug = CBool(False, config=True)
154 154 deep_reload = CBool(False, config=True)
155 155 displayhook_class = Type(DisplayHook)
156 156 exit_now = CBool(False)
157 157 filename = Str("<ipython console>")
158 158 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
159 159
160 160 # Input splitter, to split entire cells of input into either individual
161 161 # interactive statements or whole blocks.
162 162 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
163 163 (), {})
164 164 logstart = CBool(False, config=True)
165 165 logfile = Str('', config=True)
166 166 logappend = Str('', config=True)
167 167 object_info_string_level = Enum((0,1,2), default_value=0,
168 168 config=True)
169 169 pdb = CBool(False, config=True)
170 170
171 171 pprint = CBool(True, config=True)
172 172 profile = Str('', config=True)
173 173 prompt_in1 = Str('In [\\#]: ', config=True)
174 174 prompt_in2 = Str(' .\\D.: ', config=True)
175 175 prompt_out = Str('Out[\\#]: ', config=True)
176 176 prompts_pad_left = CBool(True, config=True)
177 177 quiet = CBool(False, config=True)
178 178
179 179 # The readline stuff will eventually be moved to the terminal subclass
180 180 # but for now, we can't do that as readline is welded in everywhere.
181 181 readline_use = CBool(True, config=True)
182 182 readline_merge_completions = CBool(True, config=True)
183 183 readline_omit__names = Enum((0,1,2), default_value=0, config=True)
184 184 readline_remove_delims = Str('-/~', config=True)
185 185 readline_parse_and_bind = List([
186 186 'tab: complete',
187 187 '"\C-l": clear-screen',
188 188 'set show-all-if-ambiguous on',
189 189 '"\C-o": tab-insert',
190 190 '"\M-i": " "',
191 191 '"\M-o": "\d\d\d\d"',
192 192 '"\M-I": "\d\d\d\d"',
193 193 '"\C-r": reverse-search-history',
194 194 '"\C-s": forward-search-history',
195 195 '"\C-p": history-search-backward',
196 196 '"\C-n": history-search-forward',
197 197 '"\e[A": history-search-backward',
198 198 '"\e[B": history-search-forward',
199 199 '"\C-k": kill-line',
200 200 '"\C-u": unix-line-discard',
201 201 ], allow_none=False, config=True)
202 202
203 203 # TODO: this part of prompt management should be moved to the frontends.
204 204 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
205 205 separate_in = SeparateStr('\n', config=True)
206 206 separate_out = SeparateStr('', config=True)
207 207 separate_out2 = SeparateStr('', config=True)
208 208 wildcards_case_sensitive = CBool(True, config=True)
209 209 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
210 210 default_value='Context', config=True)
211 211
212 212 # Subcomponents of InteractiveShell
213 213 alias_manager = Instance('IPython.core.alias.AliasManager')
214 214 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
215 215 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
216 216 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
217 217 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
218 218 plugin_manager = Instance('IPython.core.plugin.PluginManager')
219 219 payload_manager = Instance('IPython.core.payload.PayloadManager')
220 220 history_manager = Instance('IPython.core.history.HistoryManager')
221 221
222 222 # Private interface
223 223 _post_execute = set()
224 224
225 225 def __init__(self, config=None, ipython_dir=None,
226 226 user_ns=None, user_global_ns=None,
227 227 custom_exceptions=((), None)):
228 228
229 229 # This is where traits with a config_key argument are updated
230 230 # from the values on config.
231 231 super(InteractiveShell, self).__init__(config=config)
232 232
233 233 # These are relatively independent and stateless
234 234 self.init_ipython_dir(ipython_dir)
235 235 self.init_instance_attrs()
236 236 self.init_environment()
237 237
238 238 # Create namespaces (user_ns, user_global_ns, etc.)
239 239 self.init_create_namespaces(user_ns, user_global_ns)
240 240 # This has to be done after init_create_namespaces because it uses
241 241 # something in self.user_ns, but before init_sys_modules, which
242 242 # is the first thing to modify sys.
243 243 # TODO: When we override sys.stdout and sys.stderr before this class
244 244 # is created, we are saving the overridden ones here. Not sure if this
245 245 # is what we want to do.
246 246 self.save_sys_module_state()
247 247 self.init_sys_modules()
248 248
249 249 self.init_history()
250 250 self.init_encoding()
251 251 self.init_prefilter()
252 252
253 253 Magic.__init__(self, self)
254 254
255 255 self.init_syntax_highlighting()
256 256 self.init_hooks()
257 257 self.init_pushd_popd_magic()
258 258 # self.init_traceback_handlers use to be here, but we moved it below
259 259 # because it and init_io have to come after init_readline.
260 260 self.init_user_ns()
261 261 self.init_logger()
262 262 self.init_alias()
263 263 self.init_builtins()
264 264
265 265 # pre_config_initialization
266 266
267 267 # The next section should contain everything that was in ipmaker.
268 268 self.init_logstart()
269 269
270 270 # The following was in post_config_initialization
271 271 self.init_inspector()
272 272 # init_readline() must come before init_io(), because init_io uses
273 273 # readline related things.
274 274 self.init_readline()
275 275 # init_completer must come after init_readline, because it needs to
276 276 # know whether readline is present or not system-wide to configure the
277 277 # completers, since the completion machinery can now operate
278 278 # independently of readline (e.g. over the network)
279 279 self.init_completer()
280 280 # TODO: init_io() needs to happen before init_traceback handlers
281 281 # because the traceback handlers hardcode the stdout/stderr streams.
282 282 # This logic in in debugger.Pdb and should eventually be changed.
283 283 self.init_io()
284 284 self.init_traceback_handlers(custom_exceptions)
285 285 self.init_prompts()
286 286 self.init_displayhook()
287 287 self.init_reload_doctest()
288 288 self.init_magics()
289 289 self.init_pdb()
290 290 self.init_extension_manager()
291 291 self.init_plugin_manager()
292 292 self.init_payload()
293 293 self.hooks.late_startup_hook()
294 294 atexit.register(self.atexit_operations)
295 295
296 296 @classmethod
297 297 def instance(cls, *args, **kwargs):
298 298 """Returns a global InteractiveShell instance."""
299 299 if cls._instance is None:
300 300 inst = cls(*args, **kwargs)
301 301 # Now make sure that the instance will also be returned by
302 302 # the subclasses instance attribute.
303 303 for subclass in cls.mro():
304 304 if issubclass(cls, subclass) and \
305 305 issubclass(subclass, InteractiveShell):
306 306 subclass._instance = inst
307 307 else:
308 308 break
309 309 if isinstance(cls._instance, cls):
310 310 return cls._instance
311 311 else:
312 312 raise MultipleInstanceError(
313 313 'Multiple incompatible subclass instances of '
314 314 'InteractiveShell are being created.'
315 315 )
316 316
317 317 @classmethod
318 318 def initialized(cls):
319 319 return hasattr(cls, "_instance")
320 320
321 321 def get_ipython(self):
322 322 """Return the currently running IPython instance."""
323 323 return self
324 324
325 325 #-------------------------------------------------------------------------
326 326 # Trait changed handlers
327 327 #-------------------------------------------------------------------------
328 328
329 329 def _ipython_dir_changed(self, name, new):
330 330 if not os.path.isdir(new):
331 331 os.makedirs(new, mode = 0777)
332 332
333 333 def set_autoindent(self,value=None):
334 334 """Set the autoindent flag, checking for readline support.
335 335
336 336 If called with no arguments, it acts as a toggle."""
337 337
338 338 if not self.has_readline:
339 339 if os.name == 'posix':
340 340 warn("The auto-indent feature requires the readline library")
341 341 self.autoindent = 0
342 342 return
343 343 if value is None:
344 344 self.autoindent = not self.autoindent
345 345 else:
346 346 self.autoindent = value
347 347
348 348 #-------------------------------------------------------------------------
349 349 # init_* methods called by __init__
350 350 #-------------------------------------------------------------------------
351 351
352 352 def init_ipython_dir(self, ipython_dir):
353 353 if ipython_dir is not None:
354 354 self.ipython_dir = ipython_dir
355 355 self.config.Global.ipython_dir = self.ipython_dir
356 356 return
357 357
358 358 if hasattr(self.config.Global, 'ipython_dir'):
359 359 self.ipython_dir = self.config.Global.ipython_dir
360 360 else:
361 361 self.ipython_dir = get_ipython_dir()
362 362
363 363 # All children can just read this
364 364 self.config.Global.ipython_dir = self.ipython_dir
365 365
366 366 def init_instance_attrs(self):
367 367 self.more = False
368 368
369 369 # command compiler
370 370 self.compile = codeop.CommandCompiler()
371 371
372 372 # User input buffers
373 373 self.buffer = []
374 374 self.buffer_raw = []
375 375
376 376 # Make an empty namespace, which extension writers can rely on both
377 377 # existing and NEVER being used by ipython itself. This gives them a
378 378 # convenient location for storing additional information and state
379 379 # their extensions may require, without fear of collisions with other
380 380 # ipython names that may develop later.
381 381 self.meta = Struct()
382 382
383 383 # Object variable to store code object waiting execution. This is
384 384 # used mainly by the multithreaded shells, but it can come in handy in
385 385 # other situations. No need to use a Queue here, since it's a single
386 386 # item which gets cleared once run.
387 387 self.code_to_run = None
388 388
389 389 # Temporary files used for various purposes. Deleted at exit.
390 390 self.tempfiles = []
391 391
392 392 # Keep track of readline usage (later set by init_readline)
393 393 self.has_readline = False
394 394
395 395 # keep track of where we started running (mainly for crash post-mortem)
396 396 # This is not being used anywhere currently.
397 397 self.starting_dir = os.getcwd()
398 398
399 399 # Indentation management
400 400 self.indent_current_nsp = 0
401 401
402 402 # Increasing execution counter
403 403 self.execution_count = 1
404 404
405 405 def init_environment(self):
406 406 """Any changes we need to make to the user's environment."""
407 407 pass
408 408
409 409 def init_encoding(self):
410 410 # Get system encoding at startup time. Certain terminals (like Emacs
411 411 # under Win32 have it set to None, and we need to have a known valid
412 412 # encoding to use in the raw_input() method
413 413 try:
414 414 self.stdin_encoding = sys.stdin.encoding or 'ascii'
415 415 except AttributeError:
416 416 self.stdin_encoding = 'ascii'
417 417
418 418 def init_syntax_highlighting(self):
419 419 # Python source parser/formatter for syntax highlighting
420 420 pyformat = PyColorize.Parser().format
421 421 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
422 422
423 423 def init_pushd_popd_magic(self):
424 424 # for pushd/popd management
425 425 try:
426 426 self.home_dir = get_home_dir()
427 427 except HomeDirError, msg:
428 428 fatal(msg)
429 429
430 430 self.dir_stack = []
431 431
432 432 def init_logger(self):
433 433 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
434 434 logmode='rotate')
435 435
436 436 def init_logstart(self):
437 437 """Initialize logging in case it was requested at the command line.
438 438 """
439 439 if self.logappend:
440 440 self.magic_logstart(self.logappend + ' append')
441 441 elif self.logfile:
442 442 self.magic_logstart(self.logfile)
443 443 elif self.logstart:
444 444 self.magic_logstart()
445 445
446 446 def init_builtins(self):
447 447 self.builtin_trap = BuiltinTrap(shell=self)
448 448
449 449 def init_inspector(self):
450 450 # Object inspector
451 451 self.inspector = oinspect.Inspector(oinspect.InspectColors,
452 452 PyColorize.ANSICodeColors,
453 453 'NoColor',
454 454 self.object_info_string_level)
455 455
456 456 def init_io(self):
457 457 # This will just use sys.stdout and sys.stderr. If you want to
458 458 # override sys.stdout and sys.stderr themselves, you need to do that
459 459 # *before* instantiating this class, because Term holds onto
460 460 # references to the underlying streams.
461 461 if sys.platform == 'win32' and self.has_readline:
462 462 Term = io.IOTerm(cout=self.readline._outputfile,
463 463 cerr=self.readline._outputfile)
464 464 else:
465 465 Term = io.IOTerm()
466 466 io.Term = Term
467 467
468 468 def init_prompts(self):
469 469 # TODO: This is a pass for now because the prompts are managed inside
470 470 # the DisplayHook. Once there is a separate prompt manager, this
471 471 # will initialize that object and all prompt related information.
472 472 pass
473 473
474 474 def init_displayhook(self):
475 475 # Initialize displayhook, set in/out prompts and printing system
476 476 self.displayhook = self.displayhook_class(
477 477 shell=self,
478 478 cache_size=self.cache_size,
479 479 input_sep = self.separate_in,
480 480 output_sep = self.separate_out,
481 481 output_sep2 = self.separate_out2,
482 482 ps1 = self.prompt_in1,
483 483 ps2 = self.prompt_in2,
484 484 ps_out = self.prompt_out,
485 485 pad_left = self.prompts_pad_left
486 486 )
487 487 # This is a context manager that installs/revmoes the displayhook at
488 488 # the appropriate time.
489 489 self.display_trap = DisplayTrap(hook=self.displayhook)
490 490
491 491 def init_reload_doctest(self):
492 492 # Do a proper resetting of doctest, including the necessary displayhook
493 493 # monkeypatching
494 494 try:
495 495 doctest_reload()
496 496 except ImportError:
497 497 warn("doctest module does not exist.")
498 498
499 499 #-------------------------------------------------------------------------
500 500 # Things related to injections into the sys module
501 501 #-------------------------------------------------------------------------
502 502
503 503 def save_sys_module_state(self):
504 504 """Save the state of hooks in the sys module.
505 505
506 506 This has to be called after self.user_ns is created.
507 507 """
508 508 self._orig_sys_module_state = {}
509 509 self._orig_sys_module_state['stdin'] = sys.stdin
510 510 self._orig_sys_module_state['stdout'] = sys.stdout
511 511 self._orig_sys_module_state['stderr'] = sys.stderr
512 512 self._orig_sys_module_state['excepthook'] = sys.excepthook
513 513 try:
514 514 self._orig_sys_modules_main_name = self.user_ns['__name__']
515 515 except KeyError:
516 516 pass
517 517
518 518 def restore_sys_module_state(self):
519 519 """Restore the state of the sys module."""
520 520 try:
521 521 for k, v in self._orig_sys_module_state.items():
522 522 setattr(sys, k, v)
523 523 except AttributeError:
524 524 pass
525 525 # Reset what what done in self.init_sys_modules
526 526 try:
527 527 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
528 528 except (AttributeError, KeyError):
529 529 pass
530 530
531 531 #-------------------------------------------------------------------------
532 532 # Things related to hooks
533 533 #-------------------------------------------------------------------------
534 534
535 535 def init_hooks(self):
536 536 # hooks holds pointers used for user-side customizations
537 537 self.hooks = Struct()
538 538
539 539 self.strdispatchers = {}
540 540
541 541 # Set all default hooks, defined in the IPython.hooks module.
542 542 hooks = IPython.core.hooks
543 543 for hook_name in hooks.__all__:
544 544 # default hooks have priority 100, i.e. low; user hooks should have
545 545 # 0-100 priority
546 546 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
547 547
548 548 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
549 549 """set_hook(name,hook) -> sets an internal IPython hook.
550 550
551 551 IPython exposes some of its internal API as user-modifiable hooks. By
552 552 adding your function to one of these hooks, you can modify IPython's
553 553 behavior to call at runtime your own routines."""
554 554
555 555 # At some point in the future, this should validate the hook before it
556 556 # accepts it. Probably at least check that the hook takes the number
557 557 # of args it's supposed to.
558 558
559 559 f = new.instancemethod(hook,self,self.__class__)
560 560
561 561 # check if the hook is for strdispatcher first
562 562 if str_key is not None:
563 563 sdp = self.strdispatchers.get(name, StrDispatch())
564 564 sdp.add_s(str_key, f, priority )
565 565 self.strdispatchers[name] = sdp
566 566 return
567 567 if re_key is not None:
568 568 sdp = self.strdispatchers.get(name, StrDispatch())
569 569 sdp.add_re(re.compile(re_key), f, priority )
570 570 self.strdispatchers[name] = sdp
571 571 return
572 572
573 573 dp = getattr(self.hooks, name, None)
574 574 if name not in IPython.core.hooks.__all__:
575 575 print "Warning! Hook '%s' is not one of %s" % \
576 576 (name, IPython.core.hooks.__all__ )
577 577 if not dp:
578 578 dp = IPython.core.hooks.CommandChainDispatcher()
579 579
580 580 try:
581 581 dp.add(f,priority)
582 582 except AttributeError:
583 583 # it was not commandchain, plain old func - replace
584 584 dp = f
585 585
586 586 setattr(self.hooks,name, dp)
587 587
588 588 def register_post_execute(self, func):
589 589 """Register a function for calling after code execution.
590 590 """
591 591 if not callable(func):
592 592 raise ValueError('argument %s must be callable' % func)
593 593 self._post_execute.add(func)
594 594
595 595 #-------------------------------------------------------------------------
596 596 # Things related to the "main" module
597 597 #-------------------------------------------------------------------------
598 598
599 599 def new_main_mod(self,ns=None):
600 600 """Return a new 'main' module object for user code execution.
601 601 """
602 602 main_mod = self._user_main_module
603 603 init_fakemod_dict(main_mod,ns)
604 604 return main_mod
605 605
606 606 def cache_main_mod(self,ns,fname):
607 607 """Cache a main module's namespace.
608 608
609 609 When scripts are executed via %run, we must keep a reference to the
610 610 namespace of their __main__ module (a FakeModule instance) around so
611 611 that Python doesn't clear it, rendering objects defined therein
612 612 useless.
613 613
614 614 This method keeps said reference in a private dict, keyed by the
615 615 absolute path of the module object (which corresponds to the script
616 616 path). This way, for multiple executions of the same script we only
617 617 keep one copy of the namespace (the last one), thus preventing memory
618 618 leaks from old references while allowing the objects from the last
619 619 execution to be accessible.
620 620
621 621 Note: we can not allow the actual FakeModule instances to be deleted,
622 622 because of how Python tears down modules (it hard-sets all their
623 623 references to None without regard for reference counts). This method
624 624 must therefore make a *copy* of the given namespace, to allow the
625 625 original module's __dict__ to be cleared and reused.
626 626
627 627
628 628 Parameters
629 629 ----------
630 630 ns : a namespace (a dict, typically)
631 631
632 632 fname : str
633 633 Filename associated with the namespace.
634 634
635 635 Examples
636 636 --------
637 637
638 638 In [10]: import IPython
639 639
640 640 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
641 641
642 642 In [12]: IPython.__file__ in _ip._main_ns_cache
643 643 Out[12]: True
644 644 """
645 645 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
646 646
647 647 def clear_main_mod_cache(self):
648 648 """Clear the cache of main modules.
649 649
650 650 Mainly for use by utilities like %reset.
651 651
652 652 Examples
653 653 --------
654 654
655 655 In [15]: import IPython
656 656
657 657 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
658 658
659 659 In [17]: len(_ip._main_ns_cache) > 0
660 660 Out[17]: True
661 661
662 662 In [18]: _ip.clear_main_mod_cache()
663 663
664 664 In [19]: len(_ip._main_ns_cache) == 0
665 665 Out[19]: True
666 666 """
667 667 self._main_ns_cache.clear()
668 668
669 669 #-------------------------------------------------------------------------
670 670 # Things related to debugging
671 671 #-------------------------------------------------------------------------
672 672
673 673 def init_pdb(self):
674 674 # Set calling of pdb on exceptions
675 675 # self.call_pdb is a property
676 676 self.call_pdb = self.pdb
677 677
678 678 def _get_call_pdb(self):
679 679 return self._call_pdb
680 680
681 681 def _set_call_pdb(self,val):
682 682
683 683 if val not in (0,1,False,True):
684 684 raise ValueError,'new call_pdb value must be boolean'
685 685
686 686 # store value in instance
687 687 self._call_pdb = val
688 688
689 689 # notify the actual exception handlers
690 690 self.InteractiveTB.call_pdb = val
691 691
692 692 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
693 693 'Control auto-activation of pdb at exceptions')
694 694
695 695 def debugger(self,force=False):
696 696 """Call the pydb/pdb debugger.
697 697
698 698 Keywords:
699 699
700 700 - force(False): by default, this routine checks the instance call_pdb
701 701 flag and does not actually invoke the debugger if the flag is false.
702 702 The 'force' option forces the debugger to activate even if the flag
703 703 is false.
704 704 """
705 705
706 706 if not (force or self.call_pdb):
707 707 return
708 708
709 709 if not hasattr(sys,'last_traceback'):
710 710 error('No traceback has been produced, nothing to debug.')
711 711 return
712 712
713 713 # use pydb if available
714 714 if debugger.has_pydb:
715 715 from pydb import pm
716 716 else:
717 717 # fallback to our internal debugger
718 718 pm = lambda : self.InteractiveTB.debugger(force=True)
719 719 self.history_saving_wrapper(pm)()
720 720
721 721 #-------------------------------------------------------------------------
722 722 # Things related to IPython's various namespaces
723 723 #-------------------------------------------------------------------------
724 724
725 725 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
726 726 # Create the namespace where the user will operate. user_ns is
727 727 # normally the only one used, and it is passed to the exec calls as
728 728 # the locals argument. But we do carry a user_global_ns namespace
729 729 # given as the exec 'globals' argument, This is useful in embedding
730 730 # situations where the ipython shell opens in a context where the
731 731 # distinction between locals and globals is meaningful. For
732 732 # non-embedded contexts, it is just the same object as the user_ns dict.
733 733
734 734 # FIXME. For some strange reason, __builtins__ is showing up at user
735 735 # level as a dict instead of a module. This is a manual fix, but I
736 736 # should really track down where the problem is coming from. Alex
737 737 # Schmolck reported this problem first.
738 738
739 739 # A useful post by Alex Martelli on this topic:
740 740 # Re: inconsistent value from __builtins__
741 741 # Von: Alex Martelli <aleaxit@yahoo.com>
742 742 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
743 743 # Gruppen: comp.lang.python
744 744
745 745 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
746 746 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
747 747 # > <type 'dict'>
748 748 # > >>> print type(__builtins__)
749 749 # > <type 'module'>
750 750 # > Is this difference in return value intentional?
751 751
752 752 # Well, it's documented that '__builtins__' can be either a dictionary
753 753 # or a module, and it's been that way for a long time. Whether it's
754 754 # intentional (or sensible), I don't know. In any case, the idea is
755 755 # that if you need to access the built-in namespace directly, you
756 756 # should start with "import __builtin__" (note, no 's') which will
757 757 # definitely give you a module. Yeah, it's somewhat confusing:-(.
758 758
759 759 # These routines return properly built dicts as needed by the rest of
760 760 # the code, and can also be used by extension writers to generate
761 761 # properly initialized namespaces.
762 762 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
763 763 user_global_ns)
764 764
765 765 # Assign namespaces
766 766 # This is the namespace where all normal user variables live
767 767 self.user_ns = user_ns
768 768 self.user_global_ns = user_global_ns
769 769
770 770 # An auxiliary namespace that checks what parts of the user_ns were
771 771 # loaded at startup, so we can list later only variables defined in
772 772 # actual interactive use. Since it is always a subset of user_ns, it
773 773 # doesn't need to be separately tracked in the ns_table.
774 774 self.user_ns_hidden = {}
775 775
776 776 # A namespace to keep track of internal data structures to prevent
777 777 # them from cluttering user-visible stuff. Will be updated later
778 778 self.internal_ns = {}
779 779
780 780 # Now that FakeModule produces a real module, we've run into a nasty
781 781 # problem: after script execution (via %run), the module where the user
782 782 # code ran is deleted. Now that this object is a true module (needed
783 783 # so docetst and other tools work correctly), the Python module
784 784 # teardown mechanism runs over it, and sets to None every variable
785 785 # present in that module. Top-level references to objects from the
786 786 # script survive, because the user_ns is updated with them. However,
787 787 # calling functions defined in the script that use other things from
788 788 # the script will fail, because the function's closure had references
789 789 # to the original objects, which are now all None. So we must protect
790 790 # these modules from deletion by keeping a cache.
791 791 #
792 792 # To avoid keeping stale modules around (we only need the one from the
793 793 # last run), we use a dict keyed with the full path to the script, so
794 794 # only the last version of the module is held in the cache. Note,
795 795 # however, that we must cache the module *namespace contents* (their
796 796 # __dict__). Because if we try to cache the actual modules, old ones
797 797 # (uncached) could be destroyed while still holding references (such as
798 798 # those held by GUI objects that tend to be long-lived)>
799 799 #
800 800 # The %reset command will flush this cache. See the cache_main_mod()
801 801 # and clear_main_mod_cache() methods for details on use.
802 802
803 803 # This is the cache used for 'main' namespaces
804 804 self._main_ns_cache = {}
805 805 # And this is the single instance of FakeModule whose __dict__ we keep
806 806 # copying and clearing for reuse on each %run
807 807 self._user_main_module = FakeModule()
808 808
809 809 # A table holding all the namespaces IPython deals with, so that
810 810 # introspection facilities can search easily.
811 811 self.ns_table = {'user':user_ns,
812 812 'user_global':user_global_ns,
813 813 'internal':self.internal_ns,
814 814 'builtin':__builtin__.__dict__
815 815 }
816 816
817 817 # Similarly, track all namespaces where references can be held and that
818 818 # we can safely clear (so it can NOT include builtin). This one can be
819 819 # a simple list.
820 820 self.ns_refs_table = [ user_ns, user_global_ns, self.user_ns_hidden,
821 821 self.internal_ns, self._main_ns_cache ]
822 822
823 823 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
824 824 """Return a valid local and global user interactive namespaces.
825 825
826 826 This builds a dict with the minimal information needed to operate as a
827 827 valid IPython user namespace, which you can pass to the various
828 828 embedding classes in ipython. The default implementation returns the
829 829 same dict for both the locals and the globals to allow functions to
830 830 refer to variables in the namespace. Customized implementations can
831 831 return different dicts. The locals dictionary can actually be anything
832 832 following the basic mapping protocol of a dict, but the globals dict
833 833 must be a true dict, not even a subclass. It is recommended that any
834 834 custom object for the locals namespace synchronize with the globals
835 835 dict somehow.
836 836
837 837 Raises TypeError if the provided globals namespace is not a true dict.
838 838
839 839 Parameters
840 840 ----------
841 841 user_ns : dict-like, optional
842 842 The current user namespace. The items in this namespace should
843 843 be included in the output. If None, an appropriate blank
844 844 namespace should be created.
845 845 user_global_ns : dict, optional
846 846 The current user global namespace. The items in this namespace
847 847 should be included in the output. If None, an appropriate
848 848 blank namespace should be created.
849 849
850 850 Returns
851 851 -------
852 852 A pair of dictionary-like object to be used as the local namespace
853 853 of the interpreter and a dict to be used as the global namespace.
854 854 """
855 855
856 856
857 857 # We must ensure that __builtin__ (without the final 's') is always
858 858 # available and pointing to the __builtin__ *module*. For more details:
859 859 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
860 860
861 861 if user_ns is None:
862 862 # Set __name__ to __main__ to better match the behavior of the
863 863 # normal interpreter.
864 864 user_ns = {'__name__' :'__main__',
865 865 '__builtin__' : __builtin__,
866 866 '__builtins__' : __builtin__,
867 867 }
868 868 else:
869 869 user_ns.setdefault('__name__','__main__')
870 870 user_ns.setdefault('__builtin__',__builtin__)
871 871 user_ns.setdefault('__builtins__',__builtin__)
872 872
873 873 if user_global_ns is None:
874 874 user_global_ns = user_ns
875 875 if type(user_global_ns) is not dict:
876 876 raise TypeError("user_global_ns must be a true dict; got %r"
877 877 % type(user_global_ns))
878 878
879 879 return user_ns, user_global_ns
880 880
881 881 def init_sys_modules(self):
882 882 # We need to insert into sys.modules something that looks like a
883 883 # module but which accesses the IPython namespace, for shelve and
884 884 # pickle to work interactively. Normally they rely on getting
885 885 # everything out of __main__, but for embedding purposes each IPython
886 886 # instance has its own private namespace, so we can't go shoving
887 887 # everything into __main__.
888 888
889 889 # note, however, that we should only do this for non-embedded
890 890 # ipythons, which really mimic the __main__.__dict__ with their own
891 891 # namespace. Embedded instances, on the other hand, should not do
892 892 # this because they need to manage the user local/global namespaces
893 893 # only, but they live within a 'normal' __main__ (meaning, they
894 894 # shouldn't overtake the execution environment of the script they're
895 895 # embedded in).
896 896
897 897 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
898 898
899 899 try:
900 900 main_name = self.user_ns['__name__']
901 901 except KeyError:
902 902 raise KeyError('user_ns dictionary MUST have a "__name__" key')
903 903 else:
904 904 sys.modules[main_name] = FakeModule(self.user_ns)
905 905
906 906 def init_user_ns(self):
907 907 """Initialize all user-visible namespaces to their minimum defaults.
908 908
909 909 Certain history lists are also initialized here, as they effectively
910 910 act as user namespaces.
911 911
912 912 Notes
913 913 -----
914 914 All data structures here are only filled in, they are NOT reset by this
915 915 method. If they were not empty before, data will simply be added to
916 916 therm.
917 917 """
918 918 # This function works in two parts: first we put a few things in
919 919 # user_ns, and we sync that contents into user_ns_hidden so that these
920 920 # initial variables aren't shown by %who. After the sync, we add the
921 921 # rest of what we *do* want the user to see with %who even on a new
922 922 # session (probably nothing, so theye really only see their own stuff)
923 923
924 924 # The user dict must *always* have a __builtin__ reference to the
925 925 # Python standard __builtin__ namespace, which must be imported.
926 926 # This is so that certain operations in prompt evaluation can be
927 927 # reliably executed with builtins. Note that we can NOT use
928 928 # __builtins__ (note the 's'), because that can either be a dict or a
929 929 # module, and can even mutate at runtime, depending on the context
930 930 # (Python makes no guarantees on it). In contrast, __builtin__ is
931 931 # always a module object, though it must be explicitly imported.
932 932
933 933 # For more details:
934 934 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
935 935 ns = dict(__builtin__ = __builtin__)
936 936
937 937 # Put 'help' in the user namespace
938 938 try:
939 939 from site import _Helper
940 940 ns['help'] = _Helper()
941 941 except ImportError:
942 942 warn('help() not available - check site.py')
943 943
944 944 # make global variables for user access to the histories
945 945 ns['_ih'] = self.input_hist
946 946 ns['_oh'] = self.output_hist
947 947 ns['_dh'] = self.dir_hist
948 948
949 949 ns['_sh'] = shadowns
950 950
951 951 # user aliases to input and output histories. These shouldn't show up
952 952 # in %who, as they can have very large reprs.
953 953 ns['In'] = self.input_hist
954 954 ns['Out'] = self.output_hist
955 955
956 956 # Store myself as the public api!!!
957 957 ns['get_ipython'] = self.get_ipython
958 958
959 959 # Sync what we've added so far to user_ns_hidden so these aren't seen
960 960 # by %who
961 961 self.user_ns_hidden.update(ns)
962 962
963 963 # Anything put into ns now would show up in %who. Think twice before
964 964 # putting anything here, as we really want %who to show the user their
965 965 # stuff, not our variables.
966 966
967 967 # Finally, update the real user's namespace
968 968 self.user_ns.update(ns)
969 969
970 970 def reset(self):
971 971 """Clear all internal namespaces.
972 972
973 973 Note that this is much more aggressive than %reset, since it clears
974 974 fully all namespaces, as well as all input/output lists.
975 975 """
976 976 # Clear histories
977 977 self.history_manager.reset()
978 978
979 979 # Reset counter used to index all histories
980 980 self.execution_count = 0
981 981
982 982 # Restore the user namespaces to minimal usability
983 983 for ns in self.ns_refs_table:
984 984 ns.clear()
985 985 self.init_user_ns()
986 986
987 987 # Restore the default and user aliases
988 988 self.alias_manager.clear_aliases()
989 989 self.alias_manager.init_aliases()
990 990
991 991 def reset_selective(self, regex=None):
992 992 """Clear selective variables from internal namespaces based on a
993 993 specified regular expression.
994 994
995 995 Parameters
996 996 ----------
997 997 regex : string or compiled pattern, optional
998 998 A regular expression pattern that will be used in searching
999 999 variable names in the users namespaces.
1000 1000 """
1001 1001 if regex is not None:
1002 1002 try:
1003 1003 m = re.compile(regex)
1004 1004 except TypeError:
1005 1005 raise TypeError('regex must be a string or compiled pattern')
1006 1006 # Search for keys in each namespace that match the given regex
1007 1007 # If a match is found, delete the key/value pair.
1008 1008 for ns in self.ns_refs_table:
1009 1009 for var in ns:
1010 1010 if m.search(var):
1011 1011 del ns[var]
1012 1012
1013 1013 def push(self, variables, interactive=True):
1014 1014 """Inject a group of variables into the IPython user namespace.
1015 1015
1016 1016 Parameters
1017 1017 ----------
1018 1018 variables : dict, str or list/tuple of str
1019 1019 The variables to inject into the user's namespace. If a dict, a
1020 1020 simple update is done. If a str, the string is assumed to have
1021 1021 variable names separated by spaces. A list/tuple of str can also
1022 1022 be used to give the variable names. If just the variable names are
1023 1023 give (list/tuple/str) then the variable values looked up in the
1024 1024 callers frame.
1025 1025 interactive : bool
1026 1026 If True (default), the variables will be listed with the ``who``
1027 1027 magic.
1028 1028 """
1029 1029 vdict = None
1030 1030
1031 1031 # We need a dict of name/value pairs to do namespace updates.
1032 1032 if isinstance(variables, dict):
1033 1033 vdict = variables
1034 1034 elif isinstance(variables, (basestring, list, tuple)):
1035 1035 if isinstance(variables, basestring):
1036 1036 vlist = variables.split()
1037 1037 else:
1038 1038 vlist = variables
1039 1039 vdict = {}
1040 1040 cf = sys._getframe(1)
1041 1041 for name in vlist:
1042 1042 try:
1043 1043 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1044 1044 except:
1045 1045 print ('Could not get variable %s from %s' %
1046 1046 (name,cf.f_code.co_name))
1047 1047 else:
1048 1048 raise ValueError('variables must be a dict/str/list/tuple')
1049 1049
1050 1050 # Propagate variables to user namespace
1051 1051 self.user_ns.update(vdict)
1052 1052
1053 1053 # And configure interactive visibility
1054 1054 config_ns = self.user_ns_hidden
1055 1055 if interactive:
1056 1056 for name, val in vdict.iteritems():
1057 1057 config_ns.pop(name, None)
1058 1058 else:
1059 1059 for name,val in vdict.iteritems():
1060 1060 config_ns[name] = val
1061 1061
1062 1062 #-------------------------------------------------------------------------
1063 1063 # Things related to object introspection
1064 1064 #-------------------------------------------------------------------------
1065 1065
1066 1066 def _ofind(self, oname, namespaces=None):
1067 1067 """Find an object in the available namespaces.
1068 1068
1069 1069 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1070 1070
1071 1071 Has special code to detect magic functions.
1072 1072 """
1073 1073 #oname = oname.strip()
1074 1074 #print '1- oname: <%r>' % oname # dbg
1075 1075 try:
1076 1076 oname = oname.strip().encode('ascii')
1077 1077 #print '2- oname: <%r>' % oname # dbg
1078 1078 except UnicodeEncodeError:
1079 1079 print 'Python identifiers can only contain ascii characters.'
1080 1080 return dict(found=False)
1081 1081
1082 1082 alias_ns = None
1083 1083 if namespaces is None:
1084 1084 # Namespaces to search in:
1085 1085 # Put them in a list. The order is important so that we
1086 1086 # find things in the same order that Python finds them.
1087 1087 namespaces = [ ('Interactive', self.user_ns),
1088 1088 ('IPython internal', self.internal_ns),
1089 1089 ('Python builtin', __builtin__.__dict__),
1090 1090 ('Alias', self.alias_manager.alias_table),
1091 1091 ]
1092 1092 alias_ns = self.alias_manager.alias_table
1093 1093
1094 1094 # initialize results to 'null'
1095 1095 found = False; obj = None; ospace = None; ds = None;
1096 1096 ismagic = False; isalias = False; parent = None
1097 1097
1098 1098 # We need to special-case 'print', which as of python2.6 registers as a
1099 1099 # function but should only be treated as one if print_function was
1100 1100 # loaded with a future import. In this case, just bail.
1101 1101 if (oname == 'print' and not (self.compile.compiler.flags &
1102 1102 __future__.CO_FUTURE_PRINT_FUNCTION)):
1103 1103 return {'found':found, 'obj':obj, 'namespace':ospace,
1104 1104 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1105 1105
1106 1106 # Look for the given name by splitting it in parts. If the head is
1107 1107 # found, then we look for all the remaining parts as members, and only
1108 1108 # declare success if we can find them all.
1109 1109 oname_parts = oname.split('.')
1110 1110 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1111 1111 for nsname,ns in namespaces:
1112 1112 try:
1113 1113 obj = ns[oname_head]
1114 1114 except KeyError:
1115 1115 continue
1116 1116 else:
1117 1117 #print 'oname_rest:', oname_rest # dbg
1118 1118 for part in oname_rest:
1119 1119 try:
1120 1120 parent = obj
1121 1121 obj = getattr(obj,part)
1122 1122 except:
1123 1123 # Blanket except b/c some badly implemented objects
1124 1124 # allow __getattr__ to raise exceptions other than
1125 1125 # AttributeError, which then crashes IPython.
1126 1126 break
1127 1127 else:
1128 1128 # If we finish the for loop (no break), we got all members
1129 1129 found = True
1130 1130 ospace = nsname
1131 1131 if ns == alias_ns:
1132 1132 isalias = True
1133 1133 break # namespace loop
1134 1134
1135 1135 # Try to see if it's magic
1136 1136 if not found:
1137 1137 if oname.startswith(ESC_MAGIC):
1138 1138 oname = oname[1:]
1139 1139 obj = getattr(self,'magic_'+oname,None)
1140 1140 if obj is not None:
1141 1141 found = True
1142 1142 ospace = 'IPython internal'
1143 1143 ismagic = True
1144 1144
1145 1145 # Last try: special-case some literals like '', [], {}, etc:
1146 1146 if not found and oname_head in ["''",'""','[]','{}','()']:
1147 1147 obj = eval(oname_head)
1148 1148 found = True
1149 1149 ospace = 'Interactive'
1150 1150
1151 1151 return {'found':found, 'obj':obj, 'namespace':ospace,
1152 1152 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1153 1153
1154 1154 def _ofind_property(self, oname, info):
1155 1155 """Second part of object finding, to look for property details."""
1156 1156 if info.found:
1157 1157 # Get the docstring of the class property if it exists.
1158 1158 path = oname.split('.')
1159 1159 root = '.'.join(path[:-1])
1160 1160 if info.parent is not None:
1161 1161 try:
1162 1162 target = getattr(info.parent, '__class__')
1163 1163 # The object belongs to a class instance.
1164 1164 try:
1165 1165 target = getattr(target, path[-1])
1166 1166 # The class defines the object.
1167 1167 if isinstance(target, property):
1168 1168 oname = root + '.__class__.' + path[-1]
1169 1169 info = Struct(self._ofind(oname))
1170 1170 except AttributeError: pass
1171 1171 except AttributeError: pass
1172 1172
1173 1173 # We return either the new info or the unmodified input if the object
1174 1174 # hadn't been found
1175 1175 return info
1176 1176
1177 1177 def _object_find(self, oname, namespaces=None):
1178 1178 """Find an object and return a struct with info about it."""
1179 1179 inf = Struct(self._ofind(oname, namespaces))
1180 1180 return Struct(self._ofind_property(oname, inf))
1181 1181
1182 1182 def _inspect(self, meth, oname, namespaces=None, **kw):
1183 1183 """Generic interface to the inspector system.
1184 1184
1185 1185 This function is meant to be called by pdef, pdoc & friends."""
1186 1186 info = self._object_find(oname)
1187 1187 if info.found:
1188 1188 pmethod = getattr(self.inspector, meth)
1189 1189 formatter = format_screen if info.ismagic else None
1190 1190 if meth == 'pdoc':
1191 1191 pmethod(info.obj, oname, formatter)
1192 1192 elif meth == 'pinfo':
1193 1193 pmethod(info.obj, oname, formatter, info, **kw)
1194 1194 else:
1195 1195 pmethod(info.obj, oname)
1196 1196 else:
1197 1197 print 'Object `%s` not found.' % oname
1198 1198 return 'not found' # so callers can take other action
1199 1199
1200 1200 def object_inspect(self, oname):
1201 1201 info = self._object_find(oname)
1202 1202 if info.found:
1203 1203 return self.inspector.info(info.obj, oname, info=info)
1204 1204 else:
1205 1205 return oinspect.object_info(name=oname, found=False)
1206 1206
1207 1207 #-------------------------------------------------------------------------
1208 1208 # Things related to history management
1209 1209 #-------------------------------------------------------------------------
1210 1210
1211 1211 def init_history(self):
1212 1212 self.history_manager = HistoryManager(shell=self)
1213 1213
1214 1214 def save_hist(self):
1215 1215 """Save input history to a file (via readline library)."""
1216 1216 self.history_manager.save_hist()
1217 1217
1218 1218 # For backwards compatibility
1219 1219 savehist = save_hist
1220 1220
1221 1221 def reload_hist(self):
1222 1222 """Reload the input history from disk file."""
1223 1223 self.history_manager.reload_hist()
1224 1224
1225 1225 # For backwards compatibility
1226 1226 reloadhist = reload_hist
1227 1227
1228 1228 def history_saving_wrapper(self, func):
1229 1229 """ Wrap func for readline history saving
1230 1230
1231 1231 Convert func into callable that saves & restores
1232 1232 history around the call """
1233 1233
1234 1234 if self.has_readline:
1235 1235 from IPython.utils import rlineimpl as readline
1236 1236 else:
1237 1237 return func
1238 1238
1239 1239 def wrapper():
1240 1240 self.save_hist()
1241 1241 try:
1242 1242 func()
1243 1243 finally:
1244 1244 readline.read_history_file(self.histfile)
1245 1245 return wrapper
1246 1246
1247 1247 #-------------------------------------------------------------------------
1248 1248 # Things related to exception handling and tracebacks (not debugging)
1249 1249 #-------------------------------------------------------------------------
1250 1250
1251 1251 def init_traceback_handlers(self, custom_exceptions):
1252 1252 # Syntax error handler.
1253 1253 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1254 1254
1255 1255 # The interactive one is initialized with an offset, meaning we always
1256 1256 # want to remove the topmost item in the traceback, which is our own
1257 1257 # internal code. Valid modes: ['Plain','Context','Verbose']
1258 1258 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1259 1259 color_scheme='NoColor',
1260 1260 tb_offset = 1)
1261 1261
1262 1262 # The instance will store a pointer to the system-wide exception hook,
1263 1263 # so that runtime code (such as magics) can access it. This is because
1264 1264 # during the read-eval loop, it may get temporarily overwritten.
1265 1265 self.sys_excepthook = sys.excepthook
1266 1266
1267 1267 # and add any custom exception handlers the user may have specified
1268 1268 self.set_custom_exc(*custom_exceptions)
1269 1269
1270 1270 # Set the exception mode
1271 1271 self.InteractiveTB.set_mode(mode=self.xmode)
1272 1272
1273 1273 def set_custom_exc(self, exc_tuple, handler):
1274 1274 """set_custom_exc(exc_tuple,handler)
1275 1275
1276 1276 Set a custom exception handler, which will be called if any of the
1277 1277 exceptions in exc_tuple occur in the mainloop (specifically, in the
1278 1278 run_code() method.
1279 1279
1280 1280 Inputs:
1281 1281
1282 1282 - exc_tuple: a *tuple* of valid exceptions to call the defined
1283 1283 handler for. It is very important that you use a tuple, and NOT A
1284 1284 LIST here, because of the way Python's except statement works. If
1285 1285 you only want to trap a single exception, use a singleton tuple:
1286 1286
1287 1287 exc_tuple == (MyCustomException,)
1288 1288
1289 1289 - handler: this must be defined as a function with the following
1290 1290 basic interface::
1291 1291
1292 1292 def my_handler(self, etype, value, tb, tb_offset=None)
1293 1293 ...
1294 1294 # The return value must be
1295 1295 return structured_traceback
1296 1296
1297 1297 This will be made into an instance method (via new.instancemethod)
1298 1298 of IPython itself, and it will be called if any of the exceptions
1299 1299 listed in the exc_tuple are caught. If the handler is None, an
1300 1300 internal basic one is used, which just prints basic info.
1301 1301
1302 1302 WARNING: by putting in your own exception handler into IPython's main
1303 1303 execution loop, you run a very good chance of nasty crashes. This
1304 1304 facility should only be used if you really know what you are doing."""
1305 1305
1306 1306 assert type(exc_tuple)==type(()) , \
1307 1307 "The custom exceptions must be given AS A TUPLE."
1308 1308
1309 1309 def dummy_handler(self,etype,value,tb):
1310 1310 print '*** Simple custom exception handler ***'
1311 1311 print 'Exception type :',etype
1312 1312 print 'Exception value:',value
1313 1313 print 'Traceback :',tb
1314 1314 print 'Source code :','\n'.join(self.buffer)
1315 1315
1316 1316 if handler is None: handler = dummy_handler
1317 1317
1318 1318 self.CustomTB = new.instancemethod(handler,self,self.__class__)
1319 1319 self.custom_exceptions = exc_tuple
1320 1320
1321 1321 def excepthook(self, etype, value, tb):
1322 1322 """One more defense for GUI apps that call sys.excepthook.
1323 1323
1324 1324 GUI frameworks like wxPython trap exceptions and call
1325 1325 sys.excepthook themselves. I guess this is a feature that
1326 1326 enables them to keep running after exceptions that would
1327 1327 otherwise kill their mainloop. This is a bother for IPython
1328 1328 which excepts to catch all of the program exceptions with a try:
1329 1329 except: statement.
1330 1330
1331 1331 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1332 1332 any app directly invokes sys.excepthook, it will look to the user like
1333 1333 IPython crashed. In order to work around this, we can disable the
1334 1334 CrashHandler and replace it with this excepthook instead, which prints a
1335 1335 regular traceback using our InteractiveTB. In this fashion, apps which
1336 1336 call sys.excepthook will generate a regular-looking exception from
1337 1337 IPython, and the CrashHandler will only be triggered by real IPython
1338 1338 crashes.
1339 1339
1340 1340 This hook should be used sparingly, only in places which are not likely
1341 1341 to be true IPython errors.
1342 1342 """
1343 1343 self.showtraceback((etype,value,tb),tb_offset=0)
1344 1344
1345 1345 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1346 1346 exception_only=False):
1347 1347 """Display the exception that just occurred.
1348 1348
1349 1349 If nothing is known about the exception, this is the method which
1350 1350 should be used throughout the code for presenting user tracebacks,
1351 1351 rather than directly invoking the InteractiveTB object.
1352 1352
1353 1353 A specific showsyntaxerror() also exists, but this method can take
1354 1354 care of calling it if needed, so unless you are explicitly catching a
1355 1355 SyntaxError exception, don't try to analyze the stack manually and
1356 1356 simply call this method."""
1357 1357
1358 1358 try:
1359 1359 if exc_tuple is None:
1360 1360 etype, value, tb = sys.exc_info()
1361 1361 else:
1362 1362 etype, value, tb = exc_tuple
1363 1363
1364 1364 if etype is None:
1365 1365 if hasattr(sys, 'last_type'):
1366 1366 etype, value, tb = sys.last_type, sys.last_value, \
1367 1367 sys.last_traceback
1368 1368 else:
1369 1369 self.write_err('No traceback available to show.\n')
1370 1370 return
1371 1371
1372 1372 if etype is SyntaxError:
1373 1373 # Though this won't be called by syntax errors in the input
1374 1374 # line, there may be SyntaxError cases whith imported code.
1375 1375 self.showsyntaxerror(filename)
1376 1376 elif etype is UsageError:
1377 1377 print "UsageError:", value
1378 1378 else:
1379 1379 # WARNING: these variables are somewhat deprecated and not
1380 1380 # necessarily safe to use in a threaded environment, but tools
1381 1381 # like pdb depend on their existence, so let's set them. If we
1382 1382 # find problems in the field, we'll need to revisit their use.
1383 1383 sys.last_type = etype
1384 1384 sys.last_value = value
1385 1385 sys.last_traceback = tb
1386 1386
1387 1387 if etype in self.custom_exceptions:
1388 1388 # FIXME: Old custom traceback objects may just return a
1389 1389 # string, in that case we just put it into a list
1390 1390 stb = self.CustomTB(etype, value, tb, tb_offset)
1391 1391 if isinstance(ctb, basestring):
1392 1392 stb = [stb]
1393 1393 else:
1394 1394 if exception_only:
1395 1395 stb = ['An exception has occurred, use %tb to see '
1396 1396 'the full traceback.\n']
1397 1397 stb.extend(self.InteractiveTB.get_exception_only(etype,
1398 1398 value))
1399 1399 else:
1400 1400 stb = self.InteractiveTB.structured_traceback(etype,
1401 1401 value, tb, tb_offset=tb_offset)
1402 1402 # FIXME: the pdb calling should be done by us, not by
1403 1403 # the code computing the traceback.
1404 1404 if self.InteractiveTB.call_pdb:
1405 1405 # pdb mucks up readline, fix it back
1406 1406 self.set_readline_completer()
1407 1407
1408 1408 # Actually show the traceback
1409 1409 self._showtraceback(etype, value, stb)
1410 1410
1411 1411 except KeyboardInterrupt:
1412 1412 self.write_err("\nKeyboardInterrupt\n")
1413 1413
1414 1414 def _showtraceback(self, etype, evalue, stb):
1415 1415 """Actually show a traceback.
1416 1416
1417 1417 Subclasses may override this method to put the traceback on a different
1418 1418 place, like a side channel.
1419 1419 """
1420 1420 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1421 1421
1422 1422 def showsyntaxerror(self, filename=None):
1423 1423 """Display the syntax error that just occurred.
1424 1424
1425 1425 This doesn't display a stack trace because there isn't one.
1426 1426
1427 1427 If a filename is given, it is stuffed in the exception instead
1428 1428 of what was there before (because Python's parser always uses
1429 1429 "<string>" when reading from a string).
1430 1430 """
1431 1431 etype, value, last_traceback = sys.exc_info()
1432 1432
1433 1433 # See note about these variables in showtraceback() above
1434 1434 sys.last_type = etype
1435 1435 sys.last_value = value
1436 1436 sys.last_traceback = last_traceback
1437 1437
1438 1438 if filename and etype is SyntaxError:
1439 1439 # Work hard to stuff the correct filename in the exception
1440 1440 try:
1441 1441 msg, (dummy_filename, lineno, offset, line) = value
1442 1442 except:
1443 1443 # Not the format we expect; leave it alone
1444 1444 pass
1445 1445 else:
1446 1446 # Stuff in the right filename
1447 1447 try:
1448 1448 # Assume SyntaxError is a class exception
1449 1449 value = SyntaxError(msg, (filename, lineno, offset, line))
1450 1450 except:
1451 1451 # If that failed, assume SyntaxError is a string
1452 1452 value = msg, (filename, lineno, offset, line)
1453 1453 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1454 1454 self._showtraceback(etype, value, stb)
1455 1455
1456 1456 #-------------------------------------------------------------------------
1457 1457 # Things related to readline
1458 1458 #-------------------------------------------------------------------------
1459 1459
1460 1460 def init_readline(self):
1461 1461 """Command history completion/saving/reloading."""
1462 1462
1463 1463 if self.readline_use:
1464 1464 import IPython.utils.rlineimpl as readline
1465 1465
1466 1466 self.rl_next_input = None
1467 1467 self.rl_do_indent = False
1468 1468
1469 1469 if not self.readline_use or not readline.have_readline:
1470 1470 self.has_readline = False
1471 1471 self.readline = None
1472 1472 # Set a number of methods that depend on readline to be no-op
1473 1473 self.save_hist = no_op
1474 1474 self.reload_hist = no_op
1475 1475 self.set_readline_completer = no_op
1476 1476 self.set_custom_completer = no_op
1477 1477 self.set_completer_frame = no_op
1478 1478 warn('Readline services not available or not loaded.')
1479 1479 else:
1480 1480 self.has_readline = True
1481 1481 self.readline = readline
1482 1482 sys.modules['readline'] = readline
1483 1483
1484 1484 # Platform-specific configuration
1485 1485 if os.name == 'nt':
1486 1486 # FIXME - check with Frederick to see if we can harmonize
1487 1487 # naming conventions with pyreadline to avoid this
1488 1488 # platform-dependent check
1489 1489 self.readline_startup_hook = readline.set_pre_input_hook
1490 1490 else:
1491 1491 self.readline_startup_hook = readline.set_startup_hook
1492 1492
1493 1493 # Load user's initrc file (readline config)
1494 1494 # Or if libedit is used, load editrc.
1495 1495 inputrc_name = os.environ.get('INPUTRC')
1496 1496 if inputrc_name is None:
1497 1497 home_dir = get_home_dir()
1498 1498 if home_dir is not None:
1499 1499 inputrc_name = '.inputrc'
1500 1500 if readline.uses_libedit:
1501 1501 inputrc_name = '.editrc'
1502 1502 inputrc_name = os.path.join(home_dir, inputrc_name)
1503 1503 if os.path.isfile(inputrc_name):
1504 1504 try:
1505 1505 readline.read_init_file(inputrc_name)
1506 1506 except:
1507 1507 warn('Problems reading readline initialization file <%s>'
1508 1508 % inputrc_name)
1509 1509
1510 1510 # Configure readline according to user's prefs
1511 1511 # This is only done if GNU readline is being used. If libedit
1512 1512 # is being used (as on Leopard) the readline config is
1513 1513 # not run as the syntax for libedit is different.
1514 1514 if not readline.uses_libedit:
1515 1515 for rlcommand in self.readline_parse_and_bind:
1516 1516 #print "loading rl:",rlcommand # dbg
1517 1517 readline.parse_and_bind(rlcommand)
1518 1518
1519 1519 # Remove some chars from the delimiters list. If we encounter
1520 1520 # unicode chars, discard them.
1521 1521 delims = readline.get_completer_delims().encode("ascii", "ignore")
1522 1522 delims = delims.translate(string._idmap,
1523 1523 self.readline_remove_delims)
1524 1524 delims = delims.replace(ESC_MAGIC, '')
1525 1525 readline.set_completer_delims(delims)
1526 1526 # otherwise we end up with a monster history after a while:
1527 1527 readline.set_history_length(1000)
1528 1528 try:
1529 1529 #print '*** Reading readline history' # dbg
1530 1530 readline.read_history_file(self.histfile)
1531 1531 except IOError:
1532 1532 pass # It doesn't exist yet.
1533 1533
1534 1534 # If we have readline, we want our history saved upon ipython
1535 1535 # exiting.
1536 1536 atexit.register(self.save_hist)
1537 1537
1538 1538 # Configure auto-indent for all platforms
1539 1539 self.set_autoindent(self.autoindent)
1540 1540
1541 1541 def set_next_input(self, s):
1542 1542 """ Sets the 'default' input string for the next command line.
1543 1543
1544 1544 Requires readline.
1545 1545
1546 1546 Example:
1547 1547
1548 1548 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1549 1549 [D:\ipython]|2> Hello Word_ # cursor is here
1550 1550 """
1551 1551
1552 1552 self.rl_next_input = s
1553 1553
1554 1554 # Maybe move this to the terminal subclass?
1555 1555 def pre_readline(self):
1556 1556 """readline hook to be used at the start of each line.
1557 1557
1558 1558 Currently it handles auto-indent only."""
1559 1559
1560 1560 if self.rl_do_indent:
1561 1561 self.readline.insert_text(self._indent_current_str())
1562 1562 if self.rl_next_input is not None:
1563 1563 self.readline.insert_text(self.rl_next_input)
1564 1564 self.rl_next_input = None
1565 1565
1566 1566 def _indent_current_str(self):
1567 1567 """return the current level of indentation as a string"""
1568 1568 return self.input_splitter.indent_spaces * ' '
1569 1569
1570 1570 #-------------------------------------------------------------------------
1571 1571 # Things related to text completion
1572 1572 #-------------------------------------------------------------------------
1573 1573
1574 1574 def init_completer(self):
1575 1575 """Initialize the completion machinery.
1576 1576
1577 1577 This creates completion machinery that can be used by client code,
1578 1578 either interactively in-process (typically triggered by the readline
1579 1579 library), programatically (such as in test suites) or out-of-prcess
1580 1580 (typically over the network by remote frontends).
1581 1581 """
1582 1582 from IPython.core.completer import IPCompleter
1583 1583 from IPython.core.completerlib import (module_completer,
1584 1584 magic_run_completer, cd_completer)
1585 1585
1586 1586 self.Completer = IPCompleter(self,
1587 1587 self.user_ns,
1588 1588 self.user_global_ns,
1589 1589 self.readline_omit__names,
1590 1590 self.alias_manager.alias_table,
1591 1591 self.has_readline)
1592 1592
1593 1593 # Add custom completers to the basic ones built into IPCompleter
1594 1594 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1595 1595 self.strdispatchers['complete_command'] = sdisp
1596 1596 self.Completer.custom_completers = sdisp
1597 1597
1598 1598 self.set_hook('complete_command', module_completer, str_key = 'import')
1599 1599 self.set_hook('complete_command', module_completer, str_key = 'from')
1600 1600 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1601 1601 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1602 1602
1603 1603 # Only configure readline if we truly are using readline. IPython can
1604 1604 # do tab-completion over the network, in GUIs, etc, where readline
1605 1605 # itself may be absent
1606 1606 if self.has_readline:
1607 1607 self.set_readline_completer()
1608 1608
1609 1609 def complete(self, text, line=None, cursor_pos=None):
1610 1610 """Return the completed text and a list of completions.
1611 1611
1612 1612 Parameters
1613 1613 ----------
1614 1614
1615 1615 text : string
1616 1616 A string of text to be completed on. It can be given as empty and
1617 1617 instead a line/position pair are given. In this case, the
1618 1618 completer itself will split the line like readline does.
1619 1619
1620 1620 line : string, optional
1621 1621 The complete line that text is part of.
1622 1622
1623 1623 cursor_pos : int, optional
1624 1624 The position of the cursor on the input line.
1625 1625
1626 1626 Returns
1627 1627 -------
1628 1628 text : string
1629 1629 The actual text that was completed.
1630 1630
1631 1631 matches : list
1632 1632 A sorted list with all possible completions.
1633 1633
1634 1634 The optional arguments allow the completion to take more context into
1635 1635 account, and are part of the low-level completion API.
1636 1636
1637 1637 This is a wrapper around the completion mechanism, similar to what
1638 1638 readline does at the command line when the TAB key is hit. By
1639 1639 exposing it as a method, it can be used by other non-readline
1640 1640 environments (such as GUIs) for text completion.
1641 1641
1642 1642 Simple usage example:
1643 1643
1644 1644 In [1]: x = 'hello'
1645 1645
1646 1646 In [2]: _ip.complete('x.l')
1647 1647 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1648 1648 """
1649 1649
1650 1650 # Inject names into __builtin__ so we can complete on the added names.
1651 1651 with self.builtin_trap:
1652 1652 return self.Completer.complete(text, line, cursor_pos)
1653 1653
1654 1654 def set_custom_completer(self, completer, pos=0):
1655 1655 """Adds a new custom completer function.
1656 1656
1657 1657 The position argument (defaults to 0) is the index in the completers
1658 1658 list where you want the completer to be inserted."""
1659 1659
1660 1660 newcomp = new.instancemethod(completer,self.Completer,
1661 1661 self.Completer.__class__)
1662 1662 self.Completer.matchers.insert(pos,newcomp)
1663 1663
1664 1664 def set_readline_completer(self):
1665 1665 """Reset readline's completer to be our own."""
1666 1666 self.readline.set_completer(self.Completer.rlcomplete)
1667 1667
1668 1668 def set_completer_frame(self, frame=None):
1669 1669 """Set the frame of the completer."""
1670 1670 if frame:
1671 1671 self.Completer.namespace = frame.f_locals
1672 1672 self.Completer.global_namespace = frame.f_globals
1673 1673 else:
1674 1674 self.Completer.namespace = self.user_ns
1675 1675 self.Completer.global_namespace = self.user_global_ns
1676 1676
1677 1677 #-------------------------------------------------------------------------
1678 1678 # Things related to magics
1679 1679 #-------------------------------------------------------------------------
1680 1680
1681 1681 def init_magics(self):
1682 1682 # FIXME: Move the color initialization to the DisplayHook, which
1683 1683 # should be split into a prompt manager and displayhook. We probably
1684 1684 # even need a centralize colors management object.
1685 1685 self.magic_colors(self.colors)
1686 1686 # History was moved to a separate module
1687 1687 from . import history
1688 1688 history.init_ipython(self)
1689 1689
1690 1690 def magic(self,arg_s):
1691 1691 """Call a magic function by name.
1692 1692
1693 1693 Input: a string containing the name of the magic function to call and
1694 1694 any additional arguments to be passed to the magic.
1695 1695
1696 1696 magic('name -opt foo bar') is equivalent to typing at the ipython
1697 1697 prompt:
1698 1698
1699 1699 In[1]: %name -opt foo bar
1700 1700
1701 1701 To call a magic without arguments, simply use magic('name').
1702 1702
1703 1703 This provides a proper Python function to call IPython's magics in any
1704 1704 valid Python code you can type at the interpreter, including loops and
1705 1705 compound statements.
1706 1706 """
1707 1707 args = arg_s.split(' ',1)
1708 1708 magic_name = args[0]
1709 1709 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1710 1710
1711 1711 try:
1712 1712 magic_args = args[1]
1713 1713 except IndexError:
1714 1714 magic_args = ''
1715 1715 fn = getattr(self,'magic_'+magic_name,None)
1716 1716 if fn is None:
1717 1717 error("Magic function `%s` not found." % magic_name)
1718 1718 else:
1719 1719 magic_args = self.var_expand(magic_args,1)
1720 1720 with nested(self.builtin_trap,):
1721 1721 result = fn(magic_args)
1722 1722 return result
1723 1723
1724 1724 def define_magic(self, magicname, func):
1725 1725 """Expose own function as magic function for ipython
1726 1726
1727 1727 def foo_impl(self,parameter_s=''):
1728 1728 'My very own magic!. (Use docstrings, IPython reads them).'
1729 1729 print 'Magic function. Passed parameter is between < >:'
1730 1730 print '<%s>' % parameter_s
1731 1731 print 'The self object is:',self
1732 1732
1733 1733 self.define_magic('foo',foo_impl)
1734 1734 """
1735 1735
1736 1736 import new
1737 1737 im = new.instancemethod(func,self, self.__class__)
1738 1738 old = getattr(self, "magic_" + magicname, None)
1739 1739 setattr(self, "magic_" + magicname, im)
1740 1740 return old
1741 1741
1742 1742 #-------------------------------------------------------------------------
1743 1743 # Things related to macros
1744 1744 #-------------------------------------------------------------------------
1745 1745
1746 1746 def define_macro(self, name, themacro):
1747 1747 """Define a new macro
1748 1748
1749 1749 Parameters
1750 1750 ----------
1751 1751 name : str
1752 1752 The name of the macro.
1753 1753 themacro : str or Macro
1754 1754 The action to do upon invoking the macro. If a string, a new
1755 1755 Macro object is created by passing the string to it.
1756 1756 """
1757 1757
1758 1758 from IPython.core import macro
1759 1759
1760 1760 if isinstance(themacro, basestring):
1761 1761 themacro = macro.Macro(themacro)
1762 1762 if not isinstance(themacro, macro.Macro):
1763 1763 raise ValueError('A macro must be a string or a Macro instance.')
1764 1764 self.user_ns[name] = themacro
1765 1765
1766 1766 #-------------------------------------------------------------------------
1767 1767 # Things related to the running of system commands
1768 1768 #-------------------------------------------------------------------------
1769 1769
1770 1770 def system(self, cmd):
1771 1771 """Call the given cmd in a subprocess.
1772 1772
1773 1773 Parameters
1774 1774 ----------
1775 1775 cmd : str
1776 1776 Command to execute (can not end in '&', as bacground processes are
1777 1777 not supported.
1778 1778 """
1779 1779 # We do not support backgrounding processes because we either use
1780 1780 # pexpect or pipes to read from. Users can always just call
1781 1781 # os.system() if they really want a background process.
1782 1782 if cmd.endswith('&'):
1783 1783 raise OSError("Background processes not supported.")
1784 1784
1785 1785 return system(self.var_expand(cmd, depth=2))
1786 1786
1787 1787 def getoutput(self, cmd, split=True):
1788 1788 """Get output (possibly including stderr) from a subprocess.
1789 1789
1790 1790 Parameters
1791 1791 ----------
1792 1792 cmd : str
1793 1793 Command to execute (can not end in '&', as background processes are
1794 1794 not supported.
1795 1795 split : bool, optional
1796 1796
1797 1797 If True, split the output into an IPython SList. Otherwise, an
1798 1798 IPython LSString is returned. These are objects similar to normal
1799 1799 lists and strings, with a few convenience attributes for easier
1800 1800 manipulation of line-based output. You can use '?' on them for
1801 1801 details.
1802 1802 """
1803 1803 if cmd.endswith('&'):
1804 1804 raise OSError("Background processes not supported.")
1805 1805 out = getoutput(self.var_expand(cmd, depth=2))
1806 1806 if split:
1807 1807 out = SList(out.splitlines())
1808 1808 else:
1809 1809 out = LSString(out)
1810 1810 return out
1811 1811
1812 1812 #-------------------------------------------------------------------------
1813 1813 # Things related to aliases
1814 1814 #-------------------------------------------------------------------------
1815 1815
1816 1816 def init_alias(self):
1817 1817 self.alias_manager = AliasManager(shell=self, config=self.config)
1818 1818 self.ns_table['alias'] = self.alias_manager.alias_table,
1819 1819
1820 1820 #-------------------------------------------------------------------------
1821 1821 # Things related to extensions and plugins
1822 1822 #-------------------------------------------------------------------------
1823 1823
1824 1824 def init_extension_manager(self):
1825 1825 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1826 1826
1827 1827 def init_plugin_manager(self):
1828 1828 self.plugin_manager = PluginManager(config=self.config)
1829 1829
1830 1830 #-------------------------------------------------------------------------
1831 1831 # Things related to payloads
1832 1832 #-------------------------------------------------------------------------
1833 1833
1834 1834 def init_payload(self):
1835 1835 self.payload_manager = PayloadManager(config=self.config)
1836 1836
1837 1837 #-------------------------------------------------------------------------
1838 1838 # Things related to the prefilter
1839 1839 #-------------------------------------------------------------------------
1840 1840
1841 1841 def init_prefilter(self):
1842 1842 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1843 1843 # Ultimately this will be refactored in the new interpreter code, but
1844 1844 # for now, we should expose the main prefilter method (there's legacy
1845 1845 # code out there that may rely on this).
1846 1846 self.prefilter = self.prefilter_manager.prefilter_lines
1847 1847
1848 1848 def auto_rewrite_input(self, cmd):
1849 1849 """Print to the screen the rewritten form of the user's command.
1850 1850
1851 1851 This shows visual feedback by rewriting input lines that cause
1852 1852 automatic calling to kick in, like::
1853 1853
1854 1854 /f x
1855 1855
1856 1856 into::
1857 1857
1858 1858 ------> f(x)
1859 1859
1860 1860 after the user's input prompt. This helps the user understand that the
1861 1861 input line was transformed automatically by IPython.
1862 1862 """
1863 1863 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1864 1864
1865 1865 try:
1866 1866 # plain ascii works better w/ pyreadline, on some machines, so
1867 1867 # we use it and only print uncolored rewrite if we have unicode
1868 1868 rw = str(rw)
1869 1869 print >> IPython.utils.io.Term.cout, rw
1870 1870 except UnicodeEncodeError:
1871 1871 print "------> " + cmd
1872 1872
1873 1873 #-------------------------------------------------------------------------
1874 1874 # Things related to extracting values/expressions from kernel and user_ns
1875 1875 #-------------------------------------------------------------------------
1876 1876
1877 1877 def _simple_error(self):
1878 1878 etype, value = sys.exc_info()[:2]
1879 1879 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1880 1880
1881 1881 def user_variables(self, names):
1882 1882 """Get a list of variable names from the user's namespace.
1883 1883
1884 1884 Parameters
1885 1885 ----------
1886 1886 names : list of strings
1887 1887 A list of names of variables to be read from the user namespace.
1888 1888
1889 1889 Returns
1890 1890 -------
1891 1891 A dict, keyed by the input names and with the repr() of each value.
1892 1892 """
1893 1893 out = {}
1894 1894 user_ns = self.user_ns
1895 1895 for varname in names:
1896 1896 try:
1897 1897 value = repr(user_ns[varname])
1898 1898 except:
1899 1899 value = self._simple_error()
1900 1900 out[varname] = value
1901 1901 return out
1902 1902
1903 1903 def user_expressions(self, expressions):
1904 1904 """Evaluate a dict of expressions in the user's namespace.
1905 1905
1906 1906 Parameters
1907 1907 ----------
1908 1908 expressions : dict
1909 1909 A dict with string keys and string values. The expression values
1910 1910 should be valid Python expressions, each of which will be evaluated
1911 1911 in the user namespace.
1912 1912
1913 1913 Returns
1914 1914 -------
1915 1915 A dict, keyed like the input expressions dict, with the repr() of each
1916 1916 value.
1917 1917 """
1918 1918 out = {}
1919 1919 user_ns = self.user_ns
1920 1920 global_ns = self.user_global_ns
1921 1921 for key, expr in expressions.iteritems():
1922 1922 try:
1923 1923 value = repr(eval(expr, global_ns, user_ns))
1924 1924 except:
1925 1925 value = self._simple_error()
1926 1926 out[key] = value
1927 1927 return out
1928 1928
1929 1929 #-------------------------------------------------------------------------
1930 1930 # Things related to the running of code
1931 1931 #-------------------------------------------------------------------------
1932 1932
1933 1933 def ex(self, cmd):
1934 1934 """Execute a normal python statement in user namespace."""
1935 1935 with nested(self.builtin_trap,):
1936 1936 exec cmd in self.user_global_ns, self.user_ns
1937 1937
1938 1938 def ev(self, expr):
1939 1939 """Evaluate python expression expr in user namespace.
1940 1940
1941 1941 Returns the result of evaluation
1942 1942 """
1943 1943 with nested(self.builtin_trap,):
1944 1944 return eval(expr, self.user_global_ns, self.user_ns)
1945 1945
1946 1946 def safe_execfile(self, fname, *where, **kw):
1947 1947 """A safe version of the builtin execfile().
1948 1948
1949 1949 This version will never throw an exception, but instead print
1950 1950 helpful error messages to the screen. This only works on pure
1951 1951 Python files with the .py extension.
1952 1952
1953 1953 Parameters
1954 1954 ----------
1955 1955 fname : string
1956 1956 The name of the file to be executed.
1957 1957 where : tuple
1958 1958 One or two namespaces, passed to execfile() as (globals,locals).
1959 1959 If only one is given, it is passed as both.
1960 1960 exit_ignore : bool (False)
1961 1961 If True, then silence SystemExit for non-zero status (it is always
1962 1962 silenced for zero status, as it is so common).
1963 1963 """
1964 1964 kw.setdefault('exit_ignore', False)
1965 1965
1966 1966 fname = os.path.abspath(os.path.expanduser(fname))
1967 1967
1968 1968 # Make sure we have a .py file
1969 1969 if not fname.endswith('.py'):
1970 1970 warn('File must end with .py to be run using execfile: <%s>' % fname)
1971 1971
1972 1972 # Make sure we can open the file
1973 1973 try:
1974 1974 with open(fname) as thefile:
1975 1975 pass
1976 1976 except:
1977 1977 warn('Could not open file <%s> for safe execution.' % fname)
1978 1978 return
1979 1979
1980 1980 # Find things also in current directory. This is needed to mimic the
1981 1981 # behavior of running a script from the system command line, where
1982 1982 # Python inserts the script's directory into sys.path
1983 1983 dname = os.path.dirname(fname)
1984 1984
1985 1985 with prepended_to_syspath(dname):
1986 1986 try:
1987 1987 execfile(fname,*where)
1988 1988 except SystemExit, status:
1989 1989 # If the call was made with 0 or None exit status (sys.exit(0)
1990 1990 # or sys.exit() ), don't bother showing a traceback, as both of
1991 1991 # these are considered normal by the OS:
1992 1992 # > python -c'import sys;sys.exit(0)'; echo $?
1993 1993 # 0
1994 1994 # > python -c'import sys;sys.exit()'; echo $?
1995 1995 # 0
1996 1996 # For other exit status, we show the exception unless
1997 1997 # explicitly silenced, but only in short form.
1998 1998 if status.code not in (0, None) and not kw['exit_ignore']:
1999 1999 self.showtraceback(exception_only=True)
2000 2000 except:
2001 2001 self.showtraceback()
2002 2002
2003 2003 def safe_execfile_ipy(self, fname):
2004 2004 """Like safe_execfile, but for .ipy files with IPython syntax.
2005 2005
2006 2006 Parameters
2007 2007 ----------
2008 2008 fname : str
2009 2009 The name of the file to execute. The filename must have a
2010 2010 .ipy extension.
2011 2011 """
2012 2012 fname = os.path.abspath(os.path.expanduser(fname))
2013 2013
2014 2014 # Make sure we have a .py file
2015 2015 if not fname.endswith('.ipy'):
2016 2016 warn('File must end with .py to be run using execfile: <%s>' % fname)
2017 2017
2018 2018 # Make sure we can open the file
2019 2019 try:
2020 2020 with open(fname) as thefile:
2021 2021 pass
2022 2022 except:
2023 2023 warn('Could not open file <%s> for safe execution.' % fname)
2024 2024 return
2025 2025
2026 2026 # Find things also in current directory. This is needed to mimic the
2027 2027 # behavior of running a script from the system command line, where
2028 2028 # Python inserts the script's directory into sys.path
2029 2029 dname = os.path.dirname(fname)
2030 2030
2031 2031 with prepended_to_syspath(dname):
2032 2032 try:
2033 2033 with open(fname) as thefile:
2034 2034 # self.run_cell currently captures all exceptions
2035 2035 # raised in user code. It would be nice if there were
2036 2036 # versions of runlines, execfile that did raise, so
2037 2037 # we could catch the errors.
2038 2038 self.run_cell(thefile.read())
2039 2039 except:
2040 2040 self.showtraceback()
2041 2041 warn('Unknown failure executing file: <%s>' % fname)
2042 2042
2043 2043 def run_cell(self, cell):
2044 2044 """Run the contents of an entire multiline 'cell' of code.
2045 2045
2046 2046 The cell is split into separate blocks which can be executed
2047 2047 individually. Then, based on how many blocks there are, they are
2048 2048 executed as follows:
2049 2049
2050 2050 - A single block: 'single' mode.
2051 2051
2052 2052 If there's more than one block, it depends:
2053 2053
2054 2054 - if the last one is no more than two lines long, run all but the last
2055 2055 in 'exec' mode and the very last one in 'single' mode. This makes it
2056 2056 easy to type simple expressions at the end to see computed values. -
2057 2057 otherwise (last one is also multiline), run all in 'exec' mode
2058 2058
2059 2059 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2060 2060 results are displayed and output prompts are computed. In 'exec' mode,
2061 2061 no results are displayed unless :func:`print` is called explicitly;
2062 2062 this mode is more akin to running a script.
2063 2063
2064 2064 Parameters
2065 2065 ----------
2066 2066 cell : str
2067 2067 A single or multiline string.
2068 2068 """
2069 2069 #################################################################
2070 2070 # FIXME
2071 2071 # =====
2072 2072 # This execution logic should stop calling runlines altogether, and
2073 2073 # instead we should do what runlines does, in a controlled manner, here
2074 2074 # (runlines mutates lots of state as it goes calling sub-methods that
2075 2075 # also mutate state). Basically we should:
2076 2076 # - apply dynamic transforms for single-line input (the ones that
2077 2077 # split_blocks won't apply since they need context).
2078 2078 # - increment the global execution counter (we need to pull that out
2079 2079 # from outputcache's control; outputcache should instead read it from
2080 2080 # the main object).
2081 2081 # - do any logging of input
2082 2082 # - update histories (raw/translated)
2083 2083 # - then, call plain run_source (for single blocks, so displayhook is
2084 2084 # triggered) or run_code (for multiline blocks in exec mode).
2085 2085 #
2086 2086 # Once this is done, we'll be able to stop using runlines and we'll
2087 2087 # also have a much cleaner separation of logging, input history and
2088 2088 # output cache management.
2089 2089 #################################################################
2090 2090
2091 2091 # We need to break up the input into executable blocks that can be run
2092 2092 # in 'single' mode, to provide comfortable user behavior.
2093 2093 blocks = self.input_splitter.split_blocks(cell)
2094 2094
2095 2095 if not blocks:
2096 2096 return
2097 2097
2098 2098 # Store the 'ipython' version of the cell as well, since that's what
2099 2099 # needs to go into the translated history and get executed (the
2100 2100 # original cell may contain non-python syntax).
2101 2101 ipy_cell = ''.join(blocks)
2102 2102
2103 2103 # Store raw and processed history
2104 2104 self.history_manager.store_inputs(ipy_cell, cell)
2105 2105
2106 2106 self.logger.log(ipy_cell, cell)
2107 2107 # dbg code!!!
2108 2108 if 0:
2109 2109 def myapp(self, val): # dbg
2110 2110 import traceback as tb
2111 2111 stack = ''.join(tb.format_stack())
2112 2112 print 'Value:', val
2113 2113 print 'Stack:\n', stack
2114 2114 list.append(self, val)
2115 2115
2116 2116 import new
2117 2117 self.input_hist.append = new.instancemethod(myapp, self.input_hist,
2118 2118 list)
2119 2119 # End dbg
2120 2120
2121 2121 # All user code execution must happen with our context managers active
2122 2122 with nested(self.builtin_trap, self.display_trap):
2123 2123
2124 2124 # Single-block input should behave like an interactive prompt
2125 2125 if len(blocks) == 1:
2126 2126 # since we return here, we need to update the execution count
2127 2127 out = self.run_one_block(blocks[0])
2128 2128 self.execution_count += 1
2129 2129 return out
2130 2130
2131 2131 # In multi-block input, if the last block is a simple (one-two
2132 2132 # lines) expression, run it in single mode so it produces output.
2133 2133 # Otherwise just feed the whole thing to run_code. This seems like
2134 2134 # a reasonable usability design.
2135 2135 last = blocks[-1]
2136 2136 last_nlines = len(last.splitlines())
2137 2137
2138 2138 # Note: below, whenever we call run_code, we must sync history
2139 2139 # ourselves, because run_code is NOT meant to manage history at all.
2140 2140 if last_nlines < 2:
2141 2141 # Here we consider the cell split between 'body' and 'last',
2142 2142 # store all history and execute 'body', and if successful, then
2143 2143 # proceed to execute 'last'.
2144 2144
2145 2145 # Get the main body to run as a cell
2146 2146 ipy_body = ''.join(blocks[:-1])
2147 2147 retcode = self.run_code(ipy_body, post_execute=False)
2148 2148 if retcode==0:
2149 2149 # And the last expression via runlines so it produces output
2150 2150 self.run_one_block(last)
2151 2151 else:
2152 2152 # Run the whole cell as one entity, storing both raw and
2153 2153 # processed input in history
2154 2154 self.run_code(ipy_cell)
2155 2155
2156 2156 # Each cell is a *single* input, regardless of how many lines it has
2157 2157 self.execution_count += 1
2158 2158
2159 2159 def run_one_block(self, block):
2160 2160 """Run a single interactive block.
2161 2161
2162 2162 If the block is single-line, dynamic transformations are applied to it
2163 2163 (like automagics, autocall and alias recognition).
2164 2164 """
2165 2165 if len(block.splitlines()) <= 1:
2166 2166 out = self.run_single_line(block)
2167 2167 else:
2168 2168 out = self.run_code(block)
2169 2169 return out
2170 2170
2171 2171 def run_single_line(self, line):
2172 2172 """Run a single-line interactive statement.
2173 2173
2174 2174 This assumes the input has been transformed to IPython syntax by
2175 2175 applying all static transformations (those with an explicit prefix like
2176 2176 % or !), but it will further try to apply the dynamic ones.
2177 2177
2178 2178 It does not update history.
2179 2179 """
2180 2180 tline = self.prefilter_manager.prefilter_line(line)
2181 2181 return self.run_source(tline)
2182 2182
2183 2183 def runlines(self, lines, clean=False):
2184 2184 """Run a string of one or more lines of source.
2185 2185
2186 2186 This method is capable of running a string containing multiple source
2187 2187 lines, as if they had been entered at the IPython prompt. Since it
2188 2188 exposes IPython's processing machinery, the given strings can contain
2189 2189 magic calls (%magic), special shell access (!cmd), etc.
2190 2190 """
2191 2191
2192 2192 if isinstance(lines, (list, tuple)):
2193 2193 lines = '\n'.join(lines)
2194 2194
2195 2195 if clean:
2196 2196 lines = self._cleanup_ipy_script(lines)
2197 2197
2198 2198 # We must start with a clean buffer, in case this is run from an
2199 2199 # interactive IPython session (via a magic, for example).
2200 2200 self.reset_buffer()
2201 2201 lines = lines.splitlines()
2202 2202
2203 2203 # Since we will prefilter all lines, store the user's raw input too
2204 2204 # before we apply any transformations
2205 2205 self.buffer_raw[:] = [ l+'\n' for l in lines]
2206 2206
2207 2207 more = False
2208 2208 prefilter_lines = self.prefilter_manager.prefilter_lines
2209 2209 with nested(self.builtin_trap, self.display_trap):
2210 2210 for line in lines:
2211 2211 # skip blank lines so we don't mess up the prompt counter, but
2212 2212 # do NOT skip even a blank line if we are in a code block (more
2213 2213 # is true)
2214 2214
2215 2215 if line or more:
2216 2216 more = self.push_line(prefilter_lines(line, more))
2217 2217 # IPython's run_source returns None if there was an error
2218 2218 # compiling the code. This allows us to stop processing
2219 2219 # right away, so the user gets the error message at the
2220 2220 # right place.
2221 2221 if more is None:
2222 2222 break
2223 2223 # final newline in case the input didn't have it, so that the code
2224 2224 # actually does get executed
2225 2225 if more:
2226 2226 self.push_line('\n')
2227 2227
2228 2228 def run_source(self, source, filename='<ipython console>', symbol='single'):
2229 2229 """Compile and run some source in the interpreter.
2230 2230
2231 2231 Arguments are as for compile_command().
2232 2232
2233 2233 One several things can happen:
2234 2234
2235 2235 1) The input is incorrect; compile_command() raised an
2236 2236 exception (SyntaxError or OverflowError). A syntax traceback
2237 2237 will be printed by calling the showsyntaxerror() method.
2238 2238
2239 2239 2) The input is incomplete, and more input is required;
2240 2240 compile_command() returned None. Nothing happens.
2241 2241
2242 2242 3) The input is complete; compile_command() returned a code
2243 2243 object. The code is executed by calling self.run_code() (which
2244 2244 also handles run-time exceptions, except for SystemExit).
2245 2245
2246 2246 The return value is:
2247 2247
2248 2248 - True in case 2
2249 2249
2250 2250 - False in the other cases, unless an exception is raised, where
2251 2251 None is returned instead. This can be used by external callers to
2252 2252 know whether to continue feeding input or not.
2253 2253
2254 2254 The return value can be used to decide whether to use sys.ps1 or
2255 2255 sys.ps2 to prompt the next line."""
2256 2256
2257 2257 # We need to ensure that the source is unicode from here on.
2258 2258 if type(source)==str:
2259 source = source.decode(self.stdin_encoding)
2259 usource = source.decode(self.stdin_encoding)
2260 else:
2261 usource = source
2262
2263 if 0: # dbg
2264 print 'Source:', repr(source) # dbg
2265 print 'USource:', repr(usource) # dbg
2266 print 'type:', type(source) # dbg
2267 print 'encoding', self.stdin_encoding # dbg
2260 2268
2261 2269 try:
2262 code = self.compile(source,filename,symbol)
2270 code = self.compile(usource,filename,symbol)
2263 2271 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2264 2272 # Case 1
2265 2273 self.showsyntaxerror(filename)
2266 2274 return None
2267 2275
2268 2276 if code is None:
2269 2277 # Case 2
2270 2278 return True
2271 2279
2272 2280 # Case 3
2273 2281 # We store the code object so that threaded shells and
2274 2282 # custom exception handlers can access all this info if needed.
2275 2283 # The source corresponding to this can be obtained from the
2276 2284 # buffer attribute as '\n'.join(self.buffer).
2277 2285 self.code_to_run = code
2278 2286 # now actually execute the code object
2279 2287 if self.run_code(code) == 0:
2280 2288 return False
2281 2289 else:
2282 2290 return None
2283 2291
2284 2292 # For backwards compatibility
2285 2293 runsource = run_source
2286 2294
2287 2295 def run_code(self, code_obj, post_execute=True):
2288 2296 """Execute a code object.
2289 2297
2290 2298 When an exception occurs, self.showtraceback() is called to display a
2291 2299 traceback.
2292 2300
2293 2301 Return value: a flag indicating whether the code to be run completed
2294 2302 successfully:
2295 2303
2296 2304 - 0: successful execution.
2297 2305 - 1: an error occurred.
2298 2306 """
2299 2307
2300 2308 # Set our own excepthook in case the user code tries to call it
2301 2309 # directly, so that the IPython crash handler doesn't get triggered
2302 2310 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2303 2311
2304 2312 # we save the original sys.excepthook in the instance, in case config
2305 2313 # code (such as magics) needs access to it.
2306 2314 self.sys_excepthook = old_excepthook
2307 2315 outflag = 1 # happens in more places, so it's easier as default
2308 2316 try:
2309 2317 try:
2310 2318 self.hooks.pre_run_code_hook()
2311 2319 #rprint('Running code') # dbg
2312 2320 exec code_obj in self.user_global_ns, self.user_ns
2313 2321 finally:
2314 2322 # Reset our crash handler in place
2315 2323 sys.excepthook = old_excepthook
2316 2324 except SystemExit:
2317 2325 self.reset_buffer()
2318 2326 self.showtraceback(exception_only=True)
2319 2327 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2320 2328 except self.custom_exceptions:
2321 2329 etype,value,tb = sys.exc_info()
2322 2330 self.CustomTB(etype,value,tb)
2323 2331 except:
2324 2332 self.showtraceback()
2325 2333 else:
2326 2334 outflag = 0
2327 2335 if softspace(sys.stdout, 0):
2328 2336 print
2329 2337
2330 2338 # Execute any registered post-execution functions. Here, any errors
2331 2339 # are reported only minimally and just on the terminal, because the
2332 2340 # main exception channel may be occupied with a user traceback.
2333 2341 # FIXME: we need to think this mechanism a little more carefully.
2334 2342 if post_execute:
2335 2343 for func in self._post_execute:
2336 2344 try:
2337 2345 func()
2338 2346 except:
2339 2347 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2340 2348 func
2341 2349 print >> io.Term.cout, head
2342 2350 print >> io.Term.cout, self._simple_error()
2343 2351 print >> io.Term.cout, 'Removing from post_execute'
2344 2352 self._post_execute.remove(func)
2345 2353
2346 2354 # Flush out code object which has been run (and source)
2347 2355 self.code_to_run = None
2348 2356 return outflag
2349 2357
2350 2358 # For backwards compatibility
2351 2359 runcode = run_code
2352 2360
2353 2361 def push_line(self, line):
2354 2362 """Push a line to the interpreter.
2355 2363
2356 2364 The line should not have a trailing newline; it may have
2357 2365 internal newlines. The line is appended to a buffer and the
2358 2366 interpreter's run_source() method is called with the
2359 2367 concatenated contents of the buffer as source. If this
2360 2368 indicates that the command was executed or invalid, the buffer
2361 2369 is reset; otherwise, the command is incomplete, and the buffer
2362 2370 is left as it was after the line was appended. The return
2363 2371 value is 1 if more input is required, 0 if the line was dealt
2364 2372 with in some way (this is the same as run_source()).
2365 2373 """
2366 2374
2367 2375 # autoindent management should be done here, and not in the
2368 2376 # interactive loop, since that one is only seen by keyboard input. We
2369 2377 # need this done correctly even for code run via runlines (which uses
2370 2378 # push).
2371 2379
2372 2380 #print 'push line: <%s>' % line # dbg
2373 2381 self.buffer.append(line)
2374 2382 full_source = '\n'.join(self.buffer)
2375 2383 more = self.run_source(full_source, self.filename)
2376 2384 if not more:
2377 2385 self.history_manager.store_inputs('\n'.join(self.buffer_raw),
2378 2386 full_source)
2379 2387 self.reset_buffer()
2380 2388 self.execution_count += 1
2381 2389 return more
2382 2390
2383 2391 def reset_buffer(self):
2384 2392 """Reset the input buffer."""
2385 2393 self.buffer[:] = []
2386 2394 self.buffer_raw[:] = []
2387 2395 self.input_splitter.reset()
2388 2396
2389 2397 # For backwards compatibility
2390 2398 resetbuffer = reset_buffer
2391 2399
2392 2400 def _is_secondary_block_start(self, s):
2393 2401 if not s.endswith(':'):
2394 2402 return False
2395 2403 if (s.startswith('elif') or
2396 2404 s.startswith('else') or
2397 2405 s.startswith('except') or
2398 2406 s.startswith('finally')):
2399 2407 return True
2400 2408
2401 2409 def _cleanup_ipy_script(self, script):
2402 2410 """Make a script safe for self.runlines()
2403 2411
2404 2412 Currently, IPython is lines based, with blocks being detected by
2405 2413 empty lines. This is a problem for block based scripts that may
2406 2414 not have empty lines after blocks. This script adds those empty
2407 2415 lines to make scripts safe for running in the current line based
2408 2416 IPython.
2409 2417 """
2410 2418 res = []
2411 2419 lines = script.splitlines()
2412 2420 level = 0
2413 2421
2414 2422 for l in lines:
2415 2423 lstripped = l.lstrip()
2416 2424 stripped = l.strip()
2417 2425 if not stripped:
2418 2426 continue
2419 2427 newlevel = len(l) - len(lstripped)
2420 2428 if level > 0 and newlevel == 0 and \
2421 2429 not self._is_secondary_block_start(stripped):
2422 2430 # add empty line
2423 2431 res.append('')
2424 2432 res.append(l)
2425 2433 level = newlevel
2426 2434
2427 2435 return '\n'.join(res) + '\n'
2428 2436
2429 2437 #-------------------------------------------------------------------------
2430 2438 # Things related to GUI support and pylab
2431 2439 #-------------------------------------------------------------------------
2432 2440
2433 2441 def enable_pylab(self, gui=None):
2434 2442 raise NotImplementedError('Implement enable_pylab in a subclass')
2435 2443
2436 2444 #-------------------------------------------------------------------------
2437 2445 # Utilities
2438 2446 #-------------------------------------------------------------------------
2439 2447
2440 2448 def var_expand(self,cmd,depth=0):
2441 2449 """Expand python variables in a string.
2442 2450
2443 2451 The depth argument indicates how many frames above the caller should
2444 2452 be walked to look for the local namespace where to expand variables.
2445 2453
2446 2454 The global namespace for expansion is always the user's interactive
2447 2455 namespace.
2448 2456 """
2449 2457
2450 2458 return str(ItplNS(cmd,
2451 2459 self.user_ns, # globals
2452 2460 # Skip our own frame in searching for locals:
2453 2461 sys._getframe(depth+1).f_locals # locals
2454 2462 ))
2455 2463
2456 2464 def mktempfile(self,data=None):
2457 2465 """Make a new tempfile and return its filename.
2458 2466
2459 2467 This makes a call to tempfile.mktemp, but it registers the created
2460 2468 filename internally so ipython cleans it up at exit time.
2461 2469
2462 2470 Optional inputs:
2463 2471
2464 2472 - data(None): if data is given, it gets written out to the temp file
2465 2473 immediately, and the file is closed again."""
2466 2474
2467 2475 filename = tempfile.mktemp('.py','ipython_edit_')
2468 2476 self.tempfiles.append(filename)
2469 2477
2470 2478 if data:
2471 2479 tmp_file = open(filename,'w')
2472 2480 tmp_file.write(data)
2473 2481 tmp_file.close()
2474 2482 return filename
2475 2483
2476 2484 # TODO: This should be removed when Term is refactored.
2477 2485 def write(self,data):
2478 2486 """Write a string to the default output"""
2479 2487 io.Term.cout.write(data)
2480 2488
2481 2489 # TODO: This should be removed when Term is refactored.
2482 2490 def write_err(self,data):
2483 2491 """Write a string to the default error output"""
2484 2492 io.Term.cerr.write(data)
2485 2493
2486 2494 def ask_yes_no(self,prompt,default=True):
2487 2495 if self.quiet:
2488 2496 return True
2489 2497 return ask_yes_no(prompt,default)
2490 2498
2491 2499 def show_usage(self):
2492 2500 """Show a usage message"""
2493 2501 page.page(IPython.core.usage.interactive_usage)
2494 2502
2495 2503 #-------------------------------------------------------------------------
2496 2504 # Things related to IPython exiting
2497 2505 #-------------------------------------------------------------------------
2498 2506 def atexit_operations(self):
2499 2507 """This will be executed at the time of exit.
2500 2508
2501 2509 Cleanup operations and saving of persistent data that is done
2502 2510 unconditionally by IPython should be performed here.
2503 2511
2504 2512 For things that may depend on startup flags or platform specifics (such
2505 2513 as having readline or not), register a separate atexit function in the
2506 2514 code that has the appropriate information, rather than trying to
2507 2515 clutter
2508 2516 """
2509 2517 # Cleanup all tempfiles left around
2510 2518 for tfile in self.tempfiles:
2511 2519 try:
2512 2520 os.unlink(tfile)
2513 2521 except OSError:
2514 2522 pass
2515 2523
2516 2524 # Clear all user namespaces to release all references cleanly.
2517 2525 self.reset()
2518 2526
2519 2527 # Run user hooks
2520 2528 self.hooks.shutdown_hook()
2521 2529
2522 2530 def cleanup(self):
2523 2531 self.restore_sys_module_state()
2524 2532
2525 2533
2526 2534 class InteractiveShellABC(object):
2527 2535 """An abstract base class for InteractiveShell."""
2528 2536 __metaclass__ = abc.ABCMeta
2529 2537
2530 2538 InteractiveShellABC.register(InteractiveShell)
@@ -1,675 +1,679 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Tests for the inputsplitter module.
3 3 """
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2010 The IPython Development Team
6 6 #
7 7 # Distributed under the terms of the BSD License. The full license is in
8 8 # the file COPYING, distributed as part of this software.
9 9 #-----------------------------------------------------------------------------
10 10
11 11 #-----------------------------------------------------------------------------
12 12 # Imports
13 13 #-----------------------------------------------------------------------------
14 14 # stdlib
15 15 import unittest
16 16 import sys
17 17
18 18 # Third party
19 19 import nose.tools as nt
20 20
21 21 # Our own
22 22 from IPython.core import inputsplitter as isp
23 23
24 24 #-----------------------------------------------------------------------------
25 25 # Semi-complete examples (also used as tests)
26 26 #-----------------------------------------------------------------------------
27 27
28 28 # Note: at the bottom, there's a slightly more complete version of this that
29 29 # can be useful during development of code here.
30 30
31 31 def mini_interactive_loop(input_func):
32 32 """Minimal example of the logic of an interactive interpreter loop.
33 33
34 34 This serves as an example, and it is used by the test system with a fake
35 35 raw_input that simulates interactive input."""
36 36
37 37 from IPython.core.inputsplitter import InputSplitter
38 38
39 39 isp = InputSplitter()
40 40 # In practice, this input loop would be wrapped in an outside loop to read
41 41 # input indefinitely, until some exit/quit command was issued. Here we
42 42 # only illustrate the basic inner loop.
43 43 while isp.push_accepts_more():
44 44 indent = ' '*isp.indent_spaces
45 45 prompt = '>>> ' + indent
46 46 line = indent + input_func(prompt)
47 47 isp.push(line)
48 48
49 49 # Here we just return input so we can use it in a test suite, but a real
50 50 # interpreter would instead send it for execution somewhere.
51 51 src = isp.source_reset()
52 52 #print 'Input source was:\n', src # dbg
53 53 return src
54 54
55 55 #-----------------------------------------------------------------------------
56 56 # Test utilities, just for local use
57 57 #-----------------------------------------------------------------------------
58 58
59 59 def assemble(block):
60 60 """Assemble a block into multi-line sub-blocks."""
61 61 return ['\n'.join(sub_block)+'\n' for sub_block in block]
62 62
63 63
64 64 def pseudo_input(lines):
65 65 """Return a function that acts like raw_input but feeds the input list."""
66 66 ilines = iter(lines)
67 67 def raw_in(prompt):
68 68 try:
69 69 return next(ilines)
70 70 except StopIteration:
71 71 return ''
72 72 return raw_in
73 73
74 74 #-----------------------------------------------------------------------------
75 75 # Tests
76 76 #-----------------------------------------------------------------------------
77 77 def test_spaces():
78 78 tests = [('', 0),
79 79 (' ', 1),
80 80 ('\n', 0),
81 81 (' \n', 1),
82 82 ('x', 0),
83 83 (' x', 1),
84 84 (' x',2),
85 85 (' x',4),
86 86 # Note: tabs are counted as a single whitespace!
87 87 ('\tx', 1),
88 88 ('\t x', 2),
89 89 ]
90 90
91 91 for s, nsp in tests:
92 92 nt.assert_equal(isp.num_ini_spaces(s), nsp)
93 93
94 94
95 95 def test_remove_comments():
96 96 tests = [('text', 'text'),
97 97 ('text # comment', 'text '),
98 98 ('text # comment\n', 'text \n'),
99 99 ('text # comment \n', 'text \n'),
100 100 ('line # c \nline\n','line \nline\n'),
101 101 ('line # c \nline#c2 \nline\nline #c\n\n',
102 102 'line \nline\nline\nline \n\n'),
103 103 ]
104 104
105 105 for inp, out in tests:
106 106 nt.assert_equal(isp.remove_comments(inp), out)
107 107
108 108
109 109 def test_get_input_encoding():
110 110 encoding = isp.get_input_encoding()
111 111 nt.assert_true(isinstance(encoding, basestring))
112 112 # simple-minded check that at least encoding a simple string works with the
113 113 # encoding we got.
114 114 nt.assert_equal('test'.encode(encoding), 'test')
115 115
116 116
117 117 class NoInputEncodingTestCase(unittest.TestCase):
118 118 def setUp(self):
119 119 self.old_stdin = sys.stdin
120 120 class X: pass
121 121 fake_stdin = X()
122 122 sys.stdin = fake_stdin
123 123
124 124 def test(self):
125 125 # Verify that if sys.stdin has no 'encoding' attribute we do the right
126 126 # thing
127 127 enc = isp.get_input_encoding()
128 128 self.assertEqual(enc, 'ascii')
129 129
130 130 def tearDown(self):
131 131 sys.stdin = self.old_stdin
132 132
133 133
134 134 class InputSplitterTestCase(unittest.TestCase):
135 135 def setUp(self):
136 136 self.isp = isp.InputSplitter()
137 137
138 138 def test_reset(self):
139 139 isp = self.isp
140 140 isp.push('x=1')
141 141 isp.reset()
142 142 self.assertEqual(isp._buffer, [])
143 143 self.assertEqual(isp.indent_spaces, 0)
144 144 self.assertEqual(isp.source, '')
145 145 self.assertEqual(isp.code, None)
146 146 self.assertEqual(isp._is_complete, False)
147 147
148 148 def test_source(self):
149 149 self.isp._store('1')
150 150 self.isp._store('2')
151 151 self.assertEqual(self.isp.source, '1\n2\n')
152 152 self.assertTrue(len(self.isp._buffer)>0)
153 153 self.assertEqual(self.isp.source_reset(), '1\n2\n')
154 154 self.assertEqual(self.isp._buffer, [])
155 155 self.assertEqual(self.isp.source, '')
156 156
157 157 def test_indent(self):
158 158 isp = self.isp # shorthand
159 159 isp.push('x=1')
160 160 self.assertEqual(isp.indent_spaces, 0)
161 161 isp.push('if 1:\n x=1')
162 162 self.assertEqual(isp.indent_spaces, 4)
163 163 isp.push('y=2\n')
164 164 self.assertEqual(isp.indent_spaces, 0)
165 165
166 166 def test_indent2(self):
167 167 # In cell mode, inputs must be fed in whole blocks, so skip this test
168 168 if self.isp.input_mode == 'cell': return
169 169
170 170 isp = self.isp
171 171 isp.push('if 1:')
172 172 self.assertEqual(isp.indent_spaces, 4)
173 173 isp.push(' x=1')
174 174 self.assertEqual(isp.indent_spaces, 4)
175 175 # Blank lines shouldn't change the indent level
176 176 isp.push(' '*2)
177 177 self.assertEqual(isp.indent_spaces, 4)
178 178
179 179 def test_indent3(self):
180 180 # In cell mode, inputs must be fed in whole blocks, so skip this test
181 181 if self.isp.input_mode == 'cell': return
182 182
183 183 isp = self.isp
184 184 # When a multiline statement contains parens or multiline strings, we
185 185 # shouldn't get confused.
186 186 isp.push("if 1:")
187 187 isp.push(" x = (1+\n 2)")
188 188 self.assertEqual(isp.indent_spaces, 4)
189 189
190 190 def test_dedent(self):
191 191 isp = self.isp # shorthand
192 192 isp.push('if 1:')
193 193 self.assertEqual(isp.indent_spaces, 4)
194 194 isp.push(' pass')
195 195 self.assertEqual(isp.indent_spaces, 0)
196 196
197 197 def test_push(self):
198 198 isp = self.isp
199 199 self.assertTrue(isp.push('x=1'))
200 200
201 201 def test_push2(self):
202 202 isp = self.isp
203 203 self.assertFalse(isp.push('if 1:'))
204 204 for line in [' x=1', '# a comment', ' y=2']:
205 205 self.assertTrue(isp.push(line))
206 206
207 207 def test_replace_mode(self):
208 208 isp = self.isp
209 209 isp.input_mode = 'cell'
210 210 isp.push('x=1')
211 211 self.assertEqual(isp.source, 'x=1\n')
212 212 isp.push('x=2')
213 213 self.assertEqual(isp.source, 'x=2\n')
214 214
215 215 def test_push_accepts_more(self):
216 216 isp = self.isp
217 217 isp.push('x=1')
218 218 self.assertFalse(isp.push_accepts_more())
219 219
220 220 def test_push_accepts_more2(self):
221 221 # In cell mode, inputs must be fed in whole blocks, so skip this test
222 222 if self.isp.input_mode == 'cell': return
223 223
224 224 isp = self.isp
225 225 isp.push('if 1:')
226 226 self.assertTrue(isp.push_accepts_more())
227 227 isp.push(' x=1')
228 228 self.assertTrue(isp.push_accepts_more())
229 229 isp.push('')
230 230 self.assertFalse(isp.push_accepts_more())
231 231
232 232 def test_push_accepts_more3(self):
233 233 isp = self.isp
234 234 isp.push("x = (2+\n3)")
235 235 self.assertFalse(isp.push_accepts_more())
236 236
237 237 def test_push_accepts_more4(self):
238 238 # In cell mode, inputs must be fed in whole blocks, so skip this test
239 239 if self.isp.input_mode == 'cell': return
240 240
241 241 isp = self.isp
242 242 # When a multiline statement contains parens or multiline strings, we
243 243 # shouldn't get confused.
244 244 # FIXME: we should be able to better handle de-dents in statements like
245 245 # multiline strings and multiline expressions (continued with \ or
246 246 # parens). Right now we aren't handling the indentation tracking quite
247 247 # correctly with this, though in practice it may not be too much of a
248 248 # problem. We'll need to see.
249 249 isp.push("if 1:")
250 250 isp.push(" x = (2+")
251 251 isp.push(" 3)")
252 252 self.assertTrue(isp.push_accepts_more())
253 253 isp.push(" y = 3")
254 254 self.assertTrue(isp.push_accepts_more())
255 255 isp.push('')
256 256 self.assertFalse(isp.push_accepts_more())
257 257
258 258 def test_continuation(self):
259 259 isp = self.isp
260 260 isp.push("import os, \\")
261 261 self.assertTrue(isp.push_accepts_more())
262 262 isp.push("sys")
263 263 self.assertFalse(isp.push_accepts_more())
264 264
265 265 def test_syntax_error(self):
266 266 isp = self.isp
267 267 # Syntax errors immediately produce a 'ready' block, so the invalid
268 268 # Python can be sent to the kernel for evaluation with possible ipython
269 269 # special-syntax conversion.
270 270 isp.push('run foo')
271 271 self.assertFalse(isp.push_accepts_more())
272 272
273 273 def check_split(self, block_lines, compile=True):
274 274 blocks = assemble(block_lines)
275 275 lines = ''.join(blocks)
276 276 oblock = self.isp.split_blocks(lines)
277 277 self.assertEqual(oblock, blocks)
278 278 if compile:
279 279 for block in blocks:
280 280 self.isp._compile(block)
281 281
282 282 def test_split(self):
283 283 # All blocks of input we want to test in a list. The format for each
284 284 # block is a list of lists, with each inner lists consisting of all the
285 285 # lines (as single-lines) that should make up a sub-block.
286 286
287 287 # Note: do NOT put here sub-blocks that don't compile, as the
288 288 # check_split() routine makes a final verification pass to check that
289 289 # each sub_block, as returned by split_blocks(), does compile
290 290 # correctly.
291 291 all_blocks = [ [['x=1']],
292 292
293 293 [['x=1'],
294 294 ['y=2']],
295 295
296 296 [['x=1',
297 297 '# a comment'],
298 298 ['y=11']],
299 299
300 300 [['if 1:',
301 301 ' x=1'],
302 302 ['y=3']],
303 303
304 304 [['def f(x):',
305 305 ' return x'],
306 306 ['x=1']],
307 307
308 308 [['def f(x):',
309 309 ' x+=1',
310 310 ' ',
311 311 ' return x'],
312 312 ['x=1']],
313 313
314 314 [['def f(x):',
315 315 ' if x>0:',
316 316 ' y=1',
317 317 ' # a comment',
318 318 ' else:',
319 319 ' y=4',
320 320 ' ',
321 321 ' return y'],
322 322 ['x=1'],
323 323 ['if 1:',
324 324 ' y=11'] ],
325 325
326 326 [['for i in range(10):'
327 327 ' x=i**2']],
328 328
329 329 [['for i in range(10):'
330 330 ' x=i**2'],
331 331 ['z = 1']],
332 332 ]
333 333 for block_lines in all_blocks:
334 334 self.check_split(block_lines)
335 335
336 336 def test_split_syntax_errors(self):
337 337 # Block splitting with invalid syntax
338 338 all_blocks = [ [['a syntax error']],
339 339
340 340 [['x=1',
341 341 'another syntax error']],
342 342
343 343 [['for i in range(10):'
344 344 ' yet another error']],
345 345
346 346 ]
347 347 for block_lines in all_blocks:
348 348 self.check_split(block_lines, compile=False)
349 349
350 def test_unicode(self):
351 self.isp.push(u"PΓ©rez")
352 self.isp.push(u'\xc3\xa9')
353 self.isp.push("u'\xc3\xa9'")
350 354
351 355 class InteractiveLoopTestCase(unittest.TestCase):
352 356 """Tests for an interactive loop like a python shell.
353 357 """
354 358 def check_ns(self, lines, ns):
355 359 """Validate that the given input lines produce the resulting namespace.
356 360
357 361 Note: the input lines are given exactly as they would be typed in an
358 362 auto-indenting environment, as mini_interactive_loop above already does
359 363 auto-indenting and prepends spaces to the input.
360 364 """
361 365 src = mini_interactive_loop(pseudo_input(lines))
362 366 test_ns = {}
363 367 exec src in test_ns
364 368 # We can't check that the provided ns is identical to the test_ns,
365 369 # because Python fills test_ns with extra keys (copyright, etc). But
366 370 # we can check that the given dict is *contained* in test_ns
367 371 for k,v in ns.iteritems():
368 372 self.assertEqual(test_ns[k], v)
369 373
370 374 def test_simple(self):
371 375 self.check_ns(['x=1'], dict(x=1))
372 376
373 377 def test_simple2(self):
374 378 self.check_ns(['if 1:', 'x=2'], dict(x=2))
375 379
376 380 def test_xy(self):
377 381 self.check_ns(['x=1; y=2'], dict(x=1, y=2))
378 382
379 383 def test_abc(self):
380 384 self.check_ns(['if 1:','a=1','b=2','c=3'], dict(a=1, b=2, c=3))
381 385
382 386 def test_multi(self):
383 387 self.check_ns(['x =(1+','1+','2)'], dict(x=4))
384 388
385 389
386 390 def test_LineInfo():
387 391 """Simple test for LineInfo construction and str()"""
388 392 linfo = isp.LineInfo(' %cd /home')
389 393 nt.assert_equals(str(linfo), 'LineInfo [ |%|cd|/home]')
390 394
391 395
392 396 def test_split_user_input():
393 397 """Unicode test - split_user_input already has good doctests"""
394 398 line = u"PΓ©rez Fernando"
395 399 parts = isp.split_user_input(line)
396 400 parts_expected = (u'', u'', u'', line)
397 401 nt.assert_equal(parts, parts_expected)
398 402
399 403
400 404 # Transformer tests
401 405 def transform_checker(tests, func):
402 406 """Utility to loop over test inputs"""
403 407 for inp, tr in tests:
404 408 nt.assert_equals(func(inp), tr)
405 409
406 410 # Data for all the syntax tests in the form of lists of pairs of
407 411 # raw/transformed input. We store it here as a global dict so that we can use
408 412 # it both within single-function tests and also to validate the behavior of the
409 413 # larger objects
410 414
411 415 syntax = \
412 416 dict(assign_system =
413 417 [('a =! ls', 'a = get_ipython().getoutput("ls")'),
414 418 ('b = !ls', 'b = get_ipython().getoutput("ls")'),
415 419 ('x=1', 'x=1'), # normal input is unmodified
416 420 (' ',' '), # blank lines are kept intact
417 421 ],
418 422
419 423 assign_magic =
420 424 [('a =% who', 'a = get_ipython().magic("who")'),
421 425 ('b = %who', 'b = get_ipython().magic("who")'),
422 426 ('x=1', 'x=1'), # normal input is unmodified
423 427 (' ',' '), # blank lines are kept intact
424 428 ],
425 429
426 430 classic_prompt =
427 431 [('>>> x=1', 'x=1'),
428 432 ('x=1', 'x=1'), # normal input is unmodified
429 433 (' ', ' '), # blank lines are kept intact
430 434 ('... ', ''), # continuation prompts
431 435 ],
432 436
433 437 ipy_prompt =
434 438 [('In [1]: x=1', 'x=1'),
435 439 ('x=1', 'x=1'), # normal input is unmodified
436 440 (' ',' '), # blank lines are kept intact
437 441 (' ....: ', ''), # continuation prompts
438 442 ],
439 443
440 444 # Tests for the escape transformer to leave normal code alone
441 445 escaped_noesc =
442 446 [ (' ', ' '),
443 447 ('x=1', 'x=1'),
444 448 ],
445 449
446 450 # System calls
447 451 escaped_shell =
448 452 [ ('!ls', 'get_ipython().system("ls")'),
449 453 # Double-escape shell, this means to capture the output of the
450 454 # subprocess and return it
451 455 ('!!ls', 'get_ipython().getoutput("ls")'),
452 456 ],
453 457
454 458 # Help/object info
455 459 escaped_help =
456 460 [ ('?', 'get_ipython().show_usage()'),
457 461 ('?x1', 'get_ipython().magic("pinfo x1")'),
458 462 ('??x2', 'get_ipython().magic("pinfo2 x2")'),
459 463 ('x3?', 'get_ipython().magic("pinfo x3")'),
460 464 ('x4??', 'get_ipython().magic("pinfo2 x4")'),
461 465 ('%hist?', 'get_ipython().magic("pinfo %hist")'),
462 466 ('f*?', 'get_ipython().magic("psearch f*")'),
463 467 ('ax.*aspe*?', 'get_ipython().magic("psearch ax.*aspe*")'),
464 468 ],
465 469
466 470 # Explicit magic calls
467 471 escaped_magic =
468 472 [ ('%cd', 'get_ipython().magic("cd")'),
469 473 ('%cd /home', 'get_ipython().magic("cd /home")'),
470 474 (' %magic', ' get_ipython().magic("magic")'),
471 475 ],
472 476
473 477 # Quoting with separate arguments
474 478 escaped_quote =
475 479 [ (',f', 'f("")'),
476 480 (',f x', 'f("x")'),
477 481 (' ,f y', ' f("y")'),
478 482 (',f a b', 'f("a", "b")'),
479 483 ],
480 484
481 485 # Quoting with single argument
482 486 escaped_quote2 =
483 487 [ (';f', 'f("")'),
484 488 (';f x', 'f("x")'),
485 489 (' ;f y', ' f("y")'),
486 490 (';f a b', 'f("a b")'),
487 491 ],
488 492
489 493 # Simply apply parens
490 494 escaped_paren =
491 495 [ ('/f', 'f()'),
492 496 ('/f x', 'f(x)'),
493 497 (' /f y', ' f(y)'),
494 498 ('/f a b', 'f(a, b)'),
495 499 ],
496 500
497 501 )
498 502
499 503 # multiline syntax examples. Each of these should be a list of lists, with
500 504 # each entry itself having pairs of raw/transformed input. The union (with
501 505 # '\n'.join() of the transformed inputs is what the splitter should produce
502 506 # when fed the raw lines one at a time via push.
503 507 syntax_ml = \
504 508 dict(classic_prompt =
505 509 [ [('>>> for i in range(10):','for i in range(10):'),
506 510 ('... print i',' print i'),
507 511 ('... ', ''),
508 512 ],
509 513 ],
510 514
511 515 ipy_prompt =
512 516 [ [('In [24]: for i in range(10):','for i in range(10):'),
513 517 (' ....: print i',' print i'),
514 518 (' ....: ', ''),
515 519 ],
516 520 ],
517 521 )
518 522
519 523
520 524 def test_assign_system():
521 525 transform_checker(syntax['assign_system'], isp.transform_assign_system)
522 526
523 527
524 528 def test_assign_magic():
525 529 transform_checker(syntax['assign_magic'], isp.transform_assign_magic)
526 530
527 531
528 532 def test_classic_prompt():
529 533 transform_checker(syntax['classic_prompt'], isp.transform_classic_prompt)
530 534 for example in syntax_ml['classic_prompt']:
531 535 transform_checker(example, isp.transform_classic_prompt)
532 536
533 537
534 538 def test_ipy_prompt():
535 539 transform_checker(syntax['ipy_prompt'], isp.transform_ipy_prompt)
536 540 for example in syntax_ml['ipy_prompt']:
537 541 transform_checker(example, isp.transform_ipy_prompt)
538 542
539 543
540 544 def test_escaped_noesc():
541 545 transform_checker(syntax['escaped_noesc'], isp.transform_escaped)
542 546
543 547
544 548 def test_escaped_shell():
545 549 transform_checker(syntax['escaped_shell'], isp.transform_escaped)
546 550
547 551
548 552 def test_escaped_help():
549 553 transform_checker(syntax['escaped_help'], isp.transform_escaped)
550 554
551 555
552 556 def test_escaped_magic():
553 557 transform_checker(syntax['escaped_magic'], isp.transform_escaped)
554 558
555 559
556 560 def test_escaped_quote():
557 561 transform_checker(syntax['escaped_quote'], isp.transform_escaped)
558 562
559 563
560 564 def test_escaped_quote2():
561 565 transform_checker(syntax['escaped_quote2'], isp.transform_escaped)
562 566
563 567
564 568 def test_escaped_paren():
565 569 transform_checker(syntax['escaped_paren'], isp.transform_escaped)
566 570
567 571
568 572 class IPythonInputTestCase(InputSplitterTestCase):
569 573 """By just creating a new class whose .isp is a different instance, we
570 574 re-run the same test battery on the new input splitter.
571 575
572 576 In addition, this runs the tests over the syntax and syntax_ml dicts that
573 577 were tested by individual functions, as part of the OO interface.
574 578
575 579 It also makes some checks on the raw buffer storage.
576 580 """
577 581
578 582 def setUp(self):
579 583 self.isp = isp.IPythonInputSplitter(input_mode='line')
580 584
581 585 def test_syntax(self):
582 586 """Call all single-line syntax tests from the main object"""
583 587 isp = self.isp
584 588 for example in syntax.itervalues():
585 589 for raw, out_t in example:
586 590 if raw.startswith(' '):
587 591 continue
588 592
589 593 isp.push(raw)
590 594 out, out_raw = isp.source_raw_reset()
591 595 self.assertEqual(out.rstrip(), out_t)
592 596 self.assertEqual(out_raw.rstrip(), raw.rstrip())
593 597
594 598 def test_syntax_multiline(self):
595 599 isp = self.isp
596 600 for example in syntax_ml.itervalues():
597 601 out_t_parts = []
598 602 raw_parts = []
599 603 for line_pairs in example:
600 604 for lraw, out_t_part in line_pairs:
601 605 isp.push(lraw)
602 606 out_t_parts.append(out_t_part)
603 607 raw_parts.append(lraw)
604 608
605 609 out, out_raw = isp.source_raw_reset()
606 610 out_t = '\n'.join(out_t_parts).rstrip()
607 611 raw = '\n'.join(raw_parts).rstrip()
608 612 self.assertEqual(out.rstrip(), out_t)
609 613 self.assertEqual(out_raw.rstrip(), raw)
610 614
611 615
612 616 class BlockIPythonInputTestCase(IPythonInputTestCase):
613 617
614 618 # Deactivate tests that don't make sense for the block mode
615 619 test_push3 = test_split = lambda s: None
616 620
617 621 def setUp(self):
618 622 self.isp = isp.IPythonInputSplitter(input_mode='cell')
619 623
620 624 def test_syntax_multiline(self):
621 625 isp = self.isp
622 626 for example in syntax_ml.itervalues():
623 627 raw_parts = []
624 628 out_t_parts = []
625 629 for line_pairs in example:
626 630 for raw, out_t_part in line_pairs:
627 631 raw_parts.append(raw)
628 632 out_t_parts.append(out_t_part)
629 633
630 634 raw = '\n'.join(raw_parts)
631 635 out_t = '\n'.join(out_t_parts)
632 636
633 637 isp.push(raw)
634 638 out, out_raw = isp.source_raw_reset()
635 639 # Match ignoring trailing whitespace
636 640 self.assertEqual(out.rstrip(), out_t.rstrip())
637 641 self.assertEqual(out_raw.rstrip(), raw.rstrip())
638 642
639 643
640 644 #-----------------------------------------------------------------------------
641 645 # Main - use as a script, mostly for developer experiments
642 646 #-----------------------------------------------------------------------------
643 647
644 648 if __name__ == '__main__':
645 649 # A simple demo for interactive experimentation. This code will not get
646 650 # picked up by any test suite.
647 651 from IPython.core.inputsplitter import InputSplitter, IPythonInputSplitter
648 652
649 653 # configure here the syntax to use, prompt and whether to autoindent
650 654 #isp, start_prompt = InputSplitter(), '>>> '
651 655 isp, start_prompt = IPythonInputSplitter(), 'In> '
652 656
653 657 autoindent = True
654 658 #autoindent = False
655 659
656 660 try:
657 661 while True:
658 662 prompt = start_prompt
659 663 while isp.push_accepts_more():
660 664 indent = ' '*isp.indent_spaces
661 665 if autoindent:
662 666 line = indent + raw_input(prompt+indent)
663 667 else:
664 668 line = raw_input(prompt)
665 669 isp.push(line)
666 670 prompt = '... '
667 671
668 672 # Here we just return input so we can use it in a test suite, but a
669 673 # real interpreter would instead send it for execution somewhere.
670 674 #src = isp.source; raise EOFError # dbg
671 675 src, raw = isp.source_raw_reset()
672 676 print 'Input source was:\n', src
673 677 print 'Raw source was:\n', raw
674 678 except EOFError:
675 679 print 'Bye'
General Comments 0
You need to be logged in to leave comments. Login now