##// END OF EJS Templates
Capture local scope for %time, so that it can be used for code inside functions.
Thomas Kluyver -
Show More
@@ -1,2539 +1,2544 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 import inspect
25 26 import os
26 27 import re
27 28 import sys
28 29 import tempfile
29 30 import types
30 31 from contextlib import nested
31 32
32 33 from IPython.config.configurable import Configurable
33 34 from IPython.core import debugger, oinspect
34 35 from IPython.core import history as ipcorehist
35 36 from IPython.core import page
36 37 from IPython.core import prefilter
37 38 from IPython.core import shadowns
38 39 from IPython.core import ultratb
39 40 from IPython.core.alias import AliasManager
40 41 from IPython.core.builtin_trap import BuiltinTrap
41 42 from IPython.core.compilerop import CachingCompiler
42 43 from IPython.core.display_trap import DisplayTrap
43 44 from IPython.core.displayhook import DisplayHook
44 45 from IPython.core.displaypub import DisplayPublisher
45 46 from IPython.core.error import TryNext, UsageError
46 47 from IPython.core.extensions import ExtensionManager
47 48 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 49 from IPython.core.formatters import DisplayFormatter
49 50 from IPython.core.history import HistoryManager
50 51 from IPython.core.inputsplitter import IPythonInputSplitter
51 52 from IPython.core.logger import Logger
52 53 from IPython.core.magic import Magic
53 54 from IPython.core.payload import PayloadManager
54 55 from IPython.core.plugin import PluginManager
55 56 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
56 57 from IPython.external.Itpl import ItplNS
57 58 from IPython.utils import PyColorize
58 59 from IPython.utils import io
59 60 from IPython.utils.doctestreload import doctest_reload
60 61 from IPython.utils.io import ask_yes_no, rprint
61 62 from IPython.utils.ipstruct import Struct
62 63 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
63 64 from IPython.utils.pickleshare import PickleShareDB
64 65 from IPython.utils.process import system, getoutput
65 66 from IPython.utils.strdispatch import StrDispatch
66 67 from IPython.utils.syspathcontext import prepended_to_syspath
67 68 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
68 69 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
69 70 List, Unicode, Instance, Type)
70 71 from IPython.utils.warn import warn, error, fatal
71 72 import IPython.core.hooks
72 73
73 74 #-----------------------------------------------------------------------------
74 75 # Globals
75 76 #-----------------------------------------------------------------------------
76 77
77 78 # compiled regexps for autoindent management
78 79 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
79 80
80 81 #-----------------------------------------------------------------------------
81 82 # Utilities
82 83 #-----------------------------------------------------------------------------
83 84
84 85 # store the builtin raw_input globally, and use this always, in case user code
85 86 # overwrites it (like wx.py.PyShell does)
86 87 raw_input_original = raw_input
87 88
88 89 def softspace(file, newvalue):
89 90 """Copied from code.py, to remove the dependency"""
90 91
91 92 oldvalue = 0
92 93 try:
93 94 oldvalue = file.softspace
94 95 except AttributeError:
95 96 pass
96 97 try:
97 98 file.softspace = newvalue
98 99 except (AttributeError, TypeError):
99 100 # "attribute-less object" or "read-only attributes"
100 101 pass
101 102 return oldvalue
102 103
103 104
104 105 def no_op(*a, **kw): pass
105 106
106 107 class SpaceInInput(Exception): pass
107 108
108 109 class Bunch: pass
109 110
110 111
111 112 def get_default_colors():
112 113 if sys.platform=='darwin':
113 114 return "LightBG"
114 115 elif os.name=='nt':
115 116 return 'Linux'
116 117 else:
117 118 return 'Linux'
118 119
119 120
120 121 class SeparateStr(Str):
121 122 """A Str subclass to validate separate_in, separate_out, etc.
122 123
123 124 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
124 125 """
125 126
126 127 def validate(self, obj, value):
127 128 if value == '0': value = ''
128 129 value = value.replace('\\n','\n')
129 130 return super(SeparateStr, self).validate(obj, value)
130 131
131 132 class MultipleInstanceError(Exception):
132 133 pass
133 134
134 135
135 136 #-----------------------------------------------------------------------------
136 137 # Main IPython class
137 138 #-----------------------------------------------------------------------------
138 139
139 140 class InteractiveShell(Configurable, Magic):
140 141 """An enhanced, interactive shell for Python."""
141 142
142 143 _instance = None
143 144 autocall = Enum((0,1,2), default_value=1, config=True)
144 145 # TODO: remove all autoindent logic and put into frontends.
145 146 # We can't do this yet because even runlines uses the autoindent.
146 147 autoindent = CBool(True, config=True)
147 148 automagic = CBool(True, config=True)
148 149 cache_size = Int(1000, config=True)
149 150 color_info = CBool(True, config=True)
150 151 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
151 152 default_value=get_default_colors(), config=True)
152 153 debug = CBool(False, config=True)
153 154 deep_reload = CBool(False, config=True)
154 155 display_formatter = Instance(DisplayFormatter)
155 156 displayhook_class = Type(DisplayHook)
156 157 display_pub_class = Type(DisplayPublisher)
157 158
158 159 exit_now = CBool(False)
159 160 # Monotonically increasing execution counter
160 161 execution_count = Int(1)
161 162 filename = Unicode("<ipython console>")
162 163 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
163 164
164 165 # Input splitter, to split entire cells of input into either individual
165 166 # interactive statements or whole blocks.
166 167 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
167 168 (), {})
168 169 logstart = CBool(False, config=True)
169 170 logfile = Unicode('', config=True)
170 171 logappend = Unicode('', config=True)
171 172 object_info_string_level = Enum((0,1,2), default_value=0,
172 173 config=True)
173 174 pdb = CBool(False, config=True)
174 175
175 176 profile = Unicode('', config=True)
176 177 prompt_in1 = Str('In [\\#]: ', config=True)
177 178 prompt_in2 = Str(' .\\D.: ', config=True)
178 179 prompt_out = Str('Out[\\#]: ', config=True)
179 180 prompts_pad_left = CBool(True, config=True)
180 181 quiet = CBool(False, config=True)
181 182
182 183 history_length = Int(10000, config=True)
183 184
184 185 # The readline stuff will eventually be moved to the terminal subclass
185 186 # but for now, we can't do that as readline is welded in everywhere.
186 187 readline_use = CBool(True, config=True)
187 188 readline_merge_completions = CBool(True, config=True)
188 189 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
189 190 readline_remove_delims = Str('-/~', config=True)
190 191 readline_parse_and_bind = List([
191 192 'tab: complete',
192 193 '"\C-l": clear-screen',
193 194 'set show-all-if-ambiguous on',
194 195 '"\C-o": tab-insert',
195 196 # See bug gh-58 - with \M-i enabled, chars 0x9000-0x9fff
196 197 # crash IPython.
197 198 '"\M-o": "\d\d\d\d"',
198 199 '"\M-I": "\d\d\d\d"',
199 200 '"\C-r": reverse-search-history',
200 201 '"\C-s": forward-search-history',
201 202 '"\C-p": history-search-backward',
202 203 '"\C-n": history-search-forward',
203 204 '"\e[A": history-search-backward',
204 205 '"\e[B": history-search-forward',
205 206 '"\C-k": kill-line',
206 207 '"\C-u": unix-line-discard',
207 208 ], allow_none=False, config=True)
208 209
209 210 # TODO: this part of prompt management should be moved to the frontends.
210 211 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
211 212 separate_in = SeparateStr('\n', config=True)
212 213 separate_out = SeparateStr('', config=True)
213 214 separate_out2 = SeparateStr('', config=True)
214 215 wildcards_case_sensitive = CBool(True, config=True)
215 216 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
216 217 default_value='Context', config=True)
217 218
218 219 # Subcomponents of InteractiveShell
219 220 alias_manager = Instance('IPython.core.alias.AliasManager')
220 221 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
221 222 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
222 223 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
223 224 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
224 225 plugin_manager = Instance('IPython.core.plugin.PluginManager')
225 226 payload_manager = Instance('IPython.core.payload.PayloadManager')
226 227 history_manager = Instance('IPython.core.history.HistoryManager')
227 228
228 229 # Private interface
229 230 _post_execute = set()
230 231
231 232 def __init__(self, config=None, ipython_dir=None,
232 233 user_ns=None, user_global_ns=None,
233 234 custom_exceptions=((), None)):
234 235
235 236 # This is where traits with a config_key argument are updated
236 237 # from the values on config.
237 238 super(InteractiveShell, self).__init__(config=config)
238 239
239 240 # These are relatively independent and stateless
240 241 self.init_ipython_dir(ipython_dir)
241 242 self.init_instance_attrs()
242 243 self.init_environment()
243 244
244 245 # Create namespaces (user_ns, user_global_ns, etc.)
245 246 self.init_create_namespaces(user_ns, user_global_ns)
246 247 # This has to be done after init_create_namespaces because it uses
247 248 # something in self.user_ns, but before init_sys_modules, which
248 249 # is the first thing to modify sys.
249 250 # TODO: When we override sys.stdout and sys.stderr before this class
250 251 # is created, we are saving the overridden ones here. Not sure if this
251 252 # is what we want to do.
252 253 self.save_sys_module_state()
253 254 self.init_sys_modules()
254 255
255 256 # While we're trying to have each part of the code directly access what
256 257 # it needs without keeping redundant references to objects, we have too
257 258 # much legacy code that expects ip.db to exist.
258 259 self.db = PickleShareDB(os.path.join(self.ipython_dir, 'db'))
259 260
260 261 self.init_history()
261 262 self.init_encoding()
262 263 self.init_prefilter()
263 264
264 265 Magic.__init__(self, self)
265 266
266 267 self.init_syntax_highlighting()
267 268 self.init_hooks()
268 269 self.init_pushd_popd_magic()
269 270 # self.init_traceback_handlers use to be here, but we moved it below
270 271 # because it and init_io have to come after init_readline.
271 272 self.init_user_ns()
272 273 self.init_logger()
273 274 self.init_alias()
274 275 self.init_builtins()
275 276
276 277 # pre_config_initialization
277 278
278 279 # The next section should contain everything that was in ipmaker.
279 280 self.init_logstart()
280 281
281 282 # The following was in post_config_initialization
282 283 self.init_inspector()
283 284 # init_readline() must come before init_io(), because init_io uses
284 285 # readline related things.
285 286 self.init_readline()
286 287 # init_completer must come after init_readline, because it needs to
287 288 # know whether readline is present or not system-wide to configure the
288 289 # completers, since the completion machinery can now operate
289 290 # independently of readline (e.g. over the network)
290 291 self.init_completer()
291 292 # TODO: init_io() needs to happen before init_traceback handlers
292 293 # because the traceback handlers hardcode the stdout/stderr streams.
293 294 # This logic in in debugger.Pdb and should eventually be changed.
294 295 self.init_io()
295 296 self.init_traceback_handlers(custom_exceptions)
296 297 self.init_prompts()
297 298 self.init_display_formatter()
298 299 self.init_display_pub()
299 300 self.init_displayhook()
300 301 self.init_reload_doctest()
301 302 self.init_magics()
302 303 self.init_pdb()
303 304 self.init_extension_manager()
304 305 self.init_plugin_manager()
305 306 self.init_payload()
306 307 self.hooks.late_startup_hook()
307 308 atexit.register(self.atexit_operations)
308 309
309 310 @classmethod
310 311 def instance(cls, *args, **kwargs):
311 312 """Returns a global InteractiveShell instance."""
312 313 if cls._instance is None:
313 314 inst = cls(*args, **kwargs)
314 315 # Now make sure that the instance will also be returned by
315 316 # the subclasses instance attribute.
316 317 for subclass in cls.mro():
317 318 if issubclass(cls, subclass) and \
318 319 issubclass(subclass, InteractiveShell):
319 320 subclass._instance = inst
320 321 else:
321 322 break
322 323 if isinstance(cls._instance, cls):
323 324 return cls._instance
324 325 else:
325 326 raise MultipleInstanceError(
326 327 'Multiple incompatible subclass instances of '
327 328 'InteractiveShell are being created.'
328 329 )
329 330
330 331 @classmethod
331 332 def initialized(cls):
332 333 return hasattr(cls, "_instance")
333 334
334 335 def get_ipython(self):
335 336 """Return the currently running IPython instance."""
336 337 return self
337 338
338 339 #-------------------------------------------------------------------------
339 340 # Trait changed handlers
340 341 #-------------------------------------------------------------------------
341 342
342 343 def _ipython_dir_changed(self, name, new):
343 344 if not os.path.isdir(new):
344 345 os.makedirs(new, mode = 0777)
345 346
346 347 def set_autoindent(self,value=None):
347 348 """Set the autoindent flag, checking for readline support.
348 349
349 350 If called with no arguments, it acts as a toggle."""
350 351
351 352 if not self.has_readline:
352 353 if os.name == 'posix':
353 354 warn("The auto-indent feature requires the readline library")
354 355 self.autoindent = 0
355 356 return
356 357 if value is None:
357 358 self.autoindent = not self.autoindent
358 359 else:
359 360 self.autoindent = value
360 361
361 362 #-------------------------------------------------------------------------
362 363 # init_* methods called by __init__
363 364 #-------------------------------------------------------------------------
364 365
365 366 def init_ipython_dir(self, ipython_dir):
366 367 if ipython_dir is not None:
367 368 self.ipython_dir = ipython_dir
368 369 self.config.Global.ipython_dir = self.ipython_dir
369 370 return
370 371
371 372 if hasattr(self.config.Global, 'ipython_dir'):
372 373 self.ipython_dir = self.config.Global.ipython_dir
373 374 else:
374 375 self.ipython_dir = get_ipython_dir()
375 376
376 377 # All children can just read this
377 378 self.config.Global.ipython_dir = self.ipython_dir
378 379
379 380 def init_instance_attrs(self):
380 381 self.more = False
381 382
382 383 # command compiler
383 384 self.compile = CachingCompiler()
384 385
385 386 # User input buffers
386 387 # NOTE: these variables are slated for full removal, once we are 100%
387 388 # sure that the new execution logic is solid. We will delte runlines,
388 389 # push_line and these buffers, as all input will be managed by the
389 390 # frontends via an inputsplitter instance.
390 391 self.buffer = []
391 392 self.buffer_raw = []
392 393
393 394 # Make an empty namespace, which extension writers can rely on both
394 395 # existing and NEVER being used by ipython itself. This gives them a
395 396 # convenient location for storing additional information and state
396 397 # their extensions may require, without fear of collisions with other
397 398 # ipython names that may develop later.
398 399 self.meta = Struct()
399 400
400 401 # Object variable to store code object waiting execution. This is
401 402 # used mainly by the multithreaded shells, but it can come in handy in
402 403 # other situations. No need to use a Queue here, since it's a single
403 404 # item which gets cleared once run.
404 405 self.code_to_run = None
405 406
406 407 # Temporary files used for various purposes. Deleted at exit.
407 408 self.tempfiles = []
408 409
409 410 # Keep track of readline usage (later set by init_readline)
410 411 self.has_readline = False
411 412
412 413 # keep track of where we started running (mainly for crash post-mortem)
413 414 # This is not being used anywhere currently.
414 415 self.starting_dir = os.getcwd()
415 416
416 417 # Indentation management
417 418 self.indent_current_nsp = 0
418 419
419 420 def init_environment(self):
420 421 """Any changes we need to make to the user's environment."""
421 422 pass
422 423
423 424 def init_encoding(self):
424 425 # Get system encoding at startup time. Certain terminals (like Emacs
425 426 # under Win32 have it set to None, and we need to have a known valid
426 427 # encoding to use in the raw_input() method
427 428 try:
428 429 self.stdin_encoding = sys.stdin.encoding or 'ascii'
429 430 except AttributeError:
430 431 self.stdin_encoding = 'ascii'
431 432
432 433 def init_syntax_highlighting(self):
433 434 # Python source parser/formatter for syntax highlighting
434 435 pyformat = PyColorize.Parser().format
435 436 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
436 437
437 438 def init_pushd_popd_magic(self):
438 439 # for pushd/popd management
439 440 try:
440 441 self.home_dir = get_home_dir()
441 442 except HomeDirError, msg:
442 443 fatal(msg)
443 444
444 445 self.dir_stack = []
445 446
446 447 def init_logger(self):
447 448 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
448 449 logmode='rotate')
449 450
450 451 def init_logstart(self):
451 452 """Initialize logging in case it was requested at the command line.
452 453 """
453 454 if self.logappend:
454 455 self.magic_logstart(self.logappend + ' append')
455 456 elif self.logfile:
456 457 self.magic_logstart(self.logfile)
457 458 elif self.logstart:
458 459 self.magic_logstart()
459 460
460 461 def init_builtins(self):
461 462 self.builtin_trap = BuiltinTrap(shell=self)
462 463
463 464 def init_inspector(self):
464 465 # Object inspector
465 466 self.inspector = oinspect.Inspector(oinspect.InspectColors,
466 467 PyColorize.ANSICodeColors,
467 468 'NoColor',
468 469 self.object_info_string_level)
469 470
470 471 def init_io(self):
471 472 # This will just use sys.stdout and sys.stderr. If you want to
472 473 # override sys.stdout and sys.stderr themselves, you need to do that
473 474 # *before* instantiating this class, because Term holds onto
474 475 # references to the underlying streams.
475 476 if sys.platform == 'win32' and self.has_readline:
476 477 Term = io.IOTerm(cout=self.readline._outputfile,
477 478 cerr=self.readline._outputfile)
478 479 else:
479 480 Term = io.IOTerm()
480 481 io.Term = Term
481 482
482 483 def init_prompts(self):
483 484 # TODO: This is a pass for now because the prompts are managed inside
484 485 # the DisplayHook. Once there is a separate prompt manager, this
485 486 # will initialize that object and all prompt related information.
486 487 pass
487 488
488 489 def init_display_formatter(self):
489 490 self.display_formatter = DisplayFormatter(config=self.config)
490 491
491 492 def init_display_pub(self):
492 493 self.display_pub = self.display_pub_class(config=self.config)
493 494
494 495 def init_displayhook(self):
495 496 # Initialize displayhook, set in/out prompts and printing system
496 497 self.displayhook = self.displayhook_class(
497 498 config=self.config,
498 499 shell=self,
499 500 cache_size=self.cache_size,
500 501 input_sep = self.separate_in,
501 502 output_sep = self.separate_out,
502 503 output_sep2 = self.separate_out2,
503 504 ps1 = self.prompt_in1,
504 505 ps2 = self.prompt_in2,
505 506 ps_out = self.prompt_out,
506 507 pad_left = self.prompts_pad_left
507 508 )
508 509 # This is a context manager that installs/revmoes the displayhook at
509 510 # the appropriate time.
510 511 self.display_trap = DisplayTrap(hook=self.displayhook)
511 512
512 513 def init_reload_doctest(self):
513 514 # Do a proper resetting of doctest, including the necessary displayhook
514 515 # monkeypatching
515 516 try:
516 517 doctest_reload()
517 518 except ImportError:
518 519 warn("doctest module does not exist.")
519 520
520 521 #-------------------------------------------------------------------------
521 522 # Things related to injections into the sys module
522 523 #-------------------------------------------------------------------------
523 524
524 525 def save_sys_module_state(self):
525 526 """Save the state of hooks in the sys module.
526 527
527 528 This has to be called after self.user_ns is created.
528 529 """
529 530 self._orig_sys_module_state = {}
530 531 self._orig_sys_module_state['stdin'] = sys.stdin
531 532 self._orig_sys_module_state['stdout'] = sys.stdout
532 533 self._orig_sys_module_state['stderr'] = sys.stderr
533 534 self._orig_sys_module_state['excepthook'] = sys.excepthook
534 535 try:
535 536 self._orig_sys_modules_main_name = self.user_ns['__name__']
536 537 except KeyError:
537 538 pass
538 539
539 540 def restore_sys_module_state(self):
540 541 """Restore the state of the sys module."""
541 542 try:
542 543 for k, v in self._orig_sys_module_state.iteritems():
543 544 setattr(sys, k, v)
544 545 except AttributeError:
545 546 pass
546 547 # Reset what what done in self.init_sys_modules
547 548 try:
548 549 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
549 550 except (AttributeError, KeyError):
550 551 pass
551 552
552 553 #-------------------------------------------------------------------------
553 554 # Things related to hooks
554 555 #-------------------------------------------------------------------------
555 556
556 557 def init_hooks(self):
557 558 # hooks holds pointers used for user-side customizations
558 559 self.hooks = Struct()
559 560
560 561 self.strdispatchers = {}
561 562
562 563 # Set all default hooks, defined in the IPython.hooks module.
563 564 hooks = IPython.core.hooks
564 565 for hook_name in hooks.__all__:
565 566 # default hooks have priority 100, i.e. low; user hooks should have
566 567 # 0-100 priority
567 568 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
568 569
569 570 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
570 571 """set_hook(name,hook) -> sets an internal IPython hook.
571 572
572 573 IPython exposes some of its internal API as user-modifiable hooks. By
573 574 adding your function to one of these hooks, you can modify IPython's
574 575 behavior to call at runtime your own routines."""
575 576
576 577 # At some point in the future, this should validate the hook before it
577 578 # accepts it. Probably at least check that the hook takes the number
578 579 # of args it's supposed to.
579 580
580 581 f = types.MethodType(hook,self)
581 582
582 583 # check if the hook is for strdispatcher first
583 584 if str_key is not None:
584 585 sdp = self.strdispatchers.get(name, StrDispatch())
585 586 sdp.add_s(str_key, f, priority )
586 587 self.strdispatchers[name] = sdp
587 588 return
588 589 if re_key is not None:
589 590 sdp = self.strdispatchers.get(name, StrDispatch())
590 591 sdp.add_re(re.compile(re_key), f, priority )
591 592 self.strdispatchers[name] = sdp
592 593 return
593 594
594 595 dp = getattr(self.hooks, name, None)
595 596 if name not in IPython.core.hooks.__all__:
596 597 print "Warning! Hook '%s' is not one of %s" % \
597 598 (name, IPython.core.hooks.__all__ )
598 599 if not dp:
599 600 dp = IPython.core.hooks.CommandChainDispatcher()
600 601
601 602 try:
602 603 dp.add(f,priority)
603 604 except AttributeError:
604 605 # it was not commandchain, plain old func - replace
605 606 dp = f
606 607
607 608 setattr(self.hooks,name, dp)
608 609
609 610 def register_post_execute(self, func):
610 611 """Register a function for calling after code execution.
611 612 """
612 613 if not callable(func):
613 614 raise ValueError('argument %s must be callable' % func)
614 615 self._post_execute.add(func)
615 616
616 617 #-------------------------------------------------------------------------
617 618 # Things related to the "main" module
618 619 #-------------------------------------------------------------------------
619 620
620 621 def new_main_mod(self,ns=None):
621 622 """Return a new 'main' module object for user code execution.
622 623 """
623 624 main_mod = self._user_main_module
624 625 init_fakemod_dict(main_mod,ns)
625 626 return main_mod
626 627
627 628 def cache_main_mod(self,ns,fname):
628 629 """Cache a main module's namespace.
629 630
630 631 When scripts are executed via %run, we must keep a reference to the
631 632 namespace of their __main__ module (a FakeModule instance) around so
632 633 that Python doesn't clear it, rendering objects defined therein
633 634 useless.
634 635
635 636 This method keeps said reference in a private dict, keyed by the
636 637 absolute path of the module object (which corresponds to the script
637 638 path). This way, for multiple executions of the same script we only
638 639 keep one copy of the namespace (the last one), thus preventing memory
639 640 leaks from old references while allowing the objects from the last
640 641 execution to be accessible.
641 642
642 643 Note: we can not allow the actual FakeModule instances to be deleted,
643 644 because of how Python tears down modules (it hard-sets all their
644 645 references to None without regard for reference counts). This method
645 646 must therefore make a *copy* of the given namespace, to allow the
646 647 original module's __dict__ to be cleared and reused.
647 648
648 649
649 650 Parameters
650 651 ----------
651 652 ns : a namespace (a dict, typically)
652 653
653 654 fname : str
654 655 Filename associated with the namespace.
655 656
656 657 Examples
657 658 --------
658 659
659 660 In [10]: import IPython
660 661
661 662 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
662 663
663 664 In [12]: IPython.__file__ in _ip._main_ns_cache
664 665 Out[12]: True
665 666 """
666 667 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
667 668
668 669 def clear_main_mod_cache(self):
669 670 """Clear the cache of main modules.
670 671
671 672 Mainly for use by utilities like %reset.
672 673
673 674 Examples
674 675 --------
675 676
676 677 In [15]: import IPython
677 678
678 679 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
679 680
680 681 In [17]: len(_ip._main_ns_cache) > 0
681 682 Out[17]: True
682 683
683 684 In [18]: _ip.clear_main_mod_cache()
684 685
685 686 In [19]: len(_ip._main_ns_cache) == 0
686 687 Out[19]: True
687 688 """
688 689 self._main_ns_cache.clear()
689 690
690 691 #-------------------------------------------------------------------------
691 692 # Things related to debugging
692 693 #-------------------------------------------------------------------------
693 694
694 695 def init_pdb(self):
695 696 # Set calling of pdb on exceptions
696 697 # self.call_pdb is a property
697 698 self.call_pdb = self.pdb
698 699
699 700 def _get_call_pdb(self):
700 701 return self._call_pdb
701 702
702 703 def _set_call_pdb(self,val):
703 704
704 705 if val not in (0,1,False,True):
705 706 raise ValueError,'new call_pdb value must be boolean'
706 707
707 708 # store value in instance
708 709 self._call_pdb = val
709 710
710 711 # notify the actual exception handlers
711 712 self.InteractiveTB.call_pdb = val
712 713
713 714 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
714 715 'Control auto-activation of pdb at exceptions')
715 716
716 717 def debugger(self,force=False):
717 718 """Call the pydb/pdb debugger.
718 719
719 720 Keywords:
720 721
721 722 - force(False): by default, this routine checks the instance call_pdb
722 723 flag and does not actually invoke the debugger if the flag is false.
723 724 The 'force' option forces the debugger to activate even if the flag
724 725 is false.
725 726 """
726 727
727 728 if not (force or self.call_pdb):
728 729 return
729 730
730 731 if not hasattr(sys,'last_traceback'):
731 732 error('No traceback has been produced, nothing to debug.')
732 733 return
733 734
734 735 # use pydb if available
735 736 if debugger.has_pydb:
736 737 from pydb import pm
737 738 else:
738 739 # fallback to our internal debugger
739 740 pm = lambda : self.InteractiveTB.debugger(force=True)
740 741 self.history_saving_wrapper(pm)()
741 742
742 743 #-------------------------------------------------------------------------
743 744 # Things related to IPython's various namespaces
744 745 #-------------------------------------------------------------------------
745 746
746 747 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
747 748 # Create the namespace where the user will operate. user_ns is
748 749 # normally the only one used, and it is passed to the exec calls as
749 750 # the locals argument. But we do carry a user_global_ns namespace
750 751 # given as the exec 'globals' argument, This is useful in embedding
751 752 # situations where the ipython shell opens in a context where the
752 753 # distinction between locals and globals is meaningful. For
753 754 # non-embedded contexts, it is just the same object as the user_ns dict.
754 755
755 756 # FIXME. For some strange reason, __builtins__ is showing up at user
756 757 # level as a dict instead of a module. This is a manual fix, but I
757 758 # should really track down where the problem is coming from. Alex
758 759 # Schmolck reported this problem first.
759 760
760 761 # A useful post by Alex Martelli on this topic:
761 762 # Re: inconsistent value from __builtins__
762 763 # Von: Alex Martelli <aleaxit@yahoo.com>
763 764 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
764 765 # Gruppen: comp.lang.python
765 766
766 767 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
767 768 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
768 769 # > <type 'dict'>
769 770 # > >>> print type(__builtins__)
770 771 # > <type 'module'>
771 772 # > Is this difference in return value intentional?
772 773
773 774 # Well, it's documented that '__builtins__' can be either a dictionary
774 775 # or a module, and it's been that way for a long time. Whether it's
775 776 # intentional (or sensible), I don't know. In any case, the idea is
776 777 # that if you need to access the built-in namespace directly, you
777 778 # should start with "import __builtin__" (note, no 's') which will
778 779 # definitely give you a module. Yeah, it's somewhat confusing:-(.
779 780
780 781 # These routines return properly built dicts as needed by the rest of
781 782 # the code, and can also be used by extension writers to generate
782 783 # properly initialized namespaces.
783 784 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
784 785 user_global_ns)
785 786
786 787 # Assign namespaces
787 788 # This is the namespace where all normal user variables live
788 789 self.user_ns = user_ns
789 790 self.user_global_ns = user_global_ns
790 791
791 792 # An auxiliary namespace that checks what parts of the user_ns were
792 793 # loaded at startup, so we can list later only variables defined in
793 794 # actual interactive use. Since it is always a subset of user_ns, it
794 795 # doesn't need to be separately tracked in the ns_table.
795 796 self.user_ns_hidden = {}
796 797
797 798 # A namespace to keep track of internal data structures to prevent
798 799 # them from cluttering user-visible stuff. Will be updated later
799 800 self.internal_ns = {}
800 801
801 802 # Now that FakeModule produces a real module, we've run into a nasty
802 803 # problem: after script execution (via %run), the module where the user
803 804 # code ran is deleted. Now that this object is a true module (needed
804 805 # so docetst and other tools work correctly), the Python module
805 806 # teardown mechanism runs over it, and sets to None every variable
806 807 # present in that module. Top-level references to objects from the
807 808 # script survive, because the user_ns is updated with them. However,
808 809 # calling functions defined in the script that use other things from
809 810 # the script will fail, because the function's closure had references
810 811 # to the original objects, which are now all None. So we must protect
811 812 # these modules from deletion by keeping a cache.
812 813 #
813 814 # To avoid keeping stale modules around (we only need the one from the
814 815 # last run), we use a dict keyed with the full path to the script, so
815 816 # only the last version of the module is held in the cache. Note,
816 817 # however, that we must cache the module *namespace contents* (their
817 818 # __dict__). Because if we try to cache the actual modules, old ones
818 819 # (uncached) could be destroyed while still holding references (such as
819 820 # those held by GUI objects that tend to be long-lived)>
820 821 #
821 822 # The %reset command will flush this cache. See the cache_main_mod()
822 823 # and clear_main_mod_cache() methods for details on use.
823 824
824 825 # This is the cache used for 'main' namespaces
825 826 self._main_ns_cache = {}
826 827 # And this is the single instance of FakeModule whose __dict__ we keep
827 828 # copying and clearing for reuse on each %run
828 829 self._user_main_module = FakeModule()
829 830
830 831 # A table holding all the namespaces IPython deals with, so that
831 832 # introspection facilities can search easily.
832 833 self.ns_table = {'user':user_ns,
833 834 'user_global':user_global_ns,
834 835 'internal':self.internal_ns,
835 836 'builtin':__builtin__.__dict__
836 837 }
837 838
838 839 # Similarly, track all namespaces where references can be held and that
839 840 # we can safely clear (so it can NOT include builtin). This one can be
840 841 # a simple list. Note that the main execution namespaces, user_ns and
841 842 # user_global_ns, can NOT be listed here, as clearing them blindly
842 843 # causes errors in object __del__ methods. Instead, the reset() method
843 844 # clears them manually and carefully.
844 845 self.ns_refs_table = [ self.user_ns_hidden,
845 846 self.internal_ns, self._main_ns_cache ]
846 847
847 848 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
848 849 """Return a valid local and global user interactive namespaces.
849 850
850 851 This builds a dict with the minimal information needed to operate as a
851 852 valid IPython user namespace, which you can pass to the various
852 853 embedding classes in ipython. The default implementation returns the
853 854 same dict for both the locals and the globals to allow functions to
854 855 refer to variables in the namespace. Customized implementations can
855 856 return different dicts. The locals dictionary can actually be anything
856 857 following the basic mapping protocol of a dict, but the globals dict
857 858 must be a true dict, not even a subclass. It is recommended that any
858 859 custom object for the locals namespace synchronize with the globals
859 860 dict somehow.
860 861
861 862 Raises TypeError if the provided globals namespace is not a true dict.
862 863
863 864 Parameters
864 865 ----------
865 866 user_ns : dict-like, optional
866 867 The current user namespace. The items in this namespace should
867 868 be included in the output. If None, an appropriate blank
868 869 namespace should be created.
869 870 user_global_ns : dict, optional
870 871 The current user global namespace. The items in this namespace
871 872 should be included in the output. If None, an appropriate
872 873 blank namespace should be created.
873 874
874 875 Returns
875 876 -------
876 877 A pair of dictionary-like object to be used as the local namespace
877 878 of the interpreter and a dict to be used as the global namespace.
878 879 """
879 880
880 881
881 882 # We must ensure that __builtin__ (without the final 's') is always
882 883 # available and pointing to the __builtin__ *module*. For more details:
883 884 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
884 885
885 886 if user_ns is None:
886 887 # Set __name__ to __main__ to better match the behavior of the
887 888 # normal interpreter.
888 889 user_ns = {'__name__' :'__main__',
889 890 '__builtin__' : __builtin__,
890 891 '__builtins__' : __builtin__,
891 892 }
892 893 else:
893 894 user_ns.setdefault('__name__','__main__')
894 895 user_ns.setdefault('__builtin__',__builtin__)
895 896 user_ns.setdefault('__builtins__',__builtin__)
896 897
897 898 if user_global_ns is None:
898 899 user_global_ns = user_ns
899 900 if type(user_global_ns) is not dict:
900 901 raise TypeError("user_global_ns must be a true dict; got %r"
901 902 % type(user_global_ns))
902 903
903 904 return user_ns, user_global_ns
904 905
905 906 def init_sys_modules(self):
906 907 # We need to insert into sys.modules something that looks like a
907 908 # module but which accesses the IPython namespace, for shelve and
908 909 # pickle to work interactively. Normally they rely on getting
909 910 # everything out of __main__, but for embedding purposes each IPython
910 911 # instance has its own private namespace, so we can't go shoving
911 912 # everything into __main__.
912 913
913 914 # note, however, that we should only do this for non-embedded
914 915 # ipythons, which really mimic the __main__.__dict__ with their own
915 916 # namespace. Embedded instances, on the other hand, should not do
916 917 # this because they need to manage the user local/global namespaces
917 918 # only, but they live within a 'normal' __main__ (meaning, they
918 919 # shouldn't overtake the execution environment of the script they're
919 920 # embedded in).
920 921
921 922 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
922 923
923 924 try:
924 925 main_name = self.user_ns['__name__']
925 926 except KeyError:
926 927 raise KeyError('user_ns dictionary MUST have a "__name__" key')
927 928 else:
928 929 sys.modules[main_name] = FakeModule(self.user_ns)
929 930
930 931 def init_user_ns(self):
931 932 """Initialize all user-visible namespaces to their minimum defaults.
932 933
933 934 Certain history lists are also initialized here, as they effectively
934 935 act as user namespaces.
935 936
936 937 Notes
937 938 -----
938 939 All data structures here are only filled in, they are NOT reset by this
939 940 method. If they were not empty before, data will simply be added to
940 941 therm.
941 942 """
942 943 # This function works in two parts: first we put a few things in
943 944 # user_ns, and we sync that contents into user_ns_hidden so that these
944 945 # initial variables aren't shown by %who. After the sync, we add the
945 946 # rest of what we *do* want the user to see with %who even on a new
946 947 # session (probably nothing, so theye really only see their own stuff)
947 948
948 949 # The user dict must *always* have a __builtin__ reference to the
949 950 # Python standard __builtin__ namespace, which must be imported.
950 951 # This is so that certain operations in prompt evaluation can be
951 952 # reliably executed with builtins. Note that we can NOT use
952 953 # __builtins__ (note the 's'), because that can either be a dict or a
953 954 # module, and can even mutate at runtime, depending on the context
954 955 # (Python makes no guarantees on it). In contrast, __builtin__ is
955 956 # always a module object, though it must be explicitly imported.
956 957
957 958 # For more details:
958 959 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
959 960 ns = dict(__builtin__ = __builtin__)
960 961
961 962 # Put 'help' in the user namespace
962 963 try:
963 964 from site import _Helper
964 965 ns['help'] = _Helper()
965 966 except ImportError:
966 967 warn('help() not available - check site.py')
967 968
968 969 # make global variables for user access to the histories
969 970 ns['_ih'] = self.history_manager.input_hist_parsed
970 971 ns['_oh'] = self.history_manager.output_hist
971 972 ns['_dh'] = self.history_manager.dir_hist
972 973
973 974 ns['_sh'] = shadowns
974 975
975 976 # user aliases to input and output histories. These shouldn't show up
976 977 # in %who, as they can have very large reprs.
977 978 ns['In'] = self.history_manager.input_hist_parsed
978 979 ns['Out'] = self.history_manager.output_hist
979 980
980 981 # Store myself as the public api!!!
981 982 ns['get_ipython'] = self.get_ipython
982 983
983 984 # Sync what we've added so far to user_ns_hidden so these aren't seen
984 985 # by %who
985 986 self.user_ns_hidden.update(ns)
986 987
987 988 # Anything put into ns now would show up in %who. Think twice before
988 989 # putting anything here, as we really want %who to show the user their
989 990 # stuff, not our variables.
990 991
991 992 # Finally, update the real user's namespace
992 993 self.user_ns.update(ns)
993 994
994 995 def reset(self, new_session=True):
995 996 """Clear all internal namespaces.
996 997
997 998 Note that this is much more aggressive than %reset, since it clears
998 999 fully all namespaces, as well as all input/output lists.
999 1000
1000 1001 If new_session is True, a new history session will be opened.
1001 1002 """
1002 1003 # Clear histories
1003 1004 self.history_manager.reset(new_session)
1004 1005
1005 1006 # Reset counter used to index all histories
1006 1007 self.execution_count = 0
1007 1008
1008 1009 # Restore the user namespaces to minimal usability
1009 1010 for ns in self.ns_refs_table:
1010 1011 ns.clear()
1011 1012
1012 1013 # The main execution namespaces must be cleared very carefully,
1013 1014 # skipping the deletion of the builtin-related keys, because doing so
1014 1015 # would cause errors in many object's __del__ methods.
1015 1016 for ns in [self.user_ns, self.user_global_ns]:
1016 1017 drop_keys = set(ns.keys())
1017 1018 drop_keys.discard('__builtin__')
1018 1019 drop_keys.discard('__builtins__')
1019 1020 for k in drop_keys:
1020 1021 del ns[k]
1021 1022
1022 1023 # Restore the user namespaces to minimal usability
1023 1024 self.init_user_ns()
1024 1025
1025 1026 # Restore the default and user aliases
1026 1027 self.alias_manager.clear_aliases()
1027 1028 self.alias_manager.init_aliases()
1028 1029
1029 1030 def reset_selective(self, regex=None):
1030 1031 """Clear selective variables from internal namespaces based on a
1031 1032 specified regular expression.
1032 1033
1033 1034 Parameters
1034 1035 ----------
1035 1036 regex : string or compiled pattern, optional
1036 1037 A regular expression pattern that will be used in searching
1037 1038 variable names in the users namespaces.
1038 1039 """
1039 1040 if regex is not None:
1040 1041 try:
1041 1042 m = re.compile(regex)
1042 1043 except TypeError:
1043 1044 raise TypeError('regex must be a string or compiled pattern')
1044 1045 # Search for keys in each namespace that match the given regex
1045 1046 # If a match is found, delete the key/value pair.
1046 1047 for ns in self.ns_refs_table:
1047 1048 for var in ns:
1048 1049 if m.search(var):
1049 1050 del ns[var]
1050 1051
1051 1052 def push(self, variables, interactive=True):
1052 1053 """Inject a group of variables into the IPython user namespace.
1053 1054
1054 1055 Parameters
1055 1056 ----------
1056 1057 variables : dict, str or list/tuple of str
1057 1058 The variables to inject into the user's namespace. If a dict, a
1058 1059 simple update is done. If a str, the string is assumed to have
1059 1060 variable names separated by spaces. A list/tuple of str can also
1060 1061 be used to give the variable names. If just the variable names are
1061 1062 give (list/tuple/str) then the variable values looked up in the
1062 1063 callers frame.
1063 1064 interactive : bool
1064 1065 If True (default), the variables will be listed with the ``who``
1065 1066 magic.
1066 1067 """
1067 1068 vdict = None
1068 1069
1069 1070 # We need a dict of name/value pairs to do namespace updates.
1070 1071 if isinstance(variables, dict):
1071 1072 vdict = variables
1072 1073 elif isinstance(variables, (basestring, list, tuple)):
1073 1074 if isinstance(variables, basestring):
1074 1075 vlist = variables.split()
1075 1076 else:
1076 1077 vlist = variables
1077 1078 vdict = {}
1078 1079 cf = sys._getframe(1)
1079 1080 for name in vlist:
1080 1081 try:
1081 1082 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1082 1083 except:
1083 1084 print ('Could not get variable %s from %s' %
1084 1085 (name,cf.f_code.co_name))
1085 1086 else:
1086 1087 raise ValueError('variables must be a dict/str/list/tuple')
1087 1088
1088 1089 # Propagate variables to user namespace
1089 1090 self.user_ns.update(vdict)
1090 1091
1091 1092 # And configure interactive visibility
1092 1093 config_ns = self.user_ns_hidden
1093 1094 if interactive:
1094 1095 for name, val in vdict.iteritems():
1095 1096 config_ns.pop(name, None)
1096 1097 else:
1097 1098 for name,val in vdict.iteritems():
1098 1099 config_ns[name] = val
1099 1100
1100 1101 #-------------------------------------------------------------------------
1101 1102 # Things related to object introspection
1102 1103 #-------------------------------------------------------------------------
1103 1104
1104 1105 def _ofind(self, oname, namespaces=None):
1105 1106 """Find an object in the available namespaces.
1106 1107
1107 1108 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1108 1109
1109 1110 Has special code to detect magic functions.
1110 1111 """
1111 1112 #oname = oname.strip()
1112 1113 #print '1- oname: <%r>' % oname # dbg
1113 1114 try:
1114 1115 oname = oname.strip().encode('ascii')
1115 1116 #print '2- oname: <%r>' % oname # dbg
1116 1117 except UnicodeEncodeError:
1117 1118 print 'Python identifiers can only contain ascii characters.'
1118 1119 return dict(found=False)
1119 1120
1120 1121 alias_ns = None
1121 1122 if namespaces is None:
1122 1123 # Namespaces to search in:
1123 1124 # Put them in a list. The order is important so that we
1124 1125 # find things in the same order that Python finds them.
1125 1126 namespaces = [ ('Interactive', self.user_ns),
1126 1127 ('IPython internal', self.internal_ns),
1127 1128 ('Python builtin', __builtin__.__dict__),
1128 1129 ('Alias', self.alias_manager.alias_table),
1129 1130 ]
1130 1131 alias_ns = self.alias_manager.alias_table
1131 1132
1132 1133 # initialize results to 'null'
1133 1134 found = False; obj = None; ospace = None; ds = None;
1134 1135 ismagic = False; isalias = False; parent = None
1135 1136
1136 1137 # We need to special-case 'print', which as of python2.6 registers as a
1137 1138 # function but should only be treated as one if print_function was
1138 1139 # loaded with a future import. In this case, just bail.
1139 1140 if (oname == 'print' and not (self.compile.compiler_flags &
1140 1141 __future__.CO_FUTURE_PRINT_FUNCTION)):
1141 1142 return {'found':found, 'obj':obj, 'namespace':ospace,
1142 1143 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1143 1144
1144 1145 # Look for the given name by splitting it in parts. If the head is
1145 1146 # found, then we look for all the remaining parts as members, and only
1146 1147 # declare success if we can find them all.
1147 1148 oname_parts = oname.split('.')
1148 1149 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1149 1150 for nsname,ns in namespaces:
1150 1151 try:
1151 1152 obj = ns[oname_head]
1152 1153 except KeyError:
1153 1154 continue
1154 1155 else:
1155 1156 #print 'oname_rest:', oname_rest # dbg
1156 1157 for part in oname_rest:
1157 1158 try:
1158 1159 parent = obj
1159 1160 obj = getattr(obj,part)
1160 1161 except:
1161 1162 # Blanket except b/c some badly implemented objects
1162 1163 # allow __getattr__ to raise exceptions other than
1163 1164 # AttributeError, which then crashes IPython.
1164 1165 break
1165 1166 else:
1166 1167 # If we finish the for loop (no break), we got all members
1167 1168 found = True
1168 1169 ospace = nsname
1169 1170 if ns == alias_ns:
1170 1171 isalias = True
1171 1172 break # namespace loop
1172 1173
1173 1174 # Try to see if it's magic
1174 1175 if not found:
1175 1176 if oname.startswith(ESC_MAGIC):
1176 1177 oname = oname[1:]
1177 1178 obj = getattr(self,'magic_'+oname,None)
1178 1179 if obj is not None:
1179 1180 found = True
1180 1181 ospace = 'IPython internal'
1181 1182 ismagic = True
1182 1183
1183 1184 # Last try: special-case some literals like '', [], {}, etc:
1184 1185 if not found and oname_head in ["''",'""','[]','{}','()']:
1185 1186 obj = eval(oname_head)
1186 1187 found = True
1187 1188 ospace = 'Interactive'
1188 1189
1189 1190 return {'found':found, 'obj':obj, 'namespace':ospace,
1190 1191 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1191 1192
1192 1193 def _ofind_property(self, oname, info):
1193 1194 """Second part of object finding, to look for property details."""
1194 1195 if info.found:
1195 1196 # Get the docstring of the class property if it exists.
1196 1197 path = oname.split('.')
1197 1198 root = '.'.join(path[:-1])
1198 1199 if info.parent is not None:
1199 1200 try:
1200 1201 target = getattr(info.parent, '__class__')
1201 1202 # The object belongs to a class instance.
1202 1203 try:
1203 1204 target = getattr(target, path[-1])
1204 1205 # The class defines the object.
1205 1206 if isinstance(target, property):
1206 1207 oname = root + '.__class__.' + path[-1]
1207 1208 info = Struct(self._ofind(oname))
1208 1209 except AttributeError: pass
1209 1210 except AttributeError: pass
1210 1211
1211 1212 # We return either the new info or the unmodified input if the object
1212 1213 # hadn't been found
1213 1214 return info
1214 1215
1215 1216 def _object_find(self, oname, namespaces=None):
1216 1217 """Find an object and return a struct with info about it."""
1217 1218 inf = Struct(self._ofind(oname, namespaces))
1218 1219 return Struct(self._ofind_property(oname, inf))
1219 1220
1220 1221 def _inspect(self, meth, oname, namespaces=None, **kw):
1221 1222 """Generic interface to the inspector system.
1222 1223
1223 1224 This function is meant to be called by pdef, pdoc & friends."""
1224 1225 info = self._object_find(oname)
1225 1226 if info.found:
1226 1227 pmethod = getattr(self.inspector, meth)
1227 1228 formatter = format_screen if info.ismagic else None
1228 1229 if meth == 'pdoc':
1229 1230 pmethod(info.obj, oname, formatter)
1230 1231 elif meth == 'pinfo':
1231 1232 pmethod(info.obj, oname, formatter, info, **kw)
1232 1233 else:
1233 1234 pmethod(info.obj, oname)
1234 1235 else:
1235 1236 print 'Object `%s` not found.' % oname
1236 1237 return 'not found' # so callers can take other action
1237 1238
1238 1239 def object_inspect(self, oname):
1239 1240 info = self._object_find(oname)
1240 1241 if info.found:
1241 1242 return self.inspector.info(info.obj, oname, info=info)
1242 1243 else:
1243 1244 return oinspect.object_info(name=oname, found=False)
1244 1245
1245 1246 #-------------------------------------------------------------------------
1246 1247 # Things related to history management
1247 1248 #-------------------------------------------------------------------------
1248 1249
1249 1250 def init_history(self):
1250 1251 """Sets up the command history, and starts regular autosaves."""
1251 1252 self.history_manager = HistoryManager(shell=self, config=self.config)
1252 1253
1253 1254 def history_saving_wrapper(self, func):
1254 1255 """ Wrap func for readline history saving
1255 1256
1256 1257 Convert func into callable that saves & restores
1257 1258 history around the call """
1258 1259
1259 1260 if self.has_readline:
1260 1261 from IPython.utils import rlineimpl as readline
1261 1262 else:
1262 1263 return func
1263 1264
1264 1265 def wrapper():
1265 1266 self.save_history()
1266 1267 try:
1267 1268 func()
1268 1269 finally:
1269 1270 self.reload_history()
1270 1271 return wrapper
1271 1272
1272 1273
1273 1274 #-------------------------------------------------------------------------
1274 1275 # Things related to exception handling and tracebacks (not debugging)
1275 1276 #-------------------------------------------------------------------------
1276 1277
1277 1278 def init_traceback_handlers(self, custom_exceptions):
1278 1279 # Syntax error handler.
1279 1280 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1280 1281
1281 1282 # The interactive one is initialized with an offset, meaning we always
1282 1283 # want to remove the topmost item in the traceback, which is our own
1283 1284 # internal code. Valid modes: ['Plain','Context','Verbose']
1284 1285 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1285 1286 color_scheme='NoColor',
1286 1287 tb_offset = 1,
1287 1288 check_cache=self.compile.check_cache)
1288 1289
1289 1290 # The instance will store a pointer to the system-wide exception hook,
1290 1291 # so that runtime code (such as magics) can access it. This is because
1291 1292 # during the read-eval loop, it may get temporarily overwritten.
1292 1293 self.sys_excepthook = sys.excepthook
1293 1294
1294 1295 # and add any custom exception handlers the user may have specified
1295 1296 self.set_custom_exc(*custom_exceptions)
1296 1297
1297 1298 # Set the exception mode
1298 1299 self.InteractiveTB.set_mode(mode=self.xmode)
1299 1300
1300 1301 def set_custom_exc(self, exc_tuple, handler):
1301 1302 """set_custom_exc(exc_tuple,handler)
1302 1303
1303 1304 Set a custom exception handler, which will be called if any of the
1304 1305 exceptions in exc_tuple occur in the mainloop (specifically, in the
1305 1306 run_code() method.
1306 1307
1307 1308 Inputs:
1308 1309
1309 1310 - exc_tuple: a *tuple* of valid exceptions to call the defined
1310 1311 handler for. It is very important that you use a tuple, and NOT A
1311 1312 LIST here, because of the way Python's except statement works. If
1312 1313 you only want to trap a single exception, use a singleton tuple:
1313 1314
1314 1315 exc_tuple == (MyCustomException,)
1315 1316
1316 1317 - handler: this must be defined as a function with the following
1317 1318 basic interface::
1318 1319
1319 1320 def my_handler(self, etype, value, tb, tb_offset=None)
1320 1321 ...
1321 1322 # The return value must be
1322 1323 return structured_traceback
1323 1324
1324 1325 This will be made into an instance method (via types.MethodType)
1325 1326 of IPython itself, and it will be called if any of the exceptions
1326 1327 listed in the exc_tuple are caught. If the handler is None, an
1327 1328 internal basic one is used, which just prints basic info.
1328 1329
1329 1330 WARNING: by putting in your own exception handler into IPython's main
1330 1331 execution loop, you run a very good chance of nasty crashes. This
1331 1332 facility should only be used if you really know what you are doing."""
1332 1333
1333 1334 assert type(exc_tuple)==type(()) , \
1334 1335 "The custom exceptions must be given AS A TUPLE."
1335 1336
1336 1337 def dummy_handler(self,etype,value,tb):
1337 1338 print '*** Simple custom exception handler ***'
1338 1339 print 'Exception type :',etype
1339 1340 print 'Exception value:',value
1340 1341 print 'Traceback :',tb
1341 1342 print 'Source code :','\n'.join(self.buffer)
1342 1343
1343 1344 if handler is None: handler = dummy_handler
1344 1345
1345 1346 self.CustomTB = types.MethodType(handler,self)
1346 1347 self.custom_exceptions = exc_tuple
1347 1348
1348 1349 def excepthook(self, etype, value, tb):
1349 1350 """One more defense for GUI apps that call sys.excepthook.
1350 1351
1351 1352 GUI frameworks like wxPython trap exceptions and call
1352 1353 sys.excepthook themselves. I guess this is a feature that
1353 1354 enables them to keep running after exceptions that would
1354 1355 otherwise kill their mainloop. This is a bother for IPython
1355 1356 which excepts to catch all of the program exceptions with a try:
1356 1357 except: statement.
1357 1358
1358 1359 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1359 1360 any app directly invokes sys.excepthook, it will look to the user like
1360 1361 IPython crashed. In order to work around this, we can disable the
1361 1362 CrashHandler and replace it with this excepthook instead, which prints a
1362 1363 regular traceback using our InteractiveTB. In this fashion, apps which
1363 1364 call sys.excepthook will generate a regular-looking exception from
1364 1365 IPython, and the CrashHandler will only be triggered by real IPython
1365 1366 crashes.
1366 1367
1367 1368 This hook should be used sparingly, only in places which are not likely
1368 1369 to be true IPython errors.
1369 1370 """
1370 1371 self.showtraceback((etype,value,tb),tb_offset=0)
1371 1372
1372 1373 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1373 1374 exception_only=False):
1374 1375 """Display the exception that just occurred.
1375 1376
1376 1377 If nothing is known about the exception, this is the method which
1377 1378 should be used throughout the code for presenting user tracebacks,
1378 1379 rather than directly invoking the InteractiveTB object.
1379 1380
1380 1381 A specific showsyntaxerror() also exists, but this method can take
1381 1382 care of calling it if needed, so unless you are explicitly catching a
1382 1383 SyntaxError exception, don't try to analyze the stack manually and
1383 1384 simply call this method."""
1384 1385
1385 1386 try:
1386 1387 if exc_tuple is None:
1387 1388 etype, value, tb = sys.exc_info()
1388 1389 else:
1389 1390 etype, value, tb = exc_tuple
1390 1391
1391 1392 if etype is None:
1392 1393 if hasattr(sys, 'last_type'):
1393 1394 etype, value, tb = sys.last_type, sys.last_value, \
1394 1395 sys.last_traceback
1395 1396 else:
1396 1397 self.write_err('No traceback available to show.\n')
1397 1398 return
1398 1399
1399 1400 if etype is SyntaxError:
1400 1401 # Though this won't be called by syntax errors in the input
1401 1402 # line, there may be SyntaxError cases whith imported code.
1402 1403 self.showsyntaxerror(filename)
1403 1404 elif etype is UsageError:
1404 1405 print "UsageError:", value
1405 1406 else:
1406 1407 # WARNING: these variables are somewhat deprecated and not
1407 1408 # necessarily safe to use in a threaded environment, but tools
1408 1409 # like pdb depend on their existence, so let's set them. If we
1409 1410 # find problems in the field, we'll need to revisit their use.
1410 1411 sys.last_type = etype
1411 1412 sys.last_value = value
1412 1413 sys.last_traceback = tb
1413 1414
1414 1415 if etype in self.custom_exceptions:
1415 1416 # FIXME: Old custom traceback objects may just return a
1416 1417 # string, in that case we just put it into a list
1417 1418 stb = self.CustomTB(etype, value, tb, tb_offset)
1418 1419 if isinstance(ctb, basestring):
1419 1420 stb = [stb]
1420 1421 else:
1421 1422 if exception_only:
1422 1423 stb = ['An exception has occurred, use %tb to see '
1423 1424 'the full traceback.\n']
1424 1425 stb.extend(self.InteractiveTB.get_exception_only(etype,
1425 1426 value))
1426 1427 else:
1427 1428 stb = self.InteractiveTB.structured_traceback(etype,
1428 1429 value, tb, tb_offset=tb_offset)
1429 1430 # FIXME: the pdb calling should be done by us, not by
1430 1431 # the code computing the traceback.
1431 1432 if self.InteractiveTB.call_pdb:
1432 1433 # pdb mucks up readline, fix it back
1433 1434 self.set_readline_completer()
1434 1435
1435 1436 # Actually show the traceback
1436 1437 self._showtraceback(etype, value, stb)
1437 1438
1438 1439 except KeyboardInterrupt:
1439 1440 self.write_err("\nKeyboardInterrupt\n")
1440 1441
1441 1442 def _showtraceback(self, etype, evalue, stb):
1442 1443 """Actually show a traceback.
1443 1444
1444 1445 Subclasses may override this method to put the traceback on a different
1445 1446 place, like a side channel.
1446 1447 """
1447 1448 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1448 1449
1449 1450 def showsyntaxerror(self, filename=None):
1450 1451 """Display the syntax error that just occurred.
1451 1452
1452 1453 This doesn't display a stack trace because there isn't one.
1453 1454
1454 1455 If a filename is given, it is stuffed in the exception instead
1455 1456 of what was there before (because Python's parser always uses
1456 1457 "<string>" when reading from a string).
1457 1458 """
1458 1459 etype, value, last_traceback = sys.exc_info()
1459 1460
1460 1461 # See note about these variables in showtraceback() above
1461 1462 sys.last_type = etype
1462 1463 sys.last_value = value
1463 1464 sys.last_traceback = last_traceback
1464 1465
1465 1466 if filename and etype is SyntaxError:
1466 1467 # Work hard to stuff the correct filename in the exception
1467 1468 try:
1468 1469 msg, (dummy_filename, lineno, offset, line) = value
1469 1470 except:
1470 1471 # Not the format we expect; leave it alone
1471 1472 pass
1472 1473 else:
1473 1474 # Stuff in the right filename
1474 1475 try:
1475 1476 # Assume SyntaxError is a class exception
1476 1477 value = SyntaxError(msg, (filename, lineno, offset, line))
1477 1478 except:
1478 1479 # If that failed, assume SyntaxError is a string
1479 1480 value = msg, (filename, lineno, offset, line)
1480 1481 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1481 1482 self._showtraceback(etype, value, stb)
1482 1483
1483 1484 #-------------------------------------------------------------------------
1484 1485 # Things related to readline
1485 1486 #-------------------------------------------------------------------------
1486 1487
1487 1488 def init_readline(self):
1488 1489 """Command history completion/saving/reloading."""
1489 1490
1490 1491 if self.readline_use:
1491 1492 import IPython.utils.rlineimpl as readline
1492 1493
1493 1494 self.rl_next_input = None
1494 1495 self.rl_do_indent = False
1495 1496
1496 1497 if not self.readline_use or not readline.have_readline:
1497 1498 self.has_readline = False
1498 1499 self.readline = None
1499 1500 # Set a number of methods that depend on readline to be no-op
1500 1501 self.set_readline_completer = no_op
1501 1502 self.set_custom_completer = no_op
1502 1503 self.set_completer_frame = no_op
1503 1504 warn('Readline services not available or not loaded.')
1504 1505 else:
1505 1506 self.has_readline = True
1506 1507 self.readline = readline
1507 1508 sys.modules['readline'] = readline
1508 1509
1509 1510 # Platform-specific configuration
1510 1511 if os.name == 'nt':
1511 1512 # FIXME - check with Frederick to see if we can harmonize
1512 1513 # naming conventions with pyreadline to avoid this
1513 1514 # platform-dependent check
1514 1515 self.readline_startup_hook = readline.set_pre_input_hook
1515 1516 else:
1516 1517 self.readline_startup_hook = readline.set_startup_hook
1517 1518
1518 1519 # Load user's initrc file (readline config)
1519 1520 # Or if libedit is used, load editrc.
1520 1521 inputrc_name = os.environ.get('INPUTRC')
1521 1522 if inputrc_name is None:
1522 1523 home_dir = get_home_dir()
1523 1524 if home_dir is not None:
1524 1525 inputrc_name = '.inputrc'
1525 1526 if readline.uses_libedit:
1526 1527 inputrc_name = '.editrc'
1527 1528 inputrc_name = os.path.join(home_dir, inputrc_name)
1528 1529 if os.path.isfile(inputrc_name):
1529 1530 try:
1530 1531 readline.read_init_file(inputrc_name)
1531 1532 except:
1532 1533 warn('Problems reading readline initialization file <%s>'
1533 1534 % inputrc_name)
1534 1535
1535 1536 # Configure readline according to user's prefs
1536 1537 # This is only done if GNU readline is being used. If libedit
1537 1538 # is being used (as on Leopard) the readline config is
1538 1539 # not run as the syntax for libedit is different.
1539 1540 if not readline.uses_libedit:
1540 1541 for rlcommand in self.readline_parse_and_bind:
1541 1542 #print "loading rl:",rlcommand # dbg
1542 1543 readline.parse_and_bind(rlcommand)
1543 1544
1544 1545 # Remove some chars from the delimiters list. If we encounter
1545 1546 # unicode chars, discard them.
1546 1547 delims = readline.get_completer_delims().encode("ascii", "ignore")
1547 1548 delims = delims.translate(None, self.readline_remove_delims)
1548 1549 delims = delims.replace(ESC_MAGIC, '')
1549 1550 readline.set_completer_delims(delims)
1550 1551 # otherwise we end up with a monster history after a while:
1551 1552 readline.set_history_length(self.history_length)
1552 1553
1553 1554 stdin_encoding = sys.stdin.encoding or "utf-8"
1554 1555
1555 1556 # Load the last 1000 lines from history
1556 1557 for _, _, cell in self.history_manager.get_tail(1000,
1557 1558 include_latest=True):
1558 1559 if cell.strip(): # Ignore blank lines
1559 1560 for line in cell.splitlines():
1560 1561 readline.add_history(line.encode(stdin_encoding))
1561 1562
1562 1563 # Configure auto-indent for all platforms
1563 1564 self.set_autoindent(self.autoindent)
1564 1565
1565 1566 def set_next_input(self, s):
1566 1567 """ Sets the 'default' input string for the next command line.
1567 1568
1568 1569 Requires readline.
1569 1570
1570 1571 Example:
1571 1572
1572 1573 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1573 1574 [D:\ipython]|2> Hello Word_ # cursor is here
1574 1575 """
1575 1576
1576 1577 self.rl_next_input = s
1577 1578
1578 1579 # Maybe move this to the terminal subclass?
1579 1580 def pre_readline(self):
1580 1581 """readline hook to be used at the start of each line.
1581 1582
1582 1583 Currently it handles auto-indent only."""
1583 1584
1584 1585 if self.rl_do_indent:
1585 1586 self.readline.insert_text(self._indent_current_str())
1586 1587 if self.rl_next_input is not None:
1587 1588 self.readline.insert_text(self.rl_next_input)
1588 1589 self.rl_next_input = None
1589 1590
1590 1591 def _indent_current_str(self):
1591 1592 """return the current level of indentation as a string"""
1592 1593 return self.input_splitter.indent_spaces * ' '
1593 1594
1594 1595 #-------------------------------------------------------------------------
1595 1596 # Things related to text completion
1596 1597 #-------------------------------------------------------------------------
1597 1598
1598 1599 def init_completer(self):
1599 1600 """Initialize the completion machinery.
1600 1601
1601 1602 This creates completion machinery that can be used by client code,
1602 1603 either interactively in-process (typically triggered by the readline
1603 1604 library), programatically (such as in test suites) or out-of-prcess
1604 1605 (typically over the network by remote frontends).
1605 1606 """
1606 1607 from IPython.core.completer import IPCompleter
1607 1608 from IPython.core.completerlib import (module_completer,
1608 1609 magic_run_completer, cd_completer)
1609 1610
1610 1611 self.Completer = IPCompleter(self,
1611 1612 self.user_ns,
1612 1613 self.user_global_ns,
1613 1614 self.readline_omit__names,
1614 1615 self.alias_manager.alias_table,
1615 1616 self.has_readline)
1616 1617
1617 1618 # Add custom completers to the basic ones built into IPCompleter
1618 1619 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1619 1620 self.strdispatchers['complete_command'] = sdisp
1620 1621 self.Completer.custom_completers = sdisp
1621 1622
1622 1623 self.set_hook('complete_command', module_completer, str_key = 'import')
1623 1624 self.set_hook('complete_command', module_completer, str_key = 'from')
1624 1625 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1625 1626 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1626 1627
1627 1628 # Only configure readline if we truly are using readline. IPython can
1628 1629 # do tab-completion over the network, in GUIs, etc, where readline
1629 1630 # itself may be absent
1630 1631 if self.has_readline:
1631 1632 self.set_readline_completer()
1632 1633
1633 1634 def complete(self, text, line=None, cursor_pos=None):
1634 1635 """Return the completed text and a list of completions.
1635 1636
1636 1637 Parameters
1637 1638 ----------
1638 1639
1639 1640 text : string
1640 1641 A string of text to be completed on. It can be given as empty and
1641 1642 instead a line/position pair are given. In this case, the
1642 1643 completer itself will split the line like readline does.
1643 1644
1644 1645 line : string, optional
1645 1646 The complete line that text is part of.
1646 1647
1647 1648 cursor_pos : int, optional
1648 1649 The position of the cursor on the input line.
1649 1650
1650 1651 Returns
1651 1652 -------
1652 1653 text : string
1653 1654 The actual text that was completed.
1654 1655
1655 1656 matches : list
1656 1657 A sorted list with all possible completions.
1657 1658
1658 1659 The optional arguments allow the completion to take more context into
1659 1660 account, and are part of the low-level completion API.
1660 1661
1661 1662 This is a wrapper around the completion mechanism, similar to what
1662 1663 readline does at the command line when the TAB key is hit. By
1663 1664 exposing it as a method, it can be used by other non-readline
1664 1665 environments (such as GUIs) for text completion.
1665 1666
1666 1667 Simple usage example:
1667 1668
1668 1669 In [1]: x = 'hello'
1669 1670
1670 1671 In [2]: _ip.complete('x.l')
1671 1672 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1672 1673 """
1673 1674
1674 1675 # Inject names into __builtin__ so we can complete on the added names.
1675 1676 with self.builtin_trap:
1676 1677 return self.Completer.complete(text, line, cursor_pos)
1677 1678
1678 1679 def set_custom_completer(self, completer, pos=0):
1679 1680 """Adds a new custom completer function.
1680 1681
1681 1682 The position argument (defaults to 0) is the index in the completers
1682 1683 list where you want the completer to be inserted."""
1683 1684
1684 1685 newcomp = types.MethodType(completer,self.Completer)
1685 1686 self.Completer.matchers.insert(pos,newcomp)
1686 1687
1687 1688 def set_readline_completer(self):
1688 1689 """Reset readline's completer to be our own."""
1689 1690 self.readline.set_completer(self.Completer.rlcomplete)
1690 1691
1691 1692 def set_completer_frame(self, frame=None):
1692 1693 """Set the frame of the completer."""
1693 1694 if frame:
1694 1695 self.Completer.namespace = frame.f_locals
1695 1696 self.Completer.global_namespace = frame.f_globals
1696 1697 else:
1697 1698 self.Completer.namespace = self.user_ns
1698 1699 self.Completer.global_namespace = self.user_global_ns
1699 1700
1700 1701 #-------------------------------------------------------------------------
1701 1702 # Things related to magics
1702 1703 #-------------------------------------------------------------------------
1703 1704
1704 1705 def init_magics(self):
1705 1706 # FIXME: Move the color initialization to the DisplayHook, which
1706 1707 # should be split into a prompt manager and displayhook. We probably
1707 1708 # even need a centralize colors management object.
1708 1709 self.magic_colors(self.colors)
1709 1710 # History was moved to a separate module
1710 1711 from . import history
1711 1712 history.init_ipython(self)
1712 1713
1713 1714 def magic(self,arg_s):
1714 1715 """Call a magic function by name.
1715 1716
1716 1717 Input: a string containing the name of the magic function to call and
1717 1718 any additional arguments to be passed to the magic.
1718 1719
1719 1720 magic('name -opt foo bar') is equivalent to typing at the ipython
1720 1721 prompt:
1721 1722
1722 1723 In[1]: %name -opt foo bar
1723 1724
1724 1725 To call a magic without arguments, simply use magic('name').
1725 1726
1726 1727 This provides a proper Python function to call IPython's magics in any
1727 1728 valid Python code you can type at the interpreter, including loops and
1728 1729 compound statements.
1729 1730 """
1731 # Save the scope of the call so magic functions like %time can
1732 # evaluate expressions in it.
1733 self._magic_locals = inspect.stack()[1][0].f_locals
1734
1730 1735 args = arg_s.split(' ',1)
1731 1736 magic_name = args[0]
1732 1737 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1733 1738
1734 1739 try:
1735 1740 magic_args = args[1]
1736 1741 except IndexError:
1737 1742 magic_args = ''
1738 1743 fn = getattr(self,'magic_'+magic_name,None)
1739 1744 if fn is None:
1740 1745 error("Magic function `%s` not found." % magic_name)
1741 1746 else:
1742 1747 magic_args = self.var_expand(magic_args,1)
1743 1748 with nested(self.builtin_trap,):
1744 1749 result = fn(magic_args)
1745 1750 return result
1746 1751
1747 1752 def define_magic(self, magicname, func):
1748 1753 """Expose own function as magic function for ipython
1749 1754
1750 1755 def foo_impl(self,parameter_s=''):
1751 1756 'My very own magic!. (Use docstrings, IPython reads them).'
1752 1757 print 'Magic function. Passed parameter is between < >:'
1753 1758 print '<%s>' % parameter_s
1754 1759 print 'The self object is:',self
1755 1760
1756 1761 self.define_magic('foo',foo_impl)
1757 1762 """
1758 1763
1759 1764 import new
1760 1765 im = types.MethodType(func,self)
1761 1766 old = getattr(self, "magic_" + magicname, None)
1762 1767 setattr(self, "magic_" + magicname, im)
1763 1768 return old
1764 1769
1765 1770 #-------------------------------------------------------------------------
1766 1771 # Things related to macros
1767 1772 #-------------------------------------------------------------------------
1768 1773
1769 1774 def define_macro(self, name, themacro):
1770 1775 """Define a new macro
1771 1776
1772 1777 Parameters
1773 1778 ----------
1774 1779 name : str
1775 1780 The name of the macro.
1776 1781 themacro : str or Macro
1777 1782 The action to do upon invoking the macro. If a string, a new
1778 1783 Macro object is created by passing the string to it.
1779 1784 """
1780 1785
1781 1786 from IPython.core import macro
1782 1787
1783 1788 if isinstance(themacro, basestring):
1784 1789 themacro = macro.Macro(themacro)
1785 1790 if not isinstance(themacro, macro.Macro):
1786 1791 raise ValueError('A macro must be a string or a Macro instance.')
1787 1792 self.user_ns[name] = themacro
1788 1793
1789 1794 #-------------------------------------------------------------------------
1790 1795 # Things related to the running of system commands
1791 1796 #-------------------------------------------------------------------------
1792 1797
1793 1798 def system(self, cmd):
1794 1799 """Call the given cmd in a subprocess.
1795 1800
1796 1801 Parameters
1797 1802 ----------
1798 1803 cmd : str
1799 1804 Command to execute (can not end in '&', as bacground processes are
1800 1805 not supported.
1801 1806 """
1802 1807 # We do not support backgrounding processes because we either use
1803 1808 # pexpect or pipes to read from. Users can always just call
1804 1809 # os.system() if they really want a background process.
1805 1810 if cmd.endswith('&'):
1806 1811 raise OSError("Background processes not supported.")
1807 1812
1808 1813 return system(self.var_expand(cmd, depth=2))
1809 1814
1810 1815 def getoutput(self, cmd, split=True):
1811 1816 """Get output (possibly including stderr) from a subprocess.
1812 1817
1813 1818 Parameters
1814 1819 ----------
1815 1820 cmd : str
1816 1821 Command to execute (can not end in '&', as background processes are
1817 1822 not supported.
1818 1823 split : bool, optional
1819 1824
1820 1825 If True, split the output into an IPython SList. Otherwise, an
1821 1826 IPython LSString is returned. These are objects similar to normal
1822 1827 lists and strings, with a few convenience attributes for easier
1823 1828 manipulation of line-based output. You can use '?' on them for
1824 1829 details.
1825 1830 """
1826 1831 if cmd.endswith('&'):
1827 1832 raise OSError("Background processes not supported.")
1828 1833 out = getoutput(self.var_expand(cmd, depth=2))
1829 1834 if split:
1830 1835 out = SList(out.splitlines())
1831 1836 else:
1832 1837 out = LSString(out)
1833 1838 return out
1834 1839
1835 1840 #-------------------------------------------------------------------------
1836 1841 # Things related to aliases
1837 1842 #-------------------------------------------------------------------------
1838 1843
1839 1844 def init_alias(self):
1840 1845 self.alias_manager = AliasManager(shell=self, config=self.config)
1841 1846 self.ns_table['alias'] = self.alias_manager.alias_table,
1842 1847
1843 1848 #-------------------------------------------------------------------------
1844 1849 # Things related to extensions and plugins
1845 1850 #-------------------------------------------------------------------------
1846 1851
1847 1852 def init_extension_manager(self):
1848 1853 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1849 1854
1850 1855 def init_plugin_manager(self):
1851 1856 self.plugin_manager = PluginManager(config=self.config)
1852 1857
1853 1858 #-------------------------------------------------------------------------
1854 1859 # Things related to payloads
1855 1860 #-------------------------------------------------------------------------
1856 1861
1857 1862 def init_payload(self):
1858 1863 self.payload_manager = PayloadManager(config=self.config)
1859 1864
1860 1865 #-------------------------------------------------------------------------
1861 1866 # Things related to the prefilter
1862 1867 #-------------------------------------------------------------------------
1863 1868
1864 1869 def init_prefilter(self):
1865 1870 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1866 1871 # Ultimately this will be refactored in the new interpreter code, but
1867 1872 # for now, we should expose the main prefilter method (there's legacy
1868 1873 # code out there that may rely on this).
1869 1874 self.prefilter = self.prefilter_manager.prefilter_lines
1870 1875
1871 1876 def auto_rewrite_input(self, cmd):
1872 1877 """Print to the screen the rewritten form of the user's command.
1873 1878
1874 1879 This shows visual feedback by rewriting input lines that cause
1875 1880 automatic calling to kick in, like::
1876 1881
1877 1882 /f x
1878 1883
1879 1884 into::
1880 1885
1881 1886 ------> f(x)
1882 1887
1883 1888 after the user's input prompt. This helps the user understand that the
1884 1889 input line was transformed automatically by IPython.
1885 1890 """
1886 1891 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1887 1892
1888 1893 try:
1889 1894 # plain ascii works better w/ pyreadline, on some machines, so
1890 1895 # we use it and only print uncolored rewrite if we have unicode
1891 1896 rw = str(rw)
1892 1897 print >> IPython.utils.io.Term.cout, rw
1893 1898 except UnicodeEncodeError:
1894 1899 print "------> " + cmd
1895 1900
1896 1901 #-------------------------------------------------------------------------
1897 1902 # Things related to extracting values/expressions from kernel and user_ns
1898 1903 #-------------------------------------------------------------------------
1899 1904
1900 1905 def _simple_error(self):
1901 1906 etype, value = sys.exc_info()[:2]
1902 1907 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1903 1908
1904 1909 def user_variables(self, names):
1905 1910 """Get a list of variable names from the user's namespace.
1906 1911
1907 1912 Parameters
1908 1913 ----------
1909 1914 names : list of strings
1910 1915 A list of names of variables to be read from the user namespace.
1911 1916
1912 1917 Returns
1913 1918 -------
1914 1919 A dict, keyed by the input names and with the repr() of each value.
1915 1920 """
1916 1921 out = {}
1917 1922 user_ns = self.user_ns
1918 1923 for varname in names:
1919 1924 try:
1920 1925 value = repr(user_ns[varname])
1921 1926 except:
1922 1927 value = self._simple_error()
1923 1928 out[varname] = value
1924 1929 return out
1925 1930
1926 1931 def user_expressions(self, expressions):
1927 1932 """Evaluate a dict of expressions in the user's namespace.
1928 1933
1929 1934 Parameters
1930 1935 ----------
1931 1936 expressions : dict
1932 1937 A dict with string keys and string values. The expression values
1933 1938 should be valid Python expressions, each of which will be evaluated
1934 1939 in the user namespace.
1935 1940
1936 1941 Returns
1937 1942 -------
1938 1943 A dict, keyed like the input expressions dict, with the repr() of each
1939 1944 value.
1940 1945 """
1941 1946 out = {}
1942 1947 user_ns = self.user_ns
1943 1948 global_ns = self.user_global_ns
1944 1949 for key, expr in expressions.iteritems():
1945 1950 try:
1946 1951 value = repr(eval(expr, global_ns, user_ns))
1947 1952 except:
1948 1953 value = self._simple_error()
1949 1954 out[key] = value
1950 1955 return out
1951 1956
1952 1957 #-------------------------------------------------------------------------
1953 1958 # Things related to the running of code
1954 1959 #-------------------------------------------------------------------------
1955 1960
1956 1961 def ex(self, cmd):
1957 1962 """Execute a normal python statement in user namespace."""
1958 1963 with nested(self.builtin_trap,):
1959 1964 exec cmd in self.user_global_ns, self.user_ns
1960 1965
1961 1966 def ev(self, expr):
1962 1967 """Evaluate python expression expr in user namespace.
1963 1968
1964 1969 Returns the result of evaluation
1965 1970 """
1966 1971 with nested(self.builtin_trap,):
1967 1972 return eval(expr, self.user_global_ns, self.user_ns)
1968 1973
1969 1974 def safe_execfile(self, fname, *where, **kw):
1970 1975 """A safe version of the builtin execfile().
1971 1976
1972 1977 This version will never throw an exception, but instead print
1973 1978 helpful error messages to the screen. This only works on pure
1974 1979 Python files with the .py extension.
1975 1980
1976 1981 Parameters
1977 1982 ----------
1978 1983 fname : string
1979 1984 The name of the file to be executed.
1980 1985 where : tuple
1981 1986 One or two namespaces, passed to execfile() as (globals,locals).
1982 1987 If only one is given, it is passed as both.
1983 1988 exit_ignore : bool (False)
1984 1989 If True, then silence SystemExit for non-zero status (it is always
1985 1990 silenced for zero status, as it is so common).
1986 1991 """
1987 1992 kw.setdefault('exit_ignore', False)
1988 1993
1989 1994 fname = os.path.abspath(os.path.expanduser(fname))
1990 1995 # Make sure we have a .py file
1991 1996 if not fname.endswith('.py'):
1992 1997 warn('File must end with .py to be run using execfile: <%s>' % fname)
1993 1998
1994 1999 # Make sure we can open the file
1995 2000 try:
1996 2001 with open(fname) as thefile:
1997 2002 pass
1998 2003 except:
1999 2004 warn('Could not open file <%s> for safe execution.' % fname)
2000 2005 return
2001 2006
2002 2007 # Find things also in current directory. This is needed to mimic the
2003 2008 # behavior of running a script from the system command line, where
2004 2009 # Python inserts the script's directory into sys.path
2005 2010 dname = os.path.dirname(fname)
2006 2011
2007 2012 if isinstance(fname, unicode):
2008 2013 # execfile uses default encoding instead of filesystem encoding
2009 2014 # so unicode filenames will fail
2010 2015 fname = fname.encode(sys.getfilesystemencoding() or sys.getdefaultencoding())
2011 2016
2012 2017 with prepended_to_syspath(dname):
2013 2018 try:
2014 2019 execfile(fname,*where)
2015 2020 except SystemExit, status:
2016 2021 # If the call was made with 0 or None exit status (sys.exit(0)
2017 2022 # or sys.exit() ), don't bother showing a traceback, as both of
2018 2023 # these are considered normal by the OS:
2019 2024 # > python -c'import sys;sys.exit(0)'; echo $?
2020 2025 # 0
2021 2026 # > python -c'import sys;sys.exit()'; echo $?
2022 2027 # 0
2023 2028 # For other exit status, we show the exception unless
2024 2029 # explicitly silenced, but only in short form.
2025 2030 if status.code not in (0, None) and not kw['exit_ignore']:
2026 2031 self.showtraceback(exception_only=True)
2027 2032 except:
2028 2033 self.showtraceback()
2029 2034
2030 2035 def safe_execfile_ipy(self, fname):
2031 2036 """Like safe_execfile, but for .ipy files with IPython syntax.
2032 2037
2033 2038 Parameters
2034 2039 ----------
2035 2040 fname : str
2036 2041 The name of the file to execute. The filename must have a
2037 2042 .ipy extension.
2038 2043 """
2039 2044 fname = os.path.abspath(os.path.expanduser(fname))
2040 2045
2041 2046 # Make sure we have a .py file
2042 2047 if not fname.endswith('.ipy'):
2043 2048 warn('File must end with .py to be run using execfile: <%s>' % fname)
2044 2049
2045 2050 # Make sure we can open the file
2046 2051 try:
2047 2052 with open(fname) as thefile:
2048 2053 pass
2049 2054 except:
2050 2055 warn('Could not open file <%s> for safe execution.' % fname)
2051 2056 return
2052 2057
2053 2058 # Find things also in current directory. This is needed to mimic the
2054 2059 # behavior of running a script from the system command line, where
2055 2060 # Python inserts the script's directory into sys.path
2056 2061 dname = os.path.dirname(fname)
2057 2062
2058 2063 with prepended_to_syspath(dname):
2059 2064 try:
2060 2065 with open(fname) as thefile:
2061 2066 # self.run_cell currently captures all exceptions
2062 2067 # raised in user code. It would be nice if there were
2063 2068 # versions of runlines, execfile that did raise, so
2064 2069 # we could catch the errors.
2065 2070 self.run_cell(thefile.read())
2066 2071 except:
2067 2072 self.showtraceback()
2068 2073 warn('Unknown failure executing file: <%s>' % fname)
2069 2074
2070 2075 def run_cell(self, cell, store_history=True):
2071 2076 """Run the contents of an entire multiline 'cell' of code, and store it
2072 2077 in the history.
2073 2078
2074 2079 The cell is split into separate blocks which can be executed
2075 2080 individually. Then, based on how many blocks there are, they are
2076 2081 executed as follows:
2077 2082
2078 2083 - A single block: 'single' mode. If it is also a single line, dynamic
2079 2084 transformations, including automagic and macros, will be applied.
2080 2085
2081 2086 If there's more than one block, it depends:
2082 2087
2083 2088 - if the last one is no more than two lines long, run all but the last
2084 2089 in 'exec' mode and the very last one in 'single' mode. This makes it
2085 2090 easy to type simple expressions at the end to see computed values. -
2086 2091 otherwise (last one is also multiline), run all in 'exec' mode
2087 2092
2088 2093 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2089 2094 results are displayed and output prompts are computed. In 'exec' mode,
2090 2095 no results are displayed unless :func:`print` is called explicitly;
2091 2096 this mode is more akin to running a script.
2092 2097
2093 2098 Parameters
2094 2099 ----------
2095 2100 cell : str
2096 2101 A single or multiline string.
2097 2102 """
2098 2103 # Store the untransformed code
2099 2104 raw_cell = cell
2100 2105
2101 2106 # Code transformation and execution must take place with our
2102 2107 # modifications to builtins.
2103 2108 with self.builtin_trap:
2104 2109
2105 2110 # We need to break up the input into executable blocks that can
2106 2111 # be runin 'single' mode, to provide comfortable user behavior.
2107 2112 blocks = self.input_splitter.split_blocks(cell)
2108 2113
2109 2114 if not blocks: # Blank cell
2110 2115 return
2111 2116
2112 2117 # We only do dynamic transforms on a single line. But a macro
2113 2118 # can be expanded to several lines, so we need to split it
2114 2119 # into input blocks again.
2115 2120 if len(cell.splitlines()) <= 1:
2116 2121 cell = self.prefilter_manager.prefilter_line(blocks[0])
2117 2122 blocks = self.input_splitter.split_blocks(cell)
2118 2123
2119 2124 # Store the 'ipython' version of the cell as well, since
2120 2125 # that's what needs to go into the translated history and get
2121 2126 # executed (the original cell may contain non-python syntax).
2122 2127 cell = ''.join(blocks)
2123 2128
2124 2129 # Store raw and processed history
2125 2130 if store_history:
2126 2131 self.history_manager.store_inputs(self.execution_count,
2127 2132 cell, raw_cell)
2128 2133
2129 2134 self.logger.log(cell, raw_cell)
2130 2135
2131 2136 # All user code execution should take place with our
2132 2137 # modified displayhook.
2133 2138 with self.display_trap:
2134 2139 # Single-block input should behave like an interactive prompt
2135 2140 if len(blocks) == 1:
2136 2141 out = self.run_source(blocks[0])
2137 2142 # Write output to the database. Does nothing unless
2138 2143 # history output logging is enabled.
2139 2144 if store_history:
2140 2145 self.history_manager.store_output(self.execution_count)
2141 2146 # Since we return here, we need to update the
2142 2147 # execution count
2143 2148 self.execution_count += 1
2144 2149 return out
2145 2150
2146 2151 # In multi-block input, if the last block is a simple (one-two
2147 2152 # lines) expression, run it in single mode so it produces output.
2148 2153 # Otherwise just run it all in 'exec' mode. This seems like a
2149 2154 # reasonable usability design.
2150 2155 last = blocks[-1]
2151 2156 last_nlines = len(last.splitlines())
2152 2157
2153 2158 if last_nlines < 2:
2154 2159 # Here we consider the cell split between 'body' and 'last',
2155 2160 # store all history and execute 'body', and if successful, then
2156 2161 # proceed to execute 'last'.
2157 2162
2158 2163 # Get the main body to run as a cell
2159 2164 ipy_body = ''.join(blocks[:-1])
2160 2165 retcode = self.run_source(ipy_body, symbol='exec',
2161 2166 post_execute=False)
2162 2167 if retcode==0:
2163 2168 # Last expression compiled as 'single' so it
2164 2169 # produces output
2165 2170 self.run_source(last)
2166 2171 else:
2167 2172 # Run the whole cell as one entity, storing both raw and
2168 2173 # processed input in history
2169 2174 self.run_source(cell, symbol='exec')
2170 2175
2171 2176 # Write output to the database. Does nothing unless
2172 2177 # history output logging is enabled.
2173 2178 if store_history:
2174 2179 self.history_manager.store_output(self.execution_count)
2175 2180 # Each cell is a *single* input, regardless of how many lines it has
2176 2181 self.execution_count += 1
2177 2182
2178 2183 # PENDING REMOVAL: this method is slated for deletion, once our new
2179 2184 # input logic has been 100% moved to frontends and is stable.
2180 2185 def runlines(self, lines, clean=False):
2181 2186 """Run a string of one or more lines of source.
2182 2187
2183 2188 This method is capable of running a string containing multiple source
2184 2189 lines, as if they had been entered at the IPython prompt. Since it
2185 2190 exposes IPython's processing machinery, the given strings can contain
2186 2191 magic calls (%magic), special shell access (!cmd), etc.
2187 2192 """
2188 2193
2189 2194 if not isinstance(lines, (list, tuple)):
2190 2195 lines = lines.splitlines()
2191 2196
2192 2197 if clean:
2193 2198 lines = self._cleanup_ipy_script(lines)
2194 2199
2195 2200 # We must start with a clean buffer, in case this is run from an
2196 2201 # interactive IPython session (via a magic, for example).
2197 2202 self.reset_buffer()
2198 2203
2199 2204 # Since we will prefilter all lines, store the user's raw input too
2200 2205 # before we apply any transformations
2201 2206 self.buffer_raw[:] = [ l+'\n' for l in lines]
2202 2207
2203 2208 more = False
2204 2209 prefilter_lines = self.prefilter_manager.prefilter_lines
2205 2210 with nested(self.builtin_trap, self.display_trap):
2206 2211 for line in lines:
2207 2212 # skip blank lines so we don't mess up the prompt counter, but
2208 2213 # do NOT skip even a blank line if we are in a code block (more
2209 2214 # is true)
2210 2215
2211 2216 if line or more:
2212 2217 more = self.push_line(prefilter_lines(line, more))
2213 2218 # IPython's run_source returns None if there was an error
2214 2219 # compiling the code. This allows us to stop processing
2215 2220 # right away, so the user gets the error message at the
2216 2221 # right place.
2217 2222 if more is None:
2218 2223 break
2219 2224 # final newline in case the input didn't have it, so that the code
2220 2225 # actually does get executed
2221 2226 if more:
2222 2227 self.push_line('\n')
2223 2228
2224 2229 def run_source(self, source, filename=None,
2225 2230 symbol='single', post_execute=True):
2226 2231 """Compile and run some source in the interpreter.
2227 2232
2228 2233 Arguments are as for compile_command().
2229 2234
2230 2235 One several things can happen:
2231 2236
2232 2237 1) The input is incorrect; compile_command() raised an
2233 2238 exception (SyntaxError or OverflowError). A syntax traceback
2234 2239 will be printed by calling the showsyntaxerror() method.
2235 2240
2236 2241 2) The input is incomplete, and more input is required;
2237 2242 compile_command() returned None. Nothing happens.
2238 2243
2239 2244 3) The input is complete; compile_command() returned a code
2240 2245 object. The code is executed by calling self.run_code() (which
2241 2246 also handles run-time exceptions, except for SystemExit).
2242 2247
2243 2248 The return value is:
2244 2249
2245 2250 - True in case 2
2246 2251
2247 2252 - False in the other cases, unless an exception is raised, where
2248 2253 None is returned instead. This can be used by external callers to
2249 2254 know whether to continue feeding input or not.
2250 2255
2251 2256 The return value can be used to decide whether to use sys.ps1 or
2252 2257 sys.ps2 to prompt the next line."""
2253 2258
2254 2259 # We need to ensure that the source is unicode from here on.
2255 2260 if type(source)==str:
2256 2261 usource = source.decode(self.stdin_encoding)
2257 2262 else:
2258 2263 usource = source
2259 2264
2260 2265 if False: # dbg
2261 2266 print 'Source:', repr(source) # dbg
2262 2267 print 'USource:', repr(usource) # dbg
2263 2268 print 'type:', type(source) # dbg
2264 2269 print 'encoding', self.stdin_encoding # dbg
2265 2270
2266 2271 try:
2267 2272 code = self.compile(usource, symbol, self.execution_count)
2268 2273 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2269 2274 # Case 1
2270 2275 self.showsyntaxerror(filename)
2271 2276 return None
2272 2277
2273 2278 if code is None:
2274 2279 # Case 2
2275 2280 return True
2276 2281
2277 2282 # Case 3
2278 2283 # We store the code object so that threaded shells and
2279 2284 # custom exception handlers can access all this info if needed.
2280 2285 # The source corresponding to this can be obtained from the
2281 2286 # buffer attribute as '\n'.join(self.buffer).
2282 2287 self.code_to_run = code
2283 2288 # now actually execute the code object
2284 2289 if self.run_code(code, post_execute) == 0:
2285 2290 return False
2286 2291 else:
2287 2292 return None
2288 2293
2289 2294 # For backwards compatibility
2290 2295 runsource = run_source
2291 2296
2292 2297 def run_code(self, code_obj, post_execute=True):
2293 2298 """Execute a code object.
2294 2299
2295 2300 When an exception occurs, self.showtraceback() is called to display a
2296 2301 traceback.
2297 2302
2298 2303 Return value: a flag indicating whether the code to be run completed
2299 2304 successfully:
2300 2305
2301 2306 - 0: successful execution.
2302 2307 - 1: an error occurred.
2303 2308 """
2304 2309
2305 2310 # Set our own excepthook in case the user code tries to call it
2306 2311 # directly, so that the IPython crash handler doesn't get triggered
2307 2312 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2308 2313
2309 2314 # we save the original sys.excepthook in the instance, in case config
2310 2315 # code (such as magics) needs access to it.
2311 2316 self.sys_excepthook = old_excepthook
2312 2317 outflag = 1 # happens in more places, so it's easier as default
2313 2318 try:
2314 2319 try:
2315 2320 self.hooks.pre_run_code_hook()
2316 2321 #rprint('Running code', repr(code_obj)) # dbg
2317 2322 exec code_obj in self.user_global_ns, self.user_ns
2318 2323 finally:
2319 2324 # Reset our crash handler in place
2320 2325 sys.excepthook = old_excepthook
2321 2326 except SystemExit:
2322 2327 self.reset_buffer()
2323 2328 self.showtraceback(exception_only=True)
2324 2329 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2325 2330 except self.custom_exceptions:
2326 2331 etype,value,tb = sys.exc_info()
2327 2332 self.CustomTB(etype,value,tb)
2328 2333 except:
2329 2334 self.showtraceback()
2330 2335 else:
2331 2336 outflag = 0
2332 2337 if softspace(sys.stdout, 0):
2333 2338 print
2334 2339
2335 2340 # Execute any registered post-execution functions. Here, any errors
2336 2341 # are reported only minimally and just on the terminal, because the
2337 2342 # main exception channel may be occupied with a user traceback.
2338 2343 # FIXME: we need to think this mechanism a little more carefully.
2339 2344 if post_execute:
2340 2345 for func in self._post_execute:
2341 2346 try:
2342 2347 func()
2343 2348 except:
2344 2349 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2345 2350 func
2346 2351 print >> io.Term.cout, head
2347 2352 print >> io.Term.cout, self._simple_error()
2348 2353 print >> io.Term.cout, 'Removing from post_execute'
2349 2354 self._post_execute.remove(func)
2350 2355
2351 2356 # Flush out code object which has been run (and source)
2352 2357 self.code_to_run = None
2353 2358 return outflag
2354 2359
2355 2360 # For backwards compatibility
2356 2361 runcode = run_code
2357 2362
2358 2363 # PENDING REMOVAL: this method is slated for deletion, once our new
2359 2364 # input logic has been 100% moved to frontends and is stable.
2360 2365 def push_line(self, line):
2361 2366 """Push a line to the interpreter.
2362 2367
2363 2368 The line should not have a trailing newline; it may have
2364 2369 internal newlines. The line is appended to a buffer and the
2365 2370 interpreter's run_source() method is called with the
2366 2371 concatenated contents of the buffer as source. If this
2367 2372 indicates that the command was executed or invalid, the buffer
2368 2373 is reset; otherwise, the command is incomplete, and the buffer
2369 2374 is left as it was after the line was appended. The return
2370 2375 value is 1 if more input is required, 0 if the line was dealt
2371 2376 with in some way (this is the same as run_source()).
2372 2377 """
2373 2378
2374 2379 # autoindent management should be done here, and not in the
2375 2380 # interactive loop, since that one is only seen by keyboard input. We
2376 2381 # need this done correctly even for code run via runlines (which uses
2377 2382 # push).
2378 2383
2379 2384 #print 'push line: <%s>' % line # dbg
2380 2385 self.buffer.append(line)
2381 2386 full_source = '\n'.join(self.buffer)
2382 2387 more = self.run_source(full_source, self.filename)
2383 2388 if not more:
2384 2389 self.history_manager.store_inputs(self.execution_count,
2385 2390 '\n'.join(self.buffer_raw), full_source)
2386 2391 self.reset_buffer()
2387 2392 self.execution_count += 1
2388 2393 return more
2389 2394
2390 2395 def reset_buffer(self):
2391 2396 """Reset the input buffer."""
2392 2397 self.buffer[:] = []
2393 2398 self.buffer_raw[:] = []
2394 2399 self.input_splitter.reset()
2395 2400
2396 2401 # For backwards compatibility
2397 2402 resetbuffer = reset_buffer
2398 2403
2399 2404 def _is_secondary_block_start(self, s):
2400 2405 if not s.endswith(':'):
2401 2406 return False
2402 2407 if (s.startswith('elif') or
2403 2408 s.startswith('else') or
2404 2409 s.startswith('except') or
2405 2410 s.startswith('finally')):
2406 2411 return True
2407 2412
2408 2413 def _cleanup_ipy_script(self, script):
2409 2414 """Make a script safe for self.runlines()
2410 2415
2411 2416 Currently, IPython is lines based, with blocks being detected by
2412 2417 empty lines. This is a problem for block based scripts that may
2413 2418 not have empty lines after blocks. This script adds those empty
2414 2419 lines to make scripts safe for running in the current line based
2415 2420 IPython.
2416 2421 """
2417 2422 res = []
2418 2423 lines = script.splitlines()
2419 2424 level = 0
2420 2425
2421 2426 for l in lines:
2422 2427 lstripped = l.lstrip()
2423 2428 stripped = l.strip()
2424 2429 if not stripped:
2425 2430 continue
2426 2431 newlevel = len(l) - len(lstripped)
2427 2432 if level > 0 and newlevel == 0 and \
2428 2433 not self._is_secondary_block_start(stripped):
2429 2434 # add empty line
2430 2435 res.append('')
2431 2436 res.append(l)
2432 2437 level = newlevel
2433 2438
2434 2439 return '\n'.join(res) + '\n'
2435 2440
2436 2441 #-------------------------------------------------------------------------
2437 2442 # Things related to GUI support and pylab
2438 2443 #-------------------------------------------------------------------------
2439 2444
2440 2445 def enable_pylab(self, gui=None):
2441 2446 raise NotImplementedError('Implement enable_pylab in a subclass')
2442 2447
2443 2448 #-------------------------------------------------------------------------
2444 2449 # Utilities
2445 2450 #-------------------------------------------------------------------------
2446 2451
2447 2452 def var_expand(self,cmd,depth=0):
2448 2453 """Expand python variables in a string.
2449 2454
2450 2455 The depth argument indicates how many frames above the caller should
2451 2456 be walked to look for the local namespace where to expand variables.
2452 2457
2453 2458 The global namespace for expansion is always the user's interactive
2454 2459 namespace.
2455 2460 """
2456 2461 res = ItplNS(cmd, self.user_ns, # globals
2457 2462 # Skip our own frame in searching for locals:
2458 2463 sys._getframe(depth+1).f_locals # locals
2459 2464 )
2460 2465 return str(res).decode(res.codec)
2461 2466
2462 2467 def mktempfile(self, data=None, prefix='ipython_edit_'):
2463 2468 """Make a new tempfile and return its filename.
2464 2469
2465 2470 This makes a call to tempfile.mktemp, but it registers the created
2466 2471 filename internally so ipython cleans it up at exit time.
2467 2472
2468 2473 Optional inputs:
2469 2474
2470 2475 - data(None): if data is given, it gets written out to the temp file
2471 2476 immediately, and the file is closed again."""
2472 2477
2473 2478 filename = tempfile.mktemp('.py', prefix)
2474 2479 self.tempfiles.append(filename)
2475 2480
2476 2481 if data:
2477 2482 tmp_file = open(filename,'w')
2478 2483 tmp_file.write(data)
2479 2484 tmp_file.close()
2480 2485 return filename
2481 2486
2482 2487 # TODO: This should be removed when Term is refactored.
2483 2488 def write(self,data):
2484 2489 """Write a string to the default output"""
2485 2490 io.Term.cout.write(data)
2486 2491
2487 2492 # TODO: This should be removed when Term is refactored.
2488 2493 def write_err(self,data):
2489 2494 """Write a string to the default error output"""
2490 2495 io.Term.cerr.write(data)
2491 2496
2492 2497 def ask_yes_no(self,prompt,default=True):
2493 2498 if self.quiet:
2494 2499 return True
2495 2500 return ask_yes_no(prompt,default)
2496 2501
2497 2502 def show_usage(self):
2498 2503 """Show a usage message"""
2499 2504 page.page(IPython.core.usage.interactive_usage)
2500 2505
2501 2506 #-------------------------------------------------------------------------
2502 2507 # Things related to IPython exiting
2503 2508 #-------------------------------------------------------------------------
2504 2509 def atexit_operations(self):
2505 2510 """This will be executed at the time of exit.
2506 2511
2507 2512 Cleanup operations and saving of persistent data that is done
2508 2513 unconditionally by IPython should be performed here.
2509 2514
2510 2515 For things that may depend on startup flags or platform specifics (such
2511 2516 as having readline or not), register a separate atexit function in the
2512 2517 code that has the appropriate information, rather than trying to
2513 2518 clutter
2514 2519 """
2515 2520 # Cleanup all tempfiles left around
2516 2521 for tfile in self.tempfiles:
2517 2522 try:
2518 2523 os.unlink(tfile)
2519 2524 except OSError:
2520 2525 pass
2521 2526
2522 2527 # Close the history session (this stores the end time and line count)
2523 2528 self.history_manager.end_session()
2524 2529
2525 2530 # Clear all user namespaces to release all references cleanly.
2526 2531 self.reset(new_session=False)
2527 2532
2528 2533 # Run user hooks
2529 2534 self.hooks.shutdown_hook()
2530 2535
2531 2536 def cleanup(self):
2532 2537 self.restore_sys_module_state()
2533 2538
2534 2539
2535 2540 class InteractiveShellABC(object):
2536 2541 """An abstract base class for InteractiveShell."""
2537 2542 __metaclass__ = abc.ABCMeta
2538 2543
2539 2544 InteractiveShellABC.register(InteractiveShell)
@@ -1,3450 +1,3451 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 from cStringIO import StringIO
29 29 from getopt import getopt,GetoptError
30 30 from pprint import pformat
31 31
32 32 # cProfile was added in Python2.5
33 33 try:
34 34 import cProfile as profile
35 35 import pstats
36 36 except ImportError:
37 37 # profile isn't bundled by default in Debian for license reasons
38 38 try:
39 39 import profile,pstats
40 40 except ImportError:
41 41 profile = pstats = None
42 42
43 43 import IPython
44 44 from IPython.core import debugger, oinspect
45 45 from IPython.core.error import TryNext
46 46 from IPython.core.error import UsageError
47 47 from IPython.core.fakemodule import FakeModule
48 48 from IPython.core.macro import Macro
49 49 from IPython.core import page
50 50 from IPython.core.prefilter import ESC_MAGIC
51 51 from IPython.lib.pylabtools import mpl_runner
52 52 from IPython.external.Itpl import itpl, printpl
53 53 from IPython.testing import decorators as testdec
54 54 from IPython.utils.io import file_read, nlprint
55 55 import IPython.utils.io
56 56 from IPython.utils.path import get_py_filename
57 57 from IPython.utils.process import arg_split, abbrev_cwd
58 58 from IPython.utils.terminal import set_term_title
59 59 from IPython.utils.text import LSString, SList, format_screen
60 60 from IPython.utils.timing import clock, clock2
61 61 from IPython.utils.warn import warn, error
62 62 from IPython.utils.ipstruct import Struct
63 63 import IPython.utils.generics
64 64
65 65 #-----------------------------------------------------------------------------
66 66 # Utility functions
67 67 #-----------------------------------------------------------------------------
68 68
69 69 def on_off(tag):
70 70 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
71 71 return ['OFF','ON'][tag]
72 72
73 73 class Bunch: pass
74 74
75 75 def compress_dhist(dh):
76 76 head, tail = dh[:-10], dh[-10:]
77 77
78 78 newhead = []
79 79 done = set()
80 80 for h in head:
81 81 if h in done:
82 82 continue
83 83 newhead.append(h)
84 84 done.add(h)
85 85
86 86 return newhead + tail
87 87
88 88
89 89 #***************************************************************************
90 90 # Main class implementing Magic functionality
91 91
92 92 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
93 93 # on construction of the main InteractiveShell object. Something odd is going
94 94 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
95 95 # eventually this needs to be clarified.
96 96 # BG: This is because InteractiveShell inherits from this, but is itself a
97 97 # Configurable. This messes up the MRO in some way. The fix is that we need to
98 98 # make Magic a configurable that InteractiveShell does not subclass.
99 99
100 100 class Magic:
101 101 """Magic functions for InteractiveShell.
102 102
103 103 Shell functions which can be reached as %function_name. All magic
104 104 functions should accept a string, which they can parse for their own
105 105 needs. This can make some functions easier to type, eg `%cd ../`
106 106 vs. `%cd("../")`
107 107
108 108 ALL definitions MUST begin with the prefix magic_. The user won't need it
109 109 at the command line, but it is is needed in the definition. """
110 110
111 111 # class globals
112 112 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
113 113 'Automagic is ON, % prefix NOT needed for magic functions.']
114 114
115 115 #......................................................................
116 116 # some utility functions
117 117
118 118 def __init__(self,shell):
119 119
120 120 self.options_table = {}
121 121 if profile is None:
122 122 self.magic_prun = self.profile_missing_notice
123 123 self.shell = shell
124 124
125 125 # namespace for holding state we may need
126 126 self._magic_state = Bunch()
127 127
128 128 def profile_missing_notice(self, *args, **kwargs):
129 129 error("""\
130 130 The profile module could not be found. It has been removed from the standard
131 131 python packages because of its non-free license. To use profiling, install the
132 132 python-profiler package from non-free.""")
133 133
134 134 def default_option(self,fn,optstr):
135 135 """Make an entry in the options_table for fn, with value optstr"""
136 136
137 137 if fn not in self.lsmagic():
138 138 error("%s is not a magic function" % fn)
139 139 self.options_table[fn] = optstr
140 140
141 141 def lsmagic(self):
142 142 """Return a list of currently available magic functions.
143 143
144 144 Gives a list of the bare names after mangling (['ls','cd', ...], not
145 145 ['magic_ls','magic_cd',...]"""
146 146
147 147 # FIXME. This needs a cleanup, in the way the magics list is built.
148 148
149 149 # magics in class definition
150 150 class_magic = lambda fn: fn.startswith('magic_') and \
151 151 callable(Magic.__dict__[fn])
152 152 # in instance namespace (run-time user additions)
153 153 inst_magic = lambda fn: fn.startswith('magic_') and \
154 154 callable(self.__dict__[fn])
155 155 # and bound magics by user (so they can access self):
156 156 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
157 157 callable(self.__class__.__dict__[fn])
158 158 magics = filter(class_magic,Magic.__dict__.keys()) + \
159 159 filter(inst_magic,self.__dict__.keys()) + \
160 160 filter(inst_bound_magic,self.__class__.__dict__.keys())
161 161 out = []
162 162 for fn in set(magics):
163 163 out.append(fn.replace('magic_','',1))
164 164 out.sort()
165 165 return out
166 166
167 167 def extract_input_lines(self, range_str, raw=False):
168 168 """Return as a string a set of input history slices.
169 169
170 170 Inputs:
171 171
172 172 - range_str: the set of slices is given as a string, like
173 173 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
174 174 which get their arguments as strings. The number before the / is the
175 175 session number: ~n goes n back from the current session.
176 176
177 177 Optional inputs:
178 178
179 179 - raw(False): by default, the processed input is used. If this is
180 180 true, the raw input history is used instead.
181 181
182 182 Note that slices can be called with two notations:
183 183
184 184 N:M -> standard python form, means including items N...(M-1).
185 185
186 186 N-M -> include items N..M (closed endpoint)."""
187 187 lines = self.shell.history_manager.\
188 188 get_range_by_str(range_str, raw=raw)
189 189 return "\n".join(x for _, _, x in lines)
190 190
191 191 def arg_err(self,func):
192 192 """Print docstring if incorrect arguments were passed"""
193 193 print 'Error in arguments:'
194 194 print oinspect.getdoc(func)
195 195
196 196 def format_latex(self,strng):
197 197 """Format a string for latex inclusion."""
198 198
199 199 # Characters that need to be escaped for latex:
200 200 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
201 201 # Magic command names as headers:
202 202 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
203 203 re.MULTILINE)
204 204 # Magic commands
205 205 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
206 206 re.MULTILINE)
207 207 # Paragraph continue
208 208 par_re = re.compile(r'\\$',re.MULTILINE)
209 209
210 210 # The "\n" symbol
211 211 newline_re = re.compile(r'\\n')
212 212
213 213 # Now build the string for output:
214 214 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
215 215 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
216 216 strng)
217 217 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
218 218 strng = par_re.sub(r'\\\\',strng)
219 219 strng = escape_re.sub(r'\\\1',strng)
220 220 strng = newline_re.sub(r'\\textbackslash{}n',strng)
221 221 return strng
222 222
223 223 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
224 224 """Parse options passed to an argument string.
225 225
226 226 The interface is similar to that of getopt(), but it returns back a
227 227 Struct with the options as keys and the stripped argument string still
228 228 as a string.
229 229
230 230 arg_str is quoted as a true sys.argv vector by using shlex.split.
231 231 This allows us to easily expand variables, glob files, quote
232 232 arguments, etc.
233 233
234 234 Options:
235 235 -mode: default 'string'. If given as 'list', the argument string is
236 236 returned as a list (split on whitespace) instead of a string.
237 237
238 238 -list_all: put all option values in lists. Normally only options
239 239 appearing more than once are put in a list.
240 240
241 241 -posix (True): whether to split the input line in POSIX mode or not,
242 242 as per the conventions outlined in the shlex module from the
243 243 standard library."""
244 244
245 245 # inject default options at the beginning of the input line
246 246 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
247 247 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
248 248
249 249 mode = kw.get('mode','string')
250 250 if mode not in ['string','list']:
251 251 raise ValueError,'incorrect mode given: %s' % mode
252 252 # Get options
253 253 list_all = kw.get('list_all',0)
254 254 posix = kw.get('posix', os.name == 'posix')
255 255
256 256 # Check if we have more than one argument to warrant extra processing:
257 257 odict = {} # Dictionary with options
258 258 args = arg_str.split()
259 259 if len(args) >= 1:
260 260 # If the list of inputs only has 0 or 1 thing in it, there's no
261 261 # need to look for options
262 262 argv = arg_split(arg_str,posix)
263 263 # Do regular option processing
264 264 try:
265 265 opts,args = getopt(argv,opt_str,*long_opts)
266 266 except GetoptError,e:
267 267 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
268 268 " ".join(long_opts)))
269 269 for o,a in opts:
270 270 if o.startswith('--'):
271 271 o = o[2:]
272 272 else:
273 273 o = o[1:]
274 274 try:
275 275 odict[o].append(a)
276 276 except AttributeError:
277 277 odict[o] = [odict[o],a]
278 278 except KeyError:
279 279 if list_all:
280 280 odict[o] = [a]
281 281 else:
282 282 odict[o] = a
283 283
284 284 # Prepare opts,args for return
285 285 opts = Struct(odict)
286 286 if mode == 'string':
287 287 args = ' '.join(args)
288 288
289 289 return opts,args
290 290
291 291 #......................................................................
292 292 # And now the actual magic functions
293 293
294 294 # Functions for IPython shell work (vars,funcs, config, etc)
295 295 def magic_lsmagic(self, parameter_s = ''):
296 296 """List currently available magic functions."""
297 297 mesc = ESC_MAGIC
298 298 print 'Available magic functions:\n'+mesc+\
299 299 (' '+mesc).join(self.lsmagic())
300 300 print '\n' + Magic.auto_status[self.shell.automagic]
301 301 return None
302 302
303 303 def magic_magic(self, parameter_s = ''):
304 304 """Print information about the magic function system.
305 305
306 306 Supported formats: -latex, -brief, -rest
307 307 """
308 308
309 309 mode = ''
310 310 try:
311 311 if parameter_s.split()[0] == '-latex':
312 312 mode = 'latex'
313 313 if parameter_s.split()[0] == '-brief':
314 314 mode = 'brief'
315 315 if parameter_s.split()[0] == '-rest':
316 316 mode = 'rest'
317 317 rest_docs = []
318 318 except:
319 319 pass
320 320
321 321 magic_docs = []
322 322 for fname in self.lsmagic():
323 323 mname = 'magic_' + fname
324 324 for space in (Magic,self,self.__class__):
325 325 try:
326 326 fn = space.__dict__[mname]
327 327 except KeyError:
328 328 pass
329 329 else:
330 330 break
331 331 if mode == 'brief':
332 332 # only first line
333 333 if fn.__doc__:
334 334 fndoc = fn.__doc__.split('\n',1)[0]
335 335 else:
336 336 fndoc = 'No documentation'
337 337 else:
338 338 if fn.__doc__:
339 339 fndoc = fn.__doc__.rstrip()
340 340 else:
341 341 fndoc = 'No documentation'
342 342
343 343
344 344 if mode == 'rest':
345 345 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
346 346 fname,fndoc))
347 347
348 348 else:
349 349 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
350 350 fname,fndoc))
351 351
352 352 magic_docs = ''.join(magic_docs)
353 353
354 354 if mode == 'rest':
355 355 return "".join(rest_docs)
356 356
357 357 if mode == 'latex':
358 358 print self.format_latex(magic_docs)
359 359 return
360 360 else:
361 361 magic_docs = format_screen(magic_docs)
362 362 if mode == 'brief':
363 363 return magic_docs
364 364
365 365 outmsg = """
366 366 IPython's 'magic' functions
367 367 ===========================
368 368
369 369 The magic function system provides a series of functions which allow you to
370 370 control the behavior of IPython itself, plus a lot of system-type
371 371 features. All these functions are prefixed with a % character, but parameters
372 372 are given without parentheses or quotes.
373 373
374 374 NOTE: If you have 'automagic' enabled (via the command line option or with the
375 375 %automagic function), you don't need to type in the % explicitly. By default,
376 376 IPython ships with automagic on, so you should only rarely need the % escape.
377 377
378 378 Example: typing '%cd mydir' (without the quotes) changes you working directory
379 379 to 'mydir', if it exists.
380 380
381 381 You can define your own magic functions to extend the system. See the supplied
382 382 ipythonrc and example-magic.py files for details (in your ipython
383 383 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
384 384
385 385 You can also define your own aliased names for magic functions. In your
386 386 ipythonrc file, placing a line like:
387 387
388 388 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
389 389
390 390 will define %pf as a new name for %profile.
391 391
392 392 You can also call magics in code using the magic() function, which IPython
393 393 automatically adds to the builtin namespace. Type 'magic?' for details.
394 394
395 395 For a list of the available magic functions, use %lsmagic. For a description
396 396 of any of them, type %magic_name?, e.g. '%cd?'.
397 397
398 398 Currently the magic system has the following functions:\n"""
399 399
400 400 mesc = ESC_MAGIC
401 401 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
402 402 "\n\n%s%s\n\n%s" % (outmsg,
403 403 magic_docs,mesc,mesc,
404 404 (' '+mesc).join(self.lsmagic()),
405 405 Magic.auto_status[self.shell.automagic] ) )
406 406 page.page(outmsg)
407 407
408 408 def magic_automagic(self, parameter_s = ''):
409 409 """Make magic functions callable without having to type the initial %.
410 410
411 411 Without argumentsl toggles on/off (when off, you must call it as
412 412 %automagic, of course). With arguments it sets the value, and you can
413 413 use any of (case insensitive):
414 414
415 415 - on,1,True: to activate
416 416
417 417 - off,0,False: to deactivate.
418 418
419 419 Note that magic functions have lowest priority, so if there's a
420 420 variable whose name collides with that of a magic fn, automagic won't
421 421 work for that function (you get the variable instead). However, if you
422 422 delete the variable (del var), the previously shadowed magic function
423 423 becomes visible to automagic again."""
424 424
425 425 arg = parameter_s.lower()
426 426 if parameter_s in ('on','1','true'):
427 427 self.shell.automagic = True
428 428 elif parameter_s in ('off','0','false'):
429 429 self.shell.automagic = False
430 430 else:
431 431 self.shell.automagic = not self.shell.automagic
432 432 print '\n' + Magic.auto_status[self.shell.automagic]
433 433
434 434 @testdec.skip_doctest
435 435 def magic_autocall(self, parameter_s = ''):
436 436 """Make functions callable without having to type parentheses.
437 437
438 438 Usage:
439 439
440 440 %autocall [mode]
441 441
442 442 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
443 443 value is toggled on and off (remembering the previous state).
444 444
445 445 In more detail, these values mean:
446 446
447 447 0 -> fully disabled
448 448
449 449 1 -> active, but do not apply if there are no arguments on the line.
450 450
451 451 In this mode, you get:
452 452
453 453 In [1]: callable
454 454 Out[1]: <built-in function callable>
455 455
456 456 In [2]: callable 'hello'
457 457 ------> callable('hello')
458 458 Out[2]: False
459 459
460 460 2 -> Active always. Even if no arguments are present, the callable
461 461 object is called:
462 462
463 463 In [2]: float
464 464 ------> float()
465 465 Out[2]: 0.0
466 466
467 467 Note that even with autocall off, you can still use '/' at the start of
468 468 a line to treat the first argument on the command line as a function
469 469 and add parentheses to it:
470 470
471 471 In [8]: /str 43
472 472 ------> str(43)
473 473 Out[8]: '43'
474 474
475 475 # all-random (note for auto-testing)
476 476 """
477 477
478 478 if parameter_s:
479 479 arg = int(parameter_s)
480 480 else:
481 481 arg = 'toggle'
482 482
483 483 if not arg in (0,1,2,'toggle'):
484 484 error('Valid modes: (0->Off, 1->Smart, 2->Full')
485 485 return
486 486
487 487 if arg in (0,1,2):
488 488 self.shell.autocall = arg
489 489 else: # toggle
490 490 if self.shell.autocall:
491 491 self._magic_state.autocall_save = self.shell.autocall
492 492 self.shell.autocall = 0
493 493 else:
494 494 try:
495 495 self.shell.autocall = self._magic_state.autocall_save
496 496 except AttributeError:
497 497 self.shell.autocall = self._magic_state.autocall_save = 1
498 498
499 499 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
500 500
501 501
502 502 def magic_page(self, parameter_s=''):
503 503 """Pretty print the object and display it through a pager.
504 504
505 505 %page [options] OBJECT
506 506
507 507 If no object is given, use _ (last output).
508 508
509 509 Options:
510 510
511 511 -r: page str(object), don't pretty-print it."""
512 512
513 513 # After a function contributed by Olivier Aubert, slightly modified.
514 514
515 515 # Process options/args
516 516 opts,args = self.parse_options(parameter_s,'r')
517 517 raw = 'r' in opts
518 518
519 519 oname = args and args or '_'
520 520 info = self._ofind(oname)
521 521 if info['found']:
522 522 txt = (raw and str or pformat)( info['obj'] )
523 523 page.page(txt)
524 524 else:
525 525 print 'Object `%s` not found' % oname
526 526
527 527 def magic_profile(self, parameter_s=''):
528 528 """Print your currently active IPython profile."""
529 529 if self.shell.profile:
530 530 printpl('Current IPython profile: $self.shell.profile.')
531 531 else:
532 532 print 'No profile active.'
533 533
534 534 def magic_pinfo(self, parameter_s='', namespaces=None):
535 535 """Provide detailed information about an object.
536 536
537 537 '%pinfo object' is just a synonym for object? or ?object."""
538 538
539 539 #print 'pinfo par: <%s>' % parameter_s # dbg
540 540
541 541
542 542 # detail_level: 0 -> obj? , 1 -> obj??
543 543 detail_level = 0
544 544 # We need to detect if we got called as 'pinfo pinfo foo', which can
545 545 # happen if the user types 'pinfo foo?' at the cmd line.
546 546 pinfo,qmark1,oname,qmark2 = \
547 547 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
548 548 if pinfo or qmark1 or qmark2:
549 549 detail_level = 1
550 550 if "*" in oname:
551 551 self.magic_psearch(oname)
552 552 else:
553 553 self.shell._inspect('pinfo', oname, detail_level=detail_level,
554 554 namespaces=namespaces)
555 555
556 556 def magic_pinfo2(self, parameter_s='', namespaces=None):
557 557 """Provide extra detailed information about an object.
558 558
559 559 '%pinfo2 object' is just a synonym for object?? or ??object."""
560 560 self.shell._inspect('pinfo', parameter_s, detail_level=1,
561 561 namespaces=namespaces)
562 562
563 563 @testdec.skip_doctest
564 564 def magic_pdef(self, parameter_s='', namespaces=None):
565 565 """Print the definition header for any callable object.
566 566
567 567 If the object is a class, print the constructor information.
568 568
569 569 Examples
570 570 --------
571 571 ::
572 572
573 573 In [3]: %pdef urllib.urlopen
574 574 urllib.urlopen(url, data=None, proxies=None)
575 575 """
576 576 self._inspect('pdef',parameter_s, namespaces)
577 577
578 578 def magic_pdoc(self, parameter_s='', namespaces=None):
579 579 """Print the docstring for an object.
580 580
581 581 If the given object is a class, it will print both the class and the
582 582 constructor docstrings."""
583 583 self._inspect('pdoc',parameter_s, namespaces)
584 584
585 585 def magic_psource(self, parameter_s='', namespaces=None):
586 586 """Print (or run through pager) the source code for an object."""
587 587 self._inspect('psource',parameter_s, namespaces)
588 588
589 589 def magic_pfile(self, parameter_s=''):
590 590 """Print (or run through pager) the file where an object is defined.
591 591
592 592 The file opens at the line where the object definition begins. IPython
593 593 will honor the environment variable PAGER if set, and otherwise will
594 594 do its best to print the file in a convenient form.
595 595
596 596 If the given argument is not an object currently defined, IPython will
597 597 try to interpret it as a filename (automatically adding a .py extension
598 598 if needed). You can thus use %pfile as a syntax highlighting code
599 599 viewer."""
600 600
601 601 # first interpret argument as an object name
602 602 out = self._inspect('pfile',parameter_s)
603 603 # if not, try the input as a filename
604 604 if out == 'not found':
605 605 try:
606 606 filename = get_py_filename(parameter_s)
607 607 except IOError,msg:
608 608 print msg
609 609 return
610 610 page.page(self.shell.inspector.format(file(filename).read()))
611 611
612 612 def magic_psearch(self, parameter_s=''):
613 613 """Search for object in namespaces by wildcard.
614 614
615 615 %psearch [options] PATTERN [OBJECT TYPE]
616 616
617 617 Note: ? can be used as a synonym for %psearch, at the beginning or at
618 618 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
619 619 rest of the command line must be unchanged (options come first), so
620 620 for example the following forms are equivalent
621 621
622 622 %psearch -i a* function
623 623 -i a* function?
624 624 ?-i a* function
625 625
626 626 Arguments:
627 627
628 628 PATTERN
629 629
630 630 where PATTERN is a string containing * as a wildcard similar to its
631 631 use in a shell. The pattern is matched in all namespaces on the
632 632 search path. By default objects starting with a single _ are not
633 633 matched, many IPython generated objects have a single
634 634 underscore. The default is case insensitive matching. Matching is
635 635 also done on the attributes of objects and not only on the objects
636 636 in a module.
637 637
638 638 [OBJECT TYPE]
639 639
640 640 Is the name of a python type from the types module. The name is
641 641 given in lowercase without the ending type, ex. StringType is
642 642 written string. By adding a type here only objects matching the
643 643 given type are matched. Using all here makes the pattern match all
644 644 types (this is the default).
645 645
646 646 Options:
647 647
648 648 -a: makes the pattern match even objects whose names start with a
649 649 single underscore. These names are normally ommitted from the
650 650 search.
651 651
652 652 -i/-c: make the pattern case insensitive/sensitive. If neither of
653 653 these options is given, the default is read from your ipythonrc
654 654 file. The option name which sets this value is
655 655 'wildcards_case_sensitive'. If this option is not specified in your
656 656 ipythonrc file, IPython's internal default is to do a case sensitive
657 657 search.
658 658
659 659 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
660 660 specifiy can be searched in any of the following namespaces:
661 661 'builtin', 'user', 'user_global','internal', 'alias', where
662 662 'builtin' and 'user' are the search defaults. Note that you should
663 663 not use quotes when specifying namespaces.
664 664
665 665 'Builtin' contains the python module builtin, 'user' contains all
666 666 user data, 'alias' only contain the shell aliases and no python
667 667 objects, 'internal' contains objects used by IPython. The
668 668 'user_global' namespace is only used by embedded IPython instances,
669 669 and it contains module-level globals. You can add namespaces to the
670 670 search with -s or exclude them with -e (these options can be given
671 671 more than once).
672 672
673 673 Examples:
674 674
675 675 %psearch a* -> objects beginning with an a
676 676 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
677 677 %psearch a* function -> all functions beginning with an a
678 678 %psearch re.e* -> objects beginning with an e in module re
679 679 %psearch r*.e* -> objects that start with e in modules starting in r
680 680 %psearch r*.* string -> all strings in modules beginning with r
681 681
682 682 Case sensitve search:
683 683
684 684 %psearch -c a* list all object beginning with lower case a
685 685
686 686 Show objects beginning with a single _:
687 687
688 688 %psearch -a _* list objects beginning with a single underscore"""
689 689 try:
690 690 parameter_s = parameter_s.encode('ascii')
691 691 except UnicodeEncodeError:
692 692 print 'Python identifiers can only contain ascii characters.'
693 693 return
694 694
695 695 # default namespaces to be searched
696 696 def_search = ['user','builtin']
697 697
698 698 # Process options/args
699 699 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
700 700 opt = opts.get
701 701 shell = self.shell
702 702 psearch = shell.inspector.psearch
703 703
704 704 # select case options
705 705 if opts.has_key('i'):
706 706 ignore_case = True
707 707 elif opts.has_key('c'):
708 708 ignore_case = False
709 709 else:
710 710 ignore_case = not shell.wildcards_case_sensitive
711 711
712 712 # Build list of namespaces to search from user options
713 713 def_search.extend(opt('s',[]))
714 714 ns_exclude = ns_exclude=opt('e',[])
715 715 ns_search = [nm for nm in def_search if nm not in ns_exclude]
716 716
717 717 # Call the actual search
718 718 try:
719 719 psearch(args,shell.ns_table,ns_search,
720 720 show_all=opt('a'),ignore_case=ignore_case)
721 721 except:
722 722 shell.showtraceback()
723 723
724 724 @testdec.skip_doctest
725 725 def magic_who_ls(self, parameter_s=''):
726 726 """Return a sorted list of all interactive variables.
727 727
728 728 If arguments are given, only variables of types matching these
729 729 arguments are returned.
730 730
731 731 Examples
732 732 --------
733 733
734 734 Define two variables and list them with who_ls::
735 735
736 736 In [1]: alpha = 123
737 737
738 738 In [2]: beta = 'test'
739 739
740 740 In [3]: %who_ls
741 741 Out[3]: ['alpha', 'beta']
742 742
743 743 In [4]: %who_ls int
744 744 Out[4]: ['alpha']
745 745
746 746 In [5]: %who_ls str
747 747 Out[5]: ['beta']
748 748 """
749 749
750 750 user_ns = self.shell.user_ns
751 751 internal_ns = self.shell.internal_ns
752 752 user_ns_hidden = self.shell.user_ns_hidden
753 753 out = [ i for i in user_ns
754 754 if not i.startswith('_') \
755 755 and not (i in internal_ns or i in user_ns_hidden) ]
756 756
757 757 typelist = parameter_s.split()
758 758 if typelist:
759 759 typeset = set(typelist)
760 760 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
761 761
762 762 out.sort()
763 763 return out
764 764
765 765 @testdec.skip_doctest
766 766 def magic_who(self, parameter_s=''):
767 767 """Print all interactive variables, with some minimal formatting.
768 768
769 769 If any arguments are given, only variables whose type matches one of
770 770 these are printed. For example:
771 771
772 772 %who function str
773 773
774 774 will only list functions and strings, excluding all other types of
775 775 variables. To find the proper type names, simply use type(var) at a
776 776 command line to see how python prints type names. For example:
777 777
778 778 In [1]: type('hello')\\
779 779 Out[1]: <type 'str'>
780 780
781 781 indicates that the type name for strings is 'str'.
782 782
783 783 %who always excludes executed names loaded through your configuration
784 784 file and things which are internal to IPython.
785 785
786 786 This is deliberate, as typically you may load many modules and the
787 787 purpose of %who is to show you only what you've manually defined.
788 788
789 789 Examples
790 790 --------
791 791
792 792 Define two variables and list them with who::
793 793
794 794 In [1]: alpha = 123
795 795
796 796 In [2]: beta = 'test'
797 797
798 798 In [3]: %who
799 799 alpha beta
800 800
801 801 In [4]: %who int
802 802 alpha
803 803
804 804 In [5]: %who str
805 805 beta
806 806 """
807 807
808 808 varlist = self.magic_who_ls(parameter_s)
809 809 if not varlist:
810 810 if parameter_s:
811 811 print 'No variables match your requested type.'
812 812 else:
813 813 print 'Interactive namespace is empty.'
814 814 return
815 815
816 816 # if we have variables, move on...
817 817 count = 0
818 818 for i in varlist:
819 819 print i+'\t',
820 820 count += 1
821 821 if count > 8:
822 822 count = 0
823 823 print
824 824 print
825 825
826 826 @testdec.skip_doctest
827 827 def magic_whos(self, parameter_s=''):
828 828 """Like %who, but gives some extra information about each variable.
829 829
830 830 The same type filtering of %who can be applied here.
831 831
832 832 For all variables, the type is printed. Additionally it prints:
833 833
834 834 - For {},[],(): their length.
835 835
836 836 - For numpy arrays, a summary with shape, number of
837 837 elements, typecode and size in memory.
838 838
839 839 - Everything else: a string representation, snipping their middle if
840 840 too long.
841 841
842 842 Examples
843 843 --------
844 844
845 845 Define two variables and list them with whos::
846 846
847 847 In [1]: alpha = 123
848 848
849 849 In [2]: beta = 'test'
850 850
851 851 In [3]: %whos
852 852 Variable Type Data/Info
853 853 --------------------------------
854 854 alpha int 123
855 855 beta str test
856 856 """
857 857
858 858 varnames = self.magic_who_ls(parameter_s)
859 859 if not varnames:
860 860 if parameter_s:
861 861 print 'No variables match your requested type.'
862 862 else:
863 863 print 'Interactive namespace is empty.'
864 864 return
865 865
866 866 # if we have variables, move on...
867 867
868 868 # for these types, show len() instead of data:
869 869 seq_types = ['dict', 'list', 'tuple']
870 870
871 871 # for numpy/Numeric arrays, display summary info
872 872 try:
873 873 import numpy
874 874 except ImportError:
875 875 ndarray_type = None
876 876 else:
877 877 ndarray_type = numpy.ndarray.__name__
878 878 try:
879 879 import Numeric
880 880 except ImportError:
881 881 array_type = None
882 882 else:
883 883 array_type = Numeric.ArrayType.__name__
884 884
885 885 # Find all variable names and types so we can figure out column sizes
886 886 def get_vars(i):
887 887 return self.shell.user_ns[i]
888 888
889 889 # some types are well known and can be shorter
890 890 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
891 891 def type_name(v):
892 892 tn = type(v).__name__
893 893 return abbrevs.get(tn,tn)
894 894
895 895 varlist = map(get_vars,varnames)
896 896
897 897 typelist = []
898 898 for vv in varlist:
899 899 tt = type_name(vv)
900 900
901 901 if tt=='instance':
902 902 typelist.append( abbrevs.get(str(vv.__class__),
903 903 str(vv.__class__)))
904 904 else:
905 905 typelist.append(tt)
906 906
907 907 # column labels and # of spaces as separator
908 908 varlabel = 'Variable'
909 909 typelabel = 'Type'
910 910 datalabel = 'Data/Info'
911 911 colsep = 3
912 912 # variable format strings
913 913 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
914 914 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
915 915 aformat = "%s: %s elems, type `%s`, %s bytes"
916 916 # find the size of the columns to format the output nicely
917 917 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
918 918 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
919 919 # table header
920 920 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
921 921 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
922 922 # and the table itself
923 923 kb = 1024
924 924 Mb = 1048576 # kb**2
925 925 for vname,var,vtype in zip(varnames,varlist,typelist):
926 926 print itpl(vformat),
927 927 if vtype in seq_types:
928 928 print "n="+str(len(var))
929 929 elif vtype in [array_type,ndarray_type]:
930 930 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
931 931 if vtype==ndarray_type:
932 932 # numpy
933 933 vsize = var.size
934 934 vbytes = vsize*var.itemsize
935 935 vdtype = var.dtype
936 936 else:
937 937 # Numeric
938 938 vsize = Numeric.size(var)
939 939 vbytes = vsize*var.itemsize()
940 940 vdtype = var.typecode()
941 941
942 942 if vbytes < 100000:
943 943 print aformat % (vshape,vsize,vdtype,vbytes)
944 944 else:
945 945 print aformat % (vshape,vsize,vdtype,vbytes),
946 946 if vbytes < Mb:
947 947 print '(%s kb)' % (vbytes/kb,)
948 948 else:
949 949 print '(%s Mb)' % (vbytes/Mb,)
950 950 else:
951 951 try:
952 952 vstr = str(var)
953 953 except UnicodeEncodeError:
954 954 vstr = unicode(var).encode(sys.getdefaultencoding(),
955 955 'backslashreplace')
956 956 vstr = vstr.replace('\n','\\n')
957 957 if len(vstr) < 50:
958 958 print vstr
959 959 else:
960 960 printpl(vfmt_short)
961 961
962 962 def magic_reset(self, parameter_s=''):
963 963 """Resets the namespace by removing all names defined by the user.
964 964
965 965 Input/Output history are left around in case you need them.
966 966
967 967 Parameters
968 968 ----------
969 969 -f : force reset without asking for confirmation.
970 970
971 971 Examples
972 972 --------
973 973 In [6]: a = 1
974 974
975 975 In [7]: a
976 976 Out[7]: 1
977 977
978 978 In [8]: 'a' in _ip.user_ns
979 979 Out[8]: True
980 980
981 981 In [9]: %reset -f
982 982
983 983 In [10]: 'a' in _ip.user_ns
984 984 Out[10]: False
985 985 """
986 986
987 987 if parameter_s == '-f':
988 988 ans = True
989 989 else:
990 990 ans = self.shell.ask_yes_no(
991 991 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
992 992 if not ans:
993 993 print 'Nothing done.'
994 994 return
995 995 user_ns = self.shell.user_ns
996 996 for i in self.magic_who_ls():
997 997 del(user_ns[i])
998 998
999 999 # Also flush the private list of module references kept for script
1000 1000 # execution protection
1001 1001 self.shell.clear_main_mod_cache()
1002 1002
1003 1003 def magic_reset_selective(self, parameter_s=''):
1004 1004 """Resets the namespace by removing names defined by the user.
1005 1005
1006 1006 Input/Output history are left around in case you need them.
1007 1007
1008 1008 %reset_selective [-f] regex
1009 1009
1010 1010 No action is taken if regex is not included
1011 1011
1012 1012 Options
1013 1013 -f : force reset without asking for confirmation.
1014 1014
1015 1015 Examples
1016 1016 --------
1017 1017
1018 1018 We first fully reset the namespace so your output looks identical to
1019 1019 this example for pedagogical reasons; in practice you do not need a
1020 1020 full reset.
1021 1021
1022 1022 In [1]: %reset -f
1023 1023
1024 1024 Now, with a clean namespace we can make a few variables and use
1025 1025 %reset_selective to only delete names that match our regexp:
1026 1026
1027 1027 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1028 1028
1029 1029 In [3]: who_ls
1030 1030 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1031 1031
1032 1032 In [4]: %reset_selective -f b[2-3]m
1033 1033
1034 1034 In [5]: who_ls
1035 1035 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1036 1036
1037 1037 In [6]: %reset_selective -f d
1038 1038
1039 1039 In [7]: who_ls
1040 1040 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1041 1041
1042 1042 In [8]: %reset_selective -f c
1043 1043
1044 1044 In [9]: who_ls
1045 1045 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1046 1046
1047 1047 In [10]: %reset_selective -f b
1048 1048
1049 1049 In [11]: who_ls
1050 1050 Out[11]: ['a']
1051 1051 """
1052 1052
1053 1053 opts, regex = self.parse_options(parameter_s,'f')
1054 1054
1055 1055 if opts.has_key('f'):
1056 1056 ans = True
1057 1057 else:
1058 1058 ans = self.shell.ask_yes_no(
1059 1059 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1060 1060 if not ans:
1061 1061 print 'Nothing done.'
1062 1062 return
1063 1063 user_ns = self.shell.user_ns
1064 1064 if not regex:
1065 1065 print 'No regex pattern specified. Nothing done.'
1066 1066 return
1067 1067 else:
1068 1068 try:
1069 1069 m = re.compile(regex)
1070 1070 except TypeError:
1071 1071 raise TypeError('regex must be a string or compiled pattern')
1072 1072 for i in self.magic_who_ls():
1073 1073 if m.search(i):
1074 1074 del(user_ns[i])
1075 1075
1076 1076 def magic_logstart(self,parameter_s=''):
1077 1077 """Start logging anywhere in a session.
1078 1078
1079 1079 %logstart [-o|-r|-t] [log_name [log_mode]]
1080 1080
1081 1081 If no name is given, it defaults to a file named 'ipython_log.py' in your
1082 1082 current directory, in 'rotate' mode (see below).
1083 1083
1084 1084 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1085 1085 history up to that point and then continues logging.
1086 1086
1087 1087 %logstart takes a second optional parameter: logging mode. This can be one
1088 1088 of (note that the modes are given unquoted):\\
1089 1089 append: well, that says it.\\
1090 1090 backup: rename (if exists) to name~ and start name.\\
1091 1091 global: single logfile in your home dir, appended to.\\
1092 1092 over : overwrite existing log.\\
1093 1093 rotate: create rotating logs name.1~, name.2~, etc.
1094 1094
1095 1095 Options:
1096 1096
1097 1097 -o: log also IPython's output. In this mode, all commands which
1098 1098 generate an Out[NN] prompt are recorded to the logfile, right after
1099 1099 their corresponding input line. The output lines are always
1100 1100 prepended with a '#[Out]# ' marker, so that the log remains valid
1101 1101 Python code.
1102 1102
1103 1103 Since this marker is always the same, filtering only the output from
1104 1104 a log is very easy, using for example a simple awk call:
1105 1105
1106 1106 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1107 1107
1108 1108 -r: log 'raw' input. Normally, IPython's logs contain the processed
1109 1109 input, so that user lines are logged in their final form, converted
1110 1110 into valid Python. For example, %Exit is logged as
1111 1111 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1112 1112 exactly as typed, with no transformations applied.
1113 1113
1114 1114 -t: put timestamps before each input line logged (these are put in
1115 1115 comments)."""
1116 1116
1117 1117 opts,par = self.parse_options(parameter_s,'ort')
1118 1118 log_output = 'o' in opts
1119 1119 log_raw_input = 'r' in opts
1120 1120 timestamp = 't' in opts
1121 1121
1122 1122 logger = self.shell.logger
1123 1123
1124 1124 # if no args are given, the defaults set in the logger constructor by
1125 1125 # ipytohn remain valid
1126 1126 if par:
1127 1127 try:
1128 1128 logfname,logmode = par.split()
1129 1129 except:
1130 1130 logfname = par
1131 1131 logmode = 'backup'
1132 1132 else:
1133 1133 logfname = logger.logfname
1134 1134 logmode = logger.logmode
1135 1135 # put logfname into rc struct as if it had been called on the command
1136 1136 # line, so it ends up saved in the log header Save it in case we need
1137 1137 # to restore it...
1138 1138 old_logfile = self.shell.logfile
1139 1139 if logfname:
1140 1140 logfname = os.path.expanduser(logfname)
1141 1141 self.shell.logfile = logfname
1142 1142
1143 1143 loghead = '# IPython log file\n\n'
1144 1144 try:
1145 1145 started = logger.logstart(logfname,loghead,logmode,
1146 1146 log_output,timestamp,log_raw_input)
1147 1147 except:
1148 1148 self.shell.logfile = old_logfile
1149 1149 warn("Couldn't start log: %s" % sys.exc_info()[1])
1150 1150 else:
1151 1151 # log input history up to this point, optionally interleaving
1152 1152 # output if requested
1153 1153
1154 1154 if timestamp:
1155 1155 # disable timestamping for the previous history, since we've
1156 1156 # lost those already (no time machine here).
1157 1157 logger.timestamp = False
1158 1158
1159 1159 if log_raw_input:
1160 1160 input_hist = self.shell.history_manager.input_hist_raw
1161 1161 else:
1162 1162 input_hist = self.shell.history_manager.input_hist_parsed
1163 1163
1164 1164 if log_output:
1165 1165 log_write = logger.log_write
1166 1166 output_hist = self.shell.history_manager.output_hist
1167 1167 for n in range(1,len(input_hist)-1):
1168 1168 log_write(input_hist[n].rstrip())
1169 1169 if n in output_hist:
1170 1170 log_write(repr(output_hist[n]),'output')
1171 1171 else:
1172 1172 logger.log_write(''.join(input_hist[1:]))
1173 1173 if timestamp:
1174 1174 # re-enable timestamping
1175 1175 logger.timestamp = True
1176 1176
1177 1177 print ('Activating auto-logging. '
1178 1178 'Current session state plus future input saved.')
1179 1179 logger.logstate()
1180 1180
1181 1181 def magic_logstop(self,parameter_s=''):
1182 1182 """Fully stop logging and close log file.
1183 1183
1184 1184 In order to start logging again, a new %logstart call needs to be made,
1185 1185 possibly (though not necessarily) with a new filename, mode and other
1186 1186 options."""
1187 1187 self.logger.logstop()
1188 1188
1189 1189 def magic_logoff(self,parameter_s=''):
1190 1190 """Temporarily stop logging.
1191 1191
1192 1192 You must have previously started logging."""
1193 1193 self.shell.logger.switch_log(0)
1194 1194
1195 1195 def magic_logon(self,parameter_s=''):
1196 1196 """Restart logging.
1197 1197
1198 1198 This function is for restarting logging which you've temporarily
1199 1199 stopped with %logoff. For starting logging for the first time, you
1200 1200 must use the %logstart function, which allows you to specify an
1201 1201 optional log filename."""
1202 1202
1203 1203 self.shell.logger.switch_log(1)
1204 1204
1205 1205 def magic_logstate(self,parameter_s=''):
1206 1206 """Print the status of the logging system."""
1207 1207
1208 1208 self.shell.logger.logstate()
1209 1209
1210 1210 def magic_pdb(self, parameter_s=''):
1211 1211 """Control the automatic calling of the pdb interactive debugger.
1212 1212
1213 1213 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1214 1214 argument it works as a toggle.
1215 1215
1216 1216 When an exception is triggered, IPython can optionally call the
1217 1217 interactive pdb debugger after the traceback printout. %pdb toggles
1218 1218 this feature on and off.
1219 1219
1220 1220 The initial state of this feature is set in your ipythonrc
1221 1221 configuration file (the variable is called 'pdb').
1222 1222
1223 1223 If you want to just activate the debugger AFTER an exception has fired,
1224 1224 without having to type '%pdb on' and rerunning your code, you can use
1225 1225 the %debug magic."""
1226 1226
1227 1227 par = parameter_s.strip().lower()
1228 1228
1229 1229 if par:
1230 1230 try:
1231 1231 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1232 1232 except KeyError:
1233 1233 print ('Incorrect argument. Use on/1, off/0, '
1234 1234 'or nothing for a toggle.')
1235 1235 return
1236 1236 else:
1237 1237 # toggle
1238 1238 new_pdb = not self.shell.call_pdb
1239 1239
1240 1240 # set on the shell
1241 1241 self.shell.call_pdb = new_pdb
1242 1242 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1243 1243
1244 1244 def magic_debug(self, parameter_s=''):
1245 1245 """Activate the interactive debugger in post-mortem mode.
1246 1246
1247 1247 If an exception has just occurred, this lets you inspect its stack
1248 1248 frames interactively. Note that this will always work only on the last
1249 1249 traceback that occurred, so you must call this quickly after an
1250 1250 exception that you wish to inspect has fired, because if another one
1251 1251 occurs, it clobbers the previous one.
1252 1252
1253 1253 If you want IPython to automatically do this on every exception, see
1254 1254 the %pdb magic for more details.
1255 1255 """
1256 1256 self.shell.debugger(force=True)
1257 1257
1258 1258 @testdec.skip_doctest
1259 1259 def magic_prun(self, parameter_s ='',user_mode=1,
1260 1260 opts=None,arg_lst=None,prog_ns=None):
1261 1261
1262 1262 """Run a statement through the python code profiler.
1263 1263
1264 1264 Usage:
1265 1265 %prun [options] statement
1266 1266
1267 1267 The given statement (which doesn't require quote marks) is run via the
1268 1268 python profiler in a manner similar to the profile.run() function.
1269 1269 Namespaces are internally managed to work correctly; profile.run
1270 1270 cannot be used in IPython because it makes certain assumptions about
1271 1271 namespaces which do not hold under IPython.
1272 1272
1273 1273 Options:
1274 1274
1275 1275 -l <limit>: you can place restrictions on what or how much of the
1276 1276 profile gets printed. The limit value can be:
1277 1277
1278 1278 * A string: only information for function names containing this string
1279 1279 is printed.
1280 1280
1281 1281 * An integer: only these many lines are printed.
1282 1282
1283 1283 * A float (between 0 and 1): this fraction of the report is printed
1284 1284 (for example, use a limit of 0.4 to see the topmost 40% only).
1285 1285
1286 1286 You can combine several limits with repeated use of the option. For
1287 1287 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1288 1288 information about class constructors.
1289 1289
1290 1290 -r: return the pstats.Stats object generated by the profiling. This
1291 1291 object has all the information about the profile in it, and you can
1292 1292 later use it for further analysis or in other functions.
1293 1293
1294 1294 -s <key>: sort profile by given key. You can provide more than one key
1295 1295 by using the option several times: '-s key1 -s key2 -s key3...'. The
1296 1296 default sorting key is 'time'.
1297 1297
1298 1298 The following is copied verbatim from the profile documentation
1299 1299 referenced below:
1300 1300
1301 1301 When more than one key is provided, additional keys are used as
1302 1302 secondary criteria when the there is equality in all keys selected
1303 1303 before them.
1304 1304
1305 1305 Abbreviations can be used for any key names, as long as the
1306 1306 abbreviation is unambiguous. The following are the keys currently
1307 1307 defined:
1308 1308
1309 1309 Valid Arg Meaning
1310 1310 "calls" call count
1311 1311 "cumulative" cumulative time
1312 1312 "file" file name
1313 1313 "module" file name
1314 1314 "pcalls" primitive call count
1315 1315 "line" line number
1316 1316 "name" function name
1317 1317 "nfl" name/file/line
1318 1318 "stdname" standard name
1319 1319 "time" internal time
1320 1320
1321 1321 Note that all sorts on statistics are in descending order (placing
1322 1322 most time consuming items first), where as name, file, and line number
1323 1323 searches are in ascending order (i.e., alphabetical). The subtle
1324 1324 distinction between "nfl" and "stdname" is that the standard name is a
1325 1325 sort of the name as printed, which means that the embedded line
1326 1326 numbers get compared in an odd way. For example, lines 3, 20, and 40
1327 1327 would (if the file names were the same) appear in the string order
1328 1328 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1329 1329 line numbers. In fact, sort_stats("nfl") is the same as
1330 1330 sort_stats("name", "file", "line").
1331 1331
1332 1332 -T <filename>: save profile results as shown on screen to a text
1333 1333 file. The profile is still shown on screen.
1334 1334
1335 1335 -D <filename>: save (via dump_stats) profile statistics to given
1336 1336 filename. This data is in a format understod by the pstats module, and
1337 1337 is generated by a call to the dump_stats() method of profile
1338 1338 objects. The profile is still shown on screen.
1339 1339
1340 1340 If you want to run complete programs under the profiler's control, use
1341 1341 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1342 1342 contains profiler specific options as described here.
1343 1343
1344 1344 You can read the complete documentation for the profile module with::
1345 1345
1346 1346 In [1]: import profile; profile.help()
1347 1347 """
1348 1348
1349 1349 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1350 1350 # protect user quote marks
1351 1351 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1352 1352
1353 1353 if user_mode: # regular user call
1354 1354 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1355 1355 list_all=1)
1356 1356 namespace = self.shell.user_ns
1357 1357 else: # called to run a program by %run -p
1358 1358 try:
1359 1359 filename = get_py_filename(arg_lst[0])
1360 1360 except IOError,msg:
1361 1361 error(msg)
1362 1362 return
1363 1363
1364 1364 arg_str = 'execfile(filename,prog_ns)'
1365 1365 namespace = locals()
1366 1366
1367 1367 opts.merge(opts_def)
1368 1368
1369 1369 prof = profile.Profile()
1370 1370 try:
1371 1371 prof = prof.runctx(arg_str,namespace,namespace)
1372 1372 sys_exit = ''
1373 1373 except SystemExit:
1374 1374 sys_exit = """*** SystemExit exception caught in code being profiled."""
1375 1375
1376 1376 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1377 1377
1378 1378 lims = opts.l
1379 1379 if lims:
1380 1380 lims = [] # rebuild lims with ints/floats/strings
1381 1381 for lim in opts.l:
1382 1382 try:
1383 1383 lims.append(int(lim))
1384 1384 except ValueError:
1385 1385 try:
1386 1386 lims.append(float(lim))
1387 1387 except ValueError:
1388 1388 lims.append(lim)
1389 1389
1390 1390 # Trap output.
1391 1391 stdout_trap = StringIO()
1392 1392
1393 1393 if hasattr(stats,'stream'):
1394 1394 # In newer versions of python, the stats object has a 'stream'
1395 1395 # attribute to write into.
1396 1396 stats.stream = stdout_trap
1397 1397 stats.print_stats(*lims)
1398 1398 else:
1399 1399 # For older versions, we manually redirect stdout during printing
1400 1400 sys_stdout = sys.stdout
1401 1401 try:
1402 1402 sys.stdout = stdout_trap
1403 1403 stats.print_stats(*lims)
1404 1404 finally:
1405 1405 sys.stdout = sys_stdout
1406 1406
1407 1407 output = stdout_trap.getvalue()
1408 1408 output = output.rstrip()
1409 1409
1410 1410 page.page(output)
1411 1411 print sys_exit,
1412 1412
1413 1413 dump_file = opts.D[0]
1414 1414 text_file = opts.T[0]
1415 1415 if dump_file:
1416 1416 prof.dump_stats(dump_file)
1417 1417 print '\n*** Profile stats marshalled to file',\
1418 1418 `dump_file`+'.',sys_exit
1419 1419 if text_file:
1420 1420 pfile = file(text_file,'w')
1421 1421 pfile.write(output)
1422 1422 pfile.close()
1423 1423 print '\n*** Profile printout saved to text file',\
1424 1424 `text_file`+'.',sys_exit
1425 1425
1426 1426 if opts.has_key('r'):
1427 1427 return stats
1428 1428 else:
1429 1429 return None
1430 1430
1431 1431 @testdec.skip_doctest
1432 1432 def magic_run(self, parameter_s ='',runner=None,
1433 1433 file_finder=get_py_filename):
1434 1434 """Run the named file inside IPython as a program.
1435 1435
1436 1436 Usage:\\
1437 1437 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1438 1438
1439 1439 Parameters after the filename are passed as command-line arguments to
1440 1440 the program (put in sys.argv). Then, control returns to IPython's
1441 1441 prompt.
1442 1442
1443 1443 This is similar to running at a system prompt:\\
1444 1444 $ python file args\\
1445 1445 but with the advantage of giving you IPython's tracebacks, and of
1446 1446 loading all variables into your interactive namespace for further use
1447 1447 (unless -p is used, see below).
1448 1448
1449 1449 The file is executed in a namespace initially consisting only of
1450 1450 __name__=='__main__' and sys.argv constructed as indicated. It thus
1451 1451 sees its environment as if it were being run as a stand-alone program
1452 1452 (except for sharing global objects such as previously imported
1453 1453 modules). But after execution, the IPython interactive namespace gets
1454 1454 updated with all variables defined in the program (except for __name__
1455 1455 and sys.argv). This allows for very convenient loading of code for
1456 1456 interactive work, while giving each program a 'clean sheet' to run in.
1457 1457
1458 1458 Options:
1459 1459
1460 1460 -n: __name__ is NOT set to '__main__', but to the running file's name
1461 1461 without extension (as python does under import). This allows running
1462 1462 scripts and reloading the definitions in them without calling code
1463 1463 protected by an ' if __name__ == "__main__" ' clause.
1464 1464
1465 1465 -i: run the file in IPython's namespace instead of an empty one. This
1466 1466 is useful if you are experimenting with code written in a text editor
1467 1467 which depends on variables defined interactively.
1468 1468
1469 1469 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1470 1470 being run. This is particularly useful if IPython is being used to
1471 1471 run unittests, which always exit with a sys.exit() call. In such
1472 1472 cases you are interested in the output of the test results, not in
1473 1473 seeing a traceback of the unittest module.
1474 1474
1475 1475 -t: print timing information at the end of the run. IPython will give
1476 1476 you an estimated CPU time consumption for your script, which under
1477 1477 Unix uses the resource module to avoid the wraparound problems of
1478 1478 time.clock(). Under Unix, an estimate of time spent on system tasks
1479 1479 is also given (for Windows platforms this is reported as 0.0).
1480 1480
1481 1481 If -t is given, an additional -N<N> option can be given, where <N>
1482 1482 must be an integer indicating how many times you want the script to
1483 1483 run. The final timing report will include total and per run results.
1484 1484
1485 1485 For example (testing the script uniq_stable.py):
1486 1486
1487 1487 In [1]: run -t uniq_stable
1488 1488
1489 1489 IPython CPU timings (estimated):\\
1490 1490 User : 0.19597 s.\\
1491 1491 System: 0.0 s.\\
1492 1492
1493 1493 In [2]: run -t -N5 uniq_stable
1494 1494
1495 1495 IPython CPU timings (estimated):\\
1496 1496 Total runs performed: 5\\
1497 1497 Times : Total Per run\\
1498 1498 User : 0.910862 s, 0.1821724 s.\\
1499 1499 System: 0.0 s, 0.0 s.
1500 1500
1501 1501 -d: run your program under the control of pdb, the Python debugger.
1502 1502 This allows you to execute your program step by step, watch variables,
1503 1503 etc. Internally, what IPython does is similar to calling:
1504 1504
1505 1505 pdb.run('execfile("YOURFILENAME")')
1506 1506
1507 1507 with a breakpoint set on line 1 of your file. You can change the line
1508 1508 number for this automatic breakpoint to be <N> by using the -bN option
1509 1509 (where N must be an integer). For example:
1510 1510
1511 1511 %run -d -b40 myscript
1512 1512
1513 1513 will set the first breakpoint at line 40 in myscript.py. Note that
1514 1514 the first breakpoint must be set on a line which actually does
1515 1515 something (not a comment or docstring) for it to stop execution.
1516 1516
1517 1517 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1518 1518 first enter 'c' (without qoutes) to start execution up to the first
1519 1519 breakpoint.
1520 1520
1521 1521 Entering 'help' gives information about the use of the debugger. You
1522 1522 can easily see pdb's full documentation with "import pdb;pdb.help()"
1523 1523 at a prompt.
1524 1524
1525 1525 -p: run program under the control of the Python profiler module (which
1526 1526 prints a detailed report of execution times, function calls, etc).
1527 1527
1528 1528 You can pass other options after -p which affect the behavior of the
1529 1529 profiler itself. See the docs for %prun for details.
1530 1530
1531 1531 In this mode, the program's variables do NOT propagate back to the
1532 1532 IPython interactive namespace (because they remain in the namespace
1533 1533 where the profiler executes them).
1534 1534
1535 1535 Internally this triggers a call to %prun, see its documentation for
1536 1536 details on the options available specifically for profiling.
1537 1537
1538 1538 There is one special usage for which the text above doesn't apply:
1539 1539 if the filename ends with .ipy, the file is run as ipython script,
1540 1540 just as if the commands were written on IPython prompt.
1541 1541 """
1542 1542
1543 1543 # get arguments and set sys.argv for program to be run.
1544 1544 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1545 1545 mode='list',list_all=1)
1546 1546
1547 1547 try:
1548 1548 filename = file_finder(arg_lst[0])
1549 1549 except IndexError:
1550 1550 warn('you must provide at least a filename.')
1551 1551 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1552 1552 return
1553 1553 except IOError,msg:
1554 1554 error(msg)
1555 1555 return
1556 1556
1557 1557 if filename.lower().endswith('.ipy'):
1558 1558 self.shell.safe_execfile_ipy(filename)
1559 1559 return
1560 1560
1561 1561 # Control the response to exit() calls made by the script being run
1562 1562 exit_ignore = opts.has_key('e')
1563 1563
1564 1564 # Make sure that the running script gets a proper sys.argv as if it
1565 1565 # were run from a system shell.
1566 1566 save_argv = sys.argv # save it for later restoring
1567 1567 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1568 1568
1569 1569 if opts.has_key('i'):
1570 1570 # Run in user's interactive namespace
1571 1571 prog_ns = self.shell.user_ns
1572 1572 __name__save = self.shell.user_ns['__name__']
1573 1573 prog_ns['__name__'] = '__main__'
1574 1574 main_mod = self.shell.new_main_mod(prog_ns)
1575 1575 else:
1576 1576 # Run in a fresh, empty namespace
1577 1577 if opts.has_key('n'):
1578 1578 name = os.path.splitext(os.path.basename(filename))[0]
1579 1579 else:
1580 1580 name = '__main__'
1581 1581
1582 1582 main_mod = self.shell.new_main_mod()
1583 1583 prog_ns = main_mod.__dict__
1584 1584 prog_ns['__name__'] = name
1585 1585
1586 1586 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1587 1587 # set the __file__ global in the script's namespace
1588 1588 prog_ns['__file__'] = filename
1589 1589
1590 1590 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1591 1591 # that, if we overwrite __main__, we replace it at the end
1592 1592 main_mod_name = prog_ns['__name__']
1593 1593
1594 1594 if main_mod_name == '__main__':
1595 1595 restore_main = sys.modules['__main__']
1596 1596 else:
1597 1597 restore_main = False
1598 1598
1599 1599 # This needs to be undone at the end to prevent holding references to
1600 1600 # every single object ever created.
1601 1601 sys.modules[main_mod_name] = main_mod
1602 1602
1603 1603 stats = None
1604 1604 try:
1605 1605 #self.shell.save_history()
1606 1606
1607 1607 if opts.has_key('p'):
1608 1608 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1609 1609 else:
1610 1610 if opts.has_key('d'):
1611 1611 deb = debugger.Pdb(self.shell.colors)
1612 1612 # reset Breakpoint state, which is moronically kept
1613 1613 # in a class
1614 1614 bdb.Breakpoint.next = 1
1615 1615 bdb.Breakpoint.bplist = {}
1616 1616 bdb.Breakpoint.bpbynumber = [None]
1617 1617 # Set an initial breakpoint to stop execution
1618 1618 maxtries = 10
1619 1619 bp = int(opts.get('b',[1])[0])
1620 1620 checkline = deb.checkline(filename,bp)
1621 1621 if not checkline:
1622 1622 for bp in range(bp+1,bp+maxtries+1):
1623 1623 if deb.checkline(filename,bp):
1624 1624 break
1625 1625 else:
1626 1626 msg = ("\nI failed to find a valid line to set "
1627 1627 "a breakpoint\n"
1628 1628 "after trying up to line: %s.\n"
1629 1629 "Please set a valid breakpoint manually "
1630 1630 "with the -b option." % bp)
1631 1631 error(msg)
1632 1632 return
1633 1633 # if we find a good linenumber, set the breakpoint
1634 1634 deb.do_break('%s:%s' % (filename,bp))
1635 1635 # Start file run
1636 1636 print "NOTE: Enter 'c' at the",
1637 1637 print "%s prompt to start your script." % deb.prompt
1638 1638 try:
1639 1639 deb.run('execfile("%s")' % filename,prog_ns)
1640 1640
1641 1641 except:
1642 1642 etype, value, tb = sys.exc_info()
1643 1643 # Skip three frames in the traceback: the %run one,
1644 1644 # one inside bdb.py, and the command-line typed by the
1645 1645 # user (run by exec in pdb itself).
1646 1646 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1647 1647 else:
1648 1648 if runner is None:
1649 1649 runner = self.shell.safe_execfile
1650 1650 if opts.has_key('t'):
1651 1651 # timed execution
1652 1652 try:
1653 1653 nruns = int(opts['N'][0])
1654 1654 if nruns < 1:
1655 1655 error('Number of runs must be >=1')
1656 1656 return
1657 1657 except (KeyError):
1658 1658 nruns = 1
1659 1659 if nruns == 1:
1660 1660 t0 = clock2()
1661 1661 runner(filename,prog_ns,prog_ns,
1662 1662 exit_ignore=exit_ignore)
1663 1663 t1 = clock2()
1664 1664 t_usr = t1[0]-t0[0]
1665 1665 t_sys = t1[1]-t0[1]
1666 1666 print "\nIPython CPU timings (estimated):"
1667 1667 print " User : %10s s." % t_usr
1668 1668 print " System: %10s s." % t_sys
1669 1669 else:
1670 1670 runs = range(nruns)
1671 1671 t0 = clock2()
1672 1672 for nr in runs:
1673 1673 runner(filename,prog_ns,prog_ns,
1674 1674 exit_ignore=exit_ignore)
1675 1675 t1 = clock2()
1676 1676 t_usr = t1[0]-t0[0]
1677 1677 t_sys = t1[1]-t0[1]
1678 1678 print "\nIPython CPU timings (estimated):"
1679 1679 print "Total runs performed:",nruns
1680 1680 print " Times : %10s %10s" % ('Total','Per run')
1681 1681 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1682 1682 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1683 1683
1684 1684 else:
1685 1685 # regular execution
1686 1686 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1687 1687
1688 1688 if opts.has_key('i'):
1689 1689 self.shell.user_ns['__name__'] = __name__save
1690 1690 else:
1691 1691 # The shell MUST hold a reference to prog_ns so after %run
1692 1692 # exits, the python deletion mechanism doesn't zero it out
1693 1693 # (leaving dangling references).
1694 1694 self.shell.cache_main_mod(prog_ns,filename)
1695 1695 # update IPython interactive namespace
1696 1696
1697 1697 # Some forms of read errors on the file may mean the
1698 1698 # __name__ key was never set; using pop we don't have to
1699 1699 # worry about a possible KeyError.
1700 1700 prog_ns.pop('__name__', None)
1701 1701
1702 1702 self.shell.user_ns.update(prog_ns)
1703 1703 finally:
1704 1704 # It's a bit of a mystery why, but __builtins__ can change from
1705 1705 # being a module to becoming a dict missing some key data after
1706 1706 # %run. As best I can see, this is NOT something IPython is doing
1707 1707 # at all, and similar problems have been reported before:
1708 1708 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1709 1709 # Since this seems to be done by the interpreter itself, the best
1710 1710 # we can do is to at least restore __builtins__ for the user on
1711 1711 # exit.
1712 1712 self.shell.user_ns['__builtins__'] = __builtin__
1713 1713
1714 1714 # Ensure key global structures are restored
1715 1715 sys.argv = save_argv
1716 1716 if restore_main:
1717 1717 sys.modules['__main__'] = restore_main
1718 1718 else:
1719 1719 # Remove from sys.modules the reference to main_mod we'd
1720 1720 # added. Otherwise it will trap references to objects
1721 1721 # contained therein.
1722 1722 del sys.modules[main_mod_name]
1723 1723
1724 1724 #self.shell.reload_history()
1725 1725
1726 1726 return stats
1727 1727
1728 1728 @testdec.skip_doctest
1729 1729 def magic_timeit(self, parameter_s =''):
1730 1730 """Time execution of a Python statement or expression
1731 1731
1732 1732 Usage:\\
1733 1733 %timeit [-n<N> -r<R> [-t|-c]] statement
1734 1734
1735 1735 Time execution of a Python statement or expression using the timeit
1736 1736 module.
1737 1737
1738 1738 Options:
1739 1739 -n<N>: execute the given statement <N> times in a loop. If this value
1740 1740 is not given, a fitting value is chosen.
1741 1741
1742 1742 -r<R>: repeat the loop iteration <R> times and take the best result.
1743 1743 Default: 3
1744 1744
1745 1745 -t: use time.time to measure the time, which is the default on Unix.
1746 1746 This function measures wall time.
1747 1747
1748 1748 -c: use time.clock to measure the time, which is the default on
1749 1749 Windows and measures wall time. On Unix, resource.getrusage is used
1750 1750 instead and returns the CPU user time.
1751 1751
1752 1752 -p<P>: use a precision of <P> digits to display the timing result.
1753 1753 Default: 3
1754 1754
1755 1755
1756 1756 Examples:
1757 1757
1758 1758 In [1]: %timeit pass
1759 1759 10000000 loops, best of 3: 53.3 ns per loop
1760 1760
1761 1761 In [2]: u = None
1762 1762
1763 1763 In [3]: %timeit u is None
1764 1764 10000000 loops, best of 3: 184 ns per loop
1765 1765
1766 1766 In [4]: %timeit -r 4 u == None
1767 1767 1000000 loops, best of 4: 242 ns per loop
1768 1768
1769 1769 In [5]: import time
1770 1770
1771 1771 In [6]: %timeit -n1 time.sleep(2)
1772 1772 1 loops, best of 3: 2 s per loop
1773 1773
1774 1774
1775 1775 The times reported by %timeit will be slightly higher than those
1776 1776 reported by the timeit.py script when variables are accessed. This is
1777 1777 due to the fact that %timeit executes the statement in the namespace
1778 1778 of the shell, compared with timeit.py, which uses a single setup
1779 1779 statement to import function or create variables. Generally, the bias
1780 1780 does not matter as long as results from timeit.py are not mixed with
1781 1781 those from %timeit."""
1782 1782
1783 1783 import timeit
1784 1784 import math
1785 1785
1786 1786 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1787 1787 # certain terminals. Until we figure out a robust way of
1788 1788 # auto-detecting if the terminal can deal with it, use plain 'us' for
1789 1789 # microseconds. I am really NOT happy about disabling the proper
1790 1790 # 'micro' prefix, but crashing is worse... If anyone knows what the
1791 1791 # right solution for this is, I'm all ears...
1792 1792 #
1793 1793 # Note: using
1794 1794 #
1795 1795 # s = u'\xb5'
1796 1796 # s.encode(sys.getdefaultencoding())
1797 1797 #
1798 1798 # is not sufficient, as I've seen terminals where that fails but
1799 1799 # print s
1800 1800 #
1801 1801 # succeeds
1802 1802 #
1803 1803 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1804 1804
1805 1805 #units = [u"s", u"ms",u'\xb5',"ns"]
1806 1806 units = [u"s", u"ms",u'us',"ns"]
1807 1807
1808 1808 scaling = [1, 1e3, 1e6, 1e9]
1809 1809
1810 1810 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1811 1811 posix=False)
1812 1812 if stmt == "":
1813 1813 return
1814 1814 timefunc = timeit.default_timer
1815 1815 number = int(getattr(opts, "n", 0))
1816 1816 repeat = int(getattr(opts, "r", timeit.default_repeat))
1817 1817 precision = int(getattr(opts, "p", 3))
1818 1818 if hasattr(opts, "t"):
1819 1819 timefunc = time.time
1820 1820 if hasattr(opts, "c"):
1821 1821 timefunc = clock
1822 1822
1823 1823 timer = timeit.Timer(timer=timefunc)
1824 1824 # this code has tight coupling to the inner workings of timeit.Timer,
1825 1825 # but is there a better way to achieve that the code stmt has access
1826 1826 # to the shell namespace?
1827 1827
1828 1828 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1829 1829 'setup': "pass"}
1830 1830 # Track compilation time so it can be reported if too long
1831 1831 # Minimum time above which compilation time will be reported
1832 1832 tc_min = 0.1
1833 1833
1834 1834 t0 = clock()
1835 1835 code = compile(src, "<magic-timeit>", "exec")
1836 1836 tc = clock()-t0
1837 1837
1838 1838 ns = {}
1839 1839 exec code in self.shell.user_ns, ns
1840 1840 timer.inner = ns["inner"]
1841 1841
1842 1842 if number == 0:
1843 1843 # determine number so that 0.2 <= total time < 2.0
1844 1844 number = 1
1845 1845 for i in range(1, 10):
1846 1846 if timer.timeit(number) >= 0.2:
1847 1847 break
1848 1848 number *= 10
1849 1849
1850 1850 best = min(timer.repeat(repeat, number)) / number
1851 1851
1852 1852 if best > 0.0 and best < 1000.0:
1853 1853 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1854 1854 elif best >= 1000.0:
1855 1855 order = 0
1856 1856 else:
1857 1857 order = 3
1858 1858 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1859 1859 precision,
1860 1860 best * scaling[order],
1861 1861 units[order])
1862 1862 if tc > tc_min:
1863 1863 print "Compiler time: %.2f s" % tc
1864 1864
1865 1865 @testdec.skip_doctest
1866 1866 def magic_time(self,parameter_s = ''):
1867 1867 """Time execution of a Python statement or expression.
1868 1868
1869 1869 The CPU and wall clock times are printed, and the value of the
1870 1870 expression (if any) is returned. Note that under Win32, system time
1871 1871 is always reported as 0, since it can not be measured.
1872 1872
1873 1873 This function provides very basic timing functionality. In Python
1874 1874 2.3, the timeit module offers more control and sophistication, so this
1875 1875 could be rewritten to use it (patches welcome).
1876 1876
1877 1877 Some examples:
1878 1878
1879 1879 In [1]: time 2**128
1880 1880 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1881 1881 Wall time: 0.00
1882 1882 Out[1]: 340282366920938463463374607431768211456L
1883 1883
1884 1884 In [2]: n = 1000000
1885 1885
1886 1886 In [3]: time sum(range(n))
1887 1887 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1888 1888 Wall time: 1.37
1889 1889 Out[3]: 499999500000L
1890 1890
1891 1891 In [4]: time print 'hello world'
1892 1892 hello world
1893 1893 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1894 1894 Wall time: 0.00
1895 1895
1896 1896 Note that the time needed by Python to compile the given expression
1897 1897 will be reported if it is more than 0.1s. In this example, the
1898 1898 actual exponentiation is done by Python at compilation time, so while
1899 1899 the expression can take a noticeable amount of time to compute, that
1900 1900 time is purely due to the compilation:
1901 1901
1902 1902 In [5]: time 3**9999;
1903 1903 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1904 1904 Wall time: 0.00 s
1905 1905
1906 1906 In [6]: time 3**999999;
1907 1907 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1908 1908 Wall time: 0.00 s
1909 1909 Compiler : 0.78 s
1910 1910 """
1911 1911
1912 1912 # fail immediately if the given expression can't be compiled
1913 1913
1914 1914 expr = self.shell.prefilter(parameter_s,False)
1915 1915
1916 1916 # Minimum time above which compilation time will be reported
1917 1917 tc_min = 0.1
1918 1918
1919 1919 try:
1920 1920 mode = 'eval'
1921 1921 t0 = clock()
1922 1922 code = compile(expr,'<timed eval>',mode)
1923 1923 tc = clock()-t0
1924 1924 except SyntaxError:
1925 1925 mode = 'exec'
1926 1926 t0 = clock()
1927 1927 code = compile(expr,'<timed exec>',mode)
1928 1928 tc = clock()-t0
1929 1929 # skew measurement as little as possible
1930 1930 glob = self.shell.user_ns
1931 locs = self._magic_locals
1931 1932 clk = clock2
1932 1933 wtime = time.time
1933 1934 # time execution
1934 1935 wall_st = wtime()
1935 1936 if mode=='eval':
1936 1937 st = clk()
1937 out = eval(code,glob)
1938 out = eval(code, glob, locs)
1938 1939 end = clk()
1939 1940 else:
1940 1941 st = clk()
1941 exec code in glob
1942 exec code in glob, locs
1942 1943 end = clk()
1943 1944 out = None
1944 1945 wall_end = wtime()
1945 1946 # Compute actual times and report
1946 1947 wall_time = wall_end-wall_st
1947 1948 cpu_user = end[0]-st[0]
1948 1949 cpu_sys = end[1]-st[1]
1949 1950 cpu_tot = cpu_user+cpu_sys
1950 1951 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1951 1952 (cpu_user,cpu_sys,cpu_tot)
1952 1953 print "Wall time: %.2f s" % wall_time
1953 1954 if tc > tc_min:
1954 1955 print "Compiler : %.2f s" % tc
1955 1956 return out
1956 1957
1957 1958 @testdec.skip_doctest
1958 1959 def magic_macro(self,parameter_s = ''):
1959 1960 """Define a set of input lines as a macro for future re-execution.
1960 1961
1961 1962 Usage:\\
1962 1963 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1963 1964
1964 1965 Options:
1965 1966
1966 1967 -r: use 'raw' input. By default, the 'processed' history is used,
1967 1968 so that magics are loaded in their transformed version to valid
1968 1969 Python. If this option is given, the raw input as typed as the
1969 1970 command line is used instead.
1970 1971
1971 1972 This will define a global variable called `name` which is a string
1972 1973 made of joining the slices and lines you specify (n1,n2,... numbers
1973 1974 above) from your input history into a single string. This variable
1974 1975 acts like an automatic function which re-executes those lines as if
1975 1976 you had typed them. You just type 'name' at the prompt and the code
1976 1977 executes.
1977 1978
1978 1979 The syntax for indicating input ranges is described in %history.
1979 1980
1980 1981 Note: as a 'hidden' feature, you can also use traditional python slice
1981 1982 notation, where N:M means numbers N through M-1.
1982 1983
1983 1984 For example, if your history contains (%hist prints it):
1984 1985
1985 1986 44: x=1
1986 1987 45: y=3
1987 1988 46: z=x+y
1988 1989 47: print x
1989 1990 48: a=5
1990 1991 49: print 'x',x,'y',y
1991 1992
1992 1993 you can create a macro with lines 44 through 47 (included) and line 49
1993 1994 called my_macro with:
1994 1995
1995 1996 In [55]: %macro my_macro 44-47 49
1996 1997
1997 1998 Now, typing `my_macro` (without quotes) will re-execute all this code
1998 1999 in one pass.
1999 2000
2000 2001 You don't need to give the line-numbers in order, and any given line
2001 2002 number can appear multiple times. You can assemble macros with any
2002 2003 lines from your input history in any order.
2003 2004
2004 2005 The macro is a simple object which holds its value in an attribute,
2005 2006 but IPython's display system checks for macros and executes them as
2006 2007 code instead of printing them when you type their name.
2007 2008
2008 2009 You can view a macro's contents by explicitly printing it with:
2009 2010
2010 2011 'print macro_name'.
2011 2012
2012 2013 For one-off cases which DON'T contain magic function calls in them you
2013 2014 can obtain similar results by explicitly executing slices from your
2014 2015 input history with:
2015 2016
2016 2017 In [60]: exec In[44:48]+In[49]"""
2017 2018
2018 2019 opts,args = self.parse_options(parameter_s,'r',mode='list')
2019 2020 if not args: # List existing macros
2020 2021 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2021 2022 isinstance(v, Macro))
2022 2023 if len(args) == 1:
2023 2024 raise UsageError(
2024 2025 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2025 2026 name, ranges = args[0], " ".join(args[1:])
2026 2027
2027 2028 #print 'rng',ranges # dbg
2028 2029 lines = self.extract_input_lines(ranges,'r' in opts)
2029 2030 macro = Macro(lines)
2030 2031 self.shell.define_macro(name, macro)
2031 2032 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2032 2033 print 'Macro contents:'
2033 2034 print macro,
2034 2035
2035 2036 def magic_save(self,parameter_s = ''):
2036 2037 """Save a set of lines to a given filename.
2037 2038
2038 2039 Usage:\\
2039 2040 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2040 2041
2041 2042 Options:
2042 2043
2043 2044 -r: use 'raw' input. By default, the 'processed' history is used,
2044 2045 so that magics are loaded in their transformed version to valid
2045 2046 Python. If this option is given, the raw input as typed as the
2046 2047 command line is used instead.
2047 2048
2048 2049 This function uses the same syntax as %history for input ranges,
2049 2050 then saves the lines to the filename you specify.
2050 2051
2051 2052 It adds a '.py' extension to the file if you don't do so yourself, and
2052 2053 it asks for confirmation before overwriting existing files."""
2053 2054
2054 2055 opts,args = self.parse_options(parameter_s,'r',mode='list')
2055 2056 fname,ranges = args[0], " ".join(args[1:])
2056 2057 if not fname.endswith('.py'):
2057 2058 fname += '.py'
2058 2059 if os.path.isfile(fname):
2059 2060 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2060 2061 if ans.lower() not in ['y','yes']:
2061 2062 print 'Operation cancelled.'
2062 2063 return
2063 2064 cmds = self.extract_input_lines(ranges, 'r' in opts)
2064 2065 with open(fname,'w') as f:
2065 2066 f.write("# coding: utf-8\n")
2066 2067 f.write(cmds.encode("utf-8"))
2067 2068 print 'The following commands were written to file `%s`:' % fname
2068 2069 print cmds
2069 2070
2070 2071 def _edit_macro(self,mname,macro):
2071 2072 """open an editor with the macro data in a file"""
2072 2073 filename = self.shell.mktempfile(macro.value)
2073 2074 self.shell.hooks.editor(filename)
2074 2075
2075 2076 # and make a new macro object, to replace the old one
2076 2077 mfile = open(filename)
2077 2078 mvalue = mfile.read()
2078 2079 mfile.close()
2079 2080 self.shell.user_ns[mname] = Macro(mvalue)
2080 2081
2081 2082 def magic_ed(self,parameter_s=''):
2082 2083 """Alias to %edit."""
2083 2084 return self.magic_edit(parameter_s)
2084 2085
2085 2086 @testdec.skip_doctest
2086 2087 def magic_edit(self,parameter_s='',last_call=['','']):
2087 2088 """Bring up an editor and execute the resulting code.
2088 2089
2089 2090 Usage:
2090 2091 %edit [options] [args]
2091 2092
2092 2093 %edit runs IPython's editor hook. The default version of this hook is
2093 2094 set to call the __IPYTHON__.rc.editor command. This is read from your
2094 2095 environment variable $EDITOR. If this isn't found, it will default to
2095 2096 vi under Linux/Unix and to notepad under Windows. See the end of this
2096 2097 docstring for how to change the editor hook.
2097 2098
2098 2099 You can also set the value of this editor via the command line option
2099 2100 '-editor' or in your ipythonrc file. This is useful if you wish to use
2100 2101 specifically for IPython an editor different from your typical default
2101 2102 (and for Windows users who typically don't set environment variables).
2102 2103
2103 2104 This command allows you to conveniently edit multi-line code right in
2104 2105 your IPython session.
2105 2106
2106 2107 If called without arguments, %edit opens up an empty editor with a
2107 2108 temporary file and will execute the contents of this file when you
2108 2109 close it (don't forget to save it!).
2109 2110
2110 2111
2111 2112 Options:
2112 2113
2113 2114 -n <number>: open the editor at a specified line number. By default,
2114 2115 the IPython editor hook uses the unix syntax 'editor +N filename', but
2115 2116 you can configure this by providing your own modified hook if your
2116 2117 favorite editor supports line-number specifications with a different
2117 2118 syntax.
2118 2119
2119 2120 -p: this will call the editor with the same data as the previous time
2120 2121 it was used, regardless of how long ago (in your current session) it
2121 2122 was.
2122 2123
2123 2124 -r: use 'raw' input. This option only applies to input taken from the
2124 2125 user's history. By default, the 'processed' history is used, so that
2125 2126 magics are loaded in their transformed version to valid Python. If
2126 2127 this option is given, the raw input as typed as the command line is
2127 2128 used instead. When you exit the editor, it will be executed by
2128 2129 IPython's own processor.
2129 2130
2130 2131 -x: do not execute the edited code immediately upon exit. This is
2131 2132 mainly useful if you are editing programs which need to be called with
2132 2133 command line arguments, which you can then do using %run.
2133 2134
2134 2135
2135 2136 Arguments:
2136 2137
2137 2138 If arguments are given, the following possibilites exist:
2138 2139
2139 2140 - If the argument is a filename, IPython will load that into the
2140 2141 editor. It will execute its contents with execfile() when you exit,
2141 2142 loading any code in the file into your interactive namespace.
2142 2143
2143 2144 - The arguments are ranges of input history, e.g. "7 ~1/4-6".
2144 2145 The syntax is the same as in the %history magic.
2145 2146
2146 2147 - If the argument is a string variable, its contents are loaded
2147 2148 into the editor. You can thus edit any string which contains
2148 2149 python code (including the result of previous edits).
2149 2150
2150 2151 - If the argument is the name of an object (other than a string),
2151 2152 IPython will try to locate the file where it was defined and open the
2152 2153 editor at the point where it is defined. You can use `%edit function`
2153 2154 to load an editor exactly at the point where 'function' is defined,
2154 2155 edit it and have the file be executed automatically.
2155 2156
2156 2157 If the object is a macro (see %macro for details), this opens up your
2157 2158 specified editor with a temporary file containing the macro's data.
2158 2159 Upon exit, the macro is reloaded with the contents of the file.
2159 2160
2160 2161 Note: opening at an exact line is only supported under Unix, and some
2161 2162 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2162 2163 '+NUMBER' parameter necessary for this feature. Good editors like
2163 2164 (X)Emacs, vi, jed, pico and joe all do.
2164 2165
2165 2166 After executing your code, %edit will return as output the code you
2166 2167 typed in the editor (except when it was an existing file). This way
2167 2168 you can reload the code in further invocations of %edit as a variable,
2168 2169 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2169 2170 the output.
2170 2171
2171 2172 Note that %edit is also available through the alias %ed.
2172 2173
2173 2174 This is an example of creating a simple function inside the editor and
2174 2175 then modifying it. First, start up the editor:
2175 2176
2176 2177 In [1]: ed
2177 2178 Editing... done. Executing edited code...
2178 2179 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2179 2180
2180 2181 We can then call the function foo():
2181 2182
2182 2183 In [2]: foo()
2183 2184 foo() was defined in an editing session
2184 2185
2185 2186 Now we edit foo. IPython automatically loads the editor with the
2186 2187 (temporary) file where foo() was previously defined:
2187 2188
2188 2189 In [3]: ed foo
2189 2190 Editing... done. Executing edited code...
2190 2191
2191 2192 And if we call foo() again we get the modified version:
2192 2193
2193 2194 In [4]: foo()
2194 2195 foo() has now been changed!
2195 2196
2196 2197 Here is an example of how to edit a code snippet successive
2197 2198 times. First we call the editor:
2198 2199
2199 2200 In [5]: ed
2200 2201 Editing... done. Executing edited code...
2201 2202 hello
2202 2203 Out[5]: "print 'hello'n"
2203 2204
2204 2205 Now we call it again with the previous output (stored in _):
2205 2206
2206 2207 In [6]: ed _
2207 2208 Editing... done. Executing edited code...
2208 2209 hello world
2209 2210 Out[6]: "print 'hello world'n"
2210 2211
2211 2212 Now we call it with the output #8 (stored in _8, also as Out[8]):
2212 2213
2213 2214 In [7]: ed _8
2214 2215 Editing... done. Executing edited code...
2215 2216 hello again
2216 2217 Out[7]: "print 'hello again'n"
2217 2218
2218 2219
2219 2220 Changing the default editor hook:
2220 2221
2221 2222 If you wish to write your own editor hook, you can put it in a
2222 2223 configuration file which you load at startup time. The default hook
2223 2224 is defined in the IPython.core.hooks module, and you can use that as a
2224 2225 starting example for further modifications. That file also has
2225 2226 general instructions on how to set a new hook for use once you've
2226 2227 defined it."""
2227 2228
2228 2229 # FIXME: This function has become a convoluted mess. It needs a
2229 2230 # ground-up rewrite with clean, simple logic.
2230 2231
2231 2232 def make_filename(arg):
2232 2233 "Make a filename from the given args"
2233 2234 try:
2234 2235 filename = get_py_filename(arg)
2235 2236 except IOError:
2236 2237 if args.endswith('.py'):
2237 2238 filename = arg
2238 2239 else:
2239 2240 filename = None
2240 2241 return filename
2241 2242
2242 2243 # custom exceptions
2243 2244 class DataIsObject(Exception): pass
2244 2245
2245 2246 opts,args = self.parse_options(parameter_s,'prxn:')
2246 2247 # Set a few locals from the options for convenience:
2247 2248 opts_prev = 'p' in opts
2248 2249 opts_raw = 'r' in opts
2249 2250
2250 2251 # Default line number value
2251 2252 lineno = opts.get('n',None)
2252 2253
2253 2254 if opts_prev:
2254 2255 args = '_%s' % last_call[0]
2255 2256 if not self.shell.user_ns.has_key(args):
2256 2257 args = last_call[1]
2257 2258
2258 2259 # use last_call to remember the state of the previous call, but don't
2259 2260 # let it be clobbered by successive '-p' calls.
2260 2261 try:
2261 2262 last_call[0] = self.shell.displayhook.prompt_count
2262 2263 if not opts_prev:
2263 2264 last_call[1] = parameter_s
2264 2265 except:
2265 2266 pass
2266 2267
2267 2268 # by default this is done with temp files, except when the given
2268 2269 # arg is a filename
2269 2270 use_temp = True
2270 2271
2271 2272 data = ''
2272 2273 if args.endswith('.py'):
2273 2274 filename = make_filename(args)
2274 2275 use_temp = False
2275 2276 elif args:
2276 2277 # Mode where user specifies ranges of lines, like in %macro.
2277 2278 data = self.extract_input_lines(args, opts_raw)
2278 2279 if not data:
2279 2280 try:
2280 2281 # Load the parameter given as a variable. If not a string,
2281 2282 # process it as an object instead (below)
2282 2283
2283 2284 #print '*** args',args,'type',type(args) # dbg
2284 2285 data = eval(args, self.shell.user_ns)
2285 2286 if not isinstance(data, basestring):
2286 2287 raise DataIsObject
2287 2288
2288 2289 except (NameError,SyntaxError):
2289 2290 # given argument is not a variable, try as a filename
2290 2291 filename = make_filename(args)
2291 2292 if filename is None:
2292 2293 warn("Argument given (%s) can't be found as a variable "
2293 2294 "or as a filename." % args)
2294 2295 return
2295 2296 use_temp = False
2296 2297
2297 2298 except DataIsObject:
2298 2299 # macros have a special edit function
2299 2300 if isinstance(data, Macro):
2300 2301 self._edit_macro(args,data)
2301 2302 return
2302 2303
2303 2304 # For objects, try to edit the file where they are defined
2304 2305 try:
2305 2306 filename = inspect.getabsfile(data)
2306 2307 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2307 2308 # class created by %edit? Try to find source
2308 2309 # by looking for method definitions instead, the
2309 2310 # __module__ in those classes is FakeModule.
2310 2311 attrs = [getattr(data, aname) for aname in dir(data)]
2311 2312 for attr in attrs:
2312 2313 if not inspect.ismethod(attr):
2313 2314 continue
2314 2315 filename = inspect.getabsfile(attr)
2315 2316 if filename and 'fakemodule' not in filename.lower():
2316 2317 # change the attribute to be the edit target instead
2317 2318 data = attr
2318 2319 break
2319 2320
2320 2321 datafile = 1
2321 2322 except TypeError:
2322 2323 filename = make_filename(args)
2323 2324 datafile = 1
2324 2325 warn('Could not find file where `%s` is defined.\n'
2325 2326 'Opening a file named `%s`' % (args,filename))
2326 2327 # Now, make sure we can actually read the source (if it was in
2327 2328 # a temp file it's gone by now).
2328 2329 if datafile:
2329 2330 try:
2330 2331 if lineno is None:
2331 2332 lineno = inspect.getsourcelines(data)[1]
2332 2333 except IOError:
2333 2334 filename = make_filename(args)
2334 2335 if filename is None:
2335 2336 warn('The file `%s` where `%s` was defined cannot '
2336 2337 'be read.' % (filename,data))
2337 2338 return
2338 2339 use_temp = False
2339 2340
2340 2341 if use_temp:
2341 2342 filename = self.shell.mktempfile(data)
2342 2343 print 'IPython will make a temporary file named:',filename
2343 2344
2344 2345 # do actual editing here
2345 2346 print 'Editing...',
2346 2347 sys.stdout.flush()
2347 2348 try:
2348 2349 # Quote filenames that may have spaces in them
2349 2350 if ' ' in filename:
2350 2351 filename = "%s" % filename
2351 2352 self.shell.hooks.editor(filename,lineno)
2352 2353 except TryNext:
2353 2354 warn('Could not open editor')
2354 2355 return
2355 2356
2356 2357 # XXX TODO: should this be generalized for all string vars?
2357 2358 # For now, this is special-cased to blocks created by cpaste
2358 2359 if args.strip() == 'pasted_block':
2359 2360 self.shell.user_ns['pasted_block'] = file_read(filename)
2360 2361
2361 2362 if 'x' in opts: # -x prevents actual execution
2362 2363 print
2363 2364 else:
2364 2365 print 'done. Executing edited code...'
2365 2366 if opts_raw:
2366 2367 self.shell.run_cell(file_read(filename),
2367 2368 store_history=False)
2368 2369 else:
2369 2370 self.shell.safe_execfile(filename,self.shell.user_ns,
2370 2371 self.shell.user_ns)
2371 2372
2372 2373
2373 2374 if use_temp:
2374 2375 try:
2375 2376 return open(filename).read()
2376 2377 except IOError,msg:
2377 2378 if msg.filename == filename:
2378 2379 warn('File not found. Did you forget to save?')
2379 2380 return
2380 2381 else:
2381 2382 self.shell.showtraceback()
2382 2383
2383 2384 def magic_xmode(self,parameter_s = ''):
2384 2385 """Switch modes for the exception handlers.
2385 2386
2386 2387 Valid modes: Plain, Context and Verbose.
2387 2388
2388 2389 If called without arguments, acts as a toggle."""
2389 2390
2390 2391 def xmode_switch_err(name):
2391 2392 warn('Error changing %s exception modes.\n%s' %
2392 2393 (name,sys.exc_info()[1]))
2393 2394
2394 2395 shell = self.shell
2395 2396 new_mode = parameter_s.strip().capitalize()
2396 2397 try:
2397 2398 shell.InteractiveTB.set_mode(mode=new_mode)
2398 2399 print 'Exception reporting mode:',shell.InteractiveTB.mode
2399 2400 except:
2400 2401 xmode_switch_err('user')
2401 2402
2402 2403 def magic_colors(self,parameter_s = ''):
2403 2404 """Switch color scheme for prompts, info system and exception handlers.
2404 2405
2405 2406 Currently implemented schemes: NoColor, Linux, LightBG.
2406 2407
2407 2408 Color scheme names are not case-sensitive.
2408 2409
2409 2410 Examples
2410 2411 --------
2411 2412 To get a plain black and white terminal::
2412 2413
2413 2414 %colors nocolor
2414 2415 """
2415 2416
2416 2417 def color_switch_err(name):
2417 2418 warn('Error changing %s color schemes.\n%s' %
2418 2419 (name,sys.exc_info()[1]))
2419 2420
2420 2421
2421 2422 new_scheme = parameter_s.strip()
2422 2423 if not new_scheme:
2423 2424 raise UsageError(
2424 2425 "%colors: you must specify a color scheme. See '%colors?'")
2425 2426 return
2426 2427 # local shortcut
2427 2428 shell = self.shell
2428 2429
2429 2430 import IPython.utils.rlineimpl as readline
2430 2431
2431 2432 if not readline.have_readline and sys.platform == "win32":
2432 2433 msg = """\
2433 2434 Proper color support under MS Windows requires the pyreadline library.
2434 2435 You can find it at:
2435 2436 http://ipython.scipy.org/moin/PyReadline/Intro
2436 2437 Gary's readline needs the ctypes module, from:
2437 2438 http://starship.python.net/crew/theller/ctypes
2438 2439 (Note that ctypes is already part of Python versions 2.5 and newer).
2439 2440
2440 2441 Defaulting color scheme to 'NoColor'"""
2441 2442 new_scheme = 'NoColor'
2442 2443 warn(msg)
2443 2444
2444 2445 # readline option is 0
2445 2446 if not shell.has_readline:
2446 2447 new_scheme = 'NoColor'
2447 2448
2448 2449 # Set prompt colors
2449 2450 try:
2450 2451 shell.displayhook.set_colors(new_scheme)
2451 2452 except:
2452 2453 color_switch_err('prompt')
2453 2454 else:
2454 2455 shell.colors = \
2455 2456 shell.displayhook.color_table.active_scheme_name
2456 2457 # Set exception colors
2457 2458 try:
2458 2459 shell.InteractiveTB.set_colors(scheme = new_scheme)
2459 2460 shell.SyntaxTB.set_colors(scheme = new_scheme)
2460 2461 except:
2461 2462 color_switch_err('exception')
2462 2463
2463 2464 # Set info (for 'object?') colors
2464 2465 if shell.color_info:
2465 2466 try:
2466 2467 shell.inspector.set_active_scheme(new_scheme)
2467 2468 except:
2468 2469 color_switch_err('object inspector')
2469 2470 else:
2470 2471 shell.inspector.set_active_scheme('NoColor')
2471 2472
2472 2473 def magic_pprint(self, parameter_s=''):
2473 2474 """Toggle pretty printing on/off."""
2474 2475 ptformatter = self.shell.display_formatter.formatters['text/plain']
2475 2476 ptformatter.pprint = bool(1 - ptformatter.pprint)
2476 2477 print 'Pretty printing has been turned', \
2477 2478 ['OFF','ON'][ptformatter.pprint]
2478 2479
2479 2480 def magic_Exit(self, parameter_s=''):
2480 2481 """Exit IPython."""
2481 2482
2482 2483 self.shell.ask_exit()
2483 2484
2484 2485 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2485 2486 magic_exit = magic_quit = magic_Quit = magic_Exit
2486 2487
2487 2488 #......................................................................
2488 2489 # Functions to implement unix shell-type things
2489 2490
2490 2491 @testdec.skip_doctest
2491 2492 def magic_alias(self, parameter_s = ''):
2492 2493 """Define an alias for a system command.
2493 2494
2494 2495 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2495 2496
2496 2497 Then, typing 'alias_name params' will execute the system command 'cmd
2497 2498 params' (from your underlying operating system).
2498 2499
2499 2500 Aliases have lower precedence than magic functions and Python normal
2500 2501 variables, so if 'foo' is both a Python variable and an alias, the
2501 2502 alias can not be executed until 'del foo' removes the Python variable.
2502 2503
2503 2504 You can use the %l specifier in an alias definition to represent the
2504 2505 whole line when the alias is called. For example:
2505 2506
2506 2507 In [2]: alias bracket echo "Input in brackets: <%l>"
2507 2508 In [3]: bracket hello world
2508 2509 Input in brackets: <hello world>
2509 2510
2510 2511 You can also define aliases with parameters using %s specifiers (one
2511 2512 per parameter):
2512 2513
2513 2514 In [1]: alias parts echo first %s second %s
2514 2515 In [2]: %parts A B
2515 2516 first A second B
2516 2517 In [3]: %parts A
2517 2518 Incorrect number of arguments: 2 expected.
2518 2519 parts is an alias to: 'echo first %s second %s'
2519 2520
2520 2521 Note that %l and %s are mutually exclusive. You can only use one or
2521 2522 the other in your aliases.
2522 2523
2523 2524 Aliases expand Python variables just like system calls using ! or !!
2524 2525 do: all expressions prefixed with '$' get expanded. For details of
2525 2526 the semantic rules, see PEP-215:
2526 2527 http://www.python.org/peps/pep-0215.html. This is the library used by
2527 2528 IPython for variable expansion. If you want to access a true shell
2528 2529 variable, an extra $ is necessary to prevent its expansion by IPython:
2529 2530
2530 2531 In [6]: alias show echo
2531 2532 In [7]: PATH='A Python string'
2532 2533 In [8]: show $PATH
2533 2534 A Python string
2534 2535 In [9]: show $$PATH
2535 2536 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2536 2537
2537 2538 You can use the alias facility to acess all of $PATH. See the %rehash
2538 2539 and %rehashx functions, which automatically create aliases for the
2539 2540 contents of your $PATH.
2540 2541
2541 2542 If called with no parameters, %alias prints the current alias table."""
2542 2543
2543 2544 par = parameter_s.strip()
2544 2545 if not par:
2545 2546 stored = self.db.get('stored_aliases', {} )
2546 2547 aliases = sorted(self.shell.alias_manager.aliases)
2547 2548 # for k, v in stored:
2548 2549 # atab.append(k, v[0])
2549 2550
2550 2551 print "Total number of aliases:", len(aliases)
2551 2552 sys.stdout.flush()
2552 2553 return aliases
2553 2554
2554 2555 # Now try to define a new one
2555 2556 try:
2556 2557 alias,cmd = par.split(None, 1)
2557 2558 except:
2558 2559 print oinspect.getdoc(self.magic_alias)
2559 2560 else:
2560 2561 self.shell.alias_manager.soft_define_alias(alias, cmd)
2561 2562 # end magic_alias
2562 2563
2563 2564 def magic_unalias(self, parameter_s = ''):
2564 2565 """Remove an alias"""
2565 2566
2566 2567 aname = parameter_s.strip()
2567 2568 self.shell.alias_manager.undefine_alias(aname)
2568 2569 stored = self.db.get('stored_aliases', {} )
2569 2570 if aname in stored:
2570 2571 print "Removing %stored alias",aname
2571 2572 del stored[aname]
2572 2573 self.db['stored_aliases'] = stored
2573 2574
2574 2575 def magic_rehashx(self, parameter_s = ''):
2575 2576 """Update the alias table with all executable files in $PATH.
2576 2577
2577 2578 This version explicitly checks that every entry in $PATH is a file
2578 2579 with execute access (os.X_OK), so it is much slower than %rehash.
2579 2580
2580 2581 Under Windows, it checks executability as a match agains a
2581 2582 '|'-separated string of extensions, stored in the IPython config
2582 2583 variable win_exec_ext. This defaults to 'exe|com|bat'.
2583 2584
2584 2585 This function also resets the root module cache of module completer,
2585 2586 used on slow filesystems.
2586 2587 """
2587 2588 from IPython.core.alias import InvalidAliasError
2588 2589
2589 2590 # for the benefit of module completer in ipy_completers.py
2590 2591 del self.db['rootmodules']
2591 2592
2592 2593 path = [os.path.abspath(os.path.expanduser(p)) for p in
2593 2594 os.environ.get('PATH','').split(os.pathsep)]
2594 2595 path = filter(os.path.isdir,path)
2595 2596
2596 2597 syscmdlist = []
2597 2598 # Now define isexec in a cross platform manner.
2598 2599 if os.name == 'posix':
2599 2600 isexec = lambda fname:os.path.isfile(fname) and \
2600 2601 os.access(fname,os.X_OK)
2601 2602 else:
2602 2603 try:
2603 2604 winext = os.environ['pathext'].replace(';','|').replace('.','')
2604 2605 except KeyError:
2605 2606 winext = 'exe|com|bat|py'
2606 2607 if 'py' not in winext:
2607 2608 winext += '|py'
2608 2609 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2609 2610 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2610 2611 savedir = os.getcwd()
2611 2612
2612 2613 # Now walk the paths looking for executables to alias.
2613 2614 try:
2614 2615 # write the whole loop for posix/Windows so we don't have an if in
2615 2616 # the innermost part
2616 2617 if os.name == 'posix':
2617 2618 for pdir in path:
2618 2619 os.chdir(pdir)
2619 2620 for ff in os.listdir(pdir):
2620 2621 if isexec(ff):
2621 2622 try:
2622 2623 # Removes dots from the name since ipython
2623 2624 # will assume names with dots to be python.
2624 2625 self.shell.alias_manager.define_alias(
2625 2626 ff.replace('.',''), ff)
2626 2627 except InvalidAliasError:
2627 2628 pass
2628 2629 else:
2629 2630 syscmdlist.append(ff)
2630 2631 else:
2631 2632 no_alias = self.shell.alias_manager.no_alias
2632 2633 for pdir in path:
2633 2634 os.chdir(pdir)
2634 2635 for ff in os.listdir(pdir):
2635 2636 base, ext = os.path.splitext(ff)
2636 2637 if isexec(ff) and base.lower() not in no_alias:
2637 2638 if ext.lower() == '.exe':
2638 2639 ff = base
2639 2640 try:
2640 2641 # Removes dots from the name since ipython
2641 2642 # will assume names with dots to be python.
2642 2643 self.shell.alias_manager.define_alias(
2643 2644 base.lower().replace('.',''), ff)
2644 2645 except InvalidAliasError:
2645 2646 pass
2646 2647 syscmdlist.append(ff)
2647 2648 db = self.db
2648 2649 db['syscmdlist'] = syscmdlist
2649 2650 finally:
2650 2651 os.chdir(savedir)
2651 2652
2652 2653 @testdec.skip_doctest
2653 2654 def magic_pwd(self, parameter_s = ''):
2654 2655 """Return the current working directory path.
2655 2656
2656 2657 Examples
2657 2658 --------
2658 2659 ::
2659 2660
2660 2661 In [9]: pwd
2661 2662 Out[9]: '/home/tsuser/sprint/ipython'
2662 2663 """
2663 2664 return os.getcwd()
2664 2665
2665 2666 @testdec.skip_doctest
2666 2667 def magic_cd(self, parameter_s=''):
2667 2668 """Change the current working directory.
2668 2669
2669 2670 This command automatically maintains an internal list of directories
2670 2671 you visit during your IPython session, in the variable _dh. The
2671 2672 command %dhist shows this history nicely formatted. You can also
2672 2673 do 'cd -<tab>' to see directory history conveniently.
2673 2674
2674 2675 Usage:
2675 2676
2676 2677 cd 'dir': changes to directory 'dir'.
2677 2678
2678 2679 cd -: changes to the last visited directory.
2679 2680
2680 2681 cd -<n>: changes to the n-th directory in the directory history.
2681 2682
2682 2683 cd --foo: change to directory that matches 'foo' in history
2683 2684
2684 2685 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2685 2686 (note: cd <bookmark_name> is enough if there is no
2686 2687 directory <bookmark_name>, but a bookmark with the name exists.)
2687 2688 'cd -b <tab>' allows you to tab-complete bookmark names.
2688 2689
2689 2690 Options:
2690 2691
2691 2692 -q: quiet. Do not print the working directory after the cd command is
2692 2693 executed. By default IPython's cd command does print this directory,
2693 2694 since the default prompts do not display path information.
2694 2695
2695 2696 Note that !cd doesn't work for this purpose because the shell where
2696 2697 !command runs is immediately discarded after executing 'command'.
2697 2698
2698 2699 Examples
2699 2700 --------
2700 2701 ::
2701 2702
2702 2703 In [10]: cd parent/child
2703 2704 /home/tsuser/parent/child
2704 2705 """
2705 2706
2706 2707 parameter_s = parameter_s.strip()
2707 2708 #bkms = self.shell.persist.get("bookmarks",{})
2708 2709
2709 2710 oldcwd = os.getcwd()
2710 2711 numcd = re.match(r'(-)(\d+)$',parameter_s)
2711 2712 # jump in directory history by number
2712 2713 if numcd:
2713 2714 nn = int(numcd.group(2))
2714 2715 try:
2715 2716 ps = self.shell.user_ns['_dh'][nn]
2716 2717 except IndexError:
2717 2718 print 'The requested directory does not exist in history.'
2718 2719 return
2719 2720 else:
2720 2721 opts = {}
2721 2722 elif parameter_s.startswith('--'):
2722 2723 ps = None
2723 2724 fallback = None
2724 2725 pat = parameter_s[2:]
2725 2726 dh = self.shell.user_ns['_dh']
2726 2727 # first search only by basename (last component)
2727 2728 for ent in reversed(dh):
2728 2729 if pat in os.path.basename(ent) and os.path.isdir(ent):
2729 2730 ps = ent
2730 2731 break
2731 2732
2732 2733 if fallback is None and pat in ent and os.path.isdir(ent):
2733 2734 fallback = ent
2734 2735
2735 2736 # if we have no last part match, pick the first full path match
2736 2737 if ps is None:
2737 2738 ps = fallback
2738 2739
2739 2740 if ps is None:
2740 2741 print "No matching entry in directory history"
2741 2742 return
2742 2743 else:
2743 2744 opts = {}
2744 2745
2745 2746
2746 2747 else:
2747 2748 #turn all non-space-escaping backslashes to slashes,
2748 2749 # for c:\windows\directory\names\
2749 2750 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2750 2751 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2751 2752 # jump to previous
2752 2753 if ps == '-':
2753 2754 try:
2754 2755 ps = self.shell.user_ns['_dh'][-2]
2755 2756 except IndexError:
2756 2757 raise UsageError('%cd -: No previous directory to change to.')
2757 2758 # jump to bookmark if needed
2758 2759 else:
2759 2760 if not os.path.isdir(ps) or opts.has_key('b'):
2760 2761 bkms = self.db.get('bookmarks', {})
2761 2762
2762 2763 if bkms.has_key(ps):
2763 2764 target = bkms[ps]
2764 2765 print '(bookmark:%s) -> %s' % (ps,target)
2765 2766 ps = target
2766 2767 else:
2767 2768 if opts.has_key('b'):
2768 2769 raise UsageError("Bookmark '%s' not found. "
2769 2770 "Use '%%bookmark -l' to see your bookmarks." % ps)
2770 2771
2771 2772 # at this point ps should point to the target dir
2772 2773 if ps:
2773 2774 try:
2774 2775 os.chdir(os.path.expanduser(ps))
2775 2776 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2776 2777 set_term_title('IPython: ' + abbrev_cwd())
2777 2778 except OSError:
2778 2779 print sys.exc_info()[1]
2779 2780 else:
2780 2781 cwd = os.getcwd()
2781 2782 dhist = self.shell.user_ns['_dh']
2782 2783 if oldcwd != cwd:
2783 2784 dhist.append(cwd)
2784 2785 self.db['dhist'] = compress_dhist(dhist)[-100:]
2785 2786
2786 2787 else:
2787 2788 os.chdir(self.shell.home_dir)
2788 2789 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2789 2790 set_term_title('IPython: ' + '~')
2790 2791 cwd = os.getcwd()
2791 2792 dhist = self.shell.user_ns['_dh']
2792 2793
2793 2794 if oldcwd != cwd:
2794 2795 dhist.append(cwd)
2795 2796 self.db['dhist'] = compress_dhist(dhist)[-100:]
2796 2797 if not 'q' in opts and self.shell.user_ns['_dh']:
2797 2798 print self.shell.user_ns['_dh'][-1]
2798 2799
2799 2800
2800 2801 def magic_env(self, parameter_s=''):
2801 2802 """List environment variables."""
2802 2803
2803 2804 return os.environ.data
2804 2805
2805 2806 def magic_pushd(self, parameter_s=''):
2806 2807 """Place the current dir on stack and change directory.
2807 2808
2808 2809 Usage:\\
2809 2810 %pushd ['dirname']
2810 2811 """
2811 2812
2812 2813 dir_s = self.shell.dir_stack
2813 2814 tgt = os.path.expanduser(parameter_s)
2814 2815 cwd = os.getcwd().replace(self.home_dir,'~')
2815 2816 if tgt:
2816 2817 self.magic_cd(parameter_s)
2817 2818 dir_s.insert(0,cwd)
2818 2819 return self.magic_dirs()
2819 2820
2820 2821 def magic_popd(self, parameter_s=''):
2821 2822 """Change to directory popped off the top of the stack.
2822 2823 """
2823 2824 if not self.shell.dir_stack:
2824 2825 raise UsageError("%popd on empty stack")
2825 2826 top = self.shell.dir_stack.pop(0)
2826 2827 self.magic_cd(top)
2827 2828 print "popd ->",top
2828 2829
2829 2830 def magic_dirs(self, parameter_s=''):
2830 2831 """Return the current directory stack."""
2831 2832
2832 2833 return self.shell.dir_stack
2833 2834
2834 2835 def magic_dhist(self, parameter_s=''):
2835 2836 """Print your history of visited directories.
2836 2837
2837 2838 %dhist -> print full history\\
2838 2839 %dhist n -> print last n entries only\\
2839 2840 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2840 2841
2841 2842 This history is automatically maintained by the %cd command, and
2842 2843 always available as the global list variable _dh. You can use %cd -<n>
2843 2844 to go to directory number <n>.
2844 2845
2845 2846 Note that most of time, you should view directory history by entering
2846 2847 cd -<TAB>.
2847 2848
2848 2849 """
2849 2850
2850 2851 dh = self.shell.user_ns['_dh']
2851 2852 if parameter_s:
2852 2853 try:
2853 2854 args = map(int,parameter_s.split())
2854 2855 except:
2855 2856 self.arg_err(Magic.magic_dhist)
2856 2857 return
2857 2858 if len(args) == 1:
2858 2859 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2859 2860 elif len(args) == 2:
2860 2861 ini,fin = args
2861 2862 else:
2862 2863 self.arg_err(Magic.magic_dhist)
2863 2864 return
2864 2865 else:
2865 2866 ini,fin = 0,len(dh)
2866 2867 nlprint(dh,
2867 2868 header = 'Directory history (kept in _dh)',
2868 2869 start=ini,stop=fin)
2869 2870
2870 2871 @testdec.skip_doctest
2871 2872 def magic_sc(self, parameter_s=''):
2872 2873 """Shell capture - execute a shell command and capture its output.
2873 2874
2874 2875 DEPRECATED. Suboptimal, retained for backwards compatibility.
2875 2876
2876 2877 You should use the form 'var = !command' instead. Example:
2877 2878
2878 2879 "%sc -l myfiles = ls ~" should now be written as
2879 2880
2880 2881 "myfiles = !ls ~"
2881 2882
2882 2883 myfiles.s, myfiles.l and myfiles.n still apply as documented
2883 2884 below.
2884 2885
2885 2886 --
2886 2887 %sc [options] varname=command
2887 2888
2888 2889 IPython will run the given command using commands.getoutput(), and
2889 2890 will then update the user's interactive namespace with a variable
2890 2891 called varname, containing the value of the call. Your command can
2891 2892 contain shell wildcards, pipes, etc.
2892 2893
2893 2894 The '=' sign in the syntax is mandatory, and the variable name you
2894 2895 supply must follow Python's standard conventions for valid names.
2895 2896
2896 2897 (A special format without variable name exists for internal use)
2897 2898
2898 2899 Options:
2899 2900
2900 2901 -l: list output. Split the output on newlines into a list before
2901 2902 assigning it to the given variable. By default the output is stored
2902 2903 as a single string.
2903 2904
2904 2905 -v: verbose. Print the contents of the variable.
2905 2906
2906 2907 In most cases you should not need to split as a list, because the
2907 2908 returned value is a special type of string which can automatically
2908 2909 provide its contents either as a list (split on newlines) or as a
2909 2910 space-separated string. These are convenient, respectively, either
2910 2911 for sequential processing or to be passed to a shell command.
2911 2912
2912 2913 For example:
2913 2914
2914 2915 # all-random
2915 2916
2916 2917 # Capture into variable a
2917 2918 In [1]: sc a=ls *py
2918 2919
2919 2920 # a is a string with embedded newlines
2920 2921 In [2]: a
2921 2922 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2922 2923
2923 2924 # which can be seen as a list:
2924 2925 In [3]: a.l
2925 2926 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2926 2927
2927 2928 # or as a whitespace-separated string:
2928 2929 In [4]: a.s
2929 2930 Out[4]: 'setup.py win32_manual_post_install.py'
2930 2931
2931 2932 # a.s is useful to pass as a single command line:
2932 2933 In [5]: !wc -l $a.s
2933 2934 146 setup.py
2934 2935 130 win32_manual_post_install.py
2935 2936 276 total
2936 2937
2937 2938 # while the list form is useful to loop over:
2938 2939 In [6]: for f in a.l:
2939 2940 ...: !wc -l $f
2940 2941 ...:
2941 2942 146 setup.py
2942 2943 130 win32_manual_post_install.py
2943 2944
2944 2945 Similiarly, the lists returned by the -l option are also special, in
2945 2946 the sense that you can equally invoke the .s attribute on them to
2946 2947 automatically get a whitespace-separated string from their contents:
2947 2948
2948 2949 In [7]: sc -l b=ls *py
2949 2950
2950 2951 In [8]: b
2951 2952 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2952 2953
2953 2954 In [9]: b.s
2954 2955 Out[9]: 'setup.py win32_manual_post_install.py'
2955 2956
2956 2957 In summary, both the lists and strings used for ouptut capture have
2957 2958 the following special attributes:
2958 2959
2959 2960 .l (or .list) : value as list.
2960 2961 .n (or .nlstr): value as newline-separated string.
2961 2962 .s (or .spstr): value as space-separated string.
2962 2963 """
2963 2964
2964 2965 opts,args = self.parse_options(parameter_s,'lv')
2965 2966 # Try to get a variable name and command to run
2966 2967 try:
2967 2968 # the variable name must be obtained from the parse_options
2968 2969 # output, which uses shlex.split to strip options out.
2969 2970 var,_ = args.split('=',1)
2970 2971 var = var.strip()
2971 2972 # But the the command has to be extracted from the original input
2972 2973 # parameter_s, not on what parse_options returns, to avoid the
2973 2974 # quote stripping which shlex.split performs on it.
2974 2975 _,cmd = parameter_s.split('=',1)
2975 2976 except ValueError:
2976 2977 var,cmd = '',''
2977 2978 # If all looks ok, proceed
2978 2979 split = 'l' in opts
2979 2980 out = self.shell.getoutput(cmd, split=split)
2980 2981 if opts.has_key('v'):
2981 2982 print '%s ==\n%s' % (var,pformat(out))
2982 2983 if var:
2983 2984 self.shell.user_ns.update({var:out})
2984 2985 else:
2985 2986 return out
2986 2987
2987 2988 def magic_sx(self, parameter_s=''):
2988 2989 """Shell execute - run a shell command and capture its output.
2989 2990
2990 2991 %sx command
2991 2992
2992 2993 IPython will run the given command using commands.getoutput(), and
2993 2994 return the result formatted as a list (split on '\\n'). Since the
2994 2995 output is _returned_, it will be stored in ipython's regular output
2995 2996 cache Out[N] and in the '_N' automatic variables.
2996 2997
2997 2998 Notes:
2998 2999
2999 3000 1) If an input line begins with '!!', then %sx is automatically
3000 3001 invoked. That is, while:
3001 3002 !ls
3002 3003 causes ipython to simply issue system('ls'), typing
3003 3004 !!ls
3004 3005 is a shorthand equivalent to:
3005 3006 %sx ls
3006 3007
3007 3008 2) %sx differs from %sc in that %sx automatically splits into a list,
3008 3009 like '%sc -l'. The reason for this is to make it as easy as possible
3009 3010 to process line-oriented shell output via further python commands.
3010 3011 %sc is meant to provide much finer control, but requires more
3011 3012 typing.
3012 3013
3013 3014 3) Just like %sc -l, this is a list with special attributes:
3014 3015
3015 3016 .l (or .list) : value as list.
3016 3017 .n (or .nlstr): value as newline-separated string.
3017 3018 .s (or .spstr): value as whitespace-separated string.
3018 3019
3019 3020 This is very useful when trying to use such lists as arguments to
3020 3021 system commands."""
3021 3022
3022 3023 if parameter_s:
3023 3024 return self.shell.getoutput(parameter_s)
3024 3025
3025 3026
3026 3027 def magic_bookmark(self, parameter_s=''):
3027 3028 """Manage IPython's bookmark system.
3028 3029
3029 3030 %bookmark <name> - set bookmark to current dir
3030 3031 %bookmark <name> <dir> - set bookmark to <dir>
3031 3032 %bookmark -l - list all bookmarks
3032 3033 %bookmark -d <name> - remove bookmark
3033 3034 %bookmark -r - remove all bookmarks
3034 3035
3035 3036 You can later on access a bookmarked folder with:
3036 3037 %cd -b <name>
3037 3038 or simply '%cd <name>' if there is no directory called <name> AND
3038 3039 there is such a bookmark defined.
3039 3040
3040 3041 Your bookmarks persist through IPython sessions, but they are
3041 3042 associated with each profile."""
3042 3043
3043 3044 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3044 3045 if len(args) > 2:
3045 3046 raise UsageError("%bookmark: too many arguments")
3046 3047
3047 3048 bkms = self.db.get('bookmarks',{})
3048 3049
3049 3050 if opts.has_key('d'):
3050 3051 try:
3051 3052 todel = args[0]
3052 3053 except IndexError:
3053 3054 raise UsageError(
3054 3055 "%bookmark -d: must provide a bookmark to delete")
3055 3056 else:
3056 3057 try:
3057 3058 del bkms[todel]
3058 3059 except KeyError:
3059 3060 raise UsageError(
3060 3061 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3061 3062
3062 3063 elif opts.has_key('r'):
3063 3064 bkms = {}
3064 3065 elif opts.has_key('l'):
3065 3066 bks = bkms.keys()
3066 3067 bks.sort()
3067 3068 if bks:
3068 3069 size = max(map(len,bks))
3069 3070 else:
3070 3071 size = 0
3071 3072 fmt = '%-'+str(size)+'s -> %s'
3072 3073 print 'Current bookmarks:'
3073 3074 for bk in bks:
3074 3075 print fmt % (bk,bkms[bk])
3075 3076 else:
3076 3077 if not args:
3077 3078 raise UsageError("%bookmark: You must specify the bookmark name")
3078 3079 elif len(args)==1:
3079 3080 bkms[args[0]] = os.getcwd()
3080 3081 elif len(args)==2:
3081 3082 bkms[args[0]] = args[1]
3082 3083 self.db['bookmarks'] = bkms
3083 3084
3084 3085 def magic_pycat(self, parameter_s=''):
3085 3086 """Show a syntax-highlighted file through a pager.
3086 3087
3087 3088 This magic is similar to the cat utility, but it will assume the file
3088 3089 to be Python source and will show it with syntax highlighting. """
3089 3090
3090 3091 try:
3091 3092 filename = get_py_filename(parameter_s)
3092 3093 cont = file_read(filename)
3093 3094 except IOError:
3094 3095 try:
3095 3096 cont = eval(parameter_s,self.user_ns)
3096 3097 except NameError:
3097 3098 cont = None
3098 3099 if cont is None:
3099 3100 print "Error: no such file or variable"
3100 3101 return
3101 3102
3102 3103 page.page(self.shell.pycolorize(cont))
3103 3104
3104 3105 def _rerun_pasted(self):
3105 3106 """ Rerun a previously pasted command.
3106 3107 """
3107 3108 b = self.user_ns.get('pasted_block', None)
3108 3109 if b is None:
3109 3110 raise UsageError('No previous pasted block available')
3110 3111 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3111 3112 exec b in self.user_ns
3112 3113
3113 3114 def _get_pasted_lines(self, sentinel):
3114 3115 """ Yield pasted lines until the user enters the given sentinel value.
3115 3116 """
3116 3117 from IPython.core import interactiveshell
3117 3118 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3118 3119 while True:
3119 3120 l = interactiveshell.raw_input_original(':')
3120 3121 if l == sentinel:
3121 3122 return
3122 3123 else:
3123 3124 yield l
3124 3125
3125 3126 def _strip_pasted_lines_for_code(self, raw_lines):
3126 3127 """ Strip non-code parts of a sequence of lines to return a block of
3127 3128 code.
3128 3129 """
3129 3130 # Regular expressions that declare text we strip from the input:
3130 3131 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3131 3132 r'^\s*(\s?>)+', # Python input prompt
3132 3133 r'^\s*\.{3,}', # Continuation prompts
3133 3134 r'^\++',
3134 3135 ]
3135 3136
3136 3137 strip_from_start = map(re.compile,strip_re)
3137 3138
3138 3139 lines = []
3139 3140 for l in raw_lines:
3140 3141 for pat in strip_from_start:
3141 3142 l = pat.sub('',l)
3142 3143 lines.append(l)
3143 3144
3144 3145 block = "\n".join(lines) + '\n'
3145 3146 #print "block:\n",block
3146 3147 return block
3147 3148
3148 3149 def _execute_block(self, block, par):
3149 3150 """ Execute a block, or store it in a variable, per the user's request.
3150 3151 """
3151 3152 if not par:
3152 3153 b = textwrap.dedent(block)
3153 3154 self.user_ns['pasted_block'] = b
3154 3155 exec b in self.user_ns
3155 3156 else:
3156 3157 self.user_ns[par] = SList(block.splitlines())
3157 3158 print "Block assigned to '%s'" % par
3158 3159
3159 3160 def magic_quickref(self,arg):
3160 3161 """ Show a quick reference sheet """
3161 3162 import IPython.core.usage
3162 3163 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3163 3164
3164 3165 page.page(qr)
3165 3166
3166 3167 def magic_doctest_mode(self,parameter_s=''):
3167 3168 """Toggle doctest mode on and off.
3168 3169
3169 3170 This mode is intended to make IPython behave as much as possible like a
3170 3171 plain Python shell, from the perspective of how its prompts, exceptions
3171 3172 and output look. This makes it easy to copy and paste parts of a
3172 3173 session into doctests. It does so by:
3173 3174
3174 3175 - Changing the prompts to the classic ``>>>`` ones.
3175 3176 - Changing the exception reporting mode to 'Plain'.
3176 3177 - Disabling pretty-printing of output.
3177 3178
3178 3179 Note that IPython also supports the pasting of code snippets that have
3179 3180 leading '>>>' and '...' prompts in them. This means that you can paste
3180 3181 doctests from files or docstrings (even if they have leading
3181 3182 whitespace), and the code will execute correctly. You can then use
3182 3183 '%history -t' to see the translated history; this will give you the
3183 3184 input after removal of all the leading prompts and whitespace, which
3184 3185 can be pasted back into an editor.
3185 3186
3186 3187 With these features, you can switch into this mode easily whenever you
3187 3188 need to do testing and changes to doctests, without having to leave
3188 3189 your existing IPython session.
3189 3190 """
3190 3191
3191 3192 from IPython.utils.ipstruct import Struct
3192 3193
3193 3194 # Shorthands
3194 3195 shell = self.shell
3195 3196 oc = shell.displayhook
3196 3197 meta = shell.meta
3197 3198 disp_formatter = self.shell.display_formatter
3198 3199 ptformatter = disp_formatter.formatters['text/plain']
3199 3200 # dstore is a data store kept in the instance metadata bag to track any
3200 3201 # changes we make, so we can undo them later.
3201 3202 dstore = meta.setdefault('doctest_mode',Struct())
3202 3203 save_dstore = dstore.setdefault
3203 3204
3204 3205 # save a few values we'll need to recover later
3205 3206 mode = save_dstore('mode',False)
3206 3207 save_dstore('rc_pprint',ptformatter.pprint)
3207 3208 save_dstore('xmode',shell.InteractiveTB.mode)
3208 3209 save_dstore('rc_separate_out',shell.separate_out)
3209 3210 save_dstore('rc_separate_out2',shell.separate_out2)
3210 3211 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3211 3212 save_dstore('rc_separate_in',shell.separate_in)
3212 3213 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3213 3214
3214 3215 if mode == False:
3215 3216 # turn on
3216 3217 oc.prompt1.p_template = '>>> '
3217 3218 oc.prompt2.p_template = '... '
3218 3219 oc.prompt_out.p_template = ''
3219 3220
3220 3221 # Prompt separators like plain python
3221 3222 oc.input_sep = oc.prompt1.sep = ''
3222 3223 oc.output_sep = ''
3223 3224 oc.output_sep2 = ''
3224 3225
3225 3226 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3226 3227 oc.prompt_out.pad_left = False
3227 3228
3228 3229 ptformatter.pprint = False
3229 3230 disp_formatter.plain_text_only = True
3230 3231
3231 3232 shell.magic_xmode('Plain')
3232 3233 else:
3233 3234 # turn off
3234 3235 oc.prompt1.p_template = shell.prompt_in1
3235 3236 oc.prompt2.p_template = shell.prompt_in2
3236 3237 oc.prompt_out.p_template = shell.prompt_out
3237 3238
3238 3239 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3239 3240
3240 3241 oc.output_sep = dstore.rc_separate_out
3241 3242 oc.output_sep2 = dstore.rc_separate_out2
3242 3243
3243 3244 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3244 3245 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3245 3246
3246 3247 ptformatter.pprint = dstore.rc_pprint
3247 3248 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3248 3249
3249 3250 shell.magic_xmode(dstore.xmode)
3250 3251
3251 3252 # Store new mode and inform
3252 3253 dstore.mode = bool(1-int(mode))
3253 3254 mode_label = ['OFF','ON'][dstore.mode]
3254 3255 print 'Doctest mode is:', mode_label
3255 3256
3256 3257 def magic_gui(self, parameter_s=''):
3257 3258 """Enable or disable IPython GUI event loop integration.
3258 3259
3259 3260 %gui [GUINAME]
3260 3261
3261 3262 This magic replaces IPython's threaded shells that were activated
3262 3263 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3263 3264 can now be enabled, disabled and swtiched at runtime and keyboard
3264 3265 interrupts should work without any problems. The following toolkits
3265 3266 are supported: wxPython, PyQt4, PyGTK, and Tk::
3266 3267
3267 3268 %gui wx # enable wxPython event loop integration
3268 3269 %gui qt4|qt # enable PyQt4 event loop integration
3269 3270 %gui gtk # enable PyGTK event loop integration
3270 3271 %gui tk # enable Tk event loop integration
3271 3272 %gui # disable all event loop integration
3272 3273
3273 3274 WARNING: after any of these has been called you can simply create
3274 3275 an application object, but DO NOT start the event loop yourself, as
3275 3276 we have already handled that.
3276 3277 """
3277 3278 from IPython.lib.inputhook import enable_gui
3278 3279 opts, arg = self.parse_options(parameter_s, '')
3279 3280 if arg=='': arg = None
3280 3281 return enable_gui(arg)
3281 3282
3282 3283 def magic_load_ext(self, module_str):
3283 3284 """Load an IPython extension by its module name."""
3284 3285 return self.extension_manager.load_extension(module_str)
3285 3286
3286 3287 def magic_unload_ext(self, module_str):
3287 3288 """Unload an IPython extension by its module name."""
3288 3289 self.extension_manager.unload_extension(module_str)
3289 3290
3290 3291 def magic_reload_ext(self, module_str):
3291 3292 """Reload an IPython extension by its module name."""
3292 3293 self.extension_manager.reload_extension(module_str)
3293 3294
3294 3295 @testdec.skip_doctest
3295 3296 def magic_install_profiles(self, s):
3296 3297 """Install the default IPython profiles into the .ipython dir.
3297 3298
3298 3299 If the default profiles have already been installed, they will not
3299 3300 be overwritten. You can force overwriting them by using the ``-o``
3300 3301 option::
3301 3302
3302 3303 In [1]: %install_profiles -o
3303 3304 """
3304 3305 if '-o' in s:
3305 3306 overwrite = True
3306 3307 else:
3307 3308 overwrite = False
3308 3309 from IPython.config import profile
3309 3310 profile_dir = os.path.split(profile.__file__)[0]
3310 3311 ipython_dir = self.ipython_dir
3311 3312 files = os.listdir(profile_dir)
3312 3313
3313 3314 to_install = []
3314 3315 for f in files:
3315 3316 if f.startswith('ipython_config'):
3316 3317 src = os.path.join(profile_dir, f)
3317 3318 dst = os.path.join(ipython_dir, f)
3318 3319 if (not os.path.isfile(dst)) or overwrite:
3319 3320 to_install.append((f, src, dst))
3320 3321 if len(to_install)>0:
3321 3322 print "Installing profiles to: ", ipython_dir
3322 3323 for (f, src, dst) in to_install:
3323 3324 shutil.copy(src, dst)
3324 3325 print " %s" % f
3325 3326
3326 3327 def magic_install_default_config(self, s):
3327 3328 """Install IPython's default config file into the .ipython dir.
3328 3329
3329 3330 If the default config file (:file:`ipython_config.py`) is already
3330 3331 installed, it will not be overwritten. You can force overwriting
3331 3332 by using the ``-o`` option::
3332 3333
3333 3334 In [1]: %install_default_config
3334 3335 """
3335 3336 if '-o' in s:
3336 3337 overwrite = True
3337 3338 else:
3338 3339 overwrite = False
3339 3340 from IPython.config import default
3340 3341 config_dir = os.path.split(default.__file__)[0]
3341 3342 ipython_dir = self.ipython_dir
3342 3343 default_config_file_name = 'ipython_config.py'
3343 3344 src = os.path.join(config_dir, default_config_file_name)
3344 3345 dst = os.path.join(ipython_dir, default_config_file_name)
3345 3346 if (not os.path.isfile(dst)) or overwrite:
3346 3347 shutil.copy(src, dst)
3347 3348 print "Installing default config file: %s" % dst
3348 3349
3349 3350 # Pylab support: simple wrappers that activate pylab, load gui input
3350 3351 # handling and modify slightly %run
3351 3352
3352 3353 @testdec.skip_doctest
3353 3354 def _pylab_magic_run(self, parameter_s=''):
3354 3355 Magic.magic_run(self, parameter_s,
3355 3356 runner=mpl_runner(self.shell.safe_execfile))
3356 3357
3357 3358 _pylab_magic_run.__doc__ = magic_run.__doc__
3358 3359
3359 3360 @testdec.skip_doctest
3360 3361 def magic_pylab(self, s):
3361 3362 """Load numpy and matplotlib to work interactively.
3362 3363
3363 3364 %pylab [GUINAME]
3364 3365
3365 3366 This function lets you activate pylab (matplotlib, numpy and
3366 3367 interactive support) at any point during an IPython session.
3367 3368
3368 3369 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3369 3370 pylab and mlab, as well as all names from numpy and pylab.
3370 3371
3371 3372 Parameters
3372 3373 ----------
3373 3374 guiname : optional
3374 3375 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or
3375 3376 'tk'). If given, the corresponding Matplotlib backend is used,
3376 3377 otherwise matplotlib's default (which you can override in your
3377 3378 matplotlib config file) is used.
3378 3379
3379 3380 Examples
3380 3381 --------
3381 3382 In this case, where the MPL default is TkAgg:
3382 3383 In [2]: %pylab
3383 3384
3384 3385 Welcome to pylab, a matplotlib-based Python environment.
3385 3386 Backend in use: TkAgg
3386 3387 For more information, type 'help(pylab)'.
3387 3388
3388 3389 But you can explicitly request a different backend:
3389 3390 In [3]: %pylab qt
3390 3391
3391 3392 Welcome to pylab, a matplotlib-based Python environment.
3392 3393 Backend in use: Qt4Agg
3393 3394 For more information, type 'help(pylab)'.
3394 3395 """
3395 3396 self.shell.enable_pylab(s)
3396 3397
3397 3398 def magic_tb(self, s):
3398 3399 """Print the last traceback with the currently active exception mode.
3399 3400
3400 3401 See %xmode for changing exception reporting modes."""
3401 3402 self.shell.showtraceback()
3402 3403
3403 3404 @testdec.skip_doctest
3404 3405 def magic_precision(self, s=''):
3405 3406 """Set floating point precision for pretty printing.
3406 3407
3407 3408 Can set either integer precision or a format string.
3408 3409
3409 3410 If numpy has been imported and precision is an int,
3410 3411 numpy display precision will also be set, via ``numpy.set_printoptions``.
3411 3412
3412 3413 If no argument is given, defaults will be restored.
3413 3414
3414 3415 Examples
3415 3416 --------
3416 3417 ::
3417 3418
3418 3419 In [1]: from math import pi
3419 3420
3420 3421 In [2]: %precision 3
3421 3422 Out[2]: '%.3f'
3422 3423
3423 3424 In [3]: pi
3424 3425 Out[3]: 3.142
3425 3426
3426 3427 In [4]: %precision %i
3427 3428 Out[4]: '%i'
3428 3429
3429 3430 In [5]: pi
3430 3431 Out[5]: 3
3431 3432
3432 3433 In [6]: %precision %e
3433 3434 Out[6]: '%e'
3434 3435
3435 3436 In [7]: pi**10
3436 3437 Out[7]: 9.364805e+04
3437 3438
3438 3439 In [8]: %precision
3439 3440 Out[8]: '%r'
3440 3441
3441 3442 In [9]: pi**10
3442 3443 Out[9]: 93648.047476082982
3443 3444
3444 3445 """
3445 3446
3446 3447 ptformatter = self.shell.display_formatter.formatters['text/plain']
3447 3448 ptformatter.float_precision = s
3448 3449 return ptformatter.float_format
3449 3450
3450 3451 # end Magic
General Comments 0
You need to be logged in to leave comments. Login now