##// END OF EJS Templates
Add context manager to reload readline history when leaving a block.
Thomas Kluyver -
Show More
@@ -1,2519 +1,2542 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import os
26 26 import re
27 27 import sys
28 28 import tempfile
29 29 import types
30 30 from contextlib import nested
31 31
32 32 from IPython.config.configurable import Configurable
33 33 from IPython.core import debugger, oinspect
34 34 from IPython.core import history as ipcorehist
35 35 from IPython.core import page
36 36 from IPython.core import prefilter
37 37 from IPython.core import shadowns
38 38 from IPython.core import ultratb
39 39 from IPython.core.alias import AliasManager
40 40 from IPython.core.builtin_trap import BuiltinTrap
41 41 from IPython.core.compilerop import CachingCompiler
42 42 from IPython.core.display_trap import DisplayTrap
43 43 from IPython.core.displayhook import DisplayHook
44 44 from IPython.core.displaypub import DisplayPublisher
45 45 from IPython.core.error import TryNext, UsageError
46 46 from IPython.core.extensions import ExtensionManager
47 47 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 48 from IPython.core.formatters import DisplayFormatter
49 49 from IPython.core.history import HistoryManager
50 50 from IPython.core.inputsplitter import IPythonInputSplitter
51 51 from IPython.core.logger import Logger
52 52 from IPython.core.magic import Magic
53 53 from IPython.core.payload import PayloadManager
54 54 from IPython.core.plugin import PluginManager
55 55 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
56 56 from IPython.external.Itpl import ItplNS
57 57 from IPython.utils import PyColorize
58 58 from IPython.utils import io
59 59 from IPython.utils.doctestreload import doctest_reload
60 60 from IPython.utils.io import ask_yes_no, rprint
61 61 from IPython.utils.ipstruct import Struct
62 62 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
63 63 from IPython.utils.pickleshare import PickleShareDB
64 64 from IPython.utils.process import system, getoutput
65 65 from IPython.utils.strdispatch import StrDispatch
66 66 from IPython.utils.syspathcontext import prepended_to_syspath
67 67 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
68 68 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
69 69 List, Unicode, Instance, Type)
70 70 from IPython.utils.warn import warn, error, fatal
71 71 import IPython.core.hooks
72 72
73 73 #-----------------------------------------------------------------------------
74 74 # Globals
75 75 #-----------------------------------------------------------------------------
76 76
77 77 # compiled regexps for autoindent management
78 78 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
79 79
80 80 #-----------------------------------------------------------------------------
81 81 # Utilities
82 82 #-----------------------------------------------------------------------------
83 83
84 84 # store the builtin raw_input globally, and use this always, in case user code
85 85 # overwrites it (like wx.py.PyShell does)
86 86 raw_input_original = raw_input
87 87
88 88 def softspace(file, newvalue):
89 89 """Copied from code.py, to remove the dependency"""
90 90
91 91 oldvalue = 0
92 92 try:
93 93 oldvalue = file.softspace
94 94 except AttributeError:
95 95 pass
96 96 try:
97 97 file.softspace = newvalue
98 98 except (AttributeError, TypeError):
99 99 # "attribute-less object" or "read-only attributes"
100 100 pass
101 101 return oldvalue
102 102
103 103
104 104 def no_op(*a, **kw): pass
105 105
106 106 class SpaceInInput(Exception): pass
107 107
108 108 class Bunch: pass
109 109
110 110
111 111 def get_default_colors():
112 112 if sys.platform=='darwin':
113 113 return "LightBG"
114 114 elif os.name=='nt':
115 115 return 'Linux'
116 116 else:
117 117 return 'Linux'
118 118
119 119
120 120 class SeparateStr(Str):
121 121 """A Str subclass to validate separate_in, separate_out, etc.
122 122
123 123 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
124 124 """
125 125
126 126 def validate(self, obj, value):
127 127 if value == '0': value = ''
128 128 value = value.replace('\\n','\n')
129 129 return super(SeparateStr, self).validate(obj, value)
130 130
131 131 class MultipleInstanceError(Exception):
132 132 pass
133
134 class ReadlineNoRecord(object):
135 """Context manager to execute some code, then reload readline history
136 so that interactive input to the code doesn't appear when pressing up."""
137 def __init__(self, shell):
138 self.shell = shell
139 self._nested_level = 0
140
141 def __enter__(self):
142 self._nested_level += 1
143
144 def __exit__(self, type, value, traceback):
145 self._nested_level -= 1
146 if self._nested_level == 0:
147 self.shell.refill_readline_hist()
148 # Returning False will cause exceptions to propagate
149 return False
133 150
134 151
135 152 #-----------------------------------------------------------------------------
136 153 # Main IPython class
137 154 #-----------------------------------------------------------------------------
138 155
139 156 class InteractiveShell(Configurable, Magic):
140 157 """An enhanced, interactive shell for Python."""
141 158
142 159 _instance = None
143 160 autocall = Enum((0,1,2), default_value=1, config=True)
144 161 # TODO: remove all autoindent logic and put into frontends.
145 162 # We can't do this yet because even runlines uses the autoindent.
146 163 autoindent = CBool(True, config=True)
147 164 automagic = CBool(True, config=True)
148 165 cache_size = Int(1000, config=True)
149 166 color_info = CBool(True, config=True)
150 167 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
151 168 default_value=get_default_colors(), config=True)
152 169 debug = CBool(False, config=True)
153 170 deep_reload = CBool(False, config=True)
154 171 display_formatter = Instance(DisplayFormatter)
155 172 displayhook_class = Type(DisplayHook)
156 173 display_pub_class = Type(DisplayPublisher)
157 174
158 175 exit_now = CBool(False)
159 176 # Monotonically increasing execution counter
160 177 execution_count = Int(1)
161 178 filename = Unicode("<ipython console>")
162 179 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
163 180
164 181 # Input splitter, to split entire cells of input into either individual
165 182 # interactive statements or whole blocks.
166 183 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
167 184 (), {})
168 185 logstart = CBool(False, config=True)
169 186 logfile = Unicode('', config=True)
170 187 logappend = Unicode('', config=True)
171 188 object_info_string_level = Enum((0,1,2), default_value=0,
172 189 config=True)
173 190 pdb = CBool(False, config=True)
174 191
175 192 profile = Unicode('', config=True)
176 193 prompt_in1 = Str('In [\\#]: ', config=True)
177 194 prompt_in2 = Str(' .\\D.: ', config=True)
178 195 prompt_out = Str('Out[\\#]: ', config=True)
179 196 prompts_pad_left = CBool(True, config=True)
180 197 quiet = CBool(False, config=True)
181 198
182 199 history_length = Int(10000, config=True)
183 200
184 201 # The readline stuff will eventually be moved to the terminal subclass
185 202 # but for now, we can't do that as readline is welded in everywhere.
186 203 readline_use = CBool(True, config=True)
187 204 readline_merge_completions = CBool(True, config=True)
188 205 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
189 206 readline_remove_delims = Str('-/~', config=True)
190 207 readline_parse_and_bind = List([
191 208 'tab: complete',
192 209 '"\C-l": clear-screen',
193 210 'set show-all-if-ambiguous on',
194 211 '"\C-o": tab-insert',
195 212 # See bug gh-58 - with \M-i enabled, chars 0x9000-0x9fff
196 213 # crash IPython.
197 214 '"\M-o": "\d\d\d\d"',
198 215 '"\M-I": "\d\d\d\d"',
199 216 '"\C-r": reverse-search-history',
200 217 '"\C-s": forward-search-history',
201 218 '"\C-p": history-search-backward',
202 219 '"\C-n": history-search-forward',
203 220 '"\e[A": history-search-backward',
204 221 '"\e[B": history-search-forward',
205 222 '"\C-k": kill-line',
206 223 '"\C-u": unix-line-discard',
207 224 ], allow_none=False, config=True)
208 225
209 226 # TODO: this part of prompt management should be moved to the frontends.
210 227 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
211 228 separate_in = SeparateStr('\n', config=True)
212 229 separate_out = SeparateStr('', config=True)
213 230 separate_out2 = SeparateStr('', config=True)
214 231 wildcards_case_sensitive = CBool(True, config=True)
215 232 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
216 233 default_value='Context', config=True)
217 234
218 235 # Subcomponents of InteractiveShell
219 236 alias_manager = Instance('IPython.core.alias.AliasManager')
220 237 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
221 238 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
222 239 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
223 240 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
224 241 plugin_manager = Instance('IPython.core.plugin.PluginManager')
225 242 payload_manager = Instance('IPython.core.payload.PayloadManager')
226 243 history_manager = Instance('IPython.core.history.HistoryManager')
227 244
228 245 # Private interface
229 246 _post_execute = set()
230 247
231 248 def __init__(self, config=None, ipython_dir=None,
232 249 user_ns=None, user_global_ns=None,
233 250 custom_exceptions=((), None)):
234 251
235 252 # This is where traits with a config_key argument are updated
236 253 # from the values on config.
237 254 super(InteractiveShell, self).__init__(config=config)
238 255
239 256 # These are relatively independent and stateless
240 257 self.init_ipython_dir(ipython_dir)
241 258 self.init_instance_attrs()
242 259 self.init_environment()
243 260
244 261 # Create namespaces (user_ns, user_global_ns, etc.)
245 262 self.init_create_namespaces(user_ns, user_global_ns)
246 263 # This has to be done after init_create_namespaces because it uses
247 264 # something in self.user_ns, but before init_sys_modules, which
248 265 # is the first thing to modify sys.
249 266 # TODO: When we override sys.stdout and sys.stderr before this class
250 267 # is created, we are saving the overridden ones here. Not sure if this
251 268 # is what we want to do.
252 269 self.save_sys_module_state()
253 270 self.init_sys_modules()
254 271
255 272 # While we're trying to have each part of the code directly access what
256 273 # it needs without keeping redundant references to objects, we have too
257 274 # much legacy code that expects ip.db to exist.
258 275 self.db = PickleShareDB(os.path.join(self.ipython_dir, 'db'))
259 276
260 277 self.init_history()
261 278 self.init_encoding()
262 279 self.init_prefilter()
263 280
264 281 Magic.__init__(self, self)
265 282
266 283 self.init_syntax_highlighting()
267 284 self.init_hooks()
268 285 self.init_pushd_popd_magic()
269 286 # self.init_traceback_handlers use to be here, but we moved it below
270 287 # because it and init_io have to come after init_readline.
271 288 self.init_user_ns()
272 289 self.init_logger()
273 290 self.init_alias()
274 291 self.init_builtins()
275 292
276 293 # pre_config_initialization
277 294
278 295 # The next section should contain everything that was in ipmaker.
279 296 self.init_logstart()
280 297
281 298 # The following was in post_config_initialization
282 299 self.init_inspector()
283 300 # init_readline() must come before init_io(), because init_io uses
284 301 # readline related things.
285 302 self.init_readline()
286 303 # init_completer must come after init_readline, because it needs to
287 304 # know whether readline is present or not system-wide to configure the
288 305 # completers, since the completion machinery can now operate
289 306 # independently of readline (e.g. over the network)
290 307 self.init_completer()
291 308 # TODO: init_io() needs to happen before init_traceback handlers
292 309 # because the traceback handlers hardcode the stdout/stderr streams.
293 310 # This logic in in debugger.Pdb and should eventually be changed.
294 311 self.init_io()
295 312 self.init_traceback_handlers(custom_exceptions)
296 313 self.init_prompts()
297 314 self.init_display_formatter()
298 315 self.init_display_pub()
299 316 self.init_displayhook()
300 317 self.init_reload_doctest()
301 318 self.init_magics()
302 319 self.init_pdb()
303 320 self.init_extension_manager()
304 321 self.init_plugin_manager()
305 322 self.init_payload()
306 323 self.hooks.late_startup_hook()
307 324 atexit.register(self.atexit_operations)
308 325
309 326 @classmethod
310 327 def instance(cls, *args, **kwargs):
311 328 """Returns a global InteractiveShell instance."""
312 329 if cls._instance is None:
313 330 inst = cls(*args, **kwargs)
314 331 # Now make sure that the instance will also be returned by
315 332 # the subclasses instance attribute.
316 333 for subclass in cls.mro():
317 334 if issubclass(cls, subclass) and \
318 335 issubclass(subclass, InteractiveShell):
319 336 subclass._instance = inst
320 337 else:
321 338 break
322 339 if isinstance(cls._instance, cls):
323 340 return cls._instance
324 341 else:
325 342 raise MultipleInstanceError(
326 343 'Multiple incompatible subclass instances of '
327 344 'InteractiveShell are being created.'
328 345 )
329 346
330 347 @classmethod
331 348 def initialized(cls):
332 349 return hasattr(cls, "_instance")
333 350
334 351 def get_ipython(self):
335 352 """Return the currently running IPython instance."""
336 353 return self
337 354
338 355 #-------------------------------------------------------------------------
339 356 # Trait changed handlers
340 357 #-------------------------------------------------------------------------
341 358
342 359 def _ipython_dir_changed(self, name, new):
343 360 if not os.path.isdir(new):
344 361 os.makedirs(new, mode = 0777)
345 362
346 363 def set_autoindent(self,value=None):
347 364 """Set the autoindent flag, checking for readline support.
348 365
349 366 If called with no arguments, it acts as a toggle."""
350 367
351 368 if not self.has_readline:
352 369 if os.name == 'posix':
353 370 warn("The auto-indent feature requires the readline library")
354 371 self.autoindent = 0
355 372 return
356 373 if value is None:
357 374 self.autoindent = not self.autoindent
358 375 else:
359 376 self.autoindent = value
360 377
361 378 #-------------------------------------------------------------------------
362 379 # init_* methods called by __init__
363 380 #-------------------------------------------------------------------------
364 381
365 382 def init_ipython_dir(self, ipython_dir):
366 383 if ipython_dir is not None:
367 384 self.ipython_dir = ipython_dir
368 385 self.config.Global.ipython_dir = self.ipython_dir
369 386 return
370 387
371 388 if hasattr(self.config.Global, 'ipython_dir'):
372 389 self.ipython_dir = self.config.Global.ipython_dir
373 390 else:
374 391 self.ipython_dir = get_ipython_dir()
375 392
376 393 # All children can just read this
377 394 self.config.Global.ipython_dir = self.ipython_dir
378 395
379 396 def init_instance_attrs(self):
380 397 self.more = False
381 398
382 399 # command compiler
383 400 self.compile = CachingCompiler()
384 401
385 402 # User input buffers
386 403 # NOTE: these variables are slated for full removal, once we are 100%
387 404 # sure that the new execution logic is solid. We will delte runlines,
388 405 # push_line and these buffers, as all input will be managed by the
389 406 # frontends via an inputsplitter instance.
390 407 self.buffer = []
391 408 self.buffer_raw = []
392 409
393 410 # Make an empty namespace, which extension writers can rely on both
394 411 # existing and NEVER being used by ipython itself. This gives them a
395 412 # convenient location for storing additional information and state
396 413 # their extensions may require, without fear of collisions with other
397 414 # ipython names that may develop later.
398 415 self.meta = Struct()
399 416
400 417 # Object variable to store code object waiting execution. This is
401 418 # used mainly by the multithreaded shells, but it can come in handy in
402 419 # other situations. No need to use a Queue here, since it's a single
403 420 # item which gets cleared once run.
404 421 self.code_to_run = None
405 422
406 423 # Temporary files used for various purposes. Deleted at exit.
407 424 self.tempfiles = []
408 425
409 426 # Keep track of readline usage (later set by init_readline)
410 427 self.has_readline = False
411 428
412 429 # keep track of where we started running (mainly for crash post-mortem)
413 430 # This is not being used anywhere currently.
414 431 self.starting_dir = os.getcwd()
415 432
416 433 # Indentation management
417 434 self.indent_current_nsp = 0
418 435
419 436 def init_environment(self):
420 437 """Any changes we need to make to the user's environment."""
421 438 pass
422 439
423 440 def init_encoding(self):
424 441 # Get system encoding at startup time. Certain terminals (like Emacs
425 442 # under Win32 have it set to None, and we need to have a known valid
426 443 # encoding to use in the raw_input() method
427 444 try:
428 445 self.stdin_encoding = sys.stdin.encoding or 'ascii'
429 446 except AttributeError:
430 447 self.stdin_encoding = 'ascii'
431 448
432 449 def init_syntax_highlighting(self):
433 450 # Python source parser/formatter for syntax highlighting
434 451 pyformat = PyColorize.Parser().format
435 452 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
436 453
437 454 def init_pushd_popd_magic(self):
438 455 # for pushd/popd management
439 456 try:
440 457 self.home_dir = get_home_dir()
441 458 except HomeDirError, msg:
442 459 fatal(msg)
443 460
444 461 self.dir_stack = []
445 462
446 463 def init_logger(self):
447 464 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
448 465 logmode='rotate')
449 466
450 467 def init_logstart(self):
451 468 """Initialize logging in case it was requested at the command line.
452 469 """
453 470 if self.logappend:
454 471 self.magic_logstart(self.logappend + ' append')
455 472 elif self.logfile:
456 473 self.magic_logstart(self.logfile)
457 474 elif self.logstart:
458 475 self.magic_logstart()
459 476
460 477 def init_builtins(self):
461 478 self.builtin_trap = BuiltinTrap(shell=self)
462 479
463 480 def init_inspector(self):
464 481 # Object inspector
465 482 self.inspector = oinspect.Inspector(oinspect.InspectColors,
466 483 PyColorize.ANSICodeColors,
467 484 'NoColor',
468 485 self.object_info_string_level)
469 486
470 487 def init_io(self):
471 488 # This will just use sys.stdout and sys.stderr. If you want to
472 489 # override sys.stdout and sys.stderr themselves, you need to do that
473 490 # *before* instantiating this class, because Term holds onto
474 491 # references to the underlying streams.
475 492 if sys.platform == 'win32' and self.has_readline:
476 493 Term = io.IOTerm(cout=self.readline._outputfile,
477 494 cerr=self.readline._outputfile)
478 495 else:
479 496 Term = io.IOTerm()
480 497 io.Term = Term
481 498
482 499 def init_prompts(self):
483 500 # TODO: This is a pass for now because the prompts are managed inside
484 501 # the DisplayHook. Once there is a separate prompt manager, this
485 502 # will initialize that object and all prompt related information.
486 503 pass
487 504
488 505 def init_display_formatter(self):
489 506 self.display_formatter = DisplayFormatter(config=self.config)
490 507
491 508 def init_display_pub(self):
492 509 self.display_pub = self.display_pub_class(config=self.config)
493 510
494 511 def init_displayhook(self):
495 512 # Initialize displayhook, set in/out prompts and printing system
496 513 self.displayhook = self.displayhook_class(
497 514 config=self.config,
498 515 shell=self,
499 516 cache_size=self.cache_size,
500 517 input_sep = self.separate_in,
501 518 output_sep = self.separate_out,
502 519 output_sep2 = self.separate_out2,
503 520 ps1 = self.prompt_in1,
504 521 ps2 = self.prompt_in2,
505 522 ps_out = self.prompt_out,
506 523 pad_left = self.prompts_pad_left
507 524 )
508 525 # This is a context manager that installs/revmoes the displayhook at
509 526 # the appropriate time.
510 527 self.display_trap = DisplayTrap(hook=self.displayhook)
511 528
512 529 def init_reload_doctest(self):
513 530 # Do a proper resetting of doctest, including the necessary displayhook
514 531 # monkeypatching
515 532 try:
516 533 doctest_reload()
517 534 except ImportError:
518 535 warn("doctest module does not exist.")
519 536
520 537 #-------------------------------------------------------------------------
521 538 # Things related to injections into the sys module
522 539 #-------------------------------------------------------------------------
523 540
524 541 def save_sys_module_state(self):
525 542 """Save the state of hooks in the sys module.
526 543
527 544 This has to be called after self.user_ns is created.
528 545 """
529 546 self._orig_sys_module_state = {}
530 547 self._orig_sys_module_state['stdin'] = sys.stdin
531 548 self._orig_sys_module_state['stdout'] = sys.stdout
532 549 self._orig_sys_module_state['stderr'] = sys.stderr
533 550 self._orig_sys_module_state['excepthook'] = sys.excepthook
534 551 try:
535 552 self._orig_sys_modules_main_name = self.user_ns['__name__']
536 553 except KeyError:
537 554 pass
538 555
539 556 def restore_sys_module_state(self):
540 557 """Restore the state of the sys module."""
541 558 try:
542 559 for k, v in self._orig_sys_module_state.iteritems():
543 560 setattr(sys, k, v)
544 561 except AttributeError:
545 562 pass
546 563 # Reset what what done in self.init_sys_modules
547 564 try:
548 565 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
549 566 except (AttributeError, KeyError):
550 567 pass
551 568
552 569 #-------------------------------------------------------------------------
553 570 # Things related to hooks
554 571 #-------------------------------------------------------------------------
555 572
556 573 def init_hooks(self):
557 574 # hooks holds pointers used for user-side customizations
558 575 self.hooks = Struct()
559 576
560 577 self.strdispatchers = {}
561 578
562 579 # Set all default hooks, defined in the IPython.hooks module.
563 580 hooks = IPython.core.hooks
564 581 for hook_name in hooks.__all__:
565 582 # default hooks have priority 100, i.e. low; user hooks should have
566 583 # 0-100 priority
567 584 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
568 585
569 586 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
570 587 """set_hook(name,hook) -> sets an internal IPython hook.
571 588
572 589 IPython exposes some of its internal API as user-modifiable hooks. By
573 590 adding your function to one of these hooks, you can modify IPython's
574 591 behavior to call at runtime your own routines."""
575 592
576 593 # At some point in the future, this should validate the hook before it
577 594 # accepts it. Probably at least check that the hook takes the number
578 595 # of args it's supposed to.
579 596
580 597 f = types.MethodType(hook,self)
581 598
582 599 # check if the hook is for strdispatcher first
583 600 if str_key is not None:
584 601 sdp = self.strdispatchers.get(name, StrDispatch())
585 602 sdp.add_s(str_key, f, priority )
586 603 self.strdispatchers[name] = sdp
587 604 return
588 605 if re_key is not None:
589 606 sdp = self.strdispatchers.get(name, StrDispatch())
590 607 sdp.add_re(re.compile(re_key), f, priority )
591 608 self.strdispatchers[name] = sdp
592 609 return
593 610
594 611 dp = getattr(self.hooks, name, None)
595 612 if name not in IPython.core.hooks.__all__:
596 613 print "Warning! Hook '%s' is not one of %s" % \
597 614 (name, IPython.core.hooks.__all__ )
598 615 if not dp:
599 616 dp = IPython.core.hooks.CommandChainDispatcher()
600 617
601 618 try:
602 619 dp.add(f,priority)
603 620 except AttributeError:
604 621 # it was not commandchain, plain old func - replace
605 622 dp = f
606 623
607 624 setattr(self.hooks,name, dp)
608 625
609 626 def register_post_execute(self, func):
610 627 """Register a function for calling after code execution.
611 628 """
612 629 if not callable(func):
613 630 raise ValueError('argument %s must be callable' % func)
614 631 self._post_execute.add(func)
615 632
616 633 #-------------------------------------------------------------------------
617 634 # Things related to the "main" module
618 635 #-------------------------------------------------------------------------
619 636
620 637 def new_main_mod(self,ns=None):
621 638 """Return a new 'main' module object for user code execution.
622 639 """
623 640 main_mod = self._user_main_module
624 641 init_fakemod_dict(main_mod,ns)
625 642 return main_mod
626 643
627 644 def cache_main_mod(self,ns,fname):
628 645 """Cache a main module's namespace.
629 646
630 647 When scripts are executed via %run, we must keep a reference to the
631 648 namespace of their __main__ module (a FakeModule instance) around so
632 649 that Python doesn't clear it, rendering objects defined therein
633 650 useless.
634 651
635 652 This method keeps said reference in a private dict, keyed by the
636 653 absolute path of the module object (which corresponds to the script
637 654 path). This way, for multiple executions of the same script we only
638 655 keep one copy of the namespace (the last one), thus preventing memory
639 656 leaks from old references while allowing the objects from the last
640 657 execution to be accessible.
641 658
642 659 Note: we can not allow the actual FakeModule instances to be deleted,
643 660 because of how Python tears down modules (it hard-sets all their
644 661 references to None without regard for reference counts). This method
645 662 must therefore make a *copy* of the given namespace, to allow the
646 663 original module's __dict__ to be cleared and reused.
647 664
648 665
649 666 Parameters
650 667 ----------
651 668 ns : a namespace (a dict, typically)
652 669
653 670 fname : str
654 671 Filename associated with the namespace.
655 672
656 673 Examples
657 674 --------
658 675
659 676 In [10]: import IPython
660 677
661 678 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
662 679
663 680 In [12]: IPython.__file__ in _ip._main_ns_cache
664 681 Out[12]: True
665 682 """
666 683 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
667 684
668 685 def clear_main_mod_cache(self):
669 686 """Clear the cache of main modules.
670 687
671 688 Mainly for use by utilities like %reset.
672 689
673 690 Examples
674 691 --------
675 692
676 693 In [15]: import IPython
677 694
678 695 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
679 696
680 697 In [17]: len(_ip._main_ns_cache) > 0
681 698 Out[17]: True
682 699
683 700 In [18]: _ip.clear_main_mod_cache()
684 701
685 702 In [19]: len(_ip._main_ns_cache) == 0
686 703 Out[19]: True
687 704 """
688 705 self._main_ns_cache.clear()
689 706
690 707 #-------------------------------------------------------------------------
691 708 # Things related to debugging
692 709 #-------------------------------------------------------------------------
693 710
694 711 def init_pdb(self):
695 712 # Set calling of pdb on exceptions
696 713 # self.call_pdb is a property
697 714 self.call_pdb = self.pdb
698 715
699 716 def _get_call_pdb(self):
700 717 return self._call_pdb
701 718
702 719 def _set_call_pdb(self,val):
703 720
704 721 if val not in (0,1,False,True):
705 722 raise ValueError,'new call_pdb value must be boolean'
706 723
707 724 # store value in instance
708 725 self._call_pdb = val
709 726
710 727 # notify the actual exception handlers
711 728 self.InteractiveTB.call_pdb = val
712 729
713 730 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
714 731 'Control auto-activation of pdb at exceptions')
715 732
716 733 def debugger(self,force=False):
717 734 """Call the pydb/pdb debugger.
718 735
719 736 Keywords:
720 737
721 738 - force(False): by default, this routine checks the instance call_pdb
722 739 flag and does not actually invoke the debugger if the flag is false.
723 740 The 'force' option forces the debugger to activate even if the flag
724 741 is false.
725 742 """
726 743
727 744 if not (force or self.call_pdb):
728 745 return
729 746
730 747 if not hasattr(sys,'last_traceback'):
731 748 error('No traceback has been produced, nothing to debug.')
732 749 return
733 750
734 751 # use pydb if available
735 752 if debugger.has_pydb:
736 753 from pydb import pm
737 754 else:
738 755 # fallback to our internal debugger
739 756 pm = lambda : self.InteractiveTB.debugger(force=True)
740 pm()
757
758 with self.readline_no_record:
759 pm()
741 760
742 761 #-------------------------------------------------------------------------
743 762 # Things related to IPython's various namespaces
744 763 #-------------------------------------------------------------------------
745 764
746 765 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
747 766 # Create the namespace where the user will operate. user_ns is
748 767 # normally the only one used, and it is passed to the exec calls as
749 768 # the locals argument. But we do carry a user_global_ns namespace
750 769 # given as the exec 'globals' argument, This is useful in embedding
751 770 # situations where the ipython shell opens in a context where the
752 771 # distinction between locals and globals is meaningful. For
753 772 # non-embedded contexts, it is just the same object as the user_ns dict.
754 773
755 774 # FIXME. For some strange reason, __builtins__ is showing up at user
756 775 # level as a dict instead of a module. This is a manual fix, but I
757 776 # should really track down where the problem is coming from. Alex
758 777 # Schmolck reported this problem first.
759 778
760 779 # A useful post by Alex Martelli on this topic:
761 780 # Re: inconsistent value from __builtins__
762 781 # Von: Alex Martelli <aleaxit@yahoo.com>
763 782 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
764 783 # Gruppen: comp.lang.python
765 784
766 785 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
767 786 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
768 787 # > <type 'dict'>
769 788 # > >>> print type(__builtins__)
770 789 # > <type 'module'>
771 790 # > Is this difference in return value intentional?
772 791
773 792 # Well, it's documented that '__builtins__' can be either a dictionary
774 793 # or a module, and it's been that way for a long time. Whether it's
775 794 # intentional (or sensible), I don't know. In any case, the idea is
776 795 # that if you need to access the built-in namespace directly, you
777 796 # should start with "import __builtin__" (note, no 's') which will
778 797 # definitely give you a module. Yeah, it's somewhat confusing:-(.
779 798
780 799 # These routines return properly built dicts as needed by the rest of
781 800 # the code, and can also be used by extension writers to generate
782 801 # properly initialized namespaces.
783 802 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
784 803 user_global_ns)
785 804
786 805 # Assign namespaces
787 806 # This is the namespace where all normal user variables live
788 807 self.user_ns = user_ns
789 808 self.user_global_ns = user_global_ns
790 809
791 810 # An auxiliary namespace that checks what parts of the user_ns were
792 811 # loaded at startup, so we can list later only variables defined in
793 812 # actual interactive use. Since it is always a subset of user_ns, it
794 813 # doesn't need to be separately tracked in the ns_table.
795 814 self.user_ns_hidden = {}
796 815
797 816 # A namespace to keep track of internal data structures to prevent
798 817 # them from cluttering user-visible stuff. Will be updated later
799 818 self.internal_ns = {}
800 819
801 820 # Now that FakeModule produces a real module, we've run into a nasty
802 821 # problem: after script execution (via %run), the module where the user
803 822 # code ran is deleted. Now that this object is a true module (needed
804 823 # so docetst and other tools work correctly), the Python module
805 824 # teardown mechanism runs over it, and sets to None every variable
806 825 # present in that module. Top-level references to objects from the
807 826 # script survive, because the user_ns is updated with them. However,
808 827 # calling functions defined in the script that use other things from
809 828 # the script will fail, because the function's closure had references
810 829 # to the original objects, which are now all None. So we must protect
811 830 # these modules from deletion by keeping a cache.
812 831 #
813 832 # To avoid keeping stale modules around (we only need the one from the
814 833 # last run), we use a dict keyed with the full path to the script, so
815 834 # only the last version of the module is held in the cache. Note,
816 835 # however, that we must cache the module *namespace contents* (their
817 836 # __dict__). Because if we try to cache the actual modules, old ones
818 837 # (uncached) could be destroyed while still holding references (such as
819 838 # those held by GUI objects that tend to be long-lived)>
820 839 #
821 840 # The %reset command will flush this cache. See the cache_main_mod()
822 841 # and clear_main_mod_cache() methods for details on use.
823 842
824 843 # This is the cache used for 'main' namespaces
825 844 self._main_ns_cache = {}
826 845 # And this is the single instance of FakeModule whose __dict__ we keep
827 846 # copying and clearing for reuse on each %run
828 847 self._user_main_module = FakeModule()
829 848
830 849 # A table holding all the namespaces IPython deals with, so that
831 850 # introspection facilities can search easily.
832 851 self.ns_table = {'user':user_ns,
833 852 'user_global':user_global_ns,
834 853 'internal':self.internal_ns,
835 854 'builtin':__builtin__.__dict__
836 855 }
837 856
838 857 # Similarly, track all namespaces where references can be held and that
839 858 # we can safely clear (so it can NOT include builtin). This one can be
840 859 # a simple list. Note that the main execution namespaces, user_ns and
841 860 # user_global_ns, can NOT be listed here, as clearing them blindly
842 861 # causes errors in object __del__ methods. Instead, the reset() method
843 862 # clears them manually and carefully.
844 863 self.ns_refs_table = [ self.user_ns_hidden,
845 864 self.internal_ns, self._main_ns_cache ]
846 865
847 866 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
848 867 """Return a valid local and global user interactive namespaces.
849 868
850 869 This builds a dict with the minimal information needed to operate as a
851 870 valid IPython user namespace, which you can pass to the various
852 871 embedding classes in ipython. The default implementation returns the
853 872 same dict for both the locals and the globals to allow functions to
854 873 refer to variables in the namespace. Customized implementations can
855 874 return different dicts. The locals dictionary can actually be anything
856 875 following the basic mapping protocol of a dict, but the globals dict
857 876 must be a true dict, not even a subclass. It is recommended that any
858 877 custom object for the locals namespace synchronize with the globals
859 878 dict somehow.
860 879
861 880 Raises TypeError if the provided globals namespace is not a true dict.
862 881
863 882 Parameters
864 883 ----------
865 884 user_ns : dict-like, optional
866 885 The current user namespace. The items in this namespace should
867 886 be included in the output. If None, an appropriate blank
868 887 namespace should be created.
869 888 user_global_ns : dict, optional
870 889 The current user global namespace. The items in this namespace
871 890 should be included in the output. If None, an appropriate
872 891 blank namespace should be created.
873 892
874 893 Returns
875 894 -------
876 895 A pair of dictionary-like object to be used as the local namespace
877 896 of the interpreter and a dict to be used as the global namespace.
878 897 """
879 898
880 899
881 900 # We must ensure that __builtin__ (without the final 's') is always
882 901 # available and pointing to the __builtin__ *module*. For more details:
883 902 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
884 903
885 904 if user_ns is None:
886 905 # Set __name__ to __main__ to better match the behavior of the
887 906 # normal interpreter.
888 907 user_ns = {'__name__' :'__main__',
889 908 '__builtin__' : __builtin__,
890 909 '__builtins__' : __builtin__,
891 910 }
892 911 else:
893 912 user_ns.setdefault('__name__','__main__')
894 913 user_ns.setdefault('__builtin__',__builtin__)
895 914 user_ns.setdefault('__builtins__',__builtin__)
896 915
897 916 if user_global_ns is None:
898 917 user_global_ns = user_ns
899 918 if type(user_global_ns) is not dict:
900 919 raise TypeError("user_global_ns must be a true dict; got %r"
901 920 % type(user_global_ns))
902 921
903 922 return user_ns, user_global_ns
904 923
905 924 def init_sys_modules(self):
906 925 # We need to insert into sys.modules something that looks like a
907 926 # module but which accesses the IPython namespace, for shelve and
908 927 # pickle to work interactively. Normally they rely on getting
909 928 # everything out of __main__, but for embedding purposes each IPython
910 929 # instance has its own private namespace, so we can't go shoving
911 930 # everything into __main__.
912 931
913 932 # note, however, that we should only do this for non-embedded
914 933 # ipythons, which really mimic the __main__.__dict__ with their own
915 934 # namespace. Embedded instances, on the other hand, should not do
916 935 # this because they need to manage the user local/global namespaces
917 936 # only, but they live within a 'normal' __main__ (meaning, they
918 937 # shouldn't overtake the execution environment of the script they're
919 938 # embedded in).
920 939
921 940 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
922 941
923 942 try:
924 943 main_name = self.user_ns['__name__']
925 944 except KeyError:
926 945 raise KeyError('user_ns dictionary MUST have a "__name__" key')
927 946 else:
928 947 sys.modules[main_name] = FakeModule(self.user_ns)
929 948
930 949 def init_user_ns(self):
931 950 """Initialize all user-visible namespaces to their minimum defaults.
932 951
933 952 Certain history lists are also initialized here, as they effectively
934 953 act as user namespaces.
935 954
936 955 Notes
937 956 -----
938 957 All data structures here are only filled in, they are NOT reset by this
939 958 method. If they were not empty before, data will simply be added to
940 959 therm.
941 960 """
942 961 # This function works in two parts: first we put a few things in
943 962 # user_ns, and we sync that contents into user_ns_hidden so that these
944 963 # initial variables aren't shown by %who. After the sync, we add the
945 964 # rest of what we *do* want the user to see with %who even on a new
946 965 # session (probably nothing, so theye really only see their own stuff)
947 966
948 967 # The user dict must *always* have a __builtin__ reference to the
949 968 # Python standard __builtin__ namespace, which must be imported.
950 969 # This is so that certain operations in prompt evaluation can be
951 970 # reliably executed with builtins. Note that we can NOT use
952 971 # __builtins__ (note the 's'), because that can either be a dict or a
953 972 # module, and can even mutate at runtime, depending on the context
954 973 # (Python makes no guarantees on it). In contrast, __builtin__ is
955 974 # always a module object, though it must be explicitly imported.
956 975
957 976 # For more details:
958 977 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
959 978 ns = dict(__builtin__ = __builtin__)
960 979
961 980 # Put 'help' in the user namespace
962 981 try:
963 982 from site import _Helper
964 983 ns['help'] = _Helper()
965 984 except ImportError:
966 985 warn('help() not available - check site.py')
967 986
968 987 # make global variables for user access to the histories
969 988 ns['_ih'] = self.history_manager.input_hist_parsed
970 989 ns['_oh'] = self.history_manager.output_hist
971 990 ns['_dh'] = self.history_manager.dir_hist
972 991
973 992 ns['_sh'] = shadowns
974 993
975 994 # user aliases to input and output histories. These shouldn't show up
976 995 # in %who, as they can have very large reprs.
977 996 ns['In'] = self.history_manager.input_hist_parsed
978 997 ns['Out'] = self.history_manager.output_hist
979 998
980 999 # Store myself as the public api!!!
981 1000 ns['get_ipython'] = self.get_ipython
982 1001
983 1002 # Sync what we've added so far to user_ns_hidden so these aren't seen
984 1003 # by %who
985 1004 self.user_ns_hidden.update(ns)
986 1005
987 1006 # Anything put into ns now would show up in %who. Think twice before
988 1007 # putting anything here, as we really want %who to show the user their
989 1008 # stuff, not our variables.
990 1009
991 1010 # Finally, update the real user's namespace
992 1011 self.user_ns.update(ns)
993 1012
994 1013 def reset(self, new_session=True):
995 1014 """Clear all internal namespaces.
996 1015
997 1016 Note that this is much more aggressive than %reset, since it clears
998 1017 fully all namespaces, as well as all input/output lists.
999 1018
1000 1019 If new_session is True, a new history session will be opened.
1001 1020 """
1002 1021 # Clear histories
1003 1022 self.history_manager.reset(new_session)
1004 1023
1005 1024 # Reset counter used to index all histories
1006 1025 self.execution_count = 0
1007 1026
1008 1027 # Restore the user namespaces to minimal usability
1009 1028 for ns in self.ns_refs_table:
1010 1029 ns.clear()
1011 1030
1012 1031 # The main execution namespaces must be cleared very carefully,
1013 1032 # skipping the deletion of the builtin-related keys, because doing so
1014 1033 # would cause errors in many object's __del__ methods.
1015 1034 for ns in [self.user_ns, self.user_global_ns]:
1016 1035 drop_keys = set(ns.keys())
1017 1036 drop_keys.discard('__builtin__')
1018 1037 drop_keys.discard('__builtins__')
1019 1038 for k in drop_keys:
1020 1039 del ns[k]
1021 1040
1022 1041 # Restore the user namespaces to minimal usability
1023 1042 self.init_user_ns()
1024 1043
1025 1044 # Restore the default and user aliases
1026 1045 self.alias_manager.clear_aliases()
1027 1046 self.alias_manager.init_aliases()
1028 1047
1029 1048 def reset_selective(self, regex=None):
1030 1049 """Clear selective variables from internal namespaces based on a
1031 1050 specified regular expression.
1032 1051
1033 1052 Parameters
1034 1053 ----------
1035 1054 regex : string or compiled pattern, optional
1036 1055 A regular expression pattern that will be used in searching
1037 1056 variable names in the users namespaces.
1038 1057 """
1039 1058 if regex is not None:
1040 1059 try:
1041 1060 m = re.compile(regex)
1042 1061 except TypeError:
1043 1062 raise TypeError('regex must be a string or compiled pattern')
1044 1063 # Search for keys in each namespace that match the given regex
1045 1064 # If a match is found, delete the key/value pair.
1046 1065 for ns in self.ns_refs_table:
1047 1066 for var in ns:
1048 1067 if m.search(var):
1049 1068 del ns[var]
1050 1069
1051 1070 def push(self, variables, interactive=True):
1052 1071 """Inject a group of variables into the IPython user namespace.
1053 1072
1054 1073 Parameters
1055 1074 ----------
1056 1075 variables : dict, str or list/tuple of str
1057 1076 The variables to inject into the user's namespace. If a dict, a
1058 1077 simple update is done. If a str, the string is assumed to have
1059 1078 variable names separated by spaces. A list/tuple of str can also
1060 1079 be used to give the variable names. If just the variable names are
1061 1080 give (list/tuple/str) then the variable values looked up in the
1062 1081 callers frame.
1063 1082 interactive : bool
1064 1083 If True (default), the variables will be listed with the ``who``
1065 1084 magic.
1066 1085 """
1067 1086 vdict = None
1068 1087
1069 1088 # We need a dict of name/value pairs to do namespace updates.
1070 1089 if isinstance(variables, dict):
1071 1090 vdict = variables
1072 1091 elif isinstance(variables, (basestring, list, tuple)):
1073 1092 if isinstance(variables, basestring):
1074 1093 vlist = variables.split()
1075 1094 else:
1076 1095 vlist = variables
1077 1096 vdict = {}
1078 1097 cf = sys._getframe(1)
1079 1098 for name in vlist:
1080 1099 try:
1081 1100 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1082 1101 except:
1083 1102 print ('Could not get variable %s from %s' %
1084 1103 (name,cf.f_code.co_name))
1085 1104 else:
1086 1105 raise ValueError('variables must be a dict/str/list/tuple')
1087 1106
1088 1107 # Propagate variables to user namespace
1089 1108 self.user_ns.update(vdict)
1090 1109
1091 1110 # And configure interactive visibility
1092 1111 config_ns = self.user_ns_hidden
1093 1112 if interactive:
1094 1113 for name, val in vdict.iteritems():
1095 1114 config_ns.pop(name, None)
1096 1115 else:
1097 1116 for name,val in vdict.iteritems():
1098 1117 config_ns[name] = val
1099 1118
1100 1119 #-------------------------------------------------------------------------
1101 1120 # Things related to object introspection
1102 1121 #-------------------------------------------------------------------------
1103 1122
1104 1123 def _ofind(self, oname, namespaces=None):
1105 1124 """Find an object in the available namespaces.
1106 1125
1107 1126 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1108 1127
1109 1128 Has special code to detect magic functions.
1110 1129 """
1111 1130 #oname = oname.strip()
1112 1131 #print '1- oname: <%r>' % oname # dbg
1113 1132 try:
1114 1133 oname = oname.strip().encode('ascii')
1115 1134 #print '2- oname: <%r>' % oname # dbg
1116 1135 except UnicodeEncodeError:
1117 1136 print 'Python identifiers can only contain ascii characters.'
1118 1137 return dict(found=False)
1119 1138
1120 1139 alias_ns = None
1121 1140 if namespaces is None:
1122 1141 # Namespaces to search in:
1123 1142 # Put them in a list. The order is important so that we
1124 1143 # find things in the same order that Python finds them.
1125 1144 namespaces = [ ('Interactive', self.user_ns),
1126 1145 ('IPython internal', self.internal_ns),
1127 1146 ('Python builtin', __builtin__.__dict__),
1128 1147 ('Alias', self.alias_manager.alias_table),
1129 1148 ]
1130 1149 alias_ns = self.alias_manager.alias_table
1131 1150
1132 1151 # initialize results to 'null'
1133 1152 found = False; obj = None; ospace = None; ds = None;
1134 1153 ismagic = False; isalias = False; parent = None
1135 1154
1136 1155 # We need to special-case 'print', which as of python2.6 registers as a
1137 1156 # function but should only be treated as one if print_function was
1138 1157 # loaded with a future import. In this case, just bail.
1139 1158 if (oname == 'print' and not (self.compile.compiler_flags &
1140 1159 __future__.CO_FUTURE_PRINT_FUNCTION)):
1141 1160 return {'found':found, 'obj':obj, 'namespace':ospace,
1142 1161 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1143 1162
1144 1163 # Look for the given name by splitting it in parts. If the head is
1145 1164 # found, then we look for all the remaining parts as members, and only
1146 1165 # declare success if we can find them all.
1147 1166 oname_parts = oname.split('.')
1148 1167 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1149 1168 for nsname,ns in namespaces:
1150 1169 try:
1151 1170 obj = ns[oname_head]
1152 1171 except KeyError:
1153 1172 continue
1154 1173 else:
1155 1174 #print 'oname_rest:', oname_rest # dbg
1156 1175 for part in oname_rest:
1157 1176 try:
1158 1177 parent = obj
1159 1178 obj = getattr(obj,part)
1160 1179 except:
1161 1180 # Blanket except b/c some badly implemented objects
1162 1181 # allow __getattr__ to raise exceptions other than
1163 1182 # AttributeError, which then crashes IPython.
1164 1183 break
1165 1184 else:
1166 1185 # If we finish the for loop (no break), we got all members
1167 1186 found = True
1168 1187 ospace = nsname
1169 1188 if ns == alias_ns:
1170 1189 isalias = True
1171 1190 break # namespace loop
1172 1191
1173 1192 # Try to see if it's magic
1174 1193 if not found:
1175 1194 if oname.startswith(ESC_MAGIC):
1176 1195 oname = oname[1:]
1177 1196 obj = getattr(self,'magic_'+oname,None)
1178 1197 if obj is not None:
1179 1198 found = True
1180 1199 ospace = 'IPython internal'
1181 1200 ismagic = True
1182 1201
1183 1202 # Last try: special-case some literals like '', [], {}, etc:
1184 1203 if not found and oname_head in ["''",'""','[]','{}','()']:
1185 1204 obj = eval(oname_head)
1186 1205 found = True
1187 1206 ospace = 'Interactive'
1188 1207
1189 1208 return {'found':found, 'obj':obj, 'namespace':ospace,
1190 1209 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1191 1210
1192 1211 def _ofind_property(self, oname, info):
1193 1212 """Second part of object finding, to look for property details."""
1194 1213 if info.found:
1195 1214 # Get the docstring of the class property if it exists.
1196 1215 path = oname.split('.')
1197 1216 root = '.'.join(path[:-1])
1198 1217 if info.parent is not None:
1199 1218 try:
1200 1219 target = getattr(info.parent, '__class__')
1201 1220 # The object belongs to a class instance.
1202 1221 try:
1203 1222 target = getattr(target, path[-1])
1204 1223 # The class defines the object.
1205 1224 if isinstance(target, property):
1206 1225 oname = root + '.__class__.' + path[-1]
1207 1226 info = Struct(self._ofind(oname))
1208 1227 except AttributeError: pass
1209 1228 except AttributeError: pass
1210 1229
1211 1230 # We return either the new info or the unmodified input if the object
1212 1231 # hadn't been found
1213 1232 return info
1214 1233
1215 1234 def _object_find(self, oname, namespaces=None):
1216 1235 """Find an object and return a struct with info about it."""
1217 1236 inf = Struct(self._ofind(oname, namespaces))
1218 1237 return Struct(self._ofind_property(oname, inf))
1219 1238
1220 1239 def _inspect(self, meth, oname, namespaces=None, **kw):
1221 1240 """Generic interface to the inspector system.
1222 1241
1223 1242 This function is meant to be called by pdef, pdoc & friends."""
1224 1243 info = self._object_find(oname)
1225 1244 if info.found:
1226 1245 pmethod = getattr(self.inspector, meth)
1227 1246 formatter = format_screen if info.ismagic else None
1228 1247 if meth == 'pdoc':
1229 1248 pmethod(info.obj, oname, formatter)
1230 1249 elif meth == 'pinfo':
1231 1250 pmethod(info.obj, oname, formatter, info, **kw)
1232 1251 else:
1233 1252 pmethod(info.obj, oname)
1234 1253 else:
1235 1254 print 'Object `%s` not found.' % oname
1236 1255 return 'not found' # so callers can take other action
1237 1256
1238 1257 def object_inspect(self, oname):
1239 1258 info = self._object_find(oname)
1240 1259 if info.found:
1241 1260 return self.inspector.info(info.obj, oname, info=info)
1242 1261 else:
1243 1262 return oinspect.object_info(name=oname, found=False)
1244 1263
1245 1264 #-------------------------------------------------------------------------
1246 1265 # Things related to history management
1247 1266 #-------------------------------------------------------------------------
1248 1267
1249 1268 def init_history(self):
1250 1269 """Sets up the command history, and starts regular autosaves."""
1251 1270 self.history_manager = HistoryManager(shell=self, config=self.config)
1252 1271
1253 1272 #-------------------------------------------------------------------------
1254 1273 # Things related to exception handling and tracebacks (not debugging)
1255 1274 #-------------------------------------------------------------------------
1256 1275
1257 1276 def init_traceback_handlers(self, custom_exceptions):
1258 1277 # Syntax error handler.
1259 1278 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1260 1279
1261 1280 # The interactive one is initialized with an offset, meaning we always
1262 1281 # want to remove the topmost item in the traceback, which is our own
1263 1282 # internal code. Valid modes: ['Plain','Context','Verbose']
1264 1283 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1265 1284 color_scheme='NoColor',
1266 1285 tb_offset = 1,
1267 1286 check_cache=self.compile.check_cache)
1268 1287
1269 1288 # The instance will store a pointer to the system-wide exception hook,
1270 1289 # so that runtime code (such as magics) can access it. This is because
1271 1290 # during the read-eval loop, it may get temporarily overwritten.
1272 1291 self.sys_excepthook = sys.excepthook
1273 1292
1274 1293 # and add any custom exception handlers the user may have specified
1275 1294 self.set_custom_exc(*custom_exceptions)
1276 1295
1277 1296 # Set the exception mode
1278 1297 self.InteractiveTB.set_mode(mode=self.xmode)
1279 1298
1280 1299 def set_custom_exc(self, exc_tuple, handler):
1281 1300 """set_custom_exc(exc_tuple,handler)
1282 1301
1283 1302 Set a custom exception handler, which will be called if any of the
1284 1303 exceptions in exc_tuple occur in the mainloop (specifically, in the
1285 1304 run_code() method.
1286 1305
1287 1306 Inputs:
1288 1307
1289 1308 - exc_tuple: a *tuple* of valid exceptions to call the defined
1290 1309 handler for. It is very important that you use a tuple, and NOT A
1291 1310 LIST here, because of the way Python's except statement works. If
1292 1311 you only want to trap a single exception, use a singleton tuple:
1293 1312
1294 1313 exc_tuple == (MyCustomException,)
1295 1314
1296 1315 - handler: this must be defined as a function with the following
1297 1316 basic interface::
1298 1317
1299 1318 def my_handler(self, etype, value, tb, tb_offset=None)
1300 1319 ...
1301 1320 # The return value must be
1302 1321 return structured_traceback
1303 1322
1304 1323 This will be made into an instance method (via types.MethodType)
1305 1324 of IPython itself, and it will be called if any of the exceptions
1306 1325 listed in the exc_tuple are caught. If the handler is None, an
1307 1326 internal basic one is used, which just prints basic info.
1308 1327
1309 1328 WARNING: by putting in your own exception handler into IPython's main
1310 1329 execution loop, you run a very good chance of nasty crashes. This
1311 1330 facility should only be used if you really know what you are doing."""
1312 1331
1313 1332 assert type(exc_tuple)==type(()) , \
1314 1333 "The custom exceptions must be given AS A TUPLE."
1315 1334
1316 1335 def dummy_handler(self,etype,value,tb):
1317 1336 print '*** Simple custom exception handler ***'
1318 1337 print 'Exception type :',etype
1319 1338 print 'Exception value:',value
1320 1339 print 'Traceback :',tb
1321 1340 print 'Source code :','\n'.join(self.buffer)
1322 1341
1323 1342 if handler is None: handler = dummy_handler
1324 1343
1325 1344 self.CustomTB = types.MethodType(handler,self)
1326 1345 self.custom_exceptions = exc_tuple
1327 1346
1328 1347 def excepthook(self, etype, value, tb):
1329 1348 """One more defense for GUI apps that call sys.excepthook.
1330 1349
1331 1350 GUI frameworks like wxPython trap exceptions and call
1332 1351 sys.excepthook themselves. I guess this is a feature that
1333 1352 enables them to keep running after exceptions that would
1334 1353 otherwise kill their mainloop. This is a bother for IPython
1335 1354 which excepts to catch all of the program exceptions with a try:
1336 1355 except: statement.
1337 1356
1338 1357 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1339 1358 any app directly invokes sys.excepthook, it will look to the user like
1340 1359 IPython crashed. In order to work around this, we can disable the
1341 1360 CrashHandler and replace it with this excepthook instead, which prints a
1342 1361 regular traceback using our InteractiveTB. In this fashion, apps which
1343 1362 call sys.excepthook will generate a regular-looking exception from
1344 1363 IPython, and the CrashHandler will only be triggered by real IPython
1345 1364 crashes.
1346 1365
1347 1366 This hook should be used sparingly, only in places which are not likely
1348 1367 to be true IPython errors.
1349 1368 """
1350 1369 self.showtraceback((etype,value,tb),tb_offset=0)
1351 1370
1352 1371 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1353 1372 exception_only=False):
1354 1373 """Display the exception that just occurred.
1355 1374
1356 1375 If nothing is known about the exception, this is the method which
1357 1376 should be used throughout the code for presenting user tracebacks,
1358 1377 rather than directly invoking the InteractiveTB object.
1359 1378
1360 1379 A specific showsyntaxerror() also exists, but this method can take
1361 1380 care of calling it if needed, so unless you are explicitly catching a
1362 1381 SyntaxError exception, don't try to analyze the stack manually and
1363 1382 simply call this method."""
1364 1383
1365 1384 try:
1366 1385 if exc_tuple is None:
1367 1386 etype, value, tb = sys.exc_info()
1368 1387 else:
1369 1388 etype, value, tb = exc_tuple
1370 1389
1371 1390 if etype is None:
1372 1391 if hasattr(sys, 'last_type'):
1373 1392 etype, value, tb = sys.last_type, sys.last_value, \
1374 1393 sys.last_traceback
1375 1394 else:
1376 1395 self.write_err('No traceback available to show.\n')
1377 1396 return
1378 1397
1379 1398 if etype is SyntaxError:
1380 1399 # Though this won't be called by syntax errors in the input
1381 1400 # line, there may be SyntaxError cases whith imported code.
1382 1401 self.showsyntaxerror(filename)
1383 1402 elif etype is UsageError:
1384 1403 print "UsageError:", value
1385 1404 else:
1386 1405 # WARNING: these variables are somewhat deprecated and not
1387 1406 # necessarily safe to use in a threaded environment, but tools
1388 1407 # like pdb depend on their existence, so let's set them. If we
1389 1408 # find problems in the field, we'll need to revisit their use.
1390 1409 sys.last_type = etype
1391 1410 sys.last_value = value
1392 1411 sys.last_traceback = tb
1393 1412
1394 1413 if etype in self.custom_exceptions:
1395 1414 # FIXME: Old custom traceback objects may just return a
1396 1415 # string, in that case we just put it into a list
1397 1416 stb = self.CustomTB(etype, value, tb, tb_offset)
1398 1417 if isinstance(ctb, basestring):
1399 1418 stb = [stb]
1400 1419 else:
1401 1420 if exception_only:
1402 1421 stb = ['An exception has occurred, use %tb to see '
1403 1422 'the full traceback.\n']
1404 1423 stb.extend(self.InteractiveTB.get_exception_only(etype,
1405 1424 value))
1406 1425 else:
1407 1426 stb = self.InteractiveTB.structured_traceback(etype,
1408 1427 value, tb, tb_offset=tb_offset)
1409 1428 # FIXME: the pdb calling should be done by us, not by
1410 1429 # the code computing the traceback.
1411 1430 if self.InteractiveTB.call_pdb:
1412 1431 # pdb mucks up readline, fix it back
1413 1432 self.set_readline_completer()
1414 1433
1415 1434 # Actually show the traceback
1416 1435 self._showtraceback(etype, value, stb)
1417 1436
1418 1437 except KeyboardInterrupt:
1419 1438 self.write_err("\nKeyboardInterrupt\n")
1420 1439
1421 1440 def _showtraceback(self, etype, evalue, stb):
1422 1441 """Actually show a traceback.
1423 1442
1424 1443 Subclasses may override this method to put the traceback on a different
1425 1444 place, like a side channel.
1426 1445 """
1427 1446 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1428 1447
1429 1448 def showsyntaxerror(self, filename=None):
1430 1449 """Display the syntax error that just occurred.
1431 1450
1432 1451 This doesn't display a stack trace because there isn't one.
1433 1452
1434 1453 If a filename is given, it is stuffed in the exception instead
1435 1454 of what was there before (because Python's parser always uses
1436 1455 "<string>" when reading from a string).
1437 1456 """
1438 1457 etype, value, last_traceback = sys.exc_info()
1439 1458
1440 1459 # See note about these variables in showtraceback() above
1441 1460 sys.last_type = etype
1442 1461 sys.last_value = value
1443 1462 sys.last_traceback = last_traceback
1444 1463
1445 1464 if filename and etype is SyntaxError:
1446 1465 # Work hard to stuff the correct filename in the exception
1447 1466 try:
1448 1467 msg, (dummy_filename, lineno, offset, line) = value
1449 1468 except:
1450 1469 # Not the format we expect; leave it alone
1451 1470 pass
1452 1471 else:
1453 1472 # Stuff in the right filename
1454 1473 try:
1455 1474 # Assume SyntaxError is a class exception
1456 1475 value = SyntaxError(msg, (filename, lineno, offset, line))
1457 1476 except:
1458 1477 # If that failed, assume SyntaxError is a string
1459 1478 value = msg, (filename, lineno, offset, line)
1460 1479 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1461 1480 self._showtraceback(etype, value, stb)
1462 1481
1463 1482 #-------------------------------------------------------------------------
1464 1483 # Things related to readline
1465 1484 #-------------------------------------------------------------------------
1466 1485
1467 1486 def init_readline(self):
1468 1487 """Command history completion/saving/reloading."""
1469 1488
1470 1489 if self.readline_use:
1471 1490 import IPython.utils.rlineimpl as readline
1472 1491
1473 1492 self.rl_next_input = None
1474 1493 self.rl_do_indent = False
1475 1494
1476 1495 if not self.readline_use or not readline.have_readline:
1477 1496 self.has_readline = False
1478 1497 self.readline = None
1479 1498 # Set a number of methods that depend on readline to be no-op
1480 1499 self.set_readline_completer = no_op
1481 1500 self.set_custom_completer = no_op
1482 1501 self.set_completer_frame = no_op
1483 1502 warn('Readline services not available or not loaded.')
1484 1503 else:
1485 1504 self.has_readline = True
1486 1505 self.readline = readline
1487 1506 sys.modules['readline'] = readline
1488 1507
1489 1508 # Platform-specific configuration
1490 1509 if os.name == 'nt':
1491 1510 # FIXME - check with Frederick to see if we can harmonize
1492 1511 # naming conventions with pyreadline to avoid this
1493 1512 # platform-dependent check
1494 1513 self.readline_startup_hook = readline.set_pre_input_hook
1495 1514 else:
1496 1515 self.readline_startup_hook = readline.set_startup_hook
1497 1516
1498 1517 # Load user's initrc file (readline config)
1499 1518 # Or if libedit is used, load editrc.
1500 1519 inputrc_name = os.environ.get('INPUTRC')
1501 1520 if inputrc_name is None:
1502 1521 home_dir = get_home_dir()
1503 1522 if home_dir is not None:
1504 1523 inputrc_name = '.inputrc'
1505 1524 if readline.uses_libedit:
1506 1525 inputrc_name = '.editrc'
1507 1526 inputrc_name = os.path.join(home_dir, inputrc_name)
1508 1527 if os.path.isfile(inputrc_name):
1509 1528 try:
1510 1529 readline.read_init_file(inputrc_name)
1511 1530 except:
1512 1531 warn('Problems reading readline initialization file <%s>'
1513 1532 % inputrc_name)
1514 1533
1515 1534 # Configure readline according to user's prefs
1516 1535 # This is only done if GNU readline is being used. If libedit
1517 1536 # is being used (as on Leopard) the readline config is
1518 1537 # not run as the syntax for libedit is different.
1519 1538 if not readline.uses_libedit:
1520 1539 for rlcommand in self.readline_parse_and_bind:
1521 1540 #print "loading rl:",rlcommand # dbg
1522 1541 readline.parse_and_bind(rlcommand)
1523 1542
1524 1543 # Remove some chars from the delimiters list. If we encounter
1525 1544 # unicode chars, discard them.
1526 1545 delims = readline.get_completer_delims().encode("ascii", "ignore")
1527 1546 delims = delims.translate(None, self.readline_remove_delims)
1528 1547 delims = delims.replace(ESC_MAGIC, '')
1529 1548 readline.set_completer_delims(delims)
1530 1549 # otherwise we end up with a monster history after a while:
1531 1550 readline.set_history_length(self.history_length)
1532 1551
1533 stdin_encoding = sys.stdin.encoding or "utf-8"
1534
1535 # Load the last 1000 lines from history
1536 for _, _, cell in self.history_manager.get_tail(1000,
1537 include_latest=True):
1538 if cell.strip(): # Ignore blank lines
1539 for line in cell.splitlines():
1540 readline.add_history(line.encode(stdin_encoding))
1552 self.refill_readline_hist()
1553 self.readline_no_record = ReadlineNoRecord(self)
1541 1554
1542 1555 # Configure auto-indent for all platforms
1543 1556 self.set_autoindent(self.autoindent)
1557
1558 def refill_readline_hist(self):
1559 # Load the last 1000 lines from history
1560 self.readline.clear_history()
1561 stdin_encoding = sys.stdin.encoding or "utf-8"
1562 for _, _, cell in self.history_manager.get_tail(1000,
1563 include_latest=True):
1564 if cell.strip(): # Ignore blank lines
1565 for line in cell.splitlines():
1566 self.readline.add_history(line.encode(stdin_encoding))
1544 1567
1545 1568 def set_next_input(self, s):
1546 1569 """ Sets the 'default' input string for the next command line.
1547 1570
1548 1571 Requires readline.
1549 1572
1550 1573 Example:
1551 1574
1552 1575 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1553 1576 [D:\ipython]|2> Hello Word_ # cursor is here
1554 1577 """
1555 1578
1556 1579 self.rl_next_input = s
1557 1580
1558 1581 # Maybe move this to the terminal subclass?
1559 1582 def pre_readline(self):
1560 1583 """readline hook to be used at the start of each line.
1561 1584
1562 1585 Currently it handles auto-indent only."""
1563 1586
1564 1587 if self.rl_do_indent:
1565 1588 self.readline.insert_text(self._indent_current_str())
1566 1589 if self.rl_next_input is not None:
1567 1590 self.readline.insert_text(self.rl_next_input)
1568 1591 self.rl_next_input = None
1569 1592
1570 1593 def _indent_current_str(self):
1571 1594 """return the current level of indentation as a string"""
1572 1595 return self.input_splitter.indent_spaces * ' '
1573 1596
1574 1597 #-------------------------------------------------------------------------
1575 1598 # Things related to text completion
1576 1599 #-------------------------------------------------------------------------
1577 1600
1578 1601 def init_completer(self):
1579 1602 """Initialize the completion machinery.
1580 1603
1581 1604 This creates completion machinery that can be used by client code,
1582 1605 either interactively in-process (typically triggered by the readline
1583 1606 library), programatically (such as in test suites) or out-of-prcess
1584 1607 (typically over the network by remote frontends).
1585 1608 """
1586 1609 from IPython.core.completer import IPCompleter
1587 1610 from IPython.core.completerlib import (module_completer,
1588 1611 magic_run_completer, cd_completer)
1589 1612
1590 1613 self.Completer = IPCompleter(self,
1591 1614 self.user_ns,
1592 1615 self.user_global_ns,
1593 1616 self.readline_omit__names,
1594 1617 self.alias_manager.alias_table,
1595 1618 self.has_readline)
1596 1619
1597 1620 # Add custom completers to the basic ones built into IPCompleter
1598 1621 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1599 1622 self.strdispatchers['complete_command'] = sdisp
1600 1623 self.Completer.custom_completers = sdisp
1601 1624
1602 1625 self.set_hook('complete_command', module_completer, str_key = 'import')
1603 1626 self.set_hook('complete_command', module_completer, str_key = 'from')
1604 1627 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1605 1628 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1606 1629
1607 1630 # Only configure readline if we truly are using readline. IPython can
1608 1631 # do tab-completion over the network, in GUIs, etc, where readline
1609 1632 # itself may be absent
1610 1633 if self.has_readline:
1611 1634 self.set_readline_completer()
1612 1635
1613 1636 def complete(self, text, line=None, cursor_pos=None):
1614 1637 """Return the completed text and a list of completions.
1615 1638
1616 1639 Parameters
1617 1640 ----------
1618 1641
1619 1642 text : string
1620 1643 A string of text to be completed on. It can be given as empty and
1621 1644 instead a line/position pair are given. In this case, the
1622 1645 completer itself will split the line like readline does.
1623 1646
1624 1647 line : string, optional
1625 1648 The complete line that text is part of.
1626 1649
1627 1650 cursor_pos : int, optional
1628 1651 The position of the cursor on the input line.
1629 1652
1630 1653 Returns
1631 1654 -------
1632 1655 text : string
1633 1656 The actual text that was completed.
1634 1657
1635 1658 matches : list
1636 1659 A sorted list with all possible completions.
1637 1660
1638 1661 The optional arguments allow the completion to take more context into
1639 1662 account, and are part of the low-level completion API.
1640 1663
1641 1664 This is a wrapper around the completion mechanism, similar to what
1642 1665 readline does at the command line when the TAB key is hit. By
1643 1666 exposing it as a method, it can be used by other non-readline
1644 1667 environments (such as GUIs) for text completion.
1645 1668
1646 1669 Simple usage example:
1647 1670
1648 1671 In [1]: x = 'hello'
1649 1672
1650 1673 In [2]: _ip.complete('x.l')
1651 1674 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1652 1675 """
1653 1676
1654 1677 # Inject names into __builtin__ so we can complete on the added names.
1655 1678 with self.builtin_trap:
1656 1679 return self.Completer.complete(text, line, cursor_pos)
1657 1680
1658 1681 def set_custom_completer(self, completer, pos=0):
1659 1682 """Adds a new custom completer function.
1660 1683
1661 1684 The position argument (defaults to 0) is the index in the completers
1662 1685 list where you want the completer to be inserted."""
1663 1686
1664 1687 newcomp = types.MethodType(completer,self.Completer)
1665 1688 self.Completer.matchers.insert(pos,newcomp)
1666 1689
1667 1690 def set_readline_completer(self):
1668 1691 """Reset readline's completer to be our own."""
1669 1692 self.readline.set_completer(self.Completer.rlcomplete)
1670 1693
1671 1694 def set_completer_frame(self, frame=None):
1672 1695 """Set the frame of the completer."""
1673 1696 if frame:
1674 1697 self.Completer.namespace = frame.f_locals
1675 1698 self.Completer.global_namespace = frame.f_globals
1676 1699 else:
1677 1700 self.Completer.namespace = self.user_ns
1678 1701 self.Completer.global_namespace = self.user_global_ns
1679 1702
1680 1703 #-------------------------------------------------------------------------
1681 1704 # Things related to magics
1682 1705 #-------------------------------------------------------------------------
1683 1706
1684 1707 def init_magics(self):
1685 1708 # FIXME: Move the color initialization to the DisplayHook, which
1686 1709 # should be split into a prompt manager and displayhook. We probably
1687 1710 # even need a centralize colors management object.
1688 1711 self.magic_colors(self.colors)
1689 1712 # History was moved to a separate module
1690 1713 from . import history
1691 1714 history.init_ipython(self)
1692 1715
1693 1716 def magic(self,arg_s):
1694 1717 """Call a magic function by name.
1695 1718
1696 1719 Input: a string containing the name of the magic function to call and
1697 1720 any additional arguments to be passed to the magic.
1698 1721
1699 1722 magic('name -opt foo bar') is equivalent to typing at the ipython
1700 1723 prompt:
1701 1724
1702 1725 In[1]: %name -opt foo bar
1703 1726
1704 1727 To call a magic without arguments, simply use magic('name').
1705 1728
1706 1729 This provides a proper Python function to call IPython's magics in any
1707 1730 valid Python code you can type at the interpreter, including loops and
1708 1731 compound statements.
1709 1732 """
1710 1733 args = arg_s.split(' ',1)
1711 1734 magic_name = args[0]
1712 1735 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1713 1736
1714 1737 try:
1715 1738 magic_args = args[1]
1716 1739 except IndexError:
1717 1740 magic_args = ''
1718 1741 fn = getattr(self,'magic_'+magic_name,None)
1719 1742 if fn is None:
1720 1743 error("Magic function `%s` not found." % magic_name)
1721 1744 else:
1722 1745 magic_args = self.var_expand(magic_args,1)
1723 1746 with nested(self.builtin_trap,):
1724 1747 result = fn(magic_args)
1725 1748 return result
1726 1749
1727 1750 def define_magic(self, magicname, func):
1728 1751 """Expose own function as magic function for ipython
1729 1752
1730 1753 def foo_impl(self,parameter_s=''):
1731 1754 'My very own magic!. (Use docstrings, IPython reads them).'
1732 1755 print 'Magic function. Passed parameter is between < >:'
1733 1756 print '<%s>' % parameter_s
1734 1757 print 'The self object is:',self
1735 1758
1736 1759 self.define_magic('foo',foo_impl)
1737 1760 """
1738 1761
1739 1762 import new
1740 1763 im = types.MethodType(func,self)
1741 1764 old = getattr(self, "magic_" + magicname, None)
1742 1765 setattr(self, "magic_" + magicname, im)
1743 1766 return old
1744 1767
1745 1768 #-------------------------------------------------------------------------
1746 1769 # Things related to macros
1747 1770 #-------------------------------------------------------------------------
1748 1771
1749 1772 def define_macro(self, name, themacro):
1750 1773 """Define a new macro
1751 1774
1752 1775 Parameters
1753 1776 ----------
1754 1777 name : str
1755 1778 The name of the macro.
1756 1779 themacro : str or Macro
1757 1780 The action to do upon invoking the macro. If a string, a new
1758 1781 Macro object is created by passing the string to it.
1759 1782 """
1760 1783
1761 1784 from IPython.core import macro
1762 1785
1763 1786 if isinstance(themacro, basestring):
1764 1787 themacro = macro.Macro(themacro)
1765 1788 if not isinstance(themacro, macro.Macro):
1766 1789 raise ValueError('A macro must be a string or a Macro instance.')
1767 1790 self.user_ns[name] = themacro
1768 1791
1769 1792 #-------------------------------------------------------------------------
1770 1793 # Things related to the running of system commands
1771 1794 #-------------------------------------------------------------------------
1772 1795
1773 1796 def system(self, cmd):
1774 1797 """Call the given cmd in a subprocess.
1775 1798
1776 1799 Parameters
1777 1800 ----------
1778 1801 cmd : str
1779 1802 Command to execute (can not end in '&', as bacground processes are
1780 1803 not supported.
1781 1804 """
1782 1805 # We do not support backgrounding processes because we either use
1783 1806 # pexpect or pipes to read from. Users can always just call
1784 1807 # os.system() if they really want a background process.
1785 1808 if cmd.endswith('&'):
1786 1809 raise OSError("Background processes not supported.")
1787 1810
1788 1811 return system(self.var_expand(cmd, depth=2))
1789 1812
1790 1813 def getoutput(self, cmd, split=True):
1791 1814 """Get output (possibly including stderr) from a subprocess.
1792 1815
1793 1816 Parameters
1794 1817 ----------
1795 1818 cmd : str
1796 1819 Command to execute (can not end in '&', as background processes are
1797 1820 not supported.
1798 1821 split : bool, optional
1799 1822
1800 1823 If True, split the output into an IPython SList. Otherwise, an
1801 1824 IPython LSString is returned. These are objects similar to normal
1802 1825 lists and strings, with a few convenience attributes for easier
1803 1826 manipulation of line-based output. You can use '?' on them for
1804 1827 details.
1805 1828 """
1806 1829 if cmd.endswith('&'):
1807 1830 raise OSError("Background processes not supported.")
1808 1831 out = getoutput(self.var_expand(cmd, depth=2))
1809 1832 if split:
1810 1833 out = SList(out.splitlines())
1811 1834 else:
1812 1835 out = LSString(out)
1813 1836 return out
1814 1837
1815 1838 #-------------------------------------------------------------------------
1816 1839 # Things related to aliases
1817 1840 #-------------------------------------------------------------------------
1818 1841
1819 1842 def init_alias(self):
1820 1843 self.alias_manager = AliasManager(shell=self, config=self.config)
1821 1844 self.ns_table['alias'] = self.alias_manager.alias_table,
1822 1845
1823 1846 #-------------------------------------------------------------------------
1824 1847 # Things related to extensions and plugins
1825 1848 #-------------------------------------------------------------------------
1826 1849
1827 1850 def init_extension_manager(self):
1828 1851 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1829 1852
1830 1853 def init_plugin_manager(self):
1831 1854 self.plugin_manager = PluginManager(config=self.config)
1832 1855
1833 1856 #-------------------------------------------------------------------------
1834 1857 # Things related to payloads
1835 1858 #-------------------------------------------------------------------------
1836 1859
1837 1860 def init_payload(self):
1838 1861 self.payload_manager = PayloadManager(config=self.config)
1839 1862
1840 1863 #-------------------------------------------------------------------------
1841 1864 # Things related to the prefilter
1842 1865 #-------------------------------------------------------------------------
1843 1866
1844 1867 def init_prefilter(self):
1845 1868 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1846 1869 # Ultimately this will be refactored in the new interpreter code, but
1847 1870 # for now, we should expose the main prefilter method (there's legacy
1848 1871 # code out there that may rely on this).
1849 1872 self.prefilter = self.prefilter_manager.prefilter_lines
1850 1873
1851 1874 def auto_rewrite_input(self, cmd):
1852 1875 """Print to the screen the rewritten form of the user's command.
1853 1876
1854 1877 This shows visual feedback by rewriting input lines that cause
1855 1878 automatic calling to kick in, like::
1856 1879
1857 1880 /f x
1858 1881
1859 1882 into::
1860 1883
1861 1884 ------> f(x)
1862 1885
1863 1886 after the user's input prompt. This helps the user understand that the
1864 1887 input line was transformed automatically by IPython.
1865 1888 """
1866 1889 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1867 1890
1868 1891 try:
1869 1892 # plain ascii works better w/ pyreadline, on some machines, so
1870 1893 # we use it and only print uncolored rewrite if we have unicode
1871 1894 rw = str(rw)
1872 1895 print >> IPython.utils.io.Term.cout, rw
1873 1896 except UnicodeEncodeError:
1874 1897 print "------> " + cmd
1875 1898
1876 1899 #-------------------------------------------------------------------------
1877 1900 # Things related to extracting values/expressions from kernel and user_ns
1878 1901 #-------------------------------------------------------------------------
1879 1902
1880 1903 def _simple_error(self):
1881 1904 etype, value = sys.exc_info()[:2]
1882 1905 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1883 1906
1884 1907 def user_variables(self, names):
1885 1908 """Get a list of variable names from the user's namespace.
1886 1909
1887 1910 Parameters
1888 1911 ----------
1889 1912 names : list of strings
1890 1913 A list of names of variables to be read from the user namespace.
1891 1914
1892 1915 Returns
1893 1916 -------
1894 1917 A dict, keyed by the input names and with the repr() of each value.
1895 1918 """
1896 1919 out = {}
1897 1920 user_ns = self.user_ns
1898 1921 for varname in names:
1899 1922 try:
1900 1923 value = repr(user_ns[varname])
1901 1924 except:
1902 1925 value = self._simple_error()
1903 1926 out[varname] = value
1904 1927 return out
1905 1928
1906 1929 def user_expressions(self, expressions):
1907 1930 """Evaluate a dict of expressions in the user's namespace.
1908 1931
1909 1932 Parameters
1910 1933 ----------
1911 1934 expressions : dict
1912 1935 A dict with string keys and string values. The expression values
1913 1936 should be valid Python expressions, each of which will be evaluated
1914 1937 in the user namespace.
1915 1938
1916 1939 Returns
1917 1940 -------
1918 1941 A dict, keyed like the input expressions dict, with the repr() of each
1919 1942 value.
1920 1943 """
1921 1944 out = {}
1922 1945 user_ns = self.user_ns
1923 1946 global_ns = self.user_global_ns
1924 1947 for key, expr in expressions.iteritems():
1925 1948 try:
1926 1949 value = repr(eval(expr, global_ns, user_ns))
1927 1950 except:
1928 1951 value = self._simple_error()
1929 1952 out[key] = value
1930 1953 return out
1931 1954
1932 1955 #-------------------------------------------------------------------------
1933 1956 # Things related to the running of code
1934 1957 #-------------------------------------------------------------------------
1935 1958
1936 1959 def ex(self, cmd):
1937 1960 """Execute a normal python statement in user namespace."""
1938 1961 with nested(self.builtin_trap,):
1939 1962 exec cmd in self.user_global_ns, self.user_ns
1940 1963
1941 1964 def ev(self, expr):
1942 1965 """Evaluate python expression expr in user namespace.
1943 1966
1944 1967 Returns the result of evaluation
1945 1968 """
1946 1969 with nested(self.builtin_trap,):
1947 1970 return eval(expr, self.user_global_ns, self.user_ns)
1948 1971
1949 1972 def safe_execfile(self, fname, *where, **kw):
1950 1973 """A safe version of the builtin execfile().
1951 1974
1952 1975 This version will never throw an exception, but instead print
1953 1976 helpful error messages to the screen. This only works on pure
1954 1977 Python files with the .py extension.
1955 1978
1956 1979 Parameters
1957 1980 ----------
1958 1981 fname : string
1959 1982 The name of the file to be executed.
1960 1983 where : tuple
1961 1984 One or two namespaces, passed to execfile() as (globals,locals).
1962 1985 If only one is given, it is passed as both.
1963 1986 exit_ignore : bool (False)
1964 1987 If True, then silence SystemExit for non-zero status (it is always
1965 1988 silenced for zero status, as it is so common).
1966 1989 """
1967 1990 kw.setdefault('exit_ignore', False)
1968 1991
1969 1992 fname = os.path.abspath(os.path.expanduser(fname))
1970 1993 # Make sure we have a .py file
1971 1994 if not fname.endswith('.py'):
1972 1995 warn('File must end with .py to be run using execfile: <%s>' % fname)
1973 1996
1974 1997 # Make sure we can open the file
1975 1998 try:
1976 1999 with open(fname) as thefile:
1977 2000 pass
1978 2001 except:
1979 2002 warn('Could not open file <%s> for safe execution.' % fname)
1980 2003 return
1981 2004
1982 2005 # Find things also in current directory. This is needed to mimic the
1983 2006 # behavior of running a script from the system command line, where
1984 2007 # Python inserts the script's directory into sys.path
1985 2008 dname = os.path.dirname(fname)
1986 2009
1987 2010 if isinstance(fname, unicode):
1988 2011 # execfile uses default encoding instead of filesystem encoding
1989 2012 # so unicode filenames will fail
1990 2013 fname = fname.encode(sys.getfilesystemencoding() or sys.getdefaultencoding())
1991 2014
1992 2015 with prepended_to_syspath(dname):
1993 2016 try:
1994 2017 execfile(fname,*where)
1995 2018 except SystemExit, status:
1996 2019 # If the call was made with 0 or None exit status (sys.exit(0)
1997 2020 # or sys.exit() ), don't bother showing a traceback, as both of
1998 2021 # these are considered normal by the OS:
1999 2022 # > python -c'import sys;sys.exit(0)'; echo $?
2000 2023 # 0
2001 2024 # > python -c'import sys;sys.exit()'; echo $?
2002 2025 # 0
2003 2026 # For other exit status, we show the exception unless
2004 2027 # explicitly silenced, but only in short form.
2005 2028 if status.code not in (0, None) and not kw['exit_ignore']:
2006 2029 self.showtraceback(exception_only=True)
2007 2030 except:
2008 2031 self.showtraceback()
2009 2032
2010 2033 def safe_execfile_ipy(self, fname):
2011 2034 """Like safe_execfile, but for .ipy files with IPython syntax.
2012 2035
2013 2036 Parameters
2014 2037 ----------
2015 2038 fname : str
2016 2039 The name of the file to execute. The filename must have a
2017 2040 .ipy extension.
2018 2041 """
2019 2042 fname = os.path.abspath(os.path.expanduser(fname))
2020 2043
2021 2044 # Make sure we have a .py file
2022 2045 if not fname.endswith('.ipy'):
2023 2046 warn('File must end with .py to be run using execfile: <%s>' % fname)
2024 2047
2025 2048 # Make sure we can open the file
2026 2049 try:
2027 2050 with open(fname) as thefile:
2028 2051 pass
2029 2052 except:
2030 2053 warn('Could not open file <%s> for safe execution.' % fname)
2031 2054 return
2032 2055
2033 2056 # Find things also in current directory. This is needed to mimic the
2034 2057 # behavior of running a script from the system command line, where
2035 2058 # Python inserts the script's directory into sys.path
2036 2059 dname = os.path.dirname(fname)
2037 2060
2038 2061 with prepended_to_syspath(dname):
2039 2062 try:
2040 2063 with open(fname) as thefile:
2041 2064 # self.run_cell currently captures all exceptions
2042 2065 # raised in user code. It would be nice if there were
2043 2066 # versions of runlines, execfile that did raise, so
2044 2067 # we could catch the errors.
2045 2068 self.run_cell(thefile.read(), store_history=False)
2046 2069 except:
2047 2070 self.showtraceback()
2048 2071 warn('Unknown failure executing file: <%s>' % fname)
2049 2072
2050 2073 def run_cell(self, cell, store_history=True):
2051 2074 """Run the contents of an entire multiline 'cell' of code, and store it
2052 2075 in the history.
2053 2076
2054 2077 The cell is split into separate blocks which can be executed
2055 2078 individually. Then, based on how many blocks there are, they are
2056 2079 executed as follows:
2057 2080
2058 2081 - A single block: 'single' mode. If it is also a single line, dynamic
2059 2082 transformations, including automagic and macros, will be applied.
2060 2083
2061 2084 If there's more than one block, it depends:
2062 2085
2063 2086 - if the last one is no more than two lines long, run all but the last
2064 2087 in 'exec' mode and the very last one in 'single' mode. This makes it
2065 2088 easy to type simple expressions at the end to see computed values. -
2066 2089 otherwise (last one is also multiline), run all in 'exec' mode
2067 2090
2068 2091 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2069 2092 results are displayed and output prompts are computed. In 'exec' mode,
2070 2093 no results are displayed unless :func:`print` is called explicitly;
2071 2094 this mode is more akin to running a script.
2072 2095
2073 2096 Parameters
2074 2097 ----------
2075 2098 cell : str
2076 2099 A single or multiline string.
2077 2100 """
2078 2101 # Store the untransformed code
2079 2102 raw_cell = cell
2080 2103
2081 2104 # Code transformation and execution must take place with our
2082 2105 # modifications to builtins.
2083 2106 with self.builtin_trap:
2084 2107
2085 2108 # We need to break up the input into executable blocks that can
2086 2109 # be runin 'single' mode, to provide comfortable user behavior.
2087 2110 blocks = self.input_splitter.split_blocks(cell)
2088 2111
2089 2112 if not blocks: # Blank cell
2090 2113 return
2091 2114
2092 2115 # We only do dynamic transforms on a single line. But a macro
2093 2116 # can be expanded to several lines, so we need to split it
2094 2117 # into input blocks again.
2095 2118 if len(cell.splitlines()) <= 1:
2096 2119 cell = self.prefilter_manager.prefilter_line(blocks[0])
2097 2120 blocks = self.input_splitter.split_blocks(cell)
2098 2121
2099 2122 # Store the 'ipython' version of the cell as well, since
2100 2123 # that's what needs to go into the translated history and get
2101 2124 # executed (the original cell may contain non-python syntax).
2102 2125 cell = ''.join(blocks)
2103 2126
2104 2127 # Store raw and processed history
2105 2128 if store_history:
2106 2129 self.history_manager.store_inputs(self.execution_count,
2107 2130 cell, raw_cell)
2108 2131
2109 2132 self.logger.log(cell, raw_cell)
2110 2133
2111 2134 # All user code execution should take place with our
2112 2135 # modified displayhook.
2113 2136 with self.display_trap:
2114 2137 # Single-block input should behave like an interactive prompt
2115 2138 if len(blocks) == 1:
2116 2139 out = self.run_source(blocks[0])
2117 2140 # Write output to the database. Does nothing unless
2118 2141 # history output logging is enabled.
2119 2142 if store_history:
2120 2143 self.history_manager.store_output(self.execution_count)
2121 2144 # Since we return here, we need to update the
2122 2145 # execution count
2123 2146 self.execution_count += 1
2124 2147 return out
2125 2148
2126 2149 # In multi-block input, if the last block is a simple (one-two
2127 2150 # lines) expression, run it in single mode so it produces output.
2128 2151 # Otherwise just run it all in 'exec' mode. This seems like a
2129 2152 # reasonable usability design.
2130 2153 last = blocks[-1]
2131 2154 last_nlines = len(last.splitlines())
2132 2155
2133 2156 if last_nlines < 2:
2134 2157 # Here we consider the cell split between 'body' and 'last',
2135 2158 # store all history and execute 'body', and if successful, then
2136 2159 # proceed to execute 'last'.
2137 2160
2138 2161 # Get the main body to run as a cell
2139 2162 ipy_body = ''.join(blocks[:-1])
2140 2163 retcode = self.run_source(ipy_body, symbol='exec',
2141 2164 post_execute=False)
2142 2165 if retcode==0:
2143 2166 # Last expression compiled as 'single' so it
2144 2167 # produces output
2145 2168 self.run_source(last)
2146 2169 else:
2147 2170 # Run the whole cell as one entity, storing both raw and
2148 2171 # processed input in history
2149 2172 self.run_source(cell, symbol='exec')
2150 2173
2151 2174 # Write output to the database. Does nothing unless
2152 2175 # history output logging is enabled.
2153 2176 if store_history:
2154 2177 self.history_manager.store_output(self.execution_count)
2155 2178 # Each cell is a *single* input, regardless of how many lines it has
2156 2179 self.execution_count += 1
2157 2180
2158 2181 # PENDING REMOVAL: this method is slated for deletion, once our new
2159 2182 # input logic has been 100% moved to frontends and is stable.
2160 2183 def runlines(self, lines, clean=False):
2161 2184 """Run a string of one or more lines of source.
2162 2185
2163 2186 This method is capable of running a string containing multiple source
2164 2187 lines, as if they had been entered at the IPython prompt. Since it
2165 2188 exposes IPython's processing machinery, the given strings can contain
2166 2189 magic calls (%magic), special shell access (!cmd), etc.
2167 2190 """
2168 2191
2169 2192 if not isinstance(lines, (list, tuple)):
2170 2193 lines = lines.splitlines()
2171 2194
2172 2195 if clean:
2173 2196 lines = self._cleanup_ipy_script(lines)
2174 2197
2175 2198 # We must start with a clean buffer, in case this is run from an
2176 2199 # interactive IPython session (via a magic, for example).
2177 2200 self.reset_buffer()
2178 2201
2179 2202 # Since we will prefilter all lines, store the user's raw input too
2180 2203 # before we apply any transformations
2181 2204 self.buffer_raw[:] = [ l+'\n' for l in lines]
2182 2205
2183 2206 more = False
2184 2207 prefilter_lines = self.prefilter_manager.prefilter_lines
2185 2208 with nested(self.builtin_trap, self.display_trap):
2186 2209 for line in lines:
2187 2210 # skip blank lines so we don't mess up the prompt counter, but
2188 2211 # do NOT skip even a blank line if we are in a code block (more
2189 2212 # is true)
2190 2213
2191 2214 if line or more:
2192 2215 more = self.push_line(prefilter_lines(line, more))
2193 2216 # IPython's run_source returns None if there was an error
2194 2217 # compiling the code. This allows us to stop processing
2195 2218 # right away, so the user gets the error message at the
2196 2219 # right place.
2197 2220 if more is None:
2198 2221 break
2199 2222 # final newline in case the input didn't have it, so that the code
2200 2223 # actually does get executed
2201 2224 if more:
2202 2225 self.push_line('\n')
2203 2226
2204 2227 def run_source(self, source, filename=None,
2205 2228 symbol='single', post_execute=True):
2206 2229 """Compile and run some source in the interpreter.
2207 2230
2208 2231 Arguments are as for compile_command().
2209 2232
2210 2233 One several things can happen:
2211 2234
2212 2235 1) The input is incorrect; compile_command() raised an
2213 2236 exception (SyntaxError or OverflowError). A syntax traceback
2214 2237 will be printed by calling the showsyntaxerror() method.
2215 2238
2216 2239 2) The input is incomplete, and more input is required;
2217 2240 compile_command() returned None. Nothing happens.
2218 2241
2219 2242 3) The input is complete; compile_command() returned a code
2220 2243 object. The code is executed by calling self.run_code() (which
2221 2244 also handles run-time exceptions, except for SystemExit).
2222 2245
2223 2246 The return value is:
2224 2247
2225 2248 - True in case 2
2226 2249
2227 2250 - False in the other cases, unless an exception is raised, where
2228 2251 None is returned instead. This can be used by external callers to
2229 2252 know whether to continue feeding input or not.
2230 2253
2231 2254 The return value can be used to decide whether to use sys.ps1 or
2232 2255 sys.ps2 to prompt the next line."""
2233 2256
2234 2257 # We need to ensure that the source is unicode from here on.
2235 2258 if type(source)==str:
2236 2259 usource = source.decode(self.stdin_encoding)
2237 2260 else:
2238 2261 usource = source
2239 2262
2240 2263 if False: # dbg
2241 2264 print 'Source:', repr(source) # dbg
2242 2265 print 'USource:', repr(usource) # dbg
2243 2266 print 'type:', type(source) # dbg
2244 2267 print 'encoding', self.stdin_encoding # dbg
2245 2268
2246 2269 try:
2247 2270 code = self.compile(usource, symbol, self.execution_count)
2248 2271 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2249 2272 # Case 1
2250 2273 self.showsyntaxerror(filename)
2251 2274 return None
2252 2275
2253 2276 if code is None:
2254 2277 # Case 2
2255 2278 return True
2256 2279
2257 2280 # Case 3
2258 2281 # We store the code object so that threaded shells and
2259 2282 # custom exception handlers can access all this info if needed.
2260 2283 # The source corresponding to this can be obtained from the
2261 2284 # buffer attribute as '\n'.join(self.buffer).
2262 2285 self.code_to_run = code
2263 2286 # now actually execute the code object
2264 2287 if self.run_code(code, post_execute) == 0:
2265 2288 return False
2266 2289 else:
2267 2290 return None
2268 2291
2269 2292 # For backwards compatibility
2270 2293 runsource = run_source
2271 2294
2272 2295 def run_code(self, code_obj, post_execute=True):
2273 2296 """Execute a code object.
2274 2297
2275 2298 When an exception occurs, self.showtraceback() is called to display a
2276 2299 traceback.
2277 2300
2278 2301 Return value: a flag indicating whether the code to be run completed
2279 2302 successfully:
2280 2303
2281 2304 - 0: successful execution.
2282 2305 - 1: an error occurred.
2283 2306 """
2284 2307
2285 2308 # Set our own excepthook in case the user code tries to call it
2286 2309 # directly, so that the IPython crash handler doesn't get triggered
2287 2310 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2288 2311
2289 2312 # we save the original sys.excepthook in the instance, in case config
2290 2313 # code (such as magics) needs access to it.
2291 2314 self.sys_excepthook = old_excepthook
2292 2315 outflag = 1 # happens in more places, so it's easier as default
2293 2316 try:
2294 2317 try:
2295 2318 self.hooks.pre_run_code_hook()
2296 2319 #rprint('Running code', repr(code_obj)) # dbg
2297 2320 exec code_obj in self.user_global_ns, self.user_ns
2298 2321 finally:
2299 2322 # Reset our crash handler in place
2300 2323 sys.excepthook = old_excepthook
2301 2324 except SystemExit:
2302 2325 self.reset_buffer()
2303 2326 self.showtraceback(exception_only=True)
2304 2327 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2305 2328 except self.custom_exceptions:
2306 2329 etype,value,tb = sys.exc_info()
2307 2330 self.CustomTB(etype,value,tb)
2308 2331 except:
2309 2332 self.showtraceback()
2310 2333 else:
2311 2334 outflag = 0
2312 2335 if softspace(sys.stdout, 0):
2313 2336 print
2314 2337
2315 2338 # Execute any registered post-execution functions. Here, any errors
2316 2339 # are reported only minimally and just on the terminal, because the
2317 2340 # main exception channel may be occupied with a user traceback.
2318 2341 # FIXME: we need to think this mechanism a little more carefully.
2319 2342 if post_execute:
2320 2343 for func in self._post_execute:
2321 2344 try:
2322 2345 func()
2323 2346 except:
2324 2347 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2325 2348 func
2326 2349 print >> io.Term.cout, head
2327 2350 print >> io.Term.cout, self._simple_error()
2328 2351 print >> io.Term.cout, 'Removing from post_execute'
2329 2352 self._post_execute.remove(func)
2330 2353
2331 2354 # Flush out code object which has been run (and source)
2332 2355 self.code_to_run = None
2333 2356 return outflag
2334 2357
2335 2358 # For backwards compatibility
2336 2359 runcode = run_code
2337 2360
2338 2361 # PENDING REMOVAL: this method is slated for deletion, once our new
2339 2362 # input logic has been 100% moved to frontends and is stable.
2340 2363 def push_line(self, line):
2341 2364 """Push a line to the interpreter.
2342 2365
2343 2366 The line should not have a trailing newline; it may have
2344 2367 internal newlines. The line is appended to a buffer and the
2345 2368 interpreter's run_source() method is called with the
2346 2369 concatenated contents of the buffer as source. If this
2347 2370 indicates that the command was executed or invalid, the buffer
2348 2371 is reset; otherwise, the command is incomplete, and the buffer
2349 2372 is left as it was after the line was appended. The return
2350 2373 value is 1 if more input is required, 0 if the line was dealt
2351 2374 with in some way (this is the same as run_source()).
2352 2375 """
2353 2376
2354 2377 # autoindent management should be done here, and not in the
2355 2378 # interactive loop, since that one is only seen by keyboard input. We
2356 2379 # need this done correctly even for code run via runlines (which uses
2357 2380 # push).
2358 2381
2359 2382 #print 'push line: <%s>' % line # dbg
2360 2383 self.buffer.append(line)
2361 2384 full_source = '\n'.join(self.buffer)
2362 2385 more = self.run_source(full_source, self.filename)
2363 2386 if not more:
2364 2387 self.history_manager.store_inputs(self.execution_count,
2365 2388 '\n'.join(self.buffer_raw), full_source)
2366 2389 self.reset_buffer()
2367 2390 self.execution_count += 1
2368 2391 return more
2369 2392
2370 2393 def reset_buffer(self):
2371 2394 """Reset the input buffer."""
2372 2395 self.buffer[:] = []
2373 2396 self.buffer_raw[:] = []
2374 2397 self.input_splitter.reset()
2375 2398
2376 2399 # For backwards compatibility
2377 2400 resetbuffer = reset_buffer
2378 2401
2379 2402 def _is_secondary_block_start(self, s):
2380 2403 if not s.endswith(':'):
2381 2404 return False
2382 2405 if (s.startswith('elif') or
2383 2406 s.startswith('else') or
2384 2407 s.startswith('except') or
2385 2408 s.startswith('finally')):
2386 2409 return True
2387 2410
2388 2411 def _cleanup_ipy_script(self, script):
2389 2412 """Make a script safe for self.runlines()
2390 2413
2391 2414 Currently, IPython is lines based, with blocks being detected by
2392 2415 empty lines. This is a problem for block based scripts that may
2393 2416 not have empty lines after blocks. This script adds those empty
2394 2417 lines to make scripts safe for running in the current line based
2395 2418 IPython.
2396 2419 """
2397 2420 res = []
2398 2421 lines = script.splitlines()
2399 2422 level = 0
2400 2423
2401 2424 for l in lines:
2402 2425 lstripped = l.lstrip()
2403 2426 stripped = l.strip()
2404 2427 if not stripped:
2405 2428 continue
2406 2429 newlevel = len(l) - len(lstripped)
2407 2430 if level > 0 and newlevel == 0 and \
2408 2431 not self._is_secondary_block_start(stripped):
2409 2432 # add empty line
2410 2433 res.append('')
2411 2434 res.append(l)
2412 2435 level = newlevel
2413 2436
2414 2437 return '\n'.join(res) + '\n'
2415 2438
2416 2439 #-------------------------------------------------------------------------
2417 2440 # Things related to GUI support and pylab
2418 2441 #-------------------------------------------------------------------------
2419 2442
2420 2443 def enable_pylab(self, gui=None):
2421 2444 raise NotImplementedError('Implement enable_pylab in a subclass')
2422 2445
2423 2446 #-------------------------------------------------------------------------
2424 2447 # Utilities
2425 2448 #-------------------------------------------------------------------------
2426 2449
2427 2450 def var_expand(self,cmd,depth=0):
2428 2451 """Expand python variables in a string.
2429 2452
2430 2453 The depth argument indicates how many frames above the caller should
2431 2454 be walked to look for the local namespace where to expand variables.
2432 2455
2433 2456 The global namespace for expansion is always the user's interactive
2434 2457 namespace.
2435 2458 """
2436 2459 res = ItplNS(cmd, self.user_ns, # globals
2437 2460 # Skip our own frame in searching for locals:
2438 2461 sys._getframe(depth+1).f_locals # locals
2439 2462 )
2440 2463 return str(res).decode(res.codec)
2441 2464
2442 2465 def mktempfile(self, data=None, prefix='ipython_edit_'):
2443 2466 """Make a new tempfile and return its filename.
2444 2467
2445 2468 This makes a call to tempfile.mktemp, but it registers the created
2446 2469 filename internally so ipython cleans it up at exit time.
2447 2470
2448 2471 Optional inputs:
2449 2472
2450 2473 - data(None): if data is given, it gets written out to the temp file
2451 2474 immediately, and the file is closed again."""
2452 2475
2453 2476 filename = tempfile.mktemp('.py', prefix)
2454 2477 self.tempfiles.append(filename)
2455 2478
2456 2479 if data:
2457 2480 tmp_file = open(filename,'w')
2458 2481 tmp_file.write(data)
2459 2482 tmp_file.close()
2460 2483 return filename
2461 2484
2462 2485 # TODO: This should be removed when Term is refactored.
2463 2486 def write(self,data):
2464 2487 """Write a string to the default output"""
2465 2488 io.Term.cout.write(data)
2466 2489
2467 2490 # TODO: This should be removed when Term is refactored.
2468 2491 def write_err(self,data):
2469 2492 """Write a string to the default error output"""
2470 2493 io.Term.cerr.write(data)
2471 2494
2472 2495 def ask_yes_no(self,prompt,default=True):
2473 2496 if self.quiet:
2474 2497 return True
2475 2498 return ask_yes_no(prompt,default)
2476 2499
2477 2500 def show_usage(self):
2478 2501 """Show a usage message"""
2479 2502 page.page(IPython.core.usage.interactive_usage)
2480 2503
2481 2504 #-------------------------------------------------------------------------
2482 2505 # Things related to IPython exiting
2483 2506 #-------------------------------------------------------------------------
2484 2507 def atexit_operations(self):
2485 2508 """This will be executed at the time of exit.
2486 2509
2487 2510 Cleanup operations and saving of persistent data that is done
2488 2511 unconditionally by IPython should be performed here.
2489 2512
2490 2513 For things that may depend on startup flags or platform specifics (such
2491 2514 as having readline or not), register a separate atexit function in the
2492 2515 code that has the appropriate information, rather than trying to
2493 2516 clutter
2494 2517 """
2495 2518 # Cleanup all tempfiles left around
2496 2519 for tfile in self.tempfiles:
2497 2520 try:
2498 2521 os.unlink(tfile)
2499 2522 except OSError:
2500 2523 pass
2501 2524
2502 2525 # Close the history session (this stores the end time and line count)
2503 2526 self.history_manager.end_session()
2504 2527
2505 2528 # Clear all user namespaces to release all references cleanly.
2506 2529 self.reset(new_session=False)
2507 2530
2508 2531 # Run user hooks
2509 2532 self.hooks.shutdown_hook()
2510 2533
2511 2534 def cleanup(self):
2512 2535 self.restore_sys_module_state()
2513 2536
2514 2537
2515 2538 class InteractiveShellABC(object):
2516 2539 """An abstract base class for InteractiveShell."""
2517 2540 __metaclass__ = abc.ABCMeta
2518 2541
2519 2542 InteractiveShellABC.register(InteractiveShell)
@@ -1,3446 +1,3447 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 from cStringIO import StringIO
29 29 from getopt import getopt,GetoptError
30 30 from pprint import pformat
31 31
32 32 # cProfile was added in Python2.5
33 33 try:
34 34 import cProfile as profile
35 35 import pstats
36 36 except ImportError:
37 37 # profile isn't bundled by default in Debian for license reasons
38 38 try:
39 39 import profile,pstats
40 40 except ImportError:
41 41 profile = pstats = None
42 42
43 43 import IPython
44 44 from IPython.core import debugger, oinspect
45 45 from IPython.core.error import TryNext
46 46 from IPython.core.error import UsageError
47 47 from IPython.core.fakemodule import FakeModule
48 48 from IPython.core.macro import Macro
49 49 from IPython.core import page
50 50 from IPython.core.prefilter import ESC_MAGIC
51 51 from IPython.lib.pylabtools import mpl_runner
52 52 from IPython.external.Itpl import itpl, printpl
53 53 from IPython.testing import decorators as testdec
54 54 from IPython.utils.io import file_read, nlprint
55 55 import IPython.utils.io
56 56 from IPython.utils.path import get_py_filename
57 57 from IPython.utils.process import arg_split, abbrev_cwd
58 58 from IPython.utils.terminal import set_term_title
59 59 from IPython.utils.text import LSString, SList, format_screen
60 60 from IPython.utils.timing import clock, clock2
61 61 from IPython.utils.warn import warn, error
62 62 from IPython.utils.ipstruct import Struct
63 63 import IPython.utils.generics
64 64
65 65 #-----------------------------------------------------------------------------
66 66 # Utility functions
67 67 #-----------------------------------------------------------------------------
68 68
69 69 def on_off(tag):
70 70 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
71 71 return ['OFF','ON'][tag]
72 72
73 73 class Bunch: pass
74 74
75 75 def compress_dhist(dh):
76 76 head, tail = dh[:-10], dh[-10:]
77 77
78 78 newhead = []
79 79 done = set()
80 80 for h in head:
81 81 if h in done:
82 82 continue
83 83 newhead.append(h)
84 84 done.add(h)
85 85
86 86 return newhead + tail
87 87
88 88
89 89 #***************************************************************************
90 90 # Main class implementing Magic functionality
91 91
92 92 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
93 93 # on construction of the main InteractiveShell object. Something odd is going
94 94 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
95 95 # eventually this needs to be clarified.
96 96 # BG: This is because InteractiveShell inherits from this, but is itself a
97 97 # Configurable. This messes up the MRO in some way. The fix is that we need to
98 98 # make Magic a configurable that InteractiveShell does not subclass.
99 99
100 100 class Magic:
101 101 """Magic functions for InteractiveShell.
102 102
103 103 Shell functions which can be reached as %function_name. All magic
104 104 functions should accept a string, which they can parse for their own
105 105 needs. This can make some functions easier to type, eg `%cd ../`
106 106 vs. `%cd("../")`
107 107
108 108 ALL definitions MUST begin with the prefix magic_. The user won't need it
109 109 at the command line, but it is is needed in the definition. """
110 110
111 111 # class globals
112 112 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
113 113 'Automagic is ON, % prefix NOT needed for magic functions.']
114 114
115 115 #......................................................................
116 116 # some utility functions
117 117
118 118 def __init__(self,shell):
119 119
120 120 self.options_table = {}
121 121 if profile is None:
122 122 self.magic_prun = self.profile_missing_notice
123 123 self.shell = shell
124 124
125 125 # namespace for holding state we may need
126 126 self._magic_state = Bunch()
127 127
128 128 def profile_missing_notice(self, *args, **kwargs):
129 129 error("""\
130 130 The profile module could not be found. It has been removed from the standard
131 131 python packages because of its non-free license. To use profiling, install the
132 132 python-profiler package from non-free.""")
133 133
134 134 def default_option(self,fn,optstr):
135 135 """Make an entry in the options_table for fn, with value optstr"""
136 136
137 137 if fn not in self.lsmagic():
138 138 error("%s is not a magic function" % fn)
139 139 self.options_table[fn] = optstr
140 140
141 141 def lsmagic(self):
142 142 """Return a list of currently available magic functions.
143 143
144 144 Gives a list of the bare names after mangling (['ls','cd', ...], not
145 145 ['magic_ls','magic_cd',...]"""
146 146
147 147 # FIXME. This needs a cleanup, in the way the magics list is built.
148 148
149 149 # magics in class definition
150 150 class_magic = lambda fn: fn.startswith('magic_') and \
151 151 callable(Magic.__dict__[fn])
152 152 # in instance namespace (run-time user additions)
153 153 inst_magic = lambda fn: fn.startswith('magic_') and \
154 154 callable(self.__dict__[fn])
155 155 # and bound magics by user (so they can access self):
156 156 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
157 157 callable(self.__class__.__dict__[fn])
158 158 magics = filter(class_magic,Magic.__dict__.keys()) + \
159 159 filter(inst_magic,self.__dict__.keys()) + \
160 160 filter(inst_bound_magic,self.__class__.__dict__.keys())
161 161 out = []
162 162 for fn in set(magics):
163 163 out.append(fn.replace('magic_','',1))
164 164 out.sort()
165 165 return out
166 166
167 167 def extract_input_lines(self, range_str, raw=False):
168 168 """Return as a string a set of input history slices.
169 169
170 170 Inputs:
171 171
172 172 - range_str: the set of slices is given as a string, like
173 173 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
174 174 which get their arguments as strings. The number before the / is the
175 175 session number: ~n goes n back from the current session.
176 176
177 177 Optional inputs:
178 178
179 179 - raw(False): by default, the processed input is used. If this is
180 180 true, the raw input history is used instead.
181 181
182 182 Note that slices can be called with two notations:
183 183
184 184 N:M -> standard python form, means including items N...(M-1).
185 185
186 186 N-M -> include items N..M (closed endpoint)."""
187 187 lines = self.shell.history_manager.\
188 188 get_range_by_str(range_str, raw=raw)
189 189 return "\n".join(x for _, _, x in lines)
190 190
191 191 def arg_err(self,func):
192 192 """Print docstring if incorrect arguments were passed"""
193 193 print 'Error in arguments:'
194 194 print oinspect.getdoc(func)
195 195
196 196 def format_latex(self,strng):
197 197 """Format a string for latex inclusion."""
198 198
199 199 # Characters that need to be escaped for latex:
200 200 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
201 201 # Magic command names as headers:
202 202 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
203 203 re.MULTILINE)
204 204 # Magic commands
205 205 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
206 206 re.MULTILINE)
207 207 # Paragraph continue
208 208 par_re = re.compile(r'\\$',re.MULTILINE)
209 209
210 210 # The "\n" symbol
211 211 newline_re = re.compile(r'\\n')
212 212
213 213 # Now build the string for output:
214 214 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
215 215 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
216 216 strng)
217 217 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
218 218 strng = par_re.sub(r'\\\\',strng)
219 219 strng = escape_re.sub(r'\\\1',strng)
220 220 strng = newline_re.sub(r'\\textbackslash{}n',strng)
221 221 return strng
222 222
223 223 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
224 224 """Parse options passed to an argument string.
225 225
226 226 The interface is similar to that of getopt(), but it returns back a
227 227 Struct with the options as keys and the stripped argument string still
228 228 as a string.
229 229
230 230 arg_str is quoted as a true sys.argv vector by using shlex.split.
231 231 This allows us to easily expand variables, glob files, quote
232 232 arguments, etc.
233 233
234 234 Options:
235 235 -mode: default 'string'. If given as 'list', the argument string is
236 236 returned as a list (split on whitespace) instead of a string.
237 237
238 238 -list_all: put all option values in lists. Normally only options
239 239 appearing more than once are put in a list.
240 240
241 241 -posix (True): whether to split the input line in POSIX mode or not,
242 242 as per the conventions outlined in the shlex module from the
243 243 standard library."""
244 244
245 245 # inject default options at the beginning of the input line
246 246 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
247 247 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
248 248
249 249 mode = kw.get('mode','string')
250 250 if mode not in ['string','list']:
251 251 raise ValueError,'incorrect mode given: %s' % mode
252 252 # Get options
253 253 list_all = kw.get('list_all',0)
254 254 posix = kw.get('posix', os.name == 'posix')
255 255
256 256 # Check if we have more than one argument to warrant extra processing:
257 257 odict = {} # Dictionary with options
258 258 args = arg_str.split()
259 259 if len(args) >= 1:
260 260 # If the list of inputs only has 0 or 1 thing in it, there's no
261 261 # need to look for options
262 262 argv = arg_split(arg_str,posix)
263 263 # Do regular option processing
264 264 try:
265 265 opts,args = getopt(argv,opt_str,*long_opts)
266 266 except GetoptError,e:
267 267 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
268 268 " ".join(long_opts)))
269 269 for o,a in opts:
270 270 if o.startswith('--'):
271 271 o = o[2:]
272 272 else:
273 273 o = o[1:]
274 274 try:
275 275 odict[o].append(a)
276 276 except AttributeError:
277 277 odict[o] = [odict[o],a]
278 278 except KeyError:
279 279 if list_all:
280 280 odict[o] = [a]
281 281 else:
282 282 odict[o] = a
283 283
284 284 # Prepare opts,args for return
285 285 opts = Struct(odict)
286 286 if mode == 'string':
287 287 args = ' '.join(args)
288 288
289 289 return opts,args
290 290
291 291 #......................................................................
292 292 # And now the actual magic functions
293 293
294 294 # Functions for IPython shell work (vars,funcs, config, etc)
295 295 def magic_lsmagic(self, parameter_s = ''):
296 296 """List currently available magic functions."""
297 297 mesc = ESC_MAGIC
298 298 print 'Available magic functions:\n'+mesc+\
299 299 (' '+mesc).join(self.lsmagic())
300 300 print '\n' + Magic.auto_status[self.shell.automagic]
301 301 return None
302 302
303 303 def magic_magic(self, parameter_s = ''):
304 304 """Print information about the magic function system.
305 305
306 306 Supported formats: -latex, -brief, -rest
307 307 """
308 308
309 309 mode = ''
310 310 try:
311 311 if parameter_s.split()[0] == '-latex':
312 312 mode = 'latex'
313 313 if parameter_s.split()[0] == '-brief':
314 314 mode = 'brief'
315 315 if parameter_s.split()[0] == '-rest':
316 316 mode = 'rest'
317 317 rest_docs = []
318 318 except:
319 319 pass
320 320
321 321 magic_docs = []
322 322 for fname in self.lsmagic():
323 323 mname = 'magic_' + fname
324 324 for space in (Magic,self,self.__class__):
325 325 try:
326 326 fn = space.__dict__[mname]
327 327 except KeyError:
328 328 pass
329 329 else:
330 330 break
331 331 if mode == 'brief':
332 332 # only first line
333 333 if fn.__doc__:
334 334 fndoc = fn.__doc__.split('\n',1)[0]
335 335 else:
336 336 fndoc = 'No documentation'
337 337 else:
338 338 if fn.__doc__:
339 339 fndoc = fn.__doc__.rstrip()
340 340 else:
341 341 fndoc = 'No documentation'
342 342
343 343
344 344 if mode == 'rest':
345 345 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
346 346 fname,fndoc))
347 347
348 348 else:
349 349 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
350 350 fname,fndoc))
351 351
352 352 magic_docs = ''.join(magic_docs)
353 353
354 354 if mode == 'rest':
355 355 return "".join(rest_docs)
356 356
357 357 if mode == 'latex':
358 358 print self.format_latex(magic_docs)
359 359 return
360 360 else:
361 361 magic_docs = format_screen(magic_docs)
362 362 if mode == 'brief':
363 363 return magic_docs
364 364
365 365 outmsg = """
366 366 IPython's 'magic' functions
367 367 ===========================
368 368
369 369 The magic function system provides a series of functions which allow you to
370 370 control the behavior of IPython itself, plus a lot of system-type
371 371 features. All these functions are prefixed with a % character, but parameters
372 372 are given without parentheses or quotes.
373 373
374 374 NOTE: If you have 'automagic' enabled (via the command line option or with the
375 375 %automagic function), you don't need to type in the % explicitly. By default,
376 376 IPython ships with automagic on, so you should only rarely need the % escape.
377 377
378 378 Example: typing '%cd mydir' (without the quotes) changes you working directory
379 379 to 'mydir', if it exists.
380 380
381 381 You can define your own magic functions to extend the system. See the supplied
382 382 ipythonrc and example-magic.py files for details (in your ipython
383 383 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
384 384
385 385 You can also define your own aliased names for magic functions. In your
386 386 ipythonrc file, placing a line like:
387 387
388 388 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
389 389
390 390 will define %pf as a new name for %profile.
391 391
392 392 You can also call magics in code using the magic() function, which IPython
393 393 automatically adds to the builtin namespace. Type 'magic?' for details.
394 394
395 395 For a list of the available magic functions, use %lsmagic. For a description
396 396 of any of them, type %magic_name?, e.g. '%cd?'.
397 397
398 398 Currently the magic system has the following functions:\n"""
399 399
400 400 mesc = ESC_MAGIC
401 401 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
402 402 "\n\n%s%s\n\n%s" % (outmsg,
403 403 magic_docs,mesc,mesc,
404 404 (' '+mesc).join(self.lsmagic()),
405 405 Magic.auto_status[self.shell.automagic] ) )
406 406 page.page(outmsg)
407 407
408 408 def magic_automagic(self, parameter_s = ''):
409 409 """Make magic functions callable without having to type the initial %.
410 410
411 411 Without argumentsl toggles on/off (when off, you must call it as
412 412 %automagic, of course). With arguments it sets the value, and you can
413 413 use any of (case insensitive):
414 414
415 415 - on,1,True: to activate
416 416
417 417 - off,0,False: to deactivate.
418 418
419 419 Note that magic functions have lowest priority, so if there's a
420 420 variable whose name collides with that of a magic fn, automagic won't
421 421 work for that function (you get the variable instead). However, if you
422 422 delete the variable (del var), the previously shadowed magic function
423 423 becomes visible to automagic again."""
424 424
425 425 arg = parameter_s.lower()
426 426 if parameter_s in ('on','1','true'):
427 427 self.shell.automagic = True
428 428 elif parameter_s in ('off','0','false'):
429 429 self.shell.automagic = False
430 430 else:
431 431 self.shell.automagic = not self.shell.automagic
432 432 print '\n' + Magic.auto_status[self.shell.automagic]
433 433
434 434 @testdec.skip_doctest
435 435 def magic_autocall(self, parameter_s = ''):
436 436 """Make functions callable without having to type parentheses.
437 437
438 438 Usage:
439 439
440 440 %autocall [mode]
441 441
442 442 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
443 443 value is toggled on and off (remembering the previous state).
444 444
445 445 In more detail, these values mean:
446 446
447 447 0 -> fully disabled
448 448
449 449 1 -> active, but do not apply if there are no arguments on the line.
450 450
451 451 In this mode, you get:
452 452
453 453 In [1]: callable
454 454 Out[1]: <built-in function callable>
455 455
456 456 In [2]: callable 'hello'
457 457 ------> callable('hello')
458 458 Out[2]: False
459 459
460 460 2 -> Active always. Even if no arguments are present, the callable
461 461 object is called:
462 462
463 463 In [2]: float
464 464 ------> float()
465 465 Out[2]: 0.0
466 466
467 467 Note that even with autocall off, you can still use '/' at the start of
468 468 a line to treat the first argument on the command line as a function
469 469 and add parentheses to it:
470 470
471 471 In [8]: /str 43
472 472 ------> str(43)
473 473 Out[8]: '43'
474 474
475 475 # all-random (note for auto-testing)
476 476 """
477 477
478 478 if parameter_s:
479 479 arg = int(parameter_s)
480 480 else:
481 481 arg = 'toggle'
482 482
483 483 if not arg in (0,1,2,'toggle'):
484 484 error('Valid modes: (0->Off, 1->Smart, 2->Full')
485 485 return
486 486
487 487 if arg in (0,1,2):
488 488 self.shell.autocall = arg
489 489 else: # toggle
490 490 if self.shell.autocall:
491 491 self._magic_state.autocall_save = self.shell.autocall
492 492 self.shell.autocall = 0
493 493 else:
494 494 try:
495 495 self.shell.autocall = self._magic_state.autocall_save
496 496 except AttributeError:
497 497 self.shell.autocall = self._magic_state.autocall_save = 1
498 498
499 499 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
500 500
501 501
502 502 def magic_page(self, parameter_s=''):
503 503 """Pretty print the object and display it through a pager.
504 504
505 505 %page [options] OBJECT
506 506
507 507 If no object is given, use _ (last output).
508 508
509 509 Options:
510 510
511 511 -r: page str(object), don't pretty-print it."""
512 512
513 513 # After a function contributed by Olivier Aubert, slightly modified.
514 514
515 515 # Process options/args
516 516 opts,args = self.parse_options(parameter_s,'r')
517 517 raw = 'r' in opts
518 518
519 519 oname = args and args or '_'
520 520 info = self._ofind(oname)
521 521 if info['found']:
522 522 txt = (raw and str or pformat)( info['obj'] )
523 523 page.page(txt)
524 524 else:
525 525 print 'Object `%s` not found' % oname
526 526
527 527 def magic_profile(self, parameter_s=''):
528 528 """Print your currently active IPython profile."""
529 529 if self.shell.profile:
530 530 printpl('Current IPython profile: $self.shell.profile.')
531 531 else:
532 532 print 'No profile active.'
533 533
534 534 def magic_pinfo(self, parameter_s='', namespaces=None):
535 535 """Provide detailed information about an object.
536 536
537 537 '%pinfo object' is just a synonym for object? or ?object."""
538 538
539 539 #print 'pinfo par: <%s>' % parameter_s # dbg
540 540
541 541
542 542 # detail_level: 0 -> obj? , 1 -> obj??
543 543 detail_level = 0
544 544 # We need to detect if we got called as 'pinfo pinfo foo', which can
545 545 # happen if the user types 'pinfo foo?' at the cmd line.
546 546 pinfo,qmark1,oname,qmark2 = \
547 547 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
548 548 if pinfo or qmark1 or qmark2:
549 549 detail_level = 1
550 550 if "*" in oname:
551 551 self.magic_psearch(oname)
552 552 else:
553 553 self.shell._inspect('pinfo', oname, detail_level=detail_level,
554 554 namespaces=namespaces)
555 555
556 556 def magic_pinfo2(self, parameter_s='', namespaces=None):
557 557 """Provide extra detailed information about an object.
558 558
559 559 '%pinfo2 object' is just a synonym for object?? or ??object."""
560 560 self.shell._inspect('pinfo', parameter_s, detail_level=1,
561 561 namespaces=namespaces)
562 562
563 563 @testdec.skip_doctest
564 564 def magic_pdef(self, parameter_s='', namespaces=None):
565 565 """Print the definition header for any callable object.
566 566
567 567 If the object is a class, print the constructor information.
568 568
569 569 Examples
570 570 --------
571 571 ::
572 572
573 573 In [3]: %pdef urllib.urlopen
574 574 urllib.urlopen(url, data=None, proxies=None)
575 575 """
576 576 self._inspect('pdef',parameter_s, namespaces)
577 577
578 578 def magic_pdoc(self, parameter_s='', namespaces=None):
579 579 """Print the docstring for an object.
580 580
581 581 If the given object is a class, it will print both the class and the
582 582 constructor docstrings."""
583 583 self._inspect('pdoc',parameter_s, namespaces)
584 584
585 585 def magic_psource(self, parameter_s='', namespaces=None):
586 586 """Print (or run through pager) the source code for an object."""
587 587 self._inspect('psource',parameter_s, namespaces)
588 588
589 589 def magic_pfile(self, parameter_s=''):
590 590 """Print (or run through pager) the file where an object is defined.
591 591
592 592 The file opens at the line where the object definition begins. IPython
593 593 will honor the environment variable PAGER if set, and otherwise will
594 594 do its best to print the file in a convenient form.
595 595
596 596 If the given argument is not an object currently defined, IPython will
597 597 try to interpret it as a filename (automatically adding a .py extension
598 598 if needed). You can thus use %pfile as a syntax highlighting code
599 599 viewer."""
600 600
601 601 # first interpret argument as an object name
602 602 out = self._inspect('pfile',parameter_s)
603 603 # if not, try the input as a filename
604 604 if out == 'not found':
605 605 try:
606 606 filename = get_py_filename(parameter_s)
607 607 except IOError,msg:
608 608 print msg
609 609 return
610 610 page.page(self.shell.inspector.format(file(filename).read()))
611 611
612 612 def magic_psearch(self, parameter_s=''):
613 613 """Search for object in namespaces by wildcard.
614 614
615 615 %psearch [options] PATTERN [OBJECT TYPE]
616 616
617 617 Note: ? can be used as a synonym for %psearch, at the beginning or at
618 618 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
619 619 rest of the command line must be unchanged (options come first), so
620 620 for example the following forms are equivalent
621 621
622 622 %psearch -i a* function
623 623 -i a* function?
624 624 ?-i a* function
625 625
626 626 Arguments:
627 627
628 628 PATTERN
629 629
630 630 where PATTERN is a string containing * as a wildcard similar to its
631 631 use in a shell. The pattern is matched in all namespaces on the
632 632 search path. By default objects starting with a single _ are not
633 633 matched, many IPython generated objects have a single
634 634 underscore. The default is case insensitive matching. Matching is
635 635 also done on the attributes of objects and not only on the objects
636 636 in a module.
637 637
638 638 [OBJECT TYPE]
639 639
640 640 Is the name of a python type from the types module. The name is
641 641 given in lowercase without the ending type, ex. StringType is
642 642 written string. By adding a type here only objects matching the
643 643 given type are matched. Using all here makes the pattern match all
644 644 types (this is the default).
645 645
646 646 Options:
647 647
648 648 -a: makes the pattern match even objects whose names start with a
649 649 single underscore. These names are normally ommitted from the
650 650 search.
651 651
652 652 -i/-c: make the pattern case insensitive/sensitive. If neither of
653 653 these options is given, the default is read from your ipythonrc
654 654 file. The option name which sets this value is
655 655 'wildcards_case_sensitive'. If this option is not specified in your
656 656 ipythonrc file, IPython's internal default is to do a case sensitive
657 657 search.
658 658
659 659 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
660 660 specifiy can be searched in any of the following namespaces:
661 661 'builtin', 'user', 'user_global','internal', 'alias', where
662 662 'builtin' and 'user' are the search defaults. Note that you should
663 663 not use quotes when specifying namespaces.
664 664
665 665 'Builtin' contains the python module builtin, 'user' contains all
666 666 user data, 'alias' only contain the shell aliases and no python
667 667 objects, 'internal' contains objects used by IPython. The
668 668 'user_global' namespace is only used by embedded IPython instances,
669 669 and it contains module-level globals. You can add namespaces to the
670 670 search with -s or exclude them with -e (these options can be given
671 671 more than once).
672 672
673 673 Examples:
674 674
675 675 %psearch a* -> objects beginning with an a
676 676 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
677 677 %psearch a* function -> all functions beginning with an a
678 678 %psearch re.e* -> objects beginning with an e in module re
679 679 %psearch r*.e* -> objects that start with e in modules starting in r
680 680 %psearch r*.* string -> all strings in modules beginning with r
681 681
682 682 Case sensitve search:
683 683
684 684 %psearch -c a* list all object beginning with lower case a
685 685
686 686 Show objects beginning with a single _:
687 687
688 688 %psearch -a _* list objects beginning with a single underscore"""
689 689 try:
690 690 parameter_s = parameter_s.encode('ascii')
691 691 except UnicodeEncodeError:
692 692 print 'Python identifiers can only contain ascii characters.'
693 693 return
694 694
695 695 # default namespaces to be searched
696 696 def_search = ['user','builtin']
697 697
698 698 # Process options/args
699 699 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
700 700 opt = opts.get
701 701 shell = self.shell
702 702 psearch = shell.inspector.psearch
703 703
704 704 # select case options
705 705 if opts.has_key('i'):
706 706 ignore_case = True
707 707 elif opts.has_key('c'):
708 708 ignore_case = False
709 709 else:
710 710 ignore_case = not shell.wildcards_case_sensitive
711 711
712 712 # Build list of namespaces to search from user options
713 713 def_search.extend(opt('s',[]))
714 714 ns_exclude = ns_exclude=opt('e',[])
715 715 ns_search = [nm for nm in def_search if nm not in ns_exclude]
716 716
717 717 # Call the actual search
718 718 try:
719 719 psearch(args,shell.ns_table,ns_search,
720 720 show_all=opt('a'),ignore_case=ignore_case)
721 721 except:
722 722 shell.showtraceback()
723 723
724 724 @testdec.skip_doctest
725 725 def magic_who_ls(self, parameter_s=''):
726 726 """Return a sorted list of all interactive variables.
727 727
728 728 If arguments are given, only variables of types matching these
729 729 arguments are returned.
730 730
731 731 Examples
732 732 --------
733 733
734 734 Define two variables and list them with who_ls::
735 735
736 736 In [1]: alpha = 123
737 737
738 738 In [2]: beta = 'test'
739 739
740 740 In [3]: %who_ls
741 741 Out[3]: ['alpha', 'beta']
742 742
743 743 In [4]: %who_ls int
744 744 Out[4]: ['alpha']
745 745
746 746 In [5]: %who_ls str
747 747 Out[5]: ['beta']
748 748 """
749 749
750 750 user_ns = self.shell.user_ns
751 751 internal_ns = self.shell.internal_ns
752 752 user_ns_hidden = self.shell.user_ns_hidden
753 753 out = [ i for i in user_ns
754 754 if not i.startswith('_') \
755 755 and not (i in internal_ns or i in user_ns_hidden) ]
756 756
757 757 typelist = parameter_s.split()
758 758 if typelist:
759 759 typeset = set(typelist)
760 760 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
761 761
762 762 out.sort()
763 763 return out
764 764
765 765 @testdec.skip_doctest
766 766 def magic_who(self, parameter_s=''):
767 767 """Print all interactive variables, with some minimal formatting.
768 768
769 769 If any arguments are given, only variables whose type matches one of
770 770 these are printed. For example:
771 771
772 772 %who function str
773 773
774 774 will only list functions and strings, excluding all other types of
775 775 variables. To find the proper type names, simply use type(var) at a
776 776 command line to see how python prints type names. For example:
777 777
778 778 In [1]: type('hello')\\
779 779 Out[1]: <type 'str'>
780 780
781 781 indicates that the type name for strings is 'str'.
782 782
783 783 %who always excludes executed names loaded through your configuration
784 784 file and things which are internal to IPython.
785 785
786 786 This is deliberate, as typically you may load many modules and the
787 787 purpose of %who is to show you only what you've manually defined.
788 788
789 789 Examples
790 790 --------
791 791
792 792 Define two variables and list them with who::
793 793
794 794 In [1]: alpha = 123
795 795
796 796 In [2]: beta = 'test'
797 797
798 798 In [3]: %who
799 799 alpha beta
800 800
801 801 In [4]: %who int
802 802 alpha
803 803
804 804 In [5]: %who str
805 805 beta
806 806 """
807 807
808 808 varlist = self.magic_who_ls(parameter_s)
809 809 if not varlist:
810 810 if parameter_s:
811 811 print 'No variables match your requested type.'
812 812 else:
813 813 print 'Interactive namespace is empty.'
814 814 return
815 815
816 816 # if we have variables, move on...
817 817 count = 0
818 818 for i in varlist:
819 819 print i+'\t',
820 820 count += 1
821 821 if count > 8:
822 822 count = 0
823 823 print
824 824 print
825 825
826 826 @testdec.skip_doctest
827 827 def magic_whos(self, parameter_s=''):
828 828 """Like %who, but gives some extra information about each variable.
829 829
830 830 The same type filtering of %who can be applied here.
831 831
832 832 For all variables, the type is printed. Additionally it prints:
833 833
834 834 - For {},[],(): their length.
835 835
836 836 - For numpy arrays, a summary with shape, number of
837 837 elements, typecode and size in memory.
838 838
839 839 - Everything else: a string representation, snipping their middle if
840 840 too long.
841 841
842 842 Examples
843 843 --------
844 844
845 845 Define two variables and list them with whos::
846 846
847 847 In [1]: alpha = 123
848 848
849 849 In [2]: beta = 'test'
850 850
851 851 In [3]: %whos
852 852 Variable Type Data/Info
853 853 --------------------------------
854 854 alpha int 123
855 855 beta str test
856 856 """
857 857
858 858 varnames = self.magic_who_ls(parameter_s)
859 859 if not varnames:
860 860 if parameter_s:
861 861 print 'No variables match your requested type.'
862 862 else:
863 863 print 'Interactive namespace is empty.'
864 864 return
865 865
866 866 # if we have variables, move on...
867 867
868 868 # for these types, show len() instead of data:
869 869 seq_types = ['dict', 'list', 'tuple']
870 870
871 871 # for numpy/Numeric arrays, display summary info
872 872 try:
873 873 import numpy
874 874 except ImportError:
875 875 ndarray_type = None
876 876 else:
877 877 ndarray_type = numpy.ndarray.__name__
878 878 try:
879 879 import Numeric
880 880 except ImportError:
881 881 array_type = None
882 882 else:
883 883 array_type = Numeric.ArrayType.__name__
884 884
885 885 # Find all variable names and types so we can figure out column sizes
886 886 def get_vars(i):
887 887 return self.shell.user_ns[i]
888 888
889 889 # some types are well known and can be shorter
890 890 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
891 891 def type_name(v):
892 892 tn = type(v).__name__
893 893 return abbrevs.get(tn,tn)
894 894
895 895 varlist = map(get_vars,varnames)
896 896
897 897 typelist = []
898 898 for vv in varlist:
899 899 tt = type_name(vv)
900 900
901 901 if tt=='instance':
902 902 typelist.append( abbrevs.get(str(vv.__class__),
903 903 str(vv.__class__)))
904 904 else:
905 905 typelist.append(tt)
906 906
907 907 # column labels and # of spaces as separator
908 908 varlabel = 'Variable'
909 909 typelabel = 'Type'
910 910 datalabel = 'Data/Info'
911 911 colsep = 3
912 912 # variable format strings
913 913 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
914 914 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
915 915 aformat = "%s: %s elems, type `%s`, %s bytes"
916 916 # find the size of the columns to format the output nicely
917 917 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
918 918 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
919 919 # table header
920 920 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
921 921 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
922 922 # and the table itself
923 923 kb = 1024
924 924 Mb = 1048576 # kb**2
925 925 for vname,var,vtype in zip(varnames,varlist,typelist):
926 926 print itpl(vformat),
927 927 if vtype in seq_types:
928 928 print "n="+str(len(var))
929 929 elif vtype in [array_type,ndarray_type]:
930 930 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
931 931 if vtype==ndarray_type:
932 932 # numpy
933 933 vsize = var.size
934 934 vbytes = vsize*var.itemsize
935 935 vdtype = var.dtype
936 936 else:
937 937 # Numeric
938 938 vsize = Numeric.size(var)
939 939 vbytes = vsize*var.itemsize()
940 940 vdtype = var.typecode()
941 941
942 942 if vbytes < 100000:
943 943 print aformat % (vshape,vsize,vdtype,vbytes)
944 944 else:
945 945 print aformat % (vshape,vsize,vdtype,vbytes),
946 946 if vbytes < Mb:
947 947 print '(%s kb)' % (vbytes/kb,)
948 948 else:
949 949 print '(%s Mb)' % (vbytes/Mb,)
950 950 else:
951 951 try:
952 952 vstr = str(var)
953 953 except UnicodeEncodeError:
954 954 vstr = unicode(var).encode(sys.getdefaultencoding(),
955 955 'backslashreplace')
956 956 vstr = vstr.replace('\n','\\n')
957 957 if len(vstr) < 50:
958 958 print vstr
959 959 else:
960 960 printpl(vfmt_short)
961 961
962 962 def magic_reset(self, parameter_s=''):
963 963 """Resets the namespace by removing all names defined by the user.
964 964
965 965 Input/Output history are left around in case you need them.
966 966
967 967 Parameters
968 968 ----------
969 969 -f : force reset without asking for confirmation.
970 970
971 971 Examples
972 972 --------
973 973 In [6]: a = 1
974 974
975 975 In [7]: a
976 976 Out[7]: 1
977 977
978 978 In [8]: 'a' in _ip.user_ns
979 979 Out[8]: True
980 980
981 981 In [9]: %reset -f
982 982
983 983 In [10]: 'a' in _ip.user_ns
984 984 Out[10]: False
985 985 """
986 986
987 987 if parameter_s == '-f':
988 988 ans = True
989 989 else:
990 990 ans = self.shell.ask_yes_no(
991 991 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
992 992 if not ans:
993 993 print 'Nothing done.'
994 994 return
995 995 user_ns = self.shell.user_ns
996 996 for i in self.magic_who_ls():
997 997 del(user_ns[i])
998 998
999 999 # Also flush the private list of module references kept for script
1000 1000 # execution protection
1001 1001 self.shell.clear_main_mod_cache()
1002 1002
1003 1003 def magic_reset_selective(self, parameter_s=''):
1004 1004 """Resets the namespace by removing names defined by the user.
1005 1005
1006 1006 Input/Output history are left around in case you need them.
1007 1007
1008 1008 %reset_selective [-f] regex
1009 1009
1010 1010 No action is taken if regex is not included
1011 1011
1012 1012 Options
1013 1013 -f : force reset without asking for confirmation.
1014 1014
1015 1015 Examples
1016 1016 --------
1017 1017
1018 1018 We first fully reset the namespace so your output looks identical to
1019 1019 this example for pedagogical reasons; in practice you do not need a
1020 1020 full reset.
1021 1021
1022 1022 In [1]: %reset -f
1023 1023
1024 1024 Now, with a clean namespace we can make a few variables and use
1025 1025 %reset_selective to only delete names that match our regexp:
1026 1026
1027 1027 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1028 1028
1029 1029 In [3]: who_ls
1030 1030 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1031 1031
1032 1032 In [4]: %reset_selective -f b[2-3]m
1033 1033
1034 1034 In [5]: who_ls
1035 1035 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1036 1036
1037 1037 In [6]: %reset_selective -f d
1038 1038
1039 1039 In [7]: who_ls
1040 1040 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1041 1041
1042 1042 In [8]: %reset_selective -f c
1043 1043
1044 1044 In [9]: who_ls
1045 1045 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1046 1046
1047 1047 In [10]: %reset_selective -f b
1048 1048
1049 1049 In [11]: who_ls
1050 1050 Out[11]: ['a']
1051 1051 """
1052 1052
1053 1053 opts, regex = self.parse_options(parameter_s,'f')
1054 1054
1055 1055 if opts.has_key('f'):
1056 1056 ans = True
1057 1057 else:
1058 1058 ans = self.shell.ask_yes_no(
1059 1059 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1060 1060 if not ans:
1061 1061 print 'Nothing done.'
1062 1062 return
1063 1063 user_ns = self.shell.user_ns
1064 1064 if not regex:
1065 1065 print 'No regex pattern specified. Nothing done.'
1066 1066 return
1067 1067 else:
1068 1068 try:
1069 1069 m = re.compile(regex)
1070 1070 except TypeError:
1071 1071 raise TypeError('regex must be a string or compiled pattern')
1072 1072 for i in self.magic_who_ls():
1073 1073 if m.search(i):
1074 1074 del(user_ns[i])
1075 1075
1076 1076 def magic_logstart(self,parameter_s=''):
1077 1077 """Start logging anywhere in a session.
1078 1078
1079 1079 %logstart [-o|-r|-t] [log_name [log_mode]]
1080 1080
1081 1081 If no name is given, it defaults to a file named 'ipython_log.py' in your
1082 1082 current directory, in 'rotate' mode (see below).
1083 1083
1084 1084 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1085 1085 history up to that point and then continues logging.
1086 1086
1087 1087 %logstart takes a second optional parameter: logging mode. This can be one
1088 1088 of (note that the modes are given unquoted):\\
1089 1089 append: well, that says it.\\
1090 1090 backup: rename (if exists) to name~ and start name.\\
1091 1091 global: single logfile in your home dir, appended to.\\
1092 1092 over : overwrite existing log.\\
1093 1093 rotate: create rotating logs name.1~, name.2~, etc.
1094 1094
1095 1095 Options:
1096 1096
1097 1097 -o: log also IPython's output. In this mode, all commands which
1098 1098 generate an Out[NN] prompt are recorded to the logfile, right after
1099 1099 their corresponding input line. The output lines are always
1100 1100 prepended with a '#[Out]# ' marker, so that the log remains valid
1101 1101 Python code.
1102 1102
1103 1103 Since this marker is always the same, filtering only the output from
1104 1104 a log is very easy, using for example a simple awk call:
1105 1105
1106 1106 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1107 1107
1108 1108 -r: log 'raw' input. Normally, IPython's logs contain the processed
1109 1109 input, so that user lines are logged in their final form, converted
1110 1110 into valid Python. For example, %Exit is logged as
1111 1111 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1112 1112 exactly as typed, with no transformations applied.
1113 1113
1114 1114 -t: put timestamps before each input line logged (these are put in
1115 1115 comments)."""
1116 1116
1117 1117 opts,par = self.parse_options(parameter_s,'ort')
1118 1118 log_output = 'o' in opts
1119 1119 log_raw_input = 'r' in opts
1120 1120 timestamp = 't' in opts
1121 1121
1122 1122 logger = self.shell.logger
1123 1123
1124 1124 # if no args are given, the defaults set in the logger constructor by
1125 1125 # ipytohn remain valid
1126 1126 if par:
1127 1127 try:
1128 1128 logfname,logmode = par.split()
1129 1129 except:
1130 1130 logfname = par
1131 1131 logmode = 'backup'
1132 1132 else:
1133 1133 logfname = logger.logfname
1134 1134 logmode = logger.logmode
1135 1135 # put logfname into rc struct as if it had been called on the command
1136 1136 # line, so it ends up saved in the log header Save it in case we need
1137 1137 # to restore it...
1138 1138 old_logfile = self.shell.logfile
1139 1139 if logfname:
1140 1140 logfname = os.path.expanduser(logfname)
1141 1141 self.shell.logfile = logfname
1142 1142
1143 1143 loghead = '# IPython log file\n\n'
1144 1144 try:
1145 1145 started = logger.logstart(logfname,loghead,logmode,
1146 1146 log_output,timestamp,log_raw_input)
1147 1147 except:
1148 1148 self.shell.logfile = old_logfile
1149 1149 warn("Couldn't start log: %s" % sys.exc_info()[1])
1150 1150 else:
1151 1151 # log input history up to this point, optionally interleaving
1152 1152 # output if requested
1153 1153
1154 1154 if timestamp:
1155 1155 # disable timestamping for the previous history, since we've
1156 1156 # lost those already (no time machine here).
1157 1157 logger.timestamp = False
1158 1158
1159 1159 if log_raw_input:
1160 1160 input_hist = self.shell.history_manager.input_hist_raw
1161 1161 else:
1162 1162 input_hist = self.shell.history_manager.input_hist_parsed
1163 1163
1164 1164 if log_output:
1165 1165 log_write = logger.log_write
1166 1166 output_hist = self.shell.history_manager.output_hist
1167 1167 for n in range(1,len(input_hist)-1):
1168 1168 log_write(input_hist[n].rstrip())
1169 1169 if n in output_hist:
1170 1170 log_write(repr(output_hist[n]),'output')
1171 1171 else:
1172 1172 logger.log_write(''.join(input_hist[1:]))
1173 1173 if timestamp:
1174 1174 # re-enable timestamping
1175 1175 logger.timestamp = True
1176 1176
1177 1177 print ('Activating auto-logging. '
1178 1178 'Current session state plus future input saved.')
1179 1179 logger.logstate()
1180 1180
1181 1181 def magic_logstop(self,parameter_s=''):
1182 1182 """Fully stop logging and close log file.
1183 1183
1184 1184 In order to start logging again, a new %logstart call needs to be made,
1185 1185 possibly (though not necessarily) with a new filename, mode and other
1186 1186 options."""
1187 1187 self.logger.logstop()
1188 1188
1189 1189 def magic_logoff(self,parameter_s=''):
1190 1190 """Temporarily stop logging.
1191 1191
1192 1192 You must have previously started logging."""
1193 1193 self.shell.logger.switch_log(0)
1194 1194
1195 1195 def magic_logon(self,parameter_s=''):
1196 1196 """Restart logging.
1197 1197
1198 1198 This function is for restarting logging which you've temporarily
1199 1199 stopped with %logoff. For starting logging for the first time, you
1200 1200 must use the %logstart function, which allows you to specify an
1201 1201 optional log filename."""
1202 1202
1203 1203 self.shell.logger.switch_log(1)
1204 1204
1205 1205 def magic_logstate(self,parameter_s=''):
1206 1206 """Print the status of the logging system."""
1207 1207
1208 1208 self.shell.logger.logstate()
1209 1209
1210 1210 def magic_pdb(self, parameter_s=''):
1211 1211 """Control the automatic calling of the pdb interactive debugger.
1212 1212
1213 1213 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1214 1214 argument it works as a toggle.
1215 1215
1216 1216 When an exception is triggered, IPython can optionally call the
1217 1217 interactive pdb debugger after the traceback printout. %pdb toggles
1218 1218 this feature on and off.
1219 1219
1220 1220 The initial state of this feature is set in your ipythonrc
1221 1221 configuration file (the variable is called 'pdb').
1222 1222
1223 1223 If you want to just activate the debugger AFTER an exception has fired,
1224 1224 without having to type '%pdb on' and rerunning your code, you can use
1225 1225 the %debug magic."""
1226 1226
1227 1227 par = parameter_s.strip().lower()
1228 1228
1229 1229 if par:
1230 1230 try:
1231 1231 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1232 1232 except KeyError:
1233 1233 print ('Incorrect argument. Use on/1, off/0, '
1234 1234 'or nothing for a toggle.')
1235 1235 return
1236 1236 else:
1237 1237 # toggle
1238 1238 new_pdb = not self.shell.call_pdb
1239 1239
1240 1240 # set on the shell
1241 1241 self.shell.call_pdb = new_pdb
1242 1242 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1243 1243
1244 1244 def magic_debug(self, parameter_s=''):
1245 1245 """Activate the interactive debugger in post-mortem mode.
1246 1246
1247 1247 If an exception has just occurred, this lets you inspect its stack
1248 1248 frames interactively. Note that this will always work only on the last
1249 1249 traceback that occurred, so you must call this quickly after an
1250 1250 exception that you wish to inspect has fired, because if another one
1251 1251 occurs, it clobbers the previous one.
1252 1252
1253 1253 If you want IPython to automatically do this on every exception, see
1254 1254 the %pdb magic for more details.
1255 1255 """
1256 1256 self.shell.debugger(force=True)
1257 1257
1258 1258 @testdec.skip_doctest
1259 1259 def magic_prun(self, parameter_s ='',user_mode=1,
1260 1260 opts=None,arg_lst=None,prog_ns=None):
1261 1261
1262 1262 """Run a statement through the python code profiler.
1263 1263
1264 1264 Usage:
1265 1265 %prun [options] statement
1266 1266
1267 1267 The given statement (which doesn't require quote marks) is run via the
1268 1268 python profiler in a manner similar to the profile.run() function.
1269 1269 Namespaces are internally managed to work correctly; profile.run
1270 1270 cannot be used in IPython because it makes certain assumptions about
1271 1271 namespaces which do not hold under IPython.
1272 1272
1273 1273 Options:
1274 1274
1275 1275 -l <limit>: you can place restrictions on what or how much of the
1276 1276 profile gets printed. The limit value can be:
1277 1277
1278 1278 * A string: only information for function names containing this string
1279 1279 is printed.
1280 1280
1281 1281 * An integer: only these many lines are printed.
1282 1282
1283 1283 * A float (between 0 and 1): this fraction of the report is printed
1284 1284 (for example, use a limit of 0.4 to see the topmost 40% only).
1285 1285
1286 1286 You can combine several limits with repeated use of the option. For
1287 1287 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1288 1288 information about class constructors.
1289 1289
1290 1290 -r: return the pstats.Stats object generated by the profiling. This
1291 1291 object has all the information about the profile in it, and you can
1292 1292 later use it for further analysis or in other functions.
1293 1293
1294 1294 -s <key>: sort profile by given key. You can provide more than one key
1295 1295 by using the option several times: '-s key1 -s key2 -s key3...'. The
1296 1296 default sorting key is 'time'.
1297 1297
1298 1298 The following is copied verbatim from the profile documentation
1299 1299 referenced below:
1300 1300
1301 1301 When more than one key is provided, additional keys are used as
1302 1302 secondary criteria when the there is equality in all keys selected
1303 1303 before them.
1304 1304
1305 1305 Abbreviations can be used for any key names, as long as the
1306 1306 abbreviation is unambiguous. The following are the keys currently
1307 1307 defined:
1308 1308
1309 1309 Valid Arg Meaning
1310 1310 "calls" call count
1311 1311 "cumulative" cumulative time
1312 1312 "file" file name
1313 1313 "module" file name
1314 1314 "pcalls" primitive call count
1315 1315 "line" line number
1316 1316 "name" function name
1317 1317 "nfl" name/file/line
1318 1318 "stdname" standard name
1319 1319 "time" internal time
1320 1320
1321 1321 Note that all sorts on statistics are in descending order (placing
1322 1322 most time consuming items first), where as name, file, and line number
1323 1323 searches are in ascending order (i.e., alphabetical). The subtle
1324 1324 distinction between "nfl" and "stdname" is that the standard name is a
1325 1325 sort of the name as printed, which means that the embedded line
1326 1326 numbers get compared in an odd way. For example, lines 3, 20, and 40
1327 1327 would (if the file names were the same) appear in the string order
1328 1328 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1329 1329 line numbers. In fact, sort_stats("nfl") is the same as
1330 1330 sort_stats("name", "file", "line").
1331 1331
1332 1332 -T <filename>: save profile results as shown on screen to a text
1333 1333 file. The profile is still shown on screen.
1334 1334
1335 1335 -D <filename>: save (via dump_stats) profile statistics to given
1336 1336 filename. This data is in a format understod by the pstats module, and
1337 1337 is generated by a call to the dump_stats() method of profile
1338 1338 objects. The profile is still shown on screen.
1339 1339
1340 1340 If you want to run complete programs under the profiler's control, use
1341 1341 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1342 1342 contains profiler specific options as described here.
1343 1343
1344 1344 You can read the complete documentation for the profile module with::
1345 1345
1346 1346 In [1]: import profile; profile.help()
1347 1347 """
1348 1348
1349 1349 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1350 1350 # protect user quote marks
1351 1351 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1352 1352
1353 1353 if user_mode: # regular user call
1354 1354 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1355 1355 list_all=1)
1356 1356 namespace = self.shell.user_ns
1357 1357 else: # called to run a program by %run -p
1358 1358 try:
1359 1359 filename = get_py_filename(arg_lst[0])
1360 1360 except IOError,msg:
1361 1361 error(msg)
1362 1362 return
1363 1363
1364 1364 arg_str = 'execfile(filename,prog_ns)'
1365 1365 namespace = locals()
1366 1366
1367 1367 opts.merge(opts_def)
1368 1368
1369 1369 prof = profile.Profile()
1370 1370 try:
1371 1371 prof = prof.runctx(arg_str,namespace,namespace)
1372 1372 sys_exit = ''
1373 1373 except SystemExit:
1374 1374 sys_exit = """*** SystemExit exception caught in code being profiled."""
1375 1375
1376 1376 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1377 1377
1378 1378 lims = opts.l
1379 1379 if lims:
1380 1380 lims = [] # rebuild lims with ints/floats/strings
1381 1381 for lim in opts.l:
1382 1382 try:
1383 1383 lims.append(int(lim))
1384 1384 except ValueError:
1385 1385 try:
1386 1386 lims.append(float(lim))
1387 1387 except ValueError:
1388 1388 lims.append(lim)
1389 1389
1390 1390 # Trap output.
1391 1391 stdout_trap = StringIO()
1392 1392
1393 1393 if hasattr(stats,'stream'):
1394 1394 # In newer versions of python, the stats object has a 'stream'
1395 1395 # attribute to write into.
1396 1396 stats.stream = stdout_trap
1397 1397 stats.print_stats(*lims)
1398 1398 else:
1399 1399 # For older versions, we manually redirect stdout during printing
1400 1400 sys_stdout = sys.stdout
1401 1401 try:
1402 1402 sys.stdout = stdout_trap
1403 1403 stats.print_stats(*lims)
1404 1404 finally:
1405 1405 sys.stdout = sys_stdout
1406 1406
1407 1407 output = stdout_trap.getvalue()
1408 1408 output = output.rstrip()
1409 1409
1410 1410 page.page(output)
1411 1411 print sys_exit,
1412 1412
1413 1413 dump_file = opts.D[0]
1414 1414 text_file = opts.T[0]
1415 1415 if dump_file:
1416 1416 prof.dump_stats(dump_file)
1417 1417 print '\n*** Profile stats marshalled to file',\
1418 1418 `dump_file`+'.',sys_exit
1419 1419 if text_file:
1420 1420 pfile = file(text_file,'w')
1421 1421 pfile.write(output)
1422 1422 pfile.close()
1423 1423 print '\n*** Profile printout saved to text file',\
1424 1424 `text_file`+'.',sys_exit
1425 1425
1426 1426 if opts.has_key('r'):
1427 1427 return stats
1428 1428 else:
1429 1429 return None
1430 1430
1431 1431 @testdec.skip_doctest
1432 1432 def magic_run(self, parameter_s ='',runner=None,
1433 1433 file_finder=get_py_filename):
1434 1434 """Run the named file inside IPython as a program.
1435 1435
1436 1436 Usage:\\
1437 1437 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1438 1438
1439 1439 Parameters after the filename are passed as command-line arguments to
1440 1440 the program (put in sys.argv). Then, control returns to IPython's
1441 1441 prompt.
1442 1442
1443 1443 This is similar to running at a system prompt:\\
1444 1444 $ python file args\\
1445 1445 but with the advantage of giving you IPython's tracebacks, and of
1446 1446 loading all variables into your interactive namespace for further use
1447 1447 (unless -p is used, see below).
1448 1448
1449 1449 The file is executed in a namespace initially consisting only of
1450 1450 __name__=='__main__' and sys.argv constructed as indicated. It thus
1451 1451 sees its environment as if it were being run as a stand-alone program
1452 1452 (except for sharing global objects such as previously imported
1453 1453 modules). But after execution, the IPython interactive namespace gets
1454 1454 updated with all variables defined in the program (except for __name__
1455 1455 and sys.argv). This allows for very convenient loading of code for
1456 1456 interactive work, while giving each program a 'clean sheet' to run in.
1457 1457
1458 1458 Options:
1459 1459
1460 1460 -n: __name__ is NOT set to '__main__', but to the running file's name
1461 1461 without extension (as python does under import). This allows running
1462 1462 scripts and reloading the definitions in them without calling code
1463 1463 protected by an ' if __name__ == "__main__" ' clause.
1464 1464
1465 1465 -i: run the file in IPython's namespace instead of an empty one. This
1466 1466 is useful if you are experimenting with code written in a text editor
1467 1467 which depends on variables defined interactively.
1468 1468
1469 1469 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1470 1470 being run. This is particularly useful if IPython is being used to
1471 1471 run unittests, which always exit with a sys.exit() call. In such
1472 1472 cases you are interested in the output of the test results, not in
1473 1473 seeing a traceback of the unittest module.
1474 1474
1475 1475 -t: print timing information at the end of the run. IPython will give
1476 1476 you an estimated CPU time consumption for your script, which under
1477 1477 Unix uses the resource module to avoid the wraparound problems of
1478 1478 time.clock(). Under Unix, an estimate of time spent on system tasks
1479 1479 is also given (for Windows platforms this is reported as 0.0).
1480 1480
1481 1481 If -t is given, an additional -N<N> option can be given, where <N>
1482 1482 must be an integer indicating how many times you want the script to
1483 1483 run. The final timing report will include total and per run results.
1484 1484
1485 1485 For example (testing the script uniq_stable.py):
1486 1486
1487 1487 In [1]: run -t uniq_stable
1488 1488
1489 1489 IPython CPU timings (estimated):\\
1490 1490 User : 0.19597 s.\\
1491 1491 System: 0.0 s.\\
1492 1492
1493 1493 In [2]: run -t -N5 uniq_stable
1494 1494
1495 1495 IPython CPU timings (estimated):\\
1496 1496 Total runs performed: 5\\
1497 1497 Times : Total Per run\\
1498 1498 User : 0.910862 s, 0.1821724 s.\\
1499 1499 System: 0.0 s, 0.0 s.
1500 1500
1501 1501 -d: run your program under the control of pdb, the Python debugger.
1502 1502 This allows you to execute your program step by step, watch variables,
1503 1503 etc. Internally, what IPython does is similar to calling:
1504 1504
1505 1505 pdb.run('execfile("YOURFILENAME")')
1506 1506
1507 1507 with a breakpoint set on line 1 of your file. You can change the line
1508 1508 number for this automatic breakpoint to be <N> by using the -bN option
1509 1509 (where N must be an integer). For example:
1510 1510
1511 1511 %run -d -b40 myscript
1512 1512
1513 1513 will set the first breakpoint at line 40 in myscript.py. Note that
1514 1514 the first breakpoint must be set on a line which actually does
1515 1515 something (not a comment or docstring) for it to stop execution.
1516 1516
1517 1517 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1518 1518 first enter 'c' (without qoutes) to start execution up to the first
1519 1519 breakpoint.
1520 1520
1521 1521 Entering 'help' gives information about the use of the debugger. You
1522 1522 can easily see pdb's full documentation with "import pdb;pdb.help()"
1523 1523 at a prompt.
1524 1524
1525 1525 -p: run program under the control of the Python profiler module (which
1526 1526 prints a detailed report of execution times, function calls, etc).
1527 1527
1528 1528 You can pass other options after -p which affect the behavior of the
1529 1529 profiler itself. See the docs for %prun for details.
1530 1530
1531 1531 In this mode, the program's variables do NOT propagate back to the
1532 1532 IPython interactive namespace (because they remain in the namespace
1533 1533 where the profiler executes them).
1534 1534
1535 1535 Internally this triggers a call to %prun, see its documentation for
1536 1536 details on the options available specifically for profiling.
1537 1537
1538 1538 There is one special usage for which the text above doesn't apply:
1539 1539 if the filename ends with .ipy, the file is run as ipython script,
1540 1540 just as if the commands were written on IPython prompt.
1541 1541 """
1542 1542
1543 1543 # get arguments and set sys.argv for program to be run.
1544 1544 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1545 1545 mode='list',list_all=1)
1546 1546
1547 1547 try:
1548 1548 filename = file_finder(arg_lst[0])
1549 1549 except IndexError:
1550 1550 warn('you must provide at least a filename.')
1551 1551 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1552 1552 return
1553 1553 except IOError,msg:
1554 1554 error(msg)
1555 1555 return
1556 1556
1557 1557 if filename.lower().endswith('.ipy'):
1558 1558 self.shell.safe_execfile_ipy(filename)
1559 1559 return
1560 1560
1561 1561 # Control the response to exit() calls made by the script being run
1562 1562 exit_ignore = opts.has_key('e')
1563 1563
1564 1564 # Make sure that the running script gets a proper sys.argv as if it
1565 1565 # were run from a system shell.
1566 1566 save_argv = sys.argv # save it for later restoring
1567 1567 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1568 1568
1569 1569 if opts.has_key('i'):
1570 1570 # Run in user's interactive namespace
1571 1571 prog_ns = self.shell.user_ns
1572 1572 __name__save = self.shell.user_ns['__name__']
1573 1573 prog_ns['__name__'] = '__main__'
1574 1574 main_mod = self.shell.new_main_mod(prog_ns)
1575 1575 else:
1576 1576 # Run in a fresh, empty namespace
1577 1577 if opts.has_key('n'):
1578 1578 name = os.path.splitext(os.path.basename(filename))[0]
1579 1579 else:
1580 1580 name = '__main__'
1581 1581
1582 1582 main_mod = self.shell.new_main_mod()
1583 1583 prog_ns = main_mod.__dict__
1584 1584 prog_ns['__name__'] = name
1585 1585
1586 1586 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1587 1587 # set the __file__ global in the script's namespace
1588 1588 prog_ns['__file__'] = filename
1589 1589
1590 1590 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1591 1591 # that, if we overwrite __main__, we replace it at the end
1592 1592 main_mod_name = prog_ns['__name__']
1593 1593
1594 1594 if main_mod_name == '__main__':
1595 1595 restore_main = sys.modules['__main__']
1596 1596 else:
1597 1597 restore_main = False
1598 1598
1599 1599 # This needs to be undone at the end to prevent holding references to
1600 1600 # every single object ever created.
1601 1601 sys.modules[main_mod_name] = main_mod
1602 1602
1603 stats = None
1604 1603 try:
1605 if opts.has_key('p'):
1606 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1607 else:
1608 if opts.has_key('d'):
1609 deb = debugger.Pdb(self.shell.colors)
1610 # reset Breakpoint state, which is moronically kept
1611 # in a class
1612 bdb.Breakpoint.next = 1
1613 bdb.Breakpoint.bplist = {}
1614 bdb.Breakpoint.bpbynumber = [None]
1615 # Set an initial breakpoint to stop execution
1616 maxtries = 10
1617 bp = int(opts.get('b',[1])[0])
1618 checkline = deb.checkline(filename,bp)
1619 if not checkline:
1620 for bp in range(bp+1,bp+maxtries+1):
1621 if deb.checkline(filename,bp):
1622 break
1623 else:
1624 msg = ("\nI failed to find a valid line to set "
1625 "a breakpoint\n"
1626 "after trying up to line: %s.\n"
1627 "Please set a valid breakpoint manually "
1628 "with the -b option." % bp)
1629 error(msg)
1630 return
1631 # if we find a good linenumber, set the breakpoint
1632 deb.do_break('%s:%s' % (filename,bp))
1633 # Start file run
1634 print "NOTE: Enter 'c' at the",
1635 print "%s prompt to start your script." % deb.prompt
1636 try:
1637 deb.run('execfile("%s")' % filename,prog_ns)
1638
1639 except:
1640 etype, value, tb = sys.exc_info()
1641 # Skip three frames in the traceback: the %run one,
1642 # one inside bdb.py, and the command-line typed by the
1643 # user (run by exec in pdb itself).
1644 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1604 stats = None
1605 with self.readline_no_record:
1606 if opts.has_key('p'):
1607 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1645 1608 else:
1646 if runner is None:
1647 runner = self.shell.safe_execfile
1648 if opts.has_key('t'):
1649 # timed execution
1650 try:
1651 nruns = int(opts['N'][0])
1652 if nruns < 1:
1653 error('Number of runs must be >=1')
1609 if opts.has_key('d'):
1610 deb = debugger.Pdb(self.shell.colors)
1611 # reset Breakpoint state, which is moronically kept
1612 # in a class
1613 bdb.Breakpoint.next = 1
1614 bdb.Breakpoint.bplist = {}
1615 bdb.Breakpoint.bpbynumber = [None]
1616 # Set an initial breakpoint to stop execution
1617 maxtries = 10
1618 bp = int(opts.get('b',[1])[0])
1619 checkline = deb.checkline(filename,bp)
1620 if not checkline:
1621 for bp in range(bp+1,bp+maxtries+1):
1622 if deb.checkline(filename,bp):
1623 break
1624 else:
1625 msg = ("\nI failed to find a valid line to set "
1626 "a breakpoint\n"
1627 "after trying up to line: %s.\n"
1628 "Please set a valid breakpoint manually "
1629 "with the -b option." % bp)
1630 error(msg)
1654 1631 return
1655 except (KeyError):
1656 nruns = 1
1657 if nruns == 1:
1658 t0 = clock2()
1659 runner(filename,prog_ns,prog_ns,
1660 exit_ignore=exit_ignore)
1661 t1 = clock2()
1662 t_usr = t1[0]-t0[0]
1663 t_sys = t1[1]-t0[1]
1664 print "\nIPython CPU timings (estimated):"
1665 print " User : %10s s." % t_usr
1666 print " System: %10s s." % t_sys
1667 else:
1668 runs = range(nruns)
1669 t0 = clock2()
1670 for nr in runs:
1671 runner(filename,prog_ns,prog_ns,
1672 exit_ignore=exit_ignore)
1673 t1 = clock2()
1674 t_usr = t1[0]-t0[0]
1675 t_sys = t1[1]-t0[1]
1676 print "\nIPython CPU timings (estimated):"
1677 print "Total runs performed:",nruns
1678 print " Times : %10s %10s" % ('Total','Per run')
1679 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1680 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1632 # if we find a good linenumber, set the breakpoint
1633 deb.do_break('%s:%s' % (filename,bp))
1634 # Start file run
1635 print "NOTE: Enter 'c' at the",
1636 print "%s prompt to start your script." % deb.prompt
1637 try:
1638 deb.run('execfile("%s")' % filename,prog_ns)
1681 1639
1640 except:
1641 etype, value, tb = sys.exc_info()
1642 # Skip three frames in the traceback: the %run one,
1643 # one inside bdb.py, and the command-line typed by the
1644 # user (run by exec in pdb itself).
1645 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1682 1646 else:
1683 # regular execution
1684 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1647 if runner is None:
1648 runner = self.shell.safe_execfile
1649 if opts.has_key('t'):
1650 # timed execution
1651 try:
1652 nruns = int(opts['N'][0])
1653 if nruns < 1:
1654 error('Number of runs must be >=1')
1655 return
1656 except (KeyError):
1657 nruns = 1
1658 if nruns == 1:
1659 t0 = clock2()
1660 runner(filename,prog_ns,prog_ns,
1661 exit_ignore=exit_ignore)
1662 t1 = clock2()
1663 t_usr = t1[0]-t0[0]
1664 t_sys = t1[1]-t0[1]
1665 print "\nIPython CPU timings (estimated):"
1666 print " User : %10s s." % t_usr
1667 print " System: %10s s." % t_sys
1668 else:
1669 runs = range(nruns)
1670 t0 = clock2()
1671 for nr in runs:
1672 runner(filename,prog_ns,prog_ns,
1673 exit_ignore=exit_ignore)
1674 t1 = clock2()
1675 t_usr = t1[0]-t0[0]
1676 t_sys = t1[1]-t0[1]
1677 print "\nIPython CPU timings (estimated):"
1678 print "Total runs performed:",nruns
1679 print " Times : %10s %10s" % ('Total','Per run')
1680 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1681 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1682
1683 else:
1684 # regular execution
1685 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1685 1686
1686 1687 if opts.has_key('i'):
1687 1688 self.shell.user_ns['__name__'] = __name__save
1688 1689 else:
1689 1690 # The shell MUST hold a reference to prog_ns so after %run
1690 1691 # exits, the python deletion mechanism doesn't zero it out
1691 1692 # (leaving dangling references).
1692 1693 self.shell.cache_main_mod(prog_ns,filename)
1693 1694 # update IPython interactive namespace
1694 1695
1695 1696 # Some forms of read errors on the file may mean the
1696 1697 # __name__ key was never set; using pop we don't have to
1697 1698 # worry about a possible KeyError.
1698 1699 prog_ns.pop('__name__', None)
1699 1700
1700 1701 self.shell.user_ns.update(prog_ns)
1701 1702 finally:
1702 1703 # It's a bit of a mystery why, but __builtins__ can change from
1703 1704 # being a module to becoming a dict missing some key data after
1704 1705 # %run. As best I can see, this is NOT something IPython is doing
1705 1706 # at all, and similar problems have been reported before:
1706 1707 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1707 1708 # Since this seems to be done by the interpreter itself, the best
1708 1709 # we can do is to at least restore __builtins__ for the user on
1709 1710 # exit.
1710 1711 self.shell.user_ns['__builtins__'] = __builtin__
1711 1712
1712 1713 # Ensure key global structures are restored
1713 1714 sys.argv = save_argv
1714 1715 if restore_main:
1715 1716 sys.modules['__main__'] = restore_main
1716 1717 else:
1717 1718 # Remove from sys.modules the reference to main_mod we'd
1718 1719 # added. Otherwise it will trap references to objects
1719 1720 # contained therein.
1720 1721 del sys.modules[main_mod_name]
1721 1722
1722 1723 return stats
1723 1724
1724 1725 @testdec.skip_doctest
1725 1726 def magic_timeit(self, parameter_s =''):
1726 1727 """Time execution of a Python statement or expression
1727 1728
1728 1729 Usage:\\
1729 1730 %timeit [-n<N> -r<R> [-t|-c]] statement
1730 1731
1731 1732 Time execution of a Python statement or expression using the timeit
1732 1733 module.
1733 1734
1734 1735 Options:
1735 1736 -n<N>: execute the given statement <N> times in a loop. If this value
1736 1737 is not given, a fitting value is chosen.
1737 1738
1738 1739 -r<R>: repeat the loop iteration <R> times and take the best result.
1739 1740 Default: 3
1740 1741
1741 1742 -t: use time.time to measure the time, which is the default on Unix.
1742 1743 This function measures wall time.
1743 1744
1744 1745 -c: use time.clock to measure the time, which is the default on
1745 1746 Windows and measures wall time. On Unix, resource.getrusage is used
1746 1747 instead and returns the CPU user time.
1747 1748
1748 1749 -p<P>: use a precision of <P> digits to display the timing result.
1749 1750 Default: 3
1750 1751
1751 1752
1752 1753 Examples:
1753 1754
1754 1755 In [1]: %timeit pass
1755 1756 10000000 loops, best of 3: 53.3 ns per loop
1756 1757
1757 1758 In [2]: u = None
1758 1759
1759 1760 In [3]: %timeit u is None
1760 1761 10000000 loops, best of 3: 184 ns per loop
1761 1762
1762 1763 In [4]: %timeit -r 4 u == None
1763 1764 1000000 loops, best of 4: 242 ns per loop
1764 1765
1765 1766 In [5]: import time
1766 1767
1767 1768 In [6]: %timeit -n1 time.sleep(2)
1768 1769 1 loops, best of 3: 2 s per loop
1769 1770
1770 1771
1771 1772 The times reported by %timeit will be slightly higher than those
1772 1773 reported by the timeit.py script when variables are accessed. This is
1773 1774 due to the fact that %timeit executes the statement in the namespace
1774 1775 of the shell, compared with timeit.py, which uses a single setup
1775 1776 statement to import function or create variables. Generally, the bias
1776 1777 does not matter as long as results from timeit.py are not mixed with
1777 1778 those from %timeit."""
1778 1779
1779 1780 import timeit
1780 1781 import math
1781 1782
1782 1783 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1783 1784 # certain terminals. Until we figure out a robust way of
1784 1785 # auto-detecting if the terminal can deal with it, use plain 'us' for
1785 1786 # microseconds. I am really NOT happy about disabling the proper
1786 1787 # 'micro' prefix, but crashing is worse... If anyone knows what the
1787 1788 # right solution for this is, I'm all ears...
1788 1789 #
1789 1790 # Note: using
1790 1791 #
1791 1792 # s = u'\xb5'
1792 1793 # s.encode(sys.getdefaultencoding())
1793 1794 #
1794 1795 # is not sufficient, as I've seen terminals where that fails but
1795 1796 # print s
1796 1797 #
1797 1798 # succeeds
1798 1799 #
1799 1800 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1800 1801
1801 1802 #units = [u"s", u"ms",u'\xb5',"ns"]
1802 1803 units = [u"s", u"ms",u'us',"ns"]
1803 1804
1804 1805 scaling = [1, 1e3, 1e6, 1e9]
1805 1806
1806 1807 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1807 1808 posix=False)
1808 1809 if stmt == "":
1809 1810 return
1810 1811 timefunc = timeit.default_timer
1811 1812 number = int(getattr(opts, "n", 0))
1812 1813 repeat = int(getattr(opts, "r", timeit.default_repeat))
1813 1814 precision = int(getattr(opts, "p", 3))
1814 1815 if hasattr(opts, "t"):
1815 1816 timefunc = time.time
1816 1817 if hasattr(opts, "c"):
1817 1818 timefunc = clock
1818 1819
1819 1820 timer = timeit.Timer(timer=timefunc)
1820 1821 # this code has tight coupling to the inner workings of timeit.Timer,
1821 1822 # but is there a better way to achieve that the code stmt has access
1822 1823 # to the shell namespace?
1823 1824
1824 1825 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1825 1826 'setup': "pass"}
1826 1827 # Track compilation time so it can be reported if too long
1827 1828 # Minimum time above which compilation time will be reported
1828 1829 tc_min = 0.1
1829 1830
1830 1831 t0 = clock()
1831 1832 code = compile(src, "<magic-timeit>", "exec")
1832 1833 tc = clock()-t0
1833 1834
1834 1835 ns = {}
1835 1836 exec code in self.shell.user_ns, ns
1836 1837 timer.inner = ns["inner"]
1837 1838
1838 1839 if number == 0:
1839 1840 # determine number so that 0.2 <= total time < 2.0
1840 1841 number = 1
1841 1842 for i in range(1, 10):
1842 1843 if timer.timeit(number) >= 0.2:
1843 1844 break
1844 1845 number *= 10
1845 1846
1846 1847 best = min(timer.repeat(repeat, number)) / number
1847 1848
1848 1849 if best > 0.0 and best < 1000.0:
1849 1850 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1850 1851 elif best >= 1000.0:
1851 1852 order = 0
1852 1853 else:
1853 1854 order = 3
1854 1855 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1855 1856 precision,
1856 1857 best * scaling[order],
1857 1858 units[order])
1858 1859 if tc > tc_min:
1859 1860 print "Compiler time: %.2f s" % tc
1860 1861
1861 1862 @testdec.skip_doctest
1862 1863 def magic_time(self,parameter_s = ''):
1863 1864 """Time execution of a Python statement or expression.
1864 1865
1865 1866 The CPU and wall clock times are printed, and the value of the
1866 1867 expression (if any) is returned. Note that under Win32, system time
1867 1868 is always reported as 0, since it can not be measured.
1868 1869
1869 1870 This function provides very basic timing functionality. In Python
1870 1871 2.3, the timeit module offers more control and sophistication, so this
1871 1872 could be rewritten to use it (patches welcome).
1872 1873
1873 1874 Some examples:
1874 1875
1875 1876 In [1]: time 2**128
1876 1877 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1877 1878 Wall time: 0.00
1878 1879 Out[1]: 340282366920938463463374607431768211456L
1879 1880
1880 1881 In [2]: n = 1000000
1881 1882
1882 1883 In [3]: time sum(range(n))
1883 1884 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1884 1885 Wall time: 1.37
1885 1886 Out[3]: 499999500000L
1886 1887
1887 1888 In [4]: time print 'hello world'
1888 1889 hello world
1889 1890 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1890 1891 Wall time: 0.00
1891 1892
1892 1893 Note that the time needed by Python to compile the given expression
1893 1894 will be reported if it is more than 0.1s. In this example, the
1894 1895 actual exponentiation is done by Python at compilation time, so while
1895 1896 the expression can take a noticeable amount of time to compute, that
1896 1897 time is purely due to the compilation:
1897 1898
1898 1899 In [5]: time 3**9999;
1899 1900 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1900 1901 Wall time: 0.00 s
1901 1902
1902 1903 In [6]: time 3**999999;
1903 1904 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1904 1905 Wall time: 0.00 s
1905 1906 Compiler : 0.78 s
1906 1907 """
1907 1908
1908 1909 # fail immediately if the given expression can't be compiled
1909 1910
1910 1911 expr = self.shell.prefilter(parameter_s,False)
1911 1912
1912 1913 # Minimum time above which compilation time will be reported
1913 1914 tc_min = 0.1
1914 1915
1915 1916 try:
1916 1917 mode = 'eval'
1917 1918 t0 = clock()
1918 1919 code = compile(expr,'<timed eval>',mode)
1919 1920 tc = clock()-t0
1920 1921 except SyntaxError:
1921 1922 mode = 'exec'
1922 1923 t0 = clock()
1923 1924 code = compile(expr,'<timed exec>',mode)
1924 1925 tc = clock()-t0
1925 1926 # skew measurement as little as possible
1926 1927 glob = self.shell.user_ns
1927 1928 clk = clock2
1928 1929 wtime = time.time
1929 1930 # time execution
1930 1931 wall_st = wtime()
1931 1932 if mode=='eval':
1932 1933 st = clk()
1933 1934 out = eval(code,glob)
1934 1935 end = clk()
1935 1936 else:
1936 1937 st = clk()
1937 1938 exec code in glob
1938 1939 end = clk()
1939 1940 out = None
1940 1941 wall_end = wtime()
1941 1942 # Compute actual times and report
1942 1943 wall_time = wall_end-wall_st
1943 1944 cpu_user = end[0]-st[0]
1944 1945 cpu_sys = end[1]-st[1]
1945 1946 cpu_tot = cpu_user+cpu_sys
1946 1947 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1947 1948 (cpu_user,cpu_sys,cpu_tot)
1948 1949 print "Wall time: %.2f s" % wall_time
1949 1950 if tc > tc_min:
1950 1951 print "Compiler : %.2f s" % tc
1951 1952 return out
1952 1953
1953 1954 @testdec.skip_doctest
1954 1955 def magic_macro(self,parameter_s = ''):
1955 1956 """Define a set of input lines as a macro for future re-execution.
1956 1957
1957 1958 Usage:\\
1958 1959 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1959 1960
1960 1961 Options:
1961 1962
1962 1963 -r: use 'raw' input. By default, the 'processed' history is used,
1963 1964 so that magics are loaded in their transformed version to valid
1964 1965 Python. If this option is given, the raw input as typed as the
1965 1966 command line is used instead.
1966 1967
1967 1968 This will define a global variable called `name` which is a string
1968 1969 made of joining the slices and lines you specify (n1,n2,... numbers
1969 1970 above) from your input history into a single string. This variable
1970 1971 acts like an automatic function which re-executes those lines as if
1971 1972 you had typed them. You just type 'name' at the prompt and the code
1972 1973 executes.
1973 1974
1974 1975 The syntax for indicating input ranges is described in %history.
1975 1976
1976 1977 Note: as a 'hidden' feature, you can also use traditional python slice
1977 1978 notation, where N:M means numbers N through M-1.
1978 1979
1979 1980 For example, if your history contains (%hist prints it):
1980 1981
1981 1982 44: x=1
1982 1983 45: y=3
1983 1984 46: z=x+y
1984 1985 47: print x
1985 1986 48: a=5
1986 1987 49: print 'x',x,'y',y
1987 1988
1988 1989 you can create a macro with lines 44 through 47 (included) and line 49
1989 1990 called my_macro with:
1990 1991
1991 1992 In [55]: %macro my_macro 44-47 49
1992 1993
1993 1994 Now, typing `my_macro` (without quotes) will re-execute all this code
1994 1995 in one pass.
1995 1996
1996 1997 You don't need to give the line-numbers in order, and any given line
1997 1998 number can appear multiple times. You can assemble macros with any
1998 1999 lines from your input history in any order.
1999 2000
2000 2001 The macro is a simple object which holds its value in an attribute,
2001 2002 but IPython's display system checks for macros and executes them as
2002 2003 code instead of printing them when you type their name.
2003 2004
2004 2005 You can view a macro's contents by explicitly printing it with:
2005 2006
2006 2007 'print macro_name'.
2007 2008
2008 2009 For one-off cases which DON'T contain magic function calls in them you
2009 2010 can obtain similar results by explicitly executing slices from your
2010 2011 input history with:
2011 2012
2012 2013 In [60]: exec In[44:48]+In[49]"""
2013 2014
2014 2015 opts,args = self.parse_options(parameter_s,'r',mode='list')
2015 2016 if not args: # List existing macros
2016 2017 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2017 2018 isinstance(v, Macro))
2018 2019 if len(args) == 1:
2019 2020 raise UsageError(
2020 2021 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2021 2022 name, ranges = args[0], " ".join(args[1:])
2022 2023
2023 2024 #print 'rng',ranges # dbg
2024 2025 lines = self.extract_input_lines(ranges,'r' in opts)
2025 2026 macro = Macro(lines)
2026 2027 self.shell.define_macro(name, macro)
2027 2028 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2028 2029 print 'Macro contents:'
2029 2030 print macro,
2030 2031
2031 2032 def magic_save(self,parameter_s = ''):
2032 2033 """Save a set of lines to a given filename.
2033 2034
2034 2035 Usage:\\
2035 2036 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2036 2037
2037 2038 Options:
2038 2039
2039 2040 -r: use 'raw' input. By default, the 'processed' history is used,
2040 2041 so that magics are loaded in their transformed version to valid
2041 2042 Python. If this option is given, the raw input as typed as the
2042 2043 command line is used instead.
2043 2044
2044 2045 This function uses the same syntax as %history for input ranges,
2045 2046 then saves the lines to the filename you specify.
2046 2047
2047 2048 It adds a '.py' extension to the file if you don't do so yourself, and
2048 2049 it asks for confirmation before overwriting existing files."""
2049 2050
2050 2051 opts,args = self.parse_options(parameter_s,'r',mode='list')
2051 2052 fname,ranges = args[0], " ".join(args[1:])
2052 2053 if not fname.endswith('.py'):
2053 2054 fname += '.py'
2054 2055 if os.path.isfile(fname):
2055 2056 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2056 2057 if ans.lower() not in ['y','yes']:
2057 2058 print 'Operation cancelled.'
2058 2059 return
2059 2060 cmds = self.extract_input_lines(ranges, 'r' in opts)
2060 2061 with open(fname,'w') as f:
2061 2062 f.write("# coding: utf-8\n")
2062 2063 f.write(cmds.encode("utf-8"))
2063 2064 print 'The following commands were written to file `%s`:' % fname
2064 2065 print cmds
2065 2066
2066 2067 def _edit_macro(self,mname,macro):
2067 2068 """open an editor with the macro data in a file"""
2068 2069 filename = self.shell.mktempfile(macro.value)
2069 2070 self.shell.hooks.editor(filename)
2070 2071
2071 2072 # and make a new macro object, to replace the old one
2072 2073 mfile = open(filename)
2073 2074 mvalue = mfile.read()
2074 2075 mfile.close()
2075 2076 self.shell.user_ns[mname] = Macro(mvalue)
2076 2077
2077 2078 def magic_ed(self,parameter_s=''):
2078 2079 """Alias to %edit."""
2079 2080 return self.magic_edit(parameter_s)
2080 2081
2081 2082 @testdec.skip_doctest
2082 2083 def magic_edit(self,parameter_s='',last_call=['','']):
2083 2084 """Bring up an editor and execute the resulting code.
2084 2085
2085 2086 Usage:
2086 2087 %edit [options] [args]
2087 2088
2088 2089 %edit runs IPython's editor hook. The default version of this hook is
2089 2090 set to call the __IPYTHON__.rc.editor command. This is read from your
2090 2091 environment variable $EDITOR. If this isn't found, it will default to
2091 2092 vi under Linux/Unix and to notepad under Windows. See the end of this
2092 2093 docstring for how to change the editor hook.
2093 2094
2094 2095 You can also set the value of this editor via the command line option
2095 2096 '-editor' or in your ipythonrc file. This is useful if you wish to use
2096 2097 specifically for IPython an editor different from your typical default
2097 2098 (and for Windows users who typically don't set environment variables).
2098 2099
2099 2100 This command allows you to conveniently edit multi-line code right in
2100 2101 your IPython session.
2101 2102
2102 2103 If called without arguments, %edit opens up an empty editor with a
2103 2104 temporary file and will execute the contents of this file when you
2104 2105 close it (don't forget to save it!).
2105 2106
2106 2107
2107 2108 Options:
2108 2109
2109 2110 -n <number>: open the editor at a specified line number. By default,
2110 2111 the IPython editor hook uses the unix syntax 'editor +N filename', but
2111 2112 you can configure this by providing your own modified hook if your
2112 2113 favorite editor supports line-number specifications with a different
2113 2114 syntax.
2114 2115
2115 2116 -p: this will call the editor with the same data as the previous time
2116 2117 it was used, regardless of how long ago (in your current session) it
2117 2118 was.
2118 2119
2119 2120 -r: use 'raw' input. This option only applies to input taken from the
2120 2121 user's history. By default, the 'processed' history is used, so that
2121 2122 magics are loaded in their transformed version to valid Python. If
2122 2123 this option is given, the raw input as typed as the command line is
2123 2124 used instead. When you exit the editor, it will be executed by
2124 2125 IPython's own processor.
2125 2126
2126 2127 -x: do not execute the edited code immediately upon exit. This is
2127 2128 mainly useful if you are editing programs which need to be called with
2128 2129 command line arguments, which you can then do using %run.
2129 2130
2130 2131
2131 2132 Arguments:
2132 2133
2133 2134 If arguments are given, the following possibilites exist:
2134 2135
2135 2136 - If the argument is a filename, IPython will load that into the
2136 2137 editor. It will execute its contents with execfile() when you exit,
2137 2138 loading any code in the file into your interactive namespace.
2138 2139
2139 2140 - The arguments are ranges of input history, e.g. "7 ~1/4-6".
2140 2141 The syntax is the same as in the %history magic.
2141 2142
2142 2143 - If the argument is a string variable, its contents are loaded
2143 2144 into the editor. You can thus edit any string which contains
2144 2145 python code (including the result of previous edits).
2145 2146
2146 2147 - If the argument is the name of an object (other than a string),
2147 2148 IPython will try to locate the file where it was defined and open the
2148 2149 editor at the point where it is defined. You can use `%edit function`
2149 2150 to load an editor exactly at the point where 'function' is defined,
2150 2151 edit it and have the file be executed automatically.
2151 2152
2152 2153 If the object is a macro (see %macro for details), this opens up your
2153 2154 specified editor with a temporary file containing the macro's data.
2154 2155 Upon exit, the macro is reloaded with the contents of the file.
2155 2156
2156 2157 Note: opening at an exact line is only supported under Unix, and some
2157 2158 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2158 2159 '+NUMBER' parameter necessary for this feature. Good editors like
2159 2160 (X)Emacs, vi, jed, pico and joe all do.
2160 2161
2161 2162 After executing your code, %edit will return as output the code you
2162 2163 typed in the editor (except when it was an existing file). This way
2163 2164 you can reload the code in further invocations of %edit as a variable,
2164 2165 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2165 2166 the output.
2166 2167
2167 2168 Note that %edit is also available through the alias %ed.
2168 2169
2169 2170 This is an example of creating a simple function inside the editor and
2170 2171 then modifying it. First, start up the editor:
2171 2172
2172 2173 In [1]: ed
2173 2174 Editing... done. Executing edited code...
2174 2175 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2175 2176
2176 2177 We can then call the function foo():
2177 2178
2178 2179 In [2]: foo()
2179 2180 foo() was defined in an editing session
2180 2181
2181 2182 Now we edit foo. IPython automatically loads the editor with the
2182 2183 (temporary) file where foo() was previously defined:
2183 2184
2184 2185 In [3]: ed foo
2185 2186 Editing... done. Executing edited code...
2186 2187
2187 2188 And if we call foo() again we get the modified version:
2188 2189
2189 2190 In [4]: foo()
2190 2191 foo() has now been changed!
2191 2192
2192 2193 Here is an example of how to edit a code snippet successive
2193 2194 times. First we call the editor:
2194 2195
2195 2196 In [5]: ed
2196 2197 Editing... done. Executing edited code...
2197 2198 hello
2198 2199 Out[5]: "print 'hello'n"
2199 2200
2200 2201 Now we call it again with the previous output (stored in _):
2201 2202
2202 2203 In [6]: ed _
2203 2204 Editing... done. Executing edited code...
2204 2205 hello world
2205 2206 Out[6]: "print 'hello world'n"
2206 2207
2207 2208 Now we call it with the output #8 (stored in _8, also as Out[8]):
2208 2209
2209 2210 In [7]: ed _8
2210 2211 Editing... done. Executing edited code...
2211 2212 hello again
2212 2213 Out[7]: "print 'hello again'n"
2213 2214
2214 2215
2215 2216 Changing the default editor hook:
2216 2217
2217 2218 If you wish to write your own editor hook, you can put it in a
2218 2219 configuration file which you load at startup time. The default hook
2219 2220 is defined in the IPython.core.hooks module, and you can use that as a
2220 2221 starting example for further modifications. That file also has
2221 2222 general instructions on how to set a new hook for use once you've
2222 2223 defined it."""
2223 2224
2224 2225 # FIXME: This function has become a convoluted mess. It needs a
2225 2226 # ground-up rewrite with clean, simple logic.
2226 2227
2227 2228 def make_filename(arg):
2228 2229 "Make a filename from the given args"
2229 2230 try:
2230 2231 filename = get_py_filename(arg)
2231 2232 except IOError:
2232 2233 if args.endswith('.py'):
2233 2234 filename = arg
2234 2235 else:
2235 2236 filename = None
2236 2237 return filename
2237 2238
2238 2239 # custom exceptions
2239 2240 class DataIsObject(Exception): pass
2240 2241
2241 2242 opts,args = self.parse_options(parameter_s,'prxn:')
2242 2243 # Set a few locals from the options for convenience:
2243 2244 opts_prev = 'p' in opts
2244 2245 opts_raw = 'r' in opts
2245 2246
2246 2247 # Default line number value
2247 2248 lineno = opts.get('n',None)
2248 2249
2249 2250 if opts_prev:
2250 2251 args = '_%s' % last_call[0]
2251 2252 if not self.shell.user_ns.has_key(args):
2252 2253 args = last_call[1]
2253 2254
2254 2255 # use last_call to remember the state of the previous call, but don't
2255 2256 # let it be clobbered by successive '-p' calls.
2256 2257 try:
2257 2258 last_call[0] = self.shell.displayhook.prompt_count
2258 2259 if not opts_prev:
2259 2260 last_call[1] = parameter_s
2260 2261 except:
2261 2262 pass
2262 2263
2263 2264 # by default this is done with temp files, except when the given
2264 2265 # arg is a filename
2265 2266 use_temp = True
2266 2267
2267 2268 data = ''
2268 2269 if args.endswith('.py'):
2269 2270 filename = make_filename(args)
2270 2271 use_temp = False
2271 2272 elif args:
2272 2273 # Mode where user specifies ranges of lines, like in %macro.
2273 2274 data = self.extract_input_lines(args, opts_raw)
2274 2275 if not data:
2275 2276 try:
2276 2277 # Load the parameter given as a variable. If not a string,
2277 2278 # process it as an object instead (below)
2278 2279
2279 2280 #print '*** args',args,'type',type(args) # dbg
2280 2281 data = eval(args, self.shell.user_ns)
2281 2282 if not isinstance(data, basestring):
2282 2283 raise DataIsObject
2283 2284
2284 2285 except (NameError,SyntaxError):
2285 2286 # given argument is not a variable, try as a filename
2286 2287 filename = make_filename(args)
2287 2288 if filename is None:
2288 2289 warn("Argument given (%s) can't be found as a variable "
2289 2290 "or as a filename." % args)
2290 2291 return
2291 2292 use_temp = False
2292 2293
2293 2294 except DataIsObject:
2294 2295 # macros have a special edit function
2295 2296 if isinstance(data, Macro):
2296 2297 self._edit_macro(args,data)
2297 2298 return
2298 2299
2299 2300 # For objects, try to edit the file where they are defined
2300 2301 try:
2301 2302 filename = inspect.getabsfile(data)
2302 2303 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2303 2304 # class created by %edit? Try to find source
2304 2305 # by looking for method definitions instead, the
2305 2306 # __module__ in those classes is FakeModule.
2306 2307 attrs = [getattr(data, aname) for aname in dir(data)]
2307 2308 for attr in attrs:
2308 2309 if not inspect.ismethod(attr):
2309 2310 continue
2310 2311 filename = inspect.getabsfile(attr)
2311 2312 if filename and 'fakemodule' not in filename.lower():
2312 2313 # change the attribute to be the edit target instead
2313 2314 data = attr
2314 2315 break
2315 2316
2316 2317 datafile = 1
2317 2318 except TypeError:
2318 2319 filename = make_filename(args)
2319 2320 datafile = 1
2320 2321 warn('Could not find file where `%s` is defined.\n'
2321 2322 'Opening a file named `%s`' % (args,filename))
2322 2323 # Now, make sure we can actually read the source (if it was in
2323 2324 # a temp file it's gone by now).
2324 2325 if datafile:
2325 2326 try:
2326 2327 if lineno is None:
2327 2328 lineno = inspect.getsourcelines(data)[1]
2328 2329 except IOError:
2329 2330 filename = make_filename(args)
2330 2331 if filename is None:
2331 2332 warn('The file `%s` where `%s` was defined cannot '
2332 2333 'be read.' % (filename,data))
2333 2334 return
2334 2335 use_temp = False
2335 2336
2336 2337 if use_temp:
2337 2338 filename = self.shell.mktempfile(data)
2338 2339 print 'IPython will make a temporary file named:',filename
2339 2340
2340 2341 # do actual editing here
2341 2342 print 'Editing...',
2342 2343 sys.stdout.flush()
2343 2344 try:
2344 2345 # Quote filenames that may have spaces in them
2345 2346 if ' ' in filename:
2346 2347 filename = "%s" % filename
2347 2348 self.shell.hooks.editor(filename,lineno)
2348 2349 except TryNext:
2349 2350 warn('Could not open editor')
2350 2351 return
2351 2352
2352 2353 # XXX TODO: should this be generalized for all string vars?
2353 2354 # For now, this is special-cased to blocks created by cpaste
2354 2355 if args.strip() == 'pasted_block':
2355 2356 self.shell.user_ns['pasted_block'] = file_read(filename)
2356 2357
2357 2358 if 'x' in opts: # -x prevents actual execution
2358 2359 print
2359 2360 else:
2360 2361 print 'done. Executing edited code...'
2361 2362 if opts_raw:
2362 2363 self.shell.run_cell(file_read(filename),
2363 2364 store_history=False)
2364 2365 else:
2365 2366 self.shell.safe_execfile(filename,self.shell.user_ns,
2366 2367 self.shell.user_ns)
2367 2368
2368 2369
2369 2370 if use_temp:
2370 2371 try:
2371 2372 return open(filename).read()
2372 2373 except IOError,msg:
2373 2374 if msg.filename == filename:
2374 2375 warn('File not found. Did you forget to save?')
2375 2376 return
2376 2377 else:
2377 2378 self.shell.showtraceback()
2378 2379
2379 2380 def magic_xmode(self,parameter_s = ''):
2380 2381 """Switch modes for the exception handlers.
2381 2382
2382 2383 Valid modes: Plain, Context and Verbose.
2383 2384
2384 2385 If called without arguments, acts as a toggle."""
2385 2386
2386 2387 def xmode_switch_err(name):
2387 2388 warn('Error changing %s exception modes.\n%s' %
2388 2389 (name,sys.exc_info()[1]))
2389 2390
2390 2391 shell = self.shell
2391 2392 new_mode = parameter_s.strip().capitalize()
2392 2393 try:
2393 2394 shell.InteractiveTB.set_mode(mode=new_mode)
2394 2395 print 'Exception reporting mode:',shell.InteractiveTB.mode
2395 2396 except:
2396 2397 xmode_switch_err('user')
2397 2398
2398 2399 def magic_colors(self,parameter_s = ''):
2399 2400 """Switch color scheme for prompts, info system and exception handlers.
2400 2401
2401 2402 Currently implemented schemes: NoColor, Linux, LightBG.
2402 2403
2403 2404 Color scheme names are not case-sensitive.
2404 2405
2405 2406 Examples
2406 2407 --------
2407 2408 To get a plain black and white terminal::
2408 2409
2409 2410 %colors nocolor
2410 2411 """
2411 2412
2412 2413 def color_switch_err(name):
2413 2414 warn('Error changing %s color schemes.\n%s' %
2414 2415 (name,sys.exc_info()[1]))
2415 2416
2416 2417
2417 2418 new_scheme = parameter_s.strip()
2418 2419 if not new_scheme:
2419 2420 raise UsageError(
2420 2421 "%colors: you must specify a color scheme. See '%colors?'")
2421 2422 return
2422 2423 # local shortcut
2423 2424 shell = self.shell
2424 2425
2425 2426 import IPython.utils.rlineimpl as readline
2426 2427
2427 2428 if not readline.have_readline and sys.platform == "win32":
2428 2429 msg = """\
2429 2430 Proper color support under MS Windows requires the pyreadline library.
2430 2431 You can find it at:
2431 2432 http://ipython.scipy.org/moin/PyReadline/Intro
2432 2433 Gary's readline needs the ctypes module, from:
2433 2434 http://starship.python.net/crew/theller/ctypes
2434 2435 (Note that ctypes is already part of Python versions 2.5 and newer).
2435 2436
2436 2437 Defaulting color scheme to 'NoColor'"""
2437 2438 new_scheme = 'NoColor'
2438 2439 warn(msg)
2439 2440
2440 2441 # readline option is 0
2441 2442 if not shell.has_readline:
2442 2443 new_scheme = 'NoColor'
2443 2444
2444 2445 # Set prompt colors
2445 2446 try:
2446 2447 shell.displayhook.set_colors(new_scheme)
2447 2448 except:
2448 2449 color_switch_err('prompt')
2449 2450 else:
2450 2451 shell.colors = \
2451 2452 shell.displayhook.color_table.active_scheme_name
2452 2453 # Set exception colors
2453 2454 try:
2454 2455 shell.InteractiveTB.set_colors(scheme = new_scheme)
2455 2456 shell.SyntaxTB.set_colors(scheme = new_scheme)
2456 2457 except:
2457 2458 color_switch_err('exception')
2458 2459
2459 2460 # Set info (for 'object?') colors
2460 2461 if shell.color_info:
2461 2462 try:
2462 2463 shell.inspector.set_active_scheme(new_scheme)
2463 2464 except:
2464 2465 color_switch_err('object inspector')
2465 2466 else:
2466 2467 shell.inspector.set_active_scheme('NoColor')
2467 2468
2468 2469 def magic_pprint(self, parameter_s=''):
2469 2470 """Toggle pretty printing on/off."""
2470 2471 ptformatter = self.shell.display_formatter.formatters['text/plain']
2471 2472 ptformatter.pprint = bool(1 - ptformatter.pprint)
2472 2473 print 'Pretty printing has been turned', \
2473 2474 ['OFF','ON'][ptformatter.pprint]
2474 2475
2475 2476 def magic_Exit(self, parameter_s=''):
2476 2477 """Exit IPython."""
2477 2478
2478 2479 self.shell.ask_exit()
2479 2480
2480 2481 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2481 2482 magic_exit = magic_quit = magic_Quit = magic_Exit
2482 2483
2483 2484 #......................................................................
2484 2485 # Functions to implement unix shell-type things
2485 2486
2486 2487 @testdec.skip_doctest
2487 2488 def magic_alias(self, parameter_s = ''):
2488 2489 """Define an alias for a system command.
2489 2490
2490 2491 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2491 2492
2492 2493 Then, typing 'alias_name params' will execute the system command 'cmd
2493 2494 params' (from your underlying operating system).
2494 2495
2495 2496 Aliases have lower precedence than magic functions and Python normal
2496 2497 variables, so if 'foo' is both a Python variable and an alias, the
2497 2498 alias can not be executed until 'del foo' removes the Python variable.
2498 2499
2499 2500 You can use the %l specifier in an alias definition to represent the
2500 2501 whole line when the alias is called. For example:
2501 2502
2502 2503 In [2]: alias bracket echo "Input in brackets: <%l>"
2503 2504 In [3]: bracket hello world
2504 2505 Input in brackets: <hello world>
2505 2506
2506 2507 You can also define aliases with parameters using %s specifiers (one
2507 2508 per parameter):
2508 2509
2509 2510 In [1]: alias parts echo first %s second %s
2510 2511 In [2]: %parts A B
2511 2512 first A second B
2512 2513 In [3]: %parts A
2513 2514 Incorrect number of arguments: 2 expected.
2514 2515 parts is an alias to: 'echo first %s second %s'
2515 2516
2516 2517 Note that %l and %s are mutually exclusive. You can only use one or
2517 2518 the other in your aliases.
2518 2519
2519 2520 Aliases expand Python variables just like system calls using ! or !!
2520 2521 do: all expressions prefixed with '$' get expanded. For details of
2521 2522 the semantic rules, see PEP-215:
2522 2523 http://www.python.org/peps/pep-0215.html. This is the library used by
2523 2524 IPython for variable expansion. If you want to access a true shell
2524 2525 variable, an extra $ is necessary to prevent its expansion by IPython:
2525 2526
2526 2527 In [6]: alias show echo
2527 2528 In [7]: PATH='A Python string'
2528 2529 In [8]: show $PATH
2529 2530 A Python string
2530 2531 In [9]: show $$PATH
2531 2532 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2532 2533
2533 2534 You can use the alias facility to acess all of $PATH. See the %rehash
2534 2535 and %rehashx functions, which automatically create aliases for the
2535 2536 contents of your $PATH.
2536 2537
2537 2538 If called with no parameters, %alias prints the current alias table."""
2538 2539
2539 2540 par = parameter_s.strip()
2540 2541 if not par:
2541 2542 stored = self.db.get('stored_aliases', {} )
2542 2543 aliases = sorted(self.shell.alias_manager.aliases)
2543 2544 # for k, v in stored:
2544 2545 # atab.append(k, v[0])
2545 2546
2546 2547 print "Total number of aliases:", len(aliases)
2547 2548 sys.stdout.flush()
2548 2549 return aliases
2549 2550
2550 2551 # Now try to define a new one
2551 2552 try:
2552 2553 alias,cmd = par.split(None, 1)
2553 2554 except:
2554 2555 print oinspect.getdoc(self.magic_alias)
2555 2556 else:
2556 2557 self.shell.alias_manager.soft_define_alias(alias, cmd)
2557 2558 # end magic_alias
2558 2559
2559 2560 def magic_unalias(self, parameter_s = ''):
2560 2561 """Remove an alias"""
2561 2562
2562 2563 aname = parameter_s.strip()
2563 2564 self.shell.alias_manager.undefine_alias(aname)
2564 2565 stored = self.db.get('stored_aliases', {} )
2565 2566 if aname in stored:
2566 2567 print "Removing %stored alias",aname
2567 2568 del stored[aname]
2568 2569 self.db['stored_aliases'] = stored
2569 2570
2570 2571 def magic_rehashx(self, parameter_s = ''):
2571 2572 """Update the alias table with all executable files in $PATH.
2572 2573
2573 2574 This version explicitly checks that every entry in $PATH is a file
2574 2575 with execute access (os.X_OK), so it is much slower than %rehash.
2575 2576
2576 2577 Under Windows, it checks executability as a match agains a
2577 2578 '|'-separated string of extensions, stored in the IPython config
2578 2579 variable win_exec_ext. This defaults to 'exe|com|bat'.
2579 2580
2580 2581 This function also resets the root module cache of module completer,
2581 2582 used on slow filesystems.
2582 2583 """
2583 2584 from IPython.core.alias import InvalidAliasError
2584 2585
2585 2586 # for the benefit of module completer in ipy_completers.py
2586 2587 del self.db['rootmodules']
2587 2588
2588 2589 path = [os.path.abspath(os.path.expanduser(p)) for p in
2589 2590 os.environ.get('PATH','').split(os.pathsep)]
2590 2591 path = filter(os.path.isdir,path)
2591 2592
2592 2593 syscmdlist = []
2593 2594 # Now define isexec in a cross platform manner.
2594 2595 if os.name == 'posix':
2595 2596 isexec = lambda fname:os.path.isfile(fname) and \
2596 2597 os.access(fname,os.X_OK)
2597 2598 else:
2598 2599 try:
2599 2600 winext = os.environ['pathext'].replace(';','|').replace('.','')
2600 2601 except KeyError:
2601 2602 winext = 'exe|com|bat|py'
2602 2603 if 'py' not in winext:
2603 2604 winext += '|py'
2604 2605 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2605 2606 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2606 2607 savedir = os.getcwd()
2607 2608
2608 2609 # Now walk the paths looking for executables to alias.
2609 2610 try:
2610 2611 # write the whole loop for posix/Windows so we don't have an if in
2611 2612 # the innermost part
2612 2613 if os.name == 'posix':
2613 2614 for pdir in path:
2614 2615 os.chdir(pdir)
2615 2616 for ff in os.listdir(pdir):
2616 2617 if isexec(ff):
2617 2618 try:
2618 2619 # Removes dots from the name since ipython
2619 2620 # will assume names with dots to be python.
2620 2621 self.shell.alias_manager.define_alias(
2621 2622 ff.replace('.',''), ff)
2622 2623 except InvalidAliasError:
2623 2624 pass
2624 2625 else:
2625 2626 syscmdlist.append(ff)
2626 2627 else:
2627 2628 no_alias = self.shell.alias_manager.no_alias
2628 2629 for pdir in path:
2629 2630 os.chdir(pdir)
2630 2631 for ff in os.listdir(pdir):
2631 2632 base, ext = os.path.splitext(ff)
2632 2633 if isexec(ff) and base.lower() not in no_alias:
2633 2634 if ext.lower() == '.exe':
2634 2635 ff = base
2635 2636 try:
2636 2637 # Removes dots from the name since ipython
2637 2638 # will assume names with dots to be python.
2638 2639 self.shell.alias_manager.define_alias(
2639 2640 base.lower().replace('.',''), ff)
2640 2641 except InvalidAliasError:
2641 2642 pass
2642 2643 syscmdlist.append(ff)
2643 2644 db = self.db
2644 2645 db['syscmdlist'] = syscmdlist
2645 2646 finally:
2646 2647 os.chdir(savedir)
2647 2648
2648 2649 @testdec.skip_doctest
2649 2650 def magic_pwd(self, parameter_s = ''):
2650 2651 """Return the current working directory path.
2651 2652
2652 2653 Examples
2653 2654 --------
2654 2655 ::
2655 2656
2656 2657 In [9]: pwd
2657 2658 Out[9]: '/home/tsuser/sprint/ipython'
2658 2659 """
2659 2660 return os.getcwd()
2660 2661
2661 2662 @testdec.skip_doctest
2662 2663 def magic_cd(self, parameter_s=''):
2663 2664 """Change the current working directory.
2664 2665
2665 2666 This command automatically maintains an internal list of directories
2666 2667 you visit during your IPython session, in the variable _dh. The
2667 2668 command %dhist shows this history nicely formatted. You can also
2668 2669 do 'cd -<tab>' to see directory history conveniently.
2669 2670
2670 2671 Usage:
2671 2672
2672 2673 cd 'dir': changes to directory 'dir'.
2673 2674
2674 2675 cd -: changes to the last visited directory.
2675 2676
2676 2677 cd -<n>: changes to the n-th directory in the directory history.
2677 2678
2678 2679 cd --foo: change to directory that matches 'foo' in history
2679 2680
2680 2681 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2681 2682 (note: cd <bookmark_name> is enough if there is no
2682 2683 directory <bookmark_name>, but a bookmark with the name exists.)
2683 2684 'cd -b <tab>' allows you to tab-complete bookmark names.
2684 2685
2685 2686 Options:
2686 2687
2687 2688 -q: quiet. Do not print the working directory after the cd command is
2688 2689 executed. By default IPython's cd command does print this directory,
2689 2690 since the default prompts do not display path information.
2690 2691
2691 2692 Note that !cd doesn't work for this purpose because the shell where
2692 2693 !command runs is immediately discarded after executing 'command'.
2693 2694
2694 2695 Examples
2695 2696 --------
2696 2697 ::
2697 2698
2698 2699 In [10]: cd parent/child
2699 2700 /home/tsuser/parent/child
2700 2701 """
2701 2702
2702 2703 parameter_s = parameter_s.strip()
2703 2704 #bkms = self.shell.persist.get("bookmarks",{})
2704 2705
2705 2706 oldcwd = os.getcwd()
2706 2707 numcd = re.match(r'(-)(\d+)$',parameter_s)
2707 2708 # jump in directory history by number
2708 2709 if numcd:
2709 2710 nn = int(numcd.group(2))
2710 2711 try:
2711 2712 ps = self.shell.user_ns['_dh'][nn]
2712 2713 except IndexError:
2713 2714 print 'The requested directory does not exist in history.'
2714 2715 return
2715 2716 else:
2716 2717 opts = {}
2717 2718 elif parameter_s.startswith('--'):
2718 2719 ps = None
2719 2720 fallback = None
2720 2721 pat = parameter_s[2:]
2721 2722 dh = self.shell.user_ns['_dh']
2722 2723 # first search only by basename (last component)
2723 2724 for ent in reversed(dh):
2724 2725 if pat in os.path.basename(ent) and os.path.isdir(ent):
2725 2726 ps = ent
2726 2727 break
2727 2728
2728 2729 if fallback is None and pat in ent and os.path.isdir(ent):
2729 2730 fallback = ent
2730 2731
2731 2732 # if we have no last part match, pick the first full path match
2732 2733 if ps is None:
2733 2734 ps = fallback
2734 2735
2735 2736 if ps is None:
2736 2737 print "No matching entry in directory history"
2737 2738 return
2738 2739 else:
2739 2740 opts = {}
2740 2741
2741 2742
2742 2743 else:
2743 2744 #turn all non-space-escaping backslashes to slashes,
2744 2745 # for c:\windows\directory\names\
2745 2746 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2746 2747 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2747 2748 # jump to previous
2748 2749 if ps == '-':
2749 2750 try:
2750 2751 ps = self.shell.user_ns['_dh'][-2]
2751 2752 except IndexError:
2752 2753 raise UsageError('%cd -: No previous directory to change to.')
2753 2754 # jump to bookmark if needed
2754 2755 else:
2755 2756 if not os.path.isdir(ps) or opts.has_key('b'):
2756 2757 bkms = self.db.get('bookmarks', {})
2757 2758
2758 2759 if bkms.has_key(ps):
2759 2760 target = bkms[ps]
2760 2761 print '(bookmark:%s) -> %s' % (ps,target)
2761 2762 ps = target
2762 2763 else:
2763 2764 if opts.has_key('b'):
2764 2765 raise UsageError("Bookmark '%s' not found. "
2765 2766 "Use '%%bookmark -l' to see your bookmarks." % ps)
2766 2767
2767 2768 # at this point ps should point to the target dir
2768 2769 if ps:
2769 2770 try:
2770 2771 os.chdir(os.path.expanduser(ps))
2771 2772 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2772 2773 set_term_title('IPython: ' + abbrev_cwd())
2773 2774 except OSError:
2774 2775 print sys.exc_info()[1]
2775 2776 else:
2776 2777 cwd = os.getcwd()
2777 2778 dhist = self.shell.user_ns['_dh']
2778 2779 if oldcwd != cwd:
2779 2780 dhist.append(cwd)
2780 2781 self.db['dhist'] = compress_dhist(dhist)[-100:]
2781 2782
2782 2783 else:
2783 2784 os.chdir(self.shell.home_dir)
2784 2785 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2785 2786 set_term_title('IPython: ' + '~')
2786 2787 cwd = os.getcwd()
2787 2788 dhist = self.shell.user_ns['_dh']
2788 2789
2789 2790 if oldcwd != cwd:
2790 2791 dhist.append(cwd)
2791 2792 self.db['dhist'] = compress_dhist(dhist)[-100:]
2792 2793 if not 'q' in opts and self.shell.user_ns['_dh']:
2793 2794 print self.shell.user_ns['_dh'][-1]
2794 2795
2795 2796
2796 2797 def magic_env(self, parameter_s=''):
2797 2798 """List environment variables."""
2798 2799
2799 2800 return os.environ.data
2800 2801
2801 2802 def magic_pushd(self, parameter_s=''):
2802 2803 """Place the current dir on stack and change directory.
2803 2804
2804 2805 Usage:\\
2805 2806 %pushd ['dirname']
2806 2807 """
2807 2808
2808 2809 dir_s = self.shell.dir_stack
2809 2810 tgt = os.path.expanduser(parameter_s)
2810 2811 cwd = os.getcwd().replace(self.home_dir,'~')
2811 2812 if tgt:
2812 2813 self.magic_cd(parameter_s)
2813 2814 dir_s.insert(0,cwd)
2814 2815 return self.magic_dirs()
2815 2816
2816 2817 def magic_popd(self, parameter_s=''):
2817 2818 """Change to directory popped off the top of the stack.
2818 2819 """
2819 2820 if not self.shell.dir_stack:
2820 2821 raise UsageError("%popd on empty stack")
2821 2822 top = self.shell.dir_stack.pop(0)
2822 2823 self.magic_cd(top)
2823 2824 print "popd ->",top
2824 2825
2825 2826 def magic_dirs(self, parameter_s=''):
2826 2827 """Return the current directory stack."""
2827 2828
2828 2829 return self.shell.dir_stack
2829 2830
2830 2831 def magic_dhist(self, parameter_s=''):
2831 2832 """Print your history of visited directories.
2832 2833
2833 2834 %dhist -> print full history\\
2834 2835 %dhist n -> print last n entries only\\
2835 2836 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2836 2837
2837 2838 This history is automatically maintained by the %cd command, and
2838 2839 always available as the global list variable _dh. You can use %cd -<n>
2839 2840 to go to directory number <n>.
2840 2841
2841 2842 Note that most of time, you should view directory history by entering
2842 2843 cd -<TAB>.
2843 2844
2844 2845 """
2845 2846
2846 2847 dh = self.shell.user_ns['_dh']
2847 2848 if parameter_s:
2848 2849 try:
2849 2850 args = map(int,parameter_s.split())
2850 2851 except:
2851 2852 self.arg_err(Magic.magic_dhist)
2852 2853 return
2853 2854 if len(args) == 1:
2854 2855 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2855 2856 elif len(args) == 2:
2856 2857 ini,fin = args
2857 2858 else:
2858 2859 self.arg_err(Magic.magic_dhist)
2859 2860 return
2860 2861 else:
2861 2862 ini,fin = 0,len(dh)
2862 2863 nlprint(dh,
2863 2864 header = 'Directory history (kept in _dh)',
2864 2865 start=ini,stop=fin)
2865 2866
2866 2867 @testdec.skip_doctest
2867 2868 def magic_sc(self, parameter_s=''):
2868 2869 """Shell capture - execute a shell command and capture its output.
2869 2870
2870 2871 DEPRECATED. Suboptimal, retained for backwards compatibility.
2871 2872
2872 2873 You should use the form 'var = !command' instead. Example:
2873 2874
2874 2875 "%sc -l myfiles = ls ~" should now be written as
2875 2876
2876 2877 "myfiles = !ls ~"
2877 2878
2878 2879 myfiles.s, myfiles.l and myfiles.n still apply as documented
2879 2880 below.
2880 2881
2881 2882 --
2882 2883 %sc [options] varname=command
2883 2884
2884 2885 IPython will run the given command using commands.getoutput(), and
2885 2886 will then update the user's interactive namespace with a variable
2886 2887 called varname, containing the value of the call. Your command can
2887 2888 contain shell wildcards, pipes, etc.
2888 2889
2889 2890 The '=' sign in the syntax is mandatory, and the variable name you
2890 2891 supply must follow Python's standard conventions for valid names.
2891 2892
2892 2893 (A special format without variable name exists for internal use)
2893 2894
2894 2895 Options:
2895 2896
2896 2897 -l: list output. Split the output on newlines into a list before
2897 2898 assigning it to the given variable. By default the output is stored
2898 2899 as a single string.
2899 2900
2900 2901 -v: verbose. Print the contents of the variable.
2901 2902
2902 2903 In most cases you should not need to split as a list, because the
2903 2904 returned value is a special type of string which can automatically
2904 2905 provide its contents either as a list (split on newlines) or as a
2905 2906 space-separated string. These are convenient, respectively, either
2906 2907 for sequential processing or to be passed to a shell command.
2907 2908
2908 2909 For example:
2909 2910
2910 2911 # all-random
2911 2912
2912 2913 # Capture into variable a
2913 2914 In [1]: sc a=ls *py
2914 2915
2915 2916 # a is a string with embedded newlines
2916 2917 In [2]: a
2917 2918 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2918 2919
2919 2920 # which can be seen as a list:
2920 2921 In [3]: a.l
2921 2922 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2922 2923
2923 2924 # or as a whitespace-separated string:
2924 2925 In [4]: a.s
2925 2926 Out[4]: 'setup.py win32_manual_post_install.py'
2926 2927
2927 2928 # a.s is useful to pass as a single command line:
2928 2929 In [5]: !wc -l $a.s
2929 2930 146 setup.py
2930 2931 130 win32_manual_post_install.py
2931 2932 276 total
2932 2933
2933 2934 # while the list form is useful to loop over:
2934 2935 In [6]: for f in a.l:
2935 2936 ...: !wc -l $f
2936 2937 ...:
2937 2938 146 setup.py
2938 2939 130 win32_manual_post_install.py
2939 2940
2940 2941 Similiarly, the lists returned by the -l option are also special, in
2941 2942 the sense that you can equally invoke the .s attribute on them to
2942 2943 automatically get a whitespace-separated string from their contents:
2943 2944
2944 2945 In [7]: sc -l b=ls *py
2945 2946
2946 2947 In [8]: b
2947 2948 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2948 2949
2949 2950 In [9]: b.s
2950 2951 Out[9]: 'setup.py win32_manual_post_install.py'
2951 2952
2952 2953 In summary, both the lists and strings used for ouptut capture have
2953 2954 the following special attributes:
2954 2955
2955 2956 .l (or .list) : value as list.
2956 2957 .n (or .nlstr): value as newline-separated string.
2957 2958 .s (or .spstr): value as space-separated string.
2958 2959 """
2959 2960
2960 2961 opts,args = self.parse_options(parameter_s,'lv')
2961 2962 # Try to get a variable name and command to run
2962 2963 try:
2963 2964 # the variable name must be obtained from the parse_options
2964 2965 # output, which uses shlex.split to strip options out.
2965 2966 var,_ = args.split('=',1)
2966 2967 var = var.strip()
2967 2968 # But the the command has to be extracted from the original input
2968 2969 # parameter_s, not on what parse_options returns, to avoid the
2969 2970 # quote stripping which shlex.split performs on it.
2970 2971 _,cmd = parameter_s.split('=',1)
2971 2972 except ValueError:
2972 2973 var,cmd = '',''
2973 2974 # If all looks ok, proceed
2974 2975 split = 'l' in opts
2975 2976 out = self.shell.getoutput(cmd, split=split)
2976 2977 if opts.has_key('v'):
2977 2978 print '%s ==\n%s' % (var,pformat(out))
2978 2979 if var:
2979 2980 self.shell.user_ns.update({var:out})
2980 2981 else:
2981 2982 return out
2982 2983
2983 2984 def magic_sx(self, parameter_s=''):
2984 2985 """Shell execute - run a shell command and capture its output.
2985 2986
2986 2987 %sx command
2987 2988
2988 2989 IPython will run the given command using commands.getoutput(), and
2989 2990 return the result formatted as a list (split on '\\n'). Since the
2990 2991 output is _returned_, it will be stored in ipython's regular output
2991 2992 cache Out[N] and in the '_N' automatic variables.
2992 2993
2993 2994 Notes:
2994 2995
2995 2996 1) If an input line begins with '!!', then %sx is automatically
2996 2997 invoked. That is, while:
2997 2998 !ls
2998 2999 causes ipython to simply issue system('ls'), typing
2999 3000 !!ls
3000 3001 is a shorthand equivalent to:
3001 3002 %sx ls
3002 3003
3003 3004 2) %sx differs from %sc in that %sx automatically splits into a list,
3004 3005 like '%sc -l'. The reason for this is to make it as easy as possible
3005 3006 to process line-oriented shell output via further python commands.
3006 3007 %sc is meant to provide much finer control, but requires more
3007 3008 typing.
3008 3009
3009 3010 3) Just like %sc -l, this is a list with special attributes:
3010 3011
3011 3012 .l (or .list) : value as list.
3012 3013 .n (or .nlstr): value as newline-separated string.
3013 3014 .s (or .spstr): value as whitespace-separated string.
3014 3015
3015 3016 This is very useful when trying to use such lists as arguments to
3016 3017 system commands."""
3017 3018
3018 3019 if parameter_s:
3019 3020 return self.shell.getoutput(parameter_s)
3020 3021
3021 3022
3022 3023 def magic_bookmark(self, parameter_s=''):
3023 3024 """Manage IPython's bookmark system.
3024 3025
3025 3026 %bookmark <name> - set bookmark to current dir
3026 3027 %bookmark <name> <dir> - set bookmark to <dir>
3027 3028 %bookmark -l - list all bookmarks
3028 3029 %bookmark -d <name> - remove bookmark
3029 3030 %bookmark -r - remove all bookmarks
3030 3031
3031 3032 You can later on access a bookmarked folder with:
3032 3033 %cd -b <name>
3033 3034 or simply '%cd <name>' if there is no directory called <name> AND
3034 3035 there is such a bookmark defined.
3035 3036
3036 3037 Your bookmarks persist through IPython sessions, but they are
3037 3038 associated with each profile."""
3038 3039
3039 3040 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3040 3041 if len(args) > 2:
3041 3042 raise UsageError("%bookmark: too many arguments")
3042 3043
3043 3044 bkms = self.db.get('bookmarks',{})
3044 3045
3045 3046 if opts.has_key('d'):
3046 3047 try:
3047 3048 todel = args[0]
3048 3049 except IndexError:
3049 3050 raise UsageError(
3050 3051 "%bookmark -d: must provide a bookmark to delete")
3051 3052 else:
3052 3053 try:
3053 3054 del bkms[todel]
3054 3055 except KeyError:
3055 3056 raise UsageError(
3056 3057 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3057 3058
3058 3059 elif opts.has_key('r'):
3059 3060 bkms = {}
3060 3061 elif opts.has_key('l'):
3061 3062 bks = bkms.keys()
3062 3063 bks.sort()
3063 3064 if bks:
3064 3065 size = max(map(len,bks))
3065 3066 else:
3066 3067 size = 0
3067 3068 fmt = '%-'+str(size)+'s -> %s'
3068 3069 print 'Current bookmarks:'
3069 3070 for bk in bks:
3070 3071 print fmt % (bk,bkms[bk])
3071 3072 else:
3072 3073 if not args:
3073 3074 raise UsageError("%bookmark: You must specify the bookmark name")
3074 3075 elif len(args)==1:
3075 3076 bkms[args[0]] = os.getcwd()
3076 3077 elif len(args)==2:
3077 3078 bkms[args[0]] = args[1]
3078 3079 self.db['bookmarks'] = bkms
3079 3080
3080 3081 def magic_pycat(self, parameter_s=''):
3081 3082 """Show a syntax-highlighted file through a pager.
3082 3083
3083 3084 This magic is similar to the cat utility, but it will assume the file
3084 3085 to be Python source and will show it with syntax highlighting. """
3085 3086
3086 3087 try:
3087 3088 filename = get_py_filename(parameter_s)
3088 3089 cont = file_read(filename)
3089 3090 except IOError:
3090 3091 try:
3091 3092 cont = eval(parameter_s,self.user_ns)
3092 3093 except NameError:
3093 3094 cont = None
3094 3095 if cont is None:
3095 3096 print "Error: no such file or variable"
3096 3097 return
3097 3098
3098 3099 page.page(self.shell.pycolorize(cont))
3099 3100
3100 3101 def _rerun_pasted(self):
3101 3102 """ Rerun a previously pasted command.
3102 3103 """
3103 3104 b = self.user_ns.get('pasted_block', None)
3104 3105 if b is None:
3105 3106 raise UsageError('No previous pasted block available')
3106 3107 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3107 3108 exec b in self.user_ns
3108 3109
3109 3110 def _get_pasted_lines(self, sentinel):
3110 3111 """ Yield pasted lines until the user enters the given sentinel value.
3111 3112 """
3112 3113 from IPython.core import interactiveshell
3113 3114 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3114 3115 while True:
3115 3116 l = interactiveshell.raw_input_original(':')
3116 3117 if l == sentinel:
3117 3118 return
3118 3119 else:
3119 3120 yield l
3120 3121
3121 3122 def _strip_pasted_lines_for_code(self, raw_lines):
3122 3123 """ Strip non-code parts of a sequence of lines to return a block of
3123 3124 code.
3124 3125 """
3125 3126 # Regular expressions that declare text we strip from the input:
3126 3127 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3127 3128 r'^\s*(\s?>)+', # Python input prompt
3128 3129 r'^\s*\.{3,}', # Continuation prompts
3129 3130 r'^\++',
3130 3131 ]
3131 3132
3132 3133 strip_from_start = map(re.compile,strip_re)
3133 3134
3134 3135 lines = []
3135 3136 for l in raw_lines:
3136 3137 for pat in strip_from_start:
3137 3138 l = pat.sub('',l)
3138 3139 lines.append(l)
3139 3140
3140 3141 block = "\n".join(lines) + '\n'
3141 3142 #print "block:\n",block
3142 3143 return block
3143 3144
3144 3145 def _execute_block(self, block, par):
3145 3146 """ Execute a block, or store it in a variable, per the user's request.
3146 3147 """
3147 3148 if not par:
3148 3149 b = textwrap.dedent(block)
3149 3150 self.user_ns['pasted_block'] = b
3150 3151 exec b in self.user_ns
3151 3152 else:
3152 3153 self.user_ns[par] = SList(block.splitlines())
3153 3154 print "Block assigned to '%s'" % par
3154 3155
3155 3156 def magic_quickref(self,arg):
3156 3157 """ Show a quick reference sheet """
3157 3158 import IPython.core.usage
3158 3159 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3159 3160
3160 3161 page.page(qr)
3161 3162
3162 3163 def magic_doctest_mode(self,parameter_s=''):
3163 3164 """Toggle doctest mode on and off.
3164 3165
3165 3166 This mode is intended to make IPython behave as much as possible like a
3166 3167 plain Python shell, from the perspective of how its prompts, exceptions
3167 3168 and output look. This makes it easy to copy and paste parts of a
3168 3169 session into doctests. It does so by:
3169 3170
3170 3171 - Changing the prompts to the classic ``>>>`` ones.
3171 3172 - Changing the exception reporting mode to 'Plain'.
3172 3173 - Disabling pretty-printing of output.
3173 3174
3174 3175 Note that IPython also supports the pasting of code snippets that have
3175 3176 leading '>>>' and '...' prompts in them. This means that you can paste
3176 3177 doctests from files or docstrings (even if they have leading
3177 3178 whitespace), and the code will execute correctly. You can then use
3178 3179 '%history -t' to see the translated history; this will give you the
3179 3180 input after removal of all the leading prompts and whitespace, which
3180 3181 can be pasted back into an editor.
3181 3182
3182 3183 With these features, you can switch into this mode easily whenever you
3183 3184 need to do testing and changes to doctests, without having to leave
3184 3185 your existing IPython session.
3185 3186 """
3186 3187
3187 3188 from IPython.utils.ipstruct import Struct
3188 3189
3189 3190 # Shorthands
3190 3191 shell = self.shell
3191 3192 oc = shell.displayhook
3192 3193 meta = shell.meta
3193 3194 disp_formatter = self.shell.display_formatter
3194 3195 ptformatter = disp_formatter.formatters['text/plain']
3195 3196 # dstore is a data store kept in the instance metadata bag to track any
3196 3197 # changes we make, so we can undo them later.
3197 3198 dstore = meta.setdefault('doctest_mode',Struct())
3198 3199 save_dstore = dstore.setdefault
3199 3200
3200 3201 # save a few values we'll need to recover later
3201 3202 mode = save_dstore('mode',False)
3202 3203 save_dstore('rc_pprint',ptformatter.pprint)
3203 3204 save_dstore('xmode',shell.InteractiveTB.mode)
3204 3205 save_dstore('rc_separate_out',shell.separate_out)
3205 3206 save_dstore('rc_separate_out2',shell.separate_out2)
3206 3207 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3207 3208 save_dstore('rc_separate_in',shell.separate_in)
3208 3209 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3209 3210
3210 3211 if mode == False:
3211 3212 # turn on
3212 3213 oc.prompt1.p_template = '>>> '
3213 3214 oc.prompt2.p_template = '... '
3214 3215 oc.prompt_out.p_template = ''
3215 3216
3216 3217 # Prompt separators like plain python
3217 3218 oc.input_sep = oc.prompt1.sep = ''
3218 3219 oc.output_sep = ''
3219 3220 oc.output_sep2 = ''
3220 3221
3221 3222 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3222 3223 oc.prompt_out.pad_left = False
3223 3224
3224 3225 ptformatter.pprint = False
3225 3226 disp_formatter.plain_text_only = True
3226 3227
3227 3228 shell.magic_xmode('Plain')
3228 3229 else:
3229 3230 # turn off
3230 3231 oc.prompt1.p_template = shell.prompt_in1
3231 3232 oc.prompt2.p_template = shell.prompt_in2
3232 3233 oc.prompt_out.p_template = shell.prompt_out
3233 3234
3234 3235 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3235 3236
3236 3237 oc.output_sep = dstore.rc_separate_out
3237 3238 oc.output_sep2 = dstore.rc_separate_out2
3238 3239
3239 3240 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3240 3241 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3241 3242
3242 3243 ptformatter.pprint = dstore.rc_pprint
3243 3244 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3244 3245
3245 3246 shell.magic_xmode(dstore.xmode)
3246 3247
3247 3248 # Store new mode and inform
3248 3249 dstore.mode = bool(1-int(mode))
3249 3250 mode_label = ['OFF','ON'][dstore.mode]
3250 3251 print 'Doctest mode is:', mode_label
3251 3252
3252 3253 def magic_gui(self, parameter_s=''):
3253 3254 """Enable or disable IPython GUI event loop integration.
3254 3255
3255 3256 %gui [GUINAME]
3256 3257
3257 3258 This magic replaces IPython's threaded shells that were activated
3258 3259 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3259 3260 can now be enabled, disabled and swtiched at runtime and keyboard
3260 3261 interrupts should work without any problems. The following toolkits
3261 3262 are supported: wxPython, PyQt4, PyGTK, and Tk::
3262 3263
3263 3264 %gui wx # enable wxPython event loop integration
3264 3265 %gui qt4|qt # enable PyQt4 event loop integration
3265 3266 %gui gtk # enable PyGTK event loop integration
3266 3267 %gui tk # enable Tk event loop integration
3267 3268 %gui # disable all event loop integration
3268 3269
3269 3270 WARNING: after any of these has been called you can simply create
3270 3271 an application object, but DO NOT start the event loop yourself, as
3271 3272 we have already handled that.
3272 3273 """
3273 3274 from IPython.lib.inputhook import enable_gui
3274 3275 opts, arg = self.parse_options(parameter_s, '')
3275 3276 if arg=='': arg = None
3276 3277 return enable_gui(arg)
3277 3278
3278 3279 def magic_load_ext(self, module_str):
3279 3280 """Load an IPython extension by its module name."""
3280 3281 return self.extension_manager.load_extension(module_str)
3281 3282
3282 3283 def magic_unload_ext(self, module_str):
3283 3284 """Unload an IPython extension by its module name."""
3284 3285 self.extension_manager.unload_extension(module_str)
3285 3286
3286 3287 def magic_reload_ext(self, module_str):
3287 3288 """Reload an IPython extension by its module name."""
3288 3289 self.extension_manager.reload_extension(module_str)
3289 3290
3290 3291 @testdec.skip_doctest
3291 3292 def magic_install_profiles(self, s):
3292 3293 """Install the default IPython profiles into the .ipython dir.
3293 3294
3294 3295 If the default profiles have already been installed, they will not
3295 3296 be overwritten. You can force overwriting them by using the ``-o``
3296 3297 option::
3297 3298
3298 3299 In [1]: %install_profiles -o
3299 3300 """
3300 3301 if '-o' in s:
3301 3302 overwrite = True
3302 3303 else:
3303 3304 overwrite = False
3304 3305 from IPython.config import profile
3305 3306 profile_dir = os.path.split(profile.__file__)[0]
3306 3307 ipython_dir = self.ipython_dir
3307 3308 files = os.listdir(profile_dir)
3308 3309
3309 3310 to_install = []
3310 3311 for f in files:
3311 3312 if f.startswith('ipython_config'):
3312 3313 src = os.path.join(profile_dir, f)
3313 3314 dst = os.path.join(ipython_dir, f)
3314 3315 if (not os.path.isfile(dst)) or overwrite:
3315 3316 to_install.append((f, src, dst))
3316 3317 if len(to_install)>0:
3317 3318 print "Installing profiles to: ", ipython_dir
3318 3319 for (f, src, dst) in to_install:
3319 3320 shutil.copy(src, dst)
3320 3321 print " %s" % f
3321 3322
3322 3323 def magic_install_default_config(self, s):
3323 3324 """Install IPython's default config file into the .ipython dir.
3324 3325
3325 3326 If the default config file (:file:`ipython_config.py`) is already
3326 3327 installed, it will not be overwritten. You can force overwriting
3327 3328 by using the ``-o`` option::
3328 3329
3329 3330 In [1]: %install_default_config
3330 3331 """
3331 3332 if '-o' in s:
3332 3333 overwrite = True
3333 3334 else:
3334 3335 overwrite = False
3335 3336 from IPython.config import default
3336 3337 config_dir = os.path.split(default.__file__)[0]
3337 3338 ipython_dir = self.ipython_dir
3338 3339 default_config_file_name = 'ipython_config.py'
3339 3340 src = os.path.join(config_dir, default_config_file_name)
3340 3341 dst = os.path.join(ipython_dir, default_config_file_name)
3341 3342 if (not os.path.isfile(dst)) or overwrite:
3342 3343 shutil.copy(src, dst)
3343 3344 print "Installing default config file: %s" % dst
3344 3345
3345 3346 # Pylab support: simple wrappers that activate pylab, load gui input
3346 3347 # handling and modify slightly %run
3347 3348
3348 3349 @testdec.skip_doctest
3349 3350 def _pylab_magic_run(self, parameter_s=''):
3350 3351 Magic.magic_run(self, parameter_s,
3351 3352 runner=mpl_runner(self.shell.safe_execfile))
3352 3353
3353 3354 _pylab_magic_run.__doc__ = magic_run.__doc__
3354 3355
3355 3356 @testdec.skip_doctest
3356 3357 def magic_pylab(self, s):
3357 3358 """Load numpy and matplotlib to work interactively.
3358 3359
3359 3360 %pylab [GUINAME]
3360 3361
3361 3362 This function lets you activate pylab (matplotlib, numpy and
3362 3363 interactive support) at any point during an IPython session.
3363 3364
3364 3365 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3365 3366 pylab and mlab, as well as all names from numpy and pylab.
3366 3367
3367 3368 Parameters
3368 3369 ----------
3369 3370 guiname : optional
3370 3371 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or
3371 3372 'tk'). If given, the corresponding Matplotlib backend is used,
3372 3373 otherwise matplotlib's default (which you can override in your
3373 3374 matplotlib config file) is used.
3374 3375
3375 3376 Examples
3376 3377 --------
3377 3378 In this case, where the MPL default is TkAgg:
3378 3379 In [2]: %pylab
3379 3380
3380 3381 Welcome to pylab, a matplotlib-based Python environment.
3381 3382 Backend in use: TkAgg
3382 3383 For more information, type 'help(pylab)'.
3383 3384
3384 3385 But you can explicitly request a different backend:
3385 3386 In [3]: %pylab qt
3386 3387
3387 3388 Welcome to pylab, a matplotlib-based Python environment.
3388 3389 Backend in use: Qt4Agg
3389 3390 For more information, type 'help(pylab)'.
3390 3391 """
3391 3392 self.shell.enable_pylab(s)
3392 3393
3393 3394 def magic_tb(self, s):
3394 3395 """Print the last traceback with the currently active exception mode.
3395 3396
3396 3397 See %xmode for changing exception reporting modes."""
3397 3398 self.shell.showtraceback()
3398 3399
3399 3400 @testdec.skip_doctest
3400 3401 def magic_precision(self, s=''):
3401 3402 """Set floating point precision for pretty printing.
3402 3403
3403 3404 Can set either integer precision or a format string.
3404 3405
3405 3406 If numpy has been imported and precision is an int,
3406 3407 numpy display precision will also be set, via ``numpy.set_printoptions``.
3407 3408
3408 3409 If no argument is given, defaults will be restored.
3409 3410
3410 3411 Examples
3411 3412 --------
3412 3413 ::
3413 3414
3414 3415 In [1]: from math import pi
3415 3416
3416 3417 In [2]: %precision 3
3417 3418 Out[2]: '%.3f'
3418 3419
3419 3420 In [3]: pi
3420 3421 Out[3]: 3.142
3421 3422
3422 3423 In [4]: %precision %i
3423 3424 Out[4]: '%i'
3424 3425
3425 3426 In [5]: pi
3426 3427 Out[5]: 3
3427 3428
3428 3429 In [6]: %precision %e
3429 3430 Out[6]: '%e'
3430 3431
3431 3432 In [7]: pi**10
3432 3433 Out[7]: 9.364805e+04
3433 3434
3434 3435 In [8]: %precision
3435 3436 Out[8]: '%r'
3436 3437
3437 3438 In [9]: pi**10
3438 3439 Out[9]: 93648.047476082982
3439 3440
3440 3441 """
3441 3442
3442 3443 ptformatter = self.shell.display_formatter.formatters['text/plain']
3443 3444 ptformatter.float_precision = s
3444 3445 return ptformatter.float_format
3445 3446
3446 3447 # end Magic
General Comments 0
You need to be logged in to leave comments. Login now