##// END OF EJS Templates
Support relative import in "%run -m"
Takafumi Arakaki -
Show More
@@ -1,1124 +1,1128
1 1 # -*- coding: utf-8 -*-
2 2 """Implementation of execution-related magic functions.
3 3 """
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (c) 2012 The IPython Development Team.
6 6 #
7 7 # Distributed under the terms of the Modified BSD License.
8 8 #
9 9 # The full license is in the file COPYING.txt, distributed with this software.
10 10 #-----------------------------------------------------------------------------
11 11
12 12 #-----------------------------------------------------------------------------
13 13 # Imports
14 14 #-----------------------------------------------------------------------------
15 15
16 16 # Stdlib
17 17 import __builtin__ as builtin_mod
18 18 import ast
19 19 import bdb
20 20 import os
21 21 import sys
22 22 import time
23 23 from StringIO import StringIO
24 24
25 25 # cProfile was added in Python2.5
26 26 try:
27 27 import cProfile as profile
28 28 import pstats
29 29 except ImportError:
30 30 # profile isn't bundled by default in Debian for license reasons
31 31 try:
32 32 import profile, pstats
33 33 except ImportError:
34 34 profile = pstats = None
35 35
36 36 # Our own packages
37 37 from IPython.core import debugger, oinspect
38 38 from IPython.core import magic_arguments
39 39 from IPython.core import page
40 40 from IPython.core.error import UsageError
41 41 from IPython.core.macro import Macro
42 42 from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic,
43 43 line_cell_magic, on_off, needs_local_scope)
44 44 from IPython.testing.skipdoctest import skip_doctest
45 45 from IPython.utils import py3compat
46 46 from IPython.utils.contexts import preserve_keys
47 47 from IPython.utils.io import capture_output
48 48 from IPython.utils.ipstruct import Struct
49 49 from IPython.utils.module_paths import find_mod
50 50 from IPython.utils.path import get_py_filename, unquote_filename, shellglob
51 51 from IPython.utils.timing import clock, clock2
52 52 from IPython.utils.warn import warn, error
53 53
54 54
55 55 #-----------------------------------------------------------------------------
56 56 # Magic implementation classes
57 57 #-----------------------------------------------------------------------------
58 58
59 59 @magics_class
60 60 class ExecutionMagics(Magics):
61 61 """Magics related to code execution, debugging, profiling, etc.
62 62
63 63 """
64 64
65 65 def __init__(self, shell):
66 66 super(ExecutionMagics, self).__init__(shell)
67 67 if profile is None:
68 68 self.prun = self.profile_missing_notice
69 69 # Default execution function used to actually run user code.
70 70 self.default_runner = None
71 71
72 72 def profile_missing_notice(self, *args, **kwargs):
73 73 error("""\
74 74 The profile module could not be found. It has been removed from the standard
75 75 python packages because of its non-free license. To use profiling, install the
76 76 python-profiler package from non-free.""")
77 77
78 78 @skip_doctest
79 79 @line_cell_magic
80 80 def prun(self, parameter_s='', cell=None, user_mode=True,
81 81 opts=None,arg_lst=None,prog_ns=None):
82 82
83 83 """Run a statement through the python code profiler.
84 84
85 85 Usage, in line mode:
86 86 %prun [options] statement
87 87
88 88 Usage, in cell mode:
89 89 %%prun [options] [statement]
90 90 code...
91 91 code...
92 92
93 93 In cell mode, the additional code lines are appended to the (possibly
94 94 empty) statement in the first line. Cell mode allows you to easily
95 95 profile multiline blocks without having to put them in a separate
96 96 function.
97 97
98 98 The given statement (which doesn't require quote marks) is run via the
99 99 python profiler in a manner similar to the profile.run() function.
100 100 Namespaces are internally managed to work correctly; profile.run
101 101 cannot be used in IPython because it makes certain assumptions about
102 102 namespaces which do not hold under IPython.
103 103
104 104 Options:
105 105
106 106 -l <limit>: you can place restrictions on what or how much of the
107 107 profile gets printed. The limit value can be:
108 108
109 109 * A string: only information for function names containing this string
110 110 is printed.
111 111
112 112 * An integer: only these many lines are printed.
113 113
114 114 * A float (between 0 and 1): this fraction of the report is printed
115 115 (for example, use a limit of 0.4 to see the topmost 40% only).
116 116
117 117 You can combine several limits with repeated use of the option. For
118 118 example, '-l __init__ -l 5' will print only the topmost 5 lines of
119 119 information about class constructors.
120 120
121 121 -r: return the pstats.Stats object generated by the profiling. This
122 122 object has all the information about the profile in it, and you can
123 123 later use it for further analysis or in other functions.
124 124
125 125 -s <key>: sort profile by given key. You can provide more than one key
126 126 by using the option several times: '-s key1 -s key2 -s key3...'. The
127 127 default sorting key is 'time'.
128 128
129 129 The following is copied verbatim from the profile documentation
130 130 referenced below:
131 131
132 132 When more than one key is provided, additional keys are used as
133 133 secondary criteria when the there is equality in all keys selected
134 134 before them.
135 135
136 136 Abbreviations can be used for any key names, as long as the
137 137 abbreviation is unambiguous. The following are the keys currently
138 138 defined:
139 139
140 140 Valid Arg Meaning
141 141 "calls" call count
142 142 "cumulative" cumulative time
143 143 "file" file name
144 144 "module" file name
145 145 "pcalls" primitive call count
146 146 "line" line number
147 147 "name" function name
148 148 "nfl" name/file/line
149 149 "stdname" standard name
150 150 "time" internal time
151 151
152 152 Note that all sorts on statistics are in descending order (placing
153 153 most time consuming items first), where as name, file, and line number
154 154 searches are in ascending order (i.e., alphabetical). The subtle
155 155 distinction between "nfl" and "stdname" is that the standard name is a
156 156 sort of the name as printed, which means that the embedded line
157 157 numbers get compared in an odd way. For example, lines 3, 20, and 40
158 158 would (if the file names were the same) appear in the string order
159 159 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
160 160 line numbers. In fact, sort_stats("nfl") is the same as
161 161 sort_stats("name", "file", "line").
162 162
163 163 -T <filename>: save profile results as shown on screen to a text
164 164 file. The profile is still shown on screen.
165 165
166 166 -D <filename>: save (via dump_stats) profile statistics to given
167 167 filename. This data is in a format understood by the pstats module, and
168 168 is generated by a call to the dump_stats() method of profile
169 169 objects. The profile is still shown on screen.
170 170
171 171 -q: suppress output to the pager. Best used with -T and/or -D above.
172 172
173 173 If you want to run complete programs under the profiler's control, use
174 174 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
175 175 contains profiler specific options as described here.
176 176
177 177 You can read the complete documentation for the profile module with::
178 178
179 179 In [1]: import profile; profile.help()
180 180 """
181 181
182 182 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
183 183
184 184 if user_mode: # regular user call
185 185 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:q',
186 186 list_all=True, posix=False)
187 187 namespace = self.shell.user_ns
188 188 if cell is not None:
189 189 arg_str += '\n' + cell
190 190 else: # called to run a program by %run -p
191 191 try:
192 192 filename = get_py_filename(arg_lst[0])
193 193 except IOError as e:
194 194 try:
195 195 msg = str(e)
196 196 except UnicodeError:
197 197 msg = e.message
198 198 error(msg)
199 199 return
200 200
201 201 arg_str = 'execfile(filename,prog_ns)'
202 202 namespace = {
203 203 'execfile': self.shell.safe_execfile,
204 204 'prog_ns': prog_ns,
205 205 'filename': filename
206 206 }
207 207
208 208 opts.merge(opts_def)
209 209
210 210 prof = profile.Profile()
211 211 try:
212 212 prof = prof.runctx(arg_str,namespace,namespace)
213 213 sys_exit = ''
214 214 except SystemExit:
215 215 sys_exit = """*** SystemExit exception caught in code being profiled."""
216 216
217 217 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
218 218
219 219 lims = opts.l
220 220 if lims:
221 221 lims = [] # rebuild lims with ints/floats/strings
222 222 for lim in opts.l:
223 223 try:
224 224 lims.append(int(lim))
225 225 except ValueError:
226 226 try:
227 227 lims.append(float(lim))
228 228 except ValueError:
229 229 lims.append(lim)
230 230
231 231 # Trap output.
232 232 stdout_trap = StringIO()
233 233 stats_stream = stats.stream
234 234 try:
235 235 stats.stream = stdout_trap
236 236 stats.print_stats(*lims)
237 237 finally:
238 238 stats.stream = stats_stream
239 239
240 240 output = stdout_trap.getvalue()
241 241 output = output.rstrip()
242 242
243 243 if 'q' not in opts:
244 244 page.page(output)
245 245 print sys_exit,
246 246
247 247 dump_file = opts.D[0]
248 248 text_file = opts.T[0]
249 249 if dump_file:
250 250 dump_file = unquote_filename(dump_file)
251 251 prof.dump_stats(dump_file)
252 252 print '\n*** Profile stats marshalled to file',\
253 253 repr(dump_file)+'.',sys_exit
254 254 if text_file:
255 255 text_file = unquote_filename(text_file)
256 256 pfile = open(text_file,'w')
257 257 pfile.write(output)
258 258 pfile.close()
259 259 print '\n*** Profile printout saved to text file',\
260 260 repr(text_file)+'.',sys_exit
261 261
262 262 if 'r' in opts:
263 263 return stats
264 264 else:
265 265 return None
266 266
267 267 @line_magic
268 268 def pdb(self, parameter_s=''):
269 269 """Control the automatic calling of the pdb interactive debugger.
270 270
271 271 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
272 272 argument it works as a toggle.
273 273
274 274 When an exception is triggered, IPython can optionally call the
275 275 interactive pdb debugger after the traceback printout. %pdb toggles
276 276 this feature on and off.
277 277
278 278 The initial state of this feature is set in your configuration
279 279 file (the option is ``InteractiveShell.pdb``).
280 280
281 281 If you want to just activate the debugger AFTER an exception has fired,
282 282 without having to type '%pdb on' and rerunning your code, you can use
283 283 the %debug magic."""
284 284
285 285 par = parameter_s.strip().lower()
286 286
287 287 if par:
288 288 try:
289 289 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
290 290 except KeyError:
291 291 print ('Incorrect argument. Use on/1, off/0, '
292 292 'or nothing for a toggle.')
293 293 return
294 294 else:
295 295 # toggle
296 296 new_pdb = not self.shell.call_pdb
297 297
298 298 # set on the shell
299 299 self.shell.call_pdb = new_pdb
300 300 print 'Automatic pdb calling has been turned',on_off(new_pdb)
301 301
302 302 @line_magic
303 303 def debug(self, parameter_s=''):
304 304 """Activate the interactive debugger in post-mortem mode.
305 305
306 306 If an exception has just occurred, this lets you inspect its stack
307 307 frames interactively. Note that this will always work only on the last
308 308 traceback that occurred, so you must call this quickly after an
309 309 exception that you wish to inspect has fired, because if another one
310 310 occurs, it clobbers the previous one.
311 311
312 312 If you want IPython to automatically do this on every exception, see
313 313 the %pdb magic for more details.
314 314 """
315 315 self.shell.debugger(force=True)
316 316
317 317 @line_magic
318 318 def tb(self, s):
319 319 """Print the last traceback with the currently active exception mode.
320 320
321 321 See %xmode for changing exception reporting modes."""
322 322 self.shell.showtraceback()
323 323
324 324 @skip_doctest
325 325 @line_magic
326 326 def run(self, parameter_s='', runner=None,
327 327 file_finder=get_py_filename):
328 328 """Run the named file inside IPython as a program.
329 329
330 330 Usage:\\
331 331 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options] -G] file [args]
332 332
333 333 Parameters after the filename are passed as command-line arguments to
334 334 the program (put in sys.argv). Then, control returns to IPython's
335 335 prompt.
336 336
337 337 This is similar to running at a system prompt:\\
338 338 $ python file args\\
339 339 but with the advantage of giving you IPython's tracebacks, and of
340 340 loading all variables into your interactive namespace for further use
341 341 (unless -p is used, see below).
342 342
343 343 The file is executed in a namespace initially consisting only of
344 344 __name__=='__main__' and sys.argv constructed as indicated. It thus
345 345 sees its environment as if it were being run as a stand-alone program
346 346 (except for sharing global objects such as previously imported
347 347 modules). But after execution, the IPython interactive namespace gets
348 348 updated with all variables defined in the program (except for __name__
349 349 and sys.argv). This allows for very convenient loading of code for
350 350 interactive work, while giving each program a 'clean sheet' to run in.
351 351
352 352 Arguments are expanded using shell-like glob match. Patterns
353 353 '*', '?', '[seq]' and '[!seq]' can be used. Additionally,
354 354 tilde '~' will be expanded into user's home directory. Unlike
355 355 real shells, quotation does not suppress expansions. Use
356 356 *two* back slashes (e.g., '\\\\*') to suppress expansions.
357 357 To completely disable these expansions, you can use -G flag.
358 358
359 359 Options:
360 360
361 361 -n: __name__ is NOT set to '__main__', but to the running file's name
362 362 without extension (as python does under import). This allows running
363 363 scripts and reloading the definitions in them without calling code
364 364 protected by an ' if __name__ == "__main__" ' clause.
365 365
366 366 -i: run the file in IPython's namespace instead of an empty one. This
367 367 is useful if you are experimenting with code written in a text editor
368 368 which depends on variables defined interactively.
369 369
370 370 -e: ignore sys.exit() calls or SystemExit exceptions in the script
371 371 being run. This is particularly useful if IPython is being used to
372 372 run unittests, which always exit with a sys.exit() call. In such
373 373 cases you are interested in the output of the test results, not in
374 374 seeing a traceback of the unittest module.
375 375
376 376 -t: print timing information at the end of the run. IPython will give
377 377 you an estimated CPU time consumption for your script, which under
378 378 Unix uses the resource module to avoid the wraparound problems of
379 379 time.clock(). Under Unix, an estimate of time spent on system tasks
380 380 is also given (for Windows platforms this is reported as 0.0).
381 381
382 382 If -t is given, an additional -N<N> option can be given, where <N>
383 383 must be an integer indicating how many times you want the script to
384 384 run. The final timing report will include total and per run results.
385 385
386 386 For example (testing the script uniq_stable.py)::
387 387
388 388 In [1]: run -t uniq_stable
389 389
390 390 IPython CPU timings (estimated):\\
391 391 User : 0.19597 s.\\
392 392 System: 0.0 s.\\
393 393
394 394 In [2]: run -t -N5 uniq_stable
395 395
396 396 IPython CPU timings (estimated):\\
397 397 Total runs performed: 5\\
398 398 Times : Total Per run\\
399 399 User : 0.910862 s, 0.1821724 s.\\
400 400 System: 0.0 s, 0.0 s.
401 401
402 402 -d: run your program under the control of pdb, the Python debugger.
403 403 This allows you to execute your program step by step, watch variables,
404 404 etc. Internally, what IPython does is similar to calling:
405 405
406 406 pdb.run('execfile("YOURFILENAME")')
407 407
408 408 with a breakpoint set on line 1 of your file. You can change the line
409 409 number for this automatic breakpoint to be <N> by using the -bN option
410 410 (where N must be an integer). For example::
411 411
412 412 %run -d -b40 myscript
413 413
414 414 will set the first breakpoint at line 40 in myscript.py. Note that
415 415 the first breakpoint must be set on a line which actually does
416 416 something (not a comment or docstring) for it to stop execution.
417 417
418 418 Or you can specify a breakpoint in a different file::
419 419
420 420 %run -d -b myotherfile.py:20 myscript
421 421
422 422 When the pdb debugger starts, you will see a (Pdb) prompt. You must
423 423 first enter 'c' (without quotes) to start execution up to the first
424 424 breakpoint.
425 425
426 426 Entering 'help' gives information about the use of the debugger. You
427 427 can easily see pdb's full documentation with "import pdb;pdb.help()"
428 428 at a prompt.
429 429
430 430 -p: run program under the control of the Python profiler module (which
431 431 prints a detailed report of execution times, function calls, etc).
432 432
433 433 You can pass other options after -p which affect the behavior of the
434 434 profiler itself. See the docs for %prun for details.
435 435
436 436 In this mode, the program's variables do NOT propagate back to the
437 437 IPython interactive namespace (because they remain in the namespace
438 438 where the profiler executes them).
439 439
440 440 Internally this triggers a call to %prun, see its documentation for
441 441 details on the options available specifically for profiling.
442 442
443 443 There is one special usage for which the text above doesn't apply:
444 444 if the filename ends with .ipy, the file is run as ipython script,
445 445 just as if the commands were written on IPython prompt.
446 446
447 447 -m: specify module name to load instead of script path. Similar to
448 448 the -m option for the python interpreter. Use this option last if you
449 449 want to combine with other %run options. Unlike the python interpreter
450 450 only source modules are allowed no .pyc or .pyo files.
451 451 For example::
452 452
453 453 %run -m example
454 454
455 455 will run the example module.
456 456
457 457 -G: disable shell-like glob expansion of arguments.
458 458
459 459 """
460 460
461 461 # get arguments and set sys.argv for program to be run.
462 462 opts, arg_lst = self.parse_options(parameter_s,
463 463 'nidtN:b:pD:l:rs:T:em:G',
464 464 mode='list', list_all=1)
465 465 if "m" in opts:
466 466 modulename = opts["m"][0]
467 467 modpath = find_mod(modulename)
468 468 if modpath is None:
469 469 warn('%r is not a valid modulename on sys.path'%modulename)
470 470 return
471 471 arg_lst = [modpath] + arg_lst
472 472 try:
473 473 filename = file_finder(arg_lst[0])
474 474 except IndexError:
475 475 warn('you must provide at least a filename.')
476 476 print '\n%run:\n', oinspect.getdoc(self.run)
477 477 return
478 478 except IOError as e:
479 479 try:
480 480 msg = str(e)
481 481 except UnicodeError:
482 482 msg = e.message
483 483 error(msg)
484 484 return
485 485
486 486 if filename.lower().endswith('.ipy'):
487 487 with preserve_keys(self.shell.user_ns, '__file__'):
488 488 self.shell.user_ns['__file__'] = filename
489 489 self.shell.safe_execfile_ipy(filename)
490 490 return
491 491
492 492 # Control the response to exit() calls made by the script being run
493 493 exit_ignore = 'e' in opts
494 494
495 495 # Make sure that the running script gets a proper sys.argv as if it
496 496 # were run from a system shell.
497 497 save_argv = sys.argv # save it for later restoring
498 498
499 499 if 'G' in opts:
500 500 args = arg_lst[1:]
501 501 else:
502 502 # tilde and glob expansion
503 503 args = shellglob(map(os.path.expanduser, arg_lst[1:]))
504 504
505 505 sys.argv = [filename] + args # put in the proper filename
506 506 # protect sys.argv from potential unicode strings on Python 2:
507 507 if not py3compat.PY3:
508 508 sys.argv = [ py3compat.cast_bytes(a) for a in sys.argv ]
509 509
510 510 if 'i' in opts:
511 511 # Run in user's interactive namespace
512 512 prog_ns = self.shell.user_ns
513 513 __name__save = self.shell.user_ns['__name__']
514 514 prog_ns['__name__'] = '__main__'
515 515 main_mod = self.shell.new_main_mod(prog_ns)
516 516 else:
517 517 # Run in a fresh, empty namespace
518 518 if 'n' in opts:
519 519 name = os.path.splitext(os.path.basename(filename))[0]
520 520 else:
521 521 name = '__main__'
522 522
523 523 main_mod = self.shell.new_main_mod()
524 524 prog_ns = main_mod.__dict__
525 525 prog_ns['__name__'] = name
526 526
527 527 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
528 528 # set the __file__ global in the script's namespace
529 529 prog_ns['__file__'] = filename
530 530
531 531 # pickle fix. See interactiveshell for an explanation. But we need to
532 532 # make sure that, if we overwrite __main__, we replace it at the end
533 533 main_mod_name = prog_ns['__name__']
534 534
535 535 if main_mod_name == '__main__':
536 536 restore_main = sys.modules['__main__']
537 537 else:
538 538 restore_main = False
539 539
540 540 # This needs to be undone at the end to prevent holding references to
541 541 # every single object ever created.
542 542 sys.modules[main_mod_name] = main_mod
543 543
544 544 try:
545 545 stats = None
546 546 with self.shell.readline_no_record:
547 547 if 'p' in opts:
548 548 stats = self.prun('', None, False, opts, arg_lst, prog_ns)
549 549 else:
550 550 if 'd' in opts:
551 551 deb = debugger.Pdb(self.shell.colors)
552 552 # reset Breakpoint state, which is moronically kept
553 553 # in a class
554 554 bdb.Breakpoint.next = 1
555 555 bdb.Breakpoint.bplist = {}
556 556 bdb.Breakpoint.bpbynumber = [None]
557 557 # Set an initial breakpoint to stop execution
558 558 maxtries = 10
559 559 bp_file, bp_line = parse_breakpoint(opts.get('b', ['1'])[0], filename)
560 560 checkline = deb.checkline(bp_file, bp_line)
561 561 if not checkline:
562 562 for bp in range(bp_line + 1, bp_line + maxtries + 1):
563 563 if deb.checkline(bp_file, bp):
564 564 break
565 565 else:
566 566 msg = ("\nI failed to find a valid line to set "
567 567 "a breakpoint\n"
568 568 "after trying up to line: %s.\n"
569 569 "Please set a valid breakpoint manually "
570 570 "with the -b option." % bp)
571 571 error(msg)
572 572 return
573 573 # if we find a good linenumber, set the breakpoint
574 574 deb.do_break('%s:%s' % (bp_file, bp_line))
575 575
576 576 # Mimic Pdb._runscript(...)
577 577 deb._wait_for_mainpyfile = True
578 578 deb.mainpyfile = deb.canonic(filename)
579 579
580 580 # Start file run
581 581 print "NOTE: Enter 'c' at the",
582 582 print "%s prompt to start your script." % deb.prompt
583 583 ns = {'execfile': py3compat.execfile, 'prog_ns': prog_ns}
584 584 try:
585 585 #save filename so it can be used by methods on the deb object
586 586 deb._exec_filename = filename
587 587 deb.run('execfile("%s", prog_ns)' % filename, ns)
588 588
589 589 except:
590 590 etype, value, tb = sys.exc_info()
591 591 # Skip three frames in the traceback: the %run one,
592 592 # one inside bdb.py, and the command-line typed by the
593 593 # user (run by exec in pdb itself).
594 594 self.shell.InteractiveTB(etype, value, tb, tb_offset=3)
595 595 else:
596 if 'm' in opts:
597 def run():
598 self.shell.safe_run_module(modulename, prog_ns)
599 else:
596 600 if runner is None:
597 601 runner = self.default_runner
598 602 if runner is None:
599 603 runner = self.shell.safe_execfile
600 604
601 605 def run():
602 606 runner(filename, prog_ns, prog_ns,
603 607 exit_ignore=exit_ignore)
604 608
605 609 if 't' in opts:
606 610 # timed execution
607 611 try:
608 612 nruns = int(opts['N'][0])
609 613 if nruns < 1:
610 614 error('Number of runs must be >=1')
611 615 return
612 616 except (KeyError):
613 617 nruns = 1
614 618 self._run_with_timing(run, nruns)
615 619 else:
616 620 # regular execution
617 621 run()
618 622
619 623 if 'i' in opts:
620 624 self.shell.user_ns['__name__'] = __name__save
621 625 else:
622 626 # The shell MUST hold a reference to prog_ns so after %run
623 627 # exits, the python deletion mechanism doesn't zero it out
624 628 # (leaving dangling references).
625 629 self.shell.cache_main_mod(prog_ns, filename)
626 630 # update IPython interactive namespace
627 631
628 632 # Some forms of read errors on the file may mean the
629 633 # __name__ key was never set; using pop we don't have to
630 634 # worry about a possible KeyError.
631 635 prog_ns.pop('__name__', None)
632 636
633 637 with preserve_keys(self.shell.user_ns, '__file__'):
634 638 self.shell.user_ns.update(prog_ns)
635 639 finally:
636 640 # It's a bit of a mystery why, but __builtins__ can change from
637 641 # being a module to becoming a dict missing some key data after
638 642 # %run. As best I can see, this is NOT something IPython is doing
639 643 # at all, and similar problems have been reported before:
640 644 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
641 645 # Since this seems to be done by the interpreter itself, the best
642 646 # we can do is to at least restore __builtins__ for the user on
643 647 # exit.
644 648 self.shell.user_ns['__builtins__'] = builtin_mod
645 649
646 650 # Ensure key global structures are restored
647 651 sys.argv = save_argv
648 652 if restore_main:
649 653 sys.modules['__main__'] = restore_main
650 654 else:
651 655 # Remove from sys.modules the reference to main_mod we'd
652 656 # added. Otherwise it will trap references to objects
653 657 # contained therein.
654 658 del sys.modules[main_mod_name]
655 659
656 660 return stats
657 661
658 662 @staticmethod
659 663 def _run_with_timing(run, nruns):
660 664 twall0 = time.time()
661 665 if nruns == 1:
662 666 t0 = clock2()
663 667 run()
664 668 t1 = clock2()
665 669 t_usr = t1[0] - t0[0]
666 670 t_sys = t1[1] - t0[1]
667 671 print "\nIPython CPU timings (estimated):"
668 672 print " User : %10.2f s." % t_usr
669 673 print " System : %10.2f s." % t_sys
670 674 else:
671 675 runs = range(nruns)
672 676 t0 = clock2()
673 677 for nr in runs:
674 678 run()
675 679 t1 = clock2()
676 680 t_usr = t1[0] - t0[0]
677 681 t_sys = t1[1] - t0[1]
678 682 print "\nIPython CPU timings (estimated):"
679 683 print "Total runs performed:", nruns
680 684 print " Times : %10s %10s" % ('Total', 'Per run')
681 685 print " User : %10.2f s, %10.2f s." % (t_usr, t_usr / nruns)
682 686 print " System : %10.2f s, %10.2f s." % (t_sys, t_sys / nruns)
683 687 twall1 = time.time()
684 688 print "Wall time: %10.2f s." % (twall1 - twall0)
685 689
686 690 @skip_doctest
687 691 @line_cell_magic
688 692 def timeit(self, line='', cell=None):
689 693 """Time execution of a Python statement or expression
690 694
691 695 Usage, in line mode:
692 696 %timeit [-n<N> -r<R> [-t|-c]] statement
693 697 or in cell mode:
694 698 %%timeit [-n<N> -r<R> [-t|-c]] setup_code
695 699 code
696 700 code...
697 701
698 702 Time execution of a Python statement or expression using the timeit
699 703 module. This function can be used both as a line and cell magic:
700 704
701 705 - In line mode you can time a single-line statement (though multiple
702 706 ones can be chained with using semicolons).
703 707
704 708 - In cell mode, the statement in the first line is used as setup code
705 709 (executed but not timed) and the body of the cell is timed. The cell
706 710 body has access to any variables created in the setup code.
707 711
708 712 Options:
709 713 -n<N>: execute the given statement <N> times in a loop. If this value
710 714 is not given, a fitting value is chosen.
711 715
712 716 -r<R>: repeat the loop iteration <R> times and take the best result.
713 717 Default: 3
714 718
715 719 -t: use time.time to measure the time, which is the default on Unix.
716 720 This function measures wall time.
717 721
718 722 -c: use time.clock to measure the time, which is the default on
719 723 Windows and measures wall time. On Unix, resource.getrusage is used
720 724 instead and returns the CPU user time.
721 725
722 726 -p<P>: use a precision of <P> digits to display the timing result.
723 727 Default: 3
724 728
725 729
726 730 Examples
727 731 --------
728 732 ::
729 733
730 734 In [1]: %timeit pass
731 735 10000000 loops, best of 3: 53.3 ns per loop
732 736
733 737 In [2]: u = None
734 738
735 739 In [3]: %timeit u is None
736 740 10000000 loops, best of 3: 184 ns per loop
737 741
738 742 In [4]: %timeit -r 4 u == None
739 743 1000000 loops, best of 4: 242 ns per loop
740 744
741 745 In [5]: import time
742 746
743 747 In [6]: %timeit -n1 time.sleep(2)
744 748 1 loops, best of 3: 2 s per loop
745 749
746 750
747 751 The times reported by %timeit will be slightly higher than those
748 752 reported by the timeit.py script when variables are accessed. This is
749 753 due to the fact that %timeit executes the statement in the namespace
750 754 of the shell, compared with timeit.py, which uses a single setup
751 755 statement to import function or create variables. Generally, the bias
752 756 does not matter as long as results from timeit.py are not mixed with
753 757 those from %timeit."""
754 758
755 759 import timeit
756 760
757 761 opts, stmt = self.parse_options(line,'n:r:tcp:',
758 762 posix=False, strict=False)
759 763 if stmt == "" and cell is None:
760 764 return
761 765
762 766 timefunc = timeit.default_timer
763 767 number = int(getattr(opts, "n", 0))
764 768 repeat = int(getattr(opts, "r", timeit.default_repeat))
765 769 precision = int(getattr(opts, "p", 3))
766 770 if hasattr(opts, "t"):
767 771 timefunc = time.time
768 772 if hasattr(opts, "c"):
769 773 timefunc = clock
770 774
771 775 timer = timeit.Timer(timer=timefunc)
772 776 # this code has tight coupling to the inner workings of timeit.Timer,
773 777 # but is there a better way to achieve that the code stmt has access
774 778 # to the shell namespace?
775 779 transform = self.shell.input_splitter.transform_cell
776 780
777 781 if cell is None:
778 782 # called as line magic
779 783 ast_setup = ast.parse("pass")
780 784 ast_stmt = ast.parse(transform(stmt))
781 785 else:
782 786 ast_setup = ast.parse(transform(stmt))
783 787 ast_stmt = ast.parse(transform(cell))
784 788
785 789 ast_setup = self.shell.transform_ast(ast_setup)
786 790 ast_stmt = self.shell.transform_ast(ast_stmt)
787 791
788 792 # This codestring is taken from timeit.template - we fill it in as an
789 793 # AST, so that we can apply our AST transformations to the user code
790 794 # without affecting the timing code.
791 795 timeit_ast_template = ast.parse('def inner(_it, _timer):\n'
792 796 ' setup\n'
793 797 ' _t0 = _timer()\n'
794 798 ' for _i in _it:\n'
795 799 ' stmt\n'
796 800 ' _t1 = _timer()\n'
797 801 ' return _t1 - _t0\n')
798 802
799 803 class TimeitTemplateFiller(ast.NodeTransformer):
800 804 "This is quite tightly tied to the template definition above."
801 805 def visit_FunctionDef(self, node):
802 806 "Fill in the setup statement"
803 807 self.generic_visit(node)
804 808 if node.name == "inner":
805 809 node.body[:1] = ast_setup.body
806 810
807 811 return node
808 812
809 813 def visit_For(self, node):
810 814 "Fill in the statement to be timed"
811 815 if getattr(getattr(node.body[0], 'value', None), 'id', None) == 'stmt':
812 816 node.body = ast_stmt.body
813 817 return node
814 818
815 819 timeit_ast = TimeitTemplateFiller().visit(timeit_ast_template)
816 820 timeit_ast = ast.fix_missing_locations(timeit_ast)
817 821
818 822 # Track compilation time so it can be reported if too long
819 823 # Minimum time above which compilation time will be reported
820 824 tc_min = 0.1
821 825
822 826 t0 = clock()
823 827 code = compile(timeit_ast, "<magic-timeit>", "exec")
824 828 tc = clock()-t0
825 829
826 830 ns = {}
827 831 exec code in self.shell.user_ns, ns
828 832 timer.inner = ns["inner"]
829 833
830 834 if number == 0:
831 835 # determine number so that 0.2 <= total time < 2.0
832 836 number = 1
833 837 for i in range(1, 10):
834 838 if timer.timeit(number) >= 0.2:
835 839 break
836 840 number *= 10
837 841
838 842 best = min(timer.repeat(repeat, number)) / number
839 843
840 844 print u"%d loops, best of %d: %s per loop" % (number, repeat,
841 845 _format_time(best, precision))
842 846 if tc > tc_min:
843 847 print "Compiler time: %.2f s" % tc
844 848
845 849 @skip_doctest
846 850 @needs_local_scope
847 851 @line_cell_magic
848 852 def time(self,line='', cell=None, local_ns=None):
849 853 """Time execution of a Python statement or expression.
850 854
851 855 The CPU and wall clock times are printed, and the value of the
852 856 expression (if any) is returned. Note that under Win32, system time
853 857 is always reported as 0, since it can not be measured.
854 858
855 859 This function can be used both as a line and cell magic:
856 860
857 861 - In line mode you can time a single-line statement (though multiple
858 862 ones can be chained with using semicolons).
859 863
860 864 - In cell mode, you can time the cell body (a directly
861 865 following statement raises an error).
862 866
863 867 This function provides very basic timing functionality. Use the timeit
864 868 magic for more controll over the measurement.
865 869
866 870 Examples
867 871 --------
868 872 ::
869 873
870 874 In [1]: %time 2**128
871 875 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
872 876 Wall time: 0.00
873 877 Out[1]: 340282366920938463463374607431768211456L
874 878
875 879 In [2]: n = 1000000
876 880
877 881 In [3]: %time sum(range(n))
878 882 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
879 883 Wall time: 1.37
880 884 Out[3]: 499999500000L
881 885
882 886 In [4]: %time print 'hello world'
883 887 hello world
884 888 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
885 889 Wall time: 0.00
886 890
887 891 Note that the time needed by Python to compile the given expression
888 892 will be reported if it is more than 0.1s. In this example, the
889 893 actual exponentiation is done by Python at compilation time, so while
890 894 the expression can take a noticeable amount of time to compute, that
891 895 time is purely due to the compilation:
892 896
893 897 In [5]: %time 3**9999;
894 898 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
895 899 Wall time: 0.00 s
896 900
897 901 In [6]: %time 3**999999;
898 902 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
899 903 Wall time: 0.00 s
900 904 Compiler : 0.78 s
901 905 """
902 906
903 907 # fail immediately if the given expression can't be compiled
904 908
905 909 if line and cell:
906 910 raise UsageError("Can't use statement directly after '%%time'!")
907 911
908 912 if cell:
909 913 expr = self.shell.prefilter(cell,False)
910 914 else:
911 915 expr = self.shell.prefilter(line,False)
912 916
913 917 # Minimum time above which parse time will be reported
914 918 tp_min = 0.1
915 919
916 920 t0 = clock()
917 921 expr_ast = ast.parse(expr)
918 922 tp = clock()-t0
919 923
920 924 # Apply AST transformations
921 925 expr_ast = self.shell.transform_ast(expr_ast)
922 926
923 927 # Minimum time above which compilation time will be reported
924 928 tc_min = 0.1
925 929
926 930 if len(expr_ast.body)==1 and isinstance(expr_ast.body[0], ast.Expr):
927 931 mode = 'eval'
928 932 source = '<timed eval>'
929 933 expr_ast = ast.Expression(expr_ast.body[0].value)
930 934 else:
931 935 mode = 'exec'
932 936 source = '<timed exec>'
933 937 t0 = clock()
934 938 code = compile(expr_ast, source, mode)
935 939 tc = clock()-t0
936 940
937 941 # skew measurement as little as possible
938 942 glob = self.shell.user_ns
939 943 wtime = time.time
940 944 # time execution
941 945 wall_st = wtime()
942 946 if mode=='eval':
943 947 st = clock2()
944 948 out = eval(code, glob, local_ns)
945 949 end = clock2()
946 950 else:
947 951 st = clock2()
948 952 exec code in glob, local_ns
949 953 end = clock2()
950 954 out = None
951 955 wall_end = wtime()
952 956 # Compute actual times and report
953 957 wall_time = wall_end-wall_st
954 958 cpu_user = end[0]-st[0]
955 959 cpu_sys = end[1]-st[1]
956 960 cpu_tot = cpu_user+cpu_sys
957 961 # On windows cpu_sys is always zero, so no new information to the next print
958 962 if sys.platform != 'win32':
959 963 print "CPU times: user %s, sys: %s, total: %s" % \
960 964 (_format_time(cpu_user),_format_time(cpu_sys),_format_time(cpu_tot))
961 965 print "Wall time: %s" % _format_time(wall_time)
962 966 if tc > tc_min:
963 967 print "Compiler : %s" % _format_time(tc)
964 968 if tp > tp_min:
965 969 print "Parser : %s" % _format_time(tp)
966 970 return out
967 971
968 972 @skip_doctest
969 973 @line_magic
970 974 def macro(self, parameter_s=''):
971 975 """Define a macro for future re-execution. It accepts ranges of history,
972 976 filenames or string objects.
973 977
974 978 Usage:\\
975 979 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
976 980
977 981 Options:
978 982
979 983 -r: use 'raw' input. By default, the 'processed' history is used,
980 984 so that magics are loaded in their transformed version to valid
981 985 Python. If this option is given, the raw input as typed as the
982 986 command line is used instead.
983 987
984 988 This will define a global variable called `name` which is a string
985 989 made of joining the slices and lines you specify (n1,n2,... numbers
986 990 above) from your input history into a single string. This variable
987 991 acts like an automatic function which re-executes those lines as if
988 992 you had typed them. You just type 'name' at the prompt and the code
989 993 executes.
990 994
991 995 The syntax for indicating input ranges is described in %history.
992 996
993 997 Note: as a 'hidden' feature, you can also use traditional python slice
994 998 notation, where N:M means numbers N through M-1.
995 999
996 1000 For example, if your history contains (%hist prints it)::
997 1001
998 1002 44: x=1
999 1003 45: y=3
1000 1004 46: z=x+y
1001 1005 47: print x
1002 1006 48: a=5
1003 1007 49: print 'x',x,'y',y
1004 1008
1005 1009 you can create a macro with lines 44 through 47 (included) and line 49
1006 1010 called my_macro with::
1007 1011
1008 1012 In [55]: %macro my_macro 44-47 49
1009 1013
1010 1014 Now, typing `my_macro` (without quotes) will re-execute all this code
1011 1015 in one pass.
1012 1016
1013 1017 You don't need to give the line-numbers in order, and any given line
1014 1018 number can appear multiple times. You can assemble macros with any
1015 1019 lines from your input history in any order.
1016 1020
1017 1021 The macro is a simple object which holds its value in an attribute,
1018 1022 but IPython's display system checks for macros and executes them as
1019 1023 code instead of printing them when you type their name.
1020 1024
1021 1025 You can view a macro's contents by explicitly printing it with::
1022 1026
1023 1027 print macro_name
1024 1028
1025 1029 """
1026 1030 opts,args = self.parse_options(parameter_s,'r',mode='list')
1027 1031 if not args: # List existing macros
1028 1032 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
1029 1033 isinstance(v, Macro))
1030 1034 if len(args) == 1:
1031 1035 raise UsageError(
1032 1036 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
1033 1037 name, codefrom = args[0], " ".join(args[1:])
1034 1038
1035 1039 #print 'rng',ranges # dbg
1036 1040 try:
1037 1041 lines = self.shell.find_user_code(codefrom, 'r' in opts)
1038 1042 except (ValueError, TypeError) as e:
1039 1043 print e.args[0]
1040 1044 return
1041 1045 macro = Macro(lines)
1042 1046 self.shell.define_macro(name, macro)
1043 1047 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
1044 1048 print '=== Macro contents: ==='
1045 1049 print macro,
1046 1050
1047 1051 @magic_arguments.magic_arguments()
1048 1052 @magic_arguments.argument('output', type=str, default='', nargs='?',
1049 1053 help="""The name of the variable in which to store output.
1050 1054 This is a utils.io.CapturedIO object with stdout/err attributes
1051 1055 for the text of the captured output.
1052 1056
1053 1057 CapturedOutput also has a show() method for displaying the output,
1054 1058 and __call__ as well, so you can use that to quickly display the
1055 1059 output.
1056 1060
1057 1061 If unspecified, captured output is discarded.
1058 1062 """
1059 1063 )
1060 1064 @magic_arguments.argument('--no-stderr', action="store_true",
1061 1065 help="""Don't capture stderr."""
1062 1066 )
1063 1067 @magic_arguments.argument('--no-stdout', action="store_true",
1064 1068 help="""Don't capture stdout."""
1065 1069 )
1066 1070 @cell_magic
1067 1071 def capture(self, line, cell):
1068 1072 """run the cell, capturing stdout/err"""
1069 1073 args = magic_arguments.parse_argstring(self.capture, line)
1070 1074 out = not args.no_stdout
1071 1075 err = not args.no_stderr
1072 1076 with capture_output(out, err) as io:
1073 1077 self.shell.run_cell(cell)
1074 1078 if args.output:
1075 1079 self.shell.user_ns[args.output] = io
1076 1080
1077 1081 def parse_breakpoint(text, current_file):
1078 1082 '''Returns (file, line) for file:line and (current_file, line) for line'''
1079 1083 colon = text.find(':')
1080 1084 if colon == -1:
1081 1085 return current_file, int(text)
1082 1086 else:
1083 1087 return text[:colon], int(text[colon+1:])
1084 1088
1085 1089 def _format_time(timespan, precision=3):
1086 1090 """Formats the timespan in a human readable form"""
1087 1091 import math
1088 1092
1089 1093 if timespan >= 60.0:
1090 1094 # we have more than a minute, format that in a human readable form
1091 1095 # Idea from http://snipplr.com/view/5713/
1092 1096 parts = [("d", 60*60*24),("h", 60*60),("min", 60), ("s", 1)]
1093 1097 time = []
1094 1098 leftover = timespan
1095 1099 for suffix, length in parts:
1096 1100 value = int(leftover / length)
1097 1101 if value > 0:
1098 1102 leftover = leftover % length
1099 1103 time.append(u'%s%s' % (str(value), suffix))
1100 1104 if leftover < 1:
1101 1105 break
1102 1106 return " ".join(time)
1103 1107
1104 1108
1105 1109 # Unfortunately the unicode 'micro' symbol can cause problems in
1106 1110 # certain terminals.
1107 1111 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1108 1112 # Try to prevent crashes by being more secure than it needs to
1109 1113 # E.g. eclipse is able to print a µ, but has no sys.stdout.encoding set.
1110 1114 units = [u"s", u"ms",u'us',"ns"] # the save value
1111 1115 if hasattr(sys.stdout, 'encoding') and sys.stdout.encoding:
1112 1116 try:
1113 1117 u'\xb5'.encode(sys.stdout.encoding)
1114 1118 units = [u"s", u"ms",u'\xb5s',"ns"]
1115 1119 except:
1116 1120 pass
1117 1121 scaling = [1, 1e3, 1e6, 1e9]
1118 1122
1119 1123 if timespan > 0.0:
1120 1124 order = min(-int(math.floor(math.log10(timespan)) // 3), 3)
1121 1125 else:
1122 1126 order = 3
1123 1127 ret = u"%.*g %s" % (precision, timespan * scaling[order], units[order])
1124 1128 return ret
General Comments 0
You need to be logged in to leave comments. Login now