##// END OF EJS Templates
updated old scipy.org links, other minor doc fixes
Paul Ivanov -
Show More
@@ -1,3588 +1,3588 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__ as builtin_mod
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 from StringIO import StringIO
29 29 from getopt import getopt,GetoptError
30 30 from pprint import pformat
31 31 from xmlrpclib import ServerProxy
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.profiledir import ProfileDir
50 50 from IPython.core.macro import Macro
51 51 from IPython.core import magic_arguments, page
52 52 from IPython.core.prefilter import ESC_MAGIC
53 53 from IPython.lib.pylabtools import mpl_runner
54 54 from IPython.testing.skipdoctest import skip_doctest
55 55 from IPython.utils import py3compat
56 56 from IPython.utils.io import file_read, nlprint
57 57 from IPython.utils.path import get_py_filename, unquote_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 from IPython.config.application import Application
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89 def needs_local_scope(func):
90 90 """Decorator to mark magic functions which need to local scope to run."""
91 91 func.needs_local_scope = True
92 92 return func
93 93
94 94 # Used for exception handling in magic_edit
95 95 class MacroToEdit(ValueError): pass
96 96
97 97 #***************************************************************************
98 98 # Main class implementing Magic functionality
99 99
100 100 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
101 101 # on construction of the main InteractiveShell object. Something odd is going
102 102 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
103 103 # eventually this needs to be clarified.
104 104 # BG: This is because InteractiveShell inherits from this, but is itself a
105 105 # Configurable. This messes up the MRO in some way. The fix is that we need to
106 106 # make Magic a configurable that InteractiveShell does not subclass.
107 107
108 108 class Magic:
109 109 """Magic functions for InteractiveShell.
110 110
111 111 Shell functions which can be reached as %function_name. All magic
112 112 functions should accept a string, which they can parse for their own
113 113 needs. This can make some functions easier to type, eg `%cd ../`
114 114 vs. `%cd("../")`
115 115
116 116 ALL definitions MUST begin with the prefix magic_. The user won't need it
117 117 at the command line, but it is is needed in the definition. """
118 118
119 119 # class globals
120 120 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
121 121 'Automagic is ON, % prefix NOT needed for magic functions.']
122 122
123 123 #......................................................................
124 124 # some utility functions
125 125
126 126 def __init__(self,shell):
127 127
128 128 self.options_table = {}
129 129 if profile is None:
130 130 self.magic_prun = self.profile_missing_notice
131 131 self.shell = shell
132 132
133 133 # namespace for holding state we may need
134 134 self._magic_state = Bunch()
135 135
136 136 def profile_missing_notice(self, *args, **kwargs):
137 137 error("""\
138 138 The profile module could not be found. It has been removed from the standard
139 139 python packages because of its non-free license. To use profiling, install the
140 140 python-profiler package from non-free.""")
141 141
142 142 def default_option(self,fn,optstr):
143 143 """Make an entry in the options_table for fn, with value optstr"""
144 144
145 145 if fn not in self.lsmagic():
146 146 error("%s is not a magic function" % fn)
147 147 self.options_table[fn] = optstr
148 148
149 149 def lsmagic(self):
150 150 """Return a list of currently available magic functions.
151 151
152 152 Gives a list of the bare names after mangling (['ls','cd', ...], not
153 153 ['magic_ls','magic_cd',...]"""
154 154
155 155 # FIXME. This needs a cleanup, in the way the magics list is built.
156 156
157 157 # magics in class definition
158 158 class_magic = lambda fn: fn.startswith('magic_') and \
159 159 callable(Magic.__dict__[fn])
160 160 # in instance namespace (run-time user additions)
161 161 inst_magic = lambda fn: fn.startswith('magic_') and \
162 162 callable(self.__dict__[fn])
163 163 # and bound magics by user (so they can access self):
164 164 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
165 165 callable(self.__class__.__dict__[fn])
166 166 magics = filter(class_magic,Magic.__dict__.keys()) + \
167 167 filter(inst_magic,self.__dict__.keys()) + \
168 168 filter(inst_bound_magic,self.__class__.__dict__.keys())
169 169 out = []
170 170 for fn in set(magics):
171 171 out.append(fn.replace('magic_','',1))
172 172 out.sort()
173 173 return out
174 174
175 175 def extract_input_lines(self, range_str, raw=False):
176 176 """Return as a string a set of input history slices.
177 177
178 178 Inputs:
179 179
180 180 - range_str: the set of slices is given as a string, like
181 181 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
182 182 which get their arguments as strings. The number before the / is the
183 183 session number: ~n goes n back from the current session.
184 184
185 185 Optional inputs:
186 186
187 187 - raw(False): by default, the processed input is used. If this is
188 188 true, the raw input history is used instead.
189 189
190 190 Note that slices can be called with two notations:
191 191
192 192 N:M -> standard python form, means including items N...(M-1).
193 193
194 194 N-M -> include items N..M (closed endpoint)."""
195 195 lines = self.shell.history_manager.\
196 196 get_range_by_str(range_str, raw=raw)
197 197 return "\n".join(x for _, _, x in lines)
198 198
199 199 def arg_err(self,func):
200 200 """Print docstring if incorrect arguments were passed"""
201 201 print 'Error in arguments:'
202 202 print oinspect.getdoc(func)
203 203
204 204 def format_latex(self,strng):
205 205 """Format a string for latex inclusion."""
206 206
207 207 # Characters that need to be escaped for latex:
208 208 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
209 209 # Magic command names as headers:
210 210 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
211 211 re.MULTILINE)
212 212 # Magic commands
213 213 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
214 214 re.MULTILINE)
215 215 # Paragraph continue
216 216 par_re = re.compile(r'\\$',re.MULTILINE)
217 217
218 218 # The "\n" symbol
219 219 newline_re = re.compile(r'\\n')
220 220
221 221 # Now build the string for output:
222 222 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
223 223 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
224 224 strng)
225 225 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
226 226 strng = par_re.sub(r'\\\\',strng)
227 227 strng = escape_re.sub(r'\\\1',strng)
228 228 strng = newline_re.sub(r'\\textbackslash{}n',strng)
229 229 return strng
230 230
231 231 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
232 232 """Parse options passed to an argument string.
233 233
234 234 The interface is similar to that of getopt(), but it returns back a
235 235 Struct with the options as keys and the stripped argument string still
236 236 as a string.
237 237
238 238 arg_str is quoted as a true sys.argv vector by using shlex.split.
239 239 This allows us to easily expand variables, glob files, quote
240 240 arguments, etc.
241 241
242 242 Options:
243 243 -mode: default 'string'. If given as 'list', the argument string is
244 244 returned as a list (split on whitespace) instead of a string.
245 245
246 246 -list_all: put all option values in lists. Normally only options
247 247 appearing more than once are put in a list.
248 248
249 249 -posix (True): whether to split the input line in POSIX mode or not,
250 250 as per the conventions outlined in the shlex module from the
251 251 standard library."""
252 252
253 253 # inject default options at the beginning of the input line
254 254 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
255 255 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
256 256
257 257 mode = kw.get('mode','string')
258 258 if mode not in ['string','list']:
259 259 raise ValueError,'incorrect mode given: %s' % mode
260 260 # Get options
261 261 list_all = kw.get('list_all',0)
262 262 posix = kw.get('posix', os.name == 'posix')
263 263
264 264 # Check if we have more than one argument to warrant extra processing:
265 265 odict = {} # Dictionary with options
266 266 args = arg_str.split()
267 267 if len(args) >= 1:
268 268 # If the list of inputs only has 0 or 1 thing in it, there's no
269 269 # need to look for options
270 270 argv = arg_split(arg_str,posix)
271 271 # Do regular option processing
272 272 try:
273 273 opts,args = getopt(argv,opt_str,*long_opts)
274 274 except GetoptError,e:
275 275 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
276 276 " ".join(long_opts)))
277 277 for o,a in opts:
278 278 if o.startswith('--'):
279 279 o = o[2:]
280 280 else:
281 281 o = o[1:]
282 282 try:
283 283 odict[o].append(a)
284 284 except AttributeError:
285 285 odict[o] = [odict[o],a]
286 286 except KeyError:
287 287 if list_all:
288 288 odict[o] = [a]
289 289 else:
290 290 odict[o] = a
291 291
292 292 # Prepare opts,args for return
293 293 opts = Struct(odict)
294 294 if mode == 'string':
295 295 args = ' '.join(args)
296 296
297 297 return opts,args
298 298
299 299 #......................................................................
300 300 # And now the actual magic functions
301 301
302 302 # Functions for IPython shell work (vars,funcs, config, etc)
303 303 def magic_lsmagic(self, parameter_s = ''):
304 304 """List currently available magic functions."""
305 305 mesc = ESC_MAGIC
306 306 print 'Available magic functions:\n'+mesc+\
307 307 (' '+mesc).join(self.lsmagic())
308 308 print '\n' + Magic.auto_status[self.shell.automagic]
309 309 return None
310 310
311 311 def magic_magic(self, parameter_s = ''):
312 312 """Print information about the magic function system.
313 313
314 314 Supported formats: -latex, -brief, -rest
315 315 """
316 316
317 317 mode = ''
318 318 try:
319 319 if parameter_s.split()[0] == '-latex':
320 320 mode = 'latex'
321 321 if parameter_s.split()[0] == '-brief':
322 322 mode = 'brief'
323 323 if parameter_s.split()[0] == '-rest':
324 324 mode = 'rest'
325 325 rest_docs = []
326 326 except:
327 327 pass
328 328
329 329 magic_docs = []
330 330 for fname in self.lsmagic():
331 331 mname = 'magic_' + fname
332 332 for space in (Magic,self,self.__class__):
333 333 try:
334 334 fn = space.__dict__[mname]
335 335 except KeyError:
336 336 pass
337 337 else:
338 338 break
339 339 if mode == 'brief':
340 340 # only first line
341 341 if fn.__doc__:
342 342 fndoc = fn.__doc__.split('\n',1)[0]
343 343 else:
344 344 fndoc = 'No documentation'
345 345 else:
346 346 if fn.__doc__:
347 347 fndoc = fn.__doc__.rstrip()
348 348 else:
349 349 fndoc = 'No documentation'
350 350
351 351
352 352 if mode == 'rest':
353 353 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
354 354 fname,fndoc))
355 355
356 356 else:
357 357 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
358 358 fname,fndoc))
359 359
360 360 magic_docs = ''.join(magic_docs)
361 361
362 362 if mode == 'rest':
363 363 return "".join(rest_docs)
364 364
365 365 if mode == 'latex':
366 366 print self.format_latex(magic_docs)
367 367 return
368 368 else:
369 369 magic_docs = format_screen(magic_docs)
370 370 if mode == 'brief':
371 371 return magic_docs
372 372
373 373 outmsg = """
374 374 IPython's 'magic' functions
375 375 ===========================
376 376
377 377 The magic function system provides a series of functions which allow you to
378 378 control the behavior of IPython itself, plus a lot of system-type
379 379 features. All these functions are prefixed with a % character, but parameters
380 380 are given without parentheses or quotes.
381 381
382 382 NOTE: If you have 'automagic' enabled (via the command line option or with the
383 383 %automagic function), you don't need to type in the % explicitly. By default,
384 384 IPython ships with automagic on, so you should only rarely need the % escape.
385 385
386 386 Example: typing '%cd mydir' (without the quotes) changes you working directory
387 387 to 'mydir', if it exists.
388 388
389 389 For a list of the available magic functions, use %lsmagic. For a description
390 390 of any of them, type %magic_name?, e.g. '%cd?'.
391 391
392 392 Currently the magic system has the following functions:\n"""
393 393
394 394 mesc = ESC_MAGIC
395 395 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
396 396 "\n\n%s%s\n\n%s" % (outmsg,
397 397 magic_docs,mesc,mesc,
398 398 (' '+mesc).join(self.lsmagic()),
399 399 Magic.auto_status[self.shell.automagic] ) )
400 400 page.page(outmsg)
401 401
402 402 def magic_automagic(self, parameter_s = ''):
403 403 """Make magic functions callable without having to type the initial %.
404 404
405 405 Without argumentsl toggles on/off (when off, you must call it as
406 406 %automagic, of course). With arguments it sets the value, and you can
407 407 use any of (case insensitive):
408 408
409 409 - on,1,True: to activate
410 410
411 411 - off,0,False: to deactivate.
412 412
413 413 Note that magic functions have lowest priority, so if there's a
414 414 variable whose name collides with that of a magic fn, automagic won't
415 415 work for that function (you get the variable instead). However, if you
416 416 delete the variable (del var), the previously shadowed magic function
417 417 becomes visible to automagic again."""
418 418
419 419 arg = parameter_s.lower()
420 420 if parameter_s in ('on','1','true'):
421 421 self.shell.automagic = True
422 422 elif parameter_s in ('off','0','false'):
423 423 self.shell.automagic = False
424 424 else:
425 425 self.shell.automagic = not self.shell.automagic
426 426 print '\n' + Magic.auto_status[self.shell.automagic]
427 427
428 428 @skip_doctest
429 429 def magic_autocall(self, parameter_s = ''):
430 430 """Make functions callable without having to type parentheses.
431 431
432 432 Usage:
433 433
434 434 %autocall [mode]
435 435
436 436 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
437 437 value is toggled on and off (remembering the previous state).
438 438
439 439 In more detail, these values mean:
440 440
441 441 0 -> fully disabled
442 442
443 443 1 -> active, but do not apply if there are no arguments on the line.
444 444
445 445 In this mode, you get:
446 446
447 447 In [1]: callable
448 448 Out[1]: <built-in function callable>
449 449
450 450 In [2]: callable 'hello'
451 451 ------> callable('hello')
452 452 Out[2]: False
453 453
454 454 2 -> Active always. Even if no arguments are present, the callable
455 455 object is called:
456 456
457 457 In [2]: float
458 458 ------> float()
459 459 Out[2]: 0.0
460 460
461 461 Note that even with autocall off, you can still use '/' at the start of
462 462 a line to treat the first argument on the command line as a function
463 463 and add parentheses to it:
464 464
465 465 In [8]: /str 43
466 466 ------> str(43)
467 467 Out[8]: '43'
468 468
469 469 # all-random (note for auto-testing)
470 470 """
471 471
472 472 if parameter_s:
473 473 arg = int(parameter_s)
474 474 else:
475 475 arg = 'toggle'
476 476
477 477 if not arg in (0,1,2,'toggle'):
478 478 error('Valid modes: (0->Off, 1->Smart, 2->Full')
479 479 return
480 480
481 481 if arg in (0,1,2):
482 482 self.shell.autocall = arg
483 483 else: # toggle
484 484 if self.shell.autocall:
485 485 self._magic_state.autocall_save = self.shell.autocall
486 486 self.shell.autocall = 0
487 487 else:
488 488 try:
489 489 self.shell.autocall = self._magic_state.autocall_save
490 490 except AttributeError:
491 491 self.shell.autocall = self._magic_state.autocall_save = 1
492 492
493 493 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
494 494
495 495
496 496 def magic_page(self, parameter_s=''):
497 497 """Pretty print the object and display it through a pager.
498 498
499 499 %page [options] OBJECT
500 500
501 501 If no object is given, use _ (last output).
502 502
503 503 Options:
504 504
505 505 -r: page str(object), don't pretty-print it."""
506 506
507 507 # After a function contributed by Olivier Aubert, slightly modified.
508 508
509 509 # Process options/args
510 510 opts,args = self.parse_options(parameter_s,'r')
511 511 raw = 'r' in opts
512 512
513 513 oname = args and args or '_'
514 514 info = self._ofind(oname)
515 515 if info['found']:
516 516 txt = (raw and str or pformat)( info['obj'] )
517 517 page.page(txt)
518 518 else:
519 519 print 'Object `%s` not found' % oname
520 520
521 521 def magic_profile(self, parameter_s=''):
522 522 """Print your currently active IPython profile."""
523 523 print self.shell.profile
524 524
525 525 def magic_pinfo(self, parameter_s='', namespaces=None):
526 526 """Provide detailed information about an object.
527 527
528 528 '%pinfo object' is just a synonym for object? or ?object."""
529 529
530 530 #print 'pinfo par: <%s>' % parameter_s # dbg
531 531
532 532
533 533 # detail_level: 0 -> obj? , 1 -> obj??
534 534 detail_level = 0
535 535 # We need to detect if we got called as 'pinfo pinfo foo', which can
536 536 # happen if the user types 'pinfo foo?' at the cmd line.
537 537 pinfo,qmark1,oname,qmark2 = \
538 538 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
539 539 if pinfo or qmark1 or qmark2:
540 540 detail_level = 1
541 541 if "*" in oname:
542 542 self.magic_psearch(oname)
543 543 else:
544 544 self.shell._inspect('pinfo', oname, detail_level=detail_level,
545 545 namespaces=namespaces)
546 546
547 547 def magic_pinfo2(self, parameter_s='', namespaces=None):
548 548 """Provide extra detailed information about an object.
549 549
550 550 '%pinfo2 object' is just a synonym for object?? or ??object."""
551 551 self.shell._inspect('pinfo', parameter_s, detail_level=1,
552 552 namespaces=namespaces)
553 553
554 554 @skip_doctest
555 555 def magic_pdef(self, parameter_s='', namespaces=None):
556 556 """Print the definition header for any callable object.
557 557
558 558 If the object is a class, print the constructor information.
559 559
560 560 Examples
561 561 --------
562 562 ::
563 563
564 564 In [3]: %pdef urllib.urlopen
565 565 urllib.urlopen(url, data=None, proxies=None)
566 566 """
567 567 self._inspect('pdef',parameter_s, namespaces)
568 568
569 569 def magic_pdoc(self, parameter_s='', namespaces=None):
570 570 """Print the docstring for an object.
571 571
572 572 If the given object is a class, it will print both the class and the
573 573 constructor docstrings."""
574 574 self._inspect('pdoc',parameter_s, namespaces)
575 575
576 576 def magic_psource(self, parameter_s='', namespaces=None):
577 577 """Print (or run through pager) the source code for an object."""
578 578 self._inspect('psource',parameter_s, namespaces)
579 579
580 580 def magic_pfile(self, parameter_s=''):
581 581 """Print (or run through pager) the file where an object is defined.
582 582
583 583 The file opens at the line where the object definition begins. IPython
584 584 will honor the environment variable PAGER if set, and otherwise will
585 585 do its best to print the file in a convenient form.
586 586
587 587 If the given argument is not an object currently defined, IPython will
588 588 try to interpret it as a filename (automatically adding a .py extension
589 589 if needed). You can thus use %pfile as a syntax highlighting code
590 590 viewer."""
591 591
592 592 # first interpret argument as an object name
593 593 out = self._inspect('pfile',parameter_s)
594 594 # if not, try the input as a filename
595 595 if out == 'not found':
596 596 try:
597 597 filename = get_py_filename(parameter_s)
598 598 except IOError,msg:
599 599 print msg
600 600 return
601 601 page.page(self.shell.inspector.format(file(filename).read()))
602 602
603 603 def magic_psearch(self, parameter_s=''):
604 604 """Search for object in namespaces by wildcard.
605 605
606 606 %psearch [options] PATTERN [OBJECT TYPE]
607 607
608 608 Note: ? can be used as a synonym for %psearch, at the beginning or at
609 609 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
610 610 rest of the command line must be unchanged (options come first), so
611 611 for example the following forms are equivalent
612 612
613 613 %psearch -i a* function
614 614 -i a* function?
615 615 ?-i a* function
616 616
617 617 Arguments:
618 618
619 619 PATTERN
620 620
621 621 where PATTERN is a string containing * as a wildcard similar to its
622 622 use in a shell. The pattern is matched in all namespaces on the
623 623 search path. By default objects starting with a single _ are not
624 624 matched, many IPython generated objects have a single
625 625 underscore. The default is case insensitive matching. Matching is
626 626 also done on the attributes of objects and not only on the objects
627 627 in a module.
628 628
629 629 [OBJECT TYPE]
630 630
631 631 Is the name of a python type from the types module. The name is
632 632 given in lowercase without the ending type, ex. StringType is
633 633 written string. By adding a type here only objects matching the
634 634 given type are matched. Using all here makes the pattern match all
635 635 types (this is the default).
636 636
637 637 Options:
638 638
639 639 -a: makes the pattern match even objects whose names start with a
640 640 single underscore. These names are normally ommitted from the
641 641 search.
642 642
643 643 -i/-c: make the pattern case insensitive/sensitive. If neither of
644 644 these options are given, the default is read from your configuration
645 645 file, with the option ``InteractiveShell.wildcards_case_sensitive``.
646 646 If this option is not specified in your configuration file, IPython's
647 647 internal default is to do a case sensitive search.
648 648
649 649 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
650 650 specifiy can be searched in any of the following namespaces:
651 651 'builtin', 'user', 'user_global','internal', 'alias', where
652 652 'builtin' and 'user' are the search defaults. Note that you should
653 653 not use quotes when specifying namespaces.
654 654
655 655 'Builtin' contains the python module builtin, 'user' contains all
656 656 user data, 'alias' only contain the shell aliases and no python
657 657 objects, 'internal' contains objects used by IPython. The
658 658 'user_global' namespace is only used by embedded IPython instances,
659 659 and it contains module-level globals. You can add namespaces to the
660 660 search with -s or exclude them with -e (these options can be given
661 661 more than once).
662 662
663 663 Examples:
664 664
665 665 %psearch a* -> objects beginning with an a
666 666 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
667 667 %psearch a* function -> all functions beginning with an a
668 668 %psearch re.e* -> objects beginning with an e in module re
669 669 %psearch r*.e* -> objects that start with e in modules starting in r
670 670 %psearch r*.* string -> all strings in modules beginning with r
671 671
672 672 Case sensitve search:
673 673
674 674 %psearch -c a* list all object beginning with lower case a
675 675
676 676 Show objects beginning with a single _:
677 677
678 678 %psearch -a _* list objects beginning with a single underscore"""
679 679 try:
680 680 parameter_s.encode('ascii')
681 681 except UnicodeEncodeError:
682 682 print 'Python identifiers can only contain ascii characters.'
683 683 return
684 684
685 685 # default namespaces to be searched
686 686 def_search = ['user','builtin']
687 687
688 688 # Process options/args
689 689 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
690 690 opt = opts.get
691 691 shell = self.shell
692 692 psearch = shell.inspector.psearch
693 693
694 694 # select case options
695 695 if opts.has_key('i'):
696 696 ignore_case = True
697 697 elif opts.has_key('c'):
698 698 ignore_case = False
699 699 else:
700 700 ignore_case = not shell.wildcards_case_sensitive
701 701
702 702 # Build list of namespaces to search from user options
703 703 def_search.extend(opt('s',[]))
704 704 ns_exclude = ns_exclude=opt('e',[])
705 705 ns_search = [nm for nm in def_search if nm not in ns_exclude]
706 706
707 707 # Call the actual search
708 708 try:
709 709 psearch(args,shell.ns_table,ns_search,
710 710 show_all=opt('a'),ignore_case=ignore_case)
711 711 except:
712 712 shell.showtraceback()
713 713
714 714 @skip_doctest
715 715 def magic_who_ls(self, parameter_s=''):
716 716 """Return a sorted list of all interactive variables.
717 717
718 718 If arguments are given, only variables of types matching these
719 719 arguments are returned.
720 720
721 721 Examples
722 722 --------
723 723
724 724 Define two variables and list them with who_ls::
725 725
726 726 In [1]: alpha = 123
727 727
728 728 In [2]: beta = 'test'
729 729
730 730 In [3]: %who_ls
731 731 Out[3]: ['alpha', 'beta']
732 732
733 733 In [4]: %who_ls int
734 734 Out[4]: ['alpha']
735 735
736 736 In [5]: %who_ls str
737 737 Out[5]: ['beta']
738 738 """
739 739
740 740 user_ns = self.shell.user_ns
741 741 internal_ns = self.shell.internal_ns
742 742 user_ns_hidden = self.shell.user_ns_hidden
743 743 out = [ i for i in user_ns
744 744 if not i.startswith('_') \
745 745 and not (i in internal_ns or i in user_ns_hidden) ]
746 746
747 747 typelist = parameter_s.split()
748 748 if typelist:
749 749 typeset = set(typelist)
750 750 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
751 751
752 752 out.sort()
753 753 return out
754 754
755 755 @skip_doctest
756 756 def magic_who(self, parameter_s=''):
757 757 """Print all interactive variables, with some minimal formatting.
758 758
759 759 If any arguments are given, only variables whose type matches one of
760 760 these are printed. For example:
761 761
762 762 %who function str
763 763
764 764 will only list functions and strings, excluding all other types of
765 765 variables. To find the proper type names, simply use type(var) at a
766 766 command line to see how python prints type names. For example:
767 767
768 768 In [1]: type('hello')\\
769 769 Out[1]: <type 'str'>
770 770
771 771 indicates that the type name for strings is 'str'.
772 772
773 773 %who always excludes executed names loaded through your configuration
774 774 file and things which are internal to IPython.
775 775
776 776 This is deliberate, as typically you may load many modules and the
777 777 purpose of %who is to show you only what you've manually defined.
778 778
779 779 Examples
780 780 --------
781 781
782 782 Define two variables and list them with who::
783 783
784 784 In [1]: alpha = 123
785 785
786 786 In [2]: beta = 'test'
787 787
788 788 In [3]: %who
789 789 alpha beta
790 790
791 791 In [4]: %who int
792 792 alpha
793 793
794 794 In [5]: %who str
795 795 beta
796 796 """
797 797
798 798 varlist = self.magic_who_ls(parameter_s)
799 799 if not varlist:
800 800 if parameter_s:
801 801 print 'No variables match your requested type.'
802 802 else:
803 803 print 'Interactive namespace is empty.'
804 804 return
805 805
806 806 # if we have variables, move on...
807 807 count = 0
808 808 for i in varlist:
809 809 print i+'\t',
810 810 count += 1
811 811 if count > 8:
812 812 count = 0
813 813 print
814 814 print
815 815
816 816 @skip_doctest
817 817 def magic_whos(self, parameter_s=''):
818 818 """Like %who, but gives some extra information about each variable.
819 819
820 820 The same type filtering of %who can be applied here.
821 821
822 822 For all variables, the type is printed. Additionally it prints:
823 823
824 824 - For {},[],(): their length.
825 825
826 826 - For numpy arrays, a summary with shape, number of
827 827 elements, typecode and size in memory.
828 828
829 829 - Everything else: a string representation, snipping their middle if
830 830 too long.
831 831
832 832 Examples
833 833 --------
834 834
835 835 Define two variables and list them with whos::
836 836
837 837 In [1]: alpha = 123
838 838
839 839 In [2]: beta = 'test'
840 840
841 841 In [3]: %whos
842 842 Variable Type Data/Info
843 843 --------------------------------
844 844 alpha int 123
845 845 beta str test
846 846 """
847 847
848 848 varnames = self.magic_who_ls(parameter_s)
849 849 if not varnames:
850 850 if parameter_s:
851 851 print 'No variables match your requested type.'
852 852 else:
853 853 print 'Interactive namespace is empty.'
854 854 return
855 855
856 856 # if we have variables, move on...
857 857
858 858 # for these types, show len() instead of data:
859 859 seq_types = ['dict', 'list', 'tuple']
860 860
861 861 # for numpy/Numeric arrays, display summary info
862 862 try:
863 863 import numpy
864 864 except ImportError:
865 865 ndarray_type = None
866 866 else:
867 867 ndarray_type = numpy.ndarray.__name__
868 868 try:
869 869 import Numeric
870 870 except ImportError:
871 871 array_type = None
872 872 else:
873 873 array_type = Numeric.ArrayType.__name__
874 874
875 875 # Find all variable names and types so we can figure out column sizes
876 876 def get_vars(i):
877 877 return self.shell.user_ns[i]
878 878
879 879 # some types are well known and can be shorter
880 880 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
881 881 def type_name(v):
882 882 tn = type(v).__name__
883 883 return abbrevs.get(tn,tn)
884 884
885 885 varlist = map(get_vars,varnames)
886 886
887 887 typelist = []
888 888 for vv in varlist:
889 889 tt = type_name(vv)
890 890
891 891 if tt=='instance':
892 892 typelist.append( abbrevs.get(str(vv.__class__),
893 893 str(vv.__class__)))
894 894 else:
895 895 typelist.append(tt)
896 896
897 897 # column labels and # of spaces as separator
898 898 varlabel = 'Variable'
899 899 typelabel = 'Type'
900 900 datalabel = 'Data/Info'
901 901 colsep = 3
902 902 # variable format strings
903 903 vformat = "{0:<{varwidth}}{1:<{typewidth}}"
904 904 aformat = "%s: %s elems, type `%s`, %s bytes"
905 905 # find the size of the columns to format the output nicely
906 906 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
907 907 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
908 908 # table header
909 909 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
910 910 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
911 911 # and the table itself
912 912 kb = 1024
913 913 Mb = 1048576 # kb**2
914 914 for vname,var,vtype in zip(varnames,varlist,typelist):
915 915 print vformat.format(vname, vtype, varwidth=varwidth, typewidth=typewidth),
916 916 if vtype in seq_types:
917 917 print "n="+str(len(var))
918 918 elif vtype in [array_type,ndarray_type]:
919 919 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
920 920 if vtype==ndarray_type:
921 921 # numpy
922 922 vsize = var.size
923 923 vbytes = vsize*var.itemsize
924 924 vdtype = var.dtype
925 925 else:
926 926 # Numeric
927 927 vsize = Numeric.size(var)
928 928 vbytes = vsize*var.itemsize()
929 929 vdtype = var.typecode()
930 930
931 931 if vbytes < 100000:
932 932 print aformat % (vshape,vsize,vdtype,vbytes)
933 933 else:
934 934 print aformat % (vshape,vsize,vdtype,vbytes),
935 935 if vbytes < Mb:
936 936 print '(%s kb)' % (vbytes/kb,)
937 937 else:
938 938 print '(%s Mb)' % (vbytes/Mb,)
939 939 else:
940 940 try:
941 941 vstr = str(var)
942 942 except UnicodeEncodeError:
943 943 vstr = unicode(var).encode(sys.getdefaultencoding(),
944 944 'backslashreplace')
945 945 vstr = vstr.replace('\n','\\n')
946 946 if len(vstr) < 50:
947 947 print vstr
948 948 else:
949 949 print vstr[:25] + "<...>" + vstr[-25:]
950 950
951 951 def magic_reset(self, parameter_s=''):
952 952 """Resets the namespace by removing all names defined by the user.
953 953
954 954 Parameters
955 955 ----------
956 956 -f : force reset without asking for confirmation.
957 957
958 958 -s : 'Soft' reset: Only clears your namespace, leaving history intact.
959 959 References to objects may be kept. By default (without this option),
960 960 we do a 'hard' reset, giving you a new session and removing all
961 961 references to objects from the current session.
962 962
963 963 Examples
964 964 --------
965 965 In [6]: a = 1
966 966
967 967 In [7]: a
968 968 Out[7]: 1
969 969
970 970 In [8]: 'a' in _ip.user_ns
971 971 Out[8]: True
972 972
973 973 In [9]: %reset -f
974 974
975 975 In [1]: 'a' in _ip.user_ns
976 976 Out[1]: False
977 977 """
978 978 opts, args = self.parse_options(parameter_s,'sf')
979 979 if 'f' in opts:
980 980 ans = True
981 981 else:
982 982 ans = self.shell.ask_yes_no(
983 983 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
984 984 if not ans:
985 985 print 'Nothing done.'
986 986 return
987 987
988 988 if 's' in opts: # Soft reset
989 989 user_ns = self.shell.user_ns
990 990 for i in self.magic_who_ls():
991 991 del(user_ns[i])
992 992
993 993 else: # Hard reset
994 994 self.shell.reset(new_session = False)
995 995
996 996
997 997
998 998 def magic_reset_selective(self, parameter_s=''):
999 999 """Resets the namespace by removing names defined by the user.
1000 1000
1001 1001 Input/Output history are left around in case you need them.
1002 1002
1003 1003 %reset_selective [-f] regex
1004 1004
1005 1005 No action is taken if regex is not included
1006 1006
1007 1007 Options
1008 1008 -f : force reset without asking for confirmation.
1009 1009
1010 1010 Examples
1011 1011 --------
1012 1012
1013 1013 We first fully reset the namespace so your output looks identical to
1014 1014 this example for pedagogical reasons; in practice you do not need a
1015 1015 full reset.
1016 1016
1017 1017 In [1]: %reset -f
1018 1018
1019 1019 Now, with a clean namespace we can make a few variables and use
1020 1020 %reset_selective to only delete names that match our regexp:
1021 1021
1022 1022 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1023 1023
1024 1024 In [3]: who_ls
1025 1025 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1026 1026
1027 1027 In [4]: %reset_selective -f b[2-3]m
1028 1028
1029 1029 In [5]: who_ls
1030 1030 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1031 1031
1032 1032 In [6]: %reset_selective -f d
1033 1033
1034 1034 In [7]: who_ls
1035 1035 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1036 1036
1037 1037 In [8]: %reset_selective -f c
1038 1038
1039 1039 In [9]: who_ls
1040 1040 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1041 1041
1042 1042 In [10]: %reset_selective -f b
1043 1043
1044 1044 In [11]: who_ls
1045 1045 Out[11]: ['a']
1046 1046 """
1047 1047
1048 1048 opts, regex = self.parse_options(parameter_s,'f')
1049 1049
1050 1050 if opts.has_key('f'):
1051 1051 ans = True
1052 1052 else:
1053 1053 ans = self.shell.ask_yes_no(
1054 1054 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1055 1055 if not ans:
1056 1056 print 'Nothing done.'
1057 1057 return
1058 1058 user_ns = self.shell.user_ns
1059 1059 if not regex:
1060 1060 print 'No regex pattern specified. Nothing done.'
1061 1061 return
1062 1062 else:
1063 1063 try:
1064 1064 m = re.compile(regex)
1065 1065 except TypeError:
1066 1066 raise TypeError('regex must be a string or compiled pattern')
1067 1067 for i in self.magic_who_ls():
1068 1068 if m.search(i):
1069 1069 del(user_ns[i])
1070 1070
1071 1071 def magic_xdel(self, parameter_s=''):
1072 1072 """Delete a variable, trying to clear it from anywhere that
1073 1073 IPython's machinery has references to it. By default, this uses
1074 1074 the identity of the named object in the user namespace to remove
1075 1075 references held under other names. The object is also removed
1076 1076 from the output history.
1077 1077
1078 1078 Options
1079 1079 -n : Delete the specified name from all namespaces, without
1080 1080 checking their identity.
1081 1081 """
1082 1082 opts, varname = self.parse_options(parameter_s,'n')
1083 1083 try:
1084 1084 self.shell.del_var(varname, ('n' in opts))
1085 1085 except (NameError, ValueError) as e:
1086 1086 print type(e).__name__ +": "+ str(e)
1087 1087
1088 1088 def magic_logstart(self,parameter_s=''):
1089 1089 """Start logging anywhere in a session.
1090 1090
1091 1091 %logstart [-o|-r|-t] [log_name [log_mode]]
1092 1092
1093 1093 If no name is given, it defaults to a file named 'ipython_log.py' in your
1094 1094 current directory, in 'rotate' mode (see below).
1095 1095
1096 1096 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1097 1097 history up to that point and then continues logging.
1098 1098
1099 1099 %logstart takes a second optional parameter: logging mode. This can be one
1100 1100 of (note that the modes are given unquoted):\\
1101 1101 append: well, that says it.\\
1102 1102 backup: rename (if exists) to name~ and start name.\\
1103 1103 global: single logfile in your home dir, appended to.\\
1104 1104 over : overwrite existing log.\\
1105 1105 rotate: create rotating logs name.1~, name.2~, etc.
1106 1106
1107 1107 Options:
1108 1108
1109 1109 -o: log also IPython's output. In this mode, all commands which
1110 1110 generate an Out[NN] prompt are recorded to the logfile, right after
1111 1111 their corresponding input line. The output lines are always
1112 1112 prepended with a '#[Out]# ' marker, so that the log remains valid
1113 1113 Python code.
1114 1114
1115 1115 Since this marker is always the same, filtering only the output from
1116 1116 a log is very easy, using for example a simple awk call:
1117 1117
1118 1118 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1119 1119
1120 1120 -r: log 'raw' input. Normally, IPython's logs contain the processed
1121 1121 input, so that user lines are logged in their final form, converted
1122 1122 into valid Python. For example, %Exit is logged as
1123 1123 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1124 1124 exactly as typed, with no transformations applied.
1125 1125
1126 1126 -t: put timestamps before each input line logged (these are put in
1127 1127 comments)."""
1128 1128
1129 1129 opts,par = self.parse_options(parameter_s,'ort')
1130 1130 log_output = 'o' in opts
1131 1131 log_raw_input = 'r' in opts
1132 1132 timestamp = 't' in opts
1133 1133
1134 1134 logger = self.shell.logger
1135 1135
1136 1136 # if no args are given, the defaults set in the logger constructor by
1137 1137 # ipytohn remain valid
1138 1138 if par:
1139 1139 try:
1140 1140 logfname,logmode = par.split()
1141 1141 except:
1142 1142 logfname = par
1143 1143 logmode = 'backup'
1144 1144 else:
1145 1145 logfname = logger.logfname
1146 1146 logmode = logger.logmode
1147 1147 # put logfname into rc struct as if it had been called on the command
1148 1148 # line, so it ends up saved in the log header Save it in case we need
1149 1149 # to restore it...
1150 1150 old_logfile = self.shell.logfile
1151 1151 if logfname:
1152 1152 logfname = os.path.expanduser(logfname)
1153 1153 self.shell.logfile = logfname
1154 1154
1155 1155 loghead = '# IPython log file\n\n'
1156 1156 try:
1157 1157 started = logger.logstart(logfname,loghead,logmode,
1158 1158 log_output,timestamp,log_raw_input)
1159 1159 except:
1160 1160 self.shell.logfile = old_logfile
1161 1161 warn("Couldn't start log: %s" % sys.exc_info()[1])
1162 1162 else:
1163 1163 # log input history up to this point, optionally interleaving
1164 1164 # output if requested
1165 1165
1166 1166 if timestamp:
1167 1167 # disable timestamping for the previous history, since we've
1168 1168 # lost those already (no time machine here).
1169 1169 logger.timestamp = False
1170 1170
1171 1171 if log_raw_input:
1172 1172 input_hist = self.shell.history_manager.input_hist_raw
1173 1173 else:
1174 1174 input_hist = self.shell.history_manager.input_hist_parsed
1175 1175
1176 1176 if log_output:
1177 1177 log_write = logger.log_write
1178 1178 output_hist = self.shell.history_manager.output_hist
1179 1179 for n in range(1,len(input_hist)-1):
1180 1180 log_write(input_hist[n].rstrip() + '\n')
1181 1181 if n in output_hist:
1182 1182 log_write(repr(output_hist[n]),'output')
1183 1183 else:
1184 1184 logger.log_write('\n'.join(input_hist[1:]))
1185 1185 logger.log_write('\n')
1186 1186 if timestamp:
1187 1187 # re-enable timestamping
1188 1188 logger.timestamp = True
1189 1189
1190 1190 print ('Activating auto-logging. '
1191 1191 'Current session state plus future input saved.')
1192 1192 logger.logstate()
1193 1193
1194 1194 def magic_logstop(self,parameter_s=''):
1195 1195 """Fully stop logging and close log file.
1196 1196
1197 1197 In order to start logging again, a new %logstart call needs to be made,
1198 1198 possibly (though not necessarily) with a new filename, mode and other
1199 1199 options."""
1200 1200 self.logger.logstop()
1201 1201
1202 1202 def magic_logoff(self,parameter_s=''):
1203 1203 """Temporarily stop logging.
1204 1204
1205 1205 You must have previously started logging."""
1206 1206 self.shell.logger.switch_log(0)
1207 1207
1208 1208 def magic_logon(self,parameter_s=''):
1209 1209 """Restart logging.
1210 1210
1211 1211 This function is for restarting logging which you've temporarily
1212 1212 stopped with %logoff. For starting logging for the first time, you
1213 1213 must use the %logstart function, which allows you to specify an
1214 1214 optional log filename."""
1215 1215
1216 1216 self.shell.logger.switch_log(1)
1217 1217
1218 1218 def magic_logstate(self,parameter_s=''):
1219 1219 """Print the status of the logging system."""
1220 1220
1221 1221 self.shell.logger.logstate()
1222 1222
1223 1223 def magic_pdb(self, parameter_s=''):
1224 1224 """Control the automatic calling of the pdb interactive debugger.
1225 1225
1226 1226 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1227 1227 argument it works as a toggle.
1228 1228
1229 1229 When an exception is triggered, IPython can optionally call the
1230 1230 interactive pdb debugger after the traceback printout. %pdb toggles
1231 1231 this feature on and off.
1232 1232
1233 1233 The initial state of this feature is set in your configuration
1234 1234 file (the option is ``InteractiveShell.pdb``).
1235 1235
1236 1236 If you want to just activate the debugger AFTER an exception has fired,
1237 1237 without having to type '%pdb on' and rerunning your code, you can use
1238 1238 the %debug magic."""
1239 1239
1240 1240 par = parameter_s.strip().lower()
1241 1241
1242 1242 if par:
1243 1243 try:
1244 1244 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1245 1245 except KeyError:
1246 1246 print ('Incorrect argument. Use on/1, off/0, '
1247 1247 'or nothing for a toggle.')
1248 1248 return
1249 1249 else:
1250 1250 # toggle
1251 1251 new_pdb = not self.shell.call_pdb
1252 1252
1253 1253 # set on the shell
1254 1254 self.shell.call_pdb = new_pdb
1255 1255 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1256 1256
1257 1257 def magic_debug(self, parameter_s=''):
1258 1258 """Activate the interactive debugger in post-mortem mode.
1259 1259
1260 1260 If an exception has just occurred, this lets you inspect its stack
1261 1261 frames interactively. Note that this will always work only on the last
1262 1262 traceback that occurred, so you must call this quickly after an
1263 1263 exception that you wish to inspect has fired, because if another one
1264 1264 occurs, it clobbers the previous one.
1265 1265
1266 1266 If you want IPython to automatically do this on every exception, see
1267 1267 the %pdb magic for more details.
1268 1268 """
1269 1269 self.shell.debugger(force=True)
1270 1270
1271 1271 @skip_doctest
1272 1272 def magic_prun(self, parameter_s ='',user_mode=1,
1273 1273 opts=None,arg_lst=None,prog_ns=None):
1274 1274
1275 1275 """Run a statement through the python code profiler.
1276 1276
1277 1277 Usage:
1278 1278 %prun [options] statement
1279 1279
1280 1280 The given statement (which doesn't require quote marks) is run via the
1281 1281 python profiler in a manner similar to the profile.run() function.
1282 1282 Namespaces are internally managed to work correctly; profile.run
1283 1283 cannot be used in IPython because it makes certain assumptions about
1284 1284 namespaces which do not hold under IPython.
1285 1285
1286 1286 Options:
1287 1287
1288 1288 -l <limit>: you can place restrictions on what or how much of the
1289 1289 profile gets printed. The limit value can be:
1290 1290
1291 1291 * A string: only information for function names containing this string
1292 1292 is printed.
1293 1293
1294 1294 * An integer: only these many lines are printed.
1295 1295
1296 1296 * A float (between 0 and 1): this fraction of the report is printed
1297 1297 (for example, use a limit of 0.4 to see the topmost 40% only).
1298 1298
1299 1299 You can combine several limits with repeated use of the option. For
1300 1300 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1301 1301 information about class constructors.
1302 1302
1303 1303 -r: return the pstats.Stats object generated by the profiling. This
1304 1304 object has all the information about the profile in it, and you can
1305 1305 later use it for further analysis or in other functions.
1306 1306
1307 1307 -s <key>: sort profile by given key. You can provide more than one key
1308 1308 by using the option several times: '-s key1 -s key2 -s key3...'. The
1309 1309 default sorting key is 'time'.
1310 1310
1311 1311 The following is copied verbatim from the profile documentation
1312 1312 referenced below:
1313 1313
1314 1314 When more than one key is provided, additional keys are used as
1315 1315 secondary criteria when the there is equality in all keys selected
1316 1316 before them.
1317 1317
1318 1318 Abbreviations can be used for any key names, as long as the
1319 1319 abbreviation is unambiguous. The following are the keys currently
1320 1320 defined:
1321 1321
1322 1322 Valid Arg Meaning
1323 1323 "calls" call count
1324 1324 "cumulative" cumulative time
1325 1325 "file" file name
1326 1326 "module" file name
1327 1327 "pcalls" primitive call count
1328 1328 "line" line number
1329 1329 "name" function name
1330 1330 "nfl" name/file/line
1331 1331 "stdname" standard name
1332 1332 "time" internal time
1333 1333
1334 1334 Note that all sorts on statistics are in descending order (placing
1335 1335 most time consuming items first), where as name, file, and line number
1336 1336 searches are in ascending order (i.e., alphabetical). The subtle
1337 1337 distinction between "nfl" and "stdname" is that the standard name is a
1338 1338 sort of the name as printed, which means that the embedded line
1339 1339 numbers get compared in an odd way. For example, lines 3, 20, and 40
1340 1340 would (if the file names were the same) appear in the string order
1341 1341 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1342 1342 line numbers. In fact, sort_stats("nfl") is the same as
1343 1343 sort_stats("name", "file", "line").
1344 1344
1345 1345 -T <filename>: save profile results as shown on screen to a text
1346 1346 file. The profile is still shown on screen.
1347 1347
1348 1348 -D <filename>: save (via dump_stats) profile statistics to given
1349 1349 filename. This data is in a format understod by the pstats module, and
1350 1350 is generated by a call to the dump_stats() method of profile
1351 1351 objects. The profile is still shown on screen.
1352 1352
1353 1353 If you want to run complete programs under the profiler's control, use
1354 1354 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1355 1355 contains profiler specific options as described here.
1356 1356
1357 1357 You can read the complete documentation for the profile module with::
1358 1358
1359 1359 In [1]: import profile; profile.help()
1360 1360 """
1361 1361
1362 1362 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1363 1363 # protect user quote marks
1364 1364 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1365 1365
1366 1366 if user_mode: # regular user call
1367 1367 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1368 1368 list_all=1)
1369 1369 namespace = self.shell.user_ns
1370 1370 else: # called to run a program by %run -p
1371 1371 try:
1372 1372 filename = get_py_filename(arg_lst[0])
1373 1373 except IOError as e:
1374 1374 try:
1375 1375 msg = str(e)
1376 1376 except UnicodeError:
1377 1377 msg = e.message
1378 1378 error(msg)
1379 1379 return
1380 1380
1381 1381 arg_str = 'execfile(filename,prog_ns)'
1382 1382 namespace = locals()
1383 1383
1384 1384 opts.merge(opts_def)
1385 1385
1386 1386 prof = profile.Profile()
1387 1387 try:
1388 1388 prof = prof.runctx(arg_str,namespace,namespace)
1389 1389 sys_exit = ''
1390 1390 except SystemExit:
1391 1391 sys_exit = """*** SystemExit exception caught in code being profiled."""
1392 1392
1393 1393 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1394 1394
1395 1395 lims = opts.l
1396 1396 if lims:
1397 1397 lims = [] # rebuild lims with ints/floats/strings
1398 1398 for lim in opts.l:
1399 1399 try:
1400 1400 lims.append(int(lim))
1401 1401 except ValueError:
1402 1402 try:
1403 1403 lims.append(float(lim))
1404 1404 except ValueError:
1405 1405 lims.append(lim)
1406 1406
1407 1407 # Trap output.
1408 1408 stdout_trap = StringIO()
1409 1409
1410 1410 if hasattr(stats,'stream'):
1411 1411 # In newer versions of python, the stats object has a 'stream'
1412 1412 # attribute to write into.
1413 1413 stats.stream = stdout_trap
1414 1414 stats.print_stats(*lims)
1415 1415 else:
1416 1416 # For older versions, we manually redirect stdout during printing
1417 1417 sys_stdout = sys.stdout
1418 1418 try:
1419 1419 sys.stdout = stdout_trap
1420 1420 stats.print_stats(*lims)
1421 1421 finally:
1422 1422 sys.stdout = sys_stdout
1423 1423
1424 1424 output = stdout_trap.getvalue()
1425 1425 output = output.rstrip()
1426 1426
1427 1427 page.page(output)
1428 1428 print sys_exit,
1429 1429
1430 1430 dump_file = opts.D[0]
1431 1431 text_file = opts.T[0]
1432 1432 if dump_file:
1433 1433 dump_file = unquote_filename(dump_file)
1434 1434 prof.dump_stats(dump_file)
1435 1435 print '\n*** Profile stats marshalled to file',\
1436 1436 `dump_file`+'.',sys_exit
1437 1437 if text_file:
1438 1438 text_file = unquote_filename(text_file)
1439 1439 pfile = file(text_file,'w')
1440 1440 pfile.write(output)
1441 1441 pfile.close()
1442 1442 print '\n*** Profile printout saved to text file',\
1443 1443 `text_file`+'.',sys_exit
1444 1444
1445 1445 if opts.has_key('r'):
1446 1446 return stats
1447 1447 else:
1448 1448 return None
1449 1449
1450 1450 @skip_doctest
1451 1451 def magic_run(self, parameter_s ='',runner=None,
1452 1452 file_finder=get_py_filename):
1453 1453 """Run the named file inside IPython as a program.
1454 1454
1455 1455 Usage:\\
1456 1456 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1457 1457
1458 1458 Parameters after the filename are passed as command-line arguments to
1459 1459 the program (put in sys.argv). Then, control returns to IPython's
1460 1460 prompt.
1461 1461
1462 1462 This is similar to running at a system prompt:\\
1463 1463 $ python file args\\
1464 1464 but with the advantage of giving you IPython's tracebacks, and of
1465 1465 loading all variables into your interactive namespace for further use
1466 1466 (unless -p is used, see below).
1467 1467
1468 1468 The file is executed in a namespace initially consisting only of
1469 1469 __name__=='__main__' and sys.argv constructed as indicated. It thus
1470 1470 sees its environment as if it were being run as a stand-alone program
1471 1471 (except for sharing global objects such as previously imported
1472 1472 modules). But after execution, the IPython interactive namespace gets
1473 1473 updated with all variables defined in the program (except for __name__
1474 1474 and sys.argv). This allows for very convenient loading of code for
1475 1475 interactive work, while giving each program a 'clean sheet' to run in.
1476 1476
1477 1477 Options:
1478 1478
1479 1479 -n: __name__ is NOT set to '__main__', but to the running file's name
1480 1480 without extension (as python does under import). This allows running
1481 1481 scripts and reloading the definitions in them without calling code
1482 1482 protected by an ' if __name__ == "__main__" ' clause.
1483 1483
1484 1484 -i: run the file in IPython's namespace instead of an empty one. This
1485 1485 is useful if you are experimenting with code written in a text editor
1486 1486 which depends on variables defined interactively.
1487 1487
1488 1488 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1489 1489 being run. This is particularly useful if IPython is being used to
1490 1490 run unittests, which always exit with a sys.exit() call. In such
1491 1491 cases you are interested in the output of the test results, not in
1492 1492 seeing a traceback of the unittest module.
1493 1493
1494 1494 -t: print timing information at the end of the run. IPython will give
1495 1495 you an estimated CPU time consumption for your script, which under
1496 1496 Unix uses the resource module to avoid the wraparound problems of
1497 1497 time.clock(). Under Unix, an estimate of time spent on system tasks
1498 1498 is also given (for Windows platforms this is reported as 0.0).
1499 1499
1500 1500 If -t is given, an additional -N<N> option can be given, where <N>
1501 1501 must be an integer indicating how many times you want the script to
1502 1502 run. The final timing report will include total and per run results.
1503 1503
1504 1504 For example (testing the script uniq_stable.py):
1505 1505
1506 1506 In [1]: run -t uniq_stable
1507 1507
1508 1508 IPython CPU timings (estimated):\\
1509 1509 User : 0.19597 s.\\
1510 1510 System: 0.0 s.\\
1511 1511
1512 1512 In [2]: run -t -N5 uniq_stable
1513 1513
1514 1514 IPython CPU timings (estimated):\\
1515 1515 Total runs performed: 5\\
1516 1516 Times : Total Per run\\
1517 1517 User : 0.910862 s, 0.1821724 s.\\
1518 1518 System: 0.0 s, 0.0 s.
1519 1519
1520 1520 -d: run your program under the control of pdb, the Python debugger.
1521 1521 This allows you to execute your program step by step, watch variables,
1522 1522 etc. Internally, what IPython does is similar to calling:
1523 1523
1524 1524 pdb.run('execfile("YOURFILENAME")')
1525 1525
1526 1526 with a breakpoint set on line 1 of your file. You can change the line
1527 1527 number for this automatic breakpoint to be <N> by using the -bN option
1528 1528 (where N must be an integer). For example:
1529 1529
1530 1530 %run -d -b40 myscript
1531 1531
1532 1532 will set the first breakpoint at line 40 in myscript.py. Note that
1533 1533 the first breakpoint must be set on a line which actually does
1534 1534 something (not a comment or docstring) for it to stop execution.
1535 1535
1536 1536 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1537 1537 first enter 'c' (without qoutes) to start execution up to the first
1538 1538 breakpoint.
1539 1539
1540 1540 Entering 'help' gives information about the use of the debugger. You
1541 1541 can easily see pdb's full documentation with "import pdb;pdb.help()"
1542 1542 at a prompt.
1543 1543
1544 1544 -p: run program under the control of the Python profiler module (which
1545 1545 prints a detailed report of execution times, function calls, etc).
1546 1546
1547 1547 You can pass other options after -p which affect the behavior of the
1548 1548 profiler itself. See the docs for %prun for details.
1549 1549
1550 1550 In this mode, the program's variables do NOT propagate back to the
1551 1551 IPython interactive namespace (because they remain in the namespace
1552 1552 where the profiler executes them).
1553 1553
1554 1554 Internally this triggers a call to %prun, see its documentation for
1555 1555 details on the options available specifically for profiling.
1556 1556
1557 1557 There is one special usage for which the text above doesn't apply:
1558 1558 if the filename ends with .ipy, the file is run as ipython script,
1559 1559 just as if the commands were written on IPython prompt.
1560 1560 """
1561 1561
1562 1562 # get arguments and set sys.argv for program to be run.
1563 1563 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1564 1564 mode='list',list_all=1)
1565 1565
1566 1566 try:
1567 1567 filename = file_finder(arg_lst[0])
1568 1568 except IndexError:
1569 1569 warn('you must provide at least a filename.')
1570 1570 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1571 1571 return
1572 1572 except IOError as e:
1573 1573 try:
1574 1574 msg = str(e)
1575 1575 except UnicodeError:
1576 1576 msg = e.message
1577 1577 error(msg)
1578 1578 return
1579 1579
1580 1580 if filename.lower().endswith('.ipy'):
1581 1581 self.shell.safe_execfile_ipy(filename)
1582 1582 return
1583 1583
1584 1584 # Control the response to exit() calls made by the script being run
1585 1585 exit_ignore = opts.has_key('e')
1586 1586
1587 1587 # Make sure that the running script gets a proper sys.argv as if it
1588 1588 # were run from a system shell.
1589 1589 save_argv = sys.argv # save it for later restoring
1590 1590
1591 1591 # simulate shell expansion on arguments, at least tilde expansion
1592 1592 args = [ os.path.expanduser(a) for a in arg_lst[1:] ]
1593 1593
1594 1594 sys.argv = [filename]+ args # put in the proper filename
1595 1595
1596 1596 if opts.has_key('i'):
1597 1597 # Run in user's interactive namespace
1598 1598 prog_ns = self.shell.user_ns
1599 1599 __name__save = self.shell.user_ns['__name__']
1600 1600 prog_ns['__name__'] = '__main__'
1601 1601 main_mod = self.shell.new_main_mod(prog_ns)
1602 1602 else:
1603 1603 # Run in a fresh, empty namespace
1604 1604 if opts.has_key('n'):
1605 1605 name = os.path.splitext(os.path.basename(filename))[0]
1606 1606 else:
1607 1607 name = '__main__'
1608 1608
1609 1609 main_mod = self.shell.new_main_mod()
1610 1610 prog_ns = main_mod.__dict__
1611 1611 prog_ns['__name__'] = name
1612 1612
1613 1613 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1614 1614 # set the __file__ global in the script's namespace
1615 1615 prog_ns['__file__'] = filename
1616 1616
1617 1617 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1618 1618 # that, if we overwrite __main__, we replace it at the end
1619 1619 main_mod_name = prog_ns['__name__']
1620 1620
1621 1621 if main_mod_name == '__main__':
1622 1622 restore_main = sys.modules['__main__']
1623 1623 else:
1624 1624 restore_main = False
1625 1625
1626 1626 # This needs to be undone at the end to prevent holding references to
1627 1627 # every single object ever created.
1628 1628 sys.modules[main_mod_name] = main_mod
1629 1629
1630 1630 try:
1631 1631 stats = None
1632 1632 with self.readline_no_record:
1633 1633 if opts.has_key('p'):
1634 1634 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1635 1635 else:
1636 1636 if opts.has_key('d'):
1637 1637 deb = debugger.Pdb(self.shell.colors)
1638 1638 # reset Breakpoint state, which is moronically kept
1639 1639 # in a class
1640 1640 bdb.Breakpoint.next = 1
1641 1641 bdb.Breakpoint.bplist = {}
1642 1642 bdb.Breakpoint.bpbynumber = [None]
1643 1643 # Set an initial breakpoint to stop execution
1644 1644 maxtries = 10
1645 1645 bp = int(opts.get('b',[1])[0])
1646 1646 checkline = deb.checkline(filename,bp)
1647 1647 if not checkline:
1648 1648 for bp in range(bp+1,bp+maxtries+1):
1649 1649 if deb.checkline(filename,bp):
1650 1650 break
1651 1651 else:
1652 1652 msg = ("\nI failed to find a valid line to set "
1653 1653 "a breakpoint\n"
1654 1654 "after trying up to line: %s.\n"
1655 1655 "Please set a valid breakpoint manually "
1656 1656 "with the -b option." % bp)
1657 1657 error(msg)
1658 1658 return
1659 1659 # if we find a good linenumber, set the breakpoint
1660 1660 deb.do_break('%s:%s' % (filename,bp))
1661 1661 # Start file run
1662 1662 print "NOTE: Enter 'c' at the",
1663 1663 print "%s prompt to start your script." % deb.prompt
1664 1664 try:
1665 1665 deb.run('execfile("%s")' % filename,prog_ns)
1666 1666
1667 1667 except:
1668 1668 etype, value, tb = sys.exc_info()
1669 1669 # Skip three frames in the traceback: the %run one,
1670 1670 # one inside bdb.py, and the command-line typed by the
1671 1671 # user (run by exec in pdb itself).
1672 1672 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1673 1673 else:
1674 1674 if runner is None:
1675 1675 runner = self.shell.safe_execfile
1676 1676 if opts.has_key('t'):
1677 1677 # timed execution
1678 1678 try:
1679 1679 nruns = int(opts['N'][0])
1680 1680 if nruns < 1:
1681 1681 error('Number of runs must be >=1')
1682 1682 return
1683 1683 except (KeyError):
1684 1684 nruns = 1
1685 1685 twall0 = time.time()
1686 1686 if nruns == 1:
1687 1687 t0 = clock2()
1688 1688 runner(filename,prog_ns,prog_ns,
1689 1689 exit_ignore=exit_ignore)
1690 1690 t1 = clock2()
1691 1691 t_usr = t1[0]-t0[0]
1692 1692 t_sys = t1[1]-t0[1]
1693 1693 print "\nIPython CPU timings (estimated):"
1694 1694 print " User : %10.2f s." % t_usr
1695 1695 print " System : %10.2f s." % t_sys
1696 1696 else:
1697 1697 runs = range(nruns)
1698 1698 t0 = clock2()
1699 1699 for nr in runs:
1700 1700 runner(filename,prog_ns,prog_ns,
1701 1701 exit_ignore=exit_ignore)
1702 1702 t1 = clock2()
1703 1703 t_usr = t1[0]-t0[0]
1704 1704 t_sys = t1[1]-t0[1]
1705 1705 print "\nIPython CPU timings (estimated):"
1706 1706 print "Total runs performed:",nruns
1707 1707 print " Times : %10.2f %10.2f" % ('Total','Per run')
1708 1708 print " User : %10.2f s, %10.2f s." % (t_usr,t_usr/nruns)
1709 1709 print " System : %10.2f s, %10.2f s." % (t_sys,t_sys/nruns)
1710 1710 twall1 = time.time()
1711 1711 print "Wall time: %10.2f s." % (twall1-twall0)
1712 1712
1713 1713 else:
1714 1714 # regular execution
1715 1715 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1716 1716
1717 1717 if opts.has_key('i'):
1718 1718 self.shell.user_ns['__name__'] = __name__save
1719 1719 else:
1720 1720 # The shell MUST hold a reference to prog_ns so after %run
1721 1721 # exits, the python deletion mechanism doesn't zero it out
1722 1722 # (leaving dangling references).
1723 1723 self.shell.cache_main_mod(prog_ns,filename)
1724 1724 # update IPython interactive namespace
1725 1725
1726 1726 # Some forms of read errors on the file may mean the
1727 1727 # __name__ key was never set; using pop we don't have to
1728 1728 # worry about a possible KeyError.
1729 1729 prog_ns.pop('__name__', None)
1730 1730
1731 1731 self.shell.user_ns.update(prog_ns)
1732 1732 finally:
1733 1733 # It's a bit of a mystery why, but __builtins__ can change from
1734 1734 # being a module to becoming a dict missing some key data after
1735 1735 # %run. As best I can see, this is NOT something IPython is doing
1736 1736 # at all, and similar problems have been reported before:
1737 1737 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1738 1738 # Since this seems to be done by the interpreter itself, the best
1739 1739 # we can do is to at least restore __builtins__ for the user on
1740 1740 # exit.
1741 1741 self.shell.user_ns['__builtins__'] = builtin_mod
1742 1742
1743 1743 # Ensure key global structures are restored
1744 1744 sys.argv = save_argv
1745 1745 if restore_main:
1746 1746 sys.modules['__main__'] = restore_main
1747 1747 else:
1748 1748 # Remove from sys.modules the reference to main_mod we'd
1749 1749 # added. Otherwise it will trap references to objects
1750 1750 # contained therein.
1751 1751 del sys.modules[main_mod_name]
1752 1752
1753 1753 return stats
1754 1754
1755 1755 @skip_doctest
1756 1756 def magic_timeit(self, parameter_s =''):
1757 1757 """Time execution of a Python statement or expression
1758 1758
1759 1759 Usage:\\
1760 1760 %timeit [-n<N> -r<R> [-t|-c]] statement
1761 1761
1762 1762 Time execution of a Python statement or expression using the timeit
1763 1763 module.
1764 1764
1765 1765 Options:
1766 1766 -n<N>: execute the given statement <N> times in a loop. If this value
1767 1767 is not given, a fitting value is chosen.
1768 1768
1769 1769 -r<R>: repeat the loop iteration <R> times and take the best result.
1770 1770 Default: 3
1771 1771
1772 1772 -t: use time.time to measure the time, which is the default on Unix.
1773 1773 This function measures wall time.
1774 1774
1775 1775 -c: use time.clock to measure the time, which is the default on
1776 1776 Windows and measures wall time. On Unix, resource.getrusage is used
1777 1777 instead and returns the CPU user time.
1778 1778
1779 1779 -p<P>: use a precision of <P> digits to display the timing result.
1780 1780 Default: 3
1781 1781
1782 1782
1783 1783 Examples:
1784 1784
1785 1785 In [1]: %timeit pass
1786 1786 10000000 loops, best of 3: 53.3 ns per loop
1787 1787
1788 1788 In [2]: u = None
1789 1789
1790 1790 In [3]: %timeit u is None
1791 1791 10000000 loops, best of 3: 184 ns per loop
1792 1792
1793 1793 In [4]: %timeit -r 4 u == None
1794 1794 1000000 loops, best of 4: 242 ns per loop
1795 1795
1796 1796 In [5]: import time
1797 1797
1798 1798 In [6]: %timeit -n1 time.sleep(2)
1799 1799 1 loops, best of 3: 2 s per loop
1800 1800
1801 1801
1802 1802 The times reported by %timeit will be slightly higher than those
1803 1803 reported by the timeit.py script when variables are accessed. This is
1804 1804 due to the fact that %timeit executes the statement in the namespace
1805 1805 of the shell, compared with timeit.py, which uses a single setup
1806 1806 statement to import function or create variables. Generally, the bias
1807 1807 does not matter as long as results from timeit.py are not mixed with
1808 1808 those from %timeit."""
1809 1809
1810 1810 import timeit
1811 1811 import math
1812 1812
1813 1813 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1814 1814 # certain terminals. Until we figure out a robust way of
1815 1815 # auto-detecting if the terminal can deal with it, use plain 'us' for
1816 1816 # microseconds. I am really NOT happy about disabling the proper
1817 1817 # 'micro' prefix, but crashing is worse... If anyone knows what the
1818 1818 # right solution for this is, I'm all ears...
1819 1819 #
1820 1820 # Note: using
1821 1821 #
1822 1822 # s = u'\xb5'
1823 1823 # s.encode(sys.getdefaultencoding())
1824 1824 #
1825 1825 # is not sufficient, as I've seen terminals where that fails but
1826 1826 # print s
1827 1827 #
1828 1828 # succeeds
1829 1829 #
1830 1830 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1831 1831
1832 1832 #units = [u"s", u"ms",u'\xb5',"ns"]
1833 1833 units = [u"s", u"ms",u'us',"ns"]
1834 1834
1835 1835 scaling = [1, 1e3, 1e6, 1e9]
1836 1836
1837 1837 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1838 1838 posix=False)
1839 1839 if stmt == "":
1840 1840 return
1841 1841 timefunc = timeit.default_timer
1842 1842 number = int(getattr(opts, "n", 0))
1843 1843 repeat = int(getattr(opts, "r", timeit.default_repeat))
1844 1844 precision = int(getattr(opts, "p", 3))
1845 1845 if hasattr(opts, "t"):
1846 1846 timefunc = time.time
1847 1847 if hasattr(opts, "c"):
1848 1848 timefunc = clock
1849 1849
1850 1850 timer = timeit.Timer(timer=timefunc)
1851 1851 # this code has tight coupling to the inner workings of timeit.Timer,
1852 1852 # but is there a better way to achieve that the code stmt has access
1853 1853 # to the shell namespace?
1854 1854
1855 1855 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1856 1856 'setup': "pass"}
1857 1857 # Track compilation time so it can be reported if too long
1858 1858 # Minimum time above which compilation time will be reported
1859 1859 tc_min = 0.1
1860 1860
1861 1861 t0 = clock()
1862 1862 code = compile(src, "<magic-timeit>", "exec")
1863 1863 tc = clock()-t0
1864 1864
1865 1865 ns = {}
1866 1866 exec code in self.shell.user_ns, ns
1867 1867 timer.inner = ns["inner"]
1868 1868
1869 1869 if number == 0:
1870 1870 # determine number so that 0.2 <= total time < 2.0
1871 1871 number = 1
1872 1872 for i in range(1, 10):
1873 1873 if timer.timeit(number) >= 0.2:
1874 1874 break
1875 1875 number *= 10
1876 1876
1877 1877 best = min(timer.repeat(repeat, number)) / number
1878 1878
1879 1879 if best > 0.0 and best < 1000.0:
1880 1880 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1881 1881 elif best >= 1000.0:
1882 1882 order = 0
1883 1883 else:
1884 1884 order = 3
1885 1885 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1886 1886 precision,
1887 1887 best * scaling[order],
1888 1888 units[order])
1889 1889 if tc > tc_min:
1890 1890 print "Compiler time: %.2f s" % tc
1891 1891
1892 1892 @skip_doctest
1893 1893 @needs_local_scope
1894 1894 def magic_time(self,parameter_s = ''):
1895 1895 """Time execution of a Python statement or expression.
1896 1896
1897 1897 The CPU and wall clock times are printed, and the value of the
1898 1898 expression (if any) is returned. Note that under Win32, system time
1899 1899 is always reported as 0, since it can not be measured.
1900 1900
1901 1901 This function provides very basic timing functionality. In Python
1902 1902 2.3, the timeit module offers more control and sophistication, so this
1903 1903 could be rewritten to use it (patches welcome).
1904 1904
1905 1905 Some examples:
1906 1906
1907 1907 In [1]: time 2**128
1908 1908 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1909 1909 Wall time: 0.00
1910 1910 Out[1]: 340282366920938463463374607431768211456L
1911 1911
1912 1912 In [2]: n = 1000000
1913 1913
1914 1914 In [3]: time sum(range(n))
1915 1915 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1916 1916 Wall time: 1.37
1917 1917 Out[3]: 499999500000L
1918 1918
1919 1919 In [4]: time print 'hello world'
1920 1920 hello world
1921 1921 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1922 1922 Wall time: 0.00
1923 1923
1924 1924 Note that the time needed by Python to compile the given expression
1925 1925 will be reported if it is more than 0.1s. In this example, the
1926 1926 actual exponentiation is done by Python at compilation time, so while
1927 1927 the expression can take a noticeable amount of time to compute, that
1928 1928 time is purely due to the compilation:
1929 1929
1930 1930 In [5]: time 3**9999;
1931 1931 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1932 1932 Wall time: 0.00 s
1933 1933
1934 1934 In [6]: time 3**999999;
1935 1935 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1936 1936 Wall time: 0.00 s
1937 1937 Compiler : 0.78 s
1938 1938 """
1939 1939
1940 1940 # fail immediately if the given expression can't be compiled
1941 1941
1942 1942 expr = self.shell.prefilter(parameter_s,False)
1943 1943
1944 1944 # Minimum time above which compilation time will be reported
1945 1945 tc_min = 0.1
1946 1946
1947 1947 try:
1948 1948 mode = 'eval'
1949 1949 t0 = clock()
1950 1950 code = compile(expr,'<timed eval>',mode)
1951 1951 tc = clock()-t0
1952 1952 except SyntaxError:
1953 1953 mode = 'exec'
1954 1954 t0 = clock()
1955 1955 code = compile(expr,'<timed exec>',mode)
1956 1956 tc = clock()-t0
1957 1957 # skew measurement as little as possible
1958 1958 glob = self.shell.user_ns
1959 1959 locs = self._magic_locals
1960 1960 clk = clock2
1961 1961 wtime = time.time
1962 1962 # time execution
1963 1963 wall_st = wtime()
1964 1964 if mode=='eval':
1965 1965 st = clk()
1966 1966 out = eval(code, glob, locs)
1967 1967 end = clk()
1968 1968 else:
1969 1969 st = clk()
1970 1970 exec code in glob, locs
1971 1971 end = clk()
1972 1972 out = None
1973 1973 wall_end = wtime()
1974 1974 # Compute actual times and report
1975 1975 wall_time = wall_end-wall_st
1976 1976 cpu_user = end[0]-st[0]
1977 1977 cpu_sys = end[1]-st[1]
1978 1978 cpu_tot = cpu_user+cpu_sys
1979 1979 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1980 1980 (cpu_user,cpu_sys,cpu_tot)
1981 1981 print "Wall time: %.2f s" % wall_time
1982 1982 if tc > tc_min:
1983 1983 print "Compiler : %.2f s" % tc
1984 1984 return out
1985 1985
1986 1986 @skip_doctest
1987 1987 def magic_macro(self,parameter_s = ''):
1988 1988 """Define a macro for future re-execution. It accepts ranges of history,
1989 1989 filenames or string objects.
1990 1990
1991 1991 Usage:\\
1992 1992 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1993 1993
1994 1994 Options:
1995 1995
1996 1996 -r: use 'raw' input. By default, the 'processed' history is used,
1997 1997 so that magics are loaded in their transformed version to valid
1998 1998 Python. If this option is given, the raw input as typed as the
1999 1999 command line is used instead.
2000 2000
2001 2001 This will define a global variable called `name` which is a string
2002 2002 made of joining the slices and lines you specify (n1,n2,... numbers
2003 2003 above) from your input history into a single string. This variable
2004 2004 acts like an automatic function which re-executes those lines as if
2005 2005 you had typed them. You just type 'name' at the prompt and the code
2006 2006 executes.
2007 2007
2008 2008 The syntax for indicating input ranges is described in %history.
2009 2009
2010 2010 Note: as a 'hidden' feature, you can also use traditional python slice
2011 2011 notation, where N:M means numbers N through M-1.
2012 2012
2013 2013 For example, if your history contains (%hist prints it):
2014 2014
2015 2015 44: x=1
2016 2016 45: y=3
2017 2017 46: z=x+y
2018 2018 47: print x
2019 2019 48: a=5
2020 2020 49: print 'x',x,'y',y
2021 2021
2022 2022 you can create a macro with lines 44 through 47 (included) and line 49
2023 2023 called my_macro with:
2024 2024
2025 2025 In [55]: %macro my_macro 44-47 49
2026 2026
2027 2027 Now, typing `my_macro` (without quotes) will re-execute all this code
2028 2028 in one pass.
2029 2029
2030 2030 You don't need to give the line-numbers in order, and any given line
2031 2031 number can appear multiple times. You can assemble macros with any
2032 2032 lines from your input history in any order.
2033 2033
2034 2034 The macro is a simple object which holds its value in an attribute,
2035 2035 but IPython's display system checks for macros and executes them as
2036 2036 code instead of printing them when you type their name.
2037 2037
2038 2038 You can view a macro's contents by explicitly printing it with:
2039 2039
2040 2040 'print macro_name'.
2041 2041
2042 2042 """
2043 2043 opts,args = self.parse_options(parameter_s,'r',mode='list')
2044 2044 if not args: # List existing macros
2045 2045 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2046 2046 isinstance(v, Macro))
2047 2047 if len(args) == 1:
2048 2048 raise UsageError(
2049 2049 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2050 2050 name, codefrom = args[0], " ".join(args[1:])
2051 2051
2052 2052 #print 'rng',ranges # dbg
2053 2053 try:
2054 2054 lines = self.shell.find_user_code(codefrom, 'r' in opts)
2055 2055 except (ValueError, TypeError) as e:
2056 2056 print e.args[0]
2057 2057 return
2058 2058 macro = Macro(lines)
2059 2059 self.shell.define_macro(name, macro)
2060 2060 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2061 2061 print '=== Macro contents: ==='
2062 2062 print macro,
2063 2063
2064 2064 def magic_save(self,parameter_s = ''):
2065 2065 """Save a set of lines or a macro to a given filename.
2066 2066
2067 2067 Usage:\\
2068 2068 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2069 2069
2070 2070 Options:
2071 2071
2072 2072 -r: use 'raw' input. By default, the 'processed' history is used,
2073 2073 so that magics are loaded in their transformed version to valid
2074 2074 Python. If this option is given, the raw input as typed as the
2075 2075 command line is used instead.
2076 2076
2077 2077 This function uses the same syntax as %history for input ranges,
2078 2078 then saves the lines to the filename you specify.
2079 2079
2080 2080 It adds a '.py' extension to the file if you don't do so yourself, and
2081 2081 it asks for confirmation before overwriting existing files."""
2082 2082
2083 2083 opts,args = self.parse_options(parameter_s,'r',mode='list')
2084 2084 fname, codefrom = unquote_filename(args[0]), " ".join(args[1:])
2085 2085 if not fname.endswith('.py'):
2086 2086 fname += '.py'
2087 2087 if os.path.isfile(fname):
2088 2088 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2089 2089 if ans.lower() not in ['y','yes']:
2090 2090 print 'Operation cancelled.'
2091 2091 return
2092 2092 try:
2093 2093 cmds = self.shell.find_user_code(codefrom, 'r' in opts)
2094 2094 except (TypeError, ValueError) as e:
2095 2095 print e.args[0]
2096 2096 return
2097 2097 with py3compat.open(fname,'w', encoding="utf-8") as f:
2098 2098 f.write(u"# coding: utf-8\n")
2099 2099 f.write(py3compat.cast_unicode(cmds))
2100 2100 print 'The following commands were written to file `%s`:' % fname
2101 2101 print cmds
2102 2102
2103 2103 def magic_pastebin(self, parameter_s = ''):
2104 2104 """Upload code to the 'Lodge it' paste bin, returning the URL."""
2105 2105 try:
2106 2106 code = self.shell.find_user_code(parameter_s)
2107 2107 except (ValueError, TypeError) as e:
2108 2108 print e.args[0]
2109 2109 return
2110 2110 pbserver = ServerProxy('http://paste.pocoo.org/xmlrpc/')
2111 2111 id = pbserver.pastes.newPaste("python", code)
2112 2112 return "http://paste.pocoo.org/show/" + id
2113 2113
2114 2114 def magic_loadpy(self, arg_s):
2115 2115 """Load a .py python script into the GUI console.
2116 2116
2117 2117 This magic command can either take a local filename or a url::
2118 2118
2119 2119 %loadpy myscript.py
2120 2120 %loadpy http://www.example.com/myscript.py
2121 2121 """
2122 2122 arg_s = unquote_filename(arg_s)
2123 2123 if not arg_s.endswith('.py'):
2124 2124 raise ValueError('%%load only works with .py files: %s' % arg_s)
2125 2125 if arg_s.startswith('http'):
2126 2126 import urllib2
2127 2127 response = urllib2.urlopen(arg_s)
2128 2128 content = response.read()
2129 2129 else:
2130 2130 with open(arg_s) as f:
2131 2131 content = f.read()
2132 2132 self.set_next_input(content)
2133 2133
2134 2134 def _find_edit_target(self, args, opts, last_call):
2135 2135 """Utility method used by magic_edit to find what to edit."""
2136 2136
2137 2137 def make_filename(arg):
2138 2138 "Make a filename from the given args"
2139 2139 arg = unquote_filename(arg)
2140 2140 try:
2141 2141 filename = get_py_filename(arg)
2142 2142 except IOError:
2143 2143 # If it ends with .py but doesn't already exist, assume we want
2144 2144 # a new file.
2145 2145 if arg.endswith('.py'):
2146 2146 filename = arg
2147 2147 else:
2148 2148 filename = None
2149 2149 return filename
2150 2150
2151 2151 # Set a few locals from the options for convenience:
2152 2152 opts_prev = 'p' in opts
2153 2153 opts_raw = 'r' in opts
2154 2154
2155 2155 # custom exceptions
2156 2156 class DataIsObject(Exception): pass
2157 2157
2158 2158 # Default line number value
2159 2159 lineno = opts.get('n',None)
2160 2160
2161 2161 if opts_prev:
2162 2162 args = '_%s' % last_call[0]
2163 2163 if not self.shell.user_ns.has_key(args):
2164 2164 args = last_call[1]
2165 2165
2166 2166 # use last_call to remember the state of the previous call, but don't
2167 2167 # let it be clobbered by successive '-p' calls.
2168 2168 try:
2169 2169 last_call[0] = self.shell.displayhook.prompt_count
2170 2170 if not opts_prev:
2171 2171 last_call[1] = parameter_s
2172 2172 except:
2173 2173 pass
2174 2174
2175 2175 # by default this is done with temp files, except when the given
2176 2176 # arg is a filename
2177 2177 use_temp = True
2178 2178
2179 2179 data = ''
2180 2180
2181 2181 # First, see if the arguments should be a filename.
2182 2182 filename = make_filename(args)
2183 2183 if filename:
2184 2184 use_temp = False
2185 2185 elif args:
2186 2186 # Mode where user specifies ranges of lines, like in %macro.
2187 2187 data = self.extract_input_lines(args, opts_raw)
2188 2188 if not data:
2189 2189 try:
2190 2190 # Load the parameter given as a variable. If not a string,
2191 2191 # process it as an object instead (below)
2192 2192
2193 2193 #print '*** args',args,'type',type(args) # dbg
2194 2194 data = eval(args, self.shell.user_ns)
2195 2195 if not isinstance(data, basestring):
2196 2196 raise DataIsObject
2197 2197
2198 2198 except (NameError,SyntaxError):
2199 2199 # given argument is not a variable, try as a filename
2200 2200 filename = make_filename(args)
2201 2201 if filename is None:
2202 2202 warn("Argument given (%s) can't be found as a variable "
2203 2203 "or as a filename." % args)
2204 2204 return
2205 2205 use_temp = False
2206 2206
2207 2207 except DataIsObject:
2208 2208 # macros have a special edit function
2209 2209 if isinstance(data, Macro):
2210 2210 raise MacroToEdit(data)
2211 2211
2212 2212 # For objects, try to edit the file where they are defined
2213 2213 try:
2214 2214 filename = inspect.getabsfile(data)
2215 2215 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2216 2216 # class created by %edit? Try to find source
2217 2217 # by looking for method definitions instead, the
2218 2218 # __module__ in those classes is FakeModule.
2219 2219 attrs = [getattr(data, aname) for aname in dir(data)]
2220 2220 for attr in attrs:
2221 2221 if not inspect.ismethod(attr):
2222 2222 continue
2223 2223 filename = inspect.getabsfile(attr)
2224 2224 if filename and 'fakemodule' not in filename.lower():
2225 2225 # change the attribute to be the edit target instead
2226 2226 data = attr
2227 2227 break
2228 2228
2229 2229 datafile = 1
2230 2230 except TypeError:
2231 2231 filename = make_filename(args)
2232 2232 datafile = 1
2233 2233 warn('Could not find file where `%s` is defined.\n'
2234 2234 'Opening a file named `%s`' % (args,filename))
2235 2235 # Now, make sure we can actually read the source (if it was in
2236 2236 # a temp file it's gone by now).
2237 2237 if datafile:
2238 2238 try:
2239 2239 if lineno is None:
2240 2240 lineno = inspect.getsourcelines(data)[1]
2241 2241 except IOError:
2242 2242 filename = make_filename(args)
2243 2243 if filename is None:
2244 2244 warn('The file `%s` where `%s` was defined cannot '
2245 2245 'be read.' % (filename,data))
2246 2246 return
2247 2247 use_temp = False
2248 2248
2249 2249 if use_temp:
2250 2250 filename = self.shell.mktempfile(data)
2251 2251 print 'IPython will make a temporary file named:',filename
2252 2252
2253 2253 return filename, lineno, use_temp
2254 2254
2255 2255 def _edit_macro(self,mname,macro):
2256 2256 """open an editor with the macro data in a file"""
2257 2257 filename = self.shell.mktempfile(macro.value)
2258 2258 self.shell.hooks.editor(filename)
2259 2259
2260 2260 # and make a new macro object, to replace the old one
2261 2261 mfile = open(filename)
2262 2262 mvalue = mfile.read()
2263 2263 mfile.close()
2264 2264 self.shell.user_ns[mname] = Macro(mvalue)
2265 2265
2266 2266 def magic_ed(self,parameter_s=''):
2267 2267 """Alias to %edit."""
2268 2268 return self.magic_edit(parameter_s)
2269 2269
2270 2270 @skip_doctest
2271 2271 def magic_edit(self,parameter_s='',last_call=['','']):
2272 2272 """Bring up an editor and execute the resulting code.
2273 2273
2274 2274 Usage:
2275 2275 %edit [options] [args]
2276 2276
2277 2277 %edit runs IPython's editor hook. The default version of this hook is
2278 2278 set to call the editor specified by your $EDITOR environment variable.
2279 2279 If this isn't found, it will default to vi under Linux/Unix and to
2280 2280 notepad under Windows. See the end of this docstring for how to change
2281 2281 the editor hook.
2282 2282
2283 2283 You can also set the value of this editor via the
2284 2284 ``TerminalInteractiveShell.editor`` option in your configuration file.
2285 2285 This is useful if you wish to use a different editor from your typical
2286 2286 default with IPython (and for Windows users who typically don't set
2287 2287 environment variables).
2288 2288
2289 2289 This command allows you to conveniently edit multi-line code right in
2290 2290 your IPython session.
2291 2291
2292 2292 If called without arguments, %edit opens up an empty editor with a
2293 2293 temporary file and will execute the contents of this file when you
2294 2294 close it (don't forget to save it!).
2295 2295
2296 2296
2297 2297 Options:
2298 2298
2299 2299 -n <number>: open the editor at a specified line number. By default,
2300 2300 the IPython editor hook uses the unix syntax 'editor +N filename', but
2301 2301 you can configure this by providing your own modified hook if your
2302 2302 favorite editor supports line-number specifications with a different
2303 2303 syntax.
2304 2304
2305 2305 -p: this will call the editor with the same data as the previous time
2306 2306 it was used, regardless of how long ago (in your current session) it
2307 2307 was.
2308 2308
2309 2309 -r: use 'raw' input. This option only applies to input taken from the
2310 2310 user's history. By default, the 'processed' history is used, so that
2311 2311 magics are loaded in their transformed version to valid Python. If
2312 2312 this option is given, the raw input as typed as the command line is
2313 2313 used instead. When you exit the editor, it will be executed by
2314 2314 IPython's own processor.
2315 2315
2316 2316 -x: do not execute the edited code immediately upon exit. This is
2317 2317 mainly useful if you are editing programs which need to be called with
2318 2318 command line arguments, which you can then do using %run.
2319 2319
2320 2320
2321 2321 Arguments:
2322 2322
2323 2323 If arguments are given, the following possibilites exist:
2324 2324
2325 2325 - If the argument is a filename, IPython will load that into the
2326 2326 editor. It will execute its contents with execfile() when you exit,
2327 2327 loading any code in the file into your interactive namespace.
2328 2328
2329 2329 - The arguments are ranges of input history, e.g. "7 ~1/4-6".
2330 2330 The syntax is the same as in the %history magic.
2331 2331
2332 2332 - If the argument is a string variable, its contents are loaded
2333 2333 into the editor. You can thus edit any string which contains
2334 2334 python code (including the result of previous edits).
2335 2335
2336 2336 - If the argument is the name of an object (other than a string),
2337 2337 IPython will try to locate the file where it was defined and open the
2338 2338 editor at the point where it is defined. You can use `%edit function`
2339 2339 to load an editor exactly at the point where 'function' is defined,
2340 2340 edit it and have the file be executed automatically.
2341 2341
2342 2342 - If the object is a macro (see %macro for details), this opens up your
2343 2343 specified editor with a temporary file containing the macro's data.
2344 2344 Upon exit, the macro is reloaded with the contents of the file.
2345 2345
2346 2346 Note: opening at an exact line is only supported under Unix, and some
2347 2347 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2348 2348 '+NUMBER' parameter necessary for this feature. Good editors like
2349 2349 (X)Emacs, vi, jed, pico and joe all do.
2350 2350
2351 2351 After executing your code, %edit will return as output the code you
2352 2352 typed in the editor (except when it was an existing file). This way
2353 2353 you can reload the code in further invocations of %edit as a variable,
2354 2354 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2355 2355 the output.
2356 2356
2357 2357 Note that %edit is also available through the alias %ed.
2358 2358
2359 2359 This is an example of creating a simple function inside the editor and
2360 2360 then modifying it. First, start up the editor:
2361 2361
2362 2362 In [1]: ed
2363 2363 Editing... done. Executing edited code...
2364 2364 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2365 2365
2366 2366 We can then call the function foo():
2367 2367
2368 2368 In [2]: foo()
2369 2369 foo() was defined in an editing session
2370 2370
2371 2371 Now we edit foo. IPython automatically loads the editor with the
2372 2372 (temporary) file where foo() was previously defined:
2373 2373
2374 2374 In [3]: ed foo
2375 2375 Editing... done. Executing edited code...
2376 2376
2377 2377 And if we call foo() again we get the modified version:
2378 2378
2379 2379 In [4]: foo()
2380 2380 foo() has now been changed!
2381 2381
2382 2382 Here is an example of how to edit a code snippet successive
2383 2383 times. First we call the editor:
2384 2384
2385 2385 In [5]: ed
2386 2386 Editing... done. Executing edited code...
2387 2387 hello
2388 2388 Out[5]: "print 'hello'n"
2389 2389
2390 2390 Now we call it again with the previous output (stored in _):
2391 2391
2392 2392 In [6]: ed _
2393 2393 Editing... done. Executing edited code...
2394 2394 hello world
2395 2395 Out[6]: "print 'hello world'n"
2396 2396
2397 2397 Now we call it with the output #8 (stored in _8, also as Out[8]):
2398 2398
2399 2399 In [7]: ed _8
2400 2400 Editing... done. Executing edited code...
2401 2401 hello again
2402 2402 Out[7]: "print 'hello again'n"
2403 2403
2404 2404
2405 2405 Changing the default editor hook:
2406 2406
2407 2407 If you wish to write your own editor hook, you can put it in a
2408 2408 configuration file which you load at startup time. The default hook
2409 2409 is defined in the IPython.core.hooks module, and you can use that as a
2410 2410 starting example for further modifications. That file also has
2411 2411 general instructions on how to set a new hook for use once you've
2412 2412 defined it."""
2413 2413 opts,args = self.parse_options(parameter_s,'prxn:')
2414 2414
2415 2415 try:
2416 2416 filename, lineno, is_temp = self._find_edit_target(args, opts, last_call)
2417 2417 except MacroToEdit as e:
2418 2418 self._edit_macro(args, e.args[0])
2419 2419 return
2420 2420
2421 2421 # do actual editing here
2422 2422 print 'Editing...',
2423 2423 sys.stdout.flush()
2424 2424 try:
2425 2425 # Quote filenames that may have spaces in them
2426 2426 if ' ' in filename:
2427 2427 filename = "'%s'" % filename
2428 2428 self.shell.hooks.editor(filename,lineno)
2429 2429 except TryNext:
2430 2430 warn('Could not open editor')
2431 2431 return
2432 2432
2433 2433 # XXX TODO: should this be generalized for all string vars?
2434 2434 # For now, this is special-cased to blocks created by cpaste
2435 2435 if args.strip() == 'pasted_block':
2436 2436 self.shell.user_ns['pasted_block'] = file_read(filename)
2437 2437
2438 2438 if 'x' in opts: # -x prevents actual execution
2439 2439 print
2440 2440 else:
2441 2441 print 'done. Executing edited code...'
2442 2442 if 'r' in opts: # Untranslated IPython code
2443 2443 self.shell.run_cell(file_read(filename),
2444 2444 store_history=False)
2445 2445 else:
2446 2446 self.shell.safe_execfile(filename,self.shell.user_ns,
2447 2447 self.shell.user_ns)
2448 2448
2449 2449 if is_temp:
2450 2450 try:
2451 2451 return open(filename).read()
2452 2452 except IOError,msg:
2453 2453 if msg.filename == filename:
2454 2454 warn('File not found. Did you forget to save?')
2455 2455 return
2456 2456 else:
2457 2457 self.shell.showtraceback()
2458 2458
2459 2459 def magic_xmode(self,parameter_s = ''):
2460 2460 """Switch modes for the exception handlers.
2461 2461
2462 2462 Valid modes: Plain, Context and Verbose.
2463 2463
2464 2464 If called without arguments, acts as a toggle."""
2465 2465
2466 2466 def xmode_switch_err(name):
2467 2467 warn('Error changing %s exception modes.\n%s' %
2468 2468 (name,sys.exc_info()[1]))
2469 2469
2470 2470 shell = self.shell
2471 2471 new_mode = parameter_s.strip().capitalize()
2472 2472 try:
2473 2473 shell.InteractiveTB.set_mode(mode=new_mode)
2474 2474 print 'Exception reporting mode:',shell.InteractiveTB.mode
2475 2475 except:
2476 2476 xmode_switch_err('user')
2477 2477
2478 2478 def magic_colors(self,parameter_s = ''):
2479 2479 """Switch color scheme for prompts, info system and exception handlers.
2480 2480
2481 2481 Currently implemented schemes: NoColor, Linux, LightBG.
2482 2482
2483 2483 Color scheme names are not case-sensitive.
2484 2484
2485 2485 Examples
2486 2486 --------
2487 2487 To get a plain black and white terminal::
2488 2488
2489 2489 %colors nocolor
2490 2490 """
2491 2491
2492 2492 def color_switch_err(name):
2493 2493 warn('Error changing %s color schemes.\n%s' %
2494 2494 (name,sys.exc_info()[1]))
2495 2495
2496 2496
2497 2497 new_scheme = parameter_s.strip()
2498 2498 if not new_scheme:
2499 2499 raise UsageError(
2500 2500 "%colors: you must specify a color scheme. See '%colors?'")
2501 2501 return
2502 2502 # local shortcut
2503 2503 shell = self.shell
2504 2504
2505 2505 import IPython.utils.rlineimpl as readline
2506 2506
2507 2507 if not shell.colors_force and \
2508 2508 not readline.have_readline and sys.platform == "win32":
2509 2509 msg = """\
2510 2510 Proper color support under MS Windows requires the pyreadline library.
2511 2511 You can find it at:
2512 http://ipython.scipy.org/moin/PyReadline/Intro
2512 http://ipython.org/pyreadline.html
2513 2513 Gary's readline needs the ctypes module, from:
2514 2514 http://starship.python.net/crew/theller/ctypes
2515 2515 (Note that ctypes is already part of Python versions 2.5 and newer).
2516 2516
2517 2517 Defaulting color scheme to 'NoColor'"""
2518 2518 new_scheme = 'NoColor'
2519 2519 warn(msg)
2520 2520
2521 2521 # readline option is 0
2522 2522 if not shell.colors_force and not shell.has_readline:
2523 2523 new_scheme = 'NoColor'
2524 2524
2525 2525 # Set prompt colors
2526 2526 try:
2527 2527 shell.displayhook.set_colors(new_scheme)
2528 2528 except:
2529 2529 color_switch_err('prompt')
2530 2530 else:
2531 2531 shell.colors = \
2532 2532 shell.displayhook.color_table.active_scheme_name
2533 2533 # Set exception colors
2534 2534 try:
2535 2535 shell.InteractiveTB.set_colors(scheme = new_scheme)
2536 2536 shell.SyntaxTB.set_colors(scheme = new_scheme)
2537 2537 except:
2538 2538 color_switch_err('exception')
2539 2539
2540 2540 # Set info (for 'object?') colors
2541 2541 if shell.color_info:
2542 2542 try:
2543 2543 shell.inspector.set_active_scheme(new_scheme)
2544 2544 except:
2545 2545 color_switch_err('object inspector')
2546 2546 else:
2547 2547 shell.inspector.set_active_scheme('NoColor')
2548 2548
2549 2549 def magic_pprint(self, parameter_s=''):
2550 2550 """Toggle pretty printing on/off."""
2551 2551 ptformatter = self.shell.display_formatter.formatters['text/plain']
2552 2552 ptformatter.pprint = bool(1 - ptformatter.pprint)
2553 2553 print 'Pretty printing has been turned', \
2554 2554 ['OFF','ON'][ptformatter.pprint]
2555 2555
2556 2556 #......................................................................
2557 2557 # Functions to implement unix shell-type things
2558 2558
2559 2559 @skip_doctest
2560 2560 def magic_alias(self, parameter_s = ''):
2561 2561 """Define an alias for a system command.
2562 2562
2563 2563 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2564 2564
2565 2565 Then, typing 'alias_name params' will execute the system command 'cmd
2566 2566 params' (from your underlying operating system).
2567 2567
2568 2568 Aliases have lower precedence than magic functions and Python normal
2569 2569 variables, so if 'foo' is both a Python variable and an alias, the
2570 2570 alias can not be executed until 'del foo' removes the Python variable.
2571 2571
2572 2572 You can use the %l specifier in an alias definition to represent the
2573 2573 whole line when the alias is called. For example:
2574 2574
2575 2575 In [2]: alias bracket echo "Input in brackets: <%l>"
2576 2576 In [3]: bracket hello world
2577 2577 Input in brackets: <hello world>
2578 2578
2579 2579 You can also define aliases with parameters using %s specifiers (one
2580 2580 per parameter):
2581 2581
2582 2582 In [1]: alias parts echo first %s second %s
2583 2583 In [2]: %parts A B
2584 2584 first A second B
2585 2585 In [3]: %parts A
2586 2586 Incorrect number of arguments: 2 expected.
2587 2587 parts is an alias to: 'echo first %s second %s'
2588 2588
2589 2589 Note that %l and %s are mutually exclusive. You can only use one or
2590 2590 the other in your aliases.
2591 2591
2592 2592 Aliases expand Python variables just like system calls using ! or !!
2593 2593 do: all expressions prefixed with '$' get expanded. For details of
2594 2594 the semantic rules, see PEP-215:
2595 2595 http://www.python.org/peps/pep-0215.html. This is the library used by
2596 2596 IPython for variable expansion. If you want to access a true shell
2597 2597 variable, an extra $ is necessary to prevent its expansion by IPython:
2598 2598
2599 2599 In [6]: alias show echo
2600 2600 In [7]: PATH='A Python string'
2601 2601 In [8]: show $PATH
2602 2602 A Python string
2603 2603 In [9]: show $$PATH
2604 2604 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2605 2605
2606 2606 You can use the alias facility to acess all of $PATH. See the %rehash
2607 2607 and %rehashx functions, which automatically create aliases for the
2608 2608 contents of your $PATH.
2609 2609
2610 2610 If called with no parameters, %alias prints the current alias table."""
2611 2611
2612 2612 par = parameter_s.strip()
2613 2613 if not par:
2614 2614 stored = self.db.get('stored_aliases', {} )
2615 2615 aliases = sorted(self.shell.alias_manager.aliases)
2616 2616 # for k, v in stored:
2617 2617 # atab.append(k, v[0])
2618 2618
2619 2619 print "Total number of aliases:", len(aliases)
2620 2620 sys.stdout.flush()
2621 2621 return aliases
2622 2622
2623 2623 # Now try to define a new one
2624 2624 try:
2625 2625 alias,cmd = par.split(None, 1)
2626 2626 except:
2627 2627 print oinspect.getdoc(self.magic_alias)
2628 2628 else:
2629 2629 self.shell.alias_manager.soft_define_alias(alias, cmd)
2630 2630 # end magic_alias
2631 2631
2632 2632 def magic_unalias(self, parameter_s = ''):
2633 2633 """Remove an alias"""
2634 2634
2635 2635 aname = parameter_s.strip()
2636 2636 self.shell.alias_manager.undefine_alias(aname)
2637 2637 stored = self.db.get('stored_aliases', {} )
2638 2638 if aname in stored:
2639 2639 print "Removing %stored alias",aname
2640 2640 del stored[aname]
2641 2641 self.db['stored_aliases'] = stored
2642 2642
2643 2643 def magic_rehashx(self, parameter_s = ''):
2644 2644 """Update the alias table with all executable files in $PATH.
2645 2645
2646 2646 This version explicitly checks that every entry in $PATH is a file
2647 2647 with execute access (os.X_OK), so it is much slower than %rehash.
2648 2648
2649 2649 Under Windows, it checks executability as a match agains a
2650 2650 '|'-separated string of extensions, stored in the IPython config
2651 2651 variable win_exec_ext. This defaults to 'exe|com|bat'.
2652 2652
2653 2653 This function also resets the root module cache of module completer,
2654 2654 used on slow filesystems.
2655 2655 """
2656 2656 from IPython.core.alias import InvalidAliasError
2657 2657
2658 2658 # for the benefit of module completer in ipy_completers.py
2659 2659 del self.db['rootmodules']
2660 2660
2661 2661 path = [os.path.abspath(os.path.expanduser(p)) for p in
2662 2662 os.environ.get('PATH','').split(os.pathsep)]
2663 2663 path = filter(os.path.isdir,path)
2664 2664
2665 2665 syscmdlist = []
2666 2666 # Now define isexec in a cross platform manner.
2667 2667 if os.name == 'posix':
2668 2668 isexec = lambda fname:os.path.isfile(fname) and \
2669 2669 os.access(fname,os.X_OK)
2670 2670 else:
2671 2671 try:
2672 2672 winext = os.environ['pathext'].replace(';','|').replace('.','')
2673 2673 except KeyError:
2674 2674 winext = 'exe|com|bat|py'
2675 2675 if 'py' not in winext:
2676 2676 winext += '|py'
2677 2677 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2678 2678 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2679 2679 savedir = os.getcwdu()
2680 2680
2681 2681 # Now walk the paths looking for executables to alias.
2682 2682 try:
2683 2683 # write the whole loop for posix/Windows so we don't have an if in
2684 2684 # the innermost part
2685 2685 if os.name == 'posix':
2686 2686 for pdir in path:
2687 2687 os.chdir(pdir)
2688 2688 for ff in os.listdir(pdir):
2689 2689 if isexec(ff):
2690 2690 try:
2691 2691 # Removes dots from the name since ipython
2692 2692 # will assume names with dots to be python.
2693 2693 self.shell.alias_manager.define_alias(
2694 2694 ff.replace('.',''), ff)
2695 2695 except InvalidAliasError:
2696 2696 pass
2697 2697 else:
2698 2698 syscmdlist.append(ff)
2699 2699 else:
2700 2700 no_alias = self.shell.alias_manager.no_alias
2701 2701 for pdir in path:
2702 2702 os.chdir(pdir)
2703 2703 for ff in os.listdir(pdir):
2704 2704 base, ext = os.path.splitext(ff)
2705 2705 if isexec(ff) and base.lower() not in no_alias:
2706 2706 if ext.lower() == '.exe':
2707 2707 ff = base
2708 2708 try:
2709 2709 # Removes dots from the name since ipython
2710 2710 # will assume names with dots to be python.
2711 2711 self.shell.alias_manager.define_alias(
2712 2712 base.lower().replace('.',''), ff)
2713 2713 except InvalidAliasError:
2714 2714 pass
2715 2715 syscmdlist.append(ff)
2716 2716 db = self.db
2717 2717 db['syscmdlist'] = syscmdlist
2718 2718 finally:
2719 2719 os.chdir(savedir)
2720 2720
2721 2721 @skip_doctest
2722 2722 def magic_pwd(self, parameter_s = ''):
2723 2723 """Return the current working directory path.
2724 2724
2725 2725 Examples
2726 2726 --------
2727 2727 ::
2728 2728
2729 2729 In [9]: pwd
2730 2730 Out[9]: '/home/tsuser/sprint/ipython'
2731 2731 """
2732 2732 return os.getcwdu()
2733 2733
2734 2734 @skip_doctest
2735 2735 def magic_cd(self, parameter_s=''):
2736 2736 """Change the current working directory.
2737 2737
2738 2738 This command automatically maintains an internal list of directories
2739 2739 you visit during your IPython session, in the variable _dh. The
2740 2740 command %dhist shows this history nicely formatted. You can also
2741 2741 do 'cd -<tab>' to see directory history conveniently.
2742 2742
2743 2743 Usage:
2744 2744
2745 2745 cd 'dir': changes to directory 'dir'.
2746 2746
2747 2747 cd -: changes to the last visited directory.
2748 2748
2749 2749 cd -<n>: changes to the n-th directory in the directory history.
2750 2750
2751 2751 cd --foo: change to directory that matches 'foo' in history
2752 2752
2753 2753 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2754 2754 (note: cd <bookmark_name> is enough if there is no
2755 2755 directory <bookmark_name>, but a bookmark with the name exists.)
2756 2756 'cd -b <tab>' allows you to tab-complete bookmark names.
2757 2757
2758 2758 Options:
2759 2759
2760 2760 -q: quiet. Do not print the working directory after the cd command is
2761 2761 executed. By default IPython's cd command does print this directory,
2762 2762 since the default prompts do not display path information.
2763 2763
2764 2764 Note that !cd doesn't work for this purpose because the shell where
2765 2765 !command runs is immediately discarded after executing 'command'.
2766 2766
2767 2767 Examples
2768 2768 --------
2769 2769 ::
2770 2770
2771 2771 In [10]: cd parent/child
2772 2772 /home/tsuser/parent/child
2773 2773 """
2774 2774
2775 2775 parameter_s = parameter_s.strip()
2776 2776 #bkms = self.shell.persist.get("bookmarks",{})
2777 2777
2778 2778 oldcwd = os.getcwdu()
2779 2779 numcd = re.match(r'(-)(\d+)$',parameter_s)
2780 2780 # jump in directory history by number
2781 2781 if numcd:
2782 2782 nn = int(numcd.group(2))
2783 2783 try:
2784 2784 ps = self.shell.user_ns['_dh'][nn]
2785 2785 except IndexError:
2786 2786 print 'The requested directory does not exist in history.'
2787 2787 return
2788 2788 else:
2789 2789 opts = {}
2790 2790 elif parameter_s.startswith('--'):
2791 2791 ps = None
2792 2792 fallback = None
2793 2793 pat = parameter_s[2:]
2794 2794 dh = self.shell.user_ns['_dh']
2795 2795 # first search only by basename (last component)
2796 2796 for ent in reversed(dh):
2797 2797 if pat in os.path.basename(ent) and os.path.isdir(ent):
2798 2798 ps = ent
2799 2799 break
2800 2800
2801 2801 if fallback is None and pat in ent and os.path.isdir(ent):
2802 2802 fallback = ent
2803 2803
2804 2804 # if we have no last part match, pick the first full path match
2805 2805 if ps is None:
2806 2806 ps = fallback
2807 2807
2808 2808 if ps is None:
2809 2809 print "No matching entry in directory history"
2810 2810 return
2811 2811 else:
2812 2812 opts = {}
2813 2813
2814 2814
2815 2815 else:
2816 2816 #turn all non-space-escaping backslashes to slashes,
2817 2817 # for c:\windows\directory\names\
2818 2818 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2819 2819 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2820 2820 # jump to previous
2821 2821 if ps == '-':
2822 2822 try:
2823 2823 ps = self.shell.user_ns['_dh'][-2]
2824 2824 except IndexError:
2825 2825 raise UsageError('%cd -: No previous directory to change to.')
2826 2826 # jump to bookmark if needed
2827 2827 else:
2828 2828 if not os.path.isdir(ps) or opts.has_key('b'):
2829 2829 bkms = self.db.get('bookmarks', {})
2830 2830
2831 2831 if bkms.has_key(ps):
2832 2832 target = bkms[ps]
2833 2833 print '(bookmark:%s) -> %s' % (ps,target)
2834 2834 ps = target
2835 2835 else:
2836 2836 if opts.has_key('b'):
2837 2837 raise UsageError("Bookmark '%s' not found. "
2838 2838 "Use '%%bookmark -l' to see your bookmarks." % ps)
2839 2839
2840 2840 # strip extra quotes on Windows, because os.chdir doesn't like them
2841 2841 ps = unquote_filename(ps)
2842 2842 # at this point ps should point to the target dir
2843 2843 if ps:
2844 2844 try:
2845 2845 os.chdir(os.path.expanduser(ps))
2846 2846 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2847 2847 set_term_title('IPython: ' + abbrev_cwd())
2848 2848 except OSError:
2849 2849 print sys.exc_info()[1]
2850 2850 else:
2851 2851 cwd = os.getcwdu()
2852 2852 dhist = self.shell.user_ns['_dh']
2853 2853 if oldcwd != cwd:
2854 2854 dhist.append(cwd)
2855 2855 self.db['dhist'] = compress_dhist(dhist)[-100:]
2856 2856
2857 2857 else:
2858 2858 os.chdir(self.shell.home_dir)
2859 2859 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2860 2860 set_term_title('IPython: ' + '~')
2861 2861 cwd = os.getcwdu()
2862 2862 dhist = self.shell.user_ns['_dh']
2863 2863
2864 2864 if oldcwd != cwd:
2865 2865 dhist.append(cwd)
2866 2866 self.db['dhist'] = compress_dhist(dhist)[-100:]
2867 2867 if not 'q' in opts and self.shell.user_ns['_dh']:
2868 2868 print self.shell.user_ns['_dh'][-1]
2869 2869
2870 2870
2871 2871 def magic_env(self, parameter_s=''):
2872 2872 """List environment variables."""
2873 2873
2874 2874 return os.environ.data
2875 2875
2876 2876 def magic_pushd(self, parameter_s=''):
2877 2877 """Place the current dir on stack and change directory.
2878 2878
2879 2879 Usage:\\
2880 2880 %pushd ['dirname']
2881 2881 """
2882 2882
2883 2883 dir_s = self.shell.dir_stack
2884 2884 tgt = os.path.expanduser(unquote_filename(parameter_s))
2885 2885 cwd = os.getcwdu().replace(self.home_dir,'~')
2886 2886 if tgt:
2887 2887 self.magic_cd(parameter_s)
2888 2888 dir_s.insert(0,cwd)
2889 2889 return self.magic_dirs()
2890 2890
2891 2891 def magic_popd(self, parameter_s=''):
2892 2892 """Change to directory popped off the top of the stack.
2893 2893 """
2894 2894 if not self.shell.dir_stack:
2895 2895 raise UsageError("%popd on empty stack")
2896 2896 top = self.shell.dir_stack.pop(0)
2897 2897 self.magic_cd(top)
2898 2898 print "popd ->",top
2899 2899
2900 2900 def magic_dirs(self, parameter_s=''):
2901 2901 """Return the current directory stack."""
2902 2902
2903 2903 return self.shell.dir_stack
2904 2904
2905 2905 def magic_dhist(self, parameter_s=''):
2906 2906 """Print your history of visited directories.
2907 2907
2908 2908 %dhist -> print full history\\
2909 2909 %dhist n -> print last n entries only\\
2910 2910 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2911 2911
2912 2912 This history is automatically maintained by the %cd command, and
2913 2913 always available as the global list variable _dh. You can use %cd -<n>
2914 2914 to go to directory number <n>.
2915 2915
2916 2916 Note that most of time, you should view directory history by entering
2917 2917 cd -<TAB>.
2918 2918
2919 2919 """
2920 2920
2921 2921 dh = self.shell.user_ns['_dh']
2922 2922 if parameter_s:
2923 2923 try:
2924 2924 args = map(int,parameter_s.split())
2925 2925 except:
2926 2926 self.arg_err(Magic.magic_dhist)
2927 2927 return
2928 2928 if len(args) == 1:
2929 2929 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2930 2930 elif len(args) == 2:
2931 2931 ini,fin = args
2932 2932 else:
2933 2933 self.arg_err(Magic.magic_dhist)
2934 2934 return
2935 2935 else:
2936 2936 ini,fin = 0,len(dh)
2937 2937 nlprint(dh,
2938 2938 header = 'Directory history (kept in _dh)',
2939 2939 start=ini,stop=fin)
2940 2940
2941 2941 @skip_doctest
2942 2942 def magic_sc(self, parameter_s=''):
2943 2943 """Shell capture - execute a shell command and capture its output.
2944 2944
2945 2945 DEPRECATED. Suboptimal, retained for backwards compatibility.
2946 2946
2947 2947 You should use the form 'var = !command' instead. Example:
2948 2948
2949 2949 "%sc -l myfiles = ls ~" should now be written as
2950 2950
2951 2951 "myfiles = !ls ~"
2952 2952
2953 2953 myfiles.s, myfiles.l and myfiles.n still apply as documented
2954 2954 below.
2955 2955
2956 2956 --
2957 2957 %sc [options] varname=command
2958 2958
2959 2959 IPython will run the given command using commands.getoutput(), and
2960 2960 will then update the user's interactive namespace with a variable
2961 2961 called varname, containing the value of the call. Your command can
2962 2962 contain shell wildcards, pipes, etc.
2963 2963
2964 2964 The '=' sign in the syntax is mandatory, and the variable name you
2965 2965 supply must follow Python's standard conventions for valid names.
2966 2966
2967 2967 (A special format without variable name exists for internal use)
2968 2968
2969 2969 Options:
2970 2970
2971 2971 -l: list output. Split the output on newlines into a list before
2972 2972 assigning it to the given variable. By default the output is stored
2973 2973 as a single string.
2974 2974
2975 2975 -v: verbose. Print the contents of the variable.
2976 2976
2977 2977 In most cases you should not need to split as a list, because the
2978 2978 returned value is a special type of string which can automatically
2979 2979 provide its contents either as a list (split on newlines) or as a
2980 2980 space-separated string. These are convenient, respectively, either
2981 2981 for sequential processing or to be passed to a shell command.
2982 2982
2983 2983 For example:
2984 2984
2985 2985 # all-random
2986 2986
2987 2987 # Capture into variable a
2988 2988 In [1]: sc a=ls *py
2989 2989
2990 2990 # a is a string with embedded newlines
2991 2991 In [2]: a
2992 2992 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2993 2993
2994 2994 # which can be seen as a list:
2995 2995 In [3]: a.l
2996 2996 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2997 2997
2998 2998 # or as a whitespace-separated string:
2999 2999 In [4]: a.s
3000 3000 Out[4]: 'setup.py win32_manual_post_install.py'
3001 3001
3002 3002 # a.s is useful to pass as a single command line:
3003 3003 In [5]: !wc -l $a.s
3004 3004 146 setup.py
3005 3005 130 win32_manual_post_install.py
3006 3006 276 total
3007 3007
3008 3008 # while the list form is useful to loop over:
3009 3009 In [6]: for f in a.l:
3010 3010 ...: !wc -l $f
3011 3011 ...:
3012 3012 146 setup.py
3013 3013 130 win32_manual_post_install.py
3014 3014
3015 3015 Similiarly, the lists returned by the -l option are also special, in
3016 3016 the sense that you can equally invoke the .s attribute on them to
3017 3017 automatically get a whitespace-separated string from their contents:
3018 3018
3019 3019 In [7]: sc -l b=ls *py
3020 3020
3021 3021 In [8]: b
3022 3022 Out[8]: ['setup.py', 'win32_manual_post_install.py']
3023 3023
3024 3024 In [9]: b.s
3025 3025 Out[9]: 'setup.py win32_manual_post_install.py'
3026 3026
3027 3027 In summary, both the lists and strings used for ouptut capture have
3028 3028 the following special attributes:
3029 3029
3030 3030 .l (or .list) : value as list.
3031 3031 .n (or .nlstr): value as newline-separated string.
3032 3032 .s (or .spstr): value as space-separated string.
3033 3033 """
3034 3034
3035 3035 opts,args = self.parse_options(parameter_s,'lv')
3036 3036 # Try to get a variable name and command to run
3037 3037 try:
3038 3038 # the variable name must be obtained from the parse_options
3039 3039 # output, which uses shlex.split to strip options out.
3040 3040 var,_ = args.split('=',1)
3041 3041 var = var.strip()
3042 3042 # But the the command has to be extracted from the original input
3043 3043 # parameter_s, not on what parse_options returns, to avoid the
3044 3044 # quote stripping which shlex.split performs on it.
3045 3045 _,cmd = parameter_s.split('=',1)
3046 3046 except ValueError:
3047 3047 var,cmd = '',''
3048 3048 # If all looks ok, proceed
3049 3049 split = 'l' in opts
3050 3050 out = self.shell.getoutput(cmd, split=split)
3051 3051 if opts.has_key('v'):
3052 3052 print '%s ==\n%s' % (var,pformat(out))
3053 3053 if var:
3054 3054 self.shell.user_ns.update({var:out})
3055 3055 else:
3056 3056 return out
3057 3057
3058 3058 def magic_sx(self, parameter_s=''):
3059 3059 """Shell execute - run a shell command and capture its output.
3060 3060
3061 3061 %sx command
3062 3062
3063 3063 IPython will run the given command using commands.getoutput(), and
3064 3064 return the result formatted as a list (split on '\\n'). Since the
3065 3065 output is _returned_, it will be stored in ipython's regular output
3066 3066 cache Out[N] and in the '_N' automatic variables.
3067 3067
3068 3068 Notes:
3069 3069
3070 3070 1) If an input line begins with '!!', then %sx is automatically
3071 3071 invoked. That is, while:
3072 3072 !ls
3073 3073 causes ipython to simply issue system('ls'), typing
3074 3074 !!ls
3075 3075 is a shorthand equivalent to:
3076 3076 %sx ls
3077 3077
3078 3078 2) %sx differs from %sc in that %sx automatically splits into a list,
3079 3079 like '%sc -l'. The reason for this is to make it as easy as possible
3080 3080 to process line-oriented shell output via further python commands.
3081 3081 %sc is meant to provide much finer control, but requires more
3082 3082 typing.
3083 3083
3084 3084 3) Just like %sc -l, this is a list with special attributes:
3085 3085
3086 3086 .l (or .list) : value as list.
3087 3087 .n (or .nlstr): value as newline-separated string.
3088 3088 .s (or .spstr): value as whitespace-separated string.
3089 3089
3090 3090 This is very useful when trying to use such lists as arguments to
3091 3091 system commands."""
3092 3092
3093 3093 if parameter_s:
3094 3094 return self.shell.getoutput(parameter_s)
3095 3095
3096 3096
3097 3097 def magic_bookmark(self, parameter_s=''):
3098 3098 """Manage IPython's bookmark system.
3099 3099
3100 3100 %bookmark <name> - set bookmark to current dir
3101 3101 %bookmark <name> <dir> - set bookmark to <dir>
3102 3102 %bookmark -l - list all bookmarks
3103 3103 %bookmark -d <name> - remove bookmark
3104 3104 %bookmark -r - remove all bookmarks
3105 3105
3106 3106 You can later on access a bookmarked folder with:
3107 3107 %cd -b <name>
3108 3108 or simply '%cd <name>' if there is no directory called <name> AND
3109 3109 there is such a bookmark defined.
3110 3110
3111 3111 Your bookmarks persist through IPython sessions, but they are
3112 3112 associated with each profile."""
3113 3113
3114 3114 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3115 3115 if len(args) > 2:
3116 3116 raise UsageError("%bookmark: too many arguments")
3117 3117
3118 3118 bkms = self.db.get('bookmarks',{})
3119 3119
3120 3120 if opts.has_key('d'):
3121 3121 try:
3122 3122 todel = args[0]
3123 3123 except IndexError:
3124 3124 raise UsageError(
3125 3125 "%bookmark -d: must provide a bookmark to delete")
3126 3126 else:
3127 3127 try:
3128 3128 del bkms[todel]
3129 3129 except KeyError:
3130 3130 raise UsageError(
3131 3131 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3132 3132
3133 3133 elif opts.has_key('r'):
3134 3134 bkms = {}
3135 3135 elif opts.has_key('l'):
3136 3136 bks = bkms.keys()
3137 3137 bks.sort()
3138 3138 if bks:
3139 3139 size = max(map(len,bks))
3140 3140 else:
3141 3141 size = 0
3142 3142 fmt = '%-'+str(size)+'s -> %s'
3143 3143 print 'Current bookmarks:'
3144 3144 for bk in bks:
3145 3145 print fmt % (bk,bkms[bk])
3146 3146 else:
3147 3147 if not args:
3148 3148 raise UsageError("%bookmark: You must specify the bookmark name")
3149 3149 elif len(args)==1:
3150 3150 bkms[args[0]] = os.getcwdu()
3151 3151 elif len(args)==2:
3152 3152 bkms[args[0]] = args[1]
3153 3153 self.db['bookmarks'] = bkms
3154 3154
3155 3155 def magic_pycat(self, parameter_s=''):
3156 3156 """Show a syntax-highlighted file through a pager.
3157 3157
3158 3158 This magic is similar to the cat utility, but it will assume the file
3159 3159 to be Python source and will show it with syntax highlighting. """
3160 3160
3161 3161 try:
3162 3162 filename = get_py_filename(parameter_s)
3163 3163 cont = file_read(filename)
3164 3164 except IOError:
3165 3165 try:
3166 3166 cont = eval(parameter_s,self.user_ns)
3167 3167 except NameError:
3168 3168 cont = None
3169 3169 if cont is None:
3170 3170 print "Error: no such file or variable"
3171 3171 return
3172 3172
3173 3173 page.page(self.shell.pycolorize(cont))
3174 3174
3175 3175 def _rerun_pasted(self):
3176 3176 """ Rerun a previously pasted command.
3177 3177 """
3178 3178 b = self.user_ns.get('pasted_block', None)
3179 3179 if b is None:
3180 3180 raise UsageError('No previous pasted block available')
3181 3181 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3182 3182 exec b in self.user_ns
3183 3183
3184 3184 def _get_pasted_lines(self, sentinel):
3185 3185 """ Yield pasted lines until the user enters the given sentinel value.
3186 3186 """
3187 3187 from IPython.core import interactiveshell
3188 3188 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3189 3189 while True:
3190 3190 l = self.shell.raw_input_original(':')
3191 3191 if l == sentinel:
3192 3192 return
3193 3193 else:
3194 3194 yield l
3195 3195
3196 3196 def _strip_pasted_lines_for_code(self, raw_lines):
3197 3197 """ Strip non-code parts of a sequence of lines to return a block of
3198 3198 code.
3199 3199 """
3200 3200 # Regular expressions that declare text we strip from the input:
3201 3201 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3202 3202 r'^\s*(\s?>)+', # Python input prompt
3203 3203 r'^\s*\.{3,}', # Continuation prompts
3204 3204 r'^\++',
3205 3205 ]
3206 3206
3207 3207 strip_from_start = map(re.compile,strip_re)
3208 3208
3209 3209 lines = []
3210 3210 for l in raw_lines:
3211 3211 for pat in strip_from_start:
3212 3212 l = pat.sub('',l)
3213 3213 lines.append(l)
3214 3214
3215 3215 block = "\n".join(lines) + '\n'
3216 3216 #print "block:\n",block
3217 3217 return block
3218 3218
3219 3219 def _execute_block(self, block, par):
3220 3220 """ Execute a block, or store it in a variable, per the user's request.
3221 3221 """
3222 3222 if not par:
3223 3223 b = textwrap.dedent(block)
3224 3224 self.user_ns['pasted_block'] = b
3225 3225 exec b in self.user_ns
3226 3226 else:
3227 3227 self.user_ns[par] = SList(block.splitlines())
3228 3228 print "Block assigned to '%s'" % par
3229 3229
3230 3230 def magic_quickref(self,arg):
3231 3231 """ Show a quick reference sheet """
3232 3232 import IPython.core.usage
3233 3233 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3234 3234
3235 3235 page.page(qr)
3236 3236
3237 3237 def magic_doctest_mode(self,parameter_s=''):
3238 3238 """Toggle doctest mode on and off.
3239 3239
3240 3240 This mode is intended to make IPython behave as much as possible like a
3241 3241 plain Python shell, from the perspective of how its prompts, exceptions
3242 3242 and output look. This makes it easy to copy and paste parts of a
3243 3243 session into doctests. It does so by:
3244 3244
3245 3245 - Changing the prompts to the classic ``>>>`` ones.
3246 3246 - Changing the exception reporting mode to 'Plain'.
3247 3247 - Disabling pretty-printing of output.
3248 3248
3249 3249 Note that IPython also supports the pasting of code snippets that have
3250 3250 leading '>>>' and '...' prompts in them. This means that you can paste
3251 3251 doctests from files or docstrings (even if they have leading
3252 3252 whitespace), and the code will execute correctly. You can then use
3253 3253 '%history -t' to see the translated history; this will give you the
3254 3254 input after removal of all the leading prompts and whitespace, which
3255 3255 can be pasted back into an editor.
3256 3256
3257 3257 With these features, you can switch into this mode easily whenever you
3258 3258 need to do testing and changes to doctests, without having to leave
3259 3259 your existing IPython session.
3260 3260 """
3261 3261
3262 3262 from IPython.utils.ipstruct import Struct
3263 3263
3264 3264 # Shorthands
3265 3265 shell = self.shell
3266 3266 oc = shell.displayhook
3267 3267 meta = shell.meta
3268 3268 disp_formatter = self.shell.display_formatter
3269 3269 ptformatter = disp_formatter.formatters['text/plain']
3270 3270 # dstore is a data store kept in the instance metadata bag to track any
3271 3271 # changes we make, so we can undo them later.
3272 3272 dstore = meta.setdefault('doctest_mode',Struct())
3273 3273 save_dstore = dstore.setdefault
3274 3274
3275 3275 # save a few values we'll need to recover later
3276 3276 mode = save_dstore('mode',False)
3277 3277 save_dstore('rc_pprint',ptformatter.pprint)
3278 3278 save_dstore('xmode',shell.InteractiveTB.mode)
3279 3279 save_dstore('rc_separate_out',shell.separate_out)
3280 3280 save_dstore('rc_separate_out2',shell.separate_out2)
3281 3281 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3282 3282 save_dstore('rc_separate_in',shell.separate_in)
3283 3283 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3284 3284
3285 3285 if mode == False:
3286 3286 # turn on
3287 3287 oc.prompt1.p_template = '>>> '
3288 3288 oc.prompt2.p_template = '... '
3289 3289 oc.prompt_out.p_template = ''
3290 3290
3291 3291 # Prompt separators like plain python
3292 3292 oc.input_sep = oc.prompt1.sep = ''
3293 3293 oc.output_sep = ''
3294 3294 oc.output_sep2 = ''
3295 3295
3296 3296 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3297 3297 oc.prompt_out.pad_left = False
3298 3298
3299 3299 ptformatter.pprint = False
3300 3300 disp_formatter.plain_text_only = True
3301 3301
3302 3302 shell.magic_xmode('Plain')
3303 3303 else:
3304 3304 # turn off
3305 3305 oc.prompt1.p_template = shell.prompt_in1
3306 3306 oc.prompt2.p_template = shell.prompt_in2
3307 3307 oc.prompt_out.p_template = shell.prompt_out
3308 3308
3309 3309 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3310 3310
3311 3311 oc.output_sep = dstore.rc_separate_out
3312 3312 oc.output_sep2 = dstore.rc_separate_out2
3313 3313
3314 3314 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3315 3315 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3316 3316
3317 3317 ptformatter.pprint = dstore.rc_pprint
3318 3318 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3319 3319
3320 3320 shell.magic_xmode(dstore.xmode)
3321 3321
3322 3322 # Store new mode and inform
3323 3323 dstore.mode = bool(1-int(mode))
3324 3324 mode_label = ['OFF','ON'][dstore.mode]
3325 3325 print 'Doctest mode is:', mode_label
3326 3326
3327 3327 def magic_gui(self, parameter_s=''):
3328 3328 """Enable or disable IPython GUI event loop integration.
3329 3329
3330 3330 %gui [GUINAME]
3331 3331
3332 3332 This magic replaces IPython's threaded shells that were activated
3333 3333 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3334 3334 can now be enabled, disabled and changed at runtime and keyboard
3335 3335 interrupts should work without any problems. The following toolkits
3336 3336 are supported: wxPython, PyQt4, PyGTK, and Tk::
3337 3337
3338 3338 %gui wx # enable wxPython event loop integration
3339 3339 %gui qt4|qt # enable PyQt4 event loop integration
3340 3340 %gui gtk # enable PyGTK event loop integration
3341 3341 %gui tk # enable Tk event loop integration
3342 3342 %gui # disable all event loop integration
3343 3343
3344 3344 WARNING: after any of these has been called you can simply create
3345 3345 an application object, but DO NOT start the event loop yourself, as
3346 3346 we have already handled that.
3347 3347 """
3348 3348 from IPython.lib.inputhook import enable_gui
3349 3349 opts, arg = self.parse_options(parameter_s, '')
3350 3350 if arg=='': arg = None
3351 3351 return enable_gui(arg)
3352 3352
3353 3353 def magic_load_ext(self, module_str):
3354 3354 """Load an IPython extension by its module name."""
3355 3355 return self.extension_manager.load_extension(module_str)
3356 3356
3357 3357 def magic_unload_ext(self, module_str):
3358 3358 """Unload an IPython extension by its module name."""
3359 3359 self.extension_manager.unload_extension(module_str)
3360 3360
3361 3361 def magic_reload_ext(self, module_str):
3362 3362 """Reload an IPython extension by its module name."""
3363 3363 self.extension_manager.reload_extension(module_str)
3364 3364
3365 3365 @skip_doctest
3366 3366 def magic_install_profiles(self, s):
3367 3367 """Install the default IPython profiles into the .ipython dir.
3368 3368
3369 3369 If the default profiles have already been installed, they will not
3370 3370 be overwritten. You can force overwriting them by using the ``-o``
3371 3371 option::
3372 3372
3373 3373 In [1]: %install_profiles -o
3374 3374 """
3375 3375 if '-o' in s:
3376 3376 overwrite = True
3377 3377 else:
3378 3378 overwrite = False
3379 3379 from IPython.config import profile
3380 3380 profile_dir = os.path.dirname(profile.__file__)
3381 3381 ipython_dir = self.ipython_dir
3382 3382 print "Installing profiles to: %s [overwrite=%s]"%(ipython_dir,overwrite)
3383 3383 for src in os.listdir(profile_dir):
3384 3384 if src.startswith('profile_'):
3385 3385 name = src.replace('profile_', '')
3386 3386 print " %s"%name
3387 3387 pd = ProfileDir.create_profile_dir_by_name(ipython_dir, name)
3388 3388 pd.copy_config_file('ipython_config.py', path=src,
3389 3389 overwrite=overwrite)
3390 3390
3391 3391 @skip_doctest
3392 3392 def magic_install_default_config(self, s):
3393 3393 """Install IPython's default config file into the .ipython dir.
3394 3394
3395 3395 If the default config file (:file:`ipython_config.py`) is already
3396 3396 installed, it will not be overwritten. You can force overwriting
3397 3397 by using the ``-o`` option::
3398 3398
3399 3399 In [1]: %install_default_config
3400 3400 """
3401 3401 if '-o' in s:
3402 3402 overwrite = True
3403 3403 else:
3404 3404 overwrite = False
3405 3405 pd = self.shell.profile_dir
3406 3406 print "Installing default config file in: %s" % pd.location
3407 3407 pd.copy_config_file('ipython_config.py', overwrite=overwrite)
3408 3408
3409 3409 # Pylab support: simple wrappers that activate pylab, load gui input
3410 3410 # handling and modify slightly %run
3411 3411
3412 3412 @skip_doctest
3413 3413 def _pylab_magic_run(self, parameter_s=''):
3414 3414 Magic.magic_run(self, parameter_s,
3415 3415 runner=mpl_runner(self.shell.safe_execfile))
3416 3416
3417 3417 _pylab_magic_run.__doc__ = magic_run.__doc__
3418 3418
3419 3419 @skip_doctest
3420 3420 def magic_pylab(self, s):
3421 3421 """Load numpy and matplotlib to work interactively.
3422 3422
3423 3423 %pylab [GUINAME]
3424 3424
3425 3425 This function lets you activate pylab (matplotlib, numpy and
3426 3426 interactive support) at any point during an IPython session.
3427 3427
3428 3428 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3429 3429 pylab and mlab, as well as all names from numpy and pylab.
3430 3430
3431 3431 Parameters
3432 3432 ----------
3433 3433 guiname : optional
3434 3434 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or
3435 3435 'tk'). If given, the corresponding Matplotlib backend is used,
3436 3436 otherwise matplotlib's default (which you can override in your
3437 3437 matplotlib config file) is used.
3438 3438
3439 3439 Examples
3440 3440 --------
3441 3441 In this case, where the MPL default is TkAgg:
3442 3442 In [2]: %pylab
3443 3443
3444 3444 Welcome to pylab, a matplotlib-based Python environment.
3445 3445 Backend in use: TkAgg
3446 3446 For more information, type 'help(pylab)'.
3447 3447
3448 3448 But you can explicitly request a different backend:
3449 3449 In [3]: %pylab qt
3450 3450
3451 3451 Welcome to pylab, a matplotlib-based Python environment.
3452 3452 Backend in use: Qt4Agg
3453 3453 For more information, type 'help(pylab)'.
3454 3454 """
3455 3455
3456 3456 if Application.initialized():
3457 3457 app = Application.instance()
3458 3458 try:
3459 3459 import_all_status = app.pylab_import_all
3460 3460 except AttributeError:
3461 3461 import_all_status = True
3462 3462 else:
3463 3463 import_all_status = True
3464 3464
3465 3465 self.shell.enable_pylab(s,import_all=import_all_status)
3466 3466
3467 3467 def magic_tb(self, s):
3468 3468 """Print the last traceback with the currently active exception mode.
3469 3469
3470 3470 See %xmode for changing exception reporting modes."""
3471 3471 self.shell.showtraceback()
3472 3472
3473 3473 @skip_doctest
3474 3474 def magic_precision(self, s=''):
3475 3475 """Set floating point precision for pretty printing.
3476 3476
3477 3477 Can set either integer precision or a format string.
3478 3478
3479 3479 If numpy has been imported and precision is an int,
3480 3480 numpy display precision will also be set, via ``numpy.set_printoptions``.
3481 3481
3482 3482 If no argument is given, defaults will be restored.
3483 3483
3484 3484 Examples
3485 3485 --------
3486 3486 ::
3487 3487
3488 3488 In [1]: from math import pi
3489 3489
3490 3490 In [2]: %precision 3
3491 3491 Out[2]: u'%.3f'
3492 3492
3493 3493 In [3]: pi
3494 3494 Out[3]: 3.142
3495 3495
3496 3496 In [4]: %precision %i
3497 3497 Out[4]: u'%i'
3498 3498
3499 3499 In [5]: pi
3500 3500 Out[5]: 3
3501 3501
3502 3502 In [6]: %precision %e
3503 3503 Out[6]: u'%e'
3504 3504
3505 3505 In [7]: pi**10
3506 3506 Out[7]: 9.364805e+04
3507 3507
3508 3508 In [8]: %precision
3509 3509 Out[8]: u'%r'
3510 3510
3511 3511 In [9]: pi**10
3512 3512 Out[9]: 93648.047476082982
3513 3513
3514 3514 """
3515 3515
3516 3516 ptformatter = self.shell.display_formatter.formatters['text/plain']
3517 3517 ptformatter.float_precision = s
3518 3518 return ptformatter.float_format
3519 3519
3520 3520
3521 3521 @magic_arguments.magic_arguments()
3522 3522 @magic_arguments.argument(
3523 3523 '-e', '--export', action='store_true', default=False,
3524 3524 help='Export IPython history as a notebook. The filename argument '
3525 3525 'is used to specify the notebook name and format. For example '
3526 3526 'a filename of notebook.ipynb will result in a notebook name '
3527 3527 'of "notebook" and a format of "xml". Likewise using a ".json" '
3528 3528 'or ".py" file extension will write the notebook in the json '
3529 3529 'or py formats.'
3530 3530 )
3531 3531 @magic_arguments.argument(
3532 3532 '-f', '--format',
3533 3533 help='Convert an existing IPython notebook to a new format. This option '
3534 3534 'specifies the new format and can have the values: xml, json, py. '
3535 3535 'The target filename is choosen automatically based on the new '
3536 3536 'format. The filename argument gives the name of the source file.'
3537 3537 )
3538 3538 @magic_arguments.argument(
3539 3539 'filename', type=unicode,
3540 3540 help='Notebook name or filename'
3541 3541 )
3542 3542 def magic_notebook(self, s):
3543 3543 """Export and convert IPython notebooks.
3544 3544
3545 3545 This function can export the current IPython history to a notebook file
3546 3546 or can convert an existing notebook file into a different format. For
3547 3547 example, to export the history to "foo.ipynb" do "%notebook -e foo.ipynb".
3548 3548 To export the history to "foo.py" do "%notebook -e foo.py". To convert
3549 3549 "foo.ipynb" to "foo.json" do "%notebook -f json foo.ipynb". Possible
3550 3550 formats include (json/ipynb, py).
3551 3551 """
3552 3552 args = magic_arguments.parse_argstring(self.magic_notebook, s)
3553 3553
3554 3554 from IPython.nbformat import current
3555 3555 args.filename = unquote_filename(args.filename)
3556 3556 if args.export:
3557 3557 fname, name, format = current.parse_filename(args.filename)
3558 3558 cells = []
3559 3559 hist = list(self.history_manager.get_range())
3560 3560 for session, prompt_number, input in hist[:-1]:
3561 3561 cells.append(current.new_code_cell(prompt_number=prompt_number, input=input))
3562 3562 worksheet = current.new_worksheet(cells=cells)
3563 3563 nb = current.new_notebook(name=name,worksheets=[worksheet])
3564 3564 with open(fname, 'w') as f:
3565 3565 current.write(nb, f, format);
3566 3566 elif args.format is not None:
3567 3567 old_fname, old_name, old_format = current.parse_filename(args.filename)
3568 3568 new_format = args.format
3569 3569 if new_format == u'xml':
3570 3570 raise ValueError('Notebooks cannot be written as xml.')
3571 3571 elif new_format == u'ipynb' or new_format == u'json':
3572 3572 new_fname = old_name + u'.ipynb'
3573 3573 new_format = u'json'
3574 3574 elif new_format == u'py':
3575 3575 new_fname = old_name + u'.py'
3576 3576 else:
3577 3577 raise ValueError('Invalid notebook format: %s' % new_format)
3578 3578 with open(old_fname, 'r') as f:
3579 3579 s = f.read()
3580 3580 try:
3581 3581 nb = current.reads(s, old_format)
3582 3582 except:
3583 3583 nb = current.reads(s, u'xml')
3584 3584 with open(new_fname, 'w') as f:
3585 3585 current.write(nb, f, new_format)
3586 3586
3587 3587
3588 3588 # end Magic
@@ -1,164 +1,164 b''
1 1 """Descriptor utilities.
2 2
3 3 Utilities to support special Python descriptors [1,2], in particular the use of
4 4 a useful pattern for properties we call 'one time properties'. These are
5 5 object attributes which are declared as properties, but become regular
6 6 attributes once they've been read the first time. They can thus be evaluated
7 7 later in the object's life cycle, but once evaluated they become normal, static
8 8 attributes with no function call overhead on access or any other constraints.
9 9
10 10 A special ResetMixin class is provided to add a .reset() method to users who
11 11 may want to have their objects capable of resetting these computed properties
12 12 to their 'untriggered' state.
13 13
14 14 References
15 15 ----------
16 16 [1] How-To Guide for Descriptors, Raymond
17 17 Hettinger. http://users.rcn.com/python/download/Descriptor.htm
18 18
19 19 [2] Python data model, http://docs.python.org/reference/datamodel.html
20 20
21 21 Notes
22 22 -----
23 23 This module is taken from the NiPy project
24 (http://neuroimaging.scipy.org/site/index.html), and is BSD licensed.
24 (http://nipy.sourceforge.net/nipy/stable/index.html), and is BSD licensed.
25 25
26 26 Authors
27 27 -------
28 28 - Fernando Perez.
29 29 """
30 30
31 31 #-----------------------------------------------------------------------------
32 32 # Classes and Functions
33 33 #-----------------------------------------------------------------------------
34 34
35 35 class ResetMixin(object):
36 36 """A Mixin class to add a .reset() method to users of OneTimeProperty.
37 37
38 38 By default, auto attributes once computed, become static. If they happen to
39 39 depend on other parts of an object and those parts change, their values may
40 40 now be invalid.
41 41
42 42 This class offers a .reset() method that users can call *explicitly* when
43 43 they know the state of their objects may have changed and they want to
44 44 ensure that *all* their special attributes should be invalidated. Once
45 45 reset() is called, all their auto attributes are reset to their
46 46 OneTimeProperty descriptors, and their accessor functions will be triggered
47 47 again.
48 48
49 49 Example
50 50 -------
51 51
52 52 >>> class A(ResetMixin):
53 53 ... def __init__(self,x=1.0):
54 54 ... self.x = x
55 55 ...
56 56 ... @auto_attr
57 57 ... def y(self):
58 58 ... print '*** y computation executed ***'
59 59 ... return self.x / 2.0
60 60 ...
61 61
62 62 >>> a = A(10)
63 63
64 64 About to access y twice, the second time no computation is done:
65 65 >>> a.y
66 66 *** y computation executed ***
67 67 5.0
68 68 >>> a.y
69 69 5.0
70 70
71 71 Changing x
72 72 >>> a.x = 20
73 73
74 74 a.y doesn't change to 10, since it is a static attribute:
75 75 >>> a.y
76 76 5.0
77 77
78 78 We now reset a, and this will then force all auto attributes to recompute
79 79 the next time we access them:
80 80 >>> a.reset()
81 81
82 82 About to access y twice again after reset():
83 83 >>> a.y
84 84 *** y computation executed ***
85 85 10.0
86 86 >>> a.y
87 87 10.0
88 88 """
89 89
90 90 def reset(self):
91 91 """Reset all OneTimeProperty attributes that may have fired already."""
92 92 instdict = self.__dict__
93 93 classdict = self.__class__.__dict__
94 94 # To reset them, we simply remove them from the instance dict. At that
95 95 # point, it's as if they had never been computed. On the next access,
96 96 # the accessor function from the parent class will be called, simply
97 97 # because that's how the python descriptor protocol works.
98 98 for mname, mval in classdict.items():
99 99 if mname in instdict and isinstance(mval, OneTimeProperty):
100 100 delattr(self, mname)
101 101
102 102
103 103 class OneTimeProperty(object):
104 104 """A descriptor to make special properties that become normal attributes.
105 105
106 106 This is meant to be used mostly by the auto_attr decorator in this module.
107 107 """
108 108 def __init__(self,func):
109 109 """Create a OneTimeProperty instance.
110 110
111 111 Parameters
112 112 ----------
113 113 func : method
114 114
115 115 The method that will be called the first time to compute a value.
116 116 Afterwards, the method's name will be a standard attribute holding
117 117 the value of this computation.
118 118 """
119 119 self.getter = func
120 120 self.name = func.func_name
121 121
122 122 def __get__(self,obj,type=None):
123 123 """This will be called on attribute access on the class or instance. """
124 124
125 125 if obj is None:
126 126 # Being called on the class, return the original function. This way,
127 127 # introspection works on the class.
128 128 #return func
129 129 return self.getter
130 130
131 131 val = self.getter(obj)
132 132 #print "** auto_attr - loading '%s'" % self.name # dbg
133 133 setattr(obj, self.name, val)
134 134 return val
135 135
136 136
137 137 def auto_attr(func):
138 138 """Decorator to create OneTimeProperty attributes.
139 139
140 140 Parameters
141 141 ----------
142 142 func : method
143 143 The method that will be called the first time to compute a value.
144 144 Afterwards, the method's name will be a standard attribute holding the
145 145 value of this computation.
146 146
147 147 Examples
148 148 --------
149 149 >>> class MagicProp(object):
150 150 ... @auto_attr
151 151 ... def a(self):
152 152 ... return 99
153 153 ...
154 154 >>> x = MagicProp()
155 155 >>> 'a' in x.__dict__
156 156 False
157 157 >>> x.a
158 158 99
159 159 >>> 'a' in x.__dict__
160 160 True
161 161 """
162 162 return OneTimeProperty(func)
163 163
164 164
@@ -1,167 +1,167 b''
1 1 .. _documenting-ipython:
2 2
3 3 =====================
4 4 Documenting IPython
5 5 =====================
6 6
7 7 When contributing code to IPython, you should strive for clarity and
8 8 consistency, without falling prey to a style straitjacket. Basically,
9 9 'document everything, try to be consistent, do what makes sense.'
10 10
11 11 By and large we follow existing Python practices in major projects like Python
12 12 itself or NumPy, this document provides some additional detail for IPython.
13 13
14 14
15 15 Standalone documentation
16 16 ========================
17 17
18 18 All standalone documentation should be written in plain text (``.txt``) files
19 19 using reStructuredText [reStructuredText]_ for markup and formatting. All such
20 20 documentation should be placed in the directory :file:`docs/source` of the
21 21 IPython source tree. Or, when appropriate, a suitably named subdirectory
22 22 should be used. The documentation in this location will serve as the main
23 23 source for IPython documentation.
24 24
25 25 The actual HTML and PDF docs are built using the Sphinx [Sphinx]_
26 26 documentation generation tool. Once you have Sphinx installed, you can build
27 27 the html docs yourself by doing:
28 28
29 29 .. code-block:: bash
30 30
31 31 $ cd ipython-mybranch/docs
32 32 $ make html
33 33
34 34 Our usage of Sphinx follows that of matplotlib [Matplotlib]_ closely. We are
35 35 using a number of Sphinx tools and extensions written by the matplotlib team
36 36 and will mostly follow their conventions, which are nicely spelled out in
37 37 their documentation guide [MatplotlibDocGuide]_. What follows is thus a
38 38 abridged version of the matplotlib documentation guide, taken with permission
39 39 from the matplotlib team.
40 40
41 41 If you are reading this in a web browser, you can click on the "Show Source"
42 42 link to see the original reStricturedText for the following examples.
43 43
44 44 A bit of Python code::
45 45
46 46 for i in range(10):
47 47 print i,
48 48 print "A big number:",2**34
49 49
50 50 An interactive Python session::
51 51
52 52 >>> from IPython.utils.path import get_ipython_dir
53 53 >>> get_ipython_dir()
54 54 '/home/fperez/.config/ipython'
55 55
56 56 An IPython session:
57 57
58 58 .. code-block:: ipython
59 59
60 60 In [7]: import IPython
61 61
62 62 In [8]: print "This IPython is version:",IPython.__version__
63 63 This IPython is version: 0.9.1
64 64
65 65 In [9]: 2+4
66 66 Out[9]: 6
67 67
68 68
69 69 A bit of shell code:
70 70
71 71 .. code-block:: bash
72 72
73 73 cd /tmp
74 74 echo "My home directory is: $HOME"
75 75 ls
76 76
77 77 Docstring format
78 78 ================
79 79
80 80 Good docstrings are very important. Unfortunately, Python itself only provides
81 81 a rather loose standard for docstrings [PEP257]_, and there is no universally
82 82 accepted convention for all the different parts of a complete docstring.
83 83 However, the NumPy project has established a very reasonable standard, and has
84 84 developed some tools to support the smooth inclusion of such docstrings in
85 85 Sphinx-generated manuals. Rather than inventing yet another pseudo-standard,
86 86 IPython will be henceforth documented using the NumPy conventions; we carry
87 87 copies of some of the NumPy support tools to remain self-contained, but share
88 88 back upstream with NumPy any improvements or fixes we may make to the tools.
89 89
90 90 The NumPy documentation guidelines [NumPyDocGuide]_ contain detailed
91 91 information on this standard, and for a quick overview, the NumPy example
92 92 docstring [NumPyExampleDocstring]_ is a useful read.
93 93
94 94
95 95 For user-facing APIs, we try to be fairly strict about following the above
96 96 standards (even though they mean more verbose and detailed docstrings).
97 97 Wherever you can reasonably expect people to do introspection with::
98 98
99 99 In [1]: some_function?
100 100
101 101 the docstring should follow the NumPy style and be fairly detailed.
102 102
103 103 For purely internal methods that are only likely to be read by others extending
104 104 IPython itself we are a bit more relaxed, especially for small/short methods
105 105 and functions whose intent is reasonably obvious. We still expect docstrings
106 106 to be written, but they can be simpler. For very short functions with a
107 107 single-line docstring you can use something like::
108 108
109 109 def add(a, b):
110 110 """The sum of two numbers.
111 111 """
112 112 code
113 113
114 114 and for longer multiline strings::
115 115
116 116 def add(a, b):
117 117 """The sum of two numbers.
118 118
119 119 Here is the rest of the docs.
120 120 """
121 121 code
122 122
123 123
124 124 Here are two additional PEPs of interest regarding documentation of code.
125 125 While both of these were rejected, the ideas therein form much of the basis of
126 126 docutils (the machinery to process reStructuredText):
127 127
128 128 * `Docstring Processing System Framework <http://www.python.org/peps/pep-0256.html>`_
129 129 * `Docutils Design Specification <http://www.python.org/peps/pep-0258.html>`_
130 130
131 131 .. note::
132 132
133 133 In the past IPython used epydoc so currently many docstrings still use
134 134 epydoc conventions. We will update them as we go, but all new code should
135 135 be documented using the NumPy standard.
136 136
137 137 Building and uploading
138 138 ======================
139 139 The built docs are stored in a separate repository. Through some github magic,
140 140 they're automatically exposed as a website. It works like this:
141 141
142 142 * You will need to have sphinx and latex installed. In Ubuntu, install
143 143 ``texlive-latex-recommended texlive-latex-extra texlive-fonts-recommended``.
144 144 Install the latest version of sphinx from PyPI (``pip install sphinx``).
145 145 * Ensure that the development version of IPython is the first in your system
146 146 path. You can either use a virtualenv, or modify your PYTHONPATH.
147 147 * Switch into the docs directory, and run ``make gh-pages``. This will build
148 148 your updated docs as html and pdf, then automatically check out the latest
149 149 version of the docs repository, copy the built docs into it, and commit your
150 150 changes.
151 151 * Open the built docs in a web browser, and check that they're as expected.
152 152 * (When building the docs for a new tagged release, you will have to add its link to
153 153 index.rst, then run ``python build_index.py`` to update index.html. Commit the
154 154 change.)
155 155 * Upload the docs with ``git push``. This only works if you have write access to
156 156 the docs repository.
157 157 * If you are building a version that is not the current dev branch, nor a tagged release,
158 158 then you must run gh-pages.py directly with ``python gh-pages.py <version>``, and *not*
159 159 with ``make gh-pages``.
160 160
161 161 .. [reStructuredText] reStructuredText. http://docutils.sourceforge.net/rst.html
162 162 .. [Sphinx] Sphinx. http://sphinx.pocoo.org/
163 163 .. [MatplotlibDocGuide] http://matplotlib.sourceforge.net/devel/documenting_mpl.html
164 164 .. [PEP257] PEP 257. http://www.python.org/peps/pep-0257.html
165 .. [NumPyDocGuide] NumPy documentation guide. http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines
166 .. [NumPyExampleDocstring] NumPy example docstring. http://projects.scipy.org/numpy/browser/trunk/doc/EXAMPLE_DOCSTRING.txt
165 .. [NumPyDocGuide] NumPy documentation guide. https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
166 .. [NumPyExampleDocstring] NumPy example docstring. https://raw.github.com/numpy/numpy/master/doc/HOWTO_BUILD_DOCS.rst.txt
167 167
@@ -1,401 +1,401 b''
1 1 Overview
2 2 ========
3 3
4 4 This document describes the steps required to install IPython. IPython is
5 5 organized into a number of subpackages, each of which has its own dependencies.
6 6 All of the subpackages come with IPython, so you don't need to download and
7 7 install them separately. However, to use a given subpackage, you will need to
8 8 install all of its dependencies.
9 9
10 10
11 11 Please let us know if you have problems installing IPython or any of its
12 dependencies. Officially, IPython requires Python version 2.6 or 2.7. There
13 is an experimental port of IPython for Python3 `on GitHub
14 <https://github.com/ipython/ipython-py3k>`_
12 dependencies. Officially, IPython requires Python versions 2.6 to 2.7 and 3.1
13 to 3.2.
15 14
16 15 .. warning::
17 16
18 17 Officially, IPython supports Python versions 2.6 and 2.7.
19 18
20 19 IPython 0.11 has a hard syntax dependency on 2.6, and will no longer work
21 20 on Python <= 2.5.
22 21
23 22 Some of the installation approaches use the :mod:`setuptools` package and its
24 23 :command:`easy_install` command line program. In many scenarios, this provides
25 24 the most simple method of installing IPython and its dependencies. It is not
26 25 required though. More information about :mod:`setuptools` can be found on its
27 26 website.
28 27
29 28 .. note::
30 29
31 30 On Windows, IPython *does* depend on :mod:`setuptools`, and it is recommended
32 31 that you install the :mod:`distribute` package, which improves
33 32 :mod:`setuptools` and fixes various bugs.
34 33
35 34 We hope to remove this dependency in 0.12.
36 35
37 36 More general information about installing Python packages can be found in
38 37 Python's documentation at http://www.python.org/doc/.
39 38
40 39 Quickstart
41 40 ==========
42 41
43 42 If you have :mod:`setuptools` installed and you are on OS X or Linux (not
44 43 Windows), the following will download and install IPython *and* the main
45 44 optional dependencies:
46 45
47 46 .. code-block:: bash
48 47
49 48 $ easy_install ipython[zmq,test]
50 49
51 50 This will get pyzmq, which is needed for
52 51 IPython's parallel computing features as well as the nose package, which will
53 52 enable you to run IPython's test suite.
54 53
55 54 To run IPython's test suite, use the :command:`iptest` command:
56 55
57 56 .. code-block:: bash
58 57
59 58 $ iptest
60 59
61 60 Read on for more specific details and instructions for Windows.
62 61
63 62 Installing IPython itself
64 63 =========================
65 64
66 65 Given a properly built Python, the basic interactive IPython shell will work
67 66 with no external dependencies. However, some Python distributions
68 67 (particularly on Windows and OS X), don't come with a working :mod:`readline`
69 68 module. The IPython shell will work without :mod:`readline`, but will lack
70 69 many features that users depend on, such as tab completion and command line
71 70 editing. If you install IPython with :mod:`setuptools`, (e.g. with `easy_install`),
72 71 then the appropriate :mod:`readline` for your platform will be installed.
73 72 See below for details of how to make sure you have a working :mod:`readline`.
74 73
75 74 Installation using easy_install
76 75 -------------------------------
77 76
78 77 If you have :mod:`setuptools` installed, the easiest way of getting IPython is
79 78 to simple use :command:`easy_install`:
80 79
81 80 .. code-block:: bash
82 81
83 82 $ easy_install ipython
84 83
85 84 That's it.
86 85
87 86 Installation from source
88 87 ------------------------
89 88
90 89 If you don't want to use :command:`easy_install`, or don't have it installed,
91 90 just grab the latest stable build of IPython from `here
92 91 <https://github.com/ipython/ipython/downloads>`_. Then do the following:
93 92
94 93 .. code-block:: bash
95 94
96 95 $ tar -xzf ipython.tar.gz
97 96 $ cd ipython
98 97 $ python setup.py install
99 98
100 99 If you are installing to a location (like ``/usr/local``) that requires higher
101 100 permissions, you may need to run the last command with :command:`sudo`.
102 101
103 102 Windows
104 103 -------
105 104
106 105 .. note::
107 106
108 107 On Windows, IPython requires :mod:`setuptools` or :mod:`distribute`.
109 108
110 109 We hope to remove this dependency in 0.12.
111 110
112 111 There are a few caveats for Windows users. The main issue is that a basic
113 112 ``python setup.py install`` approach won't create ``.bat`` file or Start Menu
114 113 shortcuts, which most users want. To get an installation with these, you can
115 114 use any of the following alternatives:
116 115
117 116 1. Install using :command:`easy_install`.
118 117
119 118 2. Install using our binary ``.exe`` Windows installer, which can be found
120 `here <http://ipython.scipy.org/dist/>`_
119 `here <http://ipython.org/download.html>`_
121 120
122 121 3. Install from source, but using :mod:`setuptools` (``python setupegg.py
123 122 install``).
124 123
125 124 IPython by default runs in a terminal window, but the normal terminal
126 125 application supplied by Microsoft Windows is very primitive. You may want to
127 126 download the excellent and free Console_ application instead, which is a far
128 127 superior tool. You can even configure Console to give you by default an
129 128 IPython tab, which is very convenient to create new IPython sessions directly
130 129 from the working terminal.
131 130
132 131 .. _Console: http://sourceforge.net/projects/console
133 132
134 133 Note for Windows 64 bit users: you may have difficulties with the stock
135 134 installer on 64 bit systems; in this case (since we currently do not have 64
136 135 bit builds of the Windows installer) your best bet is to install from source
137 136 with the setuptools method indicated in #3 above. See `this bug report`_ for
138 137 further details.
139 138
140 139 .. _this bug report: https://bugs.launchpad.net/ipython/+bug/382214
141 140
142 141
143 142 Installing the development version
144 143 ----------------------------------
145 144
146 145 It is also possible to install the development version of IPython from our
147 146 `Git <http://git-scm.com/>`_ source code repository. To do this you will
148 147 need to have Git installed on your system. Then just do:
149 148
150 149 .. code-block:: bash
151 150
152 151 $ git clone https://github.com/ipython/ipython.git
153 152 $ cd ipython
154 153 $ python setup.py install
155 154
156 155 Again, this last step on Windows won't create ``.bat`` files or Start Menu
157 156 shortcuts, so you will have to use one of the other approaches listed above.
158 157
159 158 Some users want to be able to follow the development branch as it changes. If
160 159 you have :mod:`setuptools` installed, this is easy. Simply replace the last
161 160 step by:
162 161
163 162 .. code-block:: bash
164 163
165 164 $ python setupegg.py develop
166 165
167 166 This creates links in the right places and installs the command line script to
168 167 the appropriate places. Then, if you want to update your IPython at any time,
169 168 just do:
170 169
171 170 .. code-block:: bash
172 171
173 172 $ git pull
174 173
175 174 Basic optional dependencies
176 175 ===========================
177 176
178 177 There are a number of basic optional dependencies that most users will want to
179 178 get. These are:
180 179
181 180 * readline (for command line editing, tab completion, etc.)
182 181 * nose (to run the IPython test suite)
183 182 * pexpect (to use things like irunner)
184 183
185 184 If you are comfortable installing these things yourself, have at it, otherwise
186 185 read on for more details.
187 186
188 187 readline
189 188 --------
190 189
191 190 In principle, all Python distributions should come with a working
192 191 :mod:`readline` module. But, reality is not quite that simple. There are two
193 192 common situations where you won't have a working :mod:`readline` module:
194 193
195 194 * If you are using the built-in Python on Mac OS X.
196 195
197 196 * If you are running Windows, which doesn't have a :mod:`readline` module.
198 197
199 198 When IPython is installed with :mod:`setuptools`, (e.g. with `easy_install`),
200 199 readline is added as a dependency on OS X, and PyReadline on Windows, and will
201 200 be installed on your system. However, if you do not use setuptools, you may
202 201 have to install one of these packages yourself.
203 202
204 203 On OS X, the built-in Python doesn't not have :mod:`readline` because of
205 204 license issues. Starting with OS X 10.5 (Leopard), Apple's built-in Python has
206 205 a BSD-licensed not-quite-compatible readline replacement. As of IPython 0.9,
207 206 many of the issues related to the differences between readline and libedit seem
208 207 to have been resolved. While you may find libedit sufficient, we have
209 208 occasional reports of bugs with it and several developers who use OS X as their
210 209 main environment consider libedit unacceptable for productive, regular use with
211 210 IPython.
212 211
213 212 Therefore, we *strongly* recommend that on OS X you get the full
214 213 :mod:`readline` module. We will *not* consider completion/history problems to
215 214 be bugs for IPython if you are using libedit.
216 215
217 216 To get a working :mod:`readline` module, just do (with :mod:`setuptools`
218 217 installed):
219 218
220 219 .. code-block:: bash
221 220
222 221 $ easy_install readline
223 222
224 223 .. note::
225 224
226 225 Other Python distributions on OS X (such as fink, MacPorts and the official
227 226 python.org binaries) already have readline installed so you likely don't
228 227 have to do this step.
229 228
230 229 If needed, the readline egg can be build and installed from source (see the
231 wiki page at http://ipython.scipy.org/moin/InstallationOSXLeopard).
230 wiki page at
231 http://web.archive.org/web/20090614162410/ipython.scipy.org/moin/InstallationOSXLeopard).
232 232
233 233 On Windows, you will need the PyReadline module. PyReadline is a separate,
234 234 Windows only implementation of readline that uses native Windows calls through
235 235 :mod:`ctypes`. The easiest way of installing PyReadline is you use the binary
236 236 installer available `here <https://launchpad.net/pyreadline/+download>`_.
237 237
238 238 nose
239 239 ----
240 240
241 241 To run the IPython test suite you will need the :mod:`nose` package. Nose
242 242 provides a great way of sniffing out and running all of the IPython tests. The
243 243 simplest way of getting nose, is to use :command:`easy_install`:
244 244
245 245 .. code-block:: bash
246 246
247 247 $ easy_install nose
248 248
249 249 Another way of getting this is to do:
250 250
251 251 .. code-block:: bash
252 252
253 253 $ easy_install ipython[test]
254 254
255 255 For more installation options, see the `nose website
256 256 <http://somethingaboutorange.com/mrl/projects/nose/>`_.
257 257
258 258 Once you have nose installed, you can run IPython's test suite using the
259 259 iptest command:
260 260
261 261 .. code-block:: bash
262 262
263 263 $ iptest
264 264
265 265 pexpect
266 266 -------
267 267
268 268 The pexpect_ package is used in IPython's :command:`irunner` script, as well as
269 269 for managing subprocesses. IPython now includes a version of pexpect in
270 270 :mod:`IPython.external`, but if you have installed pexpect, IPython will use
271 271 that instead. On Unix platforms (including OS X), just do:
272 272
273 273 .. code-block:: bash
274 274
275 275 $ easy_install pexpect
276 276
277 277 Windows users are out of luck as pexpect does not run there.
278 278
279 279 Dependencies for IPython.parallel (parallel computing)
280 280 ======================================================
281 281
282 282 :mod:`IPython.kernel` has been replaced by :mod:`IPython.parallel`,
283 283 which uses ZeroMQ for all communication.
284 284
285 285 IPython.parallel provides a nice architecture for parallel computing. The
286 286 main focus of this architecture is on interactive parallel computing. These
287 287 features require just one package: PyZMQ. See the next section for PyZMQ
288 288 details.
289 289
290 290 On a Unix style platform (including OS X), if you want to use
291 291 :mod:`setuptools`, you can just do:
292 292
293 293 .. code-block:: bash
294 294
295 295 $ easy_install ipython[zmq] # will include pyzmq
296 296
297 297 Security in IPython.parallel is provided by SSH tunnels. By default, Linux
298 298 and OSX clients will use the shell ssh command, but on Windows, we also
299 299 support tunneling with paramiko_.
300 300
301 301 Dependencies for IPython.zmq
302 302 ============================
303 303
304 304 pyzmq
305 305 -----
306 306
307 307 IPython 0.11 introduced some new functionality, including a two-process
308 308 execution model using ZeroMQ_ for communication. The Python bindings to ZeroMQ
309 309 are found in the PyZMQ_ project, which is easy_install-able once you have
310 310 ZeroMQ installed. If you are on Python 2.6 or 2.7 on OSX, or 2.7 on Windows,
311 311 pyzmq has eggs that include ZeroMQ itself.
312 312
313 313 IPython.zmq depends on pyzmq >= 2.1.4.
314 314
315 315 Dependencies for the IPython QT console
316 316 =======================================
317 317
318 318 pyzmq
319 319 -----
320 320
321 321 Like the :mod:`IPython.parallel` package, the QT Console requires ZeroMQ and
322 322 PyZMQ.
323 323
324 324 Qt
325 325 --
326 326
327 327 Also with 0.11, a new GUI was added using the work in :mod:`IPython.zmq`, which
328 328 can be launched with ``ipython qtconsole``. The GUI is built on Qt, and works
329 329 with either PyQt, which can be installed from the `PyQt website
330 330 <http://www.riverbankcomputing.co.uk/>`_, or `PySide
331 331 <http://www.pyside.org/>`_, from Nokia.
332 332
333 333 pygments
334 334 --------
335 335
336 336 The syntax-highlighting in ``ipython qtconsole`` is done with the pygments_
337 337 project, which is easy_install-able.
338 338
339 339 .. _installnotebook:
340 340
341 341 Dependencies for the IPython HTML notebook
342 342 ==========================================
343 343
344 344 The IPython notebook is a notebook-style web interface to IPython and can be
345 345 started withe command ``ipython notebook``.
346 346
347 347 pyzmq
348 348 -----
349 349
350 350 Like the :mod:`IPython.parallel` and :mod:`IPython.frontend.qt.console` packages,
351 351 the HTML notebook requires ZeroMQ and PyZMQ.
352 352
353 353 Tornado
354 354 -------
355 355
356 356 The IPython notebook uses the Tornado_ project for its HTTP server. Tornado 2.1
357 357 is required, in order to support current versions of browsers, due to an update
358 358 to the websocket protocol.
359 359
360 360
361 361 MathJax
362 362 -------
363 363
364 364 The IPython notebook uses the MathJax_ Javascript library for rendering LaTeX
365 365 in web browsers. Because MathJax is large, we don't include it with
366 366 IPython. Normally IPython will load MathJax from a CDN, but if you have a slow
367 367 network connection, or want to use LaTeX without an internet connection at all,
368 368 we do include a utility to aid in downloading MathJax and installing it into
369 369 the proper location::
370 370
371 371 from IPython.external.mathjax import install_mathjax
372 372 install_mathjax()
373 373
374 374 This function does require write access to the IPython install directory, so if you
375 375 have a system-wide Python install, it may need to be done from a ``sudo python`` session.
376 376
377 377 Browser Compatibility
378 378 ---------------------
379 379
380 380 The notebook uses WebSockets and the flexible box model. These features are
381 381 available in the following browsers:
382 382
383 383 * Chrome.
384 384 * Safari.
385 385 * Firefox 4 and 5. These browsers have WebSocket support, but it is disabled by
386 386 default. You can enable it by entering ``about:config`` in the URL bar and then
387 387 setting ``network.websocket.enabled`` and ``network.websocket.override-security-block``
388 388 to ``true``.
389 389 * Firefox 6. Starting with version 6, Firefox has WebSocket support enabled by default.
390 390
391 391 Internet Explorer 9 does not support WebSockets or the flexible box model, but
392 392 these features should appear in Internet Explorer 10.
393 393
394 394
395 395 .. _ZeroMQ: http://www.zeromq.org
396 396 .. _PyZMQ: https://github.com/zeromq/pyzmq
397 397 .. _paramiko: https://github.com/robey/paramiko
398 398 .. _pygments: http://pygments.org
399 399 .. _pexpect: http://www.noah.org/wiki/Pexpect
400 400 .. _Tornado: http://www.tornadoweb.org
401 401 .. _MathJax: http://www.mathjax.org
@@ -1,217 +1,218 b''
1 1 .. _htmlnotebook:
2 2
3 3 =========================
4 4 An HTML Notebook IPython
5 5 =========================
6 6
7 7 .. seealso::
8 8
9 9 :ref:`Installation requirements <installnotebook>` for the Notebook.
10 10
11 11 The IPython Notebook consists of two related components:
12 12
13 13 * An JSON based Notebook document format for recording and distributing
14 14 Python code and rich text.
15 15 * A web-based user interface for authoring and running notebook documents.
16 16
17 17 The Notebook can be used by starting the Notebook server with the
18 18 command::
19 19
20 20 $ ipython notebook
21 21
22 22 Note that by default, the notebook doesn't load pylab, it's just a normal
23 23 IPython session like any other. If you want pylab support, you must use::
24 24
25 25 $ ipython notebook --pylab
26 26
27 27 which will behave similar to the terminal and Qt console versions, using your
28 28 default matplotlib backend and providing floating interactive plot windows. If
29 29 you want inline figures, you must manually select the ``inline`` backend::
30 30
31 31 $ ipython notebook --pylab=inline
32 32
33 33 You can start the notebook to communicate via a secure protocol mode using a
34 34 self-signed certificate by typing::
35 35
36 36 $ ipython notebook --certfile=mycert.pem
37 37
38 38 .. note::
39 39
40 40 A self-signed certificate can be generated with openssl. For example:
41 41
42 42 openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout mycert.pem -out mycert.pem
43 43
44 44 This server uses the same ZeroMQ-based two process kernel architecture as
45 45 the QT Console as well Tornado for serving HTTP/S requests. Some of the main
46 46 features of the Notebook include:
47 47
48 48 * Display rich data (png/html/latex/svg) in the browser as a result of
49 49 computations.
50 50 * Compose text cells using HTML and Markdown.
51 51 * Import and export notebook documents in range of formats (.ipynb, .py).
52 52 * In browser syntax highlighting, tab completion and autoindentation.
53 53 * Inline matplotlib plots that can be stored in Notebook documents and opened
54 54 later.
55 55
56 56 See :ref:`our installation documentation <install_index>` for directions on
57 57 how to install the notebook and its dependencies.
58 58
59 59 .. note::
60 60
61 61 You can start more than one notebook server at the same time, if you want to
62 62 work on notebooks in different directories. By default the first notebook
63 63 server starts in port 8888, later notebooks search for random ports near
64 64 that one. You can also manually specify the port with the ``--port``
65 65 option.
66 66
67 67
68 68 Basic Usage
69 69 ===========
70 70
71 71 The landing page of the notebook server application, which we call the IPython
72 72 Notebook *dashboard*, shows the notebooks currently available in the directory
73 73 in which the application was started, and allows you to create new notebooks.
74 74
75 75 A notebook is a combination of two things:
76 76
77 77 1. An interactive session connected to an IPython kernel, controlled by a web
78 78 application that can send input to the console and display many types of output
79 79 (text, graphics, mathematics and more). This is the same kernel used by the
80 80 :ref:`Qt console <qtconsole>`, but in this case the web console sends input in
81 81 persistent cells that you can edit in-place instead of the vertically scrolling
82 82 terminal style used by the Qt console.
83 83
84 84 2. A document that can save the inputs and outputs of the session as well as
85 85 additional text that accompanies the code but is not meant for execution. In
86 86 this way, notebook files serve as a complete computational record of a session
87 87 including explanatory text and mathematics, code and resulting figures. These
88 88 documents are internally JSON files and are saved with the ``.ipynb``
89 89 extension.
90 90
91 91 If you have ever used the Mathematica or Sage notebooks (the latter is also
92 92 web-based__) you should feel right at home. If you have not, you should be
93 93 able to learn how to use it in just a few minutes.
94 94
95 95 .. __: http://sagenb.org
96 96
97 97
98 98 Creating and editing notebooks
99 99 ------------------------------
100 100
101 101 You can create new notebooks from the dashboard with the ``New Notebook``
102 102 button or open existing ones by clicking on their name. Once in a notebook,
103 103 your browser tab will reflect the name of that notebook (prefixed with "IPy:").
104 104 The URL for that notebook is not meant to be human-readable and is *not*
105 105 persistent across invocations of the notebook server.
106 106
107 107 You can also drag and drop into the area listing files any python file: it
108 108 will be imported into a notebook with the same name (but ``.ipynb`` extension)
109 109 located in the directory where the notebook server was started. This notebook
110 110 will consist of a single cell with all the code in the file, which you can
111 111 later manually partition into individual cells for gradual execution, add text
112 112 and graphics, etc.
113 113
114 114 Workflow and limitations
115 115 ------------------------
116 116
117 117 The normal workflow in a notebook is quite similar to a normal IPython session,
118 118 with the difference that you can edit a cell in-place multiple times until you
119 119 obtain the desired results rather than having to rerun separate scripts with
120 120 the ``%run`` magic (though magics also work in the notebook). Typically
121 121 you'll work on a problem in pieces, organizing related pieces into cells and
122 122 moving forward as previous parts work correctly. This is much more convenient
123 123 for interactive exploration than breaking up a computation into scripts that
124 124 must be executed together, especially if parts of them take a long time to run
125 (you can use tricks with namespaces and ``%run -i``, but we think the notebook
126 is a more natural solution for that kind of problem).
125 (In the traditional terminal-based IPython, you can use tricks with namespaces
126 and ``%run -i`` to achieve this capability, but we think the notebook is a more
127 natural solution for that kind of problem).
127 128
128 129 The only significant limitation the notebook currently has, compared to the qt
129 130 console, is that it can not run any code that expects input from the kernel
130 131 (such as scripts that call :func:`raw_input`). Very importantly, this means
131 132 that the ``%debug`` magic does *not* work in the notebook! We intend to
132 133 correct this limitation, but in the meantime, there is a way to debug problems
133 134 in the notebook: you can attach a Qt console to your existing notebook kernel,
134 135 and run ``%debug`` from the Qt console. Simply look for the lines in the
135 136 terminal where you started the kernel that read something like::
136 137
137 138 [IPKernelApp] To connect another client to this kernel, use:
138 139 [IPKernelApp] --existing --shell=53328 --iopub=53817 --stdin=34736 --hb=45543
139 140
140 141 and then start a qt console pointing to that kernel::
141 142
142 143 ipython qtconsole --existing --shell=53328 --iopub=53817 --stdin=34736 --hb=45543
143 144
144 145
145 146 Text input
146 147 ----------
147 148
148 In addition to code cells and the output they procude (such as figures), you
149 In addition to code cells and the output they produce (such as figures), you
149 150 can also type text not meant for execution. To type text, change the type of a
150 151 cell from ``Code`` to ``Markdown`` by using the button or the :kbd:`Ctrl-m m`
151 152 keybinding (see below). You can then type any text in Markdown_ syntax, as
152 153 well as mathematical expressions if you use ``$...$`` for inline math or
153 154 ``$$...$$`` for displayed math.
154 155
155 156 Exporting a notebook
156 157 --------------------
157 158
158 159 If you want to provide others with a static HTML or PDF view of your notebook,
159 160 use the ``Print`` button. This opens a static view of the document, which you
160 161 can print to PDF using your operating system's facilities, or save to a file
161 162 with your web browser's 'Save' option (note that typically, this will create
162 163 both an html file *and* a directory called `notebook_name_files` next to it
163 164 that contains all the necessary style information, so if you intend to share
164 165 this, you must send the directory along with the main html file).
165 166
166 167 The `Download` button lets you save a notebook file to the Download area
167 168 configured by your web browser (particularly useful if you are running the
168 169 notebook server on a remote host and need a file locally). The notebook is
169 170 saved by default with the ``.ipynb`` extension and the files contain JSON data
170 171 that is not meant for human editing or consumption. But you can always export
171 172 the input part of a notebook to a plain python script by choosing Python format
172 173 in the `Download` drop list. This removes all output and saves the text cells
173 174 in comment areas.
174 175
175 176 .. warning::
176 177
177 178 While in simple cases you can roundtrip a notebook to Python, edit the
178 179 python file and import it back without loss, this is in general *not
179 180 guaranteed to work at all*. As the notebook format evolves in complexity,
180 181 there will be attributes of the notebook that will not survive a roundtrip
181 182 through the Python form. You should think of the Python format as a way to
182 183 output a script version of a notebook and the import capabilities as a way
183 184 to load existing code to get a notebook started. But the Python version is
184 185 *not* an alternate notebook format.
185 186
186 187
187 188 Keyboard use
188 189 ------------
189 190
190 191 All actions in the notebook can be achieved with the mouse, but we have also
191 192 added keyboard shortcuts for the most common ones, so that productive use of
192 193 the notebook can be achieved with minimal mouse intervention. The main
193 194 key bindings you need to remember are:
194 195
195 196 * :kbd:`Shift-Enter`: execute the current cell (similar to the Qt console),
196 197 show output (if any) and create a new cell below. Note that in the notebook,
197 198 simply using :kbd:`Enter` *never* forces execution, it simply inserts a new
198 199 line in the current cell. Therefore, in the notebook you must always use
199 200 :kbd:`Shift-Enter` to get execution (or use the mouse and click on the ``Run
200 201 Selected`` button).
201 202
202 203 * :kbd:`Ctrl-Enter`: execute the current cell in "terminal mode", where any
203 output is shown but the cursor cursor stays in the current cell, whose input
204 output is shown but the cursor stays in the current cell, whose input
204 205 area is flushed empty. This is convenient to do quick in-place experiments
205 206 or query things like filesystem content without creating additional cells you
206 207 may not want saved in your notebook.
207 208
208 209 * :kbd:`Ctrl-m`: this is the prefix for all other keybindings, which consist
209 210 of an additional single letter. Type :kbd:`Ctrl-m h` (that is, the sole
210 211 letter :kbd:`h` after :kbd:`Ctrl-m`) and IPython will show you the remaining
211 212 available keybindings.
212 213
213 214
214 215 Notebook document format
215 216 ========================
216 217
217 218
@@ -1,100 +1,100 b''
1 1 .. _tips:
2 2
3 3 =====================
4 4 IPython Tips & Tricks
5 5 =====================
6 6
7 The `IPython cookbook <http://ipython.scipy.org/moin/Cookbook>`_ details more
7 The `IPython cookbook <http://wiki.ipython.org/index.php?title=Cookbook>`_ details more
8 8 things you can do with IPython.
9 9
10 10 .. This is not in the current version:
11 11
12 12
13 13 Embed IPython in your programs
14 14 ------------------------------
15 15
16 16 A few lines of code are enough to load a complete IPython inside your own
17 17 programs, giving you the ability to work with your data interactively after
18 18 automatic processing has been completed. See :ref:`the embedding section <embedding>`.
19 19
20 20 Run doctests
21 21 ------------
22 22
23 23 Run your doctests from within IPython for development and debugging. The
24 24 special %doctest_mode command toggles a mode where the prompt, output and
25 25 exceptions display matches as closely as possible that of the default Python
26 26 interpreter. In addition, this mode allows you to directly paste in code that
27 27 contains leading '>>>' prompts, even if they have extra leading whitespace
28 28 (as is common in doctest files). This combined with the ``%history -t`` call
29 29 to see your translated history allows for an easy doctest workflow, where you
30 30 can go from doctest to interactive execution to pasting into valid Python code
31 31 as needed.
32 32
33 33 Use IPython to present interactive demos
34 34 ----------------------------------------
35 35
36 36 Use the :class:`IPython.lib.demo.Demo` class to load any Python script as an interactive
37 37 demo. With a minimal amount of simple markup, you can control the execution of
38 38 the script, stopping as needed. See :ref:`here <interactive_demos>` for more.
39 39
40 40 Suppress output
41 41 ---------------
42 42
43 43 Put a ';' at the end of a line to suppress the printing of output. This is
44 44 useful when doing calculations which generate long output you are not
45 45 interested in seeing.
46 46
47 47 Lightweight 'version control'
48 48 -----------------------------
49 49
50 50 When you call ``%edit`` with no arguments, IPython opens an empty editor
51 51 with a temporary file, and it returns the contents of your editing
52 52 session as a string variable. Thanks to IPython's output caching
53 53 mechanism, this is automatically stored::
54 54
55 55 In [1]: %edit
56 56
57 57 IPython will make a temporary file named: /tmp/ipython_edit_yR-HCN.py
58 58
59 59 Editing... done. Executing edited code...
60 60
61 61 hello - this is a temporary file
62 62
63 63 Out[1]: "print 'hello - this is a temporary file'\n"
64 64
65 65 Now, if you call ``%edit -p``, IPython tries to open an editor with the
66 66 same data as the last time you used %edit. So if you haven't used %edit
67 67 in the meantime, this same contents will reopen; however, it will be
68 68 done in a new file. This means that if you make changes and you later
69 69 want to find an old version, you can always retrieve it by using its
70 70 output number, via '%edit _NN', where NN is the number of the output
71 71 prompt.
72 72
73 73 Continuing with the example above, this should illustrate this idea::
74 74
75 75 In [2]: edit -p
76 76
77 77 IPython will make a temporary file named: /tmp/ipython_edit_nA09Qk.py
78 78
79 79 Editing... done. Executing edited code...
80 80
81 81 hello - now I made some changes
82 82
83 83 Out[2]: "print 'hello - now I made some changes'\n"
84 84
85 85 In [3]: edit _1
86 86
87 87 IPython will make a temporary file named: /tmp/ipython_edit_gy6-zD.py
88 88
89 89 Editing... done. Executing edited code...
90 90
91 91 hello - this is a temporary file
92 92
93 93 IPython version control at work :)
94 94
95 95 Out[3]: "print 'hello - this is a temporary file'\nprint 'IPython version control at work :)'\n"
96 96
97 97
98 98 This section was written after a contribution by Alexander Belchenko on
99 99 the IPython user list.
100 100
@@ -1,145 +1,145 b''
1 1 .. _tutorial:
2 2
3 3 ======================
4 4 Introducing IPython
5 5 ======================
6 6
7 7 You don't need to know anything beyond Python to start using IPython – just type
8 8 commands as you would at the standard Python prompt. But IPython can do much
9 9 more than the standard prompt. Some key features are described here. For more
10 10 information, check the :ref:`tips page <tips>`, or look at examples in the
11 `IPython cookbook <http://ipython.scipy.org/moin/Cookbook>`_.
11 `IPython cookbook <http://wiki.ipython.org/index.php?title=Cookbook>`_.
12 12
13 13 If you've never used Python before, you might want to look at `the official
14 14 tutorial <http://docs.python.org/tutorial/>`_ or an alternative, `Dive into
15 15 Python <http://diveintopython.org/toc/index.html>`_.
16 16
17 17 Tab completion
18 18 ==============
19 19
20 20 Tab completion, especially for attributes, is a convenient way to explore the
21 21 structure of any object you're dealing with. Simply type ``object_name.<TAB>``
22 22 to view the object's attributes (see :ref:`the readline section <readline>` for
23 23 more). Besides Python objects and keywords, tab completion also works on file
24 24 and directory names.
25 25
26 26 Exploring your objects
27 27 ======================
28 28
29 29 Typing ``object_name?`` will print all sorts of details about any object,
30 30 including docstrings, function definition lines (for call arguments) and
31 31 constructor details for classes. To get specific information on an object, you
32 32 can use the magic commands ``%pdoc``, ``%pdef``, ``%psource`` and ``%pfile``
33 33
34 34 Magic functions
35 35 ===============
36 36
37 37 IPython has a set of predefined 'magic functions' that you can call with a
38 38 command line style syntax. These include:
39 39
40 40 - Functions that work with code: ``%run``, ``%edit``, ``%save``, ``%macro``,
41 41 ``%recall``, etc.
42 42 - Functions which affect the shell: ``%colors``, ``%xmode``, ``%autoindent``, etc.
43 43 - Other functions such as ``%reset``, ``%timeit`` or ``%paste``.
44 44
45 45 You can always call these using the % prefix, and if you're typing one on a line
46 46 by itself, you can omit even that::
47 47
48 48 run thescript.py
49 49
50 50 For more details on any magic function, call ``%somemagic?`` to read its
51 51 docstring. To see all the available magic functions, call ``%lsmagic``.
52 52
53 53 Running and Editing
54 54 -------------------
55 55
56 56 The %run magic command allows you to run any python script and load all of its
57 57 data directly into the interactive namespace. Since the file is re-read from
58 58 disk each time, changes you make to it are reflected immediately (unlike
59 59 imported modules, which have to be specifically reloaded). IPython also includes
60 60 :ref:`dreload <dreload>`, a recursive reload function.
61 61
62 62 %run has special flags for timing the execution of your scripts (-t), or for
63 63 running them under the control of either Python's pdb debugger (-d) or
64 64 profiler (-p).
65 65
66 66 The %edit command gives a reasonable approximation of multiline editing,
67 67 by invoking your favorite editor on the spot. IPython will execute the
68 68 code you type in there as if it were typed interactively.
69 69
70 70 Debugging
71 71 ---------
72 72
73 73 After an exception occurs, you can call ``%debug`` to jump into the Python
74 74 debugger (pdb) and examine the problem. Alternatively, if you call ``%pdb``,
75 75 IPython will automatically start the debugger on any uncaught exception. You can
76 76 print variables, see code, execute statements and even walk up and down the
77 77 call stack to track down the true source of the problem. Running programs with
78 78 %run and pdb active can be an efficient way to develop and debug code, in many
79 79 cases eliminating the need for print statements or external debugging tools.
80 80
81 81 You can also step through a program from the beginning by calling
82 82 ``%run -d theprogram.py``.
83 83
84 84 History
85 85 =======
86 86
87 87 IPython stores both the commands you enter, and the results it produces. You
88 88 can easily go through previous commands with the up- and down-arrow keys, or
89 89 access your history in more sophisticated ways.
90 90
91 91 Input and output history are kept in variables called ``In`` and ``Out``, which
92 92 can both be indexed by the prompt number on which they occurred, e.g. ``In[4]``.
93 93 The last three objects in output history are also kept in variables named ``_``,
94 94 ``__`` and ``___``.
95 95
96 96 You can use the ``%history`` magic function to examine past input and output.
97 97 Input history from previous sessions is saved in a database, and IPython can be
98 98 configured to save output history.
99 99
100 100 Several other magic functions can use your input history, including ``%edit``,
101 101 ``%rerun``, ``%recall``, ``%macro``, ``%save`` and ``%pastebin``. You can use a
102 102 standard format to refer to lines::
103 103
104 104 %pastebin 3 18-20 ~1/1-5
105 105
106 106 This will take line 3 and lines 18 to 20 from the current session, and lines
107 107 1-5 from the previous session.
108 108
109 109 System shell commands
110 110 =====================
111 111
112 112 To run any command at the system shell, simply prefix it with !, e.g.::
113 113
114 114 !ping www.bbc.co.uk
115 115
116 116 You can capture the output into a Python list, e.g.: ``files = !ls``. To pass
117 117 the values of Python variables or expressions to system commands, prefix them
118 118 with $: ``!grep -rF $pattern ipython/*``. See :ref:`our shell section
119 119 <system_shell_access>` for more details.
120 120
121 121 Define your own system aliases
122 122 ------------------------------
123 123
124 124 It's convenient to have aliases to the system commands you use most often.
125 125 This allows you to work seamlessly from inside IPython with the same commands
126 126 you are used to in your system shell. IPython comes with some pre-defined
127 127 aliases and a complete system for changing directories, both via a stack (see
128 128 %pushd, %popd and %dhist) and via direct %cd. The latter keeps a history of
129 129 visited directories and allows you to go to any previously visited one.
130 130
131 131
132 132 Configuration
133 133 =============
134 134
135 135 Much of IPython can be tweaked through configuration. To get started, use the
136 136 command ``ipython profile create`` to produce the default config files. These
137 137 will be placed in :file:`~/.ipython/profile_default` or
138 138 :file:`~/.config/ipython/profile_default`, and contain comments explaining what
139 139 the various options do.
140 140
141 141 Profiles allow you to use IPython for different tasks, keeping separate config
142 142 files and history for each one. More details in :ref:`the profiles section
143 143 <profiles>`.
144 144
145 145
@@ -1,75 +1,75 b''
1 1 .. This (-*- rst -*-) format file contains commonly used link targets
2 2 and name substitutions. It may be included in many files,
3 3 therefore it should only contain link targets and name
4 4 substitutions. Try grepping for "^\.\. _" to find plausible
5 5 candidates for this list.
6 6
7 7 NOTE: this file must have an extension *opposite* to that of the main reST
8 8 files in the manuals, so that we can include it with ".. include::"
9 9 directives, but without triggering warnings from Sphinx for not being listed
10 10 in any toctree. Since IPython uses .txt for the main files, this wone will
11 11 use .rst.
12 12
13 13 NOTE: reST targets are
14 14 __not_case_sensitive__, so only one target definition is needed for
15 15 ipython, IPython, etc.
16 16
17 17 NOTE: Some of these were taken from the nipy links compendium.
18 18
19 19 .. Main IPython links
20 20 .. _ipython: http://ipython.org
21 21 .. _`ipython manual`: http://ipython.org/documentation.html
22 22 .. _ipython_github: http://github.com/ipython/ipython/
23 23 .. _ipython_github_repo: http://github.com/ipython/ipython/
24 .. _ipython_downloads: http://ipython.scipy.org/dist
24 .. _ipython_downloads: http://ipython.org/download.html
25 25 .. _ipython_pypi: http://pypi.python.org/pypi/ipython
26 26
27 27 .. _ZeroMQ: http://zeromq.org
28 28
29 29 .. Documentation tools and related links
30 30 .. _graphviz: http://www.graphviz.org
31 31 .. _Sphinx: http://sphinx.pocoo.org
32 32 .. _`Sphinx reST`: http://sphinx.pocoo.org/rest.html
33 33 .. _sampledoc: http://matplotlib.sourceforge.net/sampledoc
34 34 .. _reST: http://docutils.sourceforge.net/rst.html
35 35 .. _docutils: http://docutils.sourceforge.net
36 36 .. _lyx: http://www.lyx.org
37 37 .. _pep8: http://www.python.org/dev/peps/pep-0008
38 .. _numpy_coding_guide: http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines
38 .. _numpy_coding_guide: https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
39 39
40 40 .. Licenses
41 41 .. _GPL: http://www.gnu.org/licenses/gpl.html
42 42 .. _BSD: http://www.opensource.org/licenses/bsd-license.php
43 43 .. _LGPL: http://www.gnu.org/copyleft/lesser.html
44 44
45 45 .. Other python projects
46 46 .. _numpy: http://numpy.scipy.org
47 47 .. _scipy: http://www.scipy.org
48 48 .. _scipy_conference: http://conference.scipy.org
49 49 .. _matplotlib: http://matplotlib.sourceforge.net
50 50 .. _pythonxy: http://www.pythonxy.com
51 51 .. _ETS: http://code.enthought.com/projects/tool-suite.php
52 52 .. _EPD: http://www.enthought.com/products/epd.php
53 53 .. _python: http://www.python.org
54 54 .. _mayavi: http://code.enthought.com/projects/mayavi
55 55 .. _sympy: http://code.google.com/p/sympy
56 56 .. _sage: http://sagemath.org
57 57 .. _pydy: http://code.google.com/p/pydy
58 58 .. _vpython: http://vpython.org
59 59 .. _cython: http://cython.org
60 60 .. _software carpentry: http://software-carpentry.org
61 61
62 62 .. Not so python scientific computing tools
63 63 .. _matlab: http://www.mathworks.com
64 64 .. _VTK: http://vtk.org
65 65
66 66 .. Other organizations
67 67 .. _enthought: http://www.enthought.com
68 68 .. _kitware: http://www.kitware.com
69 69 .. _netlib: http://netlib.org
70 70
71 71 .. Other tools and projects
72 72 .. _indefero: http://www.indefero.net
73 73 .. _git: http://git-scm.com
74 74 .. _github: http://github.com
75 75 .. _MarkDown: http://daringfireball.net/projects/markdown/
@@ -1,360 +1,360 b''
1 1 =============
2 2 0.10 series
3 3 =============
4 4
5 5 Release 0.10.2
6 6 ==============
7 7
8 8 IPython 0.10.2 was released April 9, 2011. This is a minor bugfix release that
9 9 preserves backward compatibility. At this point, all IPython development
10 10 resources are focused on the 0.11 series that includes a complete architectural
11 11 restructuring of the project as well as many new capabilities, so this is
12 12 likely to be the last release of the 0.10.x series. We have tried to fix all
13 13 major bugs in this series so that it remains a viable platform for those not
14 14 ready yet to transition to the 0.11 and newer codebase (since that will require
15 15 some porting effort, as a number of APIs have changed).
16 16
17 17 Thus, we are not opening a 0.10.3 active development branch yet, but if the
18 18 user community requires new patches and is willing to maintain/release such a
19 19 branch, we'll be happy to host it on the IPython github repositories.
20 20
21 21 Highlights of this release:
22 22
23 23 - The main one is the closing of github ticket #185, a major regression we had
24 24 in 0.10.1 where pylab mode with GTK (or gthread) was not working correctly,
25 25 hence plots were blocking with GTK. Since this is the default matplotlib
26 26 backend on Unix systems, this was a major annoyance for many users. Many
27 27 thanks to Paul Ivanov for helping resolve this issue.
28 28
29 29 - Fix IOError bug on Windows when used with -gthread.
30 30 - Work robustly if $HOME is missing from environment.
31 31 - Better POSIX support in ssh scripts (remove bash-specific idioms).
32 32 - Improved support for non-ascii characters in log files.
33 33 - Work correctly in environments where GTK can be imported but not started
34 34 (such as a linux text console without X11).
35 35
36 36 For this release we merged 24 commits, contributed by the following people
37 37 (please let us know if we ommitted your name and we'll gladly fix this in the
38 38 notes for the future):
39 39
40 40 * Fernando Perez
41 41 * MinRK
42 42 * Paul Ivanov
43 43 * Pieter Cristiaan de Groot
44 44 * TvrtkoM
45 45
46 46 Release 0.10.1
47 47 ==============
48 48
49 49 IPython 0.10.1 was released October 11, 2010, over a year after version 0.10.
50 50 This is mostly a bugfix release, since after version 0.10 was released, the
51 51 development team's energy has been focused on the 0.11 series. We have
52 52 nonetheless tried to backport what fixes we could into 0.10.1, as it remains
53 53 the stable series that many users have in production systems they rely on.
54 54
55 55 Since the 0.11 series changes many APIs in backwards-incompatible ways, we are
56 56 willing to continue maintaining the 0.10.x series. We don't really have time
57 57 to actively write new code for 0.10.x, but we are happy to accept patches and
58 58 pull requests on the IPython `github site`_. If sufficient contributions are
59 59 made that improve 0.10.1, we will roll them into future releases. For this
60 60 purpose, we will have a branch called 0.10.2 on github, on which you can base
61 61 your contributions.
62 62
63 63 .. _github site: http://github.com/ipython
64 64
65 65 For this release, we applied approximately 60 commits totaling a diff of over
66 66 7000 lines::
67 67
68 68 (0.10.1)amirbar[dist]> git diff --oneline rel-0.10.. | wc -l
69 69 7296
70 70
71 71 Highlights of this release:
72 72
73 73 - The only significant new feature is that IPython's parallel computing
74 74 machinery now supports natively the Sun Grid Engine and LSF schedulers. This
75 75 work was a joint contribution from Justin Riley, Satra Ghosh and Matthieu
76 76 Brucher, who put a lot of work into it. We also improved traceback handling
77 77 in remote tasks, as well as providing better control for remote task IDs.
78 78
79 79 - New IPython Sphinx directive contributed by John Hunter. You can use this
80 80 directive to mark blocks in reSructuredText documents as containing IPython
81 81 syntax (including figures) and the will be executed during the build:
82 82
83 83 .. sourcecode:: ipython
84 84
85 85 In [2]: plt.figure() # ensure a fresh figure
86 86
87 87 @savefig psimple.png width=4in
88 88 In [3]: plt.plot([1,2,3])
89 89 Out[3]: [<matplotlib.lines.Line2D object at 0x9b74d8c>]
90 90
91 91 - Various fixes to the standalone ipython-wx application.
92 92
93 93 - We now ship internally the excellent argparse library, graciously licensed
94 94 under BSD terms by Steven Bethard. Now (2010) that argparse has become part
95 95 of Python 2.7 this will be less of an issue, but Steven's relicensing allowed
96 96 us to start updating IPython to using argparse well before Python 2.7. Many
97 97 thanks!
98 98
99 99 - Robustness improvements so that IPython doesn't crash if the readline library
100 100 is absent (though obviously a lot of functionality that requires readline
101 101 will not be available).
102 102
103 103 - Improvements to tab completion in Emacs with Python 2.6.
104 104
105 105 - Logging now supports timestamps (see ``%logstart?`` for full details).
106 106
107 107 - A long-standing and quite annoying bug where parentheses would be added to
108 108 ``print`` statements, under Python 2.5 and 2.6, was finally fixed.
109 109
110 110 - Improved handling of libreadline on Apple OSX.
111 111
112 112 - Fix ``reload`` method of IPython demos, which was broken.
113 113
114 114 - Fixes for the ipipe/ibrowse system on OSX.
115 115
116 116 - Fixes for Zope profile.
117 117
118 118 - Fix %timeit reporting when the time is longer than 1000s.
119 119
120 120 - Avoid lockups with ? or ?? in SunOS, due to a bug in termios.
121 121
122 122 - The usual assortment of miscellaneous bug fixes and small improvements.
123 123
124 124 The following people contributed to this release (please let us know if we
125 125 omitted your name and we'll gladly fix this in the notes for the future):
126 126
127 127 * Beni Cherniavsky
128 128 * Boyd Waters.
129 129 * David Warde-Farley
130 130 * Fernando Perez
131 131 * GΓΆkhan Sever
132 132 * John Hunter
133 133 * Justin Riley
134 134 * Kiorky
135 135 * Laurent Dufrechou
136 136 * Mark E. Smith
137 137 * Matthieu Brucher
138 138 * Satrajit Ghosh
139 139 * Sebastian Busch
140 140 * VΓ‘clav Ε milauer
141 141
142 142 Release 0.10
143 143 ============
144 144
145 145 This release brings months of slow but steady development, and will be the last
146 146 before a major restructuring and cleanup of IPython's internals that is already
147 147 under way. For this reason, we hope that 0.10 will be a stable and robust
148 148 release so that while users adapt to some of the API changes that will come
149 149 with the refactoring that will become IPython 0.11, they can safely use 0.10 in
150 150 all existing projects with minimal changes (if any).
151 151
152 152 IPython 0.10 is now a medium-sized project, with roughly (as reported by David
153 153 Wheeler's :command:`sloccount` utility) 40750 lines of Python code, and a diff
154 154 between 0.9.1 and this release that contains almost 28000 lines of code and
155 155 documentation. Our documentation, in PDF format, is a 495-page long PDF
156 156 document (also available in HTML format, both generated from the same sources).
157 157
158 158 Many users and developers contributed code, features, bug reports and ideas to
159 159 this release. Please do not hesitate in contacting us if we've failed to
160 160 acknowledge your contribution here. In particular, for this release we have
161 161 contribution from the following people, a mix of new and regular names (in
162 162 alphabetical order by first name):
163 163
164 164 * Alexander Clausen: fix #341726.
165 165 * Brian Granger: lots of work everywhere (features, bug fixes, etc).
166 166 * Daniel Ashbrook: bug report on MemoryError during compilation, now fixed.
167 167 * Darren Dale: improvements to documentation build system, feedback, design
168 168 ideas.
169 169 * Fernando Perez: various places.
170 170 * GaΓ«l Varoquaux: core code, ipythonx GUI, design discussions, etc. Lots...
171 171 * John Hunter: suggestions, bug fixes, feedback.
172 172 * Jorgen Stenarson: work on many fronts, tests, fixes, win32 support, etc.
173 173 * Laurent DufrΓ©chou: many improvements to ipython-wx standalone app.
174 174 * Lukasz Pankowski: prefilter, `%edit`, demo improvements.
175 175 * Matt Foster: TextMate support in `%edit`.
176 176 * Nathaniel Smith: fix #237073.
177 177 * Pauli Virtanen: fixes and improvements to extensions, documentation.
178 178 * Prabhu Ramachandran: improvements to `%timeit`.
179 179 * Robert Kern: several extensions.
180 180 * Sameer D'Costa: help on critical bug #269966.
181 181 * Stephan Peijnik: feedback on Debian compliance and many man pages.
182 182 * Steven Bethard: we are now shipping his :mod:`argparse` module.
183 183 * Tom Fetherston: many improvements to :mod:`IPython.demo` module.
184 184 * Ville Vainio: lots of work everywhere (features, bug fixes, etc).
185 185 * Vishal Vasta: ssh support in ipcluster.
186 186 * Walter Doerwald: work on the :mod:`IPython.ipipe` system.
187 187
188 188 Below we give an overview of new features, bug fixes and backwards-incompatible
189 189 changes. For a detailed account of every change made, feel free to view the
190 190 project log with :command:`bzr log`.
191 191
192 192 New features
193 193 ------------
194 194
195 195 * New `%paste` magic automatically extracts current contents of clipboard and
196 196 pastes it directly, while correctly handling code that is indented or
197 197 prepended with `>>>` or `...` python prompt markers. A very useful new
198 198 feature contributed by Robert Kern.
199 199
200 200 * IPython 'demos', created with the :mod:`IPython.demo` module, can now be
201 201 created from files on disk or strings in memory. Other fixes and
202 202 improvements to the demo system, by Tom Fetherston.
203 203
204 204 * Added :func:`find_cmd` function to :mod:`IPython.platutils` module, to find
205 205 commands in a cross-platform manner.
206 206
207 207 * Many improvements and fixes to GaΓ«l Varoquaux's :command:`ipythonx`, a
208 208 WX-based lightweight IPython instance that can be easily embedded in other WX
209 209 applications. These improvements have made it possible to now have an
210 210 embedded IPython in Mayavi and other tools.
211 211
212 212 * :class:`MultiengineClient` objects now have a :meth:`benchmark` method.
213 213
214 214 * The manual now includes a full set of auto-generated API documents from the
215 215 code sources, using Sphinx and some of our own support code. We are now
216 216 using the `Numpy Documentation Standard`_ for all docstrings, and we have
217 217 tried to update as many existing ones as possible to this format.
218 218
219 219 * The new :mod:`IPython.Extensions.ipy_pretty` extension by Robert Kern
220 220 provides configurable pretty-printing.
221 221
222 222 * Many improvements to the :command:`ipython-wx` standalone WX-based IPython
223 223 application by Laurent DufrΓ©chou. It can optionally run in a thread, and
224 224 this can be toggled at runtime (allowing the loading of Matplotlib in a
225 225 running session without ill effects).
226 226
227 227 * IPython includes a copy of Steven Bethard's argparse_ in the
228 228 :mod:`IPython.external` package, so we can use it internally and it is also
229 229 available to any IPython user. By installing it in this manner, we ensure
230 230 zero conflicts with any system-wide installation you may already have while
231 231 minimizing external dependencies for new users. In IPython 0.10, We ship
232 232 argparse version 1.0.
233 233
234 234 * An improved and much more robust test suite, that runs groups of tests in
235 235 separate subprocesses using either Nose or Twisted's :command:`trial` runner
236 236 to ensure proper management of Twisted-using code. The test suite degrades
237 237 gracefully if optional dependencies are not available, so that the
238 238 :command:`iptest` command can be run with only Nose installed and nothing
239 239 else. We also have more and cleaner test decorators to better select tests
240 240 depending on runtime conditions, do setup/teardown, etc.
241 241
242 242 * The new ipcluster now has a fully working ssh mode that should work on
243 243 Linux, Unix and OS X. Thanks to Vishal Vatsa for implementing this!
244 244
245 245 * The wonderful TextMate editor can now be used with %edit on OS X. Thanks
246 246 to Matt Foster for this patch.
247 247
248 248 * The documentation regarding parallel uses of IPython, including MPI and PBS,
249 249 has been significantly updated and improved.
250 250
251 251 * The developer guidelines in the documentation have been updated to explain
252 252 our workflow using :command:`bzr` and Launchpad.
253 253
254 254 * Fully refactored :command:`ipcluster` command line program for starting
255 255 IPython clusters. This new version is a complete rewrite and 1) is fully
256 256 cross platform (we now use Twisted's process management), 2) has much
257 257 improved performance, 3) uses subcommands for different types of clusters, 4)
258 258 uses argparse for parsing command line options, 5) has better support for
259 259 starting clusters using :command:`mpirun`, 6) has experimental support for
260 260 starting engines using PBS. It can also reuse FURL files, by appropriately
261 261 passing options to its subcommands. However, this new version of ipcluster
262 262 should be considered a technology preview. We plan on changing the API in
263 263 significant ways before it is final.
264 264
265 265 * Full description of the security model added to the docs.
266 266
267 267 * cd completer: show bookmarks if no other completions are available.
268 268
269 269 * sh profile: easy way to give 'title' to prompt: assign to variable
270 270 '_prompt_title'. It looks like this::
271 271
272 272 [~]|1> _prompt_title = 'sudo!'
273 273 sudo![~]|2>
274 274
275 275 * %edit: If you do '%edit pasted_block', pasted_block variable gets updated
276 276 with new data (so repeated editing makes sense)
277 277
278 .. _Numpy Documentation Standard: http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines#docstring-standard
278 .. _Numpy Documentation Standard: https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt#docstring-standard
279 279
280 280 .. _argparse: http://code.google.com/p/argparse/
281 281
282 282 Bug fixes
283 283 ---------
284 284
285 285 * Fix #368719, removed top-level debian/ directory to make the job of Debian
286 286 packagers easier.
287 287
288 288 * Fix #291143 by including man pages contributed by Stephan Peijnik from the
289 289 Debian project.
290 290
291 291 * Fix #358202, effectively a race condition, by properly synchronizing file
292 292 creation at cluster startup time.
293 293
294 294 * `%timeit` now handles correctly functions that take a long time to execute
295 295 even the first time, by not repeating them.
296 296
297 297 * Fix #239054, releasing of references after exiting.
298 298
299 299 * Fix #341726, thanks to Alexander Clausen.
300 300
301 301 * Fix #269966. This long-standing and very difficult bug (which is actually a
302 302 problem in Python itself) meant long-running sessions would inevitably grow
303 303 in memory size, often with catastrophic consequences if users had large
304 304 objects in their scripts. Now, using `%run` repeatedly should not cause any
305 305 memory leaks. Special thanks to John Hunter and Sameer D'Costa for their
306 306 help with this bug.
307 307
308 308 * Fix #295371, bug in `%history`.
309 309
310 310 * Improved support for py2exe.
311 311
312 312 * Fix #270856: IPython hangs with PyGTK
313 313
314 314 * Fix #270998: A magic with no docstring breaks the '%magic magic'
315 315
316 316 * fix #271684: -c startup commands screw up raw vs. native history
317 317
318 318 * Numerous bugs on Windows with the new ipcluster have been fixed.
319 319
320 320 * The ipengine and ipcontroller scripts now handle missing furl files
321 321 more gracefully by giving better error messages.
322 322
323 323 * %rehashx: Aliases no longer contain dots. python3.0 binary
324 324 will create alias python30. Fixes:
325 325 #259716 "commands with dots in them don't work"
326 326
327 327 * %cpaste: %cpaste -r repeats the last pasted block.
328 328 The block is assigned to pasted_block even if code
329 329 raises exception.
330 330
331 331 * Bug #274067 'The code in get_home_dir is broken for py2exe' was
332 332 fixed.
333 333
334 334 * Many other small bug fixes not listed here by number (see the bzr log for
335 335 more info).
336 336
337 337 Backwards incompatible changes
338 338 ------------------------------
339 339
340 340 * `ipykit` and related files were unmaintained and have been removed.
341 341
342 342 * The :func:`IPython.genutils.doctest_reload` does not actually call
343 343 `reload(doctest)` anymore, as this was causing many problems with the test
344 344 suite. It still resets `doctest.master` to None.
345 345
346 346 * While we have not deliberately broken Python 2.4 compatibility, only minor
347 347 testing was done with Python 2.4, while 2.5 and 2.6 were fully tested. But
348 348 if you encounter problems with 2.4, please do report them as bugs.
349 349
350 350 * The :command:`ipcluster` now requires a mode argument; for example to start a
351 351 cluster on the local machine with 4 engines, you must now type::
352 352
353 353 $ ipcluster local -n 4
354 354
355 355 * The controller now has a ``-r`` flag that needs to be used if you want to
356 356 reuse existing furl files. Otherwise they are deleted (the default).
357 357
358 358 * Remove ipy_leo.py. You can use :command:`easy_install ipython-extension` to
359 359 get it. (done to decouple it from ipython release cycle)
360 360
General Comments 0
You need to be logged in to leave comments. Login now