##// END OF EJS Templates
Initialize input_splitter automatically via traitlets mechanism.
Fernando Perez -
Show More
@@ -1,2554 +1,2555 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2010 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import exceptions
26 26 import new
27 27 import os
28 28 import re
29 29 import string
30 30 import sys
31 31 import tempfile
32 32 from contextlib import nested
33 33
34 34 from IPython.config.configurable import Configurable
35 35 from IPython.core import debugger, oinspect
36 36 from IPython.core import history as ipcorehist
37 37 from IPython.core import page
38 38 from IPython.core import prefilter
39 39 from IPython.core import shadowns
40 40 from IPython.core import ultratb
41 41 from IPython.core.alias import AliasManager
42 42 from IPython.core.builtin_trap import BuiltinTrap
43 43 from IPython.core.display_trap import DisplayTrap
44 44 from IPython.core.displayhook import DisplayHook
45 45 from IPython.core.error import TryNext, UsageError
46 46 from IPython.core.extensions import ExtensionManager
47 47 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 48 from IPython.core.inputlist import InputList
49 49 from IPython.core.inputsplitter import IPythonInputSplitter
50 50 from IPython.core.logger import Logger
51 51 from IPython.core.magic import Magic
52 52 from IPython.core.payload import PayloadManager
53 53 from IPython.core.plugin import PluginManager
54 54 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
55 55 from IPython.external.Itpl import ItplNS
56 56 from IPython.utils import PyColorize
57 57 from IPython.utils import io
58 58 from IPython.utils import pickleshare
59 59 from IPython.utils.doctestreload import doctest_reload
60 60 from IPython.utils.io import ask_yes_no, rprint
61 61 from IPython.utils.ipstruct import Struct
62 62 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
63 63 from IPython.utils.process import system, getoutput
64 64 from IPython.utils.strdispatch import StrDispatch
65 65 from IPython.utils.syspathcontext import prepended_to_syspath
66 66 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
67 67 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
68 68 List, Unicode, Instance, Type)
69 69 from IPython.utils.warn import warn, error, fatal
70 70 import IPython.core.hooks
71 71
72 72 #-----------------------------------------------------------------------------
73 73 # Globals
74 74 #-----------------------------------------------------------------------------
75 75
76 76 # compiled regexps for autoindent management
77 77 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
78 78
79 79 #-----------------------------------------------------------------------------
80 80 # Utilities
81 81 #-----------------------------------------------------------------------------
82 82
83 83 # store the builtin raw_input globally, and use this always, in case user code
84 84 # overwrites it (like wx.py.PyShell does)
85 85 raw_input_original = raw_input
86 86
87 87 def softspace(file, newvalue):
88 88 """Copied from code.py, to remove the dependency"""
89 89
90 90 oldvalue = 0
91 91 try:
92 92 oldvalue = file.softspace
93 93 except AttributeError:
94 94 pass
95 95 try:
96 96 file.softspace = newvalue
97 97 except (AttributeError, TypeError):
98 98 # "attribute-less object" or "read-only attributes"
99 99 pass
100 100 return oldvalue
101 101
102 102
103 103 def no_op(*a, **kw): pass
104 104
105 105 class SpaceInInput(exceptions.Exception): pass
106 106
107 107 class Bunch: pass
108 108
109 109
110 110 def get_default_colors():
111 111 if sys.platform=='darwin':
112 112 return "LightBG"
113 113 elif os.name=='nt':
114 114 return 'Linux'
115 115 else:
116 116 return 'Linux'
117 117
118 118
119 119 class SeparateStr(Str):
120 120 """A Str subclass to validate separate_in, separate_out, etc.
121 121
122 122 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
123 123 """
124 124
125 125 def validate(self, obj, value):
126 126 if value == '0': value = ''
127 127 value = value.replace('\\n','\n')
128 128 return super(SeparateStr, self).validate(obj, value)
129 129
130 130 class MultipleInstanceError(Exception):
131 131 pass
132 132
133 133
134 134 #-----------------------------------------------------------------------------
135 135 # Main IPython class
136 136 #-----------------------------------------------------------------------------
137 137
138 138
139 139 class InteractiveShell(Configurable, Magic):
140 140 """An enhanced, interactive shell for Python."""
141 141
142 142 _instance = None
143 143 autocall = Enum((0,1,2), default_value=1, config=True)
144 144 # TODO: remove all autoindent logic and put into frontends.
145 145 # We can't do this yet because even runlines uses the autoindent.
146 146 autoindent = CBool(True, config=True)
147 147 automagic = CBool(True, config=True)
148 148 cache_size = Int(1000, config=True)
149 149 color_info = CBool(True, config=True)
150 150 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
151 151 default_value=get_default_colors(), config=True)
152 152 debug = CBool(False, config=True)
153 153 deep_reload = CBool(False, config=True)
154 154 displayhook_class = Type(DisplayHook)
155 155 exit_now = CBool(False)
156 156 filename = Str("<ipython console>")
157 157 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
158 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter')
158
159 # Input splitter, to split entire cells of input into either individual
160 # interactive statements or whole blocks.
161 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
162 (), {})
159 163 logstart = CBool(False, config=True)
160 164 logfile = Str('', config=True)
161 165 logappend = Str('', config=True)
162 166 object_info_string_level = Enum((0,1,2), default_value=0,
163 167 config=True)
164 168 pdb = CBool(False, config=True)
165 169
166 170 pprint = CBool(True, config=True)
167 171 profile = Str('', config=True)
168 172 prompt_in1 = Str('In [\\#]: ', config=True)
169 173 prompt_in2 = Str(' .\\D.: ', config=True)
170 174 prompt_out = Str('Out[\\#]: ', config=True)
171 175 prompts_pad_left = CBool(True, config=True)
172 176 quiet = CBool(False, config=True)
173 177
174 178 # The readline stuff will eventually be moved to the terminal subclass
175 179 # but for now, we can't do that as readline is welded in everywhere.
176 180 readline_use = CBool(True, config=True)
177 181 readline_merge_completions = CBool(True, config=True)
178 182 readline_omit__names = Enum((0,1,2), default_value=0, config=True)
179 183 readline_remove_delims = Str('-/~', config=True)
180 184 readline_parse_and_bind = List([
181 185 'tab: complete',
182 186 '"\C-l": clear-screen',
183 187 'set show-all-if-ambiguous on',
184 188 '"\C-o": tab-insert',
185 189 '"\M-i": " "',
186 190 '"\M-o": "\d\d\d\d"',
187 191 '"\M-I": "\d\d\d\d"',
188 192 '"\C-r": reverse-search-history',
189 193 '"\C-s": forward-search-history',
190 194 '"\C-p": history-search-backward',
191 195 '"\C-n": history-search-forward',
192 196 '"\e[A": history-search-backward',
193 197 '"\e[B": history-search-forward',
194 198 '"\C-k": kill-line',
195 199 '"\C-u": unix-line-discard',
196 200 ], allow_none=False, config=True)
197 201
198 202 # TODO: this part of prompt management should be moved to the frontends.
199 203 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
200 204 separate_in = SeparateStr('\n', config=True)
201 205 separate_out = SeparateStr('', config=True)
202 206 separate_out2 = SeparateStr('', config=True)
203 207 wildcards_case_sensitive = CBool(True, config=True)
204 208 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
205 209 default_value='Context', config=True)
206 210
207 211 # Subcomponents of InteractiveShell
208 212 alias_manager = Instance('IPython.core.alias.AliasManager')
209 213 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
210 214 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
211 215 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
212 216 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
213 217 plugin_manager = Instance('IPython.core.plugin.PluginManager')
214 218 payload_manager = Instance('IPython.core.payload.PayloadManager')
215 219
216 220 # Private interface
217 221 _post_execute = set()
218 222
219 223 def __init__(self, config=None, ipython_dir=None,
220 224 user_ns=None, user_global_ns=None,
221 225 custom_exceptions=((), None)):
222 226
223 227 # This is where traits with a config_key argument are updated
224 228 # from the values on config.
225 229 super(InteractiveShell, self).__init__(config=config)
226 230
227 231 # These are relatively independent and stateless
228 232 self.init_ipython_dir(ipython_dir)
229 233 self.init_instance_attrs()
230 234 self.init_environment()
231 235
232 236 # Create namespaces (user_ns, user_global_ns, etc.)
233 237 self.init_create_namespaces(user_ns, user_global_ns)
234 238 # This has to be done after init_create_namespaces because it uses
235 239 # something in self.user_ns, but before init_sys_modules, which
236 240 # is the first thing to modify sys.
237 241 # TODO: When we override sys.stdout and sys.stderr before this class
238 242 # is created, we are saving the overridden ones here. Not sure if this
239 243 # is what we want to do.
240 244 self.save_sys_module_state()
241 245 self.init_sys_modules()
242 246
243 247 self.init_history()
244 248 self.init_encoding()
245 249 self.init_prefilter()
246 250
247 251 Magic.__init__(self, self)
248 252
249 253 self.init_syntax_highlighting()
250 254 self.init_hooks()
251 255 self.init_pushd_popd_magic()
252 256 # self.init_traceback_handlers use to be here, but we moved it below
253 257 # because it and init_io have to come after init_readline.
254 258 self.init_user_ns()
255 259 self.init_logger()
256 260 self.init_alias()
257 261 self.init_builtins()
258 262
259 263 # pre_config_initialization
260 264 self.init_shadow_hist()
261 265
262 266 # The next section should contain everything that was in ipmaker.
263 267 self.init_logstart()
264 268
265 269 # The following was in post_config_initialization
266 270 self.init_inspector()
267 271 # init_readline() must come before init_io(), because init_io uses
268 272 # readline related things.
269 273 self.init_readline()
270 274 # init_completer must come after init_readline, because it needs to
271 275 # know whether readline is present or not system-wide to configure the
272 276 # completers, since the completion machinery can now operate
273 277 # independently of readline (e.g. over the network)
274 278 self.init_completer()
275 279 # TODO: init_io() needs to happen before init_traceback handlers
276 280 # because the traceback handlers hardcode the stdout/stderr streams.
277 281 # This logic in in debugger.Pdb and should eventually be changed.
278 282 self.init_io()
279 283 self.init_traceback_handlers(custom_exceptions)
280 284 self.init_prompts()
281 285 self.init_displayhook()
282 286 self.init_reload_doctest()
283 287 self.init_magics()
284 288 self.init_pdb()
285 289 self.init_extension_manager()
286 290 self.init_plugin_manager()
287 291 self.init_payload()
288 292 self.hooks.late_startup_hook()
289 293 atexit.register(self.atexit_operations)
290 294
291 295 @classmethod
292 296 def instance(cls, *args, **kwargs):
293 297 """Returns a global InteractiveShell instance."""
294 298 if cls._instance is None:
295 299 inst = cls(*args, **kwargs)
296 300 # Now make sure that the instance will also be returned by
297 301 # the subclasses instance attribute.
298 302 for subclass in cls.mro():
299 303 if issubclass(cls, subclass) and \
300 304 issubclass(subclass, InteractiveShell):
301 305 subclass._instance = inst
302 306 else:
303 307 break
304 308 if isinstance(cls._instance, cls):
305 309 return cls._instance
306 310 else:
307 311 raise MultipleInstanceError(
308 312 'Multiple incompatible subclass instances of '
309 313 'InteractiveShell are being created.'
310 314 )
311 315
312 316 @classmethod
313 317 def initialized(cls):
314 318 return hasattr(cls, "_instance")
315 319
316 320 def get_ipython(self):
317 321 """Return the currently running IPython instance."""
318 322 return self
319 323
320 324 #-------------------------------------------------------------------------
321 325 # Trait changed handlers
322 326 #-------------------------------------------------------------------------
323 327
324 328 def _ipython_dir_changed(self, name, new):
325 329 if not os.path.isdir(new):
326 330 os.makedirs(new, mode = 0777)
327 331
328 332 def set_autoindent(self,value=None):
329 333 """Set the autoindent flag, checking for readline support.
330 334
331 335 If called with no arguments, it acts as a toggle."""
332 336
333 337 if not self.has_readline:
334 338 if os.name == 'posix':
335 339 warn("The auto-indent feature requires the readline library")
336 340 self.autoindent = 0
337 341 return
338 342 if value is None:
339 343 self.autoindent = not self.autoindent
340 344 else:
341 345 self.autoindent = value
342 346
343 347 #-------------------------------------------------------------------------
344 348 # init_* methods called by __init__
345 349 #-------------------------------------------------------------------------
346 350
347 351 def init_ipython_dir(self, ipython_dir):
348 352 if ipython_dir is not None:
349 353 self.ipython_dir = ipython_dir
350 354 self.config.Global.ipython_dir = self.ipython_dir
351 355 return
352 356
353 357 if hasattr(self.config.Global, 'ipython_dir'):
354 358 self.ipython_dir = self.config.Global.ipython_dir
355 359 else:
356 360 self.ipython_dir = get_ipython_dir()
357 361
358 362 # All children can just read this
359 363 self.config.Global.ipython_dir = self.ipython_dir
360 364
361 365 def init_instance_attrs(self):
362 366 self.more = False
363 367
364 368 # command compiler
365 369 self.compile = codeop.CommandCompiler()
366 370
367 371 # User input buffer
368 372 self.buffer = []
369 373
370 374 # Make an empty namespace, which extension writers can rely on both
371 375 # existing and NEVER being used by ipython itself. This gives them a
372 376 # convenient location for storing additional information and state
373 377 # their extensions may require, without fear of collisions with other
374 378 # ipython names that may develop later.
375 379 self.meta = Struct()
376 380
377 381 # Object variable to store code object waiting execution. This is
378 382 # used mainly by the multithreaded shells, but it can come in handy in
379 383 # other situations. No need to use a Queue here, since it's a single
380 384 # item which gets cleared once run.
381 385 self.code_to_run = None
382 386
383 387 # Temporary files used for various purposes. Deleted at exit.
384 388 self.tempfiles = []
385 389
386 390 # Keep track of readline usage (later set by init_readline)
387 391 self.has_readline = False
388 392
389 393 # keep track of where we started running (mainly for crash post-mortem)
390 394 # This is not being used anywhere currently.
391 395 self.starting_dir = os.getcwd()
392 396
393 397 # Indentation management
394 398 self.indent_current_nsp = 0
395 399
396 # Input splitter, to split entire cells of input into either individual
397 # interactive statements or whole blocks.
398 self.input_splitter = IPythonInputSplitter()
399
400 400 def init_environment(self):
401 401 """Any changes we need to make to the user's environment."""
402 402 pass
403 403
404 404 def init_encoding(self):
405 405 # Get system encoding at startup time. Certain terminals (like Emacs
406 406 # under Win32 have it set to None, and we need to have a known valid
407 407 # encoding to use in the raw_input() method
408 408 try:
409 409 self.stdin_encoding = sys.stdin.encoding or 'ascii'
410 410 except AttributeError:
411 411 self.stdin_encoding = 'ascii'
412 412
413 413 def init_syntax_highlighting(self):
414 414 # Python source parser/formatter for syntax highlighting
415 415 pyformat = PyColorize.Parser().format
416 416 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
417 417
418 418 def init_pushd_popd_magic(self):
419 419 # for pushd/popd management
420 420 try:
421 421 self.home_dir = get_home_dir()
422 422 except HomeDirError, msg:
423 423 fatal(msg)
424 424
425 425 self.dir_stack = []
426 426
427 427 def init_logger(self):
428 428 self.logger = Logger(self, logfname='ipython_log.py', logmode='rotate')
429 429 # local shortcut, this is used a LOT
430 430 self.log = self.logger.log
431 431
432 432 def init_logstart(self):
433 433 if self.logappend:
434 434 self.magic_logstart(self.logappend + ' append')
435 435 elif self.logfile:
436 436 self.magic_logstart(self.logfile)
437 437 elif self.logstart:
438 438 self.magic_logstart()
439 439
440 440 def init_builtins(self):
441 441 self.builtin_trap = BuiltinTrap(shell=self)
442 442
443 443 def init_inspector(self):
444 444 # Object inspector
445 445 self.inspector = oinspect.Inspector(oinspect.InspectColors,
446 446 PyColorize.ANSICodeColors,
447 447 'NoColor',
448 448 self.object_info_string_level)
449 449
450 450 def init_io(self):
451 451 # This will just use sys.stdout and sys.stderr. If you want to
452 452 # override sys.stdout and sys.stderr themselves, you need to do that
453 453 # *before* instantiating this class, because Term holds onto
454 454 # references to the underlying streams.
455 455 if sys.platform == 'win32' and self.has_readline:
456 456 Term = io.IOTerm(cout=self.readline._outputfile,
457 457 cerr=self.readline._outputfile)
458 458 else:
459 459 Term = io.IOTerm()
460 460 io.Term = Term
461 461
462 462 def init_prompts(self):
463 463 # TODO: This is a pass for now because the prompts are managed inside
464 464 # the DisplayHook. Once there is a separate prompt manager, this
465 465 # will initialize that object and all prompt related information.
466 466 pass
467 467
468 468 def init_displayhook(self):
469 469 # Initialize displayhook, set in/out prompts and printing system
470 470 self.displayhook = self.displayhook_class(
471 471 shell=self,
472 472 cache_size=self.cache_size,
473 473 input_sep = self.separate_in,
474 474 output_sep = self.separate_out,
475 475 output_sep2 = self.separate_out2,
476 476 ps1 = self.prompt_in1,
477 477 ps2 = self.prompt_in2,
478 478 ps_out = self.prompt_out,
479 479 pad_left = self.prompts_pad_left
480 480 )
481 481 # This is a context manager that installs/revmoes the displayhook at
482 482 # the appropriate time.
483 483 self.display_trap = DisplayTrap(hook=self.displayhook)
484 484
485 485 def init_reload_doctest(self):
486 486 # Do a proper resetting of doctest, including the necessary displayhook
487 487 # monkeypatching
488 488 try:
489 489 doctest_reload()
490 490 except ImportError:
491 491 warn("doctest module does not exist.")
492 492
493 493 #-------------------------------------------------------------------------
494 494 # Things related to injections into the sys module
495 495 #-------------------------------------------------------------------------
496 496
497 497 def save_sys_module_state(self):
498 498 """Save the state of hooks in the sys module.
499 499
500 500 This has to be called after self.user_ns is created.
501 501 """
502 502 self._orig_sys_module_state = {}
503 503 self._orig_sys_module_state['stdin'] = sys.stdin
504 504 self._orig_sys_module_state['stdout'] = sys.stdout
505 505 self._orig_sys_module_state['stderr'] = sys.stderr
506 506 self._orig_sys_module_state['excepthook'] = sys.excepthook
507 507 try:
508 508 self._orig_sys_modules_main_name = self.user_ns['__name__']
509 509 except KeyError:
510 510 pass
511 511
512 512 def restore_sys_module_state(self):
513 513 """Restore the state of the sys module."""
514 514 try:
515 515 for k, v in self._orig_sys_module_state.items():
516 516 setattr(sys, k, v)
517 517 except AttributeError:
518 518 pass
519 519 # Reset what what done in self.init_sys_modules
520 520 try:
521 521 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
522 522 except (AttributeError, KeyError):
523 523 pass
524 524
525 525 #-------------------------------------------------------------------------
526 526 # Things related to hooks
527 527 #-------------------------------------------------------------------------
528 528
529 529 def init_hooks(self):
530 530 # hooks holds pointers used for user-side customizations
531 531 self.hooks = Struct()
532 532
533 533 self.strdispatchers = {}
534 534
535 535 # Set all default hooks, defined in the IPython.hooks module.
536 536 hooks = IPython.core.hooks
537 537 for hook_name in hooks.__all__:
538 538 # default hooks have priority 100, i.e. low; user hooks should have
539 539 # 0-100 priority
540 540 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
541 541
542 542 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
543 543 """set_hook(name,hook) -> sets an internal IPython hook.
544 544
545 545 IPython exposes some of its internal API as user-modifiable hooks. By
546 546 adding your function to one of these hooks, you can modify IPython's
547 547 behavior to call at runtime your own routines."""
548 548
549 549 # At some point in the future, this should validate the hook before it
550 550 # accepts it. Probably at least check that the hook takes the number
551 551 # of args it's supposed to.
552 552
553 553 f = new.instancemethod(hook,self,self.__class__)
554 554
555 555 # check if the hook is for strdispatcher first
556 556 if str_key is not None:
557 557 sdp = self.strdispatchers.get(name, StrDispatch())
558 558 sdp.add_s(str_key, f, priority )
559 559 self.strdispatchers[name] = sdp
560 560 return
561 561 if re_key is not None:
562 562 sdp = self.strdispatchers.get(name, StrDispatch())
563 563 sdp.add_re(re.compile(re_key), f, priority )
564 564 self.strdispatchers[name] = sdp
565 565 return
566 566
567 567 dp = getattr(self.hooks, name, None)
568 568 if name not in IPython.core.hooks.__all__:
569 569 print "Warning! Hook '%s' is not one of %s" % \
570 570 (name, IPython.core.hooks.__all__ )
571 571 if not dp:
572 572 dp = IPython.core.hooks.CommandChainDispatcher()
573 573
574 574 try:
575 575 dp.add(f,priority)
576 576 except AttributeError:
577 577 # it was not commandchain, plain old func - replace
578 578 dp = f
579 579
580 580 setattr(self.hooks,name, dp)
581 581
582 582 def register_post_execute(self, func):
583 583 """Register a function for calling after code execution.
584 584 """
585 585 if not callable(func):
586 586 raise ValueError('argument %s must be callable' % func)
587 587 self._post_execute.add(func)
588 588
589 589 #-------------------------------------------------------------------------
590 590 # Things related to the "main" module
591 591 #-------------------------------------------------------------------------
592 592
593 593 def new_main_mod(self,ns=None):
594 594 """Return a new 'main' module object for user code execution.
595 595 """
596 596 main_mod = self._user_main_module
597 597 init_fakemod_dict(main_mod,ns)
598 598 return main_mod
599 599
600 600 def cache_main_mod(self,ns,fname):
601 601 """Cache a main module's namespace.
602 602
603 603 When scripts are executed via %run, we must keep a reference to the
604 604 namespace of their __main__ module (a FakeModule instance) around so
605 605 that Python doesn't clear it, rendering objects defined therein
606 606 useless.
607 607
608 608 This method keeps said reference in a private dict, keyed by the
609 609 absolute path of the module object (which corresponds to the script
610 610 path). This way, for multiple executions of the same script we only
611 611 keep one copy of the namespace (the last one), thus preventing memory
612 612 leaks from old references while allowing the objects from the last
613 613 execution to be accessible.
614 614
615 615 Note: we can not allow the actual FakeModule instances to be deleted,
616 616 because of how Python tears down modules (it hard-sets all their
617 617 references to None without regard for reference counts). This method
618 618 must therefore make a *copy* of the given namespace, to allow the
619 619 original module's __dict__ to be cleared and reused.
620 620
621 621
622 622 Parameters
623 623 ----------
624 624 ns : a namespace (a dict, typically)
625 625
626 626 fname : str
627 627 Filename associated with the namespace.
628 628
629 629 Examples
630 630 --------
631 631
632 632 In [10]: import IPython
633 633
634 634 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
635 635
636 636 In [12]: IPython.__file__ in _ip._main_ns_cache
637 637 Out[12]: True
638 638 """
639 639 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
640 640
641 641 def clear_main_mod_cache(self):
642 642 """Clear the cache of main modules.
643 643
644 644 Mainly for use by utilities like %reset.
645 645
646 646 Examples
647 647 --------
648 648
649 649 In [15]: import IPython
650 650
651 651 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
652 652
653 653 In [17]: len(_ip._main_ns_cache) > 0
654 654 Out[17]: True
655 655
656 656 In [18]: _ip.clear_main_mod_cache()
657 657
658 658 In [19]: len(_ip._main_ns_cache) == 0
659 659 Out[19]: True
660 660 """
661 661 self._main_ns_cache.clear()
662 662
663 663 #-------------------------------------------------------------------------
664 664 # Things related to debugging
665 665 #-------------------------------------------------------------------------
666 666
667 667 def init_pdb(self):
668 668 # Set calling of pdb on exceptions
669 669 # self.call_pdb is a property
670 670 self.call_pdb = self.pdb
671 671
672 672 def _get_call_pdb(self):
673 673 return self._call_pdb
674 674
675 675 def _set_call_pdb(self,val):
676 676
677 677 if val not in (0,1,False,True):
678 678 raise ValueError,'new call_pdb value must be boolean'
679 679
680 680 # store value in instance
681 681 self._call_pdb = val
682 682
683 683 # notify the actual exception handlers
684 684 self.InteractiveTB.call_pdb = val
685 685
686 686 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
687 687 'Control auto-activation of pdb at exceptions')
688 688
689 689 def debugger(self,force=False):
690 690 """Call the pydb/pdb debugger.
691 691
692 692 Keywords:
693 693
694 694 - force(False): by default, this routine checks the instance call_pdb
695 695 flag and does not actually invoke the debugger if the flag is false.
696 696 The 'force' option forces the debugger to activate even if the flag
697 697 is false.
698 698 """
699 699
700 700 if not (force or self.call_pdb):
701 701 return
702 702
703 703 if not hasattr(sys,'last_traceback'):
704 704 error('No traceback has been produced, nothing to debug.')
705 705 return
706 706
707 707 # use pydb if available
708 708 if debugger.has_pydb:
709 709 from pydb import pm
710 710 else:
711 711 # fallback to our internal debugger
712 712 pm = lambda : self.InteractiveTB.debugger(force=True)
713 713 self.history_saving_wrapper(pm)()
714 714
715 715 #-------------------------------------------------------------------------
716 716 # Things related to IPython's various namespaces
717 717 #-------------------------------------------------------------------------
718 718
719 719 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
720 720 # Create the namespace where the user will operate. user_ns is
721 721 # normally the only one used, and it is passed to the exec calls as
722 722 # the locals argument. But we do carry a user_global_ns namespace
723 723 # given as the exec 'globals' argument, This is useful in embedding
724 724 # situations where the ipython shell opens in a context where the
725 725 # distinction between locals and globals is meaningful. For
726 726 # non-embedded contexts, it is just the same object as the user_ns dict.
727 727
728 728 # FIXME. For some strange reason, __builtins__ is showing up at user
729 729 # level as a dict instead of a module. This is a manual fix, but I
730 730 # should really track down where the problem is coming from. Alex
731 731 # Schmolck reported this problem first.
732 732
733 733 # A useful post by Alex Martelli on this topic:
734 734 # Re: inconsistent value from __builtins__
735 735 # Von: Alex Martelli <aleaxit@yahoo.com>
736 736 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
737 737 # Gruppen: comp.lang.python
738 738
739 739 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
740 740 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
741 741 # > <type 'dict'>
742 742 # > >>> print type(__builtins__)
743 743 # > <type 'module'>
744 744 # > Is this difference in return value intentional?
745 745
746 746 # Well, it's documented that '__builtins__' can be either a dictionary
747 747 # or a module, and it's been that way for a long time. Whether it's
748 748 # intentional (or sensible), I don't know. In any case, the idea is
749 749 # that if you need to access the built-in namespace directly, you
750 750 # should start with "import __builtin__" (note, no 's') which will
751 751 # definitely give you a module. Yeah, it's somewhat confusing:-(.
752 752
753 753 # These routines return properly built dicts as needed by the rest of
754 754 # the code, and can also be used by extension writers to generate
755 755 # properly initialized namespaces.
756 756 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
757 757 user_global_ns)
758 758
759 759 # Assign namespaces
760 760 # This is the namespace where all normal user variables live
761 761 self.user_ns = user_ns
762 762 self.user_global_ns = user_global_ns
763 763
764 764 # An auxiliary namespace that checks what parts of the user_ns were
765 765 # loaded at startup, so we can list later only variables defined in
766 766 # actual interactive use. Since it is always a subset of user_ns, it
767 767 # doesn't need to be separately tracked in the ns_table.
768 768 self.user_ns_hidden = {}
769 769
770 770 # A namespace to keep track of internal data structures to prevent
771 771 # them from cluttering user-visible stuff. Will be updated later
772 772 self.internal_ns = {}
773 773
774 774 # Now that FakeModule produces a real module, we've run into a nasty
775 775 # problem: after script execution (via %run), the module where the user
776 776 # code ran is deleted. Now that this object is a true module (needed
777 777 # so docetst and other tools work correctly), the Python module
778 778 # teardown mechanism runs over it, and sets to None every variable
779 779 # present in that module. Top-level references to objects from the
780 780 # script survive, because the user_ns is updated with them. However,
781 781 # calling functions defined in the script that use other things from
782 782 # the script will fail, because the function's closure had references
783 783 # to the original objects, which are now all None. So we must protect
784 784 # these modules from deletion by keeping a cache.
785 785 #
786 786 # To avoid keeping stale modules around (we only need the one from the
787 787 # last run), we use a dict keyed with the full path to the script, so
788 788 # only the last version of the module is held in the cache. Note,
789 789 # however, that we must cache the module *namespace contents* (their
790 790 # __dict__). Because if we try to cache the actual modules, old ones
791 791 # (uncached) could be destroyed while still holding references (such as
792 792 # those held by GUI objects that tend to be long-lived)>
793 793 #
794 794 # The %reset command will flush this cache. See the cache_main_mod()
795 795 # and clear_main_mod_cache() methods for details on use.
796 796
797 797 # This is the cache used for 'main' namespaces
798 798 self._main_ns_cache = {}
799 799 # And this is the single instance of FakeModule whose __dict__ we keep
800 800 # copying and clearing for reuse on each %run
801 801 self._user_main_module = FakeModule()
802 802
803 803 # A table holding all the namespaces IPython deals with, so that
804 804 # introspection facilities can search easily.
805 805 self.ns_table = {'user':user_ns,
806 806 'user_global':user_global_ns,
807 807 'internal':self.internal_ns,
808 808 'builtin':__builtin__.__dict__
809 809 }
810 810
811 811 # Similarly, track all namespaces where references can be held and that
812 812 # we can safely clear (so it can NOT include builtin). This one can be
813 813 # a simple list.
814 814 self.ns_refs_table = [ user_ns, user_global_ns, self.user_ns_hidden,
815 815 self.internal_ns, self._main_ns_cache ]
816 816
817 817 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
818 818 """Return a valid local and global user interactive namespaces.
819 819
820 820 This builds a dict with the minimal information needed to operate as a
821 821 valid IPython user namespace, which you can pass to the various
822 822 embedding classes in ipython. The default implementation returns the
823 823 same dict for both the locals and the globals to allow functions to
824 824 refer to variables in the namespace. Customized implementations can
825 825 return different dicts. The locals dictionary can actually be anything
826 826 following the basic mapping protocol of a dict, but the globals dict
827 827 must be a true dict, not even a subclass. It is recommended that any
828 828 custom object for the locals namespace synchronize with the globals
829 829 dict somehow.
830 830
831 831 Raises TypeError if the provided globals namespace is not a true dict.
832 832
833 833 Parameters
834 834 ----------
835 835 user_ns : dict-like, optional
836 836 The current user namespace. The items in this namespace should
837 837 be included in the output. If None, an appropriate blank
838 838 namespace should be created.
839 839 user_global_ns : dict, optional
840 840 The current user global namespace. The items in this namespace
841 841 should be included in the output. If None, an appropriate
842 842 blank namespace should be created.
843 843
844 844 Returns
845 845 -------
846 846 A pair of dictionary-like object to be used as the local namespace
847 847 of the interpreter and a dict to be used as the global namespace.
848 848 """
849 849
850 850
851 851 # We must ensure that __builtin__ (without the final 's') is always
852 852 # available and pointing to the __builtin__ *module*. For more details:
853 853 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
854 854
855 855 if user_ns is None:
856 856 # Set __name__ to __main__ to better match the behavior of the
857 857 # normal interpreter.
858 858 user_ns = {'__name__' :'__main__',
859 859 '__builtin__' : __builtin__,
860 860 '__builtins__' : __builtin__,
861 861 }
862 862 else:
863 863 user_ns.setdefault('__name__','__main__')
864 864 user_ns.setdefault('__builtin__',__builtin__)
865 865 user_ns.setdefault('__builtins__',__builtin__)
866 866
867 867 if user_global_ns is None:
868 868 user_global_ns = user_ns
869 869 if type(user_global_ns) is not dict:
870 870 raise TypeError("user_global_ns must be a true dict; got %r"
871 871 % type(user_global_ns))
872 872
873 873 return user_ns, user_global_ns
874 874
875 875 def init_sys_modules(self):
876 876 # We need to insert into sys.modules something that looks like a
877 877 # module but which accesses the IPython namespace, for shelve and
878 878 # pickle to work interactively. Normally they rely on getting
879 879 # everything out of __main__, but for embedding purposes each IPython
880 880 # instance has its own private namespace, so we can't go shoving
881 881 # everything into __main__.
882 882
883 883 # note, however, that we should only do this for non-embedded
884 884 # ipythons, which really mimic the __main__.__dict__ with their own
885 885 # namespace. Embedded instances, on the other hand, should not do
886 886 # this because they need to manage the user local/global namespaces
887 887 # only, but they live within a 'normal' __main__ (meaning, they
888 888 # shouldn't overtake the execution environment of the script they're
889 889 # embedded in).
890 890
891 891 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
892 892
893 893 try:
894 894 main_name = self.user_ns['__name__']
895 895 except KeyError:
896 896 raise KeyError('user_ns dictionary MUST have a "__name__" key')
897 897 else:
898 898 sys.modules[main_name] = FakeModule(self.user_ns)
899 899
900 900 def init_user_ns(self):
901 901 """Initialize all user-visible namespaces to their minimum defaults.
902 902
903 903 Certain history lists are also initialized here, as they effectively
904 904 act as user namespaces.
905 905
906 906 Notes
907 907 -----
908 908 All data structures here are only filled in, they are NOT reset by this
909 909 method. If they were not empty before, data will simply be added to
910 910 therm.
911 911 """
912 912 # This function works in two parts: first we put a few things in
913 913 # user_ns, and we sync that contents into user_ns_hidden so that these
914 914 # initial variables aren't shown by %who. After the sync, we add the
915 915 # rest of what we *do* want the user to see with %who even on a new
916 916 # session (probably nothing, so theye really only see their own stuff)
917 917
918 918 # The user dict must *always* have a __builtin__ reference to the
919 919 # Python standard __builtin__ namespace, which must be imported.
920 920 # This is so that certain operations in prompt evaluation can be
921 921 # reliably executed with builtins. Note that we can NOT use
922 922 # __builtins__ (note the 's'), because that can either be a dict or a
923 923 # module, and can even mutate at runtime, depending on the context
924 924 # (Python makes no guarantees on it). In contrast, __builtin__ is
925 925 # always a module object, though it must be explicitly imported.
926 926
927 927 # For more details:
928 928 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
929 929 ns = dict(__builtin__ = __builtin__)
930 930
931 931 # Put 'help' in the user namespace
932 932 try:
933 933 from site import _Helper
934 934 ns['help'] = _Helper()
935 935 except ImportError:
936 936 warn('help() not available - check site.py')
937 937
938 938 # make global variables for user access to the histories
939 939 ns['_ih'] = self.input_hist
940 940 ns['_oh'] = self.output_hist
941 941 ns['_dh'] = self.dir_hist
942 942
943 943 ns['_sh'] = shadowns
944 944
945 945 # user aliases to input and output histories. These shouldn't show up
946 946 # in %who, as they can have very large reprs.
947 947 ns['In'] = self.input_hist
948 948 ns['Out'] = self.output_hist
949 949
950 950 # Store myself as the public api!!!
951 951 ns['get_ipython'] = self.get_ipython
952 952
953 953 # Sync what we've added so far to user_ns_hidden so these aren't seen
954 954 # by %who
955 955 self.user_ns_hidden.update(ns)
956 956
957 957 # Anything put into ns now would show up in %who. Think twice before
958 958 # putting anything here, as we really want %who to show the user their
959 959 # stuff, not our variables.
960 960
961 961 # Finally, update the real user's namespace
962 962 self.user_ns.update(ns)
963 963
964 964
965 965 def reset(self):
966 966 """Clear all internal namespaces.
967 967
968 968 Note that this is much more aggressive than %reset, since it clears
969 969 fully all namespaces, as well as all input/output lists.
970 970 """
971 971 for ns in self.ns_refs_table:
972 972 ns.clear()
973 973
974 974 self.alias_manager.clear_aliases()
975 975
976 976 # Clear input and output histories
977 977 self.input_hist[:] = []
978 978 self.input_hist_raw[:] = []
979 979 self.output_hist.clear()
980 980
981 981 # Restore the user namespaces to minimal usability
982 982 self.init_user_ns()
983 983
984 984 # Restore the default and user aliases
985 985 self.alias_manager.init_aliases()
986 986
987 987 def reset_selective(self, regex=None):
988 988 """Clear selective variables from internal namespaces based on a
989 989 specified regular expression.
990 990
991 991 Parameters
992 992 ----------
993 993 regex : string or compiled pattern, optional
994 994 A regular expression pattern that will be used in searching
995 995 variable names in the users namespaces.
996 996 """
997 997 if regex is not None:
998 998 try:
999 999 m = re.compile(regex)
1000 1000 except TypeError:
1001 1001 raise TypeError('regex must be a string or compiled pattern')
1002 1002 # Search for keys in each namespace that match the given regex
1003 1003 # If a match is found, delete the key/value pair.
1004 1004 for ns in self.ns_refs_table:
1005 1005 for var in ns:
1006 1006 if m.search(var):
1007 1007 del ns[var]
1008 1008
1009 1009 def push(self, variables, interactive=True):
1010 1010 """Inject a group of variables into the IPython user namespace.
1011 1011
1012 1012 Parameters
1013 1013 ----------
1014 1014 variables : dict, str or list/tuple of str
1015 1015 The variables to inject into the user's namespace. If a dict, a
1016 1016 simple update is done. If a str, the string is assumed to have
1017 1017 variable names separated by spaces. A list/tuple of str can also
1018 1018 be used to give the variable names. If just the variable names are
1019 1019 give (list/tuple/str) then the variable values looked up in the
1020 1020 callers frame.
1021 1021 interactive : bool
1022 1022 If True (default), the variables will be listed with the ``who``
1023 1023 magic.
1024 1024 """
1025 1025 vdict = None
1026 1026
1027 1027 # We need a dict of name/value pairs to do namespace updates.
1028 1028 if isinstance(variables, dict):
1029 1029 vdict = variables
1030 1030 elif isinstance(variables, (basestring, list, tuple)):
1031 1031 if isinstance(variables, basestring):
1032 1032 vlist = variables.split()
1033 1033 else:
1034 1034 vlist = variables
1035 1035 vdict = {}
1036 1036 cf = sys._getframe(1)
1037 1037 for name in vlist:
1038 1038 try:
1039 1039 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1040 1040 except:
1041 1041 print ('Could not get variable %s from %s' %
1042 1042 (name,cf.f_code.co_name))
1043 1043 else:
1044 1044 raise ValueError('variables must be a dict/str/list/tuple')
1045 1045
1046 1046 # Propagate variables to user namespace
1047 1047 self.user_ns.update(vdict)
1048 1048
1049 1049 # And configure interactive visibility
1050 1050 config_ns = self.user_ns_hidden
1051 1051 if interactive:
1052 1052 for name, val in vdict.iteritems():
1053 1053 config_ns.pop(name, None)
1054 1054 else:
1055 1055 for name,val in vdict.iteritems():
1056 1056 config_ns[name] = val
1057 1057
1058 1058 #-------------------------------------------------------------------------
1059 1059 # Things related to object introspection
1060 1060 #-------------------------------------------------------------------------
1061
1061 1062 def _ofind(self, oname, namespaces=None):
1062 1063 """Find an object in the available namespaces.
1063 1064
1064 1065 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1065 1066
1066 1067 Has special code to detect magic functions.
1067 1068 """
1068 1069 #oname = oname.strip()
1069 1070 #print '1- oname: <%r>' % oname # dbg
1070 1071 try:
1071 1072 oname = oname.strip().encode('ascii')
1072 1073 #print '2- oname: <%r>' % oname # dbg
1073 1074 except UnicodeEncodeError:
1074 1075 print 'Python identifiers can only contain ascii characters.'
1075 1076 return dict(found=False)
1076 1077
1077 1078 alias_ns = None
1078 1079 if namespaces is None:
1079 1080 # Namespaces to search in:
1080 1081 # Put them in a list. The order is important so that we
1081 1082 # find things in the same order that Python finds them.
1082 1083 namespaces = [ ('Interactive', self.user_ns),
1083 1084 ('IPython internal', self.internal_ns),
1084 1085 ('Python builtin', __builtin__.__dict__),
1085 1086 ('Alias', self.alias_manager.alias_table),
1086 1087 ]
1087 1088 alias_ns = self.alias_manager.alias_table
1088 1089
1089 1090 # initialize results to 'null'
1090 1091 found = False; obj = None; ospace = None; ds = None;
1091 1092 ismagic = False; isalias = False; parent = None
1092 1093
1093 1094 # We need to special-case 'print', which as of python2.6 registers as a
1094 1095 # function but should only be treated as one if print_function was
1095 1096 # loaded with a future import. In this case, just bail.
1096 1097 if (oname == 'print' and not (self.compile.compiler.flags &
1097 1098 __future__.CO_FUTURE_PRINT_FUNCTION)):
1098 1099 return {'found':found, 'obj':obj, 'namespace':ospace,
1099 1100 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1100 1101
1101 1102 # Look for the given name by splitting it in parts. If the head is
1102 1103 # found, then we look for all the remaining parts as members, and only
1103 1104 # declare success if we can find them all.
1104 1105 oname_parts = oname.split('.')
1105 1106 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1106 1107 for nsname,ns in namespaces:
1107 1108 try:
1108 1109 obj = ns[oname_head]
1109 1110 except KeyError:
1110 1111 continue
1111 1112 else:
1112 1113 #print 'oname_rest:', oname_rest # dbg
1113 1114 for part in oname_rest:
1114 1115 try:
1115 1116 parent = obj
1116 1117 obj = getattr(obj,part)
1117 1118 except:
1118 1119 # Blanket except b/c some badly implemented objects
1119 1120 # allow __getattr__ to raise exceptions other than
1120 1121 # AttributeError, which then crashes IPython.
1121 1122 break
1122 1123 else:
1123 1124 # If we finish the for loop (no break), we got all members
1124 1125 found = True
1125 1126 ospace = nsname
1126 1127 if ns == alias_ns:
1127 1128 isalias = True
1128 1129 break # namespace loop
1129 1130
1130 1131 # Try to see if it's magic
1131 1132 if not found:
1132 1133 if oname.startswith(ESC_MAGIC):
1133 1134 oname = oname[1:]
1134 1135 obj = getattr(self,'magic_'+oname,None)
1135 1136 if obj is not None:
1136 1137 found = True
1137 1138 ospace = 'IPython internal'
1138 1139 ismagic = True
1139 1140
1140 1141 # Last try: special-case some literals like '', [], {}, etc:
1141 1142 if not found and oname_head in ["''",'""','[]','{}','()']:
1142 1143 obj = eval(oname_head)
1143 1144 found = True
1144 1145 ospace = 'Interactive'
1145 1146
1146 1147 return {'found':found, 'obj':obj, 'namespace':ospace,
1147 1148 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1148 1149
1149 1150 def _ofind_property(self, oname, info):
1150 1151 """Second part of object finding, to look for property details."""
1151 1152 if info.found:
1152 1153 # Get the docstring of the class property if it exists.
1153 1154 path = oname.split('.')
1154 1155 root = '.'.join(path[:-1])
1155 1156 if info.parent is not None:
1156 1157 try:
1157 1158 target = getattr(info.parent, '__class__')
1158 1159 # The object belongs to a class instance.
1159 1160 try:
1160 1161 target = getattr(target, path[-1])
1161 1162 # The class defines the object.
1162 1163 if isinstance(target, property):
1163 1164 oname = root + '.__class__.' + path[-1]
1164 1165 info = Struct(self._ofind(oname))
1165 1166 except AttributeError: pass
1166 1167 except AttributeError: pass
1167 1168
1168 1169 # We return either the new info or the unmodified input if the object
1169 1170 # hadn't been found
1170 1171 return info
1171 1172
1172 1173 def _object_find(self, oname, namespaces=None):
1173 1174 """Find an object and return a struct with info about it."""
1174 1175 inf = Struct(self._ofind(oname, namespaces))
1175 1176 return Struct(self._ofind_property(oname, inf))
1176 1177
1177 1178 def _inspect(self, meth, oname, namespaces=None, **kw):
1178 1179 """Generic interface to the inspector system.
1179 1180
1180 1181 This function is meant to be called by pdef, pdoc & friends."""
1181 1182 info = self._object_find(oname)
1182 1183 if info.found:
1183 1184 pmethod = getattr(self.inspector, meth)
1184 1185 formatter = format_screen if info.ismagic else None
1185 1186 if meth == 'pdoc':
1186 1187 pmethod(info.obj, oname, formatter)
1187 1188 elif meth == 'pinfo':
1188 1189 pmethod(info.obj, oname, formatter, info, **kw)
1189 1190 else:
1190 1191 pmethod(info.obj, oname)
1191 1192 else:
1192 1193 print 'Object `%s` not found.' % oname
1193 1194 return 'not found' # so callers can take other action
1194 1195
1195 1196 def object_inspect(self, oname):
1196 1197 info = self._object_find(oname)
1197 1198 if info.found:
1198 1199 return self.inspector.info(info.obj, info=info)
1199 1200 else:
1200 1201 return oinspect.mk_object_info({'found' : False})
1201 1202
1202 1203 #-------------------------------------------------------------------------
1203 1204 # Things related to history management
1204 1205 #-------------------------------------------------------------------------
1205 1206
1206 1207 def init_history(self):
1207 1208 # List of input with multi-line handling.
1208 1209 self.input_hist = InputList()
1209 1210 # This one will hold the 'raw' input history, without any
1210 1211 # pre-processing. This will allow users to retrieve the input just as
1211 1212 # it was exactly typed in by the user, with %hist -r.
1212 1213 self.input_hist_raw = InputList()
1213 1214
1214 1215 # list of visited directories
1215 1216 try:
1216 1217 self.dir_hist = [os.getcwd()]
1217 1218 except OSError:
1218 1219 self.dir_hist = []
1219 1220
1220 1221 # dict of output history
1221 1222 self.output_hist = {}
1222 1223
1223 1224 # Now the history file
1224 1225 if self.profile:
1225 1226 histfname = 'history-%s' % self.profile
1226 1227 else:
1227 1228 histfname = 'history'
1228 1229 self.histfile = os.path.join(self.ipython_dir, histfname)
1229 1230
1230 1231 # Fill the history zero entry, user counter starts at 1
1231 1232 self.input_hist.append('\n')
1232 1233 self.input_hist_raw.append('\n')
1233 1234
1234 1235 def init_shadow_hist(self):
1235 1236 try:
1236 1237 self.db = pickleshare.PickleShareDB(self.ipython_dir + "/db")
1237 1238 except exceptions.UnicodeDecodeError:
1238 1239 print "Your ipython_dir can't be decoded to unicode!"
1239 1240 print "Please set HOME environment variable to something that"
1240 1241 print r"only has ASCII characters, e.g. c:\home"
1241 1242 print "Now it is", self.ipython_dir
1242 1243 sys.exit()
1243 1244 self.shadowhist = ipcorehist.ShadowHist(self.db)
1244 1245
1245 1246 def savehist(self):
1246 1247 """Save input history to a file (via readline library)."""
1247 1248
1248 1249 try:
1249 1250 self.readline.write_history_file(self.histfile)
1250 1251 except:
1251 1252 print 'Unable to save IPython command history to file: ' + \
1252 1253 `self.histfile`
1253 1254
1254 1255 def reloadhist(self):
1255 1256 """Reload the input history from disk file."""
1256 1257
1257 1258 try:
1258 1259 self.readline.clear_history()
1259 1260 self.readline.read_history_file(self.shell.histfile)
1260 1261 except AttributeError:
1261 1262 pass
1262 1263
1263 1264 def history_saving_wrapper(self, func):
1264 1265 """ Wrap func for readline history saving
1265 1266
1266 1267 Convert func into callable that saves & restores
1267 1268 history around the call """
1268 1269
1269 1270 if self.has_readline:
1270 1271 from IPython.utils import rlineimpl as readline
1271 1272 else:
1272 1273 return func
1273 1274
1274 1275 def wrapper():
1275 1276 self.savehist()
1276 1277 try:
1277 1278 func()
1278 1279 finally:
1279 1280 readline.read_history_file(self.histfile)
1280 1281 return wrapper
1281 1282
1282 1283 def get_history(self, index=None, raw=False, output=True):
1283 1284 """Get the history list.
1284 1285
1285 1286 Get the input and output history.
1286 1287
1287 1288 Parameters
1288 1289 ----------
1289 1290 index : n or (n1, n2) or None
1290 1291 If n, then the last entries. If a tuple, then all in
1291 1292 range(n1, n2). If None, then all entries. Raises IndexError if
1292 1293 the format of index is incorrect.
1293 1294 raw : bool
1294 1295 If True, return the raw input.
1295 1296 output : bool
1296 1297 If True, then return the output as well.
1297 1298
1298 1299 Returns
1299 1300 -------
1300 1301 If output is True, then return a dict of tuples, keyed by the prompt
1301 1302 numbers and with values of (input, output). If output is False, then
1302 1303 a dict, keyed by the prompt number with the values of input. Raises
1303 1304 IndexError if no history is found.
1304 1305 """
1305 1306 if raw:
1306 1307 input_hist = self.input_hist_raw
1307 1308 else:
1308 1309 input_hist = self.input_hist
1309 1310 if output:
1310 1311 output_hist = self.user_ns['Out']
1311 1312 n = len(input_hist)
1312 1313 if index is None:
1313 1314 start=0; stop=n
1314 1315 elif isinstance(index, int):
1315 1316 start=n-index; stop=n
1316 1317 elif isinstance(index, tuple) and len(index) == 2:
1317 1318 start=index[0]; stop=index[1]
1318 1319 else:
1319 1320 raise IndexError('Not a valid index for the input history: %r'
1320 1321 % index)
1321 1322 hist = {}
1322 1323 for i in range(start, stop):
1323 1324 if output:
1324 1325 hist[i] = (input_hist[i], output_hist.get(i))
1325 1326 else:
1326 1327 hist[i] = input_hist[i]
1327 1328 if len(hist)==0:
1328 1329 raise IndexError('No history for range of indices: %r' % index)
1329 1330 return hist
1330 1331
1331 1332 #-------------------------------------------------------------------------
1332 1333 # Things related to exception handling and tracebacks (not debugging)
1333 1334 #-------------------------------------------------------------------------
1334 1335
1335 1336 def init_traceback_handlers(self, custom_exceptions):
1336 1337 # Syntax error handler.
1337 1338 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1338 1339
1339 1340 # The interactive one is initialized with an offset, meaning we always
1340 1341 # want to remove the topmost item in the traceback, which is our own
1341 1342 # internal code. Valid modes: ['Plain','Context','Verbose']
1342 1343 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1343 1344 color_scheme='NoColor',
1344 1345 tb_offset = 1)
1345 1346
1346 1347 # The instance will store a pointer to the system-wide exception hook,
1347 1348 # so that runtime code (such as magics) can access it. This is because
1348 1349 # during the read-eval loop, it may get temporarily overwritten.
1349 1350 self.sys_excepthook = sys.excepthook
1350 1351
1351 1352 # and add any custom exception handlers the user may have specified
1352 1353 self.set_custom_exc(*custom_exceptions)
1353 1354
1354 1355 # Set the exception mode
1355 1356 self.InteractiveTB.set_mode(mode=self.xmode)
1356 1357
1357 1358 def set_custom_exc(self, exc_tuple, handler):
1358 1359 """set_custom_exc(exc_tuple,handler)
1359 1360
1360 1361 Set a custom exception handler, which will be called if any of the
1361 1362 exceptions in exc_tuple occur in the mainloop (specifically, in the
1362 1363 runcode() method.
1363 1364
1364 1365 Inputs:
1365 1366
1366 1367 - exc_tuple: a *tuple* of valid exceptions to call the defined
1367 1368 handler for. It is very important that you use a tuple, and NOT A
1368 1369 LIST here, because of the way Python's except statement works. If
1369 1370 you only want to trap a single exception, use a singleton tuple:
1370 1371
1371 1372 exc_tuple == (MyCustomException,)
1372 1373
1373 1374 - handler: this must be defined as a function with the following
1374 1375 basic interface::
1375 1376
1376 1377 def my_handler(self, etype, value, tb, tb_offset=None)
1377 1378 ...
1378 1379 # The return value must be
1379 1380 return structured_traceback
1380 1381
1381 1382 This will be made into an instance method (via new.instancemethod)
1382 1383 of IPython itself, and it will be called if any of the exceptions
1383 1384 listed in the exc_tuple are caught. If the handler is None, an
1384 1385 internal basic one is used, which just prints basic info.
1385 1386
1386 1387 WARNING: by putting in your own exception handler into IPython's main
1387 1388 execution loop, you run a very good chance of nasty crashes. This
1388 1389 facility should only be used if you really know what you are doing."""
1389 1390
1390 1391 assert type(exc_tuple)==type(()) , \
1391 1392 "The custom exceptions must be given AS A TUPLE."
1392 1393
1393 1394 def dummy_handler(self,etype,value,tb):
1394 1395 print '*** Simple custom exception handler ***'
1395 1396 print 'Exception type :',etype
1396 1397 print 'Exception value:',value
1397 1398 print 'Traceback :',tb
1398 1399 print 'Source code :','\n'.join(self.buffer)
1399 1400
1400 1401 if handler is None: handler = dummy_handler
1401 1402
1402 1403 self.CustomTB = new.instancemethod(handler,self,self.__class__)
1403 1404 self.custom_exceptions = exc_tuple
1404 1405
1405 1406 def excepthook(self, etype, value, tb):
1406 1407 """One more defense for GUI apps that call sys.excepthook.
1407 1408
1408 1409 GUI frameworks like wxPython trap exceptions and call
1409 1410 sys.excepthook themselves. I guess this is a feature that
1410 1411 enables them to keep running after exceptions that would
1411 1412 otherwise kill their mainloop. This is a bother for IPython
1412 1413 which excepts to catch all of the program exceptions with a try:
1413 1414 except: statement.
1414 1415
1415 1416 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1416 1417 any app directly invokes sys.excepthook, it will look to the user like
1417 1418 IPython crashed. In order to work around this, we can disable the
1418 1419 CrashHandler and replace it with this excepthook instead, which prints a
1419 1420 regular traceback using our InteractiveTB. In this fashion, apps which
1420 1421 call sys.excepthook will generate a regular-looking exception from
1421 1422 IPython, and the CrashHandler will only be triggered by real IPython
1422 1423 crashes.
1423 1424
1424 1425 This hook should be used sparingly, only in places which are not likely
1425 1426 to be true IPython errors.
1426 1427 """
1427 1428 self.showtraceback((etype,value,tb),tb_offset=0)
1428 1429
1429 1430 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1430 1431 exception_only=False):
1431 1432 """Display the exception that just occurred.
1432 1433
1433 1434 If nothing is known about the exception, this is the method which
1434 1435 should be used throughout the code for presenting user tracebacks,
1435 1436 rather than directly invoking the InteractiveTB object.
1436 1437
1437 1438 A specific showsyntaxerror() also exists, but this method can take
1438 1439 care of calling it if needed, so unless you are explicitly catching a
1439 1440 SyntaxError exception, don't try to analyze the stack manually and
1440 1441 simply call this method."""
1441 1442
1442 1443 try:
1443 1444 if exc_tuple is None:
1444 1445 etype, value, tb = sys.exc_info()
1445 1446 else:
1446 1447 etype, value, tb = exc_tuple
1447 1448
1448 1449 if etype is None:
1449 1450 if hasattr(sys, 'last_type'):
1450 1451 etype, value, tb = sys.last_type, sys.last_value, \
1451 1452 sys.last_traceback
1452 1453 else:
1453 1454 self.write_err('No traceback available to show.\n')
1454 1455 return
1455 1456
1456 1457 if etype is SyntaxError:
1457 1458 # Though this won't be called by syntax errors in the input
1458 1459 # line, there may be SyntaxError cases whith imported code.
1459 1460 self.showsyntaxerror(filename)
1460 1461 elif etype is UsageError:
1461 1462 print "UsageError:", value
1462 1463 else:
1463 1464 # WARNING: these variables are somewhat deprecated and not
1464 1465 # necessarily safe to use in a threaded environment, but tools
1465 1466 # like pdb depend on their existence, so let's set them. If we
1466 1467 # find problems in the field, we'll need to revisit their use.
1467 1468 sys.last_type = etype
1468 1469 sys.last_value = value
1469 1470 sys.last_traceback = tb
1470 1471
1471 1472 if etype in self.custom_exceptions:
1472 1473 # FIXME: Old custom traceback objects may just return a
1473 1474 # string, in that case we just put it into a list
1474 1475 stb = self.CustomTB(etype, value, tb, tb_offset)
1475 1476 if isinstance(ctb, basestring):
1476 1477 stb = [stb]
1477 1478 else:
1478 1479 if exception_only:
1479 1480 stb = ['An exception has occurred, use %tb to see '
1480 1481 'the full traceback.\n']
1481 1482 stb.extend(self.InteractiveTB.get_exception_only(etype,
1482 1483 value))
1483 1484 else:
1484 1485 stb = self.InteractiveTB.structured_traceback(etype,
1485 1486 value, tb, tb_offset=tb_offset)
1486 1487 # FIXME: the pdb calling should be done by us, not by
1487 1488 # the code computing the traceback.
1488 1489 if self.InteractiveTB.call_pdb:
1489 1490 # pdb mucks up readline, fix it back
1490 1491 self.set_readline_completer()
1491 1492
1492 1493 # Actually show the traceback
1493 1494 self._showtraceback(etype, value, stb)
1494 1495
1495 1496 except KeyboardInterrupt:
1496 1497 self.write_err("\nKeyboardInterrupt\n")
1497 1498
1498 1499 def _showtraceback(self, etype, evalue, stb):
1499 1500 """Actually show a traceback.
1500 1501
1501 1502 Subclasses may override this method to put the traceback on a different
1502 1503 place, like a side channel.
1503 1504 """
1504 1505 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1505 1506
1506 1507 def showsyntaxerror(self, filename=None):
1507 1508 """Display the syntax error that just occurred.
1508 1509
1509 1510 This doesn't display a stack trace because there isn't one.
1510 1511
1511 1512 If a filename is given, it is stuffed in the exception instead
1512 1513 of what was there before (because Python's parser always uses
1513 1514 "<string>" when reading from a string).
1514 1515 """
1515 1516 etype, value, last_traceback = sys.exc_info()
1516 1517
1517 1518 # See note about these variables in showtraceback() above
1518 1519 sys.last_type = etype
1519 1520 sys.last_value = value
1520 1521 sys.last_traceback = last_traceback
1521 1522
1522 1523 if filename and etype is SyntaxError:
1523 1524 # Work hard to stuff the correct filename in the exception
1524 1525 try:
1525 1526 msg, (dummy_filename, lineno, offset, line) = value
1526 1527 except:
1527 1528 # Not the format we expect; leave it alone
1528 1529 pass
1529 1530 else:
1530 1531 # Stuff in the right filename
1531 1532 try:
1532 1533 # Assume SyntaxError is a class exception
1533 1534 value = SyntaxError(msg, (filename, lineno, offset, line))
1534 1535 except:
1535 1536 # If that failed, assume SyntaxError is a string
1536 1537 value = msg, (filename, lineno, offset, line)
1537 1538 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1538 1539 self._showtraceback(etype, value, stb)
1539 1540
1540 1541 #-------------------------------------------------------------------------
1541 1542 # Things related to readline
1542 1543 #-------------------------------------------------------------------------
1543 1544
1544 1545 def init_readline(self):
1545 1546 """Command history completion/saving/reloading."""
1546 1547
1547 1548 if self.readline_use:
1548 1549 import IPython.utils.rlineimpl as readline
1549 1550
1550 1551 self.rl_next_input = None
1551 1552 self.rl_do_indent = False
1552 1553
1553 1554 if not self.readline_use or not readline.have_readline:
1554 1555 self.has_readline = False
1555 1556 self.readline = None
1556 1557 # Set a number of methods that depend on readline to be no-op
1557 1558 self.savehist = no_op
1558 1559 self.reloadhist = no_op
1559 1560 self.set_readline_completer = no_op
1560 1561 self.set_custom_completer = no_op
1561 1562 self.set_completer_frame = no_op
1562 1563 warn('Readline services not available or not loaded.')
1563 1564 else:
1564 1565 self.has_readline = True
1565 1566 self.readline = readline
1566 1567 sys.modules['readline'] = readline
1567 1568
1568 1569 # Platform-specific configuration
1569 1570 if os.name == 'nt':
1570 1571 # FIXME - check with Frederick to see if we can harmonize
1571 1572 # naming conventions with pyreadline to avoid this
1572 1573 # platform-dependent check
1573 1574 self.readline_startup_hook = readline.set_pre_input_hook
1574 1575 else:
1575 1576 self.readline_startup_hook = readline.set_startup_hook
1576 1577
1577 1578 # Load user's initrc file (readline config)
1578 1579 # Or if libedit is used, load editrc.
1579 1580 inputrc_name = os.environ.get('INPUTRC')
1580 1581 if inputrc_name is None:
1581 1582 home_dir = get_home_dir()
1582 1583 if home_dir is not None:
1583 1584 inputrc_name = '.inputrc'
1584 1585 if readline.uses_libedit:
1585 1586 inputrc_name = '.editrc'
1586 1587 inputrc_name = os.path.join(home_dir, inputrc_name)
1587 1588 if os.path.isfile(inputrc_name):
1588 1589 try:
1589 1590 readline.read_init_file(inputrc_name)
1590 1591 except:
1591 1592 warn('Problems reading readline initialization file <%s>'
1592 1593 % inputrc_name)
1593 1594
1594 1595 # Configure readline according to user's prefs
1595 1596 # This is only done if GNU readline is being used. If libedit
1596 1597 # is being used (as on Leopard) the readline config is
1597 1598 # not run as the syntax for libedit is different.
1598 1599 if not readline.uses_libedit:
1599 1600 for rlcommand in self.readline_parse_and_bind:
1600 1601 #print "loading rl:",rlcommand # dbg
1601 1602 readline.parse_and_bind(rlcommand)
1602 1603
1603 1604 # Remove some chars from the delimiters list. If we encounter
1604 1605 # unicode chars, discard them.
1605 1606 delims = readline.get_completer_delims().encode("ascii", "ignore")
1606 1607 delims = delims.translate(string._idmap,
1607 1608 self.readline_remove_delims)
1608 1609 delims = delims.replace(ESC_MAGIC, '')
1609 1610 readline.set_completer_delims(delims)
1610 1611 # otherwise we end up with a monster history after a while:
1611 1612 readline.set_history_length(1000)
1612 1613 try:
1613 1614 #print '*** Reading readline history' # dbg
1614 1615 readline.read_history_file(self.histfile)
1615 1616 except IOError:
1616 1617 pass # It doesn't exist yet.
1617 1618
1618 1619 # If we have readline, we want our history saved upon ipython
1619 1620 # exiting.
1620 1621 atexit.register(self.savehist)
1621 1622
1622 1623 # Configure auto-indent for all platforms
1623 1624 self.set_autoindent(self.autoindent)
1624 1625
1625 1626 def set_next_input(self, s):
1626 1627 """ Sets the 'default' input string for the next command line.
1627 1628
1628 1629 Requires readline.
1629 1630
1630 1631 Example:
1631 1632
1632 1633 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1633 1634 [D:\ipython]|2> Hello Word_ # cursor is here
1634 1635 """
1635 1636
1636 1637 self.rl_next_input = s
1637 1638
1638 1639 # Maybe move this to the terminal subclass?
1639 1640 def pre_readline(self):
1640 1641 """readline hook to be used at the start of each line.
1641 1642
1642 1643 Currently it handles auto-indent only."""
1643 1644
1644 1645 if self.rl_do_indent:
1645 1646 self.readline.insert_text(self._indent_current_str())
1646 1647 if self.rl_next_input is not None:
1647 1648 self.readline.insert_text(self.rl_next_input)
1648 1649 self.rl_next_input = None
1649 1650
1650 1651 def _indent_current_str(self):
1651 1652 """return the current level of indentation as a string"""
1652 1653 return self.indent_current_nsp * ' '
1653 1654
1654 1655 #-------------------------------------------------------------------------
1655 1656 # Things related to text completion
1656 1657 #-------------------------------------------------------------------------
1657 1658
1658 1659 def init_completer(self):
1659 1660 """Initialize the completion machinery.
1660 1661
1661 1662 This creates completion machinery that can be used by client code,
1662 1663 either interactively in-process (typically triggered by the readline
1663 1664 library), programatically (such as in test suites) or out-of-prcess
1664 1665 (typically over the network by remote frontends).
1665 1666 """
1666 1667 from IPython.core.completer import IPCompleter
1667 1668 from IPython.core.completerlib import (module_completer,
1668 1669 magic_run_completer, cd_completer)
1669 1670
1670 1671 self.Completer = IPCompleter(self,
1671 1672 self.user_ns,
1672 1673 self.user_global_ns,
1673 1674 self.readline_omit__names,
1674 1675 self.alias_manager.alias_table,
1675 1676 self.has_readline)
1676 1677
1677 1678 # Add custom completers to the basic ones built into IPCompleter
1678 1679 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1679 1680 self.strdispatchers['complete_command'] = sdisp
1680 1681 self.Completer.custom_completers = sdisp
1681 1682
1682 1683 self.set_hook('complete_command', module_completer, str_key = 'import')
1683 1684 self.set_hook('complete_command', module_completer, str_key = 'from')
1684 1685 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1685 1686 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1686 1687
1687 1688 # Only configure readline if we truly are using readline. IPython can
1688 1689 # do tab-completion over the network, in GUIs, etc, where readline
1689 1690 # itself may be absent
1690 1691 if self.has_readline:
1691 1692 self.set_readline_completer()
1692 1693
1693 1694 def complete(self, text, line=None, cursor_pos=None):
1694 1695 """Return the completed text and a list of completions.
1695 1696
1696 1697 Parameters
1697 1698 ----------
1698 1699
1699 1700 text : string
1700 1701 A string of text to be completed on. It can be given as empty and
1701 1702 instead a line/position pair are given. In this case, the
1702 1703 completer itself will split the line like readline does.
1703 1704
1704 1705 line : string, optional
1705 1706 The complete line that text is part of.
1706 1707
1707 1708 cursor_pos : int, optional
1708 1709 The position of the cursor on the input line.
1709 1710
1710 1711 Returns
1711 1712 -------
1712 1713 text : string
1713 1714 The actual text that was completed.
1714 1715
1715 1716 matches : list
1716 1717 A sorted list with all possible completions.
1717 1718
1718 1719 The optional arguments allow the completion to take more context into
1719 1720 account, and are part of the low-level completion API.
1720 1721
1721 1722 This is a wrapper around the completion mechanism, similar to what
1722 1723 readline does at the command line when the TAB key is hit. By
1723 1724 exposing it as a method, it can be used by other non-readline
1724 1725 environments (such as GUIs) for text completion.
1725 1726
1726 1727 Simple usage example:
1727 1728
1728 1729 In [1]: x = 'hello'
1729 1730
1730 1731 In [2]: _ip.complete('x.l')
1731 1732 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1732 1733 """
1733 1734
1734 1735 # Inject names into __builtin__ so we can complete on the added names.
1735 1736 with self.builtin_trap:
1736 1737 return self.Completer.complete(text, line, cursor_pos)
1737 1738
1738 1739 def set_custom_completer(self, completer, pos=0):
1739 1740 """Adds a new custom completer function.
1740 1741
1741 1742 The position argument (defaults to 0) is the index in the completers
1742 1743 list where you want the completer to be inserted."""
1743 1744
1744 1745 newcomp = new.instancemethod(completer,self.Completer,
1745 1746 self.Completer.__class__)
1746 1747 self.Completer.matchers.insert(pos,newcomp)
1747 1748
1748 1749 def set_readline_completer(self):
1749 1750 """Reset readline's completer to be our own."""
1750 1751 self.readline.set_completer(self.Completer.rlcomplete)
1751 1752
1752 1753 def set_completer_frame(self, frame=None):
1753 1754 """Set the frame of the completer."""
1754 1755 if frame:
1755 1756 self.Completer.namespace = frame.f_locals
1756 1757 self.Completer.global_namespace = frame.f_globals
1757 1758 else:
1758 1759 self.Completer.namespace = self.user_ns
1759 1760 self.Completer.global_namespace = self.user_global_ns
1760 1761
1761 1762 #-------------------------------------------------------------------------
1762 1763 # Things related to magics
1763 1764 #-------------------------------------------------------------------------
1764 1765
1765 1766 def init_magics(self):
1766 1767 # FIXME: Move the color initialization to the DisplayHook, which
1767 1768 # should be split into a prompt manager and displayhook. We probably
1768 1769 # even need a centralize colors management object.
1769 1770 self.magic_colors(self.colors)
1770 1771 # History was moved to a separate module
1771 1772 from . import history
1772 1773 history.init_ipython(self)
1773 1774
1774 1775 def magic(self,arg_s):
1775 1776 """Call a magic function by name.
1776 1777
1777 1778 Input: a string containing the name of the magic function to call and
1778 1779 any additional arguments to be passed to the magic.
1779 1780
1780 1781 magic('name -opt foo bar') is equivalent to typing at the ipython
1781 1782 prompt:
1782 1783
1783 1784 In[1]: %name -opt foo bar
1784 1785
1785 1786 To call a magic without arguments, simply use magic('name').
1786 1787
1787 1788 This provides a proper Python function to call IPython's magics in any
1788 1789 valid Python code you can type at the interpreter, including loops and
1789 1790 compound statements.
1790 1791 """
1791 1792 args = arg_s.split(' ',1)
1792 1793 magic_name = args[0]
1793 1794 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1794 1795
1795 1796 try:
1796 1797 magic_args = args[1]
1797 1798 except IndexError:
1798 1799 magic_args = ''
1799 1800 fn = getattr(self,'magic_'+magic_name,None)
1800 1801 if fn is None:
1801 1802 error("Magic function `%s` not found." % magic_name)
1802 1803 else:
1803 1804 magic_args = self.var_expand(magic_args,1)
1804 1805 with nested(self.builtin_trap,):
1805 1806 result = fn(magic_args)
1806 1807 return result
1807 1808
1808 1809 def define_magic(self, magicname, func):
1809 1810 """Expose own function as magic function for ipython
1810 1811
1811 1812 def foo_impl(self,parameter_s=''):
1812 1813 'My very own magic!. (Use docstrings, IPython reads them).'
1813 1814 print 'Magic function. Passed parameter is between < >:'
1814 1815 print '<%s>' % parameter_s
1815 1816 print 'The self object is:',self
1816 1817
1817 1818 self.define_magic('foo',foo_impl)
1818 1819 """
1819 1820
1820 1821 import new
1821 1822 im = new.instancemethod(func,self, self.__class__)
1822 1823 old = getattr(self, "magic_" + magicname, None)
1823 1824 setattr(self, "magic_" + magicname, im)
1824 1825 return old
1825 1826
1826 1827 #-------------------------------------------------------------------------
1827 1828 # Things related to macros
1828 1829 #-------------------------------------------------------------------------
1829 1830
1830 1831 def define_macro(self, name, themacro):
1831 1832 """Define a new macro
1832 1833
1833 1834 Parameters
1834 1835 ----------
1835 1836 name : str
1836 1837 The name of the macro.
1837 1838 themacro : str or Macro
1838 1839 The action to do upon invoking the macro. If a string, a new
1839 1840 Macro object is created by passing the string to it.
1840 1841 """
1841 1842
1842 1843 from IPython.core import macro
1843 1844
1844 1845 if isinstance(themacro, basestring):
1845 1846 themacro = macro.Macro(themacro)
1846 1847 if not isinstance(themacro, macro.Macro):
1847 1848 raise ValueError('A macro must be a string or a Macro instance.')
1848 1849 self.user_ns[name] = themacro
1849 1850
1850 1851 #-------------------------------------------------------------------------
1851 1852 # Things related to the running of system commands
1852 1853 #-------------------------------------------------------------------------
1853 1854
1854 1855 def system(self, cmd):
1855 1856 """Call the given cmd in a subprocess.
1856 1857
1857 1858 Parameters
1858 1859 ----------
1859 1860 cmd : str
1860 1861 Command to execute (can not end in '&', as bacground processes are
1861 1862 not supported.
1862 1863 """
1863 1864 # We do not support backgrounding processes because we either use
1864 1865 # pexpect or pipes to read from. Users can always just call
1865 1866 # os.system() if they really want a background process.
1866 1867 if cmd.endswith('&'):
1867 1868 raise OSError("Background processes not supported.")
1868 1869
1869 1870 return system(self.var_expand(cmd, depth=2))
1870 1871
1871 1872 def getoutput(self, cmd, split=True):
1872 1873 """Get output (possibly including stderr) from a subprocess.
1873 1874
1874 1875 Parameters
1875 1876 ----------
1876 1877 cmd : str
1877 1878 Command to execute (can not end in '&', as background processes are
1878 1879 not supported.
1879 1880 split : bool, optional
1880 1881
1881 1882 If True, split the output into an IPython SList. Otherwise, an
1882 1883 IPython LSString is returned. These are objects similar to normal
1883 1884 lists and strings, with a few convenience attributes for easier
1884 1885 manipulation of line-based output. You can use '?' on them for
1885 1886 details.
1886 1887 """
1887 1888 if cmd.endswith('&'):
1888 1889 raise OSError("Background processes not supported.")
1889 1890 out = getoutput(self.var_expand(cmd, depth=2))
1890 1891 if split:
1891 1892 out = SList(out.splitlines())
1892 1893 else:
1893 1894 out = LSString(out)
1894 1895 return out
1895 1896
1896 1897 #-------------------------------------------------------------------------
1897 1898 # Things related to aliases
1898 1899 #-------------------------------------------------------------------------
1899 1900
1900 1901 def init_alias(self):
1901 1902 self.alias_manager = AliasManager(shell=self, config=self.config)
1902 1903 self.ns_table['alias'] = self.alias_manager.alias_table,
1903 1904
1904 1905 #-------------------------------------------------------------------------
1905 1906 # Things related to extensions and plugins
1906 1907 #-------------------------------------------------------------------------
1907 1908
1908 1909 def init_extension_manager(self):
1909 1910 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1910 1911
1911 1912 def init_plugin_manager(self):
1912 1913 self.plugin_manager = PluginManager(config=self.config)
1913 1914
1914 1915 #-------------------------------------------------------------------------
1915 1916 # Things related to payloads
1916 1917 #-------------------------------------------------------------------------
1917 1918
1918 1919 def init_payload(self):
1919 1920 self.payload_manager = PayloadManager(config=self.config)
1920 1921
1921 1922 #-------------------------------------------------------------------------
1922 1923 # Things related to the prefilter
1923 1924 #-------------------------------------------------------------------------
1924 1925
1925 1926 def init_prefilter(self):
1926 1927 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1927 1928 # Ultimately this will be refactored in the new interpreter code, but
1928 1929 # for now, we should expose the main prefilter method (there's legacy
1929 1930 # code out there that may rely on this).
1930 1931 self.prefilter = self.prefilter_manager.prefilter_lines
1931 1932
1932 1933
1933 1934 def auto_rewrite_input(self, cmd):
1934 1935 """Print to the screen the rewritten form of the user's command.
1935 1936
1936 1937 This shows visual feedback by rewriting input lines that cause
1937 1938 automatic calling to kick in, like::
1938 1939
1939 1940 /f x
1940 1941
1941 1942 into::
1942 1943
1943 1944 ------> f(x)
1944 1945
1945 1946 after the user's input prompt. This helps the user understand that the
1946 1947 input line was transformed automatically by IPython.
1947 1948 """
1948 1949 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1949 1950
1950 1951 try:
1951 1952 # plain ascii works better w/ pyreadline, on some machines, so
1952 1953 # we use it and only print uncolored rewrite if we have unicode
1953 1954 rw = str(rw)
1954 1955 print >> IPython.utils.io.Term.cout, rw
1955 1956 except UnicodeEncodeError:
1956 1957 print "------> " + cmd
1957 1958
1958 1959 #-------------------------------------------------------------------------
1959 1960 # Things related to extracting values/expressions from kernel and user_ns
1960 1961 #-------------------------------------------------------------------------
1961 1962
1962 1963 def _simple_error(self):
1963 1964 etype, value = sys.exc_info()[:2]
1964 1965 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1965 1966
1966 1967 def get_user_variables(self, names):
1967 1968 """Get a list of variable names from the user's namespace.
1968 1969
1969 1970 The return value is a dict with the repr() of each value.
1970 1971 """
1971 1972 out = {}
1972 1973 user_ns = self.user_ns
1973 1974 for varname in names:
1974 1975 try:
1975 1976 value = repr(user_ns[varname])
1976 1977 except:
1977 1978 value = self._simple_error()
1978 1979 out[varname] = value
1979 1980 return out
1980 1981
1981 1982 def eval_expressions(self, expressions):
1982 1983 """Evaluate a dict of expressions in the user's namespace.
1983 1984
1984 1985 The return value is a dict with the repr() of each value.
1985 1986 """
1986 1987 out = {}
1987 1988 user_ns = self.user_ns
1988 1989 global_ns = self.user_global_ns
1989 1990 for key, expr in expressions.iteritems():
1990 1991 try:
1991 1992 value = repr(eval(expr, global_ns, user_ns))
1992 1993 except:
1993 1994 value = self._simple_error()
1994 1995 out[key] = value
1995 1996 return out
1996 1997
1997 1998 #-------------------------------------------------------------------------
1998 1999 # Things related to the running of code
1999 2000 #-------------------------------------------------------------------------
2000 2001
2001 2002 def ex(self, cmd):
2002 2003 """Execute a normal python statement in user namespace."""
2003 2004 with nested(self.builtin_trap,):
2004 2005 exec cmd in self.user_global_ns, self.user_ns
2005 2006
2006 2007 def ev(self, expr):
2007 2008 """Evaluate python expression expr in user namespace.
2008 2009
2009 2010 Returns the result of evaluation
2010 2011 """
2011 2012 with nested(self.builtin_trap,):
2012 2013 return eval(expr, self.user_global_ns, self.user_ns)
2013 2014
2014 2015 def safe_execfile(self, fname, *where, **kw):
2015 2016 """A safe version of the builtin execfile().
2016 2017
2017 2018 This version will never throw an exception, but instead print
2018 2019 helpful error messages to the screen. This only works on pure
2019 2020 Python files with the .py extension.
2020 2021
2021 2022 Parameters
2022 2023 ----------
2023 2024 fname : string
2024 2025 The name of the file to be executed.
2025 2026 where : tuple
2026 2027 One or two namespaces, passed to execfile() as (globals,locals).
2027 2028 If only one is given, it is passed as both.
2028 2029 exit_ignore : bool (False)
2029 2030 If True, then silence SystemExit for non-zero status (it is always
2030 2031 silenced for zero status, as it is so common).
2031 2032 """
2032 2033 kw.setdefault('exit_ignore', False)
2033 2034
2034 2035 fname = os.path.abspath(os.path.expanduser(fname))
2035 2036
2036 2037 # Make sure we have a .py file
2037 2038 if not fname.endswith('.py'):
2038 2039 warn('File must end with .py to be run using execfile: <%s>' % fname)
2039 2040
2040 2041 # Make sure we can open the file
2041 2042 try:
2042 2043 with open(fname) as thefile:
2043 2044 pass
2044 2045 except:
2045 2046 warn('Could not open file <%s> for safe execution.' % fname)
2046 2047 return
2047 2048
2048 2049 # Find things also in current directory. This is needed to mimic the
2049 2050 # behavior of running a script from the system command line, where
2050 2051 # Python inserts the script's directory into sys.path
2051 2052 dname = os.path.dirname(fname)
2052 2053
2053 2054 with prepended_to_syspath(dname):
2054 2055 try:
2055 2056 execfile(fname,*where)
2056 2057 except SystemExit, status:
2057 2058 # If the call was made with 0 or None exit status (sys.exit(0)
2058 2059 # or sys.exit() ), don't bother showing a traceback, as both of
2059 2060 # these are considered normal by the OS:
2060 2061 # > python -c'import sys;sys.exit(0)'; echo $?
2061 2062 # 0
2062 2063 # > python -c'import sys;sys.exit()'; echo $?
2063 2064 # 0
2064 2065 # For other exit status, we show the exception unless
2065 2066 # explicitly silenced, but only in short form.
2066 2067 if status.code not in (0, None) and not kw['exit_ignore']:
2067 2068 self.showtraceback(exception_only=True)
2068 2069 except:
2069 2070 self.showtraceback()
2070 2071
2071 2072 def safe_execfile_ipy(self, fname):
2072 2073 """Like safe_execfile, but for .ipy files with IPython syntax.
2073 2074
2074 2075 Parameters
2075 2076 ----------
2076 2077 fname : str
2077 2078 The name of the file to execute. The filename must have a
2078 2079 .ipy extension.
2079 2080 """
2080 2081 fname = os.path.abspath(os.path.expanduser(fname))
2081 2082
2082 2083 # Make sure we have a .py file
2083 2084 if not fname.endswith('.ipy'):
2084 2085 warn('File must end with .py to be run using execfile: <%s>' % fname)
2085 2086
2086 2087 # Make sure we can open the file
2087 2088 try:
2088 2089 with open(fname) as thefile:
2089 2090 pass
2090 2091 except:
2091 2092 warn('Could not open file <%s> for safe execution.' % fname)
2092 2093 return
2093 2094
2094 2095 # Find things also in current directory. This is needed to mimic the
2095 2096 # behavior of running a script from the system command line, where
2096 2097 # Python inserts the script's directory into sys.path
2097 2098 dname = os.path.dirname(fname)
2098 2099
2099 2100 with prepended_to_syspath(dname):
2100 2101 try:
2101 2102 with open(fname) as thefile:
2102 2103 script = thefile.read()
2103 2104 # self.runlines currently captures all exceptions
2104 2105 # raise in user code. It would be nice if there were
2105 2106 # versions of runlines, execfile that did raise, so
2106 2107 # we could catch the errors.
2107 2108 self.runlines(script, clean=True)
2108 2109 except:
2109 2110 self.showtraceback()
2110 2111 warn('Unknown failure executing file: <%s>' % fname)
2111 2112
2112 2113 def run_cell(self, cell):
2113 2114 """Run the contents of an entire multiline 'cell' of code.
2114 2115
2115 2116 The cell is split into separate blocks which can be executed
2116 2117 individually. Then, based on how many blocks there are, they are
2117 2118 executed as follows:
2118 2119
2119 2120 - A single block: 'single' mode.
2120 2121
2121 2122 If there's more than one block, it depends:
2122 2123
2123 2124 - if the last one is a single line long, run all but the last in
2124 2125 'exec' mode and the very last one in 'single' mode. This makes it
2125 2126 easy to type simple expressions at the end to see computed values.
2126 2127 - otherwise (last one is also multiline), run all in 'exec' mode
2127 2128
2128 2129 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2129 2130 results are displayed and output prompts are computed. In 'exec' mode,
2130 2131 no results are displayed unless :func:`print` is called explicitly;
2131 2132 this mode is more akin to running a script.
2132 2133
2133 2134 Parameters
2134 2135 ----------
2135 2136 cell : str
2136 2137 A single or multiline string.
2137 2138 """
2138 2139 #################################################################
2139 2140 # FIXME
2140 2141 # =====
2141 2142 # This execution logic should stop calling runlines altogether, and
2142 2143 # instead we should do what runlines does, in a controlled manner, here
2143 2144 # (runlines mutates lots of state as it goes calling sub-methods that
2144 2145 # also mutate state). Basically we should:
2145 2146 # - apply dynamic transforms for single-line input (the ones that
2146 2147 # split_blocks won't apply since they need context).
2147 2148 # - increment the global execution counter (we need to pull that out
2148 2149 # from outputcache's control; outputcache should instead read it from
2149 2150 # the main object).
2150 2151 # - do any logging of input
2151 2152 # - update histories (raw/translated)
2152 2153 # - then, call plain runsource (for single blocks, so displayhook is
2153 2154 # triggered) or runcode (for multiline blocks in exec mode).
2154 2155 #
2155 2156 # Once this is done, we'll be able to stop using runlines and we'll
2156 2157 # also have a much cleaner separation of logging, input history and
2157 2158 # output cache management.
2158 2159 #################################################################
2159 2160
2160 2161 # We need to break up the input into executable blocks that can be run
2161 2162 # in 'single' mode, to provide comfortable user behavior.
2162 2163 blocks = self.input_splitter.split_blocks(cell)
2163 2164
2164 2165 if not blocks:
2165 2166 return
2166 2167
2167 2168 # Single-block input should behave like an interactive prompt
2168 2169 if len(blocks) == 1:
2169 2170 self.runlines(blocks[0])
2170 2171 return
2171 2172
2172 2173 # In multi-block input, if the last block is a simple (one-two lines)
2173 2174 # expression, run it in single mode so it produces output. Otherwise
2174 2175 # just feed the whole thing to runcode.
2175 2176 # This seems like a reasonable usability design.
2176 2177 last = blocks[-1]
2177 2178
2178 2179 # Note: below, whenever we call runcode, we must sync history
2179 2180 # ourselves, because runcode is NOT meant to manage history at all.
2180 2181 if len(last.splitlines()) < 2:
2181 2182 # Get the main body to run as a cell
2182 2183 body = ''.join(blocks[:-1])
2183 2184 self.input_hist.append(body)
2184 2185 self.input_hist_raw.append(body)
2185 2186 self.runcode(body, post_execute=False)
2186 2187 # And the last expression via runlines so it produces output
2187 2188 self.runlines(last)
2188 2189 else:
2189 2190 # Run the whole cell as one entity
2190 2191 self.input_hist.append(cell)
2191 2192 self.input_hist_raw.append(cell)
2192 2193 self.runcode(cell)
2193 2194
2194 2195 def runlines(self, lines, clean=False):
2195 2196 """Run a string of one or more lines of source.
2196 2197
2197 2198 This method is capable of running a string containing multiple source
2198 2199 lines, as if they had been entered at the IPython prompt. Since it
2199 2200 exposes IPython's processing machinery, the given strings can contain
2200 2201 magic calls (%magic), special shell access (!cmd), etc.
2201 2202 """
2202 2203
2203 2204 if isinstance(lines, (list, tuple)):
2204 2205 lines = '\n'.join(lines)
2205 2206
2206 2207 if clean:
2207 2208 lines = self._cleanup_ipy_script(lines)
2208 2209
2209 2210 # We must start with a clean buffer, in case this is run from an
2210 2211 # interactive IPython session (via a magic, for example).
2211 2212 self.resetbuffer()
2212 2213 lines = lines.splitlines()
2213 2214 more = 0
2214 2215 with nested(self.builtin_trap, self.display_trap):
2215 2216 for line in lines:
2216 2217 # skip blank lines so we don't mess up the prompt counter, but
2217 2218 # do NOT skip even a blank line if we are in a code block (more
2218 2219 # is true)
2219 2220
2220 2221 if line or more:
2221 2222 # push to raw history, so hist line numbers stay in sync
2222 2223 self.input_hist_raw.append(line + '\n')
2223 2224 prefiltered = self.prefilter_manager.prefilter_lines(line,
2224 2225 more)
2225 2226 more = self.push_line(prefiltered)
2226 2227 # IPython's runsource returns None if there was an error
2227 2228 # compiling the code. This allows us to stop processing
2228 2229 # right away, so the user gets the error message at the
2229 2230 # right place.
2230 2231 if more is None:
2231 2232 break
2232 2233 else:
2233 2234 self.input_hist_raw.append("\n")
2234 2235 # final newline in case the input didn't have it, so that the code
2235 2236 # actually does get executed
2236 2237 if more:
2237 2238 self.push_line('\n')
2238 2239
2239 2240 def runsource(self, source, filename='<input>', symbol='single'):
2240 2241 """Compile and run some source in the interpreter.
2241 2242
2242 2243 Arguments are as for compile_command().
2243 2244
2244 2245 One several things can happen:
2245 2246
2246 2247 1) The input is incorrect; compile_command() raised an
2247 2248 exception (SyntaxError or OverflowError). A syntax traceback
2248 2249 will be printed by calling the showsyntaxerror() method.
2249 2250
2250 2251 2) The input is incomplete, and more input is required;
2251 2252 compile_command() returned None. Nothing happens.
2252 2253
2253 2254 3) The input is complete; compile_command() returned a code
2254 2255 object. The code is executed by calling self.runcode() (which
2255 2256 also handles run-time exceptions, except for SystemExit).
2256 2257
2257 2258 The return value is:
2258 2259
2259 2260 - True in case 2
2260 2261
2261 2262 - False in the other cases, unless an exception is raised, where
2262 2263 None is returned instead. This can be used by external callers to
2263 2264 know whether to continue feeding input or not.
2264 2265
2265 2266 The return value can be used to decide whether to use sys.ps1 or
2266 2267 sys.ps2 to prompt the next line."""
2267 2268
2268 2269 # We need to ensure that the source is unicode from here on.
2269 2270 if type(source)==str:
2270 2271 source = source.decode(self.stdin_encoding)
2271 2272
2272 2273 # if the source code has leading blanks, add 'if 1:\n' to it
2273 2274 # this allows execution of indented pasted code. It is tempting
2274 2275 # to add '\n' at the end of source to run commands like ' a=1'
2275 2276 # directly, but this fails for more complicated scenarios
2276 2277
2277 2278 if source[:1] in [' ', '\t']:
2278 2279 source = u'if 1:\n%s' % source
2279 2280
2280 2281 try:
2281 2282 code = self.compile(source,filename,symbol)
2282 2283 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2283 2284 # Case 1
2284 2285 self.showsyntaxerror(filename)
2285 2286 return None
2286 2287
2287 2288 if code is None:
2288 2289 # Case 2
2289 2290 return True
2290 2291
2291 2292 # Case 3
2292 2293 # We store the code object so that threaded shells and
2293 2294 # custom exception handlers can access all this info if needed.
2294 2295 # The source corresponding to this can be obtained from the
2295 2296 # buffer attribute as '\n'.join(self.buffer).
2296 2297 self.code_to_run = code
2297 2298 # now actually execute the code object
2298 2299 if self.runcode(code) == 0:
2299 2300 return False
2300 2301 else:
2301 2302 return None
2302 2303
2303 2304 def runcode(self, code_obj, post_execute=True):
2304 2305 """Execute a code object.
2305 2306
2306 2307 When an exception occurs, self.showtraceback() is called to display a
2307 2308 traceback.
2308 2309
2309 2310 Return value: a flag indicating whether the code to be run completed
2310 2311 successfully:
2311 2312
2312 2313 - 0: successful execution.
2313 2314 - 1: an error occurred.
2314 2315 """
2315 2316
2316 2317 # Set our own excepthook in case the user code tries to call it
2317 2318 # directly, so that the IPython crash handler doesn't get triggered
2318 2319 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2319 2320
2320 2321 # we save the original sys.excepthook in the instance, in case config
2321 2322 # code (such as magics) needs access to it.
2322 2323 self.sys_excepthook = old_excepthook
2323 2324 outflag = 1 # happens in more places, so it's easier as default
2324 2325 try:
2325 2326 try:
2326 2327 self.hooks.pre_runcode_hook()
2327 2328 #rprint('Running code') # dbg
2328 2329 exec code_obj in self.user_global_ns, self.user_ns
2329 2330 finally:
2330 2331 # Reset our crash handler in place
2331 2332 sys.excepthook = old_excepthook
2332 2333 except SystemExit:
2333 2334 self.resetbuffer()
2334 2335 self.showtraceback(exception_only=True)
2335 2336 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2336 2337 except self.custom_exceptions:
2337 2338 etype,value,tb = sys.exc_info()
2338 2339 self.CustomTB(etype,value,tb)
2339 2340 except:
2340 2341 self.showtraceback()
2341 2342 else:
2342 2343 outflag = 0
2343 2344 if softspace(sys.stdout, 0):
2344 2345 print
2345 2346
2346 2347 # Execute any registered post-execution functions. Here, any errors
2347 2348 # are reported only minimally and just on the terminal, because the
2348 2349 # main exception channel may be occupied with a user traceback.
2349 2350 # FIXME: we need to think this mechanism a little more carefully.
2350 2351 if post_execute:
2351 2352 for func in self._post_execute:
2352 2353 try:
2353 2354 func()
2354 2355 except:
2355 2356 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2356 2357 func
2357 2358 print >> io.Term.cout, head
2358 2359 print >> io.Term.cout, self._simple_error()
2359 2360 print >> io.Term.cout, 'Removing from post_execute'
2360 2361 self._post_execute.remove(func)
2361 2362
2362 2363 # Flush out code object which has been run (and source)
2363 2364 self.code_to_run = None
2364 2365 return outflag
2365 2366
2366 2367 def push_line(self, line):
2367 2368 """Push a line to the interpreter.
2368 2369
2369 2370 The line should not have a trailing newline; it may have
2370 2371 internal newlines. The line is appended to a buffer and the
2371 2372 interpreter's runsource() method is called with the
2372 2373 concatenated contents of the buffer as source. If this
2373 2374 indicates that the command was executed or invalid, the buffer
2374 2375 is reset; otherwise, the command is incomplete, and the buffer
2375 2376 is left as it was after the line was appended. The return
2376 2377 value is 1 if more input is required, 0 if the line was dealt
2377 2378 with in some way (this is the same as runsource()).
2378 2379 """
2379 2380
2380 2381 # autoindent management should be done here, and not in the
2381 2382 # interactive loop, since that one is only seen by keyboard input. We
2382 2383 # need this done correctly even for code run via runlines (which uses
2383 2384 # push).
2384 2385
2385 2386 #print 'push line: <%s>' % line # dbg
2386 2387 for subline in line.splitlines():
2387 2388 self._autoindent_update(subline)
2388 2389 self.buffer.append(line)
2389 2390 more = self.runsource('\n'.join(self.buffer), self.filename)
2390 2391 if not more:
2391 2392 self.resetbuffer()
2392 2393 return more
2393 2394
2394 2395 def resetbuffer(self):
2395 2396 """Reset the input buffer."""
2396 2397 self.buffer[:] = []
2397 2398
2398 2399 def _is_secondary_block_start(self, s):
2399 2400 if not s.endswith(':'):
2400 2401 return False
2401 2402 if (s.startswith('elif') or
2402 2403 s.startswith('else') or
2403 2404 s.startswith('except') or
2404 2405 s.startswith('finally')):
2405 2406 return True
2406 2407
2407 2408 def _cleanup_ipy_script(self, script):
2408 2409 """Make a script safe for self.runlines()
2409 2410
2410 2411 Currently, IPython is lines based, with blocks being detected by
2411 2412 empty lines. This is a problem for block based scripts that may
2412 2413 not have empty lines after blocks. This script adds those empty
2413 2414 lines to make scripts safe for running in the current line based
2414 2415 IPython.
2415 2416 """
2416 2417 res = []
2417 2418 lines = script.splitlines()
2418 2419 level = 0
2419 2420
2420 2421 for l in lines:
2421 2422 lstripped = l.lstrip()
2422 2423 stripped = l.strip()
2423 2424 if not stripped:
2424 2425 continue
2425 2426 newlevel = len(l) - len(lstripped)
2426 2427 if level > 0 and newlevel == 0 and \
2427 2428 not self._is_secondary_block_start(stripped):
2428 2429 # add empty line
2429 2430 res.append('')
2430 2431 res.append(l)
2431 2432 level = newlevel
2432 2433
2433 2434 return '\n'.join(res) + '\n'
2434 2435
2435 2436 def _autoindent_update(self,line):
2436 2437 """Keep track of the indent level."""
2437 2438
2438 2439 #debugx('line')
2439 2440 #debugx('self.indent_current_nsp')
2440 2441 if self.autoindent:
2441 2442 if line:
2442 2443 inisp = num_ini_spaces(line)
2443 2444 if inisp < self.indent_current_nsp:
2444 2445 self.indent_current_nsp = inisp
2445 2446
2446 2447 if line[-1] == ':':
2447 2448 self.indent_current_nsp += 4
2448 2449 elif dedent_re.match(line):
2449 2450 self.indent_current_nsp -= 4
2450 2451 else:
2451 2452 self.indent_current_nsp = 0
2452 2453
2453 2454 #-------------------------------------------------------------------------
2454 2455 # Things related to GUI support and pylab
2455 2456 #-------------------------------------------------------------------------
2456 2457
2457 2458 def enable_pylab(self, gui=None):
2458 2459 raise NotImplementedError('Implement enable_pylab in a subclass')
2459 2460
2460 2461 #-------------------------------------------------------------------------
2461 2462 # Utilities
2462 2463 #-------------------------------------------------------------------------
2463 2464
2464 2465 def var_expand(self,cmd,depth=0):
2465 2466 """Expand python variables in a string.
2466 2467
2467 2468 The depth argument indicates how many frames above the caller should
2468 2469 be walked to look for the local namespace where to expand variables.
2469 2470
2470 2471 The global namespace for expansion is always the user's interactive
2471 2472 namespace.
2472 2473 """
2473 2474
2474 2475 return str(ItplNS(cmd,
2475 2476 self.user_ns, # globals
2476 2477 # Skip our own frame in searching for locals:
2477 2478 sys._getframe(depth+1).f_locals # locals
2478 2479 ))
2479 2480
2480 2481 def mktempfile(self,data=None):
2481 2482 """Make a new tempfile and return its filename.
2482 2483
2483 2484 This makes a call to tempfile.mktemp, but it registers the created
2484 2485 filename internally so ipython cleans it up at exit time.
2485 2486
2486 2487 Optional inputs:
2487 2488
2488 2489 - data(None): if data is given, it gets written out to the temp file
2489 2490 immediately, and the file is closed again."""
2490 2491
2491 2492 filename = tempfile.mktemp('.py','ipython_edit_')
2492 2493 self.tempfiles.append(filename)
2493 2494
2494 2495 if data:
2495 2496 tmp_file = open(filename,'w')
2496 2497 tmp_file.write(data)
2497 2498 tmp_file.close()
2498 2499 return filename
2499 2500
2500 2501 # TODO: This should be removed when Term is refactored.
2501 2502 def write(self,data):
2502 2503 """Write a string to the default output"""
2503 2504 io.Term.cout.write(data)
2504 2505
2505 2506 # TODO: This should be removed when Term is refactored.
2506 2507 def write_err(self,data):
2507 2508 """Write a string to the default error output"""
2508 2509 io.Term.cerr.write(data)
2509 2510
2510 2511 def ask_yes_no(self,prompt,default=True):
2511 2512 if self.quiet:
2512 2513 return True
2513 2514 return ask_yes_no(prompt,default)
2514 2515
2515 2516 def show_usage(self):
2516 2517 """Show a usage message"""
2517 2518 page.page(IPython.core.usage.interactive_usage)
2518 2519
2519 2520 #-------------------------------------------------------------------------
2520 2521 # Things related to IPython exiting
2521 2522 #-------------------------------------------------------------------------
2522 2523 def atexit_operations(self):
2523 2524 """This will be executed at the time of exit.
2524 2525
2525 2526 Cleanup operations and saving of persistent data that is done
2526 2527 unconditionally by IPython should be performed here.
2527 2528
2528 2529 For things that may depend on startup flags or platform specifics (such
2529 2530 as having readline or not), register a separate atexit function in the
2530 2531 code that has the appropriate information, rather than trying to
2531 2532 clutter
2532 2533 """
2533 2534 # Cleanup all tempfiles left around
2534 2535 for tfile in self.tempfiles:
2535 2536 try:
2536 2537 os.unlink(tfile)
2537 2538 except OSError:
2538 2539 pass
2539 2540
2540 2541 # Clear all user namespaces to release all references cleanly.
2541 2542 self.reset()
2542 2543
2543 2544 # Run user hooks
2544 2545 self.hooks.shutdown_hook()
2545 2546
2546 2547 def cleanup(self):
2547 2548 self.restore_sys_module_state()
2548 2549
2549 2550
2550 2551 class InteractiveShellABC(object):
2551 2552 """An abstract base class for InteractiveShell."""
2552 2553 __metaclass__ = abc.ABCMeta
2553 2554
2554 2555 InteractiveShellABC.register(InteractiveShell)
General Comments 0
You need to be logged in to leave comments. Login now