Show More
@@ -1,660 +1,668 b'' | |||
|
1 | 1 | # -*- coding: utf-8 -*- |
|
2 | 2 | """ |
|
3 | 3 | ====== |
|
4 | 4 | Rmagic |
|
5 | 5 | ====== |
|
6 | 6 | |
|
7 | 7 | Magic command interface for interactive work with R via rpy2 |
|
8 | 8 | |
|
9 | 9 | Usage |
|
10 | 10 | ===== |
|
11 | 11 | |
|
12 | 12 | ``%R`` |
|
13 | 13 | |
|
14 | 14 | {R_DOC} |
|
15 | 15 | |
|
16 | 16 | ``%Rpush`` |
|
17 | 17 | |
|
18 | 18 | {RPUSH_DOC} |
|
19 | 19 | |
|
20 | 20 | ``%Rpull`` |
|
21 | 21 | |
|
22 | 22 | {RPULL_DOC} |
|
23 | 23 | |
|
24 | 24 | ``%Rget`` |
|
25 | 25 | |
|
26 | 26 | {RGET_DOC} |
|
27 | 27 | |
|
28 | 28 | """ |
|
29 | 29 | |
|
30 | 30 | #----------------------------------------------------------------------------- |
|
31 | 31 | # Copyright (C) 2012 The IPython Development Team |
|
32 | 32 | # |
|
33 | 33 | # Distributed under the terms of the BSD License. The full license is in |
|
34 | 34 | # the file COPYING, distributed as part of this software. |
|
35 | 35 | #----------------------------------------------------------------------------- |
|
36 | 36 | |
|
37 | 37 | import sys |
|
38 | 38 | import tempfile |
|
39 | 39 | from glob import glob |
|
40 | 40 | from shutil import rmtree |
|
41 | 41 | from getopt import getopt |
|
42 | 42 | |
|
43 | 43 | # numpy and rpy2 imports |
|
44 | 44 | |
|
45 | 45 | import numpy as np |
|
46 | 46 | |
|
47 | 47 | import rpy2.rinterface as ri |
|
48 | 48 | import rpy2.robjects as ro |
|
49 | 49 | try: |
|
50 | 50 | from rpy2.robjects import pandas2ri |
|
51 | 51 | pandas2ri.activate() |
|
52 | 52 | except ImportError: |
|
53 | 53 | pandas2ri = None |
|
54 | 54 | from rpy2.robjects import numpy2ri |
|
55 | 55 | numpy2ri.activate() |
|
56 | 56 | |
|
57 | 57 | # IPython imports |
|
58 | 58 | |
|
59 | 59 | from IPython.core.displaypub import publish_display_data |
|
60 | 60 | from IPython.core.magic import (Magics, magics_class, cell_magic, line_magic, |
|
61 | 61 | line_cell_magic, needs_local_scope) |
|
62 | 62 | from IPython.testing.skipdoctest import skip_doctest |
|
63 | 63 | from IPython.core.magic_arguments import ( |
|
64 | 64 | argument, magic_arguments, parse_argstring |
|
65 | 65 | ) |
|
66 | 66 | from IPython.external.simplegeneric import generic |
|
67 | 67 | from IPython.utils.py3compat import str_to_unicode, unicode_to_str, PY3 |
|
68 | 68 | |
|
69 | 69 | class RInterpreterError(ri.RRuntimeError): |
|
70 | 70 | """An error when running R code in a %%R magic cell.""" |
|
71 | 71 | def __init__(self, line, err, stdout): |
|
72 | 72 | self.line = line |
|
73 | 73 | self.err = err.rstrip() |
|
74 | 74 | self.stdout = stdout.rstrip() |
|
75 | 75 | |
|
76 | 76 | def __unicode__(self): |
|
77 | 77 | s = 'Failed to parse and evaluate line %r.\nR error message: %r' % \ |
|
78 | 78 | (self.line, self.err) |
|
79 | 79 | if self.stdout and (self.stdout != self.err): |
|
80 | 80 | s += '\nR stdout:\n' + self.stdout |
|
81 | 81 | return s |
|
82 | 82 | |
|
83 | 83 | if PY3: |
|
84 | 84 | __str__ = __unicode__ |
|
85 | 85 | else: |
|
86 | 86 | def __str__(self): |
|
87 | 87 | return unicode_to_str(unicode(self), 'utf-8') |
|
88 | 88 | |
|
89 | 89 | def Rconverter(Robj, dataframe=False): |
|
90 | 90 | """ |
|
91 | 91 | Convert an object in R's namespace to one suitable |
|
92 | 92 | for ipython's namespace. |
|
93 | 93 | |
|
94 | 94 | For a data.frame, it tries to return a structured array. |
|
95 | 95 | It first checks for colnames, then names. |
|
96 | 96 | If all are NULL, it returns np.asarray(Robj), else |
|
97 | 97 | it tries to construct a recarray |
|
98 | 98 | |
|
99 | 99 | Parameters |
|
100 | 100 | ---------- |
|
101 | 101 | |
|
102 | 102 | Robj: an R object returned from rpy2 |
|
103 | 103 | """ |
|
104 | 104 | is_data_frame = ro.r('is.data.frame') |
|
105 | 105 | colnames = ro.r('colnames') |
|
106 | 106 | rownames = ro.r('rownames') # with pandas, these could be used for the index |
|
107 | 107 | names = ro.r('names') |
|
108 | 108 | |
|
109 | 109 | if dataframe: |
|
110 | 110 | as_data_frame = ro.r('as.data.frame') |
|
111 | 111 | cols = colnames(Robj) |
|
112 | 112 | _names = names(Robj) |
|
113 | 113 | if cols != ri.NULL: |
|
114 | 114 | Robj = as_data_frame(Robj) |
|
115 | 115 | names = tuple(np.array(cols)) |
|
116 | 116 | elif _names != ri.NULL: |
|
117 | 117 | names = tuple(np.array(_names)) |
|
118 | 118 | else: # failed to find names |
|
119 | 119 | return np.asarray(Robj) |
|
120 | 120 | Robj = np.rec.fromarrays(Robj, names = names) |
|
121 | 121 | return np.asarray(Robj) |
|
122 | 122 | |
|
123 | 123 | @generic |
|
124 | 124 | def pyconverter(pyobj): |
|
125 | 125 | """Convert Python objects to R objects. Add types using the decorator: |
|
126 | 126 | |
|
127 | 127 | @pyconverter.when_type |
|
128 | 128 | """ |
|
129 | 129 | return pyobj |
|
130 | 130 | |
|
131 | 131 | # The default conversion for lists seems to make them a nested list. That has |
|
132 | 132 | # some advantages, but is rarely convenient, so for interactive use, we convert |
|
133 | 133 | # lists to a numpy array, which becomes an R vector. |
|
134 | 134 | @pyconverter.when_type(list) |
|
135 | 135 | def pyconverter_list(pyobj): |
|
136 | 136 | return np.asarray(pyobj) |
|
137 | 137 | |
|
138 | 138 | if pandas2ri is None: |
|
139 | 139 | # pandas2ri was new in rpy2 2.3.3, so for now we'll fallback to pandas' |
|
140 | 140 | # conversion function. |
|
141 | 141 | try: |
|
142 | 142 | from pandas import DataFrame |
|
143 | 143 | from pandas.rpy.common import convert_to_r_dataframe |
|
144 | 144 | @pyconverter.when_type(DataFrame) |
|
145 | 145 | def pyconverter_dataframe(pyobj): |
|
146 | 146 | return convert_to_r_dataframe(pyobj, strings_as_factors=True) |
|
147 | 147 | except ImportError: |
|
148 | 148 | pass |
|
149 | 149 | |
|
150 | 150 | @magics_class |
|
151 | 151 | class RMagics(Magics): |
|
152 | 152 | """A set of magics useful for interactive work with R via rpy2. |
|
153 | 153 | """ |
|
154 | 154 | |
|
155 | 155 | def __init__(self, shell, Rconverter=Rconverter, |
|
156 | 156 | pyconverter=pyconverter, |
|
157 | 157 | cache_display_data=False): |
|
158 | 158 | """ |
|
159 | 159 | Parameters |
|
160 | 160 | ---------- |
|
161 | 161 | |
|
162 | 162 | shell : IPython shell |
|
163 | 163 | |
|
164 | 164 | Rconverter : callable |
|
165 | 165 | To be called on values taken from R before putting them in the |
|
166 | 166 | IPython namespace. |
|
167 | 167 | |
|
168 | 168 | pyconverter : callable |
|
169 | 169 | To be called on values in ipython namespace before |
|
170 | 170 | assigning to variables in rpy2. |
|
171 | 171 | |
|
172 | 172 | cache_display_data : bool |
|
173 | 173 | If True, the published results of the final call to R are |
|
174 | 174 | cached in the variable 'display_cache'. |
|
175 | 175 | |
|
176 | 176 | """ |
|
177 | 177 | super(RMagics, self).__init__(shell) |
|
178 | 178 | self.cache_display_data = cache_display_data |
|
179 | 179 | |
|
180 | 180 | self.r = ro.R() |
|
181 | 181 | |
|
182 | 182 | self.Rstdout_cache = [] |
|
183 | 183 | self.pyconverter = pyconverter |
|
184 | 184 | self.Rconverter = Rconverter |
|
185 | 185 | |
|
186 | 186 | def eval(self, line): |
|
187 | 187 | ''' |
|
188 | 188 | Parse and evaluate a line with rpy2. |
|
189 | 189 | Returns the output to R's stdout() connection |
|
190 | 190 | and the value of eval(parse(line)). |
|
191 | 191 | ''' |
|
192 | 192 | old_writeconsole = ri.get_writeconsole() |
|
193 | 193 | ri.set_writeconsole(self.write_console) |
|
194 | 194 | try: |
|
195 | 195 | value = ri.baseenv['eval'](ri.parse(line)) |
|
196 | 196 | except (ri.RRuntimeError, ValueError) as exception: |
|
197 | 197 | warning_or_other_msg = self.flush() # otherwise next return seems to have copy of error |
|
198 | 198 | raise RInterpreterError(line, str_to_unicode(str(exception)), warning_or_other_msg) |
|
199 | 199 | text_output = self.flush() |
|
200 | 200 | ri.set_writeconsole(old_writeconsole) |
|
201 | 201 | return text_output, value |
|
202 | 202 | |
|
203 | 203 | def write_console(self, output): |
|
204 | 204 | ''' |
|
205 | 205 | A hook to capture R's stdout in a cache. |
|
206 | 206 | ''' |
|
207 | 207 | self.Rstdout_cache.append(output) |
|
208 | 208 | |
|
209 | 209 | def flush(self): |
|
210 | 210 | ''' |
|
211 | 211 | Flush R's stdout cache to a string, returning the string. |
|
212 | 212 | ''' |
|
213 | 213 | value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache]) |
|
214 | 214 | self.Rstdout_cache = [] |
|
215 | 215 | return value |
|
216 | 216 | |
|
217 | 217 | @skip_doctest |
|
218 | 218 | @needs_local_scope |
|
219 | 219 | @line_magic |
|
220 | 220 | def Rpush(self, line, local_ns=None): |
|
221 | 221 | ''' |
|
222 | 222 | A line-level magic for R that pushes |
|
223 | 223 | variables from python to rpy2. The line should be made up |
|
224 | 224 | of whitespace separated variable names in the IPython |
|
225 | 225 | namespace:: |
|
226 | 226 | |
|
227 | 227 | In [7]: import numpy as np |
|
228 | 228 | |
|
229 | 229 | In [8]: X = np.array([4.5,6.3,7.9]) |
|
230 | 230 | |
|
231 | 231 | In [9]: X.mean() |
|
232 | 232 | Out[9]: 6.2333333333333343 |
|
233 | 233 | |
|
234 | 234 | In [10]: %Rpush X |
|
235 | 235 | |
|
236 | 236 | In [11]: %R mean(X) |
|
237 | 237 | Out[11]: array([ 6.23333333]) |
|
238 | 238 | |
|
239 | 239 | ''' |
|
240 | 240 | if local_ns is None: |
|
241 | 241 | local_ns = {} |
|
242 | 242 | |
|
243 | 243 | inputs = line.split(' ') |
|
244 | 244 | for input in inputs: |
|
245 | 245 | try: |
|
246 | 246 | val = local_ns[input] |
|
247 | 247 | except KeyError: |
|
248 | 248 | try: |
|
249 | 249 | val = self.shell.user_ns[input] |
|
250 | 250 | except KeyError: |
|
251 | 251 | # reraise the KeyError as a NameError so that it looks like |
|
252 | 252 | # the standard python behavior when you use an unnamed |
|
253 | 253 | # variable |
|
254 | 254 | raise NameError("name '%s' is not defined" % input) |
|
255 | 255 | |
|
256 | 256 | self.r.assign(input, self.pyconverter(val)) |
|
257 | 257 | |
|
258 | 258 | @skip_doctest |
|
259 | 259 | @magic_arguments() |
|
260 | 260 | @argument( |
|
261 | 261 | '-d', '--as_dataframe', action='store_true', |
|
262 | 262 | default=False, |
|
263 | 263 | help='Convert objects to data.frames before returning to ipython.' |
|
264 | 264 | ) |
|
265 | 265 | @argument( |
|
266 | 266 | 'outputs', |
|
267 | 267 | nargs='*', |
|
268 | 268 | ) |
|
269 | 269 | @line_magic |
|
270 | 270 | def Rpull(self, line): |
|
271 | 271 | ''' |
|
272 | 272 | A line-level magic for R that pulls |
|
273 | 273 | variables from python to rpy2:: |
|
274 | 274 | |
|
275 | 275 | In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4) |
|
276 | 276 | |
|
277 | 277 | In [19]: %Rpull x y z |
|
278 | 278 | |
|
279 | 279 | In [20]: x |
|
280 | 280 | Out[20]: array([ 3. , 4. , 6.7]) |
|
281 | 281 | |
|
282 | 282 | In [21]: y |
|
283 | 283 | Out[21]: array([ 4., 6., 7.]) |
|
284 | 284 | |
|
285 | 285 | In [22]: z |
|
286 | 286 | Out[22]: |
|
287 | 287 | array(['a', '3', '4'], |
|
288 | 288 | dtype='|S1') |
|
289 | 289 | |
|
290 | 290 | |
|
291 | 291 | If --as_dataframe, then each object is returned as a structured array |
|
292 | 292 | after first passed through "as.data.frame" in R before |
|
293 | 293 | being calling self.Rconverter. |
|
294 | 294 | This is useful when a structured array is desired as output, or |
|
295 | 295 | when the object in R has mixed data types. |
|
296 | 296 | See the %%R docstring for more examples. |
|
297 | 297 | |
|
298 | 298 | Notes |
|
299 | 299 | ----- |
|
300 | 300 | |
|
301 | 301 | Beware that R names can have '.' so this is not fool proof. |
|
302 | 302 | To avoid this, don't name your R objects with '.'s... |
|
303 | 303 | |
|
304 | 304 | ''' |
|
305 | 305 | args = parse_argstring(self.Rpull, line) |
|
306 | 306 | outputs = args.outputs |
|
307 | 307 | for output in outputs: |
|
308 | 308 | self.shell.push({output:self.Rconverter(self.r(output),dataframe=args.as_dataframe)}) |
|
309 | 309 | |
|
310 | 310 | @skip_doctest |
|
311 | 311 | @magic_arguments() |
|
312 | 312 | @argument( |
|
313 | 313 | '-d', '--as_dataframe', action='store_true', |
|
314 | 314 | default=False, |
|
315 | 315 | help='Convert objects to data.frames before returning to ipython.' |
|
316 | 316 | ) |
|
317 | 317 | @argument( |
|
318 | 318 | 'output', |
|
319 | 319 | nargs=1, |
|
320 | 320 | type=str, |
|
321 | 321 | ) |
|
322 | 322 | @line_magic |
|
323 | 323 | def Rget(self, line): |
|
324 | 324 | ''' |
|
325 | 325 | Return an object from rpy2, possibly as a structured array (if possible). |
|
326 | 326 | Similar to Rpull except only one argument is accepted and the value is |
|
327 | 327 | returned rather than pushed to self.shell.user_ns:: |
|
328 | 328 | |
|
329 | 329 | In [3]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')] |
|
330 | 330 | |
|
331 | 331 | In [4]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype) |
|
332 | 332 | |
|
333 | 333 | In [5]: %R -i datapy |
|
334 | 334 | |
|
335 | 335 | In [6]: %Rget datapy |
|
336 | 336 | Out[6]: |
|
337 | 337 | array([['1', '2', '3', '4'], |
|
338 | 338 | ['2', '3', '2', '5'], |
|
339 | 339 | ['a', 'b', 'c', 'e']], |
|
340 | 340 | dtype='|S1') |
|
341 | 341 | |
|
342 | 342 | In [7]: %Rget -d datapy |
|
343 | 343 | Out[7]: |
|
344 | 344 | array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')], |
|
345 | 345 | dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) |
|
346 | 346 | |
|
347 | 347 | ''' |
|
348 | 348 | args = parse_argstring(self.Rget, line) |
|
349 | 349 | output = args.output |
|
350 | 350 | return self.Rconverter(self.r(output[0]),dataframe=args.as_dataframe) |
|
351 | 351 | |
|
352 | 352 | |
|
353 | 353 | @skip_doctest |
|
354 | 354 | @magic_arguments() |
|
355 | 355 | @argument( |
|
356 | 356 | '-i', '--input', action='append', |
|
357 | 357 | help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.' |
|
358 | 358 | ) |
|
359 | 359 | @argument( |
|
360 | 360 | '-o', '--output', action='append', |
|
361 | 361 | help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.' |
|
362 | 362 | ) |
|
363 | 363 | @argument( |
|
364 | 364 | '-w', '--width', type=int, |
|
365 | 365 | help='Width of png plotting device sent as an argument to *png* in R.' |
|
366 | 366 | ) |
|
367 | 367 | @argument( |
|
368 | 368 | '-h', '--height', type=int, |
|
369 | 369 | help='Height of png plotting device sent as an argument to *png* in R.' |
|
370 | 370 | ) |
|
371 | 371 | |
|
372 | 372 | @argument( |
|
373 | 373 | '-d', '--dataframe', action='append', |
|
374 | 374 | help='Convert these objects to data.frames and return as structured arrays.' |
|
375 | 375 | ) |
|
376 | 376 | @argument( |
|
377 | 377 | '-u', '--units', type=unicode, choices=["px", "in", "cm", "mm"], |
|
378 | 378 | help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].' |
|
379 | 379 | ) |
|
380 | 380 | @argument( |
|
381 | 381 | '-r', '--res', type=int, |
|
382 | 382 | help='Resolution of png plotting device sent as an argument to *png* in R. Defaults to 72 if *units* is one of ["in", "cm", "mm"].' |
|
383 | 383 | ) |
|
384 | 384 | @argument( |
|
385 | 385 | '-p', '--pointsize', type=int, |
|
386 | 386 | help='Pointsize of png plotting device sent as an argument to *png* in R.' |
|
387 | 387 | ) |
|
388 | 388 | @argument( |
|
389 | 389 | '-b', '--bg', |
|
390 | 390 | help='Background of png plotting device sent as an argument to *png* in R.' |
|
391 | 391 | ) |
|
392 | 392 | @argument( |
|
393 | 393 | '-n', '--noreturn', |
|
394 | 394 | help='Force the magic to not return anything.', |
|
395 | 395 | action='store_true', |
|
396 | 396 | default=False |
|
397 | 397 | ) |
|
398 | 398 | @argument( |
|
399 | 399 | 'code', |
|
400 | 400 | nargs='*', |
|
401 | 401 | ) |
|
402 | 402 | @needs_local_scope |
|
403 | 403 | @line_cell_magic |
|
404 | 404 | def R(self, line, cell=None, local_ns=None): |
|
405 | 405 | ''' |
|
406 | 406 | Execute code in R, and pull some of the results back into the Python namespace. |
|
407 | 407 | |
|
408 | 408 | In line mode, this will evaluate an expression and convert the returned value to a Python object. |
|
409 | 409 | The return value is determined by rpy2's behaviour of returning the result of evaluating the |
|
410 | 410 | final line. |
|
411 | 411 | |
|
412 | 412 | Multiple R lines can be executed by joining them with semicolons:: |
|
413 | 413 | |
|
414 | 414 | In [9]: %R X=c(1,4,5,7); sd(X); mean(X) |
|
415 | 415 | Out[9]: array([ 4.25]) |
|
416 | 416 | |
|
417 | 417 | As a cell, this will run a block of R code, without bringing anything back by default:: |
|
418 | 418 | |
|
419 | 419 | In [10]: %%R |
|
420 | 420 | ....: Y = c(2,4,3,9) |
|
421 | 421 | ....: print(summary(lm(Y~X))) |
|
422 | 422 | ....: |
|
423 | 423 | |
|
424 | 424 | Call: |
|
425 | 425 | lm(formula = Y ~ X) |
|
426 | 426 | |
|
427 | 427 | Residuals: |
|
428 | 428 | 1 2 3 4 |
|
429 | 429 | 0.88 -0.24 -2.28 1.64 |
|
430 | 430 | |
|
431 | 431 | Coefficients: |
|
432 | 432 | Estimate Std. Error t value Pr(>|t|) |
|
433 | 433 | (Intercept) 0.0800 2.3000 0.035 0.975 |
|
434 | 434 | X 1.0400 0.4822 2.157 0.164 |
|
435 | 435 | |
|
436 | 436 | Residual standard error: 2.088 on 2 degrees of freedom |
|
437 | 437 | Multiple R-squared: 0.6993,Adjusted R-squared: 0.549 |
|
438 | 438 | F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638 |
|
439 | 439 | |
|
440 | 440 | In the notebook, plots are published as the output of the cell. |
|
441 | 441 | |
|
442 | 442 | %R plot(X, Y) |
|
443 | 443 | |
|
444 | 444 | will create a scatter plot of X bs Y. |
|
445 | 445 | |
|
446 | 446 | If cell is not None and line has some R code, it is prepended to |
|
447 | 447 | the R code in cell. |
|
448 | 448 | |
|
449 | 449 | Objects can be passed back and forth between rpy2 and python via the -i -o flags in line:: |
|
450 | 450 | |
|
451 | 451 | In [14]: Z = np.array([1,4,5,10]) |
|
452 | 452 | |
|
453 | 453 | In [15]: %R -i Z mean(Z) |
|
454 | 454 | Out[15]: array([ 5.]) |
|
455 | 455 | |
|
456 | 456 | |
|
457 | 457 | In [16]: %R -o W W=Z*mean(Z) |
|
458 | 458 | Out[16]: array([ 5., 20., 25., 50.]) |
|
459 | 459 | |
|
460 | 460 | In [17]: W |
|
461 | 461 | Out[17]: array([ 5., 20., 25., 50.]) |
|
462 | 462 | |
|
463 | 463 | The return value is determined by these rules: |
|
464 | 464 | |
|
465 | 465 | * If the cell is not None, the magic returns None. |
|
466 | 466 | |
|
467 | 467 | * If the cell evaluates as False, the resulting value is returned |
|
468 | 468 | unless the final line prints something to the console, in |
|
469 | 469 | which case None is returned. |
|
470 | 470 | |
|
471 | 471 | * If the final line results in a NULL value when evaluated |
|
472 | 472 | by rpy2, then None is returned. |
|
473 | 473 | |
|
474 | 474 | * No attempt is made to convert the final value to a structured array. |
|
475 | 475 | Use the --dataframe flag or %Rget to push / return a structured array. |
|
476 | 476 | |
|
477 | 477 | * If the -n flag is present, there is no return value. |
|
478 | 478 | |
|
479 | 479 | * A trailing ';' will also result in no return value as the last |
|
480 | 480 | value in the line is an empty string. |
|
481 | 481 | |
|
482 | 482 | The --dataframe argument will attempt to return structured arrays. |
|
483 | 483 | This is useful for dataframes with |
|
484 | 484 | mixed data types. Note also that for a data.frame, |
|
485 | 485 | if it is returned as an ndarray, it is transposed:: |
|
486 | 486 | |
|
487 | 487 | In [18]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')] |
|
488 | 488 | |
|
489 | 489 | In [19]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype) |
|
490 | 490 | |
|
491 | 491 | In [20]: %%R -o datar |
|
492 | 492 | datar = datapy |
|
493 | 493 | ....: |
|
494 | 494 | |
|
495 | 495 | In [21]: datar |
|
496 | 496 | Out[21]: |
|
497 | 497 | array([['1', '2', '3', '4'], |
|
498 | 498 | ['2', '3', '2', '5'], |
|
499 | 499 | ['a', 'b', 'c', 'e']], |
|
500 | 500 | dtype='|S1') |
|
501 | 501 | |
|
502 | 502 | In [22]: %%R -d datar |
|
503 | 503 | datar = datapy |
|
504 | 504 | ....: |
|
505 | 505 | |
|
506 | 506 | In [23]: datar |
|
507 | 507 | Out[23]: |
|
508 | 508 | array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')], |
|
509 | 509 | dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) |
|
510 | 510 | |
|
511 | 511 | The --dataframe argument first tries colnames, then names. |
|
512 | 512 | If both are NULL, it returns an ndarray (i.e. unstructured):: |
|
513 | 513 | |
|
514 | 514 | In [1]: %R mydata=c(4,6,8.3); NULL |
|
515 | 515 | |
|
516 | 516 | In [2]: %R -d mydata |
|
517 | 517 | |
|
518 | 518 | In [3]: mydata |
|
519 | 519 | Out[3]: array([ 4. , 6. , 8.3]) |
|
520 | 520 | |
|
521 | 521 | In [4]: %R names(mydata) = c('a','b','c'); NULL |
|
522 | 522 | |
|
523 | 523 | In [5]: %R -d mydata |
|
524 | 524 | |
|
525 | 525 | In [6]: mydata |
|
526 | 526 | Out[6]: |
|
527 | 527 | array((4.0, 6.0, 8.3), |
|
528 | 528 | dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')]) |
|
529 | 529 | |
|
530 | 530 | In [7]: %R -o mydata |
|
531 | 531 | |
|
532 | 532 | In [8]: mydata |
|
533 | 533 | Out[8]: array([ 4. , 6. , 8.3]) |
|
534 | 534 | |
|
535 | 535 | ''' |
|
536 | 536 | |
|
537 | 537 | args = parse_argstring(self.R, line) |
|
538 | 538 | |
|
539 | 539 | # arguments 'code' in line are prepended to |
|
540 | 540 | # the cell lines |
|
541 | 541 | |
|
542 | 542 | if cell is None: |
|
543 | 543 | code = '' |
|
544 | 544 | return_output = True |
|
545 | 545 | line_mode = True |
|
546 | 546 | else: |
|
547 | 547 | code = cell |
|
548 | 548 | return_output = False |
|
549 | 549 | line_mode = False |
|
550 | 550 | |
|
551 | 551 | code = ' '.join(args.code) + code |
|
552 | 552 | |
|
553 | 553 | # if there is no local namespace then default to an empty dict |
|
554 | 554 | if local_ns is None: |
|
555 | 555 | local_ns = {} |
|
556 | 556 | |
|
557 | 557 | if args.input: |
|
558 | 558 | for input in ','.join(args.input).split(','): |
|
559 | 559 | try: |
|
560 | 560 | val = local_ns[input] |
|
561 | 561 | except KeyError: |
|
562 | 562 | try: |
|
563 | 563 | val = self.shell.user_ns[input] |
|
564 | 564 | except KeyError: |
|
565 | 565 | raise NameError("name '%s' is not defined" % input) |
|
566 | 566 | self.r.assign(input, self.pyconverter(val)) |
|
567 | 567 | |
|
568 | 568 | if getattr(args, 'units') is not None: |
|
569 | 569 | if args.units != "px" and getattr(args, 'res') is None: |
|
570 | 570 | args.res = 72 |
|
571 | 571 | args.units = '"%s"' % args.units |
|
572 | 572 | |
|
573 | 573 | png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'res', 'height', 'width', 'bg', 'pointsize']]) |
|
574 | 574 | png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None]) |
|
575 | 575 | # execute the R code in a temporary directory |
|
576 | 576 | |
|
577 | 577 | tmpd = tempfile.mkdtemp() |
|
578 | 578 | self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd.replace('\\', '/'), png_args)) |
|
579 | 579 | |
|
580 | 580 | text_output = '' |
|
581 | if line_mode: | |
|
582 |
f |
|
|
583 | text_result, result = self.eval(line) | |
|
581 | try: | |
|
582 | if line_mode: | |
|
583 | for line in code.split(';'): | |
|
584 | text_result, result = self.eval(line) | |
|
585 | text_output += text_result | |
|
586 | if text_result: | |
|
587 | # the last line printed something to the console so we won't return it | |
|
588 | return_output = False | |
|
589 | else: | |
|
590 | text_result, result = self.eval(code) | |
|
584 | 591 | text_output += text_result |
|
585 | if text_result: | |
|
586 | # the last line printed something to the console so we won't return it | |
|
587 | return_output = False | |
|
588 | else: | |
|
589 | text_result, result = self.eval(code) | |
|
590 | text_output += text_result | |
|
592 | ||
|
593 | except RInterpreterError as e: | |
|
594 | print(e.stdout) | |
|
595 | if not e.stdout.endswith(e.err): | |
|
596 | print(e.err) | |
|
597 | rmtree(tmpd) | |
|
598 | return | |
|
591 | 599 | |
|
592 | 600 | self.r('dev.off()') |
|
593 | 601 | |
|
594 | 602 | # read out all the saved .png files |
|
595 | 603 | |
|
596 | 604 | images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)] |
|
597 | 605 | |
|
598 | 606 | # now publish the images |
|
599 | 607 | # mimicking IPython/zmq/pylab/backend_inline.py |
|
600 | 608 | fmt = 'png' |
|
601 | 609 | mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' } |
|
602 | 610 | mime = mimetypes[fmt] |
|
603 | 611 | |
|
604 | 612 | # publish the printed R objects, if any |
|
605 | 613 | |
|
606 | 614 | display_data = [] |
|
607 | 615 | if text_output: |
|
608 | 616 | display_data.append(('RMagic.R', {'text/plain':text_output})) |
|
609 | 617 | |
|
610 | 618 | # flush text streams before sending figures, helps a little with output |
|
611 | 619 | for image in images: |
|
612 | 620 | # synchronization in the console (though it's a bandaid, not a real sln) |
|
613 | 621 | sys.stdout.flush(); sys.stderr.flush() |
|
614 | 622 | display_data.append(('RMagic.R', {mime: image})) |
|
615 | 623 | |
|
616 | 624 | # kill the temporary directory |
|
617 | 625 | rmtree(tmpd) |
|
618 | 626 | |
|
619 | 627 | # try to turn every output into a numpy array |
|
620 | 628 | # this means that output are assumed to be castable |
|
621 | 629 | # as numpy arrays |
|
622 | 630 | |
|
623 | 631 | if args.output: |
|
624 | 632 | for output in ','.join(args.output).split(','): |
|
625 | 633 | self.shell.push({output:self.Rconverter(self.r(output), dataframe=False)}) |
|
626 | 634 | |
|
627 | 635 | if args.dataframe: |
|
628 | 636 | for output in ','.join(args.dataframe).split(','): |
|
629 | 637 | self.shell.push({output:self.Rconverter(self.r(output), dataframe=True)}) |
|
630 | 638 | |
|
631 | 639 | for tag, disp_d in display_data: |
|
632 | 640 | publish_display_data(tag, disp_d) |
|
633 | 641 | |
|
634 | 642 | # this will keep a reference to the display_data |
|
635 | 643 | # which might be useful to other objects who happen to use |
|
636 | 644 | # this method |
|
637 | 645 | |
|
638 | 646 | if self.cache_display_data: |
|
639 | 647 | self.display_cache = display_data |
|
640 | 648 | |
|
641 | 649 | # if in line mode and return_output, return the result as an ndarray |
|
642 | 650 | if return_output and not args.noreturn: |
|
643 | 651 | if result != ri.NULL: |
|
644 | 652 | return self.Rconverter(result, dataframe=False) |
|
645 | 653 | |
|
646 | 654 | __doc__ = __doc__.format( |
|
647 | 655 | R_DOC = ' '*8 + RMagics.R.__doc__, |
|
648 | 656 | RPUSH_DOC = ' '*8 + RMagics.Rpush.__doc__, |
|
649 | 657 | RPULL_DOC = ' '*8 + RMagics.Rpull.__doc__, |
|
650 | 658 | RGET_DOC = ' '*8 + RMagics.Rget.__doc__ |
|
651 | 659 | ) |
|
652 | 660 | |
|
653 | 661 | |
|
654 | 662 | def load_ipython_extension(ip): |
|
655 | 663 | """Load the extension in IPython.""" |
|
656 | 664 | ip.register_magics(RMagics) |
|
657 | 665 | # Initialising rpy2 interferes with readline. Since, at this point, we've |
|
658 | 666 | # probably just loaded rpy2, we reset the delimiters. See issue gh-2759. |
|
659 | 667 | if ip.has_readline: |
|
660 | 668 | ip.readline.set_completer_delims(ip.readline_delims) |
General Comments 0
You need to be logged in to leave comments.
Login now