##// END OF EJS Templates
- Close %timeit bug reported by Stefan.
fptest -
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -1,2991 +1,3011 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Magic functions for InteractiveShell.
3 3
4 $Id: Magic.py 1787 2006-09-27 06:56:29Z fperez $"""
4 $Id: Magic.py 1815 2006-10-10 04:46:24Z fptest $"""
5 5
6 6 #*****************************************************************************
7 7 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
8 8 # Copyright (C) 2001-2006 Fernando Perez <fperez@colorado.edu>
9 9 #
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #*****************************************************************************
13 13
14 14 #****************************************************************************
15 15 # Modules and globals
16 16
17 17 from IPython import Release
18 18 __author__ = '%s <%s>\n%s <%s>' % \
19 19 ( Release.authors['Janko'] + Release.authors['Fernando'] )
20 20 __license__ = Release.license
21 21
22 22 # Python standard modules
23 23 import __builtin__
24 24 import bdb
25 25 import inspect
26 26 import os
27 27 import pdb
28 28 import pydoc
29 29 import shlex
30 30 import sys
31 31 import re
32 32 import tempfile
33 33 import time
34 34 import cPickle as pickle
35 35 import textwrap
36 36 from cStringIO import StringIO
37 37 from getopt import getopt,GetoptError
38 38 from pprint import pprint, pformat
39 39
40 40 # profile isn't bundled by default in Debian for license reasons
41 41 try:
42 42 import profile,pstats
43 43 except ImportError:
44 44 profile = pstats = None
45 45
46 46 # Homebrewed
47 47 import IPython
48 48 from IPython import Debugger, OInspect, wildcard
49 49 from IPython.FakeModule import FakeModule
50 50 from IPython.Itpl import Itpl, itpl, printpl,itplns
51 51 from IPython.PyColorize import Parser
52 52 from IPython.ipstruct import Struct
53 53 from IPython.macro import Macro
54 54 from IPython.genutils import *
55 55 from IPython import platutils
56 56
57 57 #***************************************************************************
58 58 # Utility functions
59 59 def on_off(tag):
60 60 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
61 61 return ['OFF','ON'][tag]
62 62
63 63 class Bunch: pass
64 64
65 def arg_split(s,posix=True):
66 """Split a command line's arguments in a shell-like manner.
67
68 This is a modified version of the standard library's shlex.split()
69 function, but with a default of posix=False for splitting, so that quotes
70 in inputs are respected."""
71
72 lex = shlex.shlex(s, posix=posix)
73 lex.whitespace_split = True
74 return list(lex)
75
65 76 #***************************************************************************
66 77 # Main class implementing Magic functionality
67 78 class Magic:
68 79 """Magic functions for InteractiveShell.
69 80
70 81 Shell functions which can be reached as %function_name. All magic
71 82 functions should accept a string, which they can parse for their own
72 83 needs. This can make some functions easier to type, eg `%cd ../`
73 84 vs. `%cd("../")`
74 85
75 86 ALL definitions MUST begin with the prefix magic_. The user won't need it
76 87 at the command line, but it is is needed in the definition. """
77 88
78 89 # class globals
79 90 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
80 91 'Automagic is ON, % prefix NOT needed for magic functions.']
81 92
82 93 #......................................................................
83 94 # some utility functions
84 95
85 96 def __init__(self,shell):
86 97
87 98 self.options_table = {}
88 99 if profile is None:
89 100 self.magic_prun = self.profile_missing_notice
90 101 self.shell = shell
91 102
92 103 # namespace for holding state we may need
93 104 self._magic_state = Bunch()
94 105
95 106 def profile_missing_notice(self, *args, **kwargs):
96 107 error("""\
97 108 The profile module could not be found. If you are a Debian user,
98 109 it has been removed from the standard Debian package because of its non-free
99 110 license. To use profiling, please install"python2.3-profiler" from non-free.""")
100 111
101 112 def default_option(self,fn,optstr):
102 113 """Make an entry in the options_table for fn, with value optstr"""
103 114
104 115 if fn not in self.lsmagic():
105 116 error("%s is not a magic function" % fn)
106 117 self.options_table[fn] = optstr
107 118
108 119 def lsmagic(self):
109 120 """Return a list of currently available magic functions.
110 121
111 122 Gives a list of the bare names after mangling (['ls','cd', ...], not
112 123 ['magic_ls','magic_cd',...]"""
113 124
114 125 # FIXME. This needs a cleanup, in the way the magics list is built.
115 126
116 127 # magics in class definition
117 128 class_magic = lambda fn: fn.startswith('magic_') and \
118 129 callable(Magic.__dict__[fn])
119 130 # in instance namespace (run-time user additions)
120 131 inst_magic = lambda fn: fn.startswith('magic_') and \
121 132 callable(self.__dict__[fn])
122 133 # and bound magics by user (so they can access self):
123 134 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
124 135 callable(self.__class__.__dict__[fn])
125 136 magics = filter(class_magic,Magic.__dict__.keys()) + \
126 137 filter(inst_magic,self.__dict__.keys()) + \
127 138 filter(inst_bound_magic,self.__class__.__dict__.keys())
128 139 out = []
129 140 for fn in magics:
130 141 out.append(fn.replace('magic_','',1))
131 142 out.sort()
132 143 return out
133 144
134 145 def extract_input_slices(self,slices,raw=False):
135 146 """Return as a string a set of input history slices.
136 147
137 148 Inputs:
138 149
139 150 - slices: the set of slices is given as a list of strings (like
140 151 ['1','4:8','9'], since this function is for use by magic functions
141 152 which get their arguments as strings.
142 153
143 154 Optional inputs:
144 155
145 156 - raw(False): by default, the processed input is used. If this is
146 157 true, the raw input history is used instead.
147 158
148 159 Note that slices can be called with two notations:
149 160
150 161 N:M -> standard python form, means including items N...(M-1).
151 162
152 163 N-M -> include items N..M (closed endpoint)."""
153 164
154 165 if raw:
155 166 hist = self.shell.input_hist_raw
156 167 else:
157 168 hist = self.shell.input_hist
158 169
159 170 cmds = []
160 171 for chunk in slices:
161 172 if ':' in chunk:
162 173 ini,fin = map(int,chunk.split(':'))
163 174 elif '-' in chunk:
164 175 ini,fin = map(int,chunk.split('-'))
165 176 fin += 1
166 177 else:
167 178 ini = int(chunk)
168 179 fin = ini+1
169 180 cmds.append(hist[ini:fin])
170 181 return cmds
171 182
172 183 def _ofind(self,oname):
173 184 """Find an object in the available namespaces.
174 185
175 186 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
176 187
177 188 Has special code to detect magic functions.
178 189 """
179 190
180 191 oname = oname.strip()
181 192
182 193 # Namespaces to search in:
183 194 user_ns = self.shell.user_ns
184 195 internal_ns = self.shell.internal_ns
185 196 builtin_ns = __builtin__.__dict__
186 197 alias_ns = self.shell.alias_table
187 198
188 199 # Put them in a list. The order is important so that we find things in
189 200 # the same order that Python finds them.
190 201 namespaces = [ ('Interactive',user_ns),
191 202 ('IPython internal',internal_ns),
192 203 ('Python builtin',builtin_ns),
193 204 ('Alias',alias_ns),
194 205 ]
195 206
196 207 # initialize results to 'null'
197 208 found = 0; obj = None; ospace = None; ds = None;
198 209 ismagic = 0; isalias = 0; parent = None
199 210
200 211 # Look for the given name by splitting it in parts. If the head is
201 212 # found, then we look for all the remaining parts as members, and only
202 213 # declare success if we can find them all.
203 214 oname_parts = oname.split('.')
204 215 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
205 216 for nsname,ns in namespaces:
206 217 try:
207 218 obj = ns[oname_head]
208 219 except KeyError:
209 220 continue
210 221 else:
211 222 for part in oname_rest:
212 223 try:
213 224 parent = obj
214 225 obj = getattr(obj,part)
215 226 except:
216 227 # Blanket except b/c some badly implemented objects
217 228 # allow __getattr__ to raise exceptions other than
218 229 # AttributeError, which then crashes IPython.
219 230 break
220 231 else:
221 232 # If we finish the for loop (no break), we got all members
222 233 found = 1
223 234 ospace = nsname
224 235 if ns == alias_ns:
225 236 isalias = 1
226 237 break # namespace loop
227 238
228 239 # Try to see if it's magic
229 240 if not found:
230 241 if oname.startswith(self.shell.ESC_MAGIC):
231 242 oname = oname[1:]
232 243 obj = getattr(self,'magic_'+oname,None)
233 244 if obj is not None:
234 245 found = 1
235 246 ospace = 'IPython internal'
236 247 ismagic = 1
237 248
238 249 # Last try: special-case some literals like '', [], {}, etc:
239 250 if not found and oname_head in ["''",'""','[]','{}','()']:
240 251 obj = eval(oname_head)
241 252 found = 1
242 253 ospace = 'Interactive'
243 254
244 255 return {'found':found, 'obj':obj, 'namespace':ospace,
245 256 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
246 257
247 258 def arg_err(self,func):
248 259 """Print docstring if incorrect arguments were passed"""
249 260 print 'Error in arguments:'
250 261 print OInspect.getdoc(func)
251 262
252 263 def format_latex(self,strng):
253 264 """Format a string for latex inclusion."""
254 265
255 266 # Characters that need to be escaped for latex:
256 267 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
257 268 # Magic command names as headers:
258 269 cmd_name_re = re.compile(r'^(%s.*?):' % self.shell.ESC_MAGIC,
259 270 re.MULTILINE)
260 271 # Magic commands
261 272 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % self.shell.ESC_MAGIC,
262 273 re.MULTILINE)
263 274 # Paragraph continue
264 275 par_re = re.compile(r'\\$',re.MULTILINE)
265 276
266 277 # The "\n" symbol
267 278 newline_re = re.compile(r'\\n')
268 279
269 280 # Now build the string for output:
270 281 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
271 282 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
272 283 strng)
273 284 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
274 285 strng = par_re.sub(r'\\\\',strng)
275 286 strng = escape_re.sub(r'\\\1',strng)
276 287 strng = newline_re.sub(r'\\textbackslash{}n',strng)
277 288 return strng
278 289
279 290 def format_screen(self,strng):
280 291 """Format a string for screen printing.
281 292
282 293 This removes some latex-type format codes."""
283 294 # Paragraph continue
284 295 par_re = re.compile(r'\\$',re.MULTILINE)
285 296 strng = par_re.sub('',strng)
286 297 return strng
287 298
288 299 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
289 300 """Parse options passed to an argument string.
290 301
291 302 The interface is similar to that of getopt(), but it returns back a
292 303 Struct with the options as keys and the stripped argument string still
293 304 as a string.
294 305
295 306 arg_str is quoted as a true sys.argv vector by using shlex.split.
296 307 This allows us to easily expand variables, glob files, quote
297 308 arguments, etc.
298 309
299 310 Options:
300 311 -mode: default 'string'. If given as 'list', the argument string is
301 312 returned as a list (split on whitespace) instead of a string.
302 313
303 314 -list_all: put all option values in lists. Normally only options
304 appearing more than once are put in a list."""
315 appearing more than once are put in a list.
305 316
317 -posix (True): whether to split the input line in POSIX mode or not,
318 as per the conventions outlined in the shlex module from the
319 standard library."""
320
306 321 # inject default options at the beginning of the input line
307 322 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
308 323 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
309 324
310 325 mode = kw.get('mode','string')
311 326 if mode not in ['string','list']:
312 327 raise ValueError,'incorrect mode given: %s' % mode
313 328 # Get options
314 329 list_all = kw.get('list_all',0)
330 posix = kw.get('posix',True)
315 331
316 332 # Check if we have more than one argument to warrant extra processing:
317 333 odict = {} # Dictionary with options
318 334 args = arg_str.split()
319 335 if len(args) >= 1:
320 336 # If the list of inputs only has 0 or 1 thing in it, there's no
321 337 # need to look for options
322 argv = shlex.split(arg_str)
338 argv = arg_split(arg_str,posix)
323 339 # Do regular option processing
324 340 try:
325 341 opts,args = getopt(argv,opt_str,*long_opts)
326 342 except GetoptError,e:
327 343 raise GetoptError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
328 344 " ".join(long_opts)))
329 345 for o,a in opts:
330 346 if o.startswith('--'):
331 347 o = o[2:]
332 348 else:
333 349 o = o[1:]
334 350 try:
335 351 odict[o].append(a)
336 352 except AttributeError:
337 353 odict[o] = [odict[o],a]
338 354 except KeyError:
339 355 if list_all:
340 356 odict[o] = [a]
341 357 else:
342 358 odict[o] = a
343 359
344 360 # Prepare opts,args for return
345 361 opts = Struct(odict)
346 362 if mode == 'string':
347 363 args = ' '.join(args)
348 364
349 365 return opts,args
350 366
351 367 #......................................................................
352 368 # And now the actual magic functions
353 369
354 370 # Functions for IPython shell work (vars,funcs, config, etc)
355 371 def magic_lsmagic(self, parameter_s = ''):
356 372 """List currently available magic functions."""
357 373 mesc = self.shell.ESC_MAGIC
358 374 print 'Available magic functions:\n'+mesc+\
359 375 (' '+mesc).join(self.lsmagic())
360 376 print '\n' + Magic.auto_status[self.shell.rc.automagic]
361 377 return None
362 378
363 379 def magic_magic(self, parameter_s = ''):
364 380 """Print information about the magic function system."""
365 381
366 382 mode = ''
367 383 try:
368 384 if parameter_s.split()[0] == '-latex':
369 385 mode = 'latex'
370 386 if parameter_s.split()[0] == '-brief':
371 387 mode = 'brief'
372 388 except:
373 389 pass
374 390
375 391 magic_docs = []
376 392 for fname in self.lsmagic():
377 393 mname = 'magic_' + fname
378 394 for space in (Magic,self,self.__class__):
379 395 try:
380 396 fn = space.__dict__[mname]
381 397 except KeyError:
382 398 pass
383 399 else:
384 400 break
385 401 if mode == 'brief':
386 402 # only first line
387 403 fndoc = fn.__doc__.split('\n',1)[0]
388 404 else:
389 405 fndoc = fn.__doc__
390 406
391 407 magic_docs.append('%s%s:\n\t%s\n' %(self.shell.ESC_MAGIC,
392 408 fname,fndoc))
393 409 magic_docs = ''.join(magic_docs)
394 410
395 411 if mode == 'latex':
396 412 print self.format_latex(magic_docs)
397 413 return
398 414 else:
399 415 magic_docs = self.format_screen(magic_docs)
400 416 if mode == 'brief':
401 417 return magic_docs
402 418
403 419 outmsg = """
404 420 IPython's 'magic' functions
405 421 ===========================
406 422
407 423 The magic function system provides a series of functions which allow you to
408 424 control the behavior of IPython itself, plus a lot of system-type
409 425 features. All these functions are prefixed with a % character, but parameters
410 426 are given without parentheses or quotes.
411 427
412 428 NOTE: If you have 'automagic' enabled (via the command line option or with the
413 429 %automagic function), you don't need to type in the % explicitly. By default,
414 430 IPython ships with automagic on, so you should only rarely need the % escape.
415 431
416 432 Example: typing '%cd mydir' (without the quotes) changes you working directory
417 433 to 'mydir', if it exists.
418 434
419 435 You can define your own magic functions to extend the system. See the supplied
420 436 ipythonrc and example-magic.py files for details (in your ipython
421 437 configuration directory, typically $HOME/.ipython/).
422 438
423 439 You can also define your own aliased names for magic functions. In your
424 440 ipythonrc file, placing a line like:
425 441
426 442 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
427 443
428 444 will define %pf as a new name for %profile.
429 445
430 446 You can also call magics in code using the ipmagic() function, which IPython
431 447 automatically adds to the builtin namespace. Type 'ipmagic?' for details.
432 448
433 449 For a list of the available magic functions, use %lsmagic. For a description
434 450 of any of them, type %magic_name?, e.g. '%cd?'.
435 451
436 452 Currently the magic system has the following functions:\n"""
437 453
438 454 mesc = self.shell.ESC_MAGIC
439 455 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
440 456 "\n\n%s%s\n\n%s" % (outmsg,
441 457 magic_docs,mesc,mesc,
442 458 (' '+mesc).join(self.lsmagic()),
443 459 Magic.auto_status[self.shell.rc.automagic] ) )
444 460
445 461 page(outmsg,screen_lines=self.shell.rc.screen_length)
446 462
447 463 def magic_automagic(self, parameter_s = ''):
448 464 """Make magic functions callable without having to type the initial %.
449 465
450 466 Toggles on/off (when off, you must call it as %automagic, of
451 467 course). Note that magic functions have lowest priority, so if there's
452 468 a variable whose name collides with that of a magic fn, automagic
453 469 won't work for that function (you get the variable instead). However,
454 470 if you delete the variable (del var), the previously shadowed magic
455 471 function becomes visible to automagic again."""
456 472
457 473 rc = self.shell.rc
458 474 rc.automagic = not rc.automagic
459 475 print '\n' + Magic.auto_status[rc.automagic]
460 476
461 477 def magic_autocall(self, parameter_s = ''):
462 478 """Make functions callable without having to type parentheses.
463 479
464 480 Usage:
465 481
466 482 %autocall [mode]
467 483
468 484 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
469 485 value is toggled on and off (remembering the previous state)."""
470 486
471 487 rc = self.shell.rc
472 488
473 489 if parameter_s:
474 490 arg = int(parameter_s)
475 491 else:
476 492 arg = 'toggle'
477 493
478 494 if not arg in (0,1,2,'toggle'):
479 495 error('Valid modes: (0->Off, 1->Smart, 2->Full')
480 496 return
481 497
482 498 if arg in (0,1,2):
483 499 rc.autocall = arg
484 500 else: # toggle
485 501 if rc.autocall:
486 502 self._magic_state.autocall_save = rc.autocall
487 503 rc.autocall = 0
488 504 else:
489 505 try:
490 506 rc.autocall = self._magic_state.autocall_save
491 507 except AttributeError:
492 508 rc.autocall = self._magic_state.autocall_save = 1
493 509
494 510 print "Automatic calling is:",['OFF','Smart','Full'][rc.autocall]
495 511
496 512 def magic_autoindent(self, parameter_s = ''):
497 513 """Toggle autoindent on/off (if available)."""
498 514
499 515 self.shell.set_autoindent()
500 516 print "Automatic indentation is:",['OFF','ON'][self.shell.autoindent]
501 517
502 518 def magic_system_verbose(self, parameter_s = ''):
503 519 """Toggle verbose printing of system calls on/off."""
504 520
505 521 self.shell.rc_set_toggle('system_verbose')
506 522 print "System verbose printing is:",\
507 523 ['OFF','ON'][self.shell.rc.system_verbose]
508 524
509 525 def magic_history(self, parameter_s = ''):
510 526 """Print input history (_i<n> variables), with most recent last.
511 527
512 528 %history -> print at most 40 inputs (some may be multi-line)\\
513 529 %history n -> print at most n inputs\\
514 530 %history n1 n2 -> print inputs between n1 and n2 (n2 not included)\\
515 531
516 532 Each input's number <n> is shown, and is accessible as the
517 533 automatically generated variable _i<n>. Multi-line statements are
518 534 printed starting at a new line for easy copy/paste.
519 535
520 536
521 537 Options:
522 538
523 539 -n: do NOT print line numbers. This is useful if you want to get a
524 540 printout of many lines which can be directly pasted into a text
525 541 editor.
526 542
527 543 This feature is only available if numbered prompts are in use.
528 544
529 545 -r: print the 'raw' history. IPython filters your input and
530 546 converts it all into valid Python source before executing it (things
531 547 like magics or aliases are turned into function calls, for
532 548 example). With this option, you'll see the unfiltered history
533 549 instead of the filtered version: '%cd /' will be seen as '%cd /'
534 550 instead of '_ip.magic("%cd /")'.
535 551 """
536 552
537 553 shell = self.shell
538 554 if not shell.outputcache.do_full_cache:
539 555 print 'This feature is only available if numbered prompts are in use.'
540 556 return
541 557 opts,args = self.parse_options(parameter_s,'nr',mode='list')
542 558
543 559 if opts.has_key('r'):
544 560 input_hist = shell.input_hist_raw
545 561 else:
546 562 input_hist = shell.input_hist
547 563
548 564 default_length = 40
549 565 if len(args) == 0:
550 566 final = len(input_hist)
551 567 init = max(1,final-default_length)
552 568 elif len(args) == 1:
553 569 final = len(input_hist)
554 570 init = max(1,final-int(args[0]))
555 571 elif len(args) == 2:
556 572 init,final = map(int,args)
557 573 else:
558 574 warn('%hist takes 0, 1 or 2 arguments separated by spaces.')
559 575 print self.magic_hist.__doc__
560 576 return
561 577 width = len(str(final))
562 578 line_sep = ['','\n']
563 579 print_nums = not opts.has_key('n')
564 580 for in_num in range(init,final):
565 581 inline = input_hist[in_num]
566 582 multiline = int(inline.count('\n') > 1)
567 583 if print_nums:
568 584 print '%s:%s' % (str(in_num).ljust(width),line_sep[multiline]),
569 585 print inline,
570 586
571 587 def magic_hist(self, parameter_s=''):
572 588 """Alternate name for %history."""
573 589 return self.magic_history(parameter_s)
574 590
575 591 def magic_p(self, parameter_s=''):
576 592 """Just a short alias for Python's 'print'."""
577 593 exec 'print ' + parameter_s in self.shell.user_ns
578 594
579 595 def magic_r(self, parameter_s=''):
580 596 """Repeat previous input.
581 597
582 598 If given an argument, repeats the previous command which starts with
583 599 the same string, otherwise it just repeats the previous input.
584 600
585 601 Shell escaped commands (with ! as first character) are not recognized
586 602 by this system, only pure python code and magic commands.
587 603 """
588 604
589 605 start = parameter_s.strip()
590 606 esc_magic = self.shell.ESC_MAGIC
591 607 # Identify magic commands even if automagic is on (which means
592 608 # the in-memory version is different from that typed by the user).
593 609 if self.shell.rc.automagic:
594 610 start_magic = esc_magic+start
595 611 else:
596 612 start_magic = start
597 613 # Look through the input history in reverse
598 614 for n in range(len(self.shell.input_hist)-2,0,-1):
599 615 input = self.shell.input_hist[n]
600 616 # skip plain 'r' lines so we don't recurse to infinity
601 617 if input != '_ip.magic("r")\n' and \
602 618 (input.startswith(start) or input.startswith(start_magic)):
603 619 #print 'match',`input` # dbg
604 620 print 'Executing:',input,
605 621 self.shell.runlines(input)
606 622 return
607 623 print 'No previous input matching `%s` found.' % start
608 624
609 625 def magic_page(self, parameter_s=''):
610 626 """Pretty print the object and display it through a pager.
611 627
612 628 If no parameter is given, use _ (last output)."""
613 629 # After a function contributed by Olivier Aubert, slightly modified.
614 630
615 631 oname = parameter_s and parameter_s or '_'
616 632 info = self._ofind(oname)
617 633 if info['found']:
618 634 page(pformat(info['obj']))
619 635 else:
620 636 print 'Object `%s` not found' % oname
621 637
622 638 def magic_profile(self, parameter_s=''):
623 639 """Print your currently active IPyhton profile."""
624 640 if self.shell.rc.profile:
625 641 printpl('Current IPython profile: $self.shell.rc.profile.')
626 642 else:
627 643 print 'No profile active.'
628 644
629 645 def _inspect(self,meth,oname,**kw):
630 646 """Generic interface to the inspector system.
631 647
632 648 This function is meant to be called by pdef, pdoc & friends."""
633 649
634 650 oname = oname.strip()
635 651 info = Struct(self._ofind(oname))
636 652
637 653 if info.found:
638 654 # Get the docstring of the class property if it exists.
639 655 path = oname.split('.')
640 656 root = '.'.join(path[:-1])
641 657 if info.parent is not None:
642 658 try:
643 659 target = getattr(info.parent, '__class__')
644 660 # The object belongs to a class instance.
645 661 try:
646 662 target = getattr(target, path[-1])
647 663 # The class defines the object.
648 664 if isinstance(target, property):
649 665 oname = root + '.__class__.' + path[-1]
650 666 info = Struct(self._ofind(oname))
651 667 except AttributeError: pass
652 668 except AttributeError: pass
653 669
654 670 pmethod = getattr(self.shell.inspector,meth)
655 671 formatter = info.ismagic and self.format_screen or None
656 672 if meth == 'pdoc':
657 673 pmethod(info.obj,oname,formatter)
658 674 elif meth == 'pinfo':
659 675 pmethod(info.obj,oname,formatter,info,**kw)
660 676 else:
661 677 pmethod(info.obj,oname)
662 678 else:
663 679 print 'Object `%s` not found.' % oname
664 680 return 'not found' # so callers can take other action
665 681
666 682 def magic_pdef(self, parameter_s=''):
667 683 """Print the definition header for any callable object.
668 684
669 685 If the object is a class, print the constructor information."""
670 686 self._inspect('pdef',parameter_s)
671 687
672 688 def magic_pdoc(self, parameter_s=''):
673 689 """Print the docstring for an object.
674 690
675 691 If the given object is a class, it will print both the class and the
676 692 constructor docstrings."""
677 693 self._inspect('pdoc',parameter_s)
678 694
679 695 def magic_psource(self, parameter_s=''):
680 696 """Print (or run through pager) the source code for an object."""
681 697 self._inspect('psource',parameter_s)
682 698
683 699 def magic_pfile(self, parameter_s=''):
684 700 """Print (or run through pager) the file where an object is defined.
685 701
686 702 The file opens at the line where the object definition begins. IPython
687 703 will honor the environment variable PAGER if set, and otherwise will
688 704 do its best to print the file in a convenient form.
689 705
690 706 If the given argument is not an object currently defined, IPython will
691 707 try to interpret it as a filename (automatically adding a .py extension
692 708 if needed). You can thus use %pfile as a syntax highlighting code
693 709 viewer."""
694 710
695 711 # first interpret argument as an object name
696 712 out = self._inspect('pfile',parameter_s)
697 713 # if not, try the input as a filename
698 714 if out == 'not found':
699 715 try:
700 716 filename = get_py_filename(parameter_s)
701 717 except IOError,msg:
702 718 print msg
703 719 return
704 720 page(self.shell.inspector.format(file(filename).read()))
705 721
706 722 def magic_pinfo(self, parameter_s=''):
707 723 """Provide detailed information about an object.
708 724
709 725 '%pinfo object' is just a synonym for object? or ?object."""
710 726
711 727 #print 'pinfo par: <%s>' % parameter_s # dbg
712 728
713 729 # detail_level: 0 -> obj? , 1 -> obj??
714 730 detail_level = 0
715 731 # We need to detect if we got called as 'pinfo pinfo foo', which can
716 732 # happen if the user types 'pinfo foo?' at the cmd line.
717 733 pinfo,qmark1,oname,qmark2 = \
718 734 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
719 735 if pinfo or qmark1 or qmark2:
720 736 detail_level = 1
721 737 if "*" in oname:
722 738 self.magic_psearch(oname)
723 739 else:
724 740 self._inspect('pinfo',oname,detail_level=detail_level)
725 741
726 742 def magic_psearch(self, parameter_s=''):
727 743 """Search for object in namespaces by wildcard.
728 744
729 745 %psearch [options] PATTERN [OBJECT TYPE]
730 746
731 747 Note: ? can be used as a synonym for %psearch, at the beginning or at
732 748 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
733 749 rest of the command line must be unchanged (options come first), so
734 750 for example the following forms are equivalent
735 751
736 752 %psearch -i a* function
737 753 -i a* function?
738 754 ?-i a* function
739 755
740 756 Arguments:
741 757
742 758 PATTERN
743 759
744 760 where PATTERN is a string containing * as a wildcard similar to its
745 761 use in a shell. The pattern is matched in all namespaces on the
746 762 search path. By default objects starting with a single _ are not
747 763 matched, many IPython generated objects have a single
748 764 underscore. The default is case insensitive matching. Matching is
749 765 also done on the attributes of objects and not only on the objects
750 766 in a module.
751 767
752 768 [OBJECT TYPE]
753 769
754 770 Is the name of a python type from the types module. The name is
755 771 given in lowercase without the ending type, ex. StringType is
756 772 written string. By adding a type here only objects matching the
757 773 given type are matched. Using all here makes the pattern match all
758 774 types (this is the default).
759 775
760 776 Options:
761 777
762 778 -a: makes the pattern match even objects whose names start with a
763 779 single underscore. These names are normally ommitted from the
764 780 search.
765 781
766 782 -i/-c: make the pattern case insensitive/sensitive. If neither of
767 783 these options is given, the default is read from your ipythonrc
768 784 file. The option name which sets this value is
769 785 'wildcards_case_sensitive'. If this option is not specified in your
770 786 ipythonrc file, IPython's internal default is to do a case sensitive
771 787 search.
772 788
773 789 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
774 790 specifiy can be searched in any of the following namespaces:
775 791 'builtin', 'user', 'user_global','internal', 'alias', where
776 792 'builtin' and 'user' are the search defaults. Note that you should
777 793 not use quotes when specifying namespaces.
778 794
779 795 'Builtin' contains the python module builtin, 'user' contains all
780 796 user data, 'alias' only contain the shell aliases and no python
781 797 objects, 'internal' contains objects used by IPython. The
782 798 'user_global' namespace is only used by embedded IPython instances,
783 799 and it contains module-level globals. You can add namespaces to the
784 800 search with -s or exclude them with -e (these options can be given
785 801 more than once).
786 802
787 803 Examples:
788 804
789 805 %psearch a* -> objects beginning with an a
790 806 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
791 807 %psearch a* function -> all functions beginning with an a
792 808 %psearch re.e* -> objects beginning with an e in module re
793 809 %psearch r*.e* -> objects that start with e in modules starting in r
794 810 %psearch r*.* string -> all strings in modules beginning with r
795 811
796 812 Case sensitve search:
797 813
798 814 %psearch -c a* list all object beginning with lower case a
799 815
800 816 Show objects beginning with a single _:
801 817
802 818 %psearch -a _* list objects beginning with a single underscore"""
803 819
804 820 # default namespaces to be searched
805 821 def_search = ['user','builtin']
806 822
807 823 # Process options/args
808 824 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
809 825 opt = opts.get
810 826 shell = self.shell
811 827 psearch = shell.inspector.psearch
812 828
813 829 # select case options
814 830 if opts.has_key('i'):
815 831 ignore_case = True
816 832 elif opts.has_key('c'):
817 833 ignore_case = False
818 834 else:
819 835 ignore_case = not shell.rc.wildcards_case_sensitive
820 836
821 837 # Build list of namespaces to search from user options
822 838 def_search.extend(opt('s',[]))
823 839 ns_exclude = ns_exclude=opt('e',[])
824 840 ns_search = [nm for nm in def_search if nm not in ns_exclude]
825 841
826 842 # Call the actual search
827 843 try:
828 844 psearch(args,shell.ns_table,ns_search,
829 845 show_all=opt('a'),ignore_case=ignore_case)
830 846 except:
831 847 shell.showtraceback()
832 848
833 849 def magic_who_ls(self, parameter_s=''):
834 850 """Return a sorted list of all interactive variables.
835 851
836 852 If arguments are given, only variables of types matching these
837 853 arguments are returned."""
838 854
839 855 user_ns = self.shell.user_ns
840 856 internal_ns = self.shell.internal_ns
841 857 user_config_ns = self.shell.user_config_ns
842 858 out = []
843 859 typelist = parameter_s.split()
844 860
845 861 for i in user_ns:
846 862 if not (i.startswith('_') or i.startswith('_i')) \
847 863 and not (i in internal_ns or i in user_config_ns):
848 864 if typelist:
849 865 if type(user_ns[i]).__name__ in typelist:
850 866 out.append(i)
851 867 else:
852 868 out.append(i)
853 869 out.sort()
854 870 return out
855 871
856 872 def magic_who(self, parameter_s=''):
857 873 """Print all interactive variables, with some minimal formatting.
858 874
859 875 If any arguments are given, only variables whose type matches one of
860 876 these are printed. For example:
861 877
862 878 %who function str
863 879
864 880 will only list functions and strings, excluding all other types of
865 881 variables. To find the proper type names, simply use type(var) at a
866 882 command line to see how python prints type names. For example:
867 883
868 884 In [1]: type('hello')\\
869 885 Out[1]: <type 'str'>
870 886
871 887 indicates that the type name for strings is 'str'.
872 888
873 889 %who always excludes executed names loaded through your configuration
874 890 file and things which are internal to IPython.
875 891
876 892 This is deliberate, as typically you may load many modules and the
877 893 purpose of %who is to show you only what you've manually defined."""
878 894
879 895 varlist = self.magic_who_ls(parameter_s)
880 896 if not varlist:
881 897 print 'Interactive namespace is empty.'
882 898 return
883 899
884 900 # if we have variables, move on...
885 901
886 902 # stupid flushing problem: when prompts have no separators, stdout is
887 903 # getting lost. I'm starting to think this is a python bug. I'm having
888 904 # to force a flush with a print because even a sys.stdout.flush
889 905 # doesn't seem to do anything!
890 906
891 907 count = 0
892 908 for i in varlist:
893 909 print i+'\t',
894 910 count += 1
895 911 if count > 8:
896 912 count = 0
897 913 print
898 914 sys.stdout.flush() # FIXME. Why the hell isn't this flushing???
899 915
900 916 print # well, this does force a flush at the expense of an extra \n
901 917
902 918 def magic_whos(self, parameter_s=''):
903 919 """Like %who, but gives some extra information about each variable.
904 920
905 921 The same type filtering of %who can be applied here.
906 922
907 923 For all variables, the type is printed. Additionally it prints:
908 924
909 925 - For {},[],(): their length.
910 926
911 927 - For Numeric arrays, a summary with shape, number of elements,
912 928 typecode and size in memory.
913 929
914 930 - Everything else: a string representation, snipping their middle if
915 931 too long."""
916 932
917 933 varnames = self.magic_who_ls(parameter_s)
918 934 if not varnames:
919 935 print 'Interactive namespace is empty.'
920 936 return
921 937
922 938 # if we have variables, move on...
923 939
924 940 # for these types, show len() instead of data:
925 941 seq_types = [types.DictType,types.ListType,types.TupleType]
926 942
927 943 # for Numeric arrays, display summary info
928 944 try:
929 945 import Numeric
930 946 except ImportError:
931 947 array_type = None
932 948 else:
933 949 array_type = Numeric.ArrayType.__name__
934 950
935 951 # Find all variable names and types so we can figure out column sizes
936 952 get_vars = lambda i: self.shell.user_ns[i]
937 953 type_name = lambda v: type(v).__name__
938 954 varlist = map(get_vars,varnames)
939 955
940 956 typelist = []
941 957 for vv in varlist:
942 958 tt = type_name(vv)
943 959 if tt=='instance':
944 960 typelist.append(str(vv.__class__))
945 961 else:
946 962 typelist.append(tt)
947 963
948 964 # column labels and # of spaces as separator
949 965 varlabel = 'Variable'
950 966 typelabel = 'Type'
951 967 datalabel = 'Data/Info'
952 968 colsep = 3
953 969 # variable format strings
954 970 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
955 971 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
956 972 aformat = "%s: %s elems, type `%s`, %s bytes"
957 973 # find the size of the columns to format the output nicely
958 974 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
959 975 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
960 976 # table header
961 977 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
962 978 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
963 979 # and the table itself
964 980 kb = 1024
965 981 Mb = 1048576 # kb**2
966 982 for vname,var,vtype in zip(varnames,varlist,typelist):
967 983 print itpl(vformat),
968 984 if vtype in seq_types:
969 985 print len(var)
970 986 elif vtype==array_type:
971 987 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
972 988 vsize = Numeric.size(var)
973 989 vbytes = vsize*var.itemsize()
974 990 if vbytes < 100000:
975 991 print aformat % (vshape,vsize,var.typecode(),vbytes)
976 992 else:
977 993 print aformat % (vshape,vsize,var.typecode(),vbytes),
978 994 if vbytes < Mb:
979 995 print '(%s kb)' % (vbytes/kb,)
980 996 else:
981 997 print '(%s Mb)' % (vbytes/Mb,)
982 998 else:
983 999 vstr = str(var).replace('\n','\\n')
984 1000 if len(vstr) < 50:
985 1001 print vstr
986 1002 else:
987 1003 printpl(vfmt_short)
988 1004
989 1005 def magic_reset(self, parameter_s=''):
990 1006 """Resets the namespace by removing all names defined by the user.
991 1007
992 1008 Input/Output history are left around in case you need them."""
993 1009
994 1010 ans = self.shell.ask_yes_no(
995 1011 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
996 1012 if not ans:
997 1013 print 'Nothing done.'
998 1014 return
999 1015 user_ns = self.shell.user_ns
1000 1016 for i in self.magic_who_ls():
1001 1017 del(user_ns[i])
1002 1018
1003 1019 def magic_config(self,parameter_s=''):
1004 1020 """Show IPython's internal configuration."""
1005 1021
1006 1022 page('Current configuration structure:\n'+
1007 1023 pformat(self.shell.rc.dict()))
1008 1024
1009 1025 def magic_logstart(self,parameter_s=''):
1010 1026 """Start logging anywhere in a session.
1011 1027
1012 1028 %logstart [-o|-r|-t] [log_name [log_mode]]
1013 1029
1014 1030 If no name is given, it defaults to a file named 'ipython_log.py' in your
1015 1031 current directory, in 'rotate' mode (see below).
1016 1032
1017 1033 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1018 1034 history up to that point and then continues logging.
1019 1035
1020 1036 %logstart takes a second optional parameter: logging mode. This can be one
1021 1037 of (note that the modes are given unquoted):\\
1022 1038 append: well, that says it.\\
1023 1039 backup: rename (if exists) to name~ and start name.\\
1024 1040 global: single logfile in your home dir, appended to.\\
1025 1041 over : overwrite existing log.\\
1026 1042 rotate: create rotating logs name.1~, name.2~, etc.
1027 1043
1028 1044 Options:
1029 1045
1030 1046 -o: log also IPython's output. In this mode, all commands which
1031 1047 generate an Out[NN] prompt are recorded to the logfile, right after
1032 1048 their corresponding input line. The output lines are always
1033 1049 prepended with a '#[Out]# ' marker, so that the log remains valid
1034 1050 Python code.
1035 1051
1036 1052 Since this marker is always the same, filtering only the output from
1037 1053 a log is very easy, using for example a simple awk call:
1038 1054
1039 1055 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1040 1056
1041 1057 -r: log 'raw' input. Normally, IPython's logs contain the processed
1042 1058 input, so that user lines are logged in their final form, converted
1043 1059 into valid Python. For example, %Exit is logged as
1044 1060 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1045 1061 exactly as typed, with no transformations applied.
1046 1062
1047 1063 -t: put timestamps before each input line logged (these are put in
1048 1064 comments)."""
1049 1065
1050 1066 opts,par = self.parse_options(parameter_s,'ort')
1051 1067 log_output = 'o' in opts
1052 1068 log_raw_input = 'r' in opts
1053 1069 timestamp = 't' in opts
1054 1070
1055 1071 rc = self.shell.rc
1056 1072 logger = self.shell.logger
1057 1073
1058 1074 # if no args are given, the defaults set in the logger constructor by
1059 1075 # ipytohn remain valid
1060 1076 if par:
1061 1077 try:
1062 1078 logfname,logmode = par.split()
1063 1079 except:
1064 1080 logfname = par
1065 1081 logmode = 'backup'
1066 1082 else:
1067 1083 logfname = logger.logfname
1068 1084 logmode = logger.logmode
1069 1085 # put logfname into rc struct as if it had been called on the command
1070 1086 # line, so it ends up saved in the log header Save it in case we need
1071 1087 # to restore it...
1072 1088 old_logfile = rc.opts.get('logfile','')
1073 1089 if logfname:
1074 1090 logfname = os.path.expanduser(logfname)
1075 1091 rc.opts.logfile = logfname
1076 1092 loghead = self.shell.loghead_tpl % (rc.opts,rc.args)
1077 1093 try:
1078 1094 started = logger.logstart(logfname,loghead,logmode,
1079 1095 log_output,timestamp,log_raw_input)
1080 1096 except:
1081 1097 rc.opts.logfile = old_logfile
1082 1098 warn("Couldn't start log: %s" % sys.exc_info()[1])
1083 1099 else:
1084 1100 # log input history up to this point, optionally interleaving
1085 1101 # output if requested
1086 1102
1087 1103 if timestamp:
1088 1104 # disable timestamping for the previous history, since we've
1089 1105 # lost those already (no time machine here).
1090 1106 logger.timestamp = False
1091 1107
1092 1108 if log_raw_input:
1093 1109 input_hist = self.shell.input_hist_raw
1094 1110 else:
1095 1111 input_hist = self.shell.input_hist
1096 1112
1097 1113 if log_output:
1098 1114 log_write = logger.log_write
1099 1115 output_hist = self.shell.output_hist
1100 1116 for n in range(1,len(input_hist)-1):
1101 1117 log_write(input_hist[n].rstrip())
1102 1118 if n in output_hist:
1103 1119 log_write(repr(output_hist[n]),'output')
1104 1120 else:
1105 1121 logger.log_write(input_hist[1:])
1106 1122 if timestamp:
1107 1123 # re-enable timestamping
1108 1124 logger.timestamp = True
1109 1125
1110 1126 print ('Activating auto-logging. '
1111 1127 'Current session state plus future input saved.')
1112 1128 logger.logstate()
1113 1129
1114 1130 def magic_logoff(self,parameter_s=''):
1115 1131 """Temporarily stop logging.
1116 1132
1117 1133 You must have previously started logging."""
1118 1134 self.shell.logger.switch_log(0)
1119 1135
1120 1136 def magic_logon(self,parameter_s=''):
1121 1137 """Restart logging.
1122 1138
1123 1139 This function is for restarting logging which you've temporarily
1124 1140 stopped with %logoff. For starting logging for the first time, you
1125 1141 must use the %logstart function, which allows you to specify an
1126 1142 optional log filename."""
1127 1143
1128 1144 self.shell.logger.switch_log(1)
1129 1145
1130 1146 def magic_logstate(self,parameter_s=''):
1131 1147 """Print the status of the logging system."""
1132 1148
1133 1149 self.shell.logger.logstate()
1134 1150
1135 1151 def magic_pdb(self, parameter_s=''):
1136 1152 """Control the calling of the pdb interactive debugger.
1137 1153
1138 1154 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1139 1155 argument it works as a toggle.
1140 1156
1141 1157 When an exception is triggered, IPython can optionally call the
1142 1158 interactive pdb debugger after the traceback printout. %pdb toggles
1143 1159 this feature on and off."""
1144 1160
1145 1161 par = parameter_s.strip().lower()
1146 1162
1147 1163 if par:
1148 1164 try:
1149 1165 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1150 1166 except KeyError:
1151 1167 print ('Incorrect argument. Use on/1, off/0, '
1152 1168 'or nothing for a toggle.')
1153 1169 return
1154 1170 else:
1155 1171 # toggle
1156 1172 new_pdb = not self.shell.InteractiveTB.call_pdb
1157 1173
1158 1174 # set on the shell
1159 1175 self.shell.call_pdb = new_pdb
1160 1176 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1161 1177
1162 1178 def magic_prun(self, parameter_s ='',user_mode=1,
1163 1179 opts=None,arg_lst=None,prog_ns=None):
1164 1180
1165 1181 """Run a statement through the python code profiler.
1166 1182
1167 1183 Usage:\\
1168 1184 %prun [options] statement
1169 1185
1170 1186 The given statement (which doesn't require quote marks) is run via the
1171 1187 python profiler in a manner similar to the profile.run() function.
1172 1188 Namespaces are internally managed to work correctly; profile.run
1173 1189 cannot be used in IPython because it makes certain assumptions about
1174 1190 namespaces which do not hold under IPython.
1175 1191
1176 1192 Options:
1177 1193
1178 1194 -l <limit>: you can place restrictions on what or how much of the
1179 1195 profile gets printed. The limit value can be:
1180 1196
1181 1197 * A string: only information for function names containing this string
1182 1198 is printed.
1183 1199
1184 1200 * An integer: only these many lines are printed.
1185 1201
1186 1202 * A float (between 0 and 1): this fraction of the report is printed
1187 1203 (for example, use a limit of 0.4 to see the topmost 40% only).
1188 1204
1189 1205 You can combine several limits with repeated use of the option. For
1190 1206 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1191 1207 information about class constructors.
1192 1208
1193 1209 -r: return the pstats.Stats object generated by the profiling. This
1194 1210 object has all the information about the profile in it, and you can
1195 1211 later use it for further analysis or in other functions.
1196 1212
1197 1213 Since magic functions have a particular form of calling which prevents
1198 1214 you from writing something like:\\
1199 1215 In [1]: p = %prun -r print 4 # invalid!\\
1200 1216 you must instead use IPython's automatic variables to assign this:\\
1201 1217 In [1]: %prun -r print 4 \\
1202 1218 Out[1]: <pstats.Stats instance at 0x8222cec>\\
1203 1219 In [2]: stats = _
1204 1220
1205 1221 If you really need to assign this value via an explicit function call,
1206 1222 you can always tap directly into the true name of the magic function
1207 1223 by using the _ip.magic function:\\
1208 1224 In [3]: stats = _ip.magic('prun','-r print 4')
1209 1225
1210 1226 You can type _ip.magic? for more details.
1211 1227
1212 1228 -s <key>: sort profile by given key. You can provide more than one key
1213 1229 by using the option several times: '-s key1 -s key2 -s key3...'. The
1214 1230 default sorting key is 'time'.
1215 1231
1216 1232 The following is copied verbatim from the profile documentation
1217 1233 referenced below:
1218 1234
1219 1235 When more than one key is provided, additional keys are used as
1220 1236 secondary criteria when the there is equality in all keys selected
1221 1237 before them.
1222 1238
1223 1239 Abbreviations can be used for any key names, as long as the
1224 1240 abbreviation is unambiguous. The following are the keys currently
1225 1241 defined:
1226 1242
1227 1243 Valid Arg Meaning\\
1228 1244 "calls" call count\\
1229 1245 "cumulative" cumulative time\\
1230 1246 "file" file name\\
1231 1247 "module" file name\\
1232 1248 "pcalls" primitive call count\\
1233 1249 "line" line number\\
1234 1250 "name" function name\\
1235 1251 "nfl" name/file/line\\
1236 1252 "stdname" standard name\\
1237 1253 "time" internal time
1238 1254
1239 1255 Note that all sorts on statistics are in descending order (placing
1240 1256 most time consuming items first), where as name, file, and line number
1241 1257 searches are in ascending order (i.e., alphabetical). The subtle
1242 1258 distinction between "nfl" and "stdname" is that the standard name is a
1243 1259 sort of the name as printed, which means that the embedded line
1244 1260 numbers get compared in an odd way. For example, lines 3, 20, and 40
1245 1261 would (if the file names were the same) appear in the string order
1246 1262 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1247 1263 line numbers. In fact, sort_stats("nfl") is the same as
1248 1264 sort_stats("name", "file", "line").
1249 1265
1250 1266 -T <filename>: save profile results as shown on screen to a text
1251 1267 file. The profile is still shown on screen.
1252 1268
1253 1269 -D <filename>: save (via dump_stats) profile statistics to given
1254 1270 filename. This data is in a format understod by the pstats module, and
1255 1271 is generated by a call to the dump_stats() method of profile
1256 1272 objects. The profile is still shown on screen.
1257 1273
1258 1274 If you want to run complete programs under the profiler's control, use
1259 1275 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1260 1276 contains profiler specific options as described here.
1261 1277
1262 1278 You can read the complete documentation for the profile module with:\\
1263 1279 In [1]: import profile; profile.help() """
1264 1280
1265 1281 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1266 1282 # protect user quote marks
1267 1283 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1268 1284
1269 1285 if user_mode: # regular user call
1270 1286 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1271 1287 list_all=1)
1272 1288 namespace = self.shell.user_ns
1273 1289 else: # called to run a program by %run -p
1274 1290 try:
1275 1291 filename = get_py_filename(arg_lst[0])
1276 1292 except IOError,msg:
1277 1293 error(msg)
1278 1294 return
1279 1295
1280 1296 arg_str = 'execfile(filename,prog_ns)'
1281 1297 namespace = locals()
1282 1298
1283 1299 opts.merge(opts_def)
1284 1300
1285 1301 prof = profile.Profile()
1286 1302 try:
1287 1303 prof = prof.runctx(arg_str,namespace,namespace)
1288 1304 sys_exit = ''
1289 1305 except SystemExit:
1290 1306 sys_exit = """*** SystemExit exception caught in code being profiled."""
1291 1307
1292 1308 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1293 1309
1294 1310 lims = opts.l
1295 1311 if lims:
1296 1312 lims = [] # rebuild lims with ints/floats/strings
1297 1313 for lim in opts.l:
1298 1314 try:
1299 1315 lims.append(int(lim))
1300 1316 except ValueError:
1301 1317 try:
1302 1318 lims.append(float(lim))
1303 1319 except ValueError:
1304 1320 lims.append(lim)
1305 1321
1306 1322 # trap output
1307 1323 sys_stdout = sys.stdout
1308 1324 stdout_trap = StringIO()
1309 1325 try:
1310 1326 sys.stdout = stdout_trap
1311 1327 stats.print_stats(*lims)
1312 1328 finally:
1313 1329 sys.stdout = sys_stdout
1314 1330 output = stdout_trap.getvalue()
1315 1331 output = output.rstrip()
1316 1332
1317 1333 page(output,screen_lines=self.shell.rc.screen_length)
1318 1334 print sys_exit,
1319 1335
1320 1336 dump_file = opts.D[0]
1321 1337 text_file = opts.T[0]
1322 1338 if dump_file:
1323 1339 prof.dump_stats(dump_file)
1324 1340 print '\n*** Profile stats marshalled to file',\
1325 1341 `dump_file`+'.',sys_exit
1326 1342 if text_file:
1327 1343 file(text_file,'w').write(output)
1328 1344 print '\n*** Profile printout saved to text file',\
1329 1345 `text_file`+'.',sys_exit
1330 1346
1331 1347 if opts.has_key('r'):
1332 1348 return stats
1333 1349 else:
1334 1350 return None
1335 1351
1336 1352 def magic_run(self, parameter_s ='',runner=None):
1337 1353 """Run the named file inside IPython as a program.
1338 1354
1339 1355 Usage:\\
1340 1356 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1341 1357
1342 1358 Parameters after the filename are passed as command-line arguments to
1343 1359 the program (put in sys.argv). Then, control returns to IPython's
1344 1360 prompt.
1345 1361
1346 1362 This is similar to running at a system prompt:\\
1347 1363 $ python file args\\
1348 1364 but with the advantage of giving you IPython's tracebacks, and of
1349 1365 loading all variables into your interactive namespace for further use
1350 1366 (unless -p is used, see below).
1351 1367
1352 1368 The file is executed in a namespace initially consisting only of
1353 1369 __name__=='__main__' and sys.argv constructed as indicated. It thus
1354 1370 sees its environment as if it were being run as a stand-alone
1355 1371 program. But after execution, the IPython interactive namespace gets
1356 1372 updated with all variables defined in the program (except for __name__
1357 1373 and sys.argv). This allows for very convenient loading of code for
1358 1374 interactive work, while giving each program a 'clean sheet' to run in.
1359 1375
1360 1376 Options:
1361 1377
1362 1378 -n: __name__ is NOT set to '__main__', but to the running file's name
1363 1379 without extension (as python does under import). This allows running
1364 1380 scripts and reloading the definitions in them without calling code
1365 1381 protected by an ' if __name__ == "__main__" ' clause.
1366 1382
1367 1383 -i: run the file in IPython's namespace instead of an empty one. This
1368 1384 is useful if you are experimenting with code written in a text editor
1369 1385 which depends on variables defined interactively.
1370 1386
1371 1387 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1372 1388 being run. This is particularly useful if IPython is being used to
1373 1389 run unittests, which always exit with a sys.exit() call. In such
1374 1390 cases you are interested in the output of the test results, not in
1375 1391 seeing a traceback of the unittest module.
1376 1392
1377 1393 -t: print timing information at the end of the run. IPython will give
1378 1394 you an estimated CPU time consumption for your script, which under
1379 1395 Unix uses the resource module to avoid the wraparound problems of
1380 1396 time.clock(). Under Unix, an estimate of time spent on system tasks
1381 1397 is also given (for Windows platforms this is reported as 0.0).
1382 1398
1383 1399 If -t is given, an additional -N<N> option can be given, where <N>
1384 1400 must be an integer indicating how many times you want the script to
1385 1401 run. The final timing report will include total and per run results.
1386 1402
1387 1403 For example (testing the script uniq_stable.py):
1388 1404
1389 1405 In [1]: run -t uniq_stable
1390 1406
1391 1407 IPython CPU timings (estimated):\\
1392 1408 User : 0.19597 s.\\
1393 1409 System: 0.0 s.\\
1394 1410
1395 1411 In [2]: run -t -N5 uniq_stable
1396 1412
1397 1413 IPython CPU timings (estimated):\\
1398 1414 Total runs performed: 5\\
1399 1415 Times : Total Per run\\
1400 1416 User : 0.910862 s, 0.1821724 s.\\
1401 1417 System: 0.0 s, 0.0 s.
1402 1418
1403 1419 -d: run your program under the control of pdb, the Python debugger.
1404 1420 This allows you to execute your program step by step, watch variables,
1405 1421 etc. Internally, what IPython does is similar to calling:
1406 1422
1407 1423 pdb.run('execfile("YOURFILENAME")')
1408 1424
1409 1425 with a breakpoint set on line 1 of your file. You can change the line
1410 1426 number for this automatic breakpoint to be <N> by using the -bN option
1411 1427 (where N must be an integer). For example:
1412 1428
1413 1429 %run -d -b40 myscript
1414 1430
1415 1431 will set the first breakpoint at line 40 in myscript.py. Note that
1416 1432 the first breakpoint must be set on a line which actually does
1417 1433 something (not a comment or docstring) for it to stop execution.
1418 1434
1419 1435 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1420 1436 first enter 'c' (without qoutes) to start execution up to the first
1421 1437 breakpoint.
1422 1438
1423 1439 Entering 'help' gives information about the use of the debugger. You
1424 1440 can easily see pdb's full documentation with "import pdb;pdb.help()"
1425 1441 at a prompt.
1426 1442
1427 1443 -p: run program under the control of the Python profiler module (which
1428 1444 prints a detailed report of execution times, function calls, etc).
1429 1445
1430 1446 You can pass other options after -p which affect the behavior of the
1431 1447 profiler itself. See the docs for %prun for details.
1432 1448
1433 1449 In this mode, the program's variables do NOT propagate back to the
1434 1450 IPython interactive namespace (because they remain in the namespace
1435 1451 where the profiler executes them).
1436 1452
1437 1453 Internally this triggers a call to %prun, see its documentation for
1438 1454 details on the options available specifically for profiling."""
1439 1455
1440 1456 # get arguments and set sys.argv for program to be run.
1441 1457 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1442 1458 mode='list',list_all=1)
1443 1459
1444 1460 try:
1445 1461 filename = get_py_filename(arg_lst[0])
1446 1462 except IndexError:
1447 1463 warn('you must provide at least a filename.')
1448 1464 print '\n%run:\n',OInspect.getdoc(self.magic_run)
1449 1465 return
1450 1466 except IOError,msg:
1451 1467 error(msg)
1452 1468 return
1453 1469
1454 1470 # Control the response to exit() calls made by the script being run
1455 1471 exit_ignore = opts.has_key('e')
1456 1472
1457 1473 # Make sure that the running script gets a proper sys.argv as if it
1458 1474 # were run from a system shell.
1459 1475 save_argv = sys.argv # save it for later restoring
1460 1476 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1461 1477
1462 1478 if opts.has_key('i'):
1463 1479 prog_ns = self.shell.user_ns
1464 1480 __name__save = self.shell.user_ns['__name__']
1465 1481 prog_ns['__name__'] = '__main__'
1466 1482 else:
1467 1483 if opts.has_key('n'):
1468 1484 name = os.path.splitext(os.path.basename(filename))[0]
1469 1485 else:
1470 1486 name = '__main__'
1471 1487 prog_ns = {'__name__':name}
1472 1488
1473 1489 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1474 1490 # set the __file__ global in the script's namespace
1475 1491 prog_ns['__file__'] = filename
1476 1492
1477 1493 # pickle fix. See iplib for an explanation. But we need to make sure
1478 1494 # that, if we overwrite __main__, we replace it at the end
1479 1495 if prog_ns['__name__'] == '__main__':
1480 1496 restore_main = sys.modules['__main__']
1481 1497 else:
1482 1498 restore_main = False
1483 1499
1484 1500 sys.modules[prog_ns['__name__']] = FakeModule(prog_ns)
1485 1501
1486 1502 stats = None
1487 1503 try:
1488 1504 if opts.has_key('p'):
1489 1505 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1490 1506 else:
1491 1507 if opts.has_key('d'):
1492 1508 deb = Debugger.Pdb(self.shell.rc.colors)
1493 1509 # reset Breakpoint state, which is moronically kept
1494 1510 # in a class
1495 1511 bdb.Breakpoint.next = 1
1496 1512 bdb.Breakpoint.bplist = {}
1497 1513 bdb.Breakpoint.bpbynumber = [None]
1498 1514 # Set an initial breakpoint to stop execution
1499 1515 maxtries = 10
1500 1516 bp = int(opts.get('b',[1])[0])
1501 1517 checkline = deb.checkline(filename,bp)
1502 1518 if not checkline:
1503 1519 for bp in range(bp+1,bp+maxtries+1):
1504 1520 if deb.checkline(filename,bp):
1505 1521 break
1506 1522 else:
1507 1523 msg = ("\nI failed to find a valid line to set "
1508 1524 "a breakpoint\n"
1509 1525 "after trying up to line: %s.\n"
1510 1526 "Please set a valid breakpoint manually "
1511 1527 "with the -b option." % bp)
1512 1528 error(msg)
1513 1529 return
1514 1530 # if we find a good linenumber, set the breakpoint
1515 1531 deb.do_break('%s:%s' % (filename,bp))
1516 1532 # Start file run
1517 1533 print "NOTE: Enter 'c' at the",
1518 1534 print "ipdb> prompt to start your script."
1519 1535 try:
1520 1536 deb.run('execfile("%s")' % filename,prog_ns)
1521 1537 except:
1522 1538 etype, value, tb = sys.exc_info()
1523 1539 # Skip three frames in the traceback: the %run one,
1524 1540 # one inside bdb.py, and the command-line typed by the
1525 1541 # user (run by exec in pdb itself).
1526 1542 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1527 1543 else:
1528 1544 if runner is None:
1529 1545 runner = self.shell.safe_execfile
1530 1546 if opts.has_key('t'):
1531 1547 try:
1532 1548 nruns = int(opts['N'][0])
1533 1549 if nruns < 1:
1534 1550 error('Number of runs must be >=1')
1535 1551 return
1536 1552 except (KeyError):
1537 1553 nruns = 1
1538 1554 if nruns == 1:
1539 1555 t0 = clock2()
1540 1556 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1541 1557 t1 = clock2()
1542 1558 t_usr = t1[0]-t0[0]
1543 1559 t_sys = t1[1]-t1[1]
1544 1560 print "\nIPython CPU timings (estimated):"
1545 1561 print " User : %10s s." % t_usr
1546 1562 print " System: %10s s." % t_sys
1547 1563 else:
1548 1564 runs = range(nruns)
1549 1565 t0 = clock2()
1550 1566 for nr in runs:
1551 1567 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1552 1568 t1 = clock2()
1553 1569 t_usr = t1[0]-t0[0]
1554 1570 t_sys = t1[1]-t1[1]
1555 1571 print "\nIPython CPU timings (estimated):"
1556 1572 print "Total runs performed:",nruns
1557 1573 print " Times : %10s %10s" % ('Total','Per run')
1558 1574 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1559 1575 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1560 1576
1561 1577 else:
1562 1578 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1563 1579 if opts.has_key('i'):
1564 1580 self.shell.user_ns['__name__'] = __name__save
1565 1581 else:
1566 1582 # update IPython interactive namespace
1567 1583 del prog_ns['__name__']
1568 1584 self.shell.user_ns.update(prog_ns)
1569 1585 finally:
1570 1586 sys.argv = save_argv
1571 1587 if restore_main:
1572 1588 sys.modules['__main__'] = restore_main
1573 1589 return stats
1574 1590
1575 1591 def magic_runlog(self, parameter_s =''):
1576 1592 """Run files as logs.
1577 1593
1578 1594 Usage:\\
1579 1595 %runlog file1 file2 ...
1580 1596
1581 1597 Run the named files (treating them as log files) in sequence inside
1582 1598 the interpreter, and return to the prompt. This is much slower than
1583 1599 %run because each line is executed in a try/except block, but it
1584 1600 allows running files with syntax errors in them.
1585 1601
1586 1602 Normally IPython will guess when a file is one of its own logfiles, so
1587 1603 you can typically use %run even for logs. This shorthand allows you to
1588 1604 force any file to be treated as a log file."""
1589 1605
1590 1606 for f in parameter_s.split():
1591 1607 self.shell.safe_execfile(f,self.shell.user_ns,
1592 1608 self.shell.user_ns,islog=1)
1593 1609
1594 1610 def magic_timeit(self, parameter_s =''):
1595 1611 """Time execution of a Python statement or expression
1596 1612
1597 1613 Usage:\\
1598 1614 %timeit [-n<N> -r<R> [-t|-c]] statement
1599 1615
1600 1616 Time execution of a Python statement or expression using the timeit
1601 1617 module.
1602 1618
1603 1619 Options:
1604 1620 -n<N>: execute the given statement <N> times in a loop. If this value
1605 1621 is not given, a fitting value is chosen.
1606 1622
1607 1623 -r<R>: repeat the loop iteration <R> times and take the best result.
1608 1624 Default: 3
1609 1625
1610 1626 -t: use time.time to measure the time, which is the default on Unix.
1611 1627 This function measures wall time.
1612 1628
1613 1629 -c: use time.clock to measure the time, which is the default on
1614 1630 Windows and measures wall time. On Unix, resource.getrusage is used
1615 1631 instead and returns the CPU user time.
1616 1632
1617 1633 -p<P>: use a precision of <P> digits to display the timing result.
1618 1634 Default: 3
1619 1635
1620 1636
1621 1637 Examples:\\
1622 1638 In [1]: %timeit pass
1623 1639 10000000 loops, best of 3: 53.3 ns per loop
1624 1640
1625 1641 In [2]: u = None
1626 1642
1627 1643 In [3]: %timeit u is None
1628 1644 10000000 loops, best of 3: 184 ns per loop
1629 1645
1630 1646 In [4]: %timeit -r 4 u == None
1631 1647 1000000 loops, best of 4: 242 ns per loop
1632 1648
1633 1649 In [5]: import time
1634 1650
1635 1651 In [6]: %timeit -n1 time.sleep(2)
1636 1652 1 loops, best of 3: 2 s per loop
1637 1653
1638 1654
1639 The times reported by %timeit will be slightly higher than those reported
1640 by the timeit.py script when variables are accessed. This is due to the
1641 fact that %timeit executes the statement in the namespace of the shell,
1642 compared with timeit.py, which uses a single setup statement to import
1643 function or create variables. Generally, the bias does not matter as long
1644 as results from timeit.py are not mixed with those from %timeit."""
1655 The times reported by %timeit will be slightly higher than those
1656 reported by the timeit.py script when variables are accessed. This is
1657 due to the fact that %timeit executes the statement in the namespace
1658 of the shell, compared with timeit.py, which uses a single setup
1659 statement to import function or create variables. Generally, the bias
1660 does not matter as long as results from timeit.py are not mixed with
1661 those from %timeit."""
1662
1645 1663 import timeit
1646 1664 import math
1647 1665
1648 1666 units = ["s", "ms", "\xc2\xb5s", "ns"]
1649 1667 scaling = [1, 1e3, 1e6, 1e9]
1650 1668
1651 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:')
1669 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1670 posix=False)
1652 1671 if stmt == "":
1653 1672 return
1654 1673 timefunc = timeit.default_timer
1655 1674 number = int(getattr(opts, "n", 0))
1656 1675 repeat = int(getattr(opts, "r", timeit.default_repeat))
1657 1676 precision = int(getattr(opts, "p", 3))
1658 1677 if hasattr(opts, "t"):
1659 1678 timefunc = time.time
1660 1679 if hasattr(opts, "c"):
1661 1680 timefunc = clock
1662 1681
1663 1682 timer = timeit.Timer(timer=timefunc)
1664 1683 # this code has tight coupling to the inner workings of timeit.Timer,
1665 1684 # but is there a better way to achieve that the code stmt has access
1666 1685 # to the shell namespace?
1667 1686
1668 src = timeit.template % {'stmt': timeit.reindent(stmt, 8), 'setup': "pass"}
1687 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1688 'setup': "pass"}
1669 1689 code = compile(src, "<magic-timeit>", "exec")
1670 1690 ns = {}
1671 1691 exec code in self.shell.user_ns, ns
1672 1692 timer.inner = ns["inner"]
1673 1693
1674 1694 if number == 0:
1675 1695 # determine number so that 0.2 <= total time < 2.0
1676 1696 number = 1
1677 1697 for i in range(1, 10):
1678 1698 number *= 10
1679 1699 if timer.timeit(number) >= 0.2:
1680 1700 break
1681 1701
1682 1702 best = min(timer.repeat(repeat, number)) / number
1683 1703
1684 1704 if best > 0.0:
1685 1705 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1686 1706 else:
1687 1707 order = 3
1688 1708 print "%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1689 1709 precision,
1690 1710 best * scaling[order],
1691 1711 units[order])
1692 1712
1693 1713 def magic_time(self,parameter_s = ''):
1694 1714 """Time execution of a Python statement or expression.
1695 1715
1696 1716 The CPU and wall clock times are printed, and the value of the
1697 1717 expression (if any) is returned. Note that under Win32, system time
1698 1718 is always reported as 0, since it can not be measured.
1699 1719
1700 1720 This function provides very basic timing functionality. In Python
1701 1721 2.3, the timeit module offers more control and sophistication, so this
1702 1722 could be rewritten to use it (patches welcome).
1703 1723
1704 1724 Some examples:
1705 1725
1706 1726 In [1]: time 2**128
1707 1727 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1708 1728 Wall time: 0.00
1709 1729 Out[1]: 340282366920938463463374607431768211456L
1710 1730
1711 1731 In [2]: n = 1000000
1712 1732
1713 1733 In [3]: time sum(range(n))
1714 1734 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1715 1735 Wall time: 1.37
1716 1736 Out[3]: 499999500000L
1717 1737
1718 1738 In [4]: time print 'hello world'
1719 1739 hello world
1720 1740 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1721 1741 Wall time: 0.00
1722 1742 """
1723 1743
1724 1744 # fail immediately if the given expression can't be compiled
1725 1745 try:
1726 1746 mode = 'eval'
1727 1747 code = compile(parameter_s,'<timed eval>',mode)
1728 1748 except SyntaxError:
1729 1749 mode = 'exec'
1730 1750 code = compile(parameter_s,'<timed exec>',mode)
1731 1751 # skew measurement as little as possible
1732 1752 glob = self.shell.user_ns
1733 1753 clk = clock2
1734 1754 wtime = time.time
1735 1755 # time execution
1736 1756 wall_st = wtime()
1737 1757 if mode=='eval':
1738 1758 st = clk()
1739 1759 out = eval(code,glob)
1740 1760 end = clk()
1741 1761 else:
1742 1762 st = clk()
1743 1763 exec code in glob
1744 1764 end = clk()
1745 1765 out = None
1746 1766 wall_end = wtime()
1747 1767 # Compute actual times and report
1748 1768 wall_time = wall_end-wall_st
1749 1769 cpu_user = end[0]-st[0]
1750 1770 cpu_sys = end[1]-st[1]
1751 1771 cpu_tot = cpu_user+cpu_sys
1752 1772 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1753 1773 (cpu_user,cpu_sys,cpu_tot)
1754 1774 print "Wall time: %.2f" % wall_time
1755 1775 return out
1756 1776
1757 1777 def magic_macro(self,parameter_s = ''):
1758 1778 """Define a set of input lines as a macro for future re-execution.
1759 1779
1760 1780 Usage:\\
1761 1781 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1762 1782
1763 1783 Options:
1764 1784
1765 1785 -r: use 'raw' input. By default, the 'processed' history is used,
1766 1786 so that magics are loaded in their transformed version to valid
1767 1787 Python. If this option is given, the raw input as typed as the
1768 1788 command line is used instead.
1769 1789
1770 1790 This will define a global variable called `name` which is a string
1771 1791 made of joining the slices and lines you specify (n1,n2,... numbers
1772 1792 above) from your input history into a single string. This variable
1773 1793 acts like an automatic function which re-executes those lines as if
1774 1794 you had typed them. You just type 'name' at the prompt and the code
1775 1795 executes.
1776 1796
1777 1797 The notation for indicating number ranges is: n1-n2 means 'use line
1778 1798 numbers n1,...n2' (the endpoint is included). That is, '5-7' means
1779 1799 using the lines numbered 5,6 and 7.
1780 1800
1781 1801 Note: as a 'hidden' feature, you can also use traditional python slice
1782 1802 notation, where N:M means numbers N through M-1.
1783 1803
1784 1804 For example, if your history contains (%hist prints it):
1785 1805
1786 1806 44: x=1\\
1787 1807 45: y=3\\
1788 1808 46: z=x+y\\
1789 1809 47: print x\\
1790 1810 48: a=5\\
1791 1811 49: print 'x',x,'y',y\\
1792 1812
1793 1813 you can create a macro with lines 44 through 47 (included) and line 49
1794 1814 called my_macro with:
1795 1815
1796 1816 In [51]: %macro my_macro 44-47 49
1797 1817
1798 1818 Now, typing `my_macro` (without quotes) will re-execute all this code
1799 1819 in one pass.
1800 1820
1801 1821 You don't need to give the line-numbers in order, and any given line
1802 1822 number can appear multiple times. You can assemble macros with any
1803 1823 lines from your input history in any order.
1804 1824
1805 1825 The macro is a simple object which holds its value in an attribute,
1806 1826 but IPython's display system checks for macros and executes them as
1807 1827 code instead of printing them when you type their name.
1808 1828
1809 1829 You can view a macro's contents by explicitly printing it with:
1810 1830
1811 1831 'print macro_name'.
1812 1832
1813 1833 For one-off cases which DON'T contain magic function calls in them you
1814 1834 can obtain similar results by explicitly executing slices from your
1815 1835 input history with:
1816 1836
1817 1837 In [60]: exec In[44:48]+In[49]"""
1818 1838
1819 1839 opts,args = self.parse_options(parameter_s,'r',mode='list')
1820 1840 name,ranges = args[0], args[1:]
1821 1841 #print 'rng',ranges # dbg
1822 1842 lines = self.extract_input_slices(ranges,opts.has_key('r'))
1823 1843 macro = Macro(lines)
1824 1844 self.shell.user_ns.update({name:macro})
1825 1845 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
1826 1846 print 'Macro contents:'
1827 1847 print macro,
1828 1848
1829 1849 def magic_save(self,parameter_s = ''):
1830 1850 """Save a set of lines to a given filename.
1831 1851
1832 1852 Usage:\\
1833 1853 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
1834 1854
1835 1855 Options:
1836 1856
1837 1857 -r: use 'raw' input. By default, the 'processed' history is used,
1838 1858 so that magics are loaded in their transformed version to valid
1839 1859 Python. If this option is given, the raw input as typed as the
1840 1860 command line is used instead.
1841 1861
1842 1862 This function uses the same syntax as %macro for line extraction, but
1843 1863 instead of creating a macro it saves the resulting string to the
1844 1864 filename you specify.
1845 1865
1846 1866 It adds a '.py' extension to the file if you don't do so yourself, and
1847 1867 it asks for confirmation before overwriting existing files."""
1848 1868
1849 1869 opts,args = self.parse_options(parameter_s,'r',mode='list')
1850 1870 fname,ranges = args[0], args[1:]
1851 1871 if not fname.endswith('.py'):
1852 1872 fname += '.py'
1853 1873 if os.path.isfile(fname):
1854 1874 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
1855 1875 if ans.lower() not in ['y','yes']:
1856 1876 print 'Operation cancelled.'
1857 1877 return
1858 1878 cmds = ''.join(self.extract_input_slices(ranges,opts.has_key('r')))
1859 1879 f = file(fname,'w')
1860 1880 f.write(cmds)
1861 1881 f.close()
1862 1882 print 'The following commands were written to file `%s`:' % fname
1863 1883 print cmds
1864 1884
1865 1885 def _edit_macro(self,mname,macro):
1866 1886 """open an editor with the macro data in a file"""
1867 1887 filename = self.shell.mktempfile(macro.value)
1868 1888 self.shell.hooks.editor(filename)
1869 1889
1870 1890 # and make a new macro object, to replace the old one
1871 1891 mfile = open(filename)
1872 1892 mvalue = mfile.read()
1873 1893 mfile.close()
1874 1894 self.shell.user_ns[mname] = Macro(mvalue)
1875 1895
1876 1896 def magic_ed(self,parameter_s=''):
1877 1897 """Alias to %edit."""
1878 1898 return self.magic_edit(parameter_s)
1879 1899
1880 1900 def magic_edit(self,parameter_s='',last_call=['','']):
1881 1901 """Bring up an editor and execute the resulting code.
1882 1902
1883 1903 Usage:
1884 1904 %edit [options] [args]
1885 1905
1886 1906 %edit runs IPython's editor hook. The default version of this hook is
1887 1907 set to call the __IPYTHON__.rc.editor command. This is read from your
1888 1908 environment variable $EDITOR. If this isn't found, it will default to
1889 1909 vi under Linux/Unix and to notepad under Windows. See the end of this
1890 1910 docstring for how to change the editor hook.
1891 1911
1892 1912 You can also set the value of this editor via the command line option
1893 1913 '-editor' or in your ipythonrc file. This is useful if you wish to use
1894 1914 specifically for IPython an editor different from your typical default
1895 1915 (and for Windows users who typically don't set environment variables).
1896 1916
1897 1917 This command allows you to conveniently edit multi-line code right in
1898 1918 your IPython session.
1899 1919
1900 1920 If called without arguments, %edit opens up an empty editor with a
1901 1921 temporary file and will execute the contents of this file when you
1902 1922 close it (don't forget to save it!).
1903 1923
1904 1924
1905 1925 Options:
1906 1926
1907 1927 -n <number>: open the editor at a specified line number. By default,
1908 1928 the IPython editor hook uses the unix syntax 'editor +N filename', but
1909 1929 you can configure this by providing your own modified hook if your
1910 1930 favorite editor supports line-number specifications with a different
1911 1931 syntax.
1912 1932
1913 1933 -p: this will call the editor with the same data as the previous time
1914 1934 it was used, regardless of how long ago (in your current session) it
1915 1935 was.
1916 1936
1917 1937 -r: use 'raw' input. This option only applies to input taken from the
1918 1938 user's history. By default, the 'processed' history is used, so that
1919 1939 magics are loaded in their transformed version to valid Python. If
1920 1940 this option is given, the raw input as typed as the command line is
1921 1941 used instead. When you exit the editor, it will be executed by
1922 1942 IPython's own processor.
1923 1943
1924 1944 -x: do not execute the edited code immediately upon exit. This is
1925 1945 mainly useful if you are editing programs which need to be called with
1926 1946 command line arguments, which you can then do using %run.
1927 1947
1928 1948
1929 1949 Arguments:
1930 1950
1931 1951 If arguments are given, the following possibilites exist:
1932 1952
1933 1953 - The arguments are numbers or pairs of colon-separated numbers (like
1934 1954 1 4:8 9). These are interpreted as lines of previous input to be
1935 1955 loaded into the editor. The syntax is the same of the %macro command.
1936 1956
1937 1957 - If the argument doesn't start with a number, it is evaluated as a
1938 1958 variable and its contents loaded into the editor. You can thus edit
1939 1959 any string which contains python code (including the result of
1940 1960 previous edits).
1941 1961
1942 1962 - If the argument is the name of an object (other than a string),
1943 1963 IPython will try to locate the file where it was defined and open the
1944 1964 editor at the point where it is defined. You can use `%edit function`
1945 1965 to load an editor exactly at the point where 'function' is defined,
1946 1966 edit it and have the file be executed automatically.
1947 1967
1948 1968 If the object is a macro (see %macro for details), this opens up your
1949 1969 specified editor with a temporary file containing the macro's data.
1950 1970 Upon exit, the macro is reloaded with the contents of the file.
1951 1971
1952 1972 Note: opening at an exact line is only supported under Unix, and some
1953 1973 editors (like kedit and gedit up to Gnome 2.8) do not understand the
1954 1974 '+NUMBER' parameter necessary for this feature. Good editors like
1955 1975 (X)Emacs, vi, jed, pico and joe all do.
1956 1976
1957 1977 - If the argument is not found as a variable, IPython will look for a
1958 1978 file with that name (adding .py if necessary) and load it into the
1959 1979 editor. It will execute its contents with execfile() when you exit,
1960 1980 loading any code in the file into your interactive namespace.
1961 1981
1962 1982 After executing your code, %edit will return as output the code you
1963 1983 typed in the editor (except when it was an existing file). This way
1964 1984 you can reload the code in further invocations of %edit as a variable,
1965 1985 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
1966 1986 the output.
1967 1987
1968 1988 Note that %edit is also available through the alias %ed.
1969 1989
1970 1990 This is an example of creating a simple function inside the editor and
1971 1991 then modifying it. First, start up the editor:
1972 1992
1973 1993 In [1]: ed\\
1974 1994 Editing... done. Executing edited code...\\
1975 1995 Out[1]: 'def foo():\\n print "foo() was defined in an editing session"\\n'
1976 1996
1977 1997 We can then call the function foo():
1978 1998
1979 1999 In [2]: foo()\\
1980 2000 foo() was defined in an editing session
1981 2001
1982 2002 Now we edit foo. IPython automatically loads the editor with the
1983 2003 (temporary) file where foo() was previously defined:
1984 2004
1985 2005 In [3]: ed foo\\
1986 2006 Editing... done. Executing edited code...
1987 2007
1988 2008 And if we call foo() again we get the modified version:
1989 2009
1990 2010 In [4]: foo()\\
1991 2011 foo() has now been changed!
1992 2012
1993 2013 Here is an example of how to edit a code snippet successive
1994 2014 times. First we call the editor:
1995 2015
1996 2016 In [8]: ed\\
1997 2017 Editing... done. Executing edited code...\\
1998 2018 hello\\
1999 2019 Out[8]: "print 'hello'\\n"
2000 2020
2001 2021 Now we call it again with the previous output (stored in _):
2002 2022
2003 2023 In [9]: ed _\\
2004 2024 Editing... done. Executing edited code...\\
2005 2025 hello world\\
2006 2026 Out[9]: "print 'hello world'\\n"
2007 2027
2008 2028 Now we call it with the output #8 (stored in _8, also as Out[8]):
2009 2029
2010 2030 In [10]: ed _8\\
2011 2031 Editing... done. Executing edited code...\\
2012 2032 hello again\\
2013 2033 Out[10]: "print 'hello again'\\n"
2014 2034
2015 2035
2016 2036 Changing the default editor hook:
2017 2037
2018 2038 If you wish to write your own editor hook, you can put it in a
2019 2039 configuration file which you load at startup time. The default hook
2020 2040 is defined in the IPython.hooks module, and you can use that as a
2021 2041 starting example for further modifications. That file also has
2022 2042 general instructions on how to set a new hook for use once you've
2023 2043 defined it."""
2024 2044
2025 2045 # FIXME: This function has become a convoluted mess. It needs a
2026 2046 # ground-up rewrite with clean, simple logic.
2027 2047
2028 2048 def make_filename(arg):
2029 2049 "Make a filename from the given args"
2030 2050 try:
2031 2051 filename = get_py_filename(arg)
2032 2052 except IOError:
2033 2053 if args.endswith('.py'):
2034 2054 filename = arg
2035 2055 else:
2036 2056 filename = None
2037 2057 return filename
2038 2058
2039 2059 # custom exceptions
2040 2060 class DataIsObject(Exception): pass
2041 2061
2042 2062 opts,args = self.parse_options(parameter_s,'prxn:')
2043 2063 # Set a few locals from the options for convenience:
2044 2064 opts_p = opts.has_key('p')
2045 2065 opts_r = opts.has_key('r')
2046 2066
2047 2067 # Default line number value
2048 2068 lineno = opts.get('n',None)
2049 2069
2050 2070 if opts_p:
2051 2071 args = '_%s' % last_call[0]
2052 2072 if not self.shell.user_ns.has_key(args):
2053 2073 args = last_call[1]
2054 2074
2055 2075 # use last_call to remember the state of the previous call, but don't
2056 2076 # let it be clobbered by successive '-p' calls.
2057 2077 try:
2058 2078 last_call[0] = self.shell.outputcache.prompt_count
2059 2079 if not opts_p:
2060 2080 last_call[1] = parameter_s
2061 2081 except:
2062 2082 pass
2063 2083
2064 2084 # by default this is done with temp files, except when the given
2065 2085 # arg is a filename
2066 2086 use_temp = 1
2067 2087
2068 2088 if re.match(r'\d',args):
2069 2089 # Mode where user specifies ranges of lines, like in %macro.
2070 2090 # This means that you can't edit files whose names begin with
2071 2091 # numbers this way. Tough.
2072 2092 ranges = args.split()
2073 2093 data = ''.join(self.extract_input_slices(ranges,opts_r))
2074 2094 elif args.endswith('.py'):
2075 2095 filename = make_filename(args)
2076 2096 data = ''
2077 2097 use_temp = 0
2078 2098 elif args:
2079 2099 try:
2080 2100 # Load the parameter given as a variable. If not a string,
2081 2101 # process it as an object instead (below)
2082 2102
2083 2103 #print '*** args',args,'type',type(args) # dbg
2084 2104 data = eval(args,self.shell.user_ns)
2085 2105 if not type(data) in StringTypes:
2086 2106 raise DataIsObject
2087 2107
2088 2108 except (NameError,SyntaxError):
2089 2109 # given argument is not a variable, try as a filename
2090 2110 filename = make_filename(args)
2091 2111 if filename is None:
2092 2112 warn("Argument given (%s) can't be found as a variable "
2093 2113 "or as a filename." % args)
2094 2114 return
2095 2115
2096 2116 data = ''
2097 2117 use_temp = 0
2098 2118 except DataIsObject:
2099 2119
2100 2120 # macros have a special edit function
2101 2121 if isinstance(data,Macro):
2102 2122 self._edit_macro(args,data)
2103 2123 return
2104 2124
2105 2125 # For objects, try to edit the file where they are defined
2106 2126 try:
2107 2127 filename = inspect.getabsfile(data)
2108 2128 datafile = 1
2109 2129 except TypeError:
2110 2130 filename = make_filename(args)
2111 2131 datafile = 1
2112 2132 warn('Could not find file where `%s` is defined.\n'
2113 2133 'Opening a file named `%s`' % (args,filename))
2114 2134 # Now, make sure we can actually read the source (if it was in
2115 2135 # a temp file it's gone by now).
2116 2136 if datafile:
2117 2137 try:
2118 2138 if lineno is None:
2119 2139 lineno = inspect.getsourcelines(data)[1]
2120 2140 except IOError:
2121 2141 filename = make_filename(args)
2122 2142 if filename is None:
2123 2143 warn('The file `%s` where `%s` was defined cannot '
2124 2144 'be read.' % (filename,data))
2125 2145 return
2126 2146 use_temp = 0
2127 2147 else:
2128 2148 data = ''
2129 2149
2130 2150 if use_temp:
2131 2151 filename = self.shell.mktempfile(data)
2132 2152 print 'IPython will make a temporary file named:',filename
2133 2153
2134 2154 # do actual editing here
2135 2155 print 'Editing...',
2136 2156 sys.stdout.flush()
2137 2157 self.shell.hooks.editor(filename,lineno)
2138 2158 if opts.has_key('x'): # -x prevents actual execution
2139 2159 print
2140 2160 else:
2141 2161 print 'done. Executing edited code...'
2142 2162 if opts_r:
2143 2163 self.shell.runlines(file_read(filename))
2144 2164 else:
2145 2165 self.shell.safe_execfile(filename,self.shell.user_ns)
2146 2166 if use_temp:
2147 2167 try:
2148 2168 return open(filename).read()
2149 2169 except IOError,msg:
2150 2170 if msg.filename == filename:
2151 2171 warn('File not found. Did you forget to save?')
2152 2172 return
2153 2173 else:
2154 2174 self.shell.showtraceback()
2155 2175
2156 2176 def magic_xmode(self,parameter_s = ''):
2157 2177 """Switch modes for the exception handlers.
2158 2178
2159 2179 Valid modes: Plain, Context and Verbose.
2160 2180
2161 2181 If called without arguments, acts as a toggle."""
2162 2182
2163 2183 def xmode_switch_err(name):
2164 2184 warn('Error changing %s exception modes.\n%s' %
2165 2185 (name,sys.exc_info()[1]))
2166 2186
2167 2187 shell = self.shell
2168 2188 new_mode = parameter_s.strip().capitalize()
2169 2189 try:
2170 2190 shell.InteractiveTB.set_mode(mode=new_mode)
2171 2191 print 'Exception reporting mode:',shell.InteractiveTB.mode
2172 2192 except:
2173 2193 xmode_switch_err('user')
2174 2194
2175 2195 # threaded shells use a special handler in sys.excepthook
2176 2196 if shell.isthreaded:
2177 2197 try:
2178 2198 shell.sys_excepthook.set_mode(mode=new_mode)
2179 2199 except:
2180 2200 xmode_switch_err('threaded')
2181 2201
2182 2202 def magic_colors(self,parameter_s = ''):
2183 2203 """Switch color scheme for prompts, info system and exception handlers.
2184 2204
2185 2205 Currently implemented schemes: NoColor, Linux, LightBG.
2186 2206
2187 2207 Color scheme names are not case-sensitive."""
2188 2208
2189 2209 def color_switch_err(name):
2190 2210 warn('Error changing %s color schemes.\n%s' %
2191 2211 (name,sys.exc_info()[1]))
2192 2212
2193 2213
2194 2214 new_scheme = parameter_s.strip()
2195 2215 if not new_scheme:
2196 2216 print 'You must specify a color scheme.'
2197 2217 return
2198 2218 import IPython.rlineimpl as readline
2199 2219 if not readline.have_readline:
2200 2220 msg = """\
2201 2221 Proper color support under MS Windows requires the pyreadline library.
2202 2222 You can find it at:
2203 2223 http://ipython.scipy.org/moin/PyReadline/Intro
2204 2224 Gary's readline needs the ctypes module, from:
2205 2225 http://starship.python.net/crew/theller/ctypes
2206 2226 (Note that ctypes is already part of Python versions 2.5 and newer).
2207 2227
2208 2228 Defaulting color scheme to 'NoColor'"""
2209 2229 new_scheme = 'NoColor'
2210 2230 warn(msg)
2211 2231 # local shortcut
2212 2232 shell = self.shell
2213 2233
2214 2234 # Set prompt colors
2215 2235 try:
2216 2236 shell.outputcache.set_colors(new_scheme)
2217 2237 except:
2218 2238 color_switch_err('prompt')
2219 2239 else:
2220 2240 shell.rc.colors = \
2221 2241 shell.outputcache.color_table.active_scheme_name
2222 2242 # Set exception colors
2223 2243 try:
2224 2244 shell.InteractiveTB.set_colors(scheme = new_scheme)
2225 2245 shell.SyntaxTB.set_colors(scheme = new_scheme)
2226 2246 except:
2227 2247 color_switch_err('exception')
2228 2248
2229 2249 # threaded shells use a verbose traceback in sys.excepthook
2230 2250 if shell.isthreaded:
2231 2251 try:
2232 2252 shell.sys_excepthook.set_colors(scheme=new_scheme)
2233 2253 except:
2234 2254 color_switch_err('system exception handler')
2235 2255
2236 2256 # Set info (for 'object?') colors
2237 2257 if shell.rc.color_info:
2238 2258 try:
2239 2259 shell.inspector.set_active_scheme(new_scheme)
2240 2260 except:
2241 2261 color_switch_err('object inspector')
2242 2262 else:
2243 2263 shell.inspector.set_active_scheme('NoColor')
2244 2264
2245 2265 def magic_color_info(self,parameter_s = ''):
2246 2266 """Toggle color_info.
2247 2267
2248 2268 The color_info configuration parameter controls whether colors are
2249 2269 used for displaying object details (by things like %psource, %pfile or
2250 2270 the '?' system). This function toggles this value with each call.
2251 2271
2252 2272 Note that unless you have a fairly recent pager (less works better
2253 2273 than more) in your system, using colored object information displays
2254 2274 will not work properly. Test it and see."""
2255 2275
2256 2276 self.shell.rc.color_info = 1 - self.shell.rc.color_info
2257 2277 self.magic_colors(self.shell.rc.colors)
2258 2278 print 'Object introspection functions have now coloring:',
2259 2279 print ['OFF','ON'][self.shell.rc.color_info]
2260 2280
2261 2281 def magic_Pprint(self, parameter_s=''):
2262 2282 """Toggle pretty printing on/off."""
2263 2283
2264 2284 self.shell.rc.pprint = 1 - self.shell.rc.pprint
2265 2285 print 'Pretty printing has been turned', \
2266 2286 ['OFF','ON'][self.shell.rc.pprint]
2267 2287
2268 2288 def magic_exit(self, parameter_s=''):
2269 2289 """Exit IPython, confirming if configured to do so.
2270 2290
2271 2291 You can configure whether IPython asks for confirmation upon exit by
2272 2292 setting the confirm_exit flag in the ipythonrc file."""
2273 2293
2274 2294 self.shell.exit()
2275 2295
2276 2296 def magic_quit(self, parameter_s=''):
2277 2297 """Exit IPython, confirming if configured to do so (like %exit)"""
2278 2298
2279 2299 self.shell.exit()
2280 2300
2281 2301 def magic_Exit(self, parameter_s=''):
2282 2302 """Exit IPython without confirmation."""
2283 2303
2284 2304 self.shell.exit_now = True
2285 2305
2286 2306 def magic_Quit(self, parameter_s=''):
2287 2307 """Exit IPython without confirmation (like %Exit)."""
2288 2308
2289 2309 self.shell.exit_now = True
2290 2310
2291 2311 #......................................................................
2292 2312 # Functions to implement unix shell-type things
2293 2313
2294 2314 def magic_alias(self, parameter_s = ''):
2295 2315 """Define an alias for a system command.
2296 2316
2297 2317 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2298 2318
2299 2319 Then, typing 'alias_name params' will execute the system command 'cmd
2300 2320 params' (from your underlying operating system).
2301 2321
2302 2322 Aliases have lower precedence than magic functions and Python normal
2303 2323 variables, so if 'foo' is both a Python variable and an alias, the
2304 2324 alias can not be executed until 'del foo' removes the Python variable.
2305 2325
2306 2326 You can use the %l specifier in an alias definition to represent the
2307 2327 whole line when the alias is called. For example:
2308 2328
2309 2329 In [2]: alias all echo "Input in brackets: <%l>"\\
2310 2330 In [3]: all hello world\\
2311 2331 Input in brackets: <hello world>
2312 2332
2313 2333 You can also define aliases with parameters using %s specifiers (one
2314 2334 per parameter):
2315 2335
2316 2336 In [1]: alias parts echo first %s second %s\\
2317 2337 In [2]: %parts A B\\
2318 2338 first A second B\\
2319 2339 In [3]: %parts A\\
2320 2340 Incorrect number of arguments: 2 expected.\\
2321 2341 parts is an alias to: 'echo first %s second %s'
2322 2342
2323 2343 Note that %l and %s are mutually exclusive. You can only use one or
2324 2344 the other in your aliases.
2325 2345
2326 2346 Aliases expand Python variables just like system calls using ! or !!
2327 2347 do: all expressions prefixed with '$' get expanded. For details of
2328 2348 the semantic rules, see PEP-215:
2329 2349 http://www.python.org/peps/pep-0215.html. This is the library used by
2330 2350 IPython for variable expansion. If you want to access a true shell
2331 2351 variable, an extra $ is necessary to prevent its expansion by IPython:
2332 2352
2333 2353 In [6]: alias show echo\\
2334 2354 In [7]: PATH='A Python string'\\
2335 2355 In [8]: show $PATH\\
2336 2356 A Python string\\
2337 2357 In [9]: show $$PATH\\
2338 2358 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2339 2359
2340 2360 You can use the alias facility to acess all of $PATH. See the %rehash
2341 2361 and %rehashx functions, which automatically create aliases for the
2342 2362 contents of your $PATH.
2343 2363
2344 2364 If called with no parameters, %alias prints the current alias table."""
2345 2365
2346 2366 par = parameter_s.strip()
2347 2367 if not par:
2348 2368 if self.shell.rc.automagic:
2349 2369 prechar = ''
2350 2370 else:
2351 2371 prechar = self.shell.ESC_MAGIC
2352 2372 #print 'Alias\t\tSystem Command\n'+'-'*30
2353 2373 atab = self.shell.alias_table
2354 2374 aliases = atab.keys()
2355 2375 aliases.sort()
2356 2376 res = []
2357 2377 for alias in aliases:
2358 2378 res.append((alias, atab[alias][1]))
2359 2379 print "Total number of aliases:",len(aliases)
2360 2380 return res
2361 2381 try:
2362 2382 alias,cmd = par.split(None,1)
2363 2383 except:
2364 2384 print OInspect.getdoc(self.magic_alias)
2365 2385 else:
2366 2386 nargs = cmd.count('%s')
2367 2387 if nargs>0 and cmd.find('%l')>=0:
2368 2388 error('The %s and %l specifiers are mutually exclusive '
2369 2389 'in alias definitions.')
2370 2390 else: # all looks OK
2371 2391 self.shell.alias_table[alias] = (nargs,cmd)
2372 2392 self.shell.alias_table_validate(verbose=0)
2373 2393 # end magic_alias
2374 2394
2375 2395 def magic_unalias(self, parameter_s = ''):
2376 2396 """Remove an alias"""
2377 2397
2378 2398 aname = parameter_s.strip()
2379 2399 if aname in self.shell.alias_table:
2380 2400 del self.shell.alias_table[aname]
2381 2401
2382 2402 def magic_rehash(self, parameter_s = ''):
2383 2403 """Update the alias table with all entries in $PATH.
2384 2404
2385 2405 This version does no checks on execute permissions or whether the
2386 2406 contents of $PATH are truly files (instead of directories or something
2387 2407 else). For such a safer (but slower) version, use %rehashx."""
2388 2408
2389 2409 # This function (and rehashx) manipulate the alias_table directly
2390 2410 # rather than calling magic_alias, for speed reasons. A rehash on a
2391 2411 # typical Linux box involves several thousand entries, so efficiency
2392 2412 # here is a top concern.
2393 2413
2394 2414 path = filter(os.path.isdir,os.environ['PATH'].split(os.pathsep))
2395 2415 alias_table = self.shell.alias_table
2396 2416 for pdir in path:
2397 2417 for ff in os.listdir(pdir):
2398 2418 # each entry in the alias table must be (N,name), where
2399 2419 # N is the number of positional arguments of the alias.
2400 2420 alias_table[ff] = (0,ff)
2401 2421 # Make sure the alias table doesn't contain keywords or builtins
2402 2422 self.shell.alias_table_validate()
2403 2423 # Call again init_auto_alias() so we get 'rm -i' and other modified
2404 2424 # aliases since %rehash will probably clobber them
2405 2425 self.shell.init_auto_alias()
2406 2426
2407 2427 def magic_rehashx(self, parameter_s = ''):
2408 2428 """Update the alias table with all executable files in $PATH.
2409 2429
2410 2430 This version explicitly checks that every entry in $PATH is a file
2411 2431 with execute access (os.X_OK), so it is much slower than %rehash.
2412 2432
2413 2433 Under Windows, it checks executability as a match agains a
2414 2434 '|'-separated string of extensions, stored in the IPython config
2415 2435 variable win_exec_ext. This defaults to 'exe|com|bat'. """
2416 2436
2417 2437 path = [os.path.abspath(os.path.expanduser(p)) for p in
2418 2438 os.environ['PATH'].split(os.pathsep)]
2419 2439 path = filter(os.path.isdir,path)
2420 2440
2421 2441 alias_table = self.shell.alias_table
2422 2442 syscmdlist = []
2423 2443 if os.name == 'posix':
2424 2444 isexec = lambda fname:os.path.isfile(fname) and \
2425 2445 os.access(fname,os.X_OK)
2426 2446 else:
2427 2447
2428 2448 try:
2429 2449 winext = os.environ['pathext'].replace(';','|').replace('.','')
2430 2450 except KeyError:
2431 2451 winext = 'exe|com|bat'
2432 2452
2433 2453 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2434 2454 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2435 2455 savedir = os.getcwd()
2436 2456 try:
2437 2457 # write the whole loop for posix/Windows so we don't have an if in
2438 2458 # the innermost part
2439 2459 if os.name == 'posix':
2440 2460 for pdir in path:
2441 2461 os.chdir(pdir)
2442 2462 for ff in os.listdir(pdir):
2443 2463 if isexec(ff) and ff not in self.shell.no_alias:
2444 2464 # each entry in the alias table must be (N,name),
2445 2465 # where N is the number of positional arguments of the
2446 2466 # alias.
2447 2467 alias_table[ff] = (0,ff)
2448 2468 syscmdlist.append(ff)
2449 2469 else:
2450 2470 for pdir in path:
2451 2471 os.chdir(pdir)
2452 2472 for ff in os.listdir(pdir):
2453 2473 if isexec(ff) and os.path.splitext(ff)[0] not in self.shell.no_alias:
2454 2474 alias_table[execre.sub(r'\1',ff)] = (0,ff)
2455 2475 syscmdlist.append(ff)
2456 2476 # Make sure the alias table doesn't contain keywords or builtins
2457 2477 self.shell.alias_table_validate()
2458 2478 # Call again init_auto_alias() so we get 'rm -i' and other
2459 2479 # modified aliases since %rehashx will probably clobber them
2460 2480 self.shell.init_auto_alias()
2461 2481 db = self.getapi().db
2462 2482 db['syscmdlist'] = syscmdlist
2463 2483 finally:
2464 2484 os.chdir(savedir)
2465 2485
2466 2486 def magic_pwd(self, parameter_s = ''):
2467 2487 """Return the current working directory path."""
2468 2488 return os.getcwd()
2469 2489
2470 2490 def magic_cd(self, parameter_s=''):
2471 2491 """Change the current working directory.
2472 2492
2473 2493 This command automatically maintains an internal list of directories
2474 2494 you visit during your IPython session, in the variable _dh. The
2475 2495 command %dhist shows this history nicely formatted.
2476 2496
2477 2497 Usage:
2478 2498
2479 2499 cd 'dir': changes to directory 'dir'.
2480 2500
2481 2501 cd -: changes to the last visited directory.
2482 2502
2483 2503 cd -<n>: changes to the n-th directory in the directory history.
2484 2504
2485 2505 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2486 2506 (note: cd <bookmark_name> is enough if there is no
2487 2507 directory <bookmark_name>, but a bookmark with the name exists.)
2488 2508
2489 2509 Options:
2490 2510
2491 2511 -q: quiet. Do not print the working directory after the cd command is
2492 2512 executed. By default IPython's cd command does print this directory,
2493 2513 since the default prompts do not display path information.
2494 2514
2495 2515 Note that !cd doesn't work for this purpose because the shell where
2496 2516 !command runs is immediately discarded after executing 'command'."""
2497 2517
2498 2518 parameter_s = parameter_s.strip()
2499 2519 #bkms = self.shell.persist.get("bookmarks",{})
2500 2520
2501 2521 numcd = re.match(r'(-)(\d+)$',parameter_s)
2502 2522 # jump in directory history by number
2503 2523 if numcd:
2504 2524 nn = int(numcd.group(2))
2505 2525 try:
2506 2526 ps = self.shell.user_ns['_dh'][nn]
2507 2527 except IndexError:
2508 2528 print 'The requested directory does not exist in history.'
2509 2529 return
2510 2530 else:
2511 2531 opts = {}
2512 2532 else:
2513 2533 #turn all non-space-escaping backslashes to slashes,
2514 2534 # for c:\windows\directory\names\
2515 2535 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2516 2536 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2517 2537 # jump to previous
2518 2538 if ps == '-':
2519 2539 try:
2520 2540 ps = self.shell.user_ns['_dh'][-2]
2521 2541 except IndexError:
2522 2542 print 'No previous directory to change to.'
2523 2543 return
2524 2544 # jump to bookmark if needed
2525 2545 else:
2526 2546 if not os.path.isdir(ps) or opts.has_key('b'):
2527 2547 bkms = self.db.get('bookmarks', {})
2528 2548
2529 2549 if bkms.has_key(ps):
2530 2550 target = bkms[ps]
2531 2551 print '(bookmark:%s) -> %s' % (ps,target)
2532 2552 ps = target
2533 2553 else:
2534 2554 if opts.has_key('b'):
2535 2555 error("Bookmark '%s' not found. "
2536 2556 "Use '%%bookmark -l' to see your bookmarks." % ps)
2537 2557 return
2538 2558
2539 2559 # at this point ps should point to the target dir
2540 2560 if ps:
2541 2561 try:
2542 2562 os.chdir(os.path.expanduser(ps))
2543 2563 ttitle = ("IPy:" + (
2544 2564 os.getcwd() == '/' and '/' or os.path.basename(os.getcwd())))
2545 2565 platutils.set_term_title(ttitle)
2546 2566 except OSError:
2547 2567 print sys.exc_info()[1]
2548 2568 else:
2549 2569 self.shell.user_ns['_dh'].append(os.getcwd())
2550 2570 else:
2551 2571 os.chdir(self.shell.home_dir)
2552 2572 platutils.set_term_title("IPy:~")
2553 2573 self.shell.user_ns['_dh'].append(os.getcwd())
2554 2574 if not 'q' in opts:
2555 2575 print self.shell.user_ns['_dh'][-1]
2556 2576
2557 2577 def magic_dhist(self, parameter_s=''):
2558 2578 """Print your history of visited directories.
2559 2579
2560 2580 %dhist -> print full history\\
2561 2581 %dhist n -> print last n entries only\\
2562 2582 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2563 2583
2564 2584 This history is automatically maintained by the %cd command, and
2565 2585 always available as the global list variable _dh. You can use %cd -<n>
2566 2586 to go to directory number <n>."""
2567 2587
2568 2588 dh = self.shell.user_ns['_dh']
2569 2589 if parameter_s:
2570 2590 try:
2571 2591 args = map(int,parameter_s.split())
2572 2592 except:
2573 2593 self.arg_err(Magic.magic_dhist)
2574 2594 return
2575 2595 if len(args) == 1:
2576 2596 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2577 2597 elif len(args) == 2:
2578 2598 ini,fin = args
2579 2599 else:
2580 2600 self.arg_err(Magic.magic_dhist)
2581 2601 return
2582 2602 else:
2583 2603 ini,fin = 0,len(dh)
2584 2604 nlprint(dh,
2585 2605 header = 'Directory history (kept in _dh)',
2586 2606 start=ini,stop=fin)
2587 2607
2588 2608 def magic_env(self, parameter_s=''):
2589 2609 """List environment variables."""
2590 2610
2591 2611 return os.environ.data
2592 2612
2593 2613 def magic_pushd(self, parameter_s=''):
2594 2614 """Place the current dir on stack and change directory.
2595 2615
2596 2616 Usage:\\
2597 2617 %pushd ['dirname']
2598 2618
2599 2619 %pushd with no arguments does a %pushd to your home directory.
2600 2620 """
2601 2621 if parameter_s == '': parameter_s = '~'
2602 2622 dir_s = self.shell.dir_stack
2603 2623 if len(dir_s)>0 and os.path.expanduser(parameter_s) != \
2604 2624 os.path.expanduser(self.shell.dir_stack[0]):
2605 2625 try:
2606 2626 self.magic_cd(parameter_s)
2607 2627 dir_s.insert(0,os.getcwd().replace(self.home_dir,'~'))
2608 2628 self.magic_dirs()
2609 2629 except:
2610 2630 print 'Invalid directory'
2611 2631 else:
2612 2632 print 'You are already there!'
2613 2633
2614 2634 def magic_popd(self, parameter_s=''):
2615 2635 """Change to directory popped off the top of the stack.
2616 2636 """
2617 2637 if len (self.shell.dir_stack) > 1:
2618 2638 self.shell.dir_stack.pop(0)
2619 2639 self.magic_cd(self.shell.dir_stack[0])
2620 2640 print self.shell.dir_stack[0]
2621 2641 else:
2622 2642 print "You can't remove the starting directory from the stack:",\
2623 2643 self.shell.dir_stack
2624 2644
2625 2645 def magic_dirs(self, parameter_s=''):
2626 2646 """Return the current directory stack."""
2627 2647
2628 2648 return self.shell.dir_stack[:]
2629 2649
2630 2650 def magic_sc(self, parameter_s=''):
2631 2651 """Shell capture - execute a shell command and capture its output.
2632 2652
2633 2653 DEPRECATED. Suboptimal, retained for backwards compatibility.
2634 2654
2635 2655 You should use the form 'var = !command' instead. Example:
2636 2656
2637 2657 "%sc -l myfiles = ls ~" should now be written as
2638 2658
2639 2659 "myfiles = !ls ~"
2640 2660
2641 2661 myfiles.s, myfiles.l and myfiles.n still apply as documented
2642 2662 below.
2643 2663
2644 2664 --
2645 2665 %sc [options] varname=command
2646 2666
2647 2667 IPython will run the given command using commands.getoutput(), and
2648 2668 will then update the user's interactive namespace with a variable
2649 2669 called varname, containing the value of the call. Your command can
2650 2670 contain shell wildcards, pipes, etc.
2651 2671
2652 2672 The '=' sign in the syntax is mandatory, and the variable name you
2653 2673 supply must follow Python's standard conventions for valid names.
2654 2674
2655 2675 (A special format without variable name exists for internal use)
2656 2676
2657 2677 Options:
2658 2678
2659 2679 -l: list output. Split the output on newlines into a list before
2660 2680 assigning it to the given variable. By default the output is stored
2661 2681 as a single string.
2662 2682
2663 2683 -v: verbose. Print the contents of the variable.
2664 2684
2665 2685 In most cases you should not need to split as a list, because the
2666 2686 returned value is a special type of string which can automatically
2667 2687 provide its contents either as a list (split on newlines) or as a
2668 2688 space-separated string. These are convenient, respectively, either
2669 2689 for sequential processing or to be passed to a shell command.
2670 2690
2671 2691 For example:
2672 2692
2673 2693 # Capture into variable a
2674 2694 In [9]: sc a=ls *py
2675 2695
2676 2696 # a is a string with embedded newlines
2677 2697 In [10]: a
2678 2698 Out[10]: 'setup.py\nwin32_manual_post_install.py'
2679 2699
2680 2700 # which can be seen as a list:
2681 2701 In [11]: a.l
2682 2702 Out[11]: ['setup.py', 'win32_manual_post_install.py']
2683 2703
2684 2704 # or as a whitespace-separated string:
2685 2705 In [12]: a.s
2686 2706 Out[12]: 'setup.py win32_manual_post_install.py'
2687 2707
2688 2708 # a.s is useful to pass as a single command line:
2689 2709 In [13]: !wc -l $a.s
2690 2710 146 setup.py
2691 2711 130 win32_manual_post_install.py
2692 2712 276 total
2693 2713
2694 2714 # while the list form is useful to loop over:
2695 2715 In [14]: for f in a.l:
2696 2716 ....: !wc -l $f
2697 2717 ....:
2698 2718 146 setup.py
2699 2719 130 win32_manual_post_install.py
2700 2720
2701 2721 Similiarly, the lists returned by the -l option are also special, in
2702 2722 the sense that you can equally invoke the .s attribute on them to
2703 2723 automatically get a whitespace-separated string from their contents:
2704 2724
2705 2725 In [1]: sc -l b=ls *py
2706 2726
2707 2727 In [2]: b
2708 2728 Out[2]: ['setup.py', 'win32_manual_post_install.py']
2709 2729
2710 2730 In [3]: b.s
2711 2731 Out[3]: 'setup.py win32_manual_post_install.py'
2712 2732
2713 2733 In summary, both the lists and strings used for ouptut capture have
2714 2734 the following special attributes:
2715 2735
2716 2736 .l (or .list) : value as list.
2717 2737 .n (or .nlstr): value as newline-separated string.
2718 2738 .s (or .spstr): value as space-separated string.
2719 2739 """
2720 2740
2721 2741 opts,args = self.parse_options(parameter_s,'lv')
2722 2742 # Try to get a variable name and command to run
2723 2743 try:
2724 2744 # the variable name must be obtained from the parse_options
2725 2745 # output, which uses shlex.split to strip options out.
2726 2746 var,_ = args.split('=',1)
2727 2747 var = var.strip()
2728 2748 # But the the command has to be extracted from the original input
2729 2749 # parameter_s, not on what parse_options returns, to avoid the
2730 2750 # quote stripping which shlex.split performs on it.
2731 2751 _,cmd = parameter_s.split('=',1)
2732 2752 except ValueError:
2733 2753 var,cmd = '',''
2734 2754 # If all looks ok, proceed
2735 2755 out,err = self.shell.getoutputerror(cmd)
2736 2756 if err:
2737 2757 print >> Term.cerr,err
2738 2758 if opts.has_key('l'):
2739 2759 out = SList(out.split('\n'))
2740 2760 else:
2741 2761 out = LSString(out)
2742 2762 if opts.has_key('v'):
2743 2763 print '%s ==\n%s' % (var,pformat(out))
2744 2764 if var:
2745 2765 self.shell.user_ns.update({var:out})
2746 2766 else:
2747 2767 return out
2748 2768
2749 2769 def magic_sx(self, parameter_s=''):
2750 2770 """Shell execute - run a shell command and capture its output.
2751 2771
2752 2772 %sx command
2753 2773
2754 2774 IPython will run the given command using commands.getoutput(), and
2755 2775 return the result formatted as a list (split on '\\n'). Since the
2756 2776 output is _returned_, it will be stored in ipython's regular output
2757 2777 cache Out[N] and in the '_N' automatic variables.
2758 2778
2759 2779 Notes:
2760 2780
2761 2781 1) If an input line begins with '!!', then %sx is automatically
2762 2782 invoked. That is, while:
2763 2783 !ls
2764 2784 causes ipython to simply issue system('ls'), typing
2765 2785 !!ls
2766 2786 is a shorthand equivalent to:
2767 2787 %sx ls
2768 2788
2769 2789 2) %sx differs from %sc in that %sx automatically splits into a list,
2770 2790 like '%sc -l'. The reason for this is to make it as easy as possible
2771 2791 to process line-oriented shell output via further python commands.
2772 2792 %sc is meant to provide much finer control, but requires more
2773 2793 typing.
2774 2794
2775 2795 3) Just like %sc -l, this is a list with special attributes:
2776 2796
2777 2797 .l (or .list) : value as list.
2778 2798 .n (or .nlstr): value as newline-separated string.
2779 2799 .s (or .spstr): value as whitespace-separated string.
2780 2800
2781 2801 This is very useful when trying to use such lists as arguments to
2782 2802 system commands."""
2783 2803
2784 2804 if parameter_s:
2785 2805 out,err = self.shell.getoutputerror(parameter_s)
2786 2806 if err:
2787 2807 print >> Term.cerr,err
2788 2808 return SList(out.split('\n'))
2789 2809
2790 2810 def magic_bg(self, parameter_s=''):
2791 2811 """Run a job in the background, in a separate thread.
2792 2812
2793 2813 For example,
2794 2814
2795 2815 %bg myfunc(x,y,z=1)
2796 2816
2797 2817 will execute 'myfunc(x,y,z=1)' in a background thread. As soon as the
2798 2818 execution starts, a message will be printed indicating the job
2799 2819 number. If your job number is 5, you can use
2800 2820
2801 2821 myvar = jobs.result(5) or myvar = jobs[5].result
2802 2822
2803 2823 to assign this result to variable 'myvar'.
2804 2824
2805 2825 IPython has a job manager, accessible via the 'jobs' object. You can
2806 2826 type jobs? to get more information about it, and use jobs.<TAB> to see
2807 2827 its attributes. All attributes not starting with an underscore are
2808 2828 meant for public use.
2809 2829
2810 2830 In particular, look at the jobs.new() method, which is used to create
2811 2831 new jobs. This magic %bg function is just a convenience wrapper
2812 2832 around jobs.new(), for expression-based jobs. If you want to create a
2813 2833 new job with an explicit function object and arguments, you must call
2814 2834 jobs.new() directly.
2815 2835
2816 2836 The jobs.new docstring also describes in detail several important
2817 2837 caveats associated with a thread-based model for background job
2818 2838 execution. Type jobs.new? for details.
2819 2839
2820 2840 You can check the status of all jobs with jobs.status().
2821 2841
2822 2842 The jobs variable is set by IPython into the Python builtin namespace.
2823 2843 If you ever declare a variable named 'jobs', you will shadow this
2824 2844 name. You can either delete your global jobs variable to regain
2825 2845 access to the job manager, or make a new name and assign it manually
2826 2846 to the manager (stored in IPython's namespace). For example, to
2827 2847 assign the job manager to the Jobs name, use:
2828 2848
2829 2849 Jobs = __builtins__.jobs"""
2830 2850
2831 2851 self.shell.jobs.new(parameter_s,self.shell.user_ns)
2832 2852
2833 2853
2834 2854 def magic_bookmark(self, parameter_s=''):
2835 2855 """Manage IPython's bookmark system.
2836 2856
2837 2857 %bookmark <name> - set bookmark to current dir
2838 2858 %bookmark <name> <dir> - set bookmark to <dir>
2839 2859 %bookmark -l - list all bookmarks
2840 2860 %bookmark -d <name> - remove bookmark
2841 2861 %bookmark -r - remove all bookmarks
2842 2862
2843 2863 You can later on access a bookmarked folder with:
2844 2864 %cd -b <name>
2845 2865 or simply '%cd <name>' if there is no directory called <name> AND
2846 2866 there is such a bookmark defined.
2847 2867
2848 2868 Your bookmarks persist through IPython sessions, but they are
2849 2869 associated with each profile."""
2850 2870
2851 2871 opts,args = self.parse_options(parameter_s,'drl',mode='list')
2852 2872 if len(args) > 2:
2853 2873 error('You can only give at most two arguments')
2854 2874 return
2855 2875
2856 2876 bkms = self.db.get('bookmarks',{})
2857 2877
2858 2878 if opts.has_key('d'):
2859 2879 try:
2860 2880 todel = args[0]
2861 2881 except IndexError:
2862 2882 error('You must provide a bookmark to delete')
2863 2883 else:
2864 2884 try:
2865 2885 del bkms[todel]
2866 2886 except:
2867 2887 error("Can't delete bookmark '%s'" % todel)
2868 2888 elif opts.has_key('r'):
2869 2889 bkms = {}
2870 2890 elif opts.has_key('l'):
2871 2891 bks = bkms.keys()
2872 2892 bks.sort()
2873 2893 if bks:
2874 2894 size = max(map(len,bks))
2875 2895 else:
2876 2896 size = 0
2877 2897 fmt = '%-'+str(size)+'s -> %s'
2878 2898 print 'Current bookmarks:'
2879 2899 for bk in bks:
2880 2900 print fmt % (bk,bkms[bk])
2881 2901 else:
2882 2902 if not args:
2883 2903 error("You must specify the bookmark name")
2884 2904 elif len(args)==1:
2885 2905 bkms[args[0]] = os.getcwd()
2886 2906 elif len(args)==2:
2887 2907 bkms[args[0]] = args[1]
2888 2908 self.db['bookmarks'] = bkms
2889 2909
2890 2910 def magic_pycat(self, parameter_s=''):
2891 2911 """Show a syntax-highlighted file through a pager.
2892 2912
2893 2913 This magic is similar to the cat utility, but it will assume the file
2894 2914 to be Python source and will show it with syntax highlighting. """
2895 2915
2896 2916 try:
2897 2917 filename = get_py_filename(parameter_s)
2898 2918 cont = file_read(filename)
2899 2919 except IOError:
2900 2920 try:
2901 2921 cont = eval(parameter_s,self.user_ns)
2902 2922 except NameError:
2903 2923 cont = None
2904 2924 if cont is None:
2905 2925 print "Error: no such file or variable"
2906 2926 return
2907 2927
2908 2928 page(self.shell.pycolorize(cont),
2909 2929 screen_lines=self.shell.rc.screen_length)
2910 2930
2911 2931 def magic_cpaste(self, parameter_s=''):
2912 2932 """Allows you to paste & execute a pre-formatted code block from clipboard
2913 2933
2914 2934 You must terminate the block with '--' (two minus-signs) alone on the
2915 2935 line. You can also provide your own sentinel with '%paste -s %%' ('%%'
2916 2936 is the new sentinel for this operation)
2917 2937
2918 2938 The block is dedented prior to execution to enable execution of
2919 2939 method definitions. '>' characters at the beginning of a line is
2920 2940 ignored, to allow pasting directly from e-mails. The executed block
2921 2941 is also assigned to variable named 'pasted_block' for later editing
2922 2942 with '%edit pasted_block'.
2923 2943
2924 2944 You can also pass a variable name as an argument, e.g. '%cpaste foo'.
2925 2945 This assigns the pasted block to variable 'foo' as string, without
2926 2946 dedenting or executing it.
2927 2947
2928 2948 Do not be alarmed by garbled output on Windows (it's a readline bug).
2929 2949 Just press enter and type -- (and press enter again) and the block
2930 2950 will be what was just pasted.
2931 2951
2932 2952 IPython statements (magics, shell escapes) are not supported (yet).
2933 2953 """
2934 2954 opts,args = self.parse_options(parameter_s,'s:',mode='string')
2935 2955 par = args.strip()
2936 2956 sentinel = opts.get('s','--')
2937 2957
2938 2958 from IPython import iplib
2939 2959 lines = []
2940 2960 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
2941 2961 while 1:
2942 2962 l = iplib.raw_input_original(':')
2943 2963 if l ==sentinel:
2944 2964 break
2945 2965 lines.append(l.lstrip('>'))
2946 2966 block = "\n".join(lines) + '\n'
2947 2967 #print "block:\n",block
2948 2968 if not par:
2949 2969 b = textwrap.dedent(block)
2950 2970 exec b in self.user_ns
2951 2971 self.user_ns['pasted_block'] = b
2952 2972 else:
2953 2973 self.user_ns[par] = block
2954 2974 print "Block assigned to '%s'" % par
2955 2975
2956 2976 def magic_quickref(self,arg):
2957 2977 """ Show a quick reference sheet """
2958 2978 import IPython.usage
2959 2979 qr = IPython.usage.quick_reference + self.magic_magic('-brief')
2960 2980
2961 2981 page(qr)
2962 2982
2963 2983 def magic_upgrade(self,arg):
2964 2984 """ Upgrade your IPython installation
2965 2985
2966 2986 This will copy the config files that don't yet exist in your
2967 2987 ipython dir from the system config dir. Use this after upgrading
2968 2988 IPython if you don't wish to delete your .ipython dir.
2969 2989
2970 2990 Call with -nolegacy to get rid of ipythonrc* files (recommended for
2971 2991 new users)
2972 2992
2973 2993 """
2974 2994 ip = self.getapi()
2975 2995 ipinstallation = path(IPython.__file__).dirname()
2976 2996 upgrade_script = '%s "%s"' % (sys.executable,ipinstallation / 'upgrade_dir.py')
2977 2997 src_config = ipinstallation / 'UserConfig'
2978 2998 userdir = path(ip.options.ipythondir)
2979 2999 cmd = '%s "%s" "%s"' % (upgrade_script, src_config, userdir)
2980 3000 print ">",cmd
2981 3001 shell(cmd)
2982 3002 if arg == '-nolegacy':
2983 3003 legacy = userdir.files('ipythonrc*')
2984 3004 print "Nuking legacy files:",legacy
2985 3005
2986 3006 [p.remove() for p in legacy]
2987 3007 suffix = (sys.platform == 'win32' and '.ini' or '')
2988 3008 (userdir / ('ipythonrc' + suffix)).write_text('# Empty, see ipy_user_conf.py\n')
2989 3009
2990 3010
2991 3011 # end Magic
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
General Comments 0
You need to be logged in to leave comments. Login now