##// END OF EJS Templates
Small cleanup of dead debug code
Fernando Perez -
Show More
@@ -1,2555 +1,2542 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2010 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import os
26 26 import re
27 27 import sys
28 28 import tempfile
29 29 import types
30 30 from contextlib import nested
31 31
32 32 from IPython.config.configurable import Configurable
33 33 from IPython.core import debugger, oinspect
34 34 from IPython.core import history as ipcorehist
35 35 from IPython.core import page
36 36 from IPython.core import prefilter
37 37 from IPython.core import shadowns
38 38 from IPython.core import ultratb
39 39 from IPython.core.alias import AliasManager
40 40 from IPython.core.builtin_trap import BuiltinTrap
41 41 from IPython.core.compilerop import CachingCompiler
42 42 from IPython.core.display_trap import DisplayTrap
43 43 from IPython.core.displayhook import DisplayHook
44 44 from IPython.core.displaypub import DisplayPublisher
45 45 from IPython.core.error import TryNext, UsageError
46 46 from IPython.core.extensions import ExtensionManager
47 47 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 48 from IPython.core.formatters import DisplayFormatter
49 49 from IPython.core.history import HistoryManager
50 50 from IPython.core.inputsplitter import IPythonInputSplitter
51 51 from IPython.core.logger import Logger
52 52 from IPython.core.magic import Magic
53 53 from IPython.core.payload import PayloadManager
54 54 from IPython.core.plugin import PluginManager
55 55 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
56 56 from IPython.external.Itpl import ItplNS
57 57 from IPython.utils import PyColorize
58 58 from IPython.utils import io
59 59 from IPython.utils import pickleshare
60 60 from IPython.utils.doctestreload import doctest_reload
61 61 from IPython.utils.io import ask_yes_no, rprint
62 62 from IPython.utils.ipstruct import Struct
63 63 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
64 64 from IPython.utils.process import system, getoutput
65 65 from IPython.utils.strdispatch import StrDispatch
66 66 from IPython.utils.syspathcontext import prepended_to_syspath
67 67 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
68 68 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
69 69 List, Unicode, Instance, Type)
70 70 from IPython.utils.warn import warn, error, fatal
71 71 import IPython.core.hooks
72 72
73 73 #-----------------------------------------------------------------------------
74 74 # Globals
75 75 #-----------------------------------------------------------------------------
76 76
77 77 # compiled regexps for autoindent management
78 78 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
79 79
80 80 #-----------------------------------------------------------------------------
81 81 # Utilities
82 82 #-----------------------------------------------------------------------------
83 83
84 84 # store the builtin raw_input globally, and use this always, in case user code
85 85 # overwrites it (like wx.py.PyShell does)
86 86 raw_input_original = raw_input
87 87
88 88 def softspace(file, newvalue):
89 89 """Copied from code.py, to remove the dependency"""
90 90
91 91 oldvalue = 0
92 92 try:
93 93 oldvalue = file.softspace
94 94 except AttributeError:
95 95 pass
96 96 try:
97 97 file.softspace = newvalue
98 98 except (AttributeError, TypeError):
99 99 # "attribute-less object" or "read-only attributes"
100 100 pass
101 101 return oldvalue
102 102
103 103
104 104 def no_op(*a, **kw): pass
105 105
106 106 class SpaceInInput(Exception): pass
107 107
108 108 class Bunch: pass
109 109
110 110
111 111 def get_default_colors():
112 112 if sys.platform=='darwin':
113 113 return "LightBG"
114 114 elif os.name=='nt':
115 115 return 'Linux'
116 116 else:
117 117 return 'Linux'
118 118
119 119
120 120 class SeparateStr(Str):
121 121 """A Str subclass to validate separate_in, separate_out, etc.
122 122
123 123 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
124 124 """
125 125
126 126 def validate(self, obj, value):
127 127 if value == '0': value = ''
128 128 value = value.replace('\\n','\n')
129 129 return super(SeparateStr, self).validate(obj, value)
130 130
131 131 class MultipleInstanceError(Exception):
132 132 pass
133 133
134 134
135 135 #-----------------------------------------------------------------------------
136 136 # Main IPython class
137 137 #-----------------------------------------------------------------------------
138 138
139 139 class InteractiveShell(Configurable, Magic):
140 140 """An enhanced, interactive shell for Python."""
141 141
142 142 _instance = None
143 143 autocall = Enum((0,1,2), default_value=1, config=True)
144 144 # TODO: remove all autoindent logic and put into frontends.
145 145 # We can't do this yet because even runlines uses the autoindent.
146 146 autoindent = CBool(True, config=True)
147 147 automagic = CBool(True, config=True)
148 148 cache_size = Int(1000, config=True)
149 149 color_info = CBool(True, config=True)
150 150 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
151 151 default_value=get_default_colors(), config=True)
152 152 debug = CBool(False, config=True)
153 153 deep_reload = CBool(False, config=True)
154 154 display_formatter = Instance(DisplayFormatter)
155 155 displayhook_class = Type(DisplayHook)
156 156 display_pub_class = Type(DisplayPublisher)
157 157
158 158 exit_now = CBool(False)
159 159 # Monotonically increasing execution counter
160 160 execution_count = Int(1)
161 161 filename = Str("<ipython console>")
162 162 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
163 163
164 164 # Input splitter, to split entire cells of input into either individual
165 165 # interactive statements or whole blocks.
166 166 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
167 167 (), {})
168 168 logstart = CBool(False, config=True)
169 169 logfile = Str('', config=True)
170 170 logappend = Str('', config=True)
171 171 object_info_string_level = Enum((0,1,2), default_value=0,
172 172 config=True)
173 173 pdb = CBool(False, config=True)
174 174
175 175 profile = Str('', config=True)
176 176 prompt_in1 = Str('In [\\#]: ', config=True)
177 177 prompt_in2 = Str(' .\\D.: ', config=True)
178 178 prompt_out = Str('Out[\\#]: ', config=True)
179 179 prompts_pad_left = CBool(True, config=True)
180 180 quiet = CBool(False, config=True)
181 181
182 182 history_length = Int(10000, config=True)
183 183
184 184 # The readline stuff will eventually be moved to the terminal subclass
185 185 # but for now, we can't do that as readline is welded in everywhere.
186 186 readline_use = CBool(True, config=True)
187 187 readline_merge_completions = CBool(True, config=True)
188 188 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
189 189 readline_remove_delims = Str('-/~', config=True)
190 190 readline_parse_and_bind = List([
191 191 'tab: complete',
192 192 '"\C-l": clear-screen',
193 193 'set show-all-if-ambiguous on',
194 194 '"\C-o": tab-insert',
195 195 '"\M-i": " "',
196 196 '"\M-o": "\d\d\d\d"',
197 197 '"\M-I": "\d\d\d\d"',
198 198 '"\C-r": reverse-search-history',
199 199 '"\C-s": forward-search-history',
200 200 '"\C-p": history-search-backward',
201 201 '"\C-n": history-search-forward',
202 202 '"\e[A": history-search-backward',
203 203 '"\e[B": history-search-forward',
204 204 '"\C-k": kill-line',
205 205 '"\C-u": unix-line-discard',
206 206 ], allow_none=False, config=True)
207 207
208 208 # TODO: this part of prompt management should be moved to the frontends.
209 209 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
210 210 separate_in = SeparateStr('\n', config=True)
211 211 separate_out = SeparateStr('', config=True)
212 212 separate_out2 = SeparateStr('', config=True)
213 213 wildcards_case_sensitive = CBool(True, config=True)
214 214 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
215 215 default_value='Context', config=True)
216 216
217 217 # Subcomponents of InteractiveShell
218 218 alias_manager = Instance('IPython.core.alias.AliasManager')
219 219 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
220 220 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
221 221 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
222 222 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
223 223 plugin_manager = Instance('IPython.core.plugin.PluginManager')
224 224 payload_manager = Instance('IPython.core.payload.PayloadManager')
225 225 history_manager = Instance('IPython.core.history.HistoryManager')
226 226
227 227 # Private interface
228 228 _post_execute = set()
229 229
230 230 def __init__(self, config=None, ipython_dir=None,
231 231 user_ns=None, user_global_ns=None,
232 232 custom_exceptions=((), None)):
233 233
234 234 # This is where traits with a config_key argument are updated
235 235 # from the values on config.
236 236 super(InteractiveShell, self).__init__(config=config)
237 237
238 238 # These are relatively independent and stateless
239 239 self.init_ipython_dir(ipython_dir)
240 240 self.init_instance_attrs()
241 241 self.init_environment()
242 242
243 243 # Create namespaces (user_ns, user_global_ns, etc.)
244 244 self.init_create_namespaces(user_ns, user_global_ns)
245 245 # This has to be done after init_create_namespaces because it uses
246 246 # something in self.user_ns, but before init_sys_modules, which
247 247 # is the first thing to modify sys.
248 248 # TODO: When we override sys.stdout and sys.stderr before this class
249 249 # is created, we are saving the overridden ones here. Not sure if this
250 250 # is what we want to do.
251 251 self.save_sys_module_state()
252 252 self.init_sys_modules()
253 253
254 254 self.init_history()
255 255 self.init_encoding()
256 256 self.init_prefilter()
257 257
258 258 Magic.__init__(self, self)
259 259
260 260 self.init_syntax_highlighting()
261 261 self.init_hooks()
262 262 self.init_pushd_popd_magic()
263 263 # self.init_traceback_handlers use to be here, but we moved it below
264 264 # because it and init_io have to come after init_readline.
265 265 self.init_user_ns()
266 266 self.init_logger()
267 267 self.init_alias()
268 268 self.init_builtins()
269 269
270 270 # pre_config_initialization
271 271
272 272 # The next section should contain everything that was in ipmaker.
273 273 self.init_logstart()
274 274
275 275 # The following was in post_config_initialization
276 276 self.init_inspector()
277 277 # init_readline() must come before init_io(), because init_io uses
278 278 # readline related things.
279 279 self.init_readline()
280 280 # init_completer must come after init_readline, because it needs to
281 281 # know whether readline is present or not system-wide to configure the
282 282 # completers, since the completion machinery can now operate
283 283 # independently of readline (e.g. over the network)
284 284 self.init_completer()
285 285 # TODO: init_io() needs to happen before init_traceback handlers
286 286 # because the traceback handlers hardcode the stdout/stderr streams.
287 287 # This logic in in debugger.Pdb and should eventually be changed.
288 288 self.init_io()
289 289 self.init_traceback_handlers(custom_exceptions)
290 290 self.init_prompts()
291 291 self.init_display_formatter()
292 292 self.init_display_pub()
293 293 self.init_displayhook()
294 294 self.init_reload_doctest()
295 295 self.init_magics()
296 296 self.init_pdb()
297 297 self.init_extension_manager()
298 298 self.init_plugin_manager()
299 299 self.init_payload()
300 300 self.hooks.late_startup_hook()
301 301 atexit.register(self.atexit_operations)
302 302
303 303 # While we're trying to have each part of the code directly access what it
304 304 # needs without keeping redundant references to objects, we have too much
305 305 # legacy code that expects ip.db to exist, so let's make it a property that
306 306 # retrieves the underlying object from our new history manager.
307 307 @property
308 308 def db(self):
309 309 return self.history_manager.shadow_db
310 310
311 311 @classmethod
312 312 def instance(cls, *args, **kwargs):
313 313 """Returns a global InteractiveShell instance."""
314 314 if cls._instance is None:
315 315 inst = cls(*args, **kwargs)
316 316 # Now make sure that the instance will also be returned by
317 317 # the subclasses instance attribute.
318 318 for subclass in cls.mro():
319 319 if issubclass(cls, subclass) and \
320 320 issubclass(subclass, InteractiveShell):
321 321 subclass._instance = inst
322 322 else:
323 323 break
324 324 if isinstance(cls._instance, cls):
325 325 return cls._instance
326 326 else:
327 327 raise MultipleInstanceError(
328 328 'Multiple incompatible subclass instances of '
329 329 'InteractiveShell are being created.'
330 330 )
331 331
332 332 @classmethod
333 333 def initialized(cls):
334 334 return hasattr(cls, "_instance")
335 335
336 336 def get_ipython(self):
337 337 """Return the currently running IPython instance."""
338 338 return self
339 339
340 340 #-------------------------------------------------------------------------
341 341 # Trait changed handlers
342 342 #-------------------------------------------------------------------------
343 343
344 344 def _ipython_dir_changed(self, name, new):
345 345 if not os.path.isdir(new):
346 346 os.makedirs(new, mode = 0777)
347 347
348 348 def set_autoindent(self,value=None):
349 349 """Set the autoindent flag, checking for readline support.
350 350
351 351 If called with no arguments, it acts as a toggle."""
352 352
353 353 if not self.has_readline:
354 354 if os.name == 'posix':
355 355 warn("The auto-indent feature requires the readline library")
356 356 self.autoindent = 0
357 357 return
358 358 if value is None:
359 359 self.autoindent = not self.autoindent
360 360 else:
361 361 self.autoindent = value
362 362
363 363 #-------------------------------------------------------------------------
364 364 # init_* methods called by __init__
365 365 #-------------------------------------------------------------------------
366 366
367 367 def init_ipython_dir(self, ipython_dir):
368 368 if ipython_dir is not None:
369 369 self.ipython_dir = ipython_dir
370 370 self.config.Global.ipython_dir = self.ipython_dir
371 371 return
372 372
373 373 if hasattr(self.config.Global, 'ipython_dir'):
374 374 self.ipython_dir = self.config.Global.ipython_dir
375 375 else:
376 376 self.ipython_dir = get_ipython_dir()
377 377
378 378 # All children can just read this
379 379 self.config.Global.ipython_dir = self.ipython_dir
380 380
381 381 def init_instance_attrs(self):
382 382 self.more = False
383 383
384 384 # command compiler
385 385 self.compile = CachingCompiler()
386 386
387 387 # User input buffers
388 388 # NOTE: these variables are slated for full removal, once we are 100%
389 389 # sure that the new execution logic is solid. We will delte runlines,
390 390 # push_line and these buffers, as all input will be managed by the
391 391 # frontends via an inputsplitter instance.
392 392 self.buffer = []
393 393 self.buffer_raw = []
394 394
395 395 # Make an empty namespace, which extension writers can rely on both
396 396 # existing and NEVER being used by ipython itself. This gives them a
397 397 # convenient location for storing additional information and state
398 398 # their extensions may require, without fear of collisions with other
399 399 # ipython names that may develop later.
400 400 self.meta = Struct()
401 401
402 402 # Object variable to store code object waiting execution. This is
403 403 # used mainly by the multithreaded shells, but it can come in handy in
404 404 # other situations. No need to use a Queue here, since it's a single
405 405 # item which gets cleared once run.
406 406 self.code_to_run = None
407 407
408 408 # Temporary files used for various purposes. Deleted at exit.
409 409 self.tempfiles = []
410 410
411 411 # Keep track of readline usage (later set by init_readline)
412 412 self.has_readline = False
413 413
414 414 # keep track of where we started running (mainly for crash post-mortem)
415 415 # This is not being used anywhere currently.
416 416 self.starting_dir = os.getcwd()
417 417
418 418 # Indentation management
419 419 self.indent_current_nsp = 0
420 420
421 421 def init_environment(self):
422 422 """Any changes we need to make to the user's environment."""
423 423 pass
424 424
425 425 def init_encoding(self):
426 426 # Get system encoding at startup time. Certain terminals (like Emacs
427 427 # under Win32 have it set to None, and we need to have a known valid
428 428 # encoding to use in the raw_input() method
429 429 try:
430 430 self.stdin_encoding = sys.stdin.encoding or 'ascii'
431 431 except AttributeError:
432 432 self.stdin_encoding = 'ascii'
433 433
434 434 def init_syntax_highlighting(self):
435 435 # Python source parser/formatter for syntax highlighting
436 436 pyformat = PyColorize.Parser().format
437 437 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
438 438
439 439 def init_pushd_popd_magic(self):
440 440 # for pushd/popd management
441 441 try:
442 442 self.home_dir = get_home_dir()
443 443 except HomeDirError, msg:
444 444 fatal(msg)
445 445
446 446 self.dir_stack = []
447 447
448 448 def init_logger(self):
449 449 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
450 450 logmode='rotate')
451 451
452 452 def init_logstart(self):
453 453 """Initialize logging in case it was requested at the command line.
454 454 """
455 455 if self.logappend:
456 456 self.magic_logstart(self.logappend + ' append')
457 457 elif self.logfile:
458 458 self.magic_logstart(self.logfile)
459 459 elif self.logstart:
460 460 self.magic_logstart()
461 461
462 462 def init_builtins(self):
463 463 self.builtin_trap = BuiltinTrap(shell=self)
464 464
465 465 def init_inspector(self):
466 466 # Object inspector
467 467 self.inspector = oinspect.Inspector(oinspect.InspectColors,
468 468 PyColorize.ANSICodeColors,
469 469 'NoColor',
470 470 self.object_info_string_level)
471 471
472 472 def init_io(self):
473 473 # This will just use sys.stdout and sys.stderr. If you want to
474 474 # override sys.stdout and sys.stderr themselves, you need to do that
475 475 # *before* instantiating this class, because Term holds onto
476 476 # references to the underlying streams.
477 477 if sys.platform == 'win32' and self.has_readline:
478 478 Term = io.IOTerm(cout=self.readline._outputfile,
479 479 cerr=self.readline._outputfile)
480 480 else:
481 481 Term = io.IOTerm()
482 482 io.Term = Term
483 483
484 484 def init_prompts(self):
485 485 # TODO: This is a pass for now because the prompts are managed inside
486 486 # the DisplayHook. Once there is a separate prompt manager, this
487 487 # will initialize that object and all prompt related information.
488 488 pass
489 489
490 490 def init_display_formatter(self):
491 491 self.display_formatter = DisplayFormatter(config=self.config)
492 492
493 493 def init_display_pub(self):
494 494 self.display_pub = self.display_pub_class(config=self.config)
495 495
496 496 def init_displayhook(self):
497 497 # Initialize displayhook, set in/out prompts and printing system
498 498 self.displayhook = self.displayhook_class(
499 499 config=self.config,
500 500 shell=self,
501 501 cache_size=self.cache_size,
502 502 input_sep = self.separate_in,
503 503 output_sep = self.separate_out,
504 504 output_sep2 = self.separate_out2,
505 505 ps1 = self.prompt_in1,
506 506 ps2 = self.prompt_in2,
507 507 ps_out = self.prompt_out,
508 508 pad_left = self.prompts_pad_left
509 509 )
510 510 # This is a context manager that installs/revmoes the displayhook at
511 511 # the appropriate time.
512 512 self.display_trap = DisplayTrap(hook=self.displayhook)
513 513
514 514 def init_reload_doctest(self):
515 515 # Do a proper resetting of doctest, including the necessary displayhook
516 516 # monkeypatching
517 517 try:
518 518 doctest_reload()
519 519 except ImportError:
520 520 warn("doctest module does not exist.")
521 521
522 522 #-------------------------------------------------------------------------
523 523 # Things related to injections into the sys module
524 524 #-------------------------------------------------------------------------
525 525
526 526 def save_sys_module_state(self):
527 527 """Save the state of hooks in the sys module.
528 528
529 529 This has to be called after self.user_ns is created.
530 530 """
531 531 self._orig_sys_module_state = {}
532 532 self._orig_sys_module_state['stdin'] = sys.stdin
533 533 self._orig_sys_module_state['stdout'] = sys.stdout
534 534 self._orig_sys_module_state['stderr'] = sys.stderr
535 535 self._orig_sys_module_state['excepthook'] = sys.excepthook
536 536 try:
537 537 self._orig_sys_modules_main_name = self.user_ns['__name__']
538 538 except KeyError:
539 539 pass
540 540
541 541 def restore_sys_module_state(self):
542 542 """Restore the state of the sys module."""
543 543 try:
544 544 for k, v in self._orig_sys_module_state.iteritems():
545 545 setattr(sys, k, v)
546 546 except AttributeError:
547 547 pass
548 548 # Reset what what done in self.init_sys_modules
549 549 try:
550 550 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
551 551 except (AttributeError, KeyError):
552 552 pass
553 553
554 554 #-------------------------------------------------------------------------
555 555 # Things related to hooks
556 556 #-------------------------------------------------------------------------
557 557
558 558 def init_hooks(self):
559 559 # hooks holds pointers used for user-side customizations
560 560 self.hooks = Struct()
561 561
562 562 self.strdispatchers = {}
563 563
564 564 # Set all default hooks, defined in the IPython.hooks module.
565 565 hooks = IPython.core.hooks
566 566 for hook_name in hooks.__all__:
567 567 # default hooks have priority 100, i.e. low; user hooks should have
568 568 # 0-100 priority
569 569 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
570 570
571 571 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
572 572 """set_hook(name,hook) -> sets an internal IPython hook.
573 573
574 574 IPython exposes some of its internal API as user-modifiable hooks. By
575 575 adding your function to one of these hooks, you can modify IPython's
576 576 behavior to call at runtime your own routines."""
577 577
578 578 # At some point in the future, this should validate the hook before it
579 579 # accepts it. Probably at least check that the hook takes the number
580 580 # of args it's supposed to.
581 581
582 582 f = types.MethodType(hook,self)
583 583
584 584 # check if the hook is for strdispatcher first
585 585 if str_key is not None:
586 586 sdp = self.strdispatchers.get(name, StrDispatch())
587 587 sdp.add_s(str_key, f, priority )
588 588 self.strdispatchers[name] = sdp
589 589 return
590 590 if re_key is not None:
591 591 sdp = self.strdispatchers.get(name, StrDispatch())
592 592 sdp.add_re(re.compile(re_key), f, priority )
593 593 self.strdispatchers[name] = sdp
594 594 return
595 595
596 596 dp = getattr(self.hooks, name, None)
597 597 if name not in IPython.core.hooks.__all__:
598 598 print "Warning! Hook '%s' is not one of %s" % \
599 599 (name, IPython.core.hooks.__all__ )
600 600 if not dp:
601 601 dp = IPython.core.hooks.CommandChainDispatcher()
602 602
603 603 try:
604 604 dp.add(f,priority)
605 605 except AttributeError:
606 606 # it was not commandchain, plain old func - replace
607 607 dp = f
608 608
609 609 setattr(self.hooks,name, dp)
610 610
611 611 def register_post_execute(self, func):
612 612 """Register a function for calling after code execution.
613 613 """
614 614 if not callable(func):
615 615 raise ValueError('argument %s must be callable' % func)
616 616 self._post_execute.add(func)
617 617
618 618 #-------------------------------------------------------------------------
619 619 # Things related to the "main" module
620 620 #-------------------------------------------------------------------------
621 621
622 622 def new_main_mod(self,ns=None):
623 623 """Return a new 'main' module object for user code execution.
624 624 """
625 625 main_mod = self._user_main_module
626 626 init_fakemod_dict(main_mod,ns)
627 627 return main_mod
628 628
629 629 def cache_main_mod(self,ns,fname):
630 630 """Cache a main module's namespace.
631 631
632 632 When scripts are executed via %run, we must keep a reference to the
633 633 namespace of their __main__ module (a FakeModule instance) around so
634 634 that Python doesn't clear it, rendering objects defined therein
635 635 useless.
636 636
637 637 This method keeps said reference in a private dict, keyed by the
638 638 absolute path of the module object (which corresponds to the script
639 639 path). This way, for multiple executions of the same script we only
640 640 keep one copy of the namespace (the last one), thus preventing memory
641 641 leaks from old references while allowing the objects from the last
642 642 execution to be accessible.
643 643
644 644 Note: we can not allow the actual FakeModule instances to be deleted,
645 645 because of how Python tears down modules (it hard-sets all their
646 646 references to None without regard for reference counts). This method
647 647 must therefore make a *copy* of the given namespace, to allow the
648 648 original module's __dict__ to be cleared and reused.
649 649
650 650
651 651 Parameters
652 652 ----------
653 653 ns : a namespace (a dict, typically)
654 654
655 655 fname : str
656 656 Filename associated with the namespace.
657 657
658 658 Examples
659 659 --------
660 660
661 661 In [10]: import IPython
662 662
663 663 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
664 664
665 665 In [12]: IPython.__file__ in _ip._main_ns_cache
666 666 Out[12]: True
667 667 """
668 668 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
669 669
670 670 def clear_main_mod_cache(self):
671 671 """Clear the cache of main modules.
672 672
673 673 Mainly for use by utilities like %reset.
674 674
675 675 Examples
676 676 --------
677 677
678 678 In [15]: import IPython
679 679
680 680 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
681 681
682 682 In [17]: len(_ip._main_ns_cache) > 0
683 683 Out[17]: True
684 684
685 685 In [18]: _ip.clear_main_mod_cache()
686 686
687 687 In [19]: len(_ip._main_ns_cache) == 0
688 688 Out[19]: True
689 689 """
690 690 self._main_ns_cache.clear()
691 691
692 692 #-------------------------------------------------------------------------
693 693 # Things related to debugging
694 694 #-------------------------------------------------------------------------
695 695
696 696 def init_pdb(self):
697 697 # Set calling of pdb on exceptions
698 698 # self.call_pdb is a property
699 699 self.call_pdb = self.pdb
700 700
701 701 def _get_call_pdb(self):
702 702 return self._call_pdb
703 703
704 704 def _set_call_pdb(self,val):
705 705
706 706 if val not in (0,1,False,True):
707 707 raise ValueError,'new call_pdb value must be boolean'
708 708
709 709 # store value in instance
710 710 self._call_pdb = val
711 711
712 712 # notify the actual exception handlers
713 713 self.InteractiveTB.call_pdb = val
714 714
715 715 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
716 716 'Control auto-activation of pdb at exceptions')
717 717
718 718 def debugger(self,force=False):
719 719 """Call the pydb/pdb debugger.
720 720
721 721 Keywords:
722 722
723 723 - force(False): by default, this routine checks the instance call_pdb
724 724 flag and does not actually invoke the debugger if the flag is false.
725 725 The 'force' option forces the debugger to activate even if the flag
726 726 is false.
727 727 """
728 728
729 729 if not (force or self.call_pdb):
730 730 return
731 731
732 732 if not hasattr(sys,'last_traceback'):
733 733 error('No traceback has been produced, nothing to debug.')
734 734 return
735 735
736 736 # use pydb if available
737 737 if debugger.has_pydb:
738 738 from pydb import pm
739 739 else:
740 740 # fallback to our internal debugger
741 741 pm = lambda : self.InteractiveTB.debugger(force=True)
742 742 self.history_saving_wrapper(pm)()
743 743
744 744 #-------------------------------------------------------------------------
745 745 # Things related to IPython's various namespaces
746 746 #-------------------------------------------------------------------------
747 747
748 748 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
749 749 # Create the namespace where the user will operate. user_ns is
750 750 # normally the only one used, and it is passed to the exec calls as
751 751 # the locals argument. But we do carry a user_global_ns namespace
752 752 # given as the exec 'globals' argument, This is useful in embedding
753 753 # situations where the ipython shell opens in a context where the
754 754 # distinction between locals and globals is meaningful. For
755 755 # non-embedded contexts, it is just the same object as the user_ns dict.
756 756
757 757 # FIXME. For some strange reason, __builtins__ is showing up at user
758 758 # level as a dict instead of a module. This is a manual fix, but I
759 759 # should really track down where the problem is coming from. Alex
760 760 # Schmolck reported this problem first.
761 761
762 762 # A useful post by Alex Martelli on this topic:
763 763 # Re: inconsistent value from __builtins__
764 764 # Von: Alex Martelli <aleaxit@yahoo.com>
765 765 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
766 766 # Gruppen: comp.lang.python
767 767
768 768 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
769 769 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
770 770 # > <type 'dict'>
771 771 # > >>> print type(__builtins__)
772 772 # > <type 'module'>
773 773 # > Is this difference in return value intentional?
774 774
775 775 # Well, it's documented that '__builtins__' can be either a dictionary
776 776 # or a module, and it's been that way for a long time. Whether it's
777 777 # intentional (or sensible), I don't know. In any case, the idea is
778 778 # that if you need to access the built-in namespace directly, you
779 779 # should start with "import __builtin__" (note, no 's') which will
780 780 # definitely give you a module. Yeah, it's somewhat confusing:-(.
781 781
782 782 # These routines return properly built dicts as needed by the rest of
783 783 # the code, and can also be used by extension writers to generate
784 784 # properly initialized namespaces.
785 785 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
786 786 user_global_ns)
787 787
788 788 # Assign namespaces
789 789 # This is the namespace where all normal user variables live
790 790 self.user_ns = user_ns
791 791 self.user_global_ns = user_global_ns
792 792
793 793 # An auxiliary namespace that checks what parts of the user_ns were
794 794 # loaded at startup, so we can list later only variables defined in
795 795 # actual interactive use. Since it is always a subset of user_ns, it
796 796 # doesn't need to be separately tracked in the ns_table.
797 797 self.user_ns_hidden = {}
798 798
799 799 # A namespace to keep track of internal data structures to prevent
800 800 # them from cluttering user-visible stuff. Will be updated later
801 801 self.internal_ns = {}
802 802
803 803 # Now that FakeModule produces a real module, we've run into a nasty
804 804 # problem: after script execution (via %run), the module where the user
805 805 # code ran is deleted. Now that this object is a true module (needed
806 806 # so docetst and other tools work correctly), the Python module
807 807 # teardown mechanism runs over it, and sets to None every variable
808 808 # present in that module. Top-level references to objects from the
809 809 # script survive, because the user_ns is updated with them. However,
810 810 # calling functions defined in the script that use other things from
811 811 # the script will fail, because the function's closure had references
812 812 # to the original objects, which are now all None. So we must protect
813 813 # these modules from deletion by keeping a cache.
814 814 #
815 815 # To avoid keeping stale modules around (we only need the one from the
816 816 # last run), we use a dict keyed with the full path to the script, so
817 817 # only the last version of the module is held in the cache. Note,
818 818 # however, that we must cache the module *namespace contents* (their
819 819 # __dict__). Because if we try to cache the actual modules, old ones
820 820 # (uncached) could be destroyed while still holding references (such as
821 821 # those held by GUI objects that tend to be long-lived)>
822 822 #
823 823 # The %reset command will flush this cache. See the cache_main_mod()
824 824 # and clear_main_mod_cache() methods for details on use.
825 825
826 826 # This is the cache used for 'main' namespaces
827 827 self._main_ns_cache = {}
828 828 # And this is the single instance of FakeModule whose __dict__ we keep
829 829 # copying and clearing for reuse on each %run
830 830 self._user_main_module = FakeModule()
831 831
832 832 # A table holding all the namespaces IPython deals with, so that
833 833 # introspection facilities can search easily.
834 834 self.ns_table = {'user':user_ns,
835 835 'user_global':user_global_ns,
836 836 'internal':self.internal_ns,
837 837 'builtin':__builtin__.__dict__
838 838 }
839 839
840 840 # Similarly, track all namespaces where references can be held and that
841 841 # we can safely clear (so it can NOT include builtin). This one can be
842 842 # a simple list. Note that the main execution namespaces, user_ns and
843 843 # user_global_ns, can NOT be listed here, as clearing them blindly
844 844 # causes errors in object __del__ methods. Instead, the reset() method
845 845 # clears them manually and carefully.
846 846 self.ns_refs_table = [ self.user_ns_hidden,
847 847 self.internal_ns, self._main_ns_cache ]
848 848
849 849 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
850 850 """Return a valid local and global user interactive namespaces.
851 851
852 852 This builds a dict with the minimal information needed to operate as a
853 853 valid IPython user namespace, which you can pass to the various
854 854 embedding classes in ipython. The default implementation returns the
855 855 same dict for both the locals and the globals to allow functions to
856 856 refer to variables in the namespace. Customized implementations can
857 857 return different dicts. The locals dictionary can actually be anything
858 858 following the basic mapping protocol of a dict, but the globals dict
859 859 must be a true dict, not even a subclass. It is recommended that any
860 860 custom object for the locals namespace synchronize with the globals
861 861 dict somehow.
862 862
863 863 Raises TypeError if the provided globals namespace is not a true dict.
864 864
865 865 Parameters
866 866 ----------
867 867 user_ns : dict-like, optional
868 868 The current user namespace. The items in this namespace should
869 869 be included in the output. If None, an appropriate blank
870 870 namespace should be created.
871 871 user_global_ns : dict, optional
872 872 The current user global namespace. The items in this namespace
873 873 should be included in the output. If None, an appropriate
874 874 blank namespace should be created.
875 875
876 876 Returns
877 877 -------
878 878 A pair of dictionary-like object to be used as the local namespace
879 879 of the interpreter and a dict to be used as the global namespace.
880 880 """
881 881
882 882
883 883 # We must ensure that __builtin__ (without the final 's') is always
884 884 # available and pointing to the __builtin__ *module*. For more details:
885 885 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
886 886
887 887 if user_ns is None:
888 888 # Set __name__ to __main__ to better match the behavior of the
889 889 # normal interpreter.
890 890 user_ns = {'__name__' :'__main__',
891 891 '__builtin__' : __builtin__,
892 892 '__builtins__' : __builtin__,
893 893 }
894 894 else:
895 895 user_ns.setdefault('__name__','__main__')
896 896 user_ns.setdefault('__builtin__',__builtin__)
897 897 user_ns.setdefault('__builtins__',__builtin__)
898 898
899 899 if user_global_ns is None:
900 900 user_global_ns = user_ns
901 901 if type(user_global_ns) is not dict:
902 902 raise TypeError("user_global_ns must be a true dict; got %r"
903 903 % type(user_global_ns))
904 904
905 905 return user_ns, user_global_ns
906 906
907 907 def init_sys_modules(self):
908 908 # We need to insert into sys.modules something that looks like a
909 909 # module but which accesses the IPython namespace, for shelve and
910 910 # pickle to work interactively. Normally they rely on getting
911 911 # everything out of __main__, but for embedding purposes each IPython
912 912 # instance has its own private namespace, so we can't go shoving
913 913 # everything into __main__.
914 914
915 915 # note, however, that we should only do this for non-embedded
916 916 # ipythons, which really mimic the __main__.__dict__ with their own
917 917 # namespace. Embedded instances, on the other hand, should not do
918 918 # this because they need to manage the user local/global namespaces
919 919 # only, but they live within a 'normal' __main__ (meaning, they
920 920 # shouldn't overtake the execution environment of the script they're
921 921 # embedded in).
922 922
923 923 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
924 924
925 925 try:
926 926 main_name = self.user_ns['__name__']
927 927 except KeyError:
928 928 raise KeyError('user_ns dictionary MUST have a "__name__" key')
929 929 else:
930 930 sys.modules[main_name] = FakeModule(self.user_ns)
931 931
932 932 def init_user_ns(self):
933 933 """Initialize all user-visible namespaces to their minimum defaults.
934 934
935 935 Certain history lists are also initialized here, as they effectively
936 936 act as user namespaces.
937 937
938 938 Notes
939 939 -----
940 940 All data structures here are only filled in, they are NOT reset by this
941 941 method. If they were not empty before, data will simply be added to
942 942 therm.
943 943 """
944 944 # This function works in two parts: first we put a few things in
945 945 # user_ns, and we sync that contents into user_ns_hidden so that these
946 946 # initial variables aren't shown by %who. After the sync, we add the
947 947 # rest of what we *do* want the user to see with %who even on a new
948 948 # session (probably nothing, so theye really only see their own stuff)
949 949
950 950 # The user dict must *always* have a __builtin__ reference to the
951 951 # Python standard __builtin__ namespace, which must be imported.
952 952 # This is so that certain operations in prompt evaluation can be
953 953 # reliably executed with builtins. Note that we can NOT use
954 954 # __builtins__ (note the 's'), because that can either be a dict or a
955 955 # module, and can even mutate at runtime, depending on the context
956 956 # (Python makes no guarantees on it). In contrast, __builtin__ is
957 957 # always a module object, though it must be explicitly imported.
958 958
959 959 # For more details:
960 960 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
961 961 ns = dict(__builtin__ = __builtin__)
962 962
963 963 # Put 'help' in the user namespace
964 964 try:
965 965 from site import _Helper
966 966 ns['help'] = _Helper()
967 967 except ImportError:
968 968 warn('help() not available - check site.py')
969 969
970 970 # make global variables for user access to the histories
971 971 ns['_ih'] = self.history_manager.input_hist_parsed
972 972 ns['_oh'] = self.history_manager.output_hist
973 973 ns['_dh'] = self.history_manager.dir_hist
974 974
975 975 ns['_sh'] = shadowns
976 976
977 977 # user aliases to input and output histories. These shouldn't show up
978 978 # in %who, as they can have very large reprs.
979 979 ns['In'] = self.history_manager.input_hist_parsed
980 980 ns['Out'] = self.history_manager.output_hist
981 981
982 982 # Store myself as the public api!!!
983 983 ns['get_ipython'] = self.get_ipython
984 984
985 985 # Sync what we've added so far to user_ns_hidden so these aren't seen
986 986 # by %who
987 987 self.user_ns_hidden.update(ns)
988 988
989 989 # Anything put into ns now would show up in %who. Think twice before
990 990 # putting anything here, as we really want %who to show the user their
991 991 # stuff, not our variables.
992 992
993 993 # Finally, update the real user's namespace
994 994 self.user_ns.update(ns)
995 995
996 996 def reset(self):
997 997 """Clear all internal namespaces.
998 998
999 999 Note that this is much more aggressive than %reset, since it clears
1000 1000 fully all namespaces, as well as all input/output lists.
1001 1001 """
1002 1002 # Clear histories
1003 1003 self.history_manager.reset()
1004 1004
1005 1005 # Reset counter used to index all histories
1006 1006 self.execution_count = 0
1007 1007
1008 1008 # Restore the user namespaces to minimal usability
1009 1009 for ns in self.ns_refs_table:
1010 1010 ns.clear()
1011 1011
1012 1012 # The main execution namespaces must be cleared very carefully,
1013 1013 # skipping the deletion of the builtin-related keys, because doing so
1014 1014 # would cause errors in many object's __del__ methods.
1015 1015 for ns in [self.user_ns, self.user_global_ns]:
1016 1016 drop_keys = set(ns.keys())
1017 1017 drop_keys.discard('__builtin__')
1018 1018 drop_keys.discard('__builtins__')
1019 1019 for k in drop_keys:
1020 1020 del ns[k]
1021 1021
1022 1022 # Restore the user namespaces to minimal usability
1023 1023 self.init_user_ns()
1024 1024
1025 1025 # Restore the default and user aliases
1026 1026 self.alias_manager.clear_aliases()
1027 1027 self.alias_manager.init_aliases()
1028 1028
1029 1029 def reset_selective(self, regex=None):
1030 1030 """Clear selective variables from internal namespaces based on a
1031 1031 specified regular expression.
1032 1032
1033 1033 Parameters
1034 1034 ----------
1035 1035 regex : string or compiled pattern, optional
1036 1036 A regular expression pattern that will be used in searching
1037 1037 variable names in the users namespaces.
1038 1038 """
1039 1039 if regex is not None:
1040 1040 try:
1041 1041 m = re.compile(regex)
1042 1042 except TypeError:
1043 1043 raise TypeError('regex must be a string or compiled pattern')
1044 1044 # Search for keys in each namespace that match the given regex
1045 1045 # If a match is found, delete the key/value pair.
1046 1046 for ns in self.ns_refs_table:
1047 1047 for var in ns:
1048 1048 if m.search(var):
1049 1049 del ns[var]
1050 1050
1051 1051 def push(self, variables, interactive=True):
1052 1052 """Inject a group of variables into the IPython user namespace.
1053 1053
1054 1054 Parameters
1055 1055 ----------
1056 1056 variables : dict, str or list/tuple of str
1057 1057 The variables to inject into the user's namespace. If a dict, a
1058 1058 simple update is done. If a str, the string is assumed to have
1059 1059 variable names separated by spaces. A list/tuple of str can also
1060 1060 be used to give the variable names. If just the variable names are
1061 1061 give (list/tuple/str) then the variable values looked up in the
1062 1062 callers frame.
1063 1063 interactive : bool
1064 1064 If True (default), the variables will be listed with the ``who``
1065 1065 magic.
1066 1066 """
1067 1067 vdict = None
1068 1068
1069 1069 # We need a dict of name/value pairs to do namespace updates.
1070 1070 if isinstance(variables, dict):
1071 1071 vdict = variables
1072 1072 elif isinstance(variables, (basestring, list, tuple)):
1073 1073 if isinstance(variables, basestring):
1074 1074 vlist = variables.split()
1075 1075 else:
1076 1076 vlist = variables
1077 1077 vdict = {}
1078 1078 cf = sys._getframe(1)
1079 1079 for name in vlist:
1080 1080 try:
1081 1081 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1082 1082 except:
1083 1083 print ('Could not get variable %s from %s' %
1084 1084 (name,cf.f_code.co_name))
1085 1085 else:
1086 1086 raise ValueError('variables must be a dict/str/list/tuple')
1087 1087
1088 1088 # Propagate variables to user namespace
1089 1089 self.user_ns.update(vdict)
1090 1090
1091 1091 # And configure interactive visibility
1092 1092 config_ns = self.user_ns_hidden
1093 1093 if interactive:
1094 1094 for name, val in vdict.iteritems():
1095 1095 config_ns.pop(name, None)
1096 1096 else:
1097 1097 for name,val in vdict.iteritems():
1098 1098 config_ns[name] = val
1099 1099
1100 1100 #-------------------------------------------------------------------------
1101 1101 # Things related to object introspection
1102 1102 #-------------------------------------------------------------------------
1103 1103
1104 1104 def _ofind(self, oname, namespaces=None):
1105 1105 """Find an object in the available namespaces.
1106 1106
1107 1107 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1108 1108
1109 1109 Has special code to detect magic functions.
1110 1110 """
1111 1111 #oname = oname.strip()
1112 1112 #print '1- oname: <%r>' % oname # dbg
1113 1113 try:
1114 1114 oname = oname.strip().encode('ascii')
1115 1115 #print '2- oname: <%r>' % oname # dbg
1116 1116 except UnicodeEncodeError:
1117 1117 print 'Python identifiers can only contain ascii characters.'
1118 1118 return dict(found=False)
1119 1119
1120 1120 alias_ns = None
1121 1121 if namespaces is None:
1122 1122 # Namespaces to search in:
1123 1123 # Put them in a list. The order is important so that we
1124 1124 # find things in the same order that Python finds them.
1125 1125 namespaces = [ ('Interactive', self.user_ns),
1126 1126 ('IPython internal', self.internal_ns),
1127 1127 ('Python builtin', __builtin__.__dict__),
1128 1128 ('Alias', self.alias_manager.alias_table),
1129 1129 ]
1130 1130 alias_ns = self.alias_manager.alias_table
1131 1131
1132 1132 # initialize results to 'null'
1133 1133 found = False; obj = None; ospace = None; ds = None;
1134 1134 ismagic = False; isalias = False; parent = None
1135 1135
1136 1136 # We need to special-case 'print', which as of python2.6 registers as a
1137 1137 # function but should only be treated as one if print_function was
1138 1138 # loaded with a future import. In this case, just bail.
1139 1139 if (oname == 'print' and not (self.compile.compiler_flags &
1140 1140 __future__.CO_FUTURE_PRINT_FUNCTION)):
1141 1141 return {'found':found, 'obj':obj, 'namespace':ospace,
1142 1142 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1143 1143
1144 1144 # Look for the given name by splitting it in parts. If the head is
1145 1145 # found, then we look for all the remaining parts as members, and only
1146 1146 # declare success if we can find them all.
1147 1147 oname_parts = oname.split('.')
1148 1148 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1149 1149 for nsname,ns in namespaces:
1150 1150 try:
1151 1151 obj = ns[oname_head]
1152 1152 except KeyError:
1153 1153 continue
1154 1154 else:
1155 1155 #print 'oname_rest:', oname_rest # dbg
1156 1156 for part in oname_rest:
1157 1157 try:
1158 1158 parent = obj
1159 1159 obj = getattr(obj,part)
1160 1160 except:
1161 1161 # Blanket except b/c some badly implemented objects
1162 1162 # allow __getattr__ to raise exceptions other than
1163 1163 # AttributeError, which then crashes IPython.
1164 1164 break
1165 1165 else:
1166 1166 # If we finish the for loop (no break), we got all members
1167 1167 found = True
1168 1168 ospace = nsname
1169 1169 if ns == alias_ns:
1170 1170 isalias = True
1171 1171 break # namespace loop
1172 1172
1173 1173 # Try to see if it's magic
1174 1174 if not found:
1175 1175 if oname.startswith(ESC_MAGIC):
1176 1176 oname = oname[1:]
1177 1177 obj = getattr(self,'magic_'+oname,None)
1178 1178 if obj is not None:
1179 1179 found = True
1180 1180 ospace = 'IPython internal'
1181 1181 ismagic = True
1182 1182
1183 1183 # Last try: special-case some literals like '', [], {}, etc:
1184 1184 if not found and oname_head in ["''",'""','[]','{}','()']:
1185 1185 obj = eval(oname_head)
1186 1186 found = True
1187 1187 ospace = 'Interactive'
1188 1188
1189 1189 return {'found':found, 'obj':obj, 'namespace':ospace,
1190 1190 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1191 1191
1192 1192 def _ofind_property(self, oname, info):
1193 1193 """Second part of object finding, to look for property details."""
1194 1194 if info.found:
1195 1195 # Get the docstring of the class property if it exists.
1196 1196 path = oname.split('.')
1197 1197 root = '.'.join(path[:-1])
1198 1198 if info.parent is not None:
1199 1199 try:
1200 1200 target = getattr(info.parent, '__class__')
1201 1201 # The object belongs to a class instance.
1202 1202 try:
1203 1203 target = getattr(target, path[-1])
1204 1204 # The class defines the object.
1205 1205 if isinstance(target, property):
1206 1206 oname = root + '.__class__.' + path[-1]
1207 1207 info = Struct(self._ofind(oname))
1208 1208 except AttributeError: pass
1209 1209 except AttributeError: pass
1210 1210
1211 1211 # We return either the new info or the unmodified input if the object
1212 1212 # hadn't been found
1213 1213 return info
1214 1214
1215 1215 def _object_find(self, oname, namespaces=None):
1216 1216 """Find an object and return a struct with info about it."""
1217 1217 inf = Struct(self._ofind(oname, namespaces))
1218 1218 return Struct(self._ofind_property(oname, inf))
1219 1219
1220 1220 def _inspect(self, meth, oname, namespaces=None, **kw):
1221 1221 """Generic interface to the inspector system.
1222 1222
1223 1223 This function is meant to be called by pdef, pdoc & friends."""
1224 1224 info = self._object_find(oname)
1225 1225 if info.found:
1226 1226 pmethod = getattr(self.inspector, meth)
1227 1227 formatter = format_screen if info.ismagic else None
1228 1228 if meth == 'pdoc':
1229 1229 pmethod(info.obj, oname, formatter)
1230 1230 elif meth == 'pinfo':
1231 1231 pmethod(info.obj, oname, formatter, info, **kw)
1232 1232 else:
1233 1233 pmethod(info.obj, oname)
1234 1234 else:
1235 1235 print 'Object `%s` not found.' % oname
1236 1236 return 'not found' # so callers can take other action
1237 1237
1238 1238 def object_inspect(self, oname):
1239 1239 info = self._object_find(oname)
1240 1240 if info.found:
1241 1241 return self.inspector.info(info.obj, oname, info=info)
1242 1242 else:
1243 1243 return oinspect.object_info(name=oname, found=False)
1244 1244
1245 1245 #-------------------------------------------------------------------------
1246 1246 # Things related to history management
1247 1247 #-------------------------------------------------------------------------
1248 1248
1249 1249 def init_history(self):
1250 1250 """Sets up the command history, and starts regular autosaves."""
1251 1251 self.history_manager = HistoryManager(shell=self)
1252 1252
1253 1253 def save_history(self):
1254 1254 """Save input history to a file (via readline library)."""
1255 1255 self.history_manager.save_history()
1256 1256
1257 1257 def reload_history(self):
1258 1258 """Reload the input history from disk file."""
1259 1259 self.history_manager.reload_history()
1260 1260
1261 1261 def history_saving_wrapper(self, func):
1262 1262 """ Wrap func for readline history saving
1263 1263
1264 1264 Convert func into callable that saves & restores
1265 1265 history around the call """
1266 1266
1267 1267 if self.has_readline:
1268 1268 from IPython.utils import rlineimpl as readline
1269 1269 else:
1270 1270 return func
1271 1271
1272 1272 def wrapper():
1273 1273 self.save_history()
1274 1274 try:
1275 1275 func()
1276 1276 finally:
1277 1277 self.reload_history()
1278 1278 return wrapper
1279 1279
1280 1280 def get_history(self, index=None, raw=False, output=True):
1281 1281 return self.history_manager.get_history(index, raw, output)
1282 1282
1283 1283
1284 1284 #-------------------------------------------------------------------------
1285 1285 # Things related to exception handling and tracebacks (not debugging)
1286 1286 #-------------------------------------------------------------------------
1287 1287
1288 1288 def init_traceback_handlers(self, custom_exceptions):
1289 1289 # Syntax error handler.
1290 1290 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1291 1291
1292 1292 # The interactive one is initialized with an offset, meaning we always
1293 1293 # want to remove the topmost item in the traceback, which is our own
1294 1294 # internal code. Valid modes: ['Plain','Context','Verbose']
1295 1295 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1296 1296 color_scheme='NoColor',
1297 1297 tb_offset = 1,
1298 1298 check_cache=self.compile.check_cache)
1299 1299
1300 1300 # The instance will store a pointer to the system-wide exception hook,
1301 1301 # so that runtime code (such as magics) can access it. This is because
1302 1302 # during the read-eval loop, it may get temporarily overwritten.
1303 1303 self.sys_excepthook = sys.excepthook
1304 1304
1305 1305 # and add any custom exception handlers the user may have specified
1306 1306 self.set_custom_exc(*custom_exceptions)
1307 1307
1308 1308 # Set the exception mode
1309 1309 self.InteractiveTB.set_mode(mode=self.xmode)
1310 1310
1311 1311 def set_custom_exc(self, exc_tuple, handler):
1312 1312 """set_custom_exc(exc_tuple,handler)
1313 1313
1314 1314 Set a custom exception handler, which will be called if any of the
1315 1315 exceptions in exc_tuple occur in the mainloop (specifically, in the
1316 1316 run_code() method.
1317 1317
1318 1318 Inputs:
1319 1319
1320 1320 - exc_tuple: a *tuple* of valid exceptions to call the defined
1321 1321 handler for. It is very important that you use a tuple, and NOT A
1322 1322 LIST here, because of the way Python's except statement works. If
1323 1323 you only want to trap a single exception, use a singleton tuple:
1324 1324
1325 1325 exc_tuple == (MyCustomException,)
1326 1326
1327 1327 - handler: this must be defined as a function with the following
1328 1328 basic interface::
1329 1329
1330 1330 def my_handler(self, etype, value, tb, tb_offset=None)
1331 1331 ...
1332 1332 # The return value must be
1333 1333 return structured_traceback
1334 1334
1335 1335 This will be made into an instance method (via types.MethodType)
1336 1336 of IPython itself, and it will be called if any of the exceptions
1337 1337 listed in the exc_tuple are caught. If the handler is None, an
1338 1338 internal basic one is used, which just prints basic info.
1339 1339
1340 1340 WARNING: by putting in your own exception handler into IPython's main
1341 1341 execution loop, you run a very good chance of nasty crashes. This
1342 1342 facility should only be used if you really know what you are doing."""
1343 1343
1344 1344 assert type(exc_tuple)==type(()) , \
1345 1345 "The custom exceptions must be given AS A TUPLE."
1346 1346
1347 1347 def dummy_handler(self,etype,value,tb):
1348 1348 print '*** Simple custom exception handler ***'
1349 1349 print 'Exception type :',etype
1350 1350 print 'Exception value:',value
1351 1351 print 'Traceback :',tb
1352 1352 print 'Source code :','\n'.join(self.buffer)
1353 1353
1354 1354 if handler is None: handler = dummy_handler
1355 1355
1356 1356 self.CustomTB = types.MethodType(handler,self)
1357 1357 self.custom_exceptions = exc_tuple
1358 1358
1359 1359 def excepthook(self, etype, value, tb):
1360 1360 """One more defense for GUI apps that call sys.excepthook.
1361 1361
1362 1362 GUI frameworks like wxPython trap exceptions and call
1363 1363 sys.excepthook themselves. I guess this is a feature that
1364 1364 enables them to keep running after exceptions that would
1365 1365 otherwise kill their mainloop. This is a bother for IPython
1366 1366 which excepts to catch all of the program exceptions with a try:
1367 1367 except: statement.
1368 1368
1369 1369 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1370 1370 any app directly invokes sys.excepthook, it will look to the user like
1371 1371 IPython crashed. In order to work around this, we can disable the
1372 1372 CrashHandler and replace it with this excepthook instead, which prints a
1373 1373 regular traceback using our InteractiveTB. In this fashion, apps which
1374 1374 call sys.excepthook will generate a regular-looking exception from
1375 1375 IPython, and the CrashHandler will only be triggered by real IPython
1376 1376 crashes.
1377 1377
1378 1378 This hook should be used sparingly, only in places which are not likely
1379 1379 to be true IPython errors.
1380 1380 """
1381 1381 self.showtraceback((etype,value,tb),tb_offset=0)
1382 1382
1383 1383 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1384 1384 exception_only=False):
1385 1385 """Display the exception that just occurred.
1386 1386
1387 1387 If nothing is known about the exception, this is the method which
1388 1388 should be used throughout the code for presenting user tracebacks,
1389 1389 rather than directly invoking the InteractiveTB object.
1390 1390
1391 1391 A specific showsyntaxerror() also exists, but this method can take
1392 1392 care of calling it if needed, so unless you are explicitly catching a
1393 1393 SyntaxError exception, don't try to analyze the stack manually and
1394 1394 simply call this method."""
1395 1395
1396 1396 try:
1397 1397 if exc_tuple is None:
1398 1398 etype, value, tb = sys.exc_info()
1399 1399 else:
1400 1400 etype, value, tb = exc_tuple
1401 1401
1402 1402 if etype is None:
1403 1403 if hasattr(sys, 'last_type'):
1404 1404 etype, value, tb = sys.last_type, sys.last_value, \
1405 1405 sys.last_traceback
1406 1406 else:
1407 1407 self.write_err('No traceback available to show.\n')
1408 1408 return
1409 1409
1410 1410 if etype is SyntaxError:
1411 1411 # Though this won't be called by syntax errors in the input
1412 1412 # line, there may be SyntaxError cases whith imported code.
1413 1413 self.showsyntaxerror(filename)
1414 1414 elif etype is UsageError:
1415 1415 print "UsageError:", value
1416 1416 else:
1417 1417 # WARNING: these variables are somewhat deprecated and not
1418 1418 # necessarily safe to use in a threaded environment, but tools
1419 1419 # like pdb depend on their existence, so let's set them. If we
1420 1420 # find problems in the field, we'll need to revisit their use.
1421 1421 sys.last_type = etype
1422 1422 sys.last_value = value
1423 1423 sys.last_traceback = tb
1424 1424
1425 1425 if etype in self.custom_exceptions:
1426 1426 # FIXME: Old custom traceback objects may just return a
1427 1427 # string, in that case we just put it into a list
1428 1428 stb = self.CustomTB(etype, value, tb, tb_offset)
1429 1429 if isinstance(ctb, basestring):
1430 1430 stb = [stb]
1431 1431 else:
1432 1432 if exception_only:
1433 1433 stb = ['An exception has occurred, use %tb to see '
1434 1434 'the full traceback.\n']
1435 1435 stb.extend(self.InteractiveTB.get_exception_only(etype,
1436 1436 value))
1437 1437 else:
1438 1438 stb = self.InteractiveTB.structured_traceback(etype,
1439 1439 value, tb, tb_offset=tb_offset)
1440 1440 # FIXME: the pdb calling should be done by us, not by
1441 1441 # the code computing the traceback.
1442 1442 if self.InteractiveTB.call_pdb:
1443 1443 # pdb mucks up readline, fix it back
1444 1444 self.set_readline_completer()
1445 1445
1446 1446 # Actually show the traceback
1447 1447 self._showtraceback(etype, value, stb)
1448 1448
1449 1449 except KeyboardInterrupt:
1450 1450 self.write_err("\nKeyboardInterrupt\n")
1451 1451
1452 1452 def _showtraceback(self, etype, evalue, stb):
1453 1453 """Actually show a traceback.
1454 1454
1455 1455 Subclasses may override this method to put the traceback on a different
1456 1456 place, like a side channel.
1457 1457 """
1458 1458 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1459 1459
1460 1460 def showsyntaxerror(self, filename=None):
1461 1461 """Display the syntax error that just occurred.
1462 1462
1463 1463 This doesn't display a stack trace because there isn't one.
1464 1464
1465 1465 If a filename is given, it is stuffed in the exception instead
1466 1466 of what was there before (because Python's parser always uses
1467 1467 "<string>" when reading from a string).
1468 1468 """
1469 1469 etype, value, last_traceback = sys.exc_info()
1470 1470
1471 1471 # See note about these variables in showtraceback() above
1472 1472 sys.last_type = etype
1473 1473 sys.last_value = value
1474 1474 sys.last_traceback = last_traceback
1475 1475
1476 1476 if filename and etype is SyntaxError:
1477 1477 # Work hard to stuff the correct filename in the exception
1478 1478 try:
1479 1479 msg, (dummy_filename, lineno, offset, line) = value
1480 1480 except:
1481 1481 # Not the format we expect; leave it alone
1482 1482 pass
1483 1483 else:
1484 1484 # Stuff in the right filename
1485 1485 try:
1486 1486 # Assume SyntaxError is a class exception
1487 1487 value = SyntaxError(msg, (filename, lineno, offset, line))
1488 1488 except:
1489 1489 # If that failed, assume SyntaxError is a string
1490 1490 value = msg, (filename, lineno, offset, line)
1491 1491 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1492 1492 self._showtraceback(etype, value, stb)
1493 1493
1494 1494 #-------------------------------------------------------------------------
1495 1495 # Things related to readline
1496 1496 #-------------------------------------------------------------------------
1497 1497
1498 1498 def init_readline(self):
1499 1499 """Command history completion/saving/reloading."""
1500 1500
1501 1501 if self.readline_use:
1502 1502 import IPython.utils.rlineimpl as readline
1503 1503
1504 1504 self.rl_next_input = None
1505 1505 self.rl_do_indent = False
1506 1506
1507 1507 if not self.readline_use or not readline.have_readline:
1508 1508 self.has_readline = False
1509 1509 self.readline = None
1510 1510 # Set a number of methods that depend on readline to be no-op
1511 1511 self.set_readline_completer = no_op
1512 1512 self.set_custom_completer = no_op
1513 1513 self.set_completer_frame = no_op
1514 1514 warn('Readline services not available or not loaded.')
1515 1515 else:
1516 1516 self.has_readline = True
1517 1517 self.readline = readline
1518 1518 sys.modules['readline'] = readline
1519 1519
1520 1520 # Platform-specific configuration
1521 1521 if os.name == 'nt':
1522 1522 # FIXME - check with Frederick to see if we can harmonize
1523 1523 # naming conventions with pyreadline to avoid this
1524 1524 # platform-dependent check
1525 1525 self.readline_startup_hook = readline.set_pre_input_hook
1526 1526 else:
1527 1527 self.readline_startup_hook = readline.set_startup_hook
1528 1528
1529 1529 # Load user's initrc file (readline config)
1530 1530 # Or if libedit is used, load editrc.
1531 1531 inputrc_name = os.environ.get('INPUTRC')
1532 1532 if inputrc_name is None:
1533 1533 home_dir = get_home_dir()
1534 1534 if home_dir is not None:
1535 1535 inputrc_name = '.inputrc'
1536 1536 if readline.uses_libedit:
1537 1537 inputrc_name = '.editrc'
1538 1538 inputrc_name = os.path.join(home_dir, inputrc_name)
1539 1539 if os.path.isfile(inputrc_name):
1540 1540 try:
1541 1541 readline.read_init_file(inputrc_name)
1542 1542 except:
1543 1543 warn('Problems reading readline initialization file <%s>'
1544 1544 % inputrc_name)
1545 1545
1546 1546 # Configure readline according to user's prefs
1547 1547 # This is only done if GNU readline is being used. If libedit
1548 1548 # is being used (as on Leopard) the readline config is
1549 1549 # not run as the syntax for libedit is different.
1550 1550 if not readline.uses_libedit:
1551 1551 for rlcommand in self.readline_parse_and_bind:
1552 1552 #print "loading rl:",rlcommand # dbg
1553 1553 readline.parse_and_bind(rlcommand)
1554 1554
1555 1555 # Remove some chars from the delimiters list. If we encounter
1556 1556 # unicode chars, discard them.
1557 1557 delims = readline.get_completer_delims().encode("ascii", "ignore")
1558 1558 delims = delims.translate(None, self.readline_remove_delims)
1559 1559 delims = delims.replace(ESC_MAGIC, '')
1560 1560 readline.set_completer_delims(delims)
1561 1561 # otherwise we end up with a monster history after a while:
1562 1562 readline.set_history_length(self.history_length)
1563 1563 try:
1564 1564 #print '*** Reading readline history' # dbg
1565 1565 self.reload_history()
1566 1566 except IOError:
1567 1567 pass # It doesn't exist yet.
1568 1568
1569 1569 # Configure auto-indent for all platforms
1570 1570 self.set_autoindent(self.autoindent)
1571 1571
1572 1572 def set_next_input(self, s):
1573 1573 """ Sets the 'default' input string for the next command line.
1574 1574
1575 1575 Requires readline.
1576 1576
1577 1577 Example:
1578 1578
1579 1579 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1580 1580 [D:\ipython]|2> Hello Word_ # cursor is here
1581 1581 """
1582 1582
1583 1583 self.rl_next_input = s
1584 1584
1585 1585 # Maybe move this to the terminal subclass?
1586 1586 def pre_readline(self):
1587 1587 """readline hook to be used at the start of each line.
1588 1588
1589 1589 Currently it handles auto-indent only."""
1590 1590
1591 1591 if self.rl_do_indent:
1592 1592 self.readline.insert_text(self._indent_current_str())
1593 1593 if self.rl_next_input is not None:
1594 1594 self.readline.insert_text(self.rl_next_input)
1595 1595 self.rl_next_input = None
1596 1596
1597 1597 def _indent_current_str(self):
1598 1598 """return the current level of indentation as a string"""
1599 1599 return self.input_splitter.indent_spaces * ' '
1600 1600
1601 1601 #-------------------------------------------------------------------------
1602 1602 # Things related to text completion
1603 1603 #-------------------------------------------------------------------------
1604 1604
1605 1605 def init_completer(self):
1606 1606 """Initialize the completion machinery.
1607 1607
1608 1608 This creates completion machinery that can be used by client code,
1609 1609 either interactively in-process (typically triggered by the readline
1610 1610 library), programatically (such as in test suites) or out-of-prcess
1611 1611 (typically over the network by remote frontends).
1612 1612 """
1613 1613 from IPython.core.completer import IPCompleter
1614 1614 from IPython.core.completerlib import (module_completer,
1615 1615 magic_run_completer, cd_completer)
1616 1616
1617 1617 self.Completer = IPCompleter(self,
1618 1618 self.user_ns,
1619 1619 self.user_global_ns,
1620 1620 self.readline_omit__names,
1621 1621 self.alias_manager.alias_table,
1622 1622 self.has_readline)
1623 1623
1624 1624 # Add custom completers to the basic ones built into IPCompleter
1625 1625 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1626 1626 self.strdispatchers['complete_command'] = sdisp
1627 1627 self.Completer.custom_completers = sdisp
1628 1628
1629 1629 self.set_hook('complete_command', module_completer, str_key = 'import')
1630 1630 self.set_hook('complete_command', module_completer, str_key = 'from')
1631 1631 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1632 1632 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1633 1633
1634 1634 # Only configure readline if we truly are using readline. IPython can
1635 1635 # do tab-completion over the network, in GUIs, etc, where readline
1636 1636 # itself may be absent
1637 1637 if self.has_readline:
1638 1638 self.set_readline_completer()
1639 1639
1640 1640 def complete(self, text, line=None, cursor_pos=None):
1641 1641 """Return the completed text and a list of completions.
1642 1642
1643 1643 Parameters
1644 1644 ----------
1645 1645
1646 1646 text : string
1647 1647 A string of text to be completed on. It can be given as empty and
1648 1648 instead a line/position pair are given. In this case, the
1649 1649 completer itself will split the line like readline does.
1650 1650
1651 1651 line : string, optional
1652 1652 The complete line that text is part of.
1653 1653
1654 1654 cursor_pos : int, optional
1655 1655 The position of the cursor on the input line.
1656 1656
1657 1657 Returns
1658 1658 -------
1659 1659 text : string
1660 1660 The actual text that was completed.
1661 1661
1662 1662 matches : list
1663 1663 A sorted list with all possible completions.
1664 1664
1665 1665 The optional arguments allow the completion to take more context into
1666 1666 account, and are part of the low-level completion API.
1667 1667
1668 1668 This is a wrapper around the completion mechanism, similar to what
1669 1669 readline does at the command line when the TAB key is hit. By
1670 1670 exposing it as a method, it can be used by other non-readline
1671 1671 environments (such as GUIs) for text completion.
1672 1672
1673 1673 Simple usage example:
1674 1674
1675 1675 In [1]: x = 'hello'
1676 1676
1677 1677 In [2]: _ip.complete('x.l')
1678 1678 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1679 1679 """
1680 1680
1681 1681 # Inject names into __builtin__ so we can complete on the added names.
1682 1682 with self.builtin_trap:
1683 1683 return self.Completer.complete(text, line, cursor_pos)
1684 1684
1685 1685 def set_custom_completer(self, completer, pos=0):
1686 1686 """Adds a new custom completer function.
1687 1687
1688 1688 The position argument (defaults to 0) is the index in the completers
1689 1689 list where you want the completer to be inserted."""
1690 1690
1691 1691 newcomp = types.MethodType(completer,self.Completer)
1692 1692 self.Completer.matchers.insert(pos,newcomp)
1693 1693
1694 1694 def set_readline_completer(self):
1695 1695 """Reset readline's completer to be our own."""
1696 1696 self.readline.set_completer(self.Completer.rlcomplete)
1697 1697
1698 1698 def set_completer_frame(self, frame=None):
1699 1699 """Set the frame of the completer."""
1700 1700 if frame:
1701 1701 self.Completer.namespace = frame.f_locals
1702 1702 self.Completer.global_namespace = frame.f_globals
1703 1703 else:
1704 1704 self.Completer.namespace = self.user_ns
1705 1705 self.Completer.global_namespace = self.user_global_ns
1706 1706
1707 1707 #-------------------------------------------------------------------------
1708 1708 # Things related to magics
1709 1709 #-------------------------------------------------------------------------
1710 1710
1711 1711 def init_magics(self):
1712 1712 # FIXME: Move the color initialization to the DisplayHook, which
1713 1713 # should be split into a prompt manager and displayhook. We probably
1714 1714 # even need a centralize colors management object.
1715 1715 self.magic_colors(self.colors)
1716 1716 # History was moved to a separate module
1717 1717 from . import history
1718 1718 history.init_ipython(self)
1719 1719
1720 1720 def magic(self,arg_s):
1721 1721 """Call a magic function by name.
1722 1722
1723 1723 Input: a string containing the name of the magic function to call and
1724 1724 any additional arguments to be passed to the magic.
1725 1725
1726 1726 magic('name -opt foo bar') is equivalent to typing at the ipython
1727 1727 prompt:
1728 1728
1729 1729 In[1]: %name -opt foo bar
1730 1730
1731 1731 To call a magic without arguments, simply use magic('name').
1732 1732
1733 1733 This provides a proper Python function to call IPython's magics in any
1734 1734 valid Python code you can type at the interpreter, including loops and
1735 1735 compound statements.
1736 1736 """
1737 1737 args = arg_s.split(' ',1)
1738 1738 magic_name = args[0]
1739 1739 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1740 1740
1741 1741 try:
1742 1742 magic_args = args[1]
1743 1743 except IndexError:
1744 1744 magic_args = ''
1745 1745 fn = getattr(self,'magic_'+magic_name,None)
1746 1746 if fn is None:
1747 1747 error("Magic function `%s` not found." % magic_name)
1748 1748 else:
1749 1749 magic_args = self.var_expand(magic_args,1)
1750 1750 with nested(self.builtin_trap,):
1751 1751 result = fn(magic_args)
1752 1752 return result
1753 1753
1754 1754 def define_magic(self, magicname, func):
1755 1755 """Expose own function as magic function for ipython
1756 1756
1757 1757 def foo_impl(self,parameter_s=''):
1758 1758 'My very own magic!. (Use docstrings, IPython reads them).'
1759 1759 print 'Magic function. Passed parameter is between < >:'
1760 1760 print '<%s>' % parameter_s
1761 1761 print 'The self object is:',self
1762 1762
1763 1763 self.define_magic('foo',foo_impl)
1764 1764 """
1765 1765
1766 1766 import new
1767 1767 im = types.MethodType(func,self)
1768 1768 old = getattr(self, "magic_" + magicname, None)
1769 1769 setattr(self, "magic_" + magicname, im)
1770 1770 return old
1771 1771
1772 1772 #-------------------------------------------------------------------------
1773 1773 # Things related to macros
1774 1774 #-------------------------------------------------------------------------
1775 1775
1776 1776 def define_macro(self, name, themacro):
1777 1777 """Define a new macro
1778 1778
1779 1779 Parameters
1780 1780 ----------
1781 1781 name : str
1782 1782 The name of the macro.
1783 1783 themacro : str or Macro
1784 1784 The action to do upon invoking the macro. If a string, a new
1785 1785 Macro object is created by passing the string to it.
1786 1786 """
1787 1787
1788 1788 from IPython.core import macro
1789 1789
1790 1790 if isinstance(themacro, basestring):
1791 1791 themacro = macro.Macro(themacro)
1792 1792 if not isinstance(themacro, macro.Macro):
1793 1793 raise ValueError('A macro must be a string or a Macro instance.')
1794 1794 self.user_ns[name] = themacro
1795 1795
1796 1796 #-------------------------------------------------------------------------
1797 1797 # Things related to the running of system commands
1798 1798 #-------------------------------------------------------------------------
1799 1799
1800 1800 def system(self, cmd):
1801 1801 """Call the given cmd in a subprocess.
1802 1802
1803 1803 Parameters
1804 1804 ----------
1805 1805 cmd : str
1806 1806 Command to execute (can not end in '&', as bacground processes are
1807 1807 not supported.
1808 1808 """
1809 1809 # We do not support backgrounding processes because we either use
1810 1810 # pexpect or pipes to read from. Users can always just call
1811 1811 # os.system() if they really want a background process.
1812 1812 if cmd.endswith('&'):
1813 1813 raise OSError("Background processes not supported.")
1814 1814
1815 1815 return system(self.var_expand(cmd, depth=2))
1816 1816
1817 1817 def getoutput(self, cmd, split=True):
1818 1818 """Get output (possibly including stderr) from a subprocess.
1819 1819
1820 1820 Parameters
1821 1821 ----------
1822 1822 cmd : str
1823 1823 Command to execute (can not end in '&', as background processes are
1824 1824 not supported.
1825 1825 split : bool, optional
1826 1826
1827 1827 If True, split the output into an IPython SList. Otherwise, an
1828 1828 IPython LSString is returned. These are objects similar to normal
1829 1829 lists and strings, with a few convenience attributes for easier
1830 1830 manipulation of line-based output. You can use '?' on them for
1831 1831 details.
1832 1832 """
1833 1833 if cmd.endswith('&'):
1834 1834 raise OSError("Background processes not supported.")
1835 1835 out = getoutput(self.var_expand(cmd, depth=2))
1836 1836 if split:
1837 1837 out = SList(out.splitlines())
1838 1838 else:
1839 1839 out = LSString(out)
1840 1840 return out
1841 1841
1842 1842 #-------------------------------------------------------------------------
1843 1843 # Things related to aliases
1844 1844 #-------------------------------------------------------------------------
1845 1845
1846 1846 def init_alias(self):
1847 1847 self.alias_manager = AliasManager(shell=self, config=self.config)
1848 1848 self.ns_table['alias'] = self.alias_manager.alias_table,
1849 1849
1850 1850 #-------------------------------------------------------------------------
1851 1851 # Things related to extensions and plugins
1852 1852 #-------------------------------------------------------------------------
1853 1853
1854 1854 def init_extension_manager(self):
1855 1855 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1856 1856
1857 1857 def init_plugin_manager(self):
1858 1858 self.plugin_manager = PluginManager(config=self.config)
1859 1859
1860 1860 #-------------------------------------------------------------------------
1861 1861 # Things related to payloads
1862 1862 #-------------------------------------------------------------------------
1863 1863
1864 1864 def init_payload(self):
1865 1865 self.payload_manager = PayloadManager(config=self.config)
1866 1866
1867 1867 #-------------------------------------------------------------------------
1868 1868 # Things related to the prefilter
1869 1869 #-------------------------------------------------------------------------
1870 1870
1871 1871 def init_prefilter(self):
1872 1872 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1873 1873 # Ultimately this will be refactored in the new interpreter code, but
1874 1874 # for now, we should expose the main prefilter method (there's legacy
1875 1875 # code out there that may rely on this).
1876 1876 self.prefilter = self.prefilter_manager.prefilter_lines
1877 1877
1878 1878 def auto_rewrite_input(self, cmd):
1879 1879 """Print to the screen the rewritten form of the user's command.
1880 1880
1881 1881 This shows visual feedback by rewriting input lines that cause
1882 1882 automatic calling to kick in, like::
1883 1883
1884 1884 /f x
1885 1885
1886 1886 into::
1887 1887
1888 1888 ------> f(x)
1889 1889
1890 1890 after the user's input prompt. This helps the user understand that the
1891 1891 input line was transformed automatically by IPython.
1892 1892 """
1893 1893 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1894 1894
1895 1895 try:
1896 1896 # plain ascii works better w/ pyreadline, on some machines, so
1897 1897 # we use it and only print uncolored rewrite if we have unicode
1898 1898 rw = str(rw)
1899 1899 print >> IPython.utils.io.Term.cout, rw
1900 1900 except UnicodeEncodeError:
1901 1901 print "------> " + cmd
1902 1902
1903 1903 #-------------------------------------------------------------------------
1904 1904 # Things related to extracting values/expressions from kernel and user_ns
1905 1905 #-------------------------------------------------------------------------
1906 1906
1907 1907 def _simple_error(self):
1908 1908 etype, value = sys.exc_info()[:2]
1909 1909 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1910 1910
1911 1911 def user_variables(self, names):
1912 1912 """Get a list of variable names from the user's namespace.
1913 1913
1914 1914 Parameters
1915 1915 ----------
1916 1916 names : list of strings
1917 1917 A list of names of variables to be read from the user namespace.
1918 1918
1919 1919 Returns
1920 1920 -------
1921 1921 A dict, keyed by the input names and with the repr() of each value.
1922 1922 """
1923 1923 out = {}
1924 1924 user_ns = self.user_ns
1925 1925 for varname in names:
1926 1926 try:
1927 1927 value = repr(user_ns[varname])
1928 1928 except:
1929 1929 value = self._simple_error()
1930 1930 out[varname] = value
1931 1931 return out
1932 1932
1933 1933 def user_expressions(self, expressions):
1934 1934 """Evaluate a dict of expressions in the user's namespace.
1935 1935
1936 1936 Parameters
1937 1937 ----------
1938 1938 expressions : dict
1939 1939 A dict with string keys and string values. The expression values
1940 1940 should be valid Python expressions, each of which will be evaluated
1941 1941 in the user namespace.
1942 1942
1943 1943 Returns
1944 1944 -------
1945 1945 A dict, keyed like the input expressions dict, with the repr() of each
1946 1946 value.
1947 1947 """
1948 1948 out = {}
1949 1949 user_ns = self.user_ns
1950 1950 global_ns = self.user_global_ns
1951 1951 for key, expr in expressions.iteritems():
1952 1952 try:
1953 1953 value = repr(eval(expr, global_ns, user_ns))
1954 1954 except:
1955 1955 value = self._simple_error()
1956 1956 out[key] = value
1957 1957 return out
1958 1958
1959 1959 #-------------------------------------------------------------------------
1960 1960 # Things related to the running of code
1961 1961 #-------------------------------------------------------------------------
1962 1962
1963 1963 def ex(self, cmd):
1964 1964 """Execute a normal python statement in user namespace."""
1965 1965 with nested(self.builtin_trap,):
1966 1966 exec cmd in self.user_global_ns, self.user_ns
1967 1967
1968 1968 def ev(self, expr):
1969 1969 """Evaluate python expression expr in user namespace.
1970 1970
1971 1971 Returns the result of evaluation
1972 1972 """
1973 1973 with nested(self.builtin_trap,):
1974 1974 return eval(expr, self.user_global_ns, self.user_ns)
1975 1975
1976 1976 def safe_execfile(self, fname, *where, **kw):
1977 1977 """A safe version of the builtin execfile().
1978 1978
1979 1979 This version will never throw an exception, but instead print
1980 1980 helpful error messages to the screen. This only works on pure
1981 1981 Python files with the .py extension.
1982 1982
1983 1983 Parameters
1984 1984 ----------
1985 1985 fname : string
1986 1986 The name of the file to be executed.
1987 1987 where : tuple
1988 1988 One or two namespaces, passed to execfile() as (globals,locals).
1989 1989 If only one is given, it is passed as both.
1990 1990 exit_ignore : bool (False)
1991 1991 If True, then silence SystemExit for non-zero status (it is always
1992 1992 silenced for zero status, as it is so common).
1993 1993 """
1994 1994 kw.setdefault('exit_ignore', False)
1995 1995
1996 1996 fname = os.path.abspath(os.path.expanduser(fname))
1997 1997
1998 1998 # Make sure we have a .py file
1999 1999 if not fname.endswith('.py'):
2000 2000 warn('File must end with .py to be run using execfile: <%s>' % fname)
2001 2001
2002 2002 # Make sure we can open the file
2003 2003 try:
2004 2004 with open(fname) as thefile:
2005 2005 pass
2006 2006 except:
2007 2007 warn('Could not open file <%s> for safe execution.' % fname)
2008 2008 return
2009 2009
2010 2010 # Find things also in current directory. This is needed to mimic the
2011 2011 # behavior of running a script from the system command line, where
2012 2012 # Python inserts the script's directory into sys.path
2013 2013 dname = os.path.dirname(fname)
2014 2014
2015 2015 with prepended_to_syspath(dname):
2016 2016 try:
2017 2017 execfile(fname,*where)
2018 2018 except SystemExit, status:
2019 2019 # If the call was made with 0 or None exit status (sys.exit(0)
2020 2020 # or sys.exit() ), don't bother showing a traceback, as both of
2021 2021 # these are considered normal by the OS:
2022 2022 # > python -c'import sys;sys.exit(0)'; echo $?
2023 2023 # 0
2024 2024 # > python -c'import sys;sys.exit()'; echo $?
2025 2025 # 0
2026 2026 # For other exit status, we show the exception unless
2027 2027 # explicitly silenced, but only in short form.
2028 2028 if status.code not in (0, None) and not kw['exit_ignore']:
2029 2029 self.showtraceback(exception_only=True)
2030 2030 except:
2031 2031 self.showtraceback()
2032 2032
2033 2033 def safe_execfile_ipy(self, fname):
2034 2034 """Like safe_execfile, but for .ipy files with IPython syntax.
2035 2035
2036 2036 Parameters
2037 2037 ----------
2038 2038 fname : str
2039 2039 The name of the file to execute. The filename must have a
2040 2040 .ipy extension.
2041 2041 """
2042 2042 fname = os.path.abspath(os.path.expanduser(fname))
2043 2043
2044 2044 # Make sure we have a .py file
2045 2045 if not fname.endswith('.ipy'):
2046 2046 warn('File must end with .py to be run using execfile: <%s>' % fname)
2047 2047
2048 2048 # Make sure we can open the file
2049 2049 try:
2050 2050 with open(fname) as thefile:
2051 2051 pass
2052 2052 except:
2053 2053 warn('Could not open file <%s> for safe execution.' % fname)
2054 2054 return
2055 2055
2056 2056 # Find things also in current directory. This is needed to mimic the
2057 2057 # behavior of running a script from the system command line, where
2058 2058 # Python inserts the script's directory into sys.path
2059 2059 dname = os.path.dirname(fname)
2060 2060
2061 2061 with prepended_to_syspath(dname):
2062 2062 try:
2063 2063 with open(fname) as thefile:
2064 2064 # self.run_cell currently captures all exceptions
2065 2065 # raised in user code. It would be nice if there were
2066 2066 # versions of runlines, execfile that did raise, so
2067 2067 # we could catch the errors.
2068 2068 self.run_cell(thefile.read())
2069 2069 except:
2070 2070 self.showtraceback()
2071 2071 warn('Unknown failure executing file: <%s>' % fname)
2072 2072
2073 2073 def run_cell(self, cell):
2074 2074 """Run the contents of an entire multiline 'cell' of code.
2075 2075
2076 2076 The cell is split into separate blocks which can be executed
2077 2077 individually. Then, based on how many blocks there are, they are
2078 2078 executed as follows:
2079 2079
2080 2080 - A single block: 'single' mode.
2081 2081
2082 2082 If there's more than one block, it depends:
2083 2083
2084 2084 - if the last one is no more than two lines long, run all but the last
2085 2085 in 'exec' mode and the very last one in 'single' mode. This makes it
2086 2086 easy to type simple expressions at the end to see computed values. -
2087 2087 otherwise (last one is also multiline), run all in 'exec' mode
2088 2088
2089 2089 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2090 2090 results are displayed and output prompts are computed. In 'exec' mode,
2091 2091 no results are displayed unless :func:`print` is called explicitly;
2092 2092 this mode is more akin to running a script.
2093 2093
2094 2094 Parameters
2095 2095 ----------
2096 2096 cell : str
2097 2097 A single or multiline string.
2098 2098 """
2099 2099
2100 2100 # We need to break up the input into executable blocks that can be run
2101 2101 # in 'single' mode, to provide comfortable user behavior.
2102 2102 blocks = self.input_splitter.split_blocks(cell)
2103 2103
2104 2104 if not blocks:
2105 2105 return
2106 2106
2107 2107 # Store the 'ipython' version of the cell as well, since that's what
2108 2108 # needs to go into the translated history and get executed (the
2109 2109 # original cell may contain non-python syntax).
2110 2110 ipy_cell = ''.join(blocks)
2111 2111
2112 2112 # Store raw and processed history
2113 2113 self.history_manager.store_inputs(ipy_cell, cell)
2114 2114
2115 2115 self.logger.log(ipy_cell, cell)
2116 # dbg code!!!
2117 if 0:
2118 def myapp(self, val): # dbg
2119 import traceback as tb
2120 stack = ''.join(tb.format_stack())
2121 print 'Value:', val
2122 print 'Stack:\n', stack
2123 list.append(self, val)
2124
2125 import new
2126 self.history_manager.input_hist_parsed.append = types.MethodType(myapp,
2127 self.history_manager.input_hist_parsed)
2128 # End dbg
2129 2116
2130 2117 # All user code execution must happen with our context managers active
2131 2118 with nested(self.builtin_trap, self.display_trap):
2132 2119
2133 2120 # Single-block input should behave like an interactive prompt
2134 2121 if len(blocks) == 1:
2135 2122 # since we return here, we need to update the execution count
2136 2123 out = self.run_one_block(blocks[0])
2137 2124 self.execution_count += 1
2138 2125 return out
2139 2126
2140 2127 # In multi-block input, if the last block is a simple (one-two
2141 2128 # lines) expression, run it in single mode so it produces output.
2142 2129 # Otherwise just feed the whole thing to run_code. This seems like
2143 2130 # a reasonable usability design.
2144 2131 last = blocks[-1]
2145 2132 last_nlines = len(last.splitlines())
2146 2133
2147 2134 # Note: below, whenever we call run_code, we must sync history
2148 2135 # ourselves, because run_code is NOT meant to manage history at all.
2149 2136 if last_nlines < 2:
2150 2137 # Here we consider the cell split between 'body' and 'last',
2151 2138 # store all history and execute 'body', and if successful, then
2152 2139 # proceed to execute 'last'.
2153 2140
2154 2141 # Get the main body to run as a cell
2155 2142 ipy_body = ''.join(blocks[:-1])
2156 2143 retcode = self.run_source(ipy_body, symbol='exec',
2157 2144 post_execute=False)
2158 2145 if retcode==0:
2159 2146 # And the last expression via runlines so it produces output
2160 2147 self.run_one_block(last)
2161 2148 else:
2162 2149 # Run the whole cell as one entity, storing both raw and
2163 2150 # processed input in history
2164 2151 self.run_source(ipy_cell, symbol='exec')
2165 2152
2166 2153 # Each cell is a *single* input, regardless of how many lines it has
2167 2154 self.execution_count += 1
2168 2155
2169 2156 def run_one_block(self, block):
2170 2157 """Run a single interactive block.
2171 2158
2172 2159 If the block is single-line, dynamic transformations are applied to it
2173 2160 (like automagics, autocall and alias recognition).
2174 2161 """
2175 2162 if len(block.splitlines()) <= 1:
2176 2163 out = self.run_single_line(block)
2177 2164 else:
2178 2165 out = self.run_code(block)
2179 2166 return out
2180 2167
2181 2168 def run_single_line(self, line):
2182 2169 """Run a single-line interactive statement.
2183 2170
2184 2171 This assumes the input has been transformed to IPython syntax by
2185 2172 applying all static transformations (those with an explicit prefix like
2186 2173 % or !), but it will further try to apply the dynamic ones.
2187 2174
2188 2175 It does not update history.
2189 2176 """
2190 2177 tline = self.prefilter_manager.prefilter_line(line)
2191 2178 return self.run_source(tline)
2192 2179
2193 2180 # PENDING REMOVAL: this method is slated for deletion, once our new
2194 2181 # input logic has been 100% moved to frontends and is stable.
2195 2182 def runlines(self, lines, clean=False):
2196 2183 """Run a string of one or more lines of source.
2197 2184
2198 2185 This method is capable of running a string containing multiple source
2199 2186 lines, as if they had been entered at the IPython prompt. Since it
2200 2187 exposes IPython's processing machinery, the given strings can contain
2201 2188 magic calls (%magic), special shell access (!cmd), etc.
2202 2189 """
2203 2190
2204 2191 if isinstance(lines, (list, tuple)):
2205 2192 lines = '\n'.join(lines)
2206 2193
2207 2194 if clean:
2208 2195 lines = self._cleanup_ipy_script(lines)
2209 2196
2210 2197 # We must start with a clean buffer, in case this is run from an
2211 2198 # interactive IPython session (via a magic, for example).
2212 2199 self.reset_buffer()
2213 2200 lines = lines.splitlines()
2214 2201
2215 2202 # Since we will prefilter all lines, store the user's raw input too
2216 2203 # before we apply any transformations
2217 2204 self.buffer_raw[:] = [ l+'\n' for l in lines]
2218 2205
2219 2206 more = False
2220 2207 prefilter_lines = self.prefilter_manager.prefilter_lines
2221 2208 with nested(self.builtin_trap, self.display_trap):
2222 2209 for line in lines:
2223 2210 # skip blank lines so we don't mess up the prompt counter, but
2224 2211 # do NOT skip even a blank line if we are in a code block (more
2225 2212 # is true)
2226 2213
2227 2214 if line or more:
2228 2215 more = self.push_line(prefilter_lines(line, more))
2229 2216 # IPython's run_source returns None if there was an error
2230 2217 # compiling the code. This allows us to stop processing
2231 2218 # right away, so the user gets the error message at the
2232 2219 # right place.
2233 2220 if more is None:
2234 2221 break
2235 2222 # final newline in case the input didn't have it, so that the code
2236 2223 # actually does get executed
2237 2224 if more:
2238 2225 self.push_line('\n')
2239 2226
2240 2227 def run_source(self, source, filename=None,
2241 2228 symbol='single', post_execute=True):
2242 2229 """Compile and run some source in the interpreter.
2243 2230
2244 2231 Arguments are as for compile_command().
2245 2232
2246 2233 One several things can happen:
2247 2234
2248 2235 1) The input is incorrect; compile_command() raised an
2249 2236 exception (SyntaxError or OverflowError). A syntax traceback
2250 2237 will be printed by calling the showsyntaxerror() method.
2251 2238
2252 2239 2) The input is incomplete, and more input is required;
2253 2240 compile_command() returned None. Nothing happens.
2254 2241
2255 2242 3) The input is complete; compile_command() returned a code
2256 2243 object. The code is executed by calling self.run_code() (which
2257 2244 also handles run-time exceptions, except for SystemExit).
2258 2245
2259 2246 The return value is:
2260 2247
2261 2248 - True in case 2
2262 2249
2263 2250 - False in the other cases, unless an exception is raised, where
2264 2251 None is returned instead. This can be used by external callers to
2265 2252 know whether to continue feeding input or not.
2266 2253
2267 2254 The return value can be used to decide whether to use sys.ps1 or
2268 2255 sys.ps2 to prompt the next line."""
2269 2256
2270 2257 # We need to ensure that the source is unicode from here on.
2271 2258 if type(source)==str:
2272 2259 usource = source.decode(self.stdin_encoding)
2273 2260 else:
2274 2261 usource = source
2275 2262
2276 2263 if 0: # dbg
2277 2264 print 'Source:', repr(source) # dbg
2278 2265 print 'USource:', repr(usource) # dbg
2279 2266 print 'type:', type(source) # dbg
2280 2267 print 'encoding', self.stdin_encoding # dbg
2281 2268
2282 2269 try:
2283 2270 code = self.compile(usource, symbol, self.execution_count)
2284 2271 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2285 2272 # Case 1
2286 2273 self.showsyntaxerror(filename)
2287 2274 return None
2288 2275
2289 2276 if code is None:
2290 2277 # Case 2
2291 2278 return True
2292 2279
2293 2280 # Case 3
2294 2281 # We store the code object so that threaded shells and
2295 2282 # custom exception handlers can access all this info if needed.
2296 2283 # The source corresponding to this can be obtained from the
2297 2284 # buffer attribute as '\n'.join(self.buffer).
2298 2285 self.code_to_run = code
2299 2286 # now actually execute the code object
2300 2287 if self.run_code(code, post_execute) == 0:
2301 2288 return False
2302 2289 else:
2303 2290 return None
2304 2291
2305 2292 # For backwards compatibility
2306 2293 runsource = run_source
2307 2294
2308 2295 def run_code(self, code_obj, post_execute=True):
2309 2296 """Execute a code object.
2310 2297
2311 2298 When an exception occurs, self.showtraceback() is called to display a
2312 2299 traceback.
2313 2300
2314 2301 Return value: a flag indicating whether the code to be run completed
2315 2302 successfully:
2316 2303
2317 2304 - 0: successful execution.
2318 2305 - 1: an error occurred.
2319 2306 """
2320 2307
2321 2308 # Set our own excepthook in case the user code tries to call it
2322 2309 # directly, so that the IPython crash handler doesn't get triggered
2323 2310 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2324 2311
2325 2312 # we save the original sys.excepthook in the instance, in case config
2326 2313 # code (such as magics) needs access to it.
2327 2314 self.sys_excepthook = old_excepthook
2328 2315 outflag = 1 # happens in more places, so it's easier as default
2329 2316 try:
2330 2317 try:
2331 2318 self.hooks.pre_run_code_hook()
2332 2319 #rprint('Running code') # dbg
2333 2320 exec code_obj in self.user_global_ns, self.user_ns
2334 2321 finally:
2335 2322 # Reset our crash handler in place
2336 2323 sys.excepthook = old_excepthook
2337 2324 except SystemExit:
2338 2325 self.reset_buffer()
2339 2326 self.showtraceback(exception_only=True)
2340 2327 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2341 2328 except self.custom_exceptions:
2342 2329 etype,value,tb = sys.exc_info()
2343 2330 self.CustomTB(etype,value,tb)
2344 2331 except:
2345 2332 self.showtraceback()
2346 2333 else:
2347 2334 outflag = 0
2348 2335 if softspace(sys.stdout, 0):
2349 2336 print
2350 2337
2351 2338 # Execute any registered post-execution functions. Here, any errors
2352 2339 # are reported only minimally and just on the terminal, because the
2353 2340 # main exception channel may be occupied with a user traceback.
2354 2341 # FIXME: we need to think this mechanism a little more carefully.
2355 2342 if post_execute:
2356 2343 for func in self._post_execute:
2357 2344 try:
2358 2345 func()
2359 2346 except:
2360 2347 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2361 2348 func
2362 2349 print >> io.Term.cout, head
2363 2350 print >> io.Term.cout, self._simple_error()
2364 2351 print >> io.Term.cout, 'Removing from post_execute'
2365 2352 self._post_execute.remove(func)
2366 2353
2367 2354 # Flush out code object which has been run (and source)
2368 2355 self.code_to_run = None
2369 2356 return outflag
2370 2357
2371 2358 # For backwards compatibility
2372 2359 runcode = run_code
2373 2360
2374 2361 # PENDING REMOVAL: this method is slated for deletion, once our new
2375 2362 # input logic has been 100% moved to frontends and is stable.
2376 2363 def push_line(self, line):
2377 2364 """Push a line to the interpreter.
2378 2365
2379 2366 The line should not have a trailing newline; it may have
2380 2367 internal newlines. The line is appended to a buffer and the
2381 2368 interpreter's run_source() method is called with the
2382 2369 concatenated contents of the buffer as source. If this
2383 2370 indicates that the command was executed or invalid, the buffer
2384 2371 is reset; otherwise, the command is incomplete, and the buffer
2385 2372 is left as it was after the line was appended. The return
2386 2373 value is 1 if more input is required, 0 if the line was dealt
2387 2374 with in some way (this is the same as run_source()).
2388 2375 """
2389 2376
2390 2377 # autoindent management should be done here, and not in the
2391 2378 # interactive loop, since that one is only seen by keyboard input. We
2392 2379 # need this done correctly even for code run via runlines (which uses
2393 2380 # push).
2394 2381
2395 2382 #print 'push line: <%s>' % line # dbg
2396 2383 self.buffer.append(line)
2397 2384 full_source = '\n'.join(self.buffer)
2398 2385 more = self.run_source(full_source, self.filename)
2399 2386 if not more:
2400 2387 self.history_manager.store_inputs('\n'.join(self.buffer_raw),
2401 2388 full_source)
2402 2389 self.reset_buffer()
2403 2390 self.execution_count += 1
2404 2391 return more
2405 2392
2406 2393 def reset_buffer(self):
2407 2394 """Reset the input buffer."""
2408 2395 self.buffer[:] = []
2409 2396 self.buffer_raw[:] = []
2410 2397 self.input_splitter.reset()
2411 2398
2412 2399 # For backwards compatibility
2413 2400 resetbuffer = reset_buffer
2414 2401
2415 2402 def _is_secondary_block_start(self, s):
2416 2403 if not s.endswith(':'):
2417 2404 return False
2418 2405 if (s.startswith('elif') or
2419 2406 s.startswith('else') or
2420 2407 s.startswith('except') or
2421 2408 s.startswith('finally')):
2422 2409 return True
2423 2410
2424 2411 def _cleanup_ipy_script(self, script):
2425 2412 """Make a script safe for self.runlines()
2426 2413
2427 2414 Currently, IPython is lines based, with blocks being detected by
2428 2415 empty lines. This is a problem for block based scripts that may
2429 2416 not have empty lines after blocks. This script adds those empty
2430 2417 lines to make scripts safe for running in the current line based
2431 2418 IPython.
2432 2419 """
2433 2420 res = []
2434 2421 lines = script.splitlines()
2435 2422 level = 0
2436 2423
2437 2424 for l in lines:
2438 2425 lstripped = l.lstrip()
2439 2426 stripped = l.strip()
2440 2427 if not stripped:
2441 2428 continue
2442 2429 newlevel = len(l) - len(lstripped)
2443 2430 if level > 0 and newlevel == 0 and \
2444 2431 not self._is_secondary_block_start(stripped):
2445 2432 # add empty line
2446 2433 res.append('')
2447 2434 res.append(l)
2448 2435 level = newlevel
2449 2436
2450 2437 return '\n'.join(res) + '\n'
2451 2438
2452 2439 #-------------------------------------------------------------------------
2453 2440 # Things related to GUI support and pylab
2454 2441 #-------------------------------------------------------------------------
2455 2442
2456 2443 def enable_pylab(self, gui=None):
2457 2444 raise NotImplementedError('Implement enable_pylab in a subclass')
2458 2445
2459 2446 #-------------------------------------------------------------------------
2460 2447 # Utilities
2461 2448 #-------------------------------------------------------------------------
2462 2449
2463 2450 def var_expand(self,cmd,depth=0):
2464 2451 """Expand python variables in a string.
2465 2452
2466 2453 The depth argument indicates how many frames above the caller should
2467 2454 be walked to look for the local namespace where to expand variables.
2468 2455
2469 2456 The global namespace for expansion is always the user's interactive
2470 2457 namespace.
2471 2458 """
2472 2459
2473 2460 return str(ItplNS(cmd,
2474 2461 self.user_ns, # globals
2475 2462 # Skip our own frame in searching for locals:
2476 2463 sys._getframe(depth+1).f_locals # locals
2477 2464 ))
2478 2465
2479 2466 def mktempfile(self, data=None, prefix='ipython_edit_'):
2480 2467 """Make a new tempfile and return its filename.
2481 2468
2482 2469 This makes a call to tempfile.mktemp, but it registers the created
2483 2470 filename internally so ipython cleans it up at exit time.
2484 2471
2485 2472 Optional inputs:
2486 2473
2487 2474 - data(None): if data is given, it gets written out to the temp file
2488 2475 immediately, and the file is closed again."""
2489 2476
2490 2477 filename = tempfile.mktemp('.py', prefix)
2491 2478 self.tempfiles.append(filename)
2492 2479
2493 2480 if data:
2494 2481 tmp_file = open(filename,'w')
2495 2482 tmp_file.write(data)
2496 2483 tmp_file.close()
2497 2484 return filename
2498 2485
2499 2486 # TODO: This should be removed when Term is refactored.
2500 2487 def write(self,data):
2501 2488 """Write a string to the default output"""
2502 2489 io.Term.cout.write(data)
2503 2490
2504 2491 # TODO: This should be removed when Term is refactored.
2505 2492 def write_err(self,data):
2506 2493 """Write a string to the default error output"""
2507 2494 io.Term.cerr.write(data)
2508 2495
2509 2496 def ask_yes_no(self,prompt,default=True):
2510 2497 if self.quiet:
2511 2498 return True
2512 2499 return ask_yes_no(prompt,default)
2513 2500
2514 2501 def show_usage(self):
2515 2502 """Show a usage message"""
2516 2503 page.page(IPython.core.usage.interactive_usage)
2517 2504
2518 2505 #-------------------------------------------------------------------------
2519 2506 # Things related to IPython exiting
2520 2507 #-------------------------------------------------------------------------
2521 2508 def atexit_operations(self):
2522 2509 """This will be executed at the time of exit.
2523 2510
2524 2511 Cleanup operations and saving of persistent data that is done
2525 2512 unconditionally by IPython should be performed here.
2526 2513
2527 2514 For things that may depend on startup flags or platform specifics (such
2528 2515 as having readline or not), register a separate atexit function in the
2529 2516 code that has the appropriate information, rather than trying to
2530 2517 clutter
2531 2518 """
2532 2519 # Cleanup all tempfiles left around
2533 2520 for tfile in self.tempfiles:
2534 2521 try:
2535 2522 os.unlink(tfile)
2536 2523 except OSError:
2537 2524 pass
2538 2525
2539 2526 self.save_history()
2540 2527
2541 2528 # Clear all user namespaces to release all references cleanly.
2542 2529 self.reset()
2543 2530
2544 2531 # Run user hooks
2545 2532 self.hooks.shutdown_hook()
2546 2533
2547 2534 def cleanup(self):
2548 2535 self.restore_sys_module_state()
2549 2536
2550 2537
2551 2538 class InteractiveShellABC(object):
2552 2539 """An abstract base class for InteractiveShell."""
2553 2540 __metaclass__ = abc.ABCMeta
2554 2541
2555 2542 InteractiveShellABC.register(InteractiveShell)
General Comments 0
You need to be logged in to leave comments. Login now