##// END OF EJS Templates
Replace run_cell method, and fix up caching compiler so we can cache a string, then compile AST nodes.
Thomas Kluyver -
Show More
@@ -1,121 +1,116 b''
1 1 """Compiler tools with improved interactive support.
2 2
3 3 Provides compilation machinery similar to codeop, but with caching support so
4 4 we can provide interactive tracebacks.
5 5
6 6 Authors
7 7 -------
8 8 * Robert Kern
9 9 * Fernando Perez
10 10 """
11 11
12 12 # Note: though it might be more natural to name this module 'compiler', that
13 13 # name is in the stdlib and name collisions with the stdlib tend to produce
14 14 # weird problems (often with third-party tools).
15 15
16 16 #-----------------------------------------------------------------------------
17 17 # Copyright (C) 2010 The IPython Development Team.
18 18 #
19 19 # Distributed under the terms of the BSD License.
20 20 #
21 21 # The full license is in the file COPYING.txt, distributed with this software.
22 22 #-----------------------------------------------------------------------------
23 23
24 24 #-----------------------------------------------------------------------------
25 25 # Imports
26 26 #-----------------------------------------------------------------------------
27 27 from __future__ import print_function
28 28
29 29 # Stdlib imports
30 30 import codeop
31 31 import hashlib
32 32 import linecache
33 33 import time
34 34
35 35 #-----------------------------------------------------------------------------
36 36 # Local utilities
37 37 #-----------------------------------------------------------------------------
38 38
39 39 def code_name(code, number=0):
40 40 """ Compute a (probably) unique name for code for caching.
41 41
42 42 This now expects code to be unicode.
43 43 """
44 44 hash_digest = hashlib.md5(code.encode("utf-8")).hexdigest()
45 45 # Include the number and 12 characters of the hash in the name. It's
46 46 # pretty much impossible that in a single session we'll have collisions
47 47 # even with truncated hashes, and the full one makes tracebacks too long
48 48 return '<ipython-input-{0}-{1}>'.format(number, hash_digest[:12])
49 49
50 50 #-----------------------------------------------------------------------------
51 51 # Classes and functions
52 52 #-----------------------------------------------------------------------------
53 53
54 class CachingCompiler(object):
54 class CachingCompiler(codeop.Compile):
55 55 """A compiler that caches code compiled from interactive statements.
56 56 """
57 57
58 58 def __init__(self):
59 self._compiler = codeop.CommandCompiler()
59 codeop.Compile.__init__(self)
60 60
61 61 # This is ugly, but it must be done this way to allow multiple
62 62 # simultaneous ipython instances to coexist. Since Python itself
63 63 # directly accesses the data structures in the linecache module, and
64 64 # the cache therein is global, we must work with that data structure.
65 65 # We must hold a reference to the original checkcache routine and call
66 66 # that in our own check_cache() below, but the special IPython cache
67 67 # must also be shared by all IPython instances. If we were to hold
68 68 # separate caches (one in each CachingCompiler instance), any call made
69 69 # by Python itself to linecache.checkcache() would obliterate the
70 70 # cached data from the other IPython instances.
71 71 if not hasattr(linecache, '_ipython_cache'):
72 72 linecache._ipython_cache = {}
73 73 if not hasattr(linecache, '_checkcache_ori'):
74 74 linecache._checkcache_ori = linecache.checkcache
75 75 # Now, we must monkeypatch the linecache directly so that parts of the
76 76 # stdlib that call it outside our control go through our codepath
77 77 # (otherwise we'd lose our tracebacks).
78 78 linecache.checkcache = self.check_cache
79 79
80 80 @property
81 81 def compiler_flags(self):
82 82 """Flags currently active in the compilation process.
83 83 """
84 return self._compiler.compiler.flags
84 return self.flags
85 85
86 def __call__(self, code, symbol, number=0):
87 """Compile some code while caching its contents such that the inspect
88 module can find it later.
86 def cache(self, code, number=0):
87 """Make a name for a block of code, and cache the code.
89 88
90 89 Parameters
91 90 ----------
92 91 code : str
93 Source code to be compiled, one or more lines.
92 The Python source code to cache.
93 number : int
94 A number which forms part of the code's name. Used for the execution
95 counter.
94 96
95 symbol : str
96 One of 'single', 'exec' or 'eval' (see the builtin ``compile``
97 documentation for further details on these fields).
98
99 number : int, optional
100 An integer argument identifying the code, useful for informational
101 purposes in tracebacks (typically it will be the IPython prompt
102 number).
97 Returns
98 -------
99 The name of the cached code (as a string). Pass this as the filename
100 argument to compilation, so that tracebacks are correctly hooked up.
103 101 """
104 102 name = code_name(code, number)
105 code_obj = self._compiler(code, name, symbol)
106 103 entry = (len(code), time.time(),
107 104 [line+'\n' for line in code.splitlines()], name)
108 # Cache the info both in the linecache (a global cache used internally
109 # by most of Python's inspect/traceback machinery), and in our cache
110 105 linecache.cache[name] = entry
111 106 linecache._ipython_cache[name] = entry
112 return code_obj
107 return name
113 108
114 109 def check_cache(self, *args):
115 110 """Call linecache.checkcache() safely protecting our cached values.
116 111 """
117 112 # First call the orignal checkcache as intended
118 113 linecache._checkcache_ori(*args)
119 114 # Then, update back the cache with our data, so that tracebacks related
120 115 # to our compiled codes can be produced.
121 116 linecache.cache.update(linecache._ipython_cache)
@@ -1,2695 +1,2590 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import ast
24 24 import atexit
25 25 import codeop
26 26 import inspect
27 27 import os
28 28 import re
29 29 import sys
30 30 import tempfile
31 31 import types
32 32 from contextlib import nested
33 33
34 34 from IPython.config.configurable import Configurable
35 35 from IPython.core import debugger, oinspect
36 36 from IPython.core import history as ipcorehist
37 37 from IPython.core import page
38 38 from IPython.core import prefilter
39 39 from IPython.core import shadowns
40 40 from IPython.core import ultratb
41 41 from IPython.core.alias import AliasManager
42 42 from IPython.core.builtin_trap import BuiltinTrap
43 43 from IPython.core.compilerop import CachingCompiler
44 44 from IPython.core.display_trap import DisplayTrap
45 45 from IPython.core.displayhook import DisplayHook
46 46 from IPython.core.displaypub import DisplayPublisher
47 47 from IPython.core.error import TryNext, UsageError
48 48 from IPython.core.extensions import ExtensionManager
49 49 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
50 50 from IPython.core.formatters import DisplayFormatter
51 51 from IPython.core.history import HistoryManager
52 52 from IPython.core.inputsplitter import IPythonInputSplitter
53 53 from IPython.core.logger import Logger
54 54 from IPython.core.macro import Macro
55 55 from IPython.core.magic import Magic
56 56 from IPython.core.payload import PayloadManager
57 57 from IPython.core.plugin import PluginManager
58 58 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
59 59 from IPython.external.Itpl import ItplNS
60 60 from IPython.utils import PyColorize
61 61 from IPython.utils import io
62 62 from IPython.utils.doctestreload import doctest_reload
63 63 from IPython.utils.io import ask_yes_no, rprint
64 64 from IPython.utils.ipstruct import Struct
65 65 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
66 66 from IPython.utils.pickleshare import PickleShareDB
67 67 from IPython.utils.process import system, getoutput
68 68 from IPython.utils.strdispatch import StrDispatch
69 69 from IPython.utils.syspathcontext import prepended_to_syspath
70 70 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
71 71 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
72 72 List, Unicode, Instance, Type)
73 73 from IPython.utils.warn import warn, error, fatal
74 74 import IPython.core.hooks
75 75
76 76 #-----------------------------------------------------------------------------
77 77 # Globals
78 78 #-----------------------------------------------------------------------------
79 79
80 80 # compiled regexps for autoindent management
81 81 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
82 82
83 83 #-----------------------------------------------------------------------------
84 84 # Utilities
85 85 #-----------------------------------------------------------------------------
86 86
87 87 # store the builtin raw_input globally, and use this always, in case user code
88 88 # overwrites it (like wx.py.PyShell does)
89 89 raw_input_original = raw_input
90 90
91 91 def softspace(file, newvalue):
92 92 """Copied from code.py, to remove the dependency"""
93 93
94 94 oldvalue = 0
95 95 try:
96 96 oldvalue = file.softspace
97 97 except AttributeError:
98 98 pass
99 99 try:
100 100 file.softspace = newvalue
101 101 except (AttributeError, TypeError):
102 102 # "attribute-less object" or "read-only attributes"
103 103 pass
104 104 return oldvalue
105 105
106 106
107 107 def no_op(*a, **kw): pass
108 108
109 109 class SpaceInInput(Exception): pass
110 110
111 111 class Bunch: pass
112 112
113 113
114 114 def get_default_colors():
115 115 if sys.platform=='darwin':
116 116 return "LightBG"
117 117 elif os.name=='nt':
118 118 return 'Linux'
119 119 else:
120 120 return 'Linux'
121 121
122 122
123 123 class SeparateStr(Str):
124 124 """A Str subclass to validate separate_in, separate_out, etc.
125 125
126 126 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
127 127 """
128 128
129 129 def validate(self, obj, value):
130 130 if value == '0': value = ''
131 131 value = value.replace('\\n','\n')
132 132 return super(SeparateStr, self).validate(obj, value)
133 133
134 134 class MultipleInstanceError(Exception):
135 135 pass
136 136
137 137 class ReadlineNoRecord(object):
138 138 """Context manager to execute some code, then reload readline history
139 139 so that interactive input to the code doesn't appear when pressing up."""
140 140 def __init__(self, shell):
141 141 self.shell = shell
142 142 self._nested_level = 0
143 143
144 144 def __enter__(self):
145 145 if self._nested_level == 0:
146 146 self.orig_length = self.current_length()
147 147 self.readline_tail = self.get_readline_tail()
148 148 self._nested_level += 1
149 149
150 150 def __exit__(self, type, value, traceback):
151 151 self._nested_level -= 1
152 152 if self._nested_level == 0:
153 153 # Try clipping the end if it's got longer
154 154 e = self.current_length() - self.orig_length
155 155 if e > 0:
156 156 for _ in range(e):
157 157 self.shell.readline.remove_history_item(self.orig_length)
158 158
159 159 # If it still doesn't match, just reload readline history.
160 160 if self.current_length() != self.orig_length \
161 161 or self.get_readline_tail() != self.readline_tail:
162 162 self.shell.refill_readline_hist()
163 163 # Returning False will cause exceptions to propagate
164 164 return False
165 165
166 166 def current_length(self):
167 167 return self.shell.readline.get_current_history_length()
168 168
169 169 def get_readline_tail(self, n=10):
170 170 """Get the last n items in readline history."""
171 171 end = self.shell.readline.get_current_history_length() + 1
172 172 start = max(end-n, 1)
173 173 ghi = self.shell.readline.get_history_item
174 174 return [ghi(x) for x in range(start, end)]
175 175
176 176
177 177 #-----------------------------------------------------------------------------
178 178 # Main IPython class
179 179 #-----------------------------------------------------------------------------
180 180
181 181 class InteractiveShell(Configurable, Magic):
182 182 """An enhanced, interactive shell for Python."""
183 183
184 184 _instance = None
185 185 autocall = Enum((0,1,2), default_value=1, config=True)
186 186 # TODO: remove all autoindent logic and put into frontends.
187 187 # We can't do this yet because even runlines uses the autoindent.
188 188 autoindent = CBool(True, config=True)
189 189 automagic = CBool(True, config=True)
190 190 cache_size = Int(1000, config=True)
191 191 color_info = CBool(True, config=True)
192 192 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
193 193 default_value=get_default_colors(), config=True)
194 194 debug = CBool(False, config=True)
195 195 deep_reload = CBool(False, config=True)
196 196 display_formatter = Instance(DisplayFormatter)
197 197 displayhook_class = Type(DisplayHook)
198 198 display_pub_class = Type(DisplayPublisher)
199 199
200 200 exit_now = CBool(False)
201 201 # Monotonically increasing execution counter
202 202 execution_count = Int(1)
203 203 filename = Unicode("<ipython console>")
204 204 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
205 205
206 206 # Input splitter, to split entire cells of input into either individual
207 207 # interactive statements or whole blocks.
208 208 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
209 209 (), {})
210 210 logstart = CBool(False, config=True)
211 211 logfile = Unicode('', config=True)
212 212 logappend = Unicode('', config=True)
213 213 object_info_string_level = Enum((0,1,2), default_value=0,
214 214 config=True)
215 215 pdb = CBool(False, config=True)
216 216
217 217 profile = Unicode('', config=True)
218 218 prompt_in1 = Str('In [\\#]: ', config=True)
219 219 prompt_in2 = Str(' .\\D.: ', config=True)
220 220 prompt_out = Str('Out[\\#]: ', config=True)
221 221 prompts_pad_left = CBool(True, config=True)
222 222 quiet = CBool(False, config=True)
223 223
224 224 history_length = Int(10000, config=True)
225 225
226 226 # The readline stuff will eventually be moved to the terminal subclass
227 227 # but for now, we can't do that as readline is welded in everywhere.
228 228 readline_use = CBool(True, config=True)
229 229 readline_merge_completions = CBool(True, config=True)
230 230 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
231 231 readline_remove_delims = Str('-/~', config=True)
232 232 readline_parse_and_bind = List([
233 233 'tab: complete',
234 234 '"\C-l": clear-screen',
235 235 'set show-all-if-ambiguous on',
236 236 '"\C-o": tab-insert',
237 237 # See bug gh-58 - with \M-i enabled, chars 0x9000-0x9fff
238 238 # crash IPython.
239 239 '"\M-o": "\d\d\d\d"',
240 240 '"\M-I": "\d\d\d\d"',
241 241 '"\C-r": reverse-search-history',
242 242 '"\C-s": forward-search-history',
243 243 '"\C-p": history-search-backward',
244 244 '"\C-n": history-search-forward',
245 245 '"\e[A": history-search-backward',
246 246 '"\e[B": history-search-forward',
247 247 '"\C-k": kill-line',
248 248 '"\C-u": unix-line-discard',
249 249 ], allow_none=False, config=True)
250 250
251 251 # TODO: this part of prompt management should be moved to the frontends.
252 252 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
253 253 separate_in = SeparateStr('\n', config=True)
254 254 separate_out = SeparateStr('', config=True)
255 255 separate_out2 = SeparateStr('', config=True)
256 256 wildcards_case_sensitive = CBool(True, config=True)
257 257 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
258 258 default_value='Context', config=True)
259 259
260 260 # Subcomponents of InteractiveShell
261 261 alias_manager = Instance('IPython.core.alias.AliasManager')
262 262 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
263 263 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
264 264 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
265 265 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
266 266 plugin_manager = Instance('IPython.core.plugin.PluginManager')
267 267 payload_manager = Instance('IPython.core.payload.PayloadManager')
268 268 history_manager = Instance('IPython.core.history.HistoryManager')
269 269
270 270 # Private interface
271 271 _post_execute = set()
272 272
273 273 def __init__(self, config=None, ipython_dir=None,
274 274 user_ns=None, user_global_ns=None,
275 275 custom_exceptions=((), None)):
276 276
277 277 # This is where traits with a config_key argument are updated
278 278 # from the values on config.
279 279 super(InteractiveShell, self).__init__(config=config)
280 280
281 281 # These are relatively independent and stateless
282 282 self.init_ipython_dir(ipython_dir)
283 283 self.init_instance_attrs()
284 284 self.init_environment()
285 285
286 286 # Create namespaces (user_ns, user_global_ns, etc.)
287 287 self.init_create_namespaces(user_ns, user_global_ns)
288 288 # This has to be done after init_create_namespaces because it uses
289 289 # something in self.user_ns, but before init_sys_modules, which
290 290 # is the first thing to modify sys.
291 291 # TODO: When we override sys.stdout and sys.stderr before this class
292 292 # is created, we are saving the overridden ones here. Not sure if this
293 293 # is what we want to do.
294 294 self.save_sys_module_state()
295 295 self.init_sys_modules()
296 296
297 297 # While we're trying to have each part of the code directly access what
298 298 # it needs without keeping redundant references to objects, we have too
299 299 # much legacy code that expects ip.db to exist.
300 300 self.db = PickleShareDB(os.path.join(self.ipython_dir, 'db'))
301 301
302 302 self.init_history()
303 303 self.init_encoding()
304 304 self.init_prefilter()
305 305
306 306 Magic.__init__(self, self)
307 307
308 308 self.init_syntax_highlighting()
309 309 self.init_hooks()
310 310 self.init_pushd_popd_magic()
311 311 # self.init_traceback_handlers use to be here, but we moved it below
312 312 # because it and init_io have to come after init_readline.
313 313 self.init_user_ns()
314 314 self.init_logger()
315 315 self.init_alias()
316 316 self.init_builtins()
317 317
318 318 # pre_config_initialization
319 319
320 320 # The next section should contain everything that was in ipmaker.
321 321 self.init_logstart()
322 322
323 323 # The following was in post_config_initialization
324 324 self.init_inspector()
325 325 # init_readline() must come before init_io(), because init_io uses
326 326 # readline related things.
327 327 self.init_readline()
328 328 # init_completer must come after init_readline, because it needs to
329 329 # know whether readline is present or not system-wide to configure the
330 330 # completers, since the completion machinery can now operate
331 331 # independently of readline (e.g. over the network)
332 332 self.init_completer()
333 333 # TODO: init_io() needs to happen before init_traceback handlers
334 334 # because the traceback handlers hardcode the stdout/stderr streams.
335 335 # This logic in in debugger.Pdb and should eventually be changed.
336 336 self.init_io()
337 337 self.init_traceback_handlers(custom_exceptions)
338 338 self.init_prompts()
339 339 self.init_display_formatter()
340 340 self.init_display_pub()
341 341 self.init_displayhook()
342 342 self.init_reload_doctest()
343 343 self.init_magics()
344 344 self.init_pdb()
345 345 self.init_extension_manager()
346 346 self.init_plugin_manager()
347 347 self.init_payload()
348 348 self.hooks.late_startup_hook()
349 349 atexit.register(self.atexit_operations)
350 350
351 351 @classmethod
352 352 def instance(cls, *args, **kwargs):
353 353 """Returns a global InteractiveShell instance."""
354 354 if cls._instance is None:
355 355 inst = cls(*args, **kwargs)
356 356 # Now make sure that the instance will also be returned by
357 357 # the subclasses instance attribute.
358 358 for subclass in cls.mro():
359 359 if issubclass(cls, subclass) and \
360 360 issubclass(subclass, InteractiveShell):
361 361 subclass._instance = inst
362 362 else:
363 363 break
364 364 if isinstance(cls._instance, cls):
365 365 return cls._instance
366 366 else:
367 367 raise MultipleInstanceError(
368 368 'Multiple incompatible subclass instances of '
369 369 'InteractiveShell are being created.'
370 370 )
371 371
372 372 @classmethod
373 373 def initialized(cls):
374 374 return hasattr(cls, "_instance")
375 375
376 376 def get_ipython(self):
377 377 """Return the currently running IPython instance."""
378 378 return self
379 379
380 380 #-------------------------------------------------------------------------
381 381 # Trait changed handlers
382 382 #-------------------------------------------------------------------------
383 383
384 384 def _ipython_dir_changed(self, name, new):
385 385 if not os.path.isdir(new):
386 386 os.makedirs(new, mode = 0777)
387 387
388 388 def set_autoindent(self,value=None):
389 389 """Set the autoindent flag, checking for readline support.
390 390
391 391 If called with no arguments, it acts as a toggle."""
392 392
393 393 if not self.has_readline:
394 394 if os.name == 'posix':
395 395 warn("The auto-indent feature requires the readline library")
396 396 self.autoindent = 0
397 397 return
398 398 if value is None:
399 399 self.autoindent = not self.autoindent
400 400 else:
401 401 self.autoindent = value
402 402
403 403 #-------------------------------------------------------------------------
404 404 # init_* methods called by __init__
405 405 #-------------------------------------------------------------------------
406 406
407 407 def init_ipython_dir(self, ipython_dir):
408 408 if ipython_dir is not None:
409 409 self.ipython_dir = ipython_dir
410 410 self.config.Global.ipython_dir = self.ipython_dir
411 411 return
412 412
413 413 if hasattr(self.config.Global, 'ipython_dir'):
414 414 self.ipython_dir = self.config.Global.ipython_dir
415 415 else:
416 416 self.ipython_dir = get_ipython_dir()
417 417
418 418 # All children can just read this
419 419 self.config.Global.ipython_dir = self.ipython_dir
420 420
421 421 def init_instance_attrs(self):
422 422 self.more = False
423 423
424 424 # command compiler
425 425 self.compile = CachingCompiler()
426 426
427 427 # User input buffers
428 428 # NOTE: these variables are slated for full removal, once we are 100%
429 429 # sure that the new execution logic is solid. We will delte runlines,
430 430 # push_line and these buffers, as all input will be managed by the
431 431 # frontends via an inputsplitter instance.
432 432 self.buffer = []
433 433 self.buffer_raw = []
434 434
435 435 # Make an empty namespace, which extension writers can rely on both
436 436 # existing and NEVER being used by ipython itself. This gives them a
437 437 # convenient location for storing additional information and state
438 438 # their extensions may require, without fear of collisions with other
439 439 # ipython names that may develop later.
440 440 self.meta = Struct()
441 441
442 442 # Object variable to store code object waiting execution. This is
443 443 # used mainly by the multithreaded shells, but it can come in handy in
444 444 # other situations. No need to use a Queue here, since it's a single
445 445 # item which gets cleared once run.
446 446 self.code_to_run = None
447 447
448 448 # Temporary files used for various purposes. Deleted at exit.
449 449 self.tempfiles = []
450 450
451 451 # Keep track of readline usage (later set by init_readline)
452 452 self.has_readline = False
453 453
454 454 # keep track of where we started running (mainly for crash post-mortem)
455 455 # This is not being used anywhere currently.
456 456 self.starting_dir = os.getcwd()
457 457
458 458 # Indentation management
459 459 self.indent_current_nsp = 0
460 460
461 461 def init_environment(self):
462 462 """Any changes we need to make to the user's environment."""
463 463 pass
464 464
465 465 def init_encoding(self):
466 466 # Get system encoding at startup time. Certain terminals (like Emacs
467 467 # under Win32 have it set to None, and we need to have a known valid
468 468 # encoding to use in the raw_input() method
469 469 try:
470 470 self.stdin_encoding = sys.stdin.encoding or 'ascii'
471 471 except AttributeError:
472 472 self.stdin_encoding = 'ascii'
473 473
474 474 def init_syntax_highlighting(self):
475 475 # Python source parser/formatter for syntax highlighting
476 476 pyformat = PyColorize.Parser().format
477 477 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
478 478
479 479 def init_pushd_popd_magic(self):
480 480 # for pushd/popd management
481 481 try:
482 482 self.home_dir = get_home_dir()
483 483 except HomeDirError, msg:
484 484 fatal(msg)
485 485
486 486 self.dir_stack = []
487 487
488 488 def init_logger(self):
489 489 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
490 490 logmode='rotate')
491 491
492 492 def init_logstart(self):
493 493 """Initialize logging in case it was requested at the command line.
494 494 """
495 495 if self.logappend:
496 496 self.magic_logstart(self.logappend + ' append')
497 497 elif self.logfile:
498 498 self.magic_logstart(self.logfile)
499 499 elif self.logstart:
500 500 self.magic_logstart()
501 501
502 502 def init_builtins(self):
503 503 self.builtin_trap = BuiltinTrap(shell=self)
504 504
505 505 def init_inspector(self):
506 506 # Object inspector
507 507 self.inspector = oinspect.Inspector(oinspect.InspectColors,
508 508 PyColorize.ANSICodeColors,
509 509 'NoColor',
510 510 self.object_info_string_level)
511 511
512 512 def init_io(self):
513 513 # This will just use sys.stdout and sys.stderr. If you want to
514 514 # override sys.stdout and sys.stderr themselves, you need to do that
515 515 # *before* instantiating this class, because Term holds onto
516 516 # references to the underlying streams.
517 517 if sys.platform == 'win32' and self.has_readline:
518 518 Term = io.IOTerm(cout=self.readline._outputfile,
519 519 cerr=self.readline._outputfile)
520 520 else:
521 521 Term = io.IOTerm()
522 522 io.Term = Term
523 523
524 524 def init_prompts(self):
525 525 # TODO: This is a pass for now because the prompts are managed inside
526 526 # the DisplayHook. Once there is a separate prompt manager, this
527 527 # will initialize that object and all prompt related information.
528 528 pass
529 529
530 530 def init_display_formatter(self):
531 531 self.display_formatter = DisplayFormatter(config=self.config)
532 532
533 533 def init_display_pub(self):
534 534 self.display_pub = self.display_pub_class(config=self.config)
535 535
536 536 def init_displayhook(self):
537 537 # Initialize displayhook, set in/out prompts and printing system
538 538 self.displayhook = self.displayhook_class(
539 539 config=self.config,
540 540 shell=self,
541 541 cache_size=self.cache_size,
542 542 input_sep = self.separate_in,
543 543 output_sep = self.separate_out,
544 544 output_sep2 = self.separate_out2,
545 545 ps1 = self.prompt_in1,
546 546 ps2 = self.prompt_in2,
547 547 ps_out = self.prompt_out,
548 548 pad_left = self.prompts_pad_left
549 549 )
550 550 # This is a context manager that installs/revmoes the displayhook at
551 551 # the appropriate time.
552 552 self.display_trap = DisplayTrap(hook=self.displayhook)
553 553
554 554 def init_reload_doctest(self):
555 555 # Do a proper resetting of doctest, including the necessary displayhook
556 556 # monkeypatching
557 557 try:
558 558 doctest_reload()
559 559 except ImportError:
560 560 warn("doctest module does not exist.")
561 561
562 562 #-------------------------------------------------------------------------
563 563 # Things related to injections into the sys module
564 564 #-------------------------------------------------------------------------
565 565
566 566 def save_sys_module_state(self):
567 567 """Save the state of hooks in the sys module.
568 568
569 569 This has to be called after self.user_ns is created.
570 570 """
571 571 self._orig_sys_module_state = {}
572 572 self._orig_sys_module_state['stdin'] = sys.stdin
573 573 self._orig_sys_module_state['stdout'] = sys.stdout
574 574 self._orig_sys_module_state['stderr'] = sys.stderr
575 575 self._orig_sys_module_state['excepthook'] = sys.excepthook
576 576 try:
577 577 self._orig_sys_modules_main_name = self.user_ns['__name__']
578 578 except KeyError:
579 579 pass
580 580
581 581 def restore_sys_module_state(self):
582 582 """Restore the state of the sys module."""
583 583 try:
584 584 for k, v in self._orig_sys_module_state.iteritems():
585 585 setattr(sys, k, v)
586 586 except AttributeError:
587 587 pass
588 588 # Reset what what done in self.init_sys_modules
589 589 try:
590 590 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
591 591 except (AttributeError, KeyError):
592 592 pass
593 593
594 594 #-------------------------------------------------------------------------
595 595 # Things related to hooks
596 596 #-------------------------------------------------------------------------
597 597
598 598 def init_hooks(self):
599 599 # hooks holds pointers used for user-side customizations
600 600 self.hooks = Struct()
601 601
602 602 self.strdispatchers = {}
603 603
604 604 # Set all default hooks, defined in the IPython.hooks module.
605 605 hooks = IPython.core.hooks
606 606 for hook_name in hooks.__all__:
607 607 # default hooks have priority 100, i.e. low; user hooks should have
608 608 # 0-100 priority
609 609 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
610 610
611 611 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
612 612 """set_hook(name,hook) -> sets an internal IPython hook.
613 613
614 614 IPython exposes some of its internal API as user-modifiable hooks. By
615 615 adding your function to one of these hooks, you can modify IPython's
616 616 behavior to call at runtime your own routines."""
617 617
618 618 # At some point in the future, this should validate the hook before it
619 619 # accepts it. Probably at least check that the hook takes the number
620 620 # of args it's supposed to.
621 621
622 622 f = types.MethodType(hook,self)
623 623
624 624 # check if the hook is for strdispatcher first
625 625 if str_key is not None:
626 626 sdp = self.strdispatchers.get(name, StrDispatch())
627 627 sdp.add_s(str_key, f, priority )
628 628 self.strdispatchers[name] = sdp
629 629 return
630 630 if re_key is not None:
631 631 sdp = self.strdispatchers.get(name, StrDispatch())
632 632 sdp.add_re(re.compile(re_key), f, priority )
633 633 self.strdispatchers[name] = sdp
634 634 return
635 635
636 636 dp = getattr(self.hooks, name, None)
637 637 if name not in IPython.core.hooks.__all__:
638 638 print "Warning! Hook '%s' is not one of %s" % \
639 639 (name, IPython.core.hooks.__all__ )
640 640 if not dp:
641 641 dp = IPython.core.hooks.CommandChainDispatcher()
642 642
643 643 try:
644 644 dp.add(f,priority)
645 645 except AttributeError:
646 646 # it was not commandchain, plain old func - replace
647 647 dp = f
648 648
649 649 setattr(self.hooks,name, dp)
650 650
651 651 def register_post_execute(self, func):
652 652 """Register a function for calling after code execution.
653 653 """
654 654 if not callable(func):
655 655 raise ValueError('argument %s must be callable' % func)
656 656 self._post_execute.add(func)
657 657
658 658 #-------------------------------------------------------------------------
659 659 # Things related to the "main" module
660 660 #-------------------------------------------------------------------------
661 661
662 662 def new_main_mod(self,ns=None):
663 663 """Return a new 'main' module object for user code execution.
664 664 """
665 665 main_mod = self._user_main_module
666 666 init_fakemod_dict(main_mod,ns)
667 667 return main_mod
668 668
669 669 def cache_main_mod(self,ns,fname):
670 670 """Cache a main module's namespace.
671 671
672 672 When scripts are executed via %run, we must keep a reference to the
673 673 namespace of their __main__ module (a FakeModule instance) around so
674 674 that Python doesn't clear it, rendering objects defined therein
675 675 useless.
676 676
677 677 This method keeps said reference in a private dict, keyed by the
678 678 absolute path of the module object (which corresponds to the script
679 679 path). This way, for multiple executions of the same script we only
680 680 keep one copy of the namespace (the last one), thus preventing memory
681 681 leaks from old references while allowing the objects from the last
682 682 execution to be accessible.
683 683
684 684 Note: we can not allow the actual FakeModule instances to be deleted,
685 685 because of how Python tears down modules (it hard-sets all their
686 686 references to None without regard for reference counts). This method
687 687 must therefore make a *copy* of the given namespace, to allow the
688 688 original module's __dict__ to be cleared and reused.
689 689
690 690
691 691 Parameters
692 692 ----------
693 693 ns : a namespace (a dict, typically)
694 694
695 695 fname : str
696 696 Filename associated with the namespace.
697 697
698 698 Examples
699 699 --------
700 700
701 701 In [10]: import IPython
702 702
703 703 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
704 704
705 705 In [12]: IPython.__file__ in _ip._main_ns_cache
706 706 Out[12]: True
707 707 """
708 708 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
709 709
710 710 def clear_main_mod_cache(self):
711 711 """Clear the cache of main modules.
712 712
713 713 Mainly for use by utilities like %reset.
714 714
715 715 Examples
716 716 --------
717 717
718 718 In [15]: import IPython
719 719
720 720 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
721 721
722 722 In [17]: len(_ip._main_ns_cache) > 0
723 723 Out[17]: True
724 724
725 725 In [18]: _ip.clear_main_mod_cache()
726 726
727 727 In [19]: len(_ip._main_ns_cache) == 0
728 728 Out[19]: True
729 729 """
730 730 self._main_ns_cache.clear()
731 731
732 732 #-------------------------------------------------------------------------
733 733 # Things related to debugging
734 734 #-------------------------------------------------------------------------
735 735
736 736 def init_pdb(self):
737 737 # Set calling of pdb on exceptions
738 738 # self.call_pdb is a property
739 739 self.call_pdb = self.pdb
740 740
741 741 def _get_call_pdb(self):
742 742 return self._call_pdb
743 743
744 744 def _set_call_pdb(self,val):
745 745
746 746 if val not in (0,1,False,True):
747 747 raise ValueError,'new call_pdb value must be boolean'
748 748
749 749 # store value in instance
750 750 self._call_pdb = val
751 751
752 752 # notify the actual exception handlers
753 753 self.InteractiveTB.call_pdb = val
754 754
755 755 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
756 756 'Control auto-activation of pdb at exceptions')
757 757
758 758 def debugger(self,force=False):
759 759 """Call the pydb/pdb debugger.
760 760
761 761 Keywords:
762 762
763 763 - force(False): by default, this routine checks the instance call_pdb
764 764 flag and does not actually invoke the debugger if the flag is false.
765 765 The 'force' option forces the debugger to activate even if the flag
766 766 is false.
767 767 """
768 768
769 769 if not (force or self.call_pdb):
770 770 return
771 771
772 772 if not hasattr(sys,'last_traceback'):
773 773 error('No traceback has been produced, nothing to debug.')
774 774 return
775 775
776 776 # use pydb if available
777 777 if debugger.has_pydb:
778 778 from pydb import pm
779 779 else:
780 780 # fallback to our internal debugger
781 781 pm = lambda : self.InteractiveTB.debugger(force=True)
782 782
783 783 with self.readline_no_record:
784 784 pm()
785 785
786 786 #-------------------------------------------------------------------------
787 787 # Things related to IPython's various namespaces
788 788 #-------------------------------------------------------------------------
789 789
790 790 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
791 791 # Create the namespace where the user will operate. user_ns is
792 792 # normally the only one used, and it is passed to the exec calls as
793 793 # the locals argument. But we do carry a user_global_ns namespace
794 794 # given as the exec 'globals' argument, This is useful in embedding
795 795 # situations where the ipython shell opens in a context where the
796 796 # distinction between locals and globals is meaningful. For
797 797 # non-embedded contexts, it is just the same object as the user_ns dict.
798 798
799 799 # FIXME. For some strange reason, __builtins__ is showing up at user
800 800 # level as a dict instead of a module. This is a manual fix, but I
801 801 # should really track down where the problem is coming from. Alex
802 802 # Schmolck reported this problem first.
803 803
804 804 # A useful post by Alex Martelli on this topic:
805 805 # Re: inconsistent value from __builtins__
806 806 # Von: Alex Martelli <aleaxit@yahoo.com>
807 807 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
808 808 # Gruppen: comp.lang.python
809 809
810 810 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
811 811 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
812 812 # > <type 'dict'>
813 813 # > >>> print type(__builtins__)
814 814 # > <type 'module'>
815 815 # > Is this difference in return value intentional?
816 816
817 817 # Well, it's documented that '__builtins__' can be either a dictionary
818 818 # or a module, and it's been that way for a long time. Whether it's
819 819 # intentional (or sensible), I don't know. In any case, the idea is
820 820 # that if you need to access the built-in namespace directly, you
821 821 # should start with "import __builtin__" (note, no 's') which will
822 822 # definitely give you a module. Yeah, it's somewhat confusing:-(.
823 823
824 824 # These routines return properly built dicts as needed by the rest of
825 825 # the code, and can also be used by extension writers to generate
826 826 # properly initialized namespaces.
827 827 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
828 828 user_global_ns)
829 829
830 830 # Assign namespaces
831 831 # This is the namespace where all normal user variables live
832 832 self.user_ns = user_ns
833 833 self.user_global_ns = user_global_ns
834 834
835 835 # An auxiliary namespace that checks what parts of the user_ns were
836 836 # loaded at startup, so we can list later only variables defined in
837 837 # actual interactive use. Since it is always a subset of user_ns, it
838 838 # doesn't need to be separately tracked in the ns_table.
839 839 self.user_ns_hidden = {}
840 840
841 841 # A namespace to keep track of internal data structures to prevent
842 842 # them from cluttering user-visible stuff. Will be updated later
843 843 self.internal_ns = {}
844 844
845 845 # Now that FakeModule produces a real module, we've run into a nasty
846 846 # problem: after script execution (via %run), the module where the user
847 847 # code ran is deleted. Now that this object is a true module (needed
848 848 # so docetst and other tools work correctly), the Python module
849 849 # teardown mechanism runs over it, and sets to None every variable
850 850 # present in that module. Top-level references to objects from the
851 851 # script survive, because the user_ns is updated with them. However,
852 852 # calling functions defined in the script that use other things from
853 853 # the script will fail, because the function's closure had references
854 854 # to the original objects, which are now all None. So we must protect
855 855 # these modules from deletion by keeping a cache.
856 856 #
857 857 # To avoid keeping stale modules around (we only need the one from the
858 858 # last run), we use a dict keyed with the full path to the script, so
859 859 # only the last version of the module is held in the cache. Note,
860 860 # however, that we must cache the module *namespace contents* (their
861 861 # __dict__). Because if we try to cache the actual modules, old ones
862 862 # (uncached) could be destroyed while still holding references (such as
863 863 # those held by GUI objects that tend to be long-lived)>
864 864 #
865 865 # The %reset command will flush this cache. See the cache_main_mod()
866 866 # and clear_main_mod_cache() methods for details on use.
867 867
868 868 # This is the cache used for 'main' namespaces
869 869 self._main_ns_cache = {}
870 870 # And this is the single instance of FakeModule whose __dict__ we keep
871 871 # copying and clearing for reuse on each %run
872 872 self._user_main_module = FakeModule()
873 873
874 874 # A table holding all the namespaces IPython deals with, so that
875 875 # introspection facilities can search easily.
876 876 self.ns_table = {'user':user_ns,
877 877 'user_global':user_global_ns,
878 878 'internal':self.internal_ns,
879 879 'builtin':__builtin__.__dict__
880 880 }
881 881
882 882 # Similarly, track all namespaces where references can be held and that
883 883 # we can safely clear (so it can NOT include builtin). This one can be
884 884 # a simple list. Note that the main execution namespaces, user_ns and
885 885 # user_global_ns, can NOT be listed here, as clearing them blindly
886 886 # causes errors in object __del__ methods. Instead, the reset() method
887 887 # clears them manually and carefully.
888 888 self.ns_refs_table = [ self.user_ns_hidden,
889 889 self.internal_ns, self._main_ns_cache ]
890 890
891 891 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
892 892 """Return a valid local and global user interactive namespaces.
893 893
894 894 This builds a dict with the minimal information needed to operate as a
895 895 valid IPython user namespace, which you can pass to the various
896 896 embedding classes in ipython. The default implementation returns the
897 897 same dict for both the locals and the globals to allow functions to
898 898 refer to variables in the namespace. Customized implementations can
899 899 return different dicts. The locals dictionary can actually be anything
900 900 following the basic mapping protocol of a dict, but the globals dict
901 901 must be a true dict, not even a subclass. It is recommended that any
902 902 custom object for the locals namespace synchronize with the globals
903 903 dict somehow.
904 904
905 905 Raises TypeError if the provided globals namespace is not a true dict.
906 906
907 907 Parameters
908 908 ----------
909 909 user_ns : dict-like, optional
910 910 The current user namespace. The items in this namespace should
911 911 be included in the output. If None, an appropriate blank
912 912 namespace should be created.
913 913 user_global_ns : dict, optional
914 914 The current user global namespace. The items in this namespace
915 915 should be included in the output. If None, an appropriate
916 916 blank namespace should be created.
917 917
918 918 Returns
919 919 -------
920 920 A pair of dictionary-like object to be used as the local namespace
921 921 of the interpreter and a dict to be used as the global namespace.
922 922 """
923 923
924 924
925 925 # We must ensure that __builtin__ (without the final 's') is always
926 926 # available and pointing to the __builtin__ *module*. For more details:
927 927 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
928 928
929 929 if user_ns is None:
930 930 # Set __name__ to __main__ to better match the behavior of the
931 931 # normal interpreter.
932 932 user_ns = {'__name__' :'__main__',
933 933 '__builtin__' : __builtin__,
934 934 '__builtins__' : __builtin__,
935 935 }
936 936 else:
937 937 user_ns.setdefault('__name__','__main__')
938 938 user_ns.setdefault('__builtin__',__builtin__)
939 939 user_ns.setdefault('__builtins__',__builtin__)
940 940
941 941 if user_global_ns is None:
942 942 user_global_ns = user_ns
943 943 if type(user_global_ns) is not dict:
944 944 raise TypeError("user_global_ns must be a true dict; got %r"
945 945 % type(user_global_ns))
946 946
947 947 return user_ns, user_global_ns
948 948
949 949 def init_sys_modules(self):
950 950 # We need to insert into sys.modules something that looks like a
951 951 # module but which accesses the IPython namespace, for shelve and
952 952 # pickle to work interactively. Normally they rely on getting
953 953 # everything out of __main__, but for embedding purposes each IPython
954 954 # instance has its own private namespace, so we can't go shoving
955 955 # everything into __main__.
956 956
957 957 # note, however, that we should only do this for non-embedded
958 958 # ipythons, which really mimic the __main__.__dict__ with their own
959 959 # namespace. Embedded instances, on the other hand, should not do
960 960 # this because they need to manage the user local/global namespaces
961 961 # only, but they live within a 'normal' __main__ (meaning, they
962 962 # shouldn't overtake the execution environment of the script they're
963 963 # embedded in).
964 964
965 965 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
966 966
967 967 try:
968 968 main_name = self.user_ns['__name__']
969 969 except KeyError:
970 970 raise KeyError('user_ns dictionary MUST have a "__name__" key')
971 971 else:
972 972 sys.modules[main_name] = FakeModule(self.user_ns)
973 973
974 974 def init_user_ns(self):
975 975 """Initialize all user-visible namespaces to their minimum defaults.
976 976
977 977 Certain history lists are also initialized here, as they effectively
978 978 act as user namespaces.
979 979
980 980 Notes
981 981 -----
982 982 All data structures here are only filled in, they are NOT reset by this
983 983 method. If they were not empty before, data will simply be added to
984 984 therm.
985 985 """
986 986 # This function works in two parts: first we put a few things in
987 987 # user_ns, and we sync that contents into user_ns_hidden so that these
988 988 # initial variables aren't shown by %who. After the sync, we add the
989 989 # rest of what we *do* want the user to see with %who even on a new
990 990 # session (probably nothing, so theye really only see their own stuff)
991 991
992 992 # The user dict must *always* have a __builtin__ reference to the
993 993 # Python standard __builtin__ namespace, which must be imported.
994 994 # This is so that certain operations in prompt evaluation can be
995 995 # reliably executed with builtins. Note that we can NOT use
996 996 # __builtins__ (note the 's'), because that can either be a dict or a
997 997 # module, and can even mutate at runtime, depending on the context
998 998 # (Python makes no guarantees on it). In contrast, __builtin__ is
999 999 # always a module object, though it must be explicitly imported.
1000 1000
1001 1001 # For more details:
1002 1002 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
1003 1003 ns = dict(__builtin__ = __builtin__)
1004 1004
1005 1005 # Put 'help' in the user namespace
1006 1006 try:
1007 1007 from site import _Helper
1008 1008 ns['help'] = _Helper()
1009 1009 except ImportError:
1010 1010 warn('help() not available - check site.py')
1011 1011
1012 1012 # make global variables for user access to the histories
1013 1013 ns['_ih'] = self.history_manager.input_hist_parsed
1014 1014 ns['_oh'] = self.history_manager.output_hist
1015 1015 ns['_dh'] = self.history_manager.dir_hist
1016 1016
1017 1017 ns['_sh'] = shadowns
1018 1018
1019 1019 # user aliases to input and output histories. These shouldn't show up
1020 1020 # in %who, as they can have very large reprs.
1021 1021 ns['In'] = self.history_manager.input_hist_parsed
1022 1022 ns['Out'] = self.history_manager.output_hist
1023 1023
1024 1024 # Store myself as the public api!!!
1025 1025 ns['get_ipython'] = self.get_ipython
1026 1026
1027 1027 # Sync what we've added so far to user_ns_hidden so these aren't seen
1028 1028 # by %who
1029 1029 self.user_ns_hidden.update(ns)
1030 1030
1031 1031 # Anything put into ns now would show up in %who. Think twice before
1032 1032 # putting anything here, as we really want %who to show the user their
1033 1033 # stuff, not our variables.
1034 1034
1035 1035 # Finally, update the real user's namespace
1036 1036 self.user_ns.update(ns)
1037 1037
1038 1038 def reset(self, new_session=True):
1039 1039 """Clear all internal namespaces.
1040 1040
1041 1041 Note that this is much more aggressive than %reset, since it clears
1042 1042 fully all namespaces, as well as all input/output lists.
1043 1043
1044 1044 If new_session is True, a new history session will be opened.
1045 1045 """
1046 1046 # Clear histories
1047 1047 self.history_manager.reset(new_session)
1048 1048
1049 1049 # Reset counter used to index all histories
1050 1050 self.execution_count = 0
1051 1051
1052 1052 # Restore the user namespaces to minimal usability
1053 1053 for ns in self.ns_refs_table:
1054 1054 ns.clear()
1055 1055
1056 1056 # The main execution namespaces must be cleared very carefully,
1057 1057 # skipping the deletion of the builtin-related keys, because doing so
1058 1058 # would cause errors in many object's __del__ methods.
1059 1059 for ns in [self.user_ns, self.user_global_ns]:
1060 1060 drop_keys = set(ns.keys())
1061 1061 drop_keys.discard('__builtin__')
1062 1062 drop_keys.discard('__builtins__')
1063 1063 for k in drop_keys:
1064 1064 del ns[k]
1065 1065
1066 1066 # Restore the user namespaces to minimal usability
1067 1067 self.init_user_ns()
1068 1068
1069 1069 # Restore the default and user aliases
1070 1070 self.alias_manager.clear_aliases()
1071 1071 self.alias_manager.init_aliases()
1072 1072
1073 1073 def reset_selective(self, regex=None):
1074 1074 """Clear selective variables from internal namespaces based on a
1075 1075 specified regular expression.
1076 1076
1077 1077 Parameters
1078 1078 ----------
1079 1079 regex : string or compiled pattern, optional
1080 1080 A regular expression pattern that will be used in searching
1081 1081 variable names in the users namespaces.
1082 1082 """
1083 1083 if regex is not None:
1084 1084 try:
1085 1085 m = re.compile(regex)
1086 1086 except TypeError:
1087 1087 raise TypeError('regex must be a string or compiled pattern')
1088 1088 # Search for keys in each namespace that match the given regex
1089 1089 # If a match is found, delete the key/value pair.
1090 1090 for ns in self.ns_refs_table:
1091 1091 for var in ns:
1092 1092 if m.search(var):
1093 1093 del ns[var]
1094 1094
1095 1095 def push(self, variables, interactive=True):
1096 1096 """Inject a group of variables into the IPython user namespace.
1097 1097
1098 1098 Parameters
1099 1099 ----------
1100 1100 variables : dict, str or list/tuple of str
1101 1101 The variables to inject into the user's namespace. If a dict, a
1102 1102 simple update is done. If a str, the string is assumed to have
1103 1103 variable names separated by spaces. A list/tuple of str can also
1104 1104 be used to give the variable names. If just the variable names are
1105 1105 give (list/tuple/str) then the variable values looked up in the
1106 1106 callers frame.
1107 1107 interactive : bool
1108 1108 If True (default), the variables will be listed with the ``who``
1109 1109 magic.
1110 1110 """
1111 1111 vdict = None
1112 1112
1113 1113 # We need a dict of name/value pairs to do namespace updates.
1114 1114 if isinstance(variables, dict):
1115 1115 vdict = variables
1116 1116 elif isinstance(variables, (basestring, list, tuple)):
1117 1117 if isinstance(variables, basestring):
1118 1118 vlist = variables.split()
1119 1119 else:
1120 1120 vlist = variables
1121 1121 vdict = {}
1122 1122 cf = sys._getframe(1)
1123 1123 for name in vlist:
1124 1124 try:
1125 1125 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1126 1126 except:
1127 1127 print ('Could not get variable %s from %s' %
1128 1128 (name,cf.f_code.co_name))
1129 1129 else:
1130 1130 raise ValueError('variables must be a dict/str/list/tuple')
1131 1131
1132 1132 # Propagate variables to user namespace
1133 1133 self.user_ns.update(vdict)
1134 1134
1135 1135 # And configure interactive visibility
1136 1136 config_ns = self.user_ns_hidden
1137 1137 if interactive:
1138 1138 for name, val in vdict.iteritems():
1139 1139 config_ns.pop(name, None)
1140 1140 else:
1141 1141 for name,val in vdict.iteritems():
1142 1142 config_ns[name] = val
1143 1143
1144 1144 #-------------------------------------------------------------------------
1145 1145 # Things related to object introspection
1146 1146 #-------------------------------------------------------------------------
1147 1147
1148 1148 def _ofind(self, oname, namespaces=None):
1149 1149 """Find an object in the available namespaces.
1150 1150
1151 1151 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1152 1152
1153 1153 Has special code to detect magic functions.
1154 1154 """
1155 1155 #oname = oname.strip()
1156 1156 #print '1- oname: <%r>' % oname # dbg
1157 1157 try:
1158 1158 oname = oname.strip().encode('ascii')
1159 1159 #print '2- oname: <%r>' % oname # dbg
1160 1160 except UnicodeEncodeError:
1161 1161 print 'Python identifiers can only contain ascii characters.'
1162 1162 return dict(found=False)
1163 1163
1164 1164 alias_ns = None
1165 1165 if namespaces is None:
1166 1166 # Namespaces to search in:
1167 1167 # Put them in a list. The order is important so that we
1168 1168 # find things in the same order that Python finds them.
1169 1169 namespaces = [ ('Interactive', self.user_ns),
1170 1170 ('IPython internal', self.internal_ns),
1171 1171 ('Python builtin', __builtin__.__dict__),
1172 1172 ('Alias', self.alias_manager.alias_table),
1173 1173 ]
1174 1174 alias_ns = self.alias_manager.alias_table
1175 1175
1176 1176 # initialize results to 'null'
1177 1177 found = False; obj = None; ospace = None; ds = None;
1178 1178 ismagic = False; isalias = False; parent = None
1179 1179
1180 1180 # We need to special-case 'print', which as of python2.6 registers as a
1181 1181 # function but should only be treated as one if print_function was
1182 1182 # loaded with a future import. In this case, just bail.
1183 1183 if (oname == 'print' and not (self.compile.compiler_flags &
1184 1184 __future__.CO_FUTURE_PRINT_FUNCTION)):
1185 1185 return {'found':found, 'obj':obj, 'namespace':ospace,
1186 1186 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1187 1187
1188 1188 # Look for the given name by splitting it in parts. If the head is
1189 1189 # found, then we look for all the remaining parts as members, and only
1190 1190 # declare success if we can find them all.
1191 1191 oname_parts = oname.split('.')
1192 1192 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1193 1193 for nsname,ns in namespaces:
1194 1194 try:
1195 1195 obj = ns[oname_head]
1196 1196 except KeyError:
1197 1197 continue
1198 1198 else:
1199 1199 #print 'oname_rest:', oname_rest # dbg
1200 1200 for part in oname_rest:
1201 1201 try:
1202 1202 parent = obj
1203 1203 obj = getattr(obj,part)
1204 1204 except:
1205 1205 # Blanket except b/c some badly implemented objects
1206 1206 # allow __getattr__ to raise exceptions other than
1207 1207 # AttributeError, which then crashes IPython.
1208 1208 break
1209 1209 else:
1210 1210 # If we finish the for loop (no break), we got all members
1211 1211 found = True
1212 1212 ospace = nsname
1213 1213 if ns == alias_ns:
1214 1214 isalias = True
1215 1215 break # namespace loop
1216 1216
1217 1217 # Try to see if it's magic
1218 1218 if not found:
1219 1219 if oname.startswith(ESC_MAGIC):
1220 1220 oname = oname[1:]
1221 1221 obj = getattr(self,'magic_'+oname,None)
1222 1222 if obj is not None:
1223 1223 found = True
1224 1224 ospace = 'IPython internal'
1225 1225 ismagic = True
1226 1226
1227 1227 # Last try: special-case some literals like '', [], {}, etc:
1228 1228 if not found and oname_head in ["''",'""','[]','{}','()']:
1229 1229 obj = eval(oname_head)
1230 1230 found = True
1231 1231 ospace = 'Interactive'
1232 1232
1233 1233 return {'found':found, 'obj':obj, 'namespace':ospace,
1234 1234 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1235 1235
1236 1236 def _ofind_property(self, oname, info):
1237 1237 """Second part of object finding, to look for property details."""
1238 1238 if info.found:
1239 1239 # Get the docstring of the class property if it exists.
1240 1240 path = oname.split('.')
1241 1241 root = '.'.join(path[:-1])
1242 1242 if info.parent is not None:
1243 1243 try:
1244 1244 target = getattr(info.parent, '__class__')
1245 1245 # The object belongs to a class instance.
1246 1246 try:
1247 1247 target = getattr(target, path[-1])
1248 1248 # The class defines the object.
1249 1249 if isinstance(target, property):
1250 1250 oname = root + '.__class__.' + path[-1]
1251 1251 info = Struct(self._ofind(oname))
1252 1252 except AttributeError: pass
1253 1253 except AttributeError: pass
1254 1254
1255 1255 # We return either the new info or the unmodified input if the object
1256 1256 # hadn't been found
1257 1257 return info
1258 1258
1259 1259 def _object_find(self, oname, namespaces=None):
1260 1260 """Find an object and return a struct with info about it."""
1261 1261 inf = Struct(self._ofind(oname, namespaces))
1262 1262 return Struct(self._ofind_property(oname, inf))
1263 1263
1264 1264 def _inspect(self, meth, oname, namespaces=None, **kw):
1265 1265 """Generic interface to the inspector system.
1266 1266
1267 1267 This function is meant to be called by pdef, pdoc & friends."""
1268 1268 info = self._object_find(oname)
1269 1269 if info.found:
1270 1270 pmethod = getattr(self.inspector, meth)
1271 1271 formatter = format_screen if info.ismagic else None
1272 1272 if meth == 'pdoc':
1273 1273 pmethod(info.obj, oname, formatter)
1274 1274 elif meth == 'pinfo':
1275 1275 pmethod(info.obj, oname, formatter, info, **kw)
1276 1276 else:
1277 1277 pmethod(info.obj, oname)
1278 1278 else:
1279 1279 print 'Object `%s` not found.' % oname
1280 1280 return 'not found' # so callers can take other action
1281 1281
1282 1282 def object_inspect(self, oname):
1283 1283 info = self._object_find(oname)
1284 1284 if info.found:
1285 1285 return self.inspector.info(info.obj, oname, info=info)
1286 1286 else:
1287 1287 return oinspect.object_info(name=oname, found=False)
1288 1288
1289 1289 #-------------------------------------------------------------------------
1290 1290 # Things related to history management
1291 1291 #-------------------------------------------------------------------------
1292 1292
1293 1293 def init_history(self):
1294 1294 """Sets up the command history, and starts regular autosaves."""
1295 1295 self.history_manager = HistoryManager(shell=self, config=self.config)
1296 1296
1297 1297 #-------------------------------------------------------------------------
1298 1298 # Things related to exception handling and tracebacks (not debugging)
1299 1299 #-------------------------------------------------------------------------
1300 1300
1301 1301 def init_traceback_handlers(self, custom_exceptions):
1302 1302 # Syntax error handler.
1303 1303 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1304 1304
1305 1305 # The interactive one is initialized with an offset, meaning we always
1306 1306 # want to remove the topmost item in the traceback, which is our own
1307 1307 # internal code. Valid modes: ['Plain','Context','Verbose']
1308 1308 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1309 1309 color_scheme='NoColor',
1310 1310 tb_offset = 1,
1311 1311 check_cache=self.compile.check_cache)
1312 1312
1313 1313 # The instance will store a pointer to the system-wide exception hook,
1314 1314 # so that runtime code (such as magics) can access it. This is because
1315 1315 # during the read-eval loop, it may get temporarily overwritten.
1316 1316 self.sys_excepthook = sys.excepthook
1317 1317
1318 1318 # and add any custom exception handlers the user may have specified
1319 1319 self.set_custom_exc(*custom_exceptions)
1320 1320
1321 1321 # Set the exception mode
1322 1322 self.InteractiveTB.set_mode(mode=self.xmode)
1323 1323
1324 1324 def set_custom_exc(self, exc_tuple, handler):
1325 1325 """set_custom_exc(exc_tuple,handler)
1326 1326
1327 1327 Set a custom exception handler, which will be called if any of the
1328 1328 exceptions in exc_tuple occur in the mainloop (specifically, in the
1329 1329 run_code() method.
1330 1330
1331 1331 Inputs:
1332 1332
1333 1333 - exc_tuple: a *tuple* of valid exceptions to call the defined
1334 1334 handler for. It is very important that you use a tuple, and NOT A
1335 1335 LIST here, because of the way Python's except statement works. If
1336 1336 you only want to trap a single exception, use a singleton tuple:
1337 1337
1338 1338 exc_tuple == (MyCustomException,)
1339 1339
1340 1340 - handler: this must be defined as a function with the following
1341 1341 basic interface::
1342 1342
1343 1343 def my_handler(self, etype, value, tb, tb_offset=None)
1344 1344 ...
1345 1345 # The return value must be
1346 1346 return structured_traceback
1347 1347
1348 1348 This will be made into an instance method (via types.MethodType)
1349 1349 of IPython itself, and it will be called if any of the exceptions
1350 1350 listed in the exc_tuple are caught. If the handler is None, an
1351 1351 internal basic one is used, which just prints basic info.
1352 1352
1353 1353 WARNING: by putting in your own exception handler into IPython's main
1354 1354 execution loop, you run a very good chance of nasty crashes. This
1355 1355 facility should only be used if you really know what you are doing."""
1356 1356
1357 1357 assert type(exc_tuple)==type(()) , \
1358 1358 "The custom exceptions must be given AS A TUPLE."
1359 1359
1360 1360 def dummy_handler(self,etype,value,tb):
1361 1361 print '*** Simple custom exception handler ***'
1362 1362 print 'Exception type :',etype
1363 1363 print 'Exception value:',value
1364 1364 print 'Traceback :',tb
1365 1365 print 'Source code :','\n'.join(self.buffer)
1366 1366
1367 1367 if handler is None: handler = dummy_handler
1368 1368
1369 1369 self.CustomTB = types.MethodType(handler,self)
1370 1370 self.custom_exceptions = exc_tuple
1371 1371
1372 1372 def excepthook(self, etype, value, tb):
1373 1373 """One more defense for GUI apps that call sys.excepthook.
1374 1374
1375 1375 GUI frameworks like wxPython trap exceptions and call
1376 1376 sys.excepthook themselves. I guess this is a feature that
1377 1377 enables them to keep running after exceptions that would
1378 1378 otherwise kill their mainloop. This is a bother for IPython
1379 1379 which excepts to catch all of the program exceptions with a try:
1380 1380 except: statement.
1381 1381
1382 1382 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1383 1383 any app directly invokes sys.excepthook, it will look to the user like
1384 1384 IPython crashed. In order to work around this, we can disable the
1385 1385 CrashHandler and replace it with this excepthook instead, which prints a
1386 1386 regular traceback using our InteractiveTB. In this fashion, apps which
1387 1387 call sys.excepthook will generate a regular-looking exception from
1388 1388 IPython, and the CrashHandler will only be triggered by real IPython
1389 1389 crashes.
1390 1390
1391 1391 This hook should be used sparingly, only in places which are not likely
1392 1392 to be true IPython errors.
1393 1393 """
1394 1394 self.showtraceback((etype,value,tb),tb_offset=0)
1395 1395
1396 1396 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1397 1397 exception_only=False):
1398 1398 """Display the exception that just occurred.
1399 1399
1400 1400 If nothing is known about the exception, this is the method which
1401 1401 should be used throughout the code for presenting user tracebacks,
1402 1402 rather than directly invoking the InteractiveTB object.
1403 1403
1404 1404 A specific showsyntaxerror() also exists, but this method can take
1405 1405 care of calling it if needed, so unless you are explicitly catching a
1406 1406 SyntaxError exception, don't try to analyze the stack manually and
1407 1407 simply call this method."""
1408 1408
1409 1409 try:
1410 1410 if exc_tuple is None:
1411 1411 etype, value, tb = sys.exc_info()
1412 1412 else:
1413 1413 etype, value, tb = exc_tuple
1414 1414
1415 1415 if etype is None:
1416 1416 if hasattr(sys, 'last_type'):
1417 1417 etype, value, tb = sys.last_type, sys.last_value, \
1418 1418 sys.last_traceback
1419 1419 else:
1420 1420 self.write_err('No traceback available to show.\n')
1421 1421 return
1422 1422
1423 1423 if etype is SyntaxError:
1424 1424 # Though this won't be called by syntax errors in the input
1425 1425 # line, there may be SyntaxError cases whith imported code.
1426 1426 self.showsyntaxerror(filename)
1427 1427 elif etype is UsageError:
1428 1428 print "UsageError:", value
1429 1429 else:
1430 1430 # WARNING: these variables are somewhat deprecated and not
1431 1431 # necessarily safe to use in a threaded environment, but tools
1432 1432 # like pdb depend on their existence, so let's set them. If we
1433 1433 # find problems in the field, we'll need to revisit their use.
1434 1434 sys.last_type = etype
1435 1435 sys.last_value = value
1436 1436 sys.last_traceback = tb
1437 1437
1438 1438 if etype in self.custom_exceptions:
1439 1439 # FIXME: Old custom traceback objects may just return a
1440 1440 # string, in that case we just put it into a list
1441 1441 stb = self.CustomTB(etype, value, tb, tb_offset)
1442 1442 if isinstance(ctb, basestring):
1443 1443 stb = [stb]
1444 1444 else:
1445 1445 if exception_only:
1446 1446 stb = ['An exception has occurred, use %tb to see '
1447 1447 'the full traceback.\n']
1448 1448 stb.extend(self.InteractiveTB.get_exception_only(etype,
1449 1449 value))
1450 1450 else:
1451 1451 stb = self.InteractiveTB.structured_traceback(etype,
1452 1452 value, tb, tb_offset=tb_offset)
1453 1453 # FIXME: the pdb calling should be done by us, not by
1454 1454 # the code computing the traceback.
1455 1455 if self.InteractiveTB.call_pdb:
1456 1456 # pdb mucks up readline, fix it back
1457 1457 self.set_readline_completer()
1458 1458
1459 1459 # Actually show the traceback
1460 1460 self._showtraceback(etype, value, stb)
1461 1461
1462 1462 except KeyboardInterrupt:
1463 1463 self.write_err("\nKeyboardInterrupt\n")
1464 1464
1465 1465 def _showtraceback(self, etype, evalue, stb):
1466 1466 """Actually show a traceback.
1467 1467
1468 1468 Subclasses may override this method to put the traceback on a different
1469 1469 place, like a side channel.
1470 1470 """
1471 1471 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1472 1472
1473 1473 def showsyntaxerror(self, filename=None):
1474 1474 """Display the syntax error that just occurred.
1475 1475
1476 1476 This doesn't display a stack trace because there isn't one.
1477 1477
1478 1478 If a filename is given, it is stuffed in the exception instead
1479 1479 of what was there before (because Python's parser always uses
1480 1480 "<string>" when reading from a string).
1481 1481 """
1482 1482 etype, value, last_traceback = sys.exc_info()
1483 1483
1484 1484 # See note about these variables in showtraceback() above
1485 1485 sys.last_type = etype
1486 1486 sys.last_value = value
1487 1487 sys.last_traceback = last_traceback
1488 1488
1489 1489 if filename and etype is SyntaxError:
1490 1490 # Work hard to stuff the correct filename in the exception
1491 1491 try:
1492 1492 msg, (dummy_filename, lineno, offset, line) = value
1493 1493 except:
1494 1494 # Not the format we expect; leave it alone
1495 1495 pass
1496 1496 else:
1497 1497 # Stuff in the right filename
1498 1498 try:
1499 1499 # Assume SyntaxError is a class exception
1500 1500 value = SyntaxError(msg, (filename, lineno, offset, line))
1501 1501 except:
1502 1502 # If that failed, assume SyntaxError is a string
1503 1503 value = msg, (filename, lineno, offset, line)
1504 1504 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1505 1505 self._showtraceback(etype, value, stb)
1506 1506
1507 1507 #-------------------------------------------------------------------------
1508 1508 # Things related to readline
1509 1509 #-------------------------------------------------------------------------
1510 1510
1511 1511 def init_readline(self):
1512 1512 """Command history completion/saving/reloading."""
1513 1513
1514 1514 if self.readline_use:
1515 1515 import IPython.utils.rlineimpl as readline
1516 1516
1517 1517 self.rl_next_input = None
1518 1518 self.rl_do_indent = False
1519 1519
1520 1520 if not self.readline_use or not readline.have_readline:
1521 1521 self.has_readline = False
1522 1522 self.readline = None
1523 1523 # Set a number of methods that depend on readline to be no-op
1524 1524 self.set_readline_completer = no_op
1525 1525 self.set_custom_completer = no_op
1526 1526 self.set_completer_frame = no_op
1527 1527 warn('Readline services not available or not loaded.')
1528 1528 else:
1529 1529 self.has_readline = True
1530 1530 self.readline = readline
1531 1531 sys.modules['readline'] = readline
1532 1532
1533 1533 # Platform-specific configuration
1534 1534 if os.name == 'nt':
1535 1535 # FIXME - check with Frederick to see if we can harmonize
1536 1536 # naming conventions with pyreadline to avoid this
1537 1537 # platform-dependent check
1538 1538 self.readline_startup_hook = readline.set_pre_input_hook
1539 1539 else:
1540 1540 self.readline_startup_hook = readline.set_startup_hook
1541 1541
1542 1542 # Load user's initrc file (readline config)
1543 1543 # Or if libedit is used, load editrc.
1544 1544 inputrc_name = os.environ.get('INPUTRC')
1545 1545 if inputrc_name is None:
1546 1546 home_dir = get_home_dir()
1547 1547 if home_dir is not None:
1548 1548 inputrc_name = '.inputrc'
1549 1549 if readline.uses_libedit:
1550 1550 inputrc_name = '.editrc'
1551 1551 inputrc_name = os.path.join(home_dir, inputrc_name)
1552 1552 if os.path.isfile(inputrc_name):
1553 1553 try:
1554 1554 readline.read_init_file(inputrc_name)
1555 1555 except:
1556 1556 warn('Problems reading readline initialization file <%s>'
1557 1557 % inputrc_name)
1558 1558
1559 1559 # Configure readline according to user's prefs
1560 1560 # This is only done if GNU readline is being used. If libedit
1561 1561 # is being used (as on Leopard) the readline config is
1562 1562 # not run as the syntax for libedit is different.
1563 1563 if not readline.uses_libedit:
1564 1564 for rlcommand in self.readline_parse_and_bind:
1565 1565 #print "loading rl:",rlcommand # dbg
1566 1566 readline.parse_and_bind(rlcommand)
1567 1567
1568 1568 # Remove some chars from the delimiters list. If we encounter
1569 1569 # unicode chars, discard them.
1570 1570 delims = readline.get_completer_delims().encode("ascii", "ignore")
1571 1571 delims = delims.translate(None, self.readline_remove_delims)
1572 1572 delims = delims.replace(ESC_MAGIC, '')
1573 1573 readline.set_completer_delims(delims)
1574 1574 # otherwise we end up with a monster history after a while:
1575 1575 readline.set_history_length(self.history_length)
1576 1576
1577 1577 self.refill_readline_hist()
1578 1578 self.readline_no_record = ReadlineNoRecord(self)
1579 1579
1580 1580 # Configure auto-indent for all platforms
1581 1581 self.set_autoindent(self.autoindent)
1582 1582
1583 1583 def refill_readline_hist(self):
1584 1584 # Load the last 1000 lines from history
1585 1585 self.readline.clear_history()
1586 1586 stdin_encoding = sys.stdin.encoding or "utf-8"
1587 1587 for _, _, cell in self.history_manager.get_tail(1000,
1588 1588 include_latest=True):
1589 1589 if cell.strip(): # Ignore blank lines
1590 1590 for line in cell.splitlines():
1591 1591 self.readline.add_history(line.encode(stdin_encoding))
1592 1592
1593 1593 def set_next_input(self, s):
1594 1594 """ Sets the 'default' input string for the next command line.
1595 1595
1596 1596 Requires readline.
1597 1597
1598 1598 Example:
1599 1599
1600 1600 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1601 1601 [D:\ipython]|2> Hello Word_ # cursor is here
1602 1602 """
1603 1603
1604 1604 self.rl_next_input = s
1605 1605
1606 1606 # Maybe move this to the terminal subclass?
1607 1607 def pre_readline(self):
1608 1608 """readline hook to be used at the start of each line.
1609 1609
1610 1610 Currently it handles auto-indent only."""
1611 1611
1612 1612 if self.rl_do_indent:
1613 1613 self.readline.insert_text(self._indent_current_str())
1614 1614 if self.rl_next_input is not None:
1615 1615 self.readline.insert_text(self.rl_next_input)
1616 1616 self.rl_next_input = None
1617 1617
1618 1618 def _indent_current_str(self):
1619 1619 """return the current level of indentation as a string"""
1620 1620 return self.input_splitter.indent_spaces * ' '
1621 1621
1622 1622 #-------------------------------------------------------------------------
1623 1623 # Things related to text completion
1624 1624 #-------------------------------------------------------------------------
1625 1625
1626 1626 def init_completer(self):
1627 1627 """Initialize the completion machinery.
1628 1628
1629 1629 This creates completion machinery that can be used by client code,
1630 1630 either interactively in-process (typically triggered by the readline
1631 1631 library), programatically (such as in test suites) or out-of-prcess
1632 1632 (typically over the network by remote frontends).
1633 1633 """
1634 1634 from IPython.core.completer import IPCompleter
1635 1635 from IPython.core.completerlib import (module_completer,
1636 1636 magic_run_completer, cd_completer)
1637 1637
1638 1638 self.Completer = IPCompleter(self,
1639 1639 self.user_ns,
1640 1640 self.user_global_ns,
1641 1641 self.readline_omit__names,
1642 1642 self.alias_manager.alias_table,
1643 1643 self.has_readline)
1644 1644
1645 1645 # Add custom completers to the basic ones built into IPCompleter
1646 1646 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1647 1647 self.strdispatchers['complete_command'] = sdisp
1648 1648 self.Completer.custom_completers = sdisp
1649 1649
1650 1650 self.set_hook('complete_command', module_completer, str_key = 'import')
1651 1651 self.set_hook('complete_command', module_completer, str_key = 'from')
1652 1652 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1653 1653 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1654 1654
1655 1655 # Only configure readline if we truly are using readline. IPython can
1656 1656 # do tab-completion over the network, in GUIs, etc, where readline
1657 1657 # itself may be absent
1658 1658 if self.has_readline:
1659 1659 self.set_readline_completer()
1660 1660
1661 1661 def complete(self, text, line=None, cursor_pos=None):
1662 1662 """Return the completed text and a list of completions.
1663 1663
1664 1664 Parameters
1665 1665 ----------
1666 1666
1667 1667 text : string
1668 1668 A string of text to be completed on. It can be given as empty and
1669 1669 instead a line/position pair are given. In this case, the
1670 1670 completer itself will split the line like readline does.
1671 1671
1672 1672 line : string, optional
1673 1673 The complete line that text is part of.
1674 1674
1675 1675 cursor_pos : int, optional
1676 1676 The position of the cursor on the input line.
1677 1677
1678 1678 Returns
1679 1679 -------
1680 1680 text : string
1681 1681 The actual text that was completed.
1682 1682
1683 1683 matches : list
1684 1684 A sorted list with all possible completions.
1685 1685
1686 1686 The optional arguments allow the completion to take more context into
1687 1687 account, and are part of the low-level completion API.
1688 1688
1689 1689 This is a wrapper around the completion mechanism, similar to what
1690 1690 readline does at the command line when the TAB key is hit. By
1691 1691 exposing it as a method, it can be used by other non-readline
1692 1692 environments (such as GUIs) for text completion.
1693 1693
1694 1694 Simple usage example:
1695 1695
1696 1696 In [1]: x = 'hello'
1697 1697
1698 1698 In [2]: _ip.complete('x.l')
1699 1699 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1700 1700 """
1701 1701
1702 1702 # Inject names into __builtin__ so we can complete on the added names.
1703 1703 with self.builtin_trap:
1704 1704 return self.Completer.complete(text, line, cursor_pos)
1705 1705
1706 1706 def set_custom_completer(self, completer, pos=0):
1707 1707 """Adds a new custom completer function.
1708 1708
1709 1709 The position argument (defaults to 0) is the index in the completers
1710 1710 list where you want the completer to be inserted."""
1711 1711
1712 1712 newcomp = types.MethodType(completer,self.Completer)
1713 1713 self.Completer.matchers.insert(pos,newcomp)
1714 1714
1715 1715 def set_readline_completer(self):
1716 1716 """Reset readline's completer to be our own."""
1717 1717 self.readline.set_completer(self.Completer.rlcomplete)
1718 1718
1719 1719 def set_completer_frame(self, frame=None):
1720 1720 """Set the frame of the completer."""
1721 1721 if frame:
1722 1722 self.Completer.namespace = frame.f_locals
1723 1723 self.Completer.global_namespace = frame.f_globals
1724 1724 else:
1725 1725 self.Completer.namespace = self.user_ns
1726 1726 self.Completer.global_namespace = self.user_global_ns
1727 1727
1728 1728 #-------------------------------------------------------------------------
1729 1729 # Things related to magics
1730 1730 #-------------------------------------------------------------------------
1731 1731
1732 1732 def init_magics(self):
1733 1733 # FIXME: Move the color initialization to the DisplayHook, which
1734 1734 # should be split into a prompt manager and displayhook. We probably
1735 1735 # even need a centralize colors management object.
1736 1736 self.magic_colors(self.colors)
1737 1737 # History was moved to a separate module
1738 1738 from . import history
1739 1739 history.init_ipython(self)
1740 1740
1741 1741 def magic(self,arg_s):
1742 1742 """Call a magic function by name.
1743 1743
1744 1744 Input: a string containing the name of the magic function to call and
1745 1745 any additional arguments to be passed to the magic.
1746 1746
1747 1747 magic('name -opt foo bar') is equivalent to typing at the ipython
1748 1748 prompt:
1749 1749
1750 1750 In[1]: %name -opt foo bar
1751 1751
1752 1752 To call a magic without arguments, simply use magic('name').
1753 1753
1754 1754 This provides a proper Python function to call IPython's magics in any
1755 1755 valid Python code you can type at the interpreter, including loops and
1756 1756 compound statements.
1757 1757 """
1758 1758 args = arg_s.split(' ',1)
1759 1759 magic_name = args[0]
1760 1760 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1761 1761
1762 1762 try:
1763 1763 magic_args = args[1]
1764 1764 except IndexError:
1765 1765 magic_args = ''
1766 1766 fn = getattr(self,'magic_'+magic_name,None)
1767 1767 if fn is None:
1768 1768 error("Magic function `%s` not found." % magic_name)
1769 1769 else:
1770 1770 magic_args = self.var_expand(magic_args,1)
1771 1771 # Grab local namespace if we need it:
1772 1772 if getattr(fn, "needs_local_scope", False):
1773 1773 self._magic_locals = sys._getframe(1).f_locals
1774 1774 with nested(self.builtin_trap,):
1775 1775 result = fn(magic_args)
1776 1776 # Ensure we're not keeping object references around:
1777 1777 self._magic_locals = {}
1778 1778 return result
1779 1779
1780 1780 def define_magic(self, magicname, func):
1781 1781 """Expose own function as magic function for ipython
1782 1782
1783 1783 def foo_impl(self,parameter_s=''):
1784 1784 'My very own magic!. (Use docstrings, IPython reads them).'
1785 1785 print 'Magic function. Passed parameter is between < >:'
1786 1786 print '<%s>' % parameter_s
1787 1787 print 'The self object is:',self
1788 1788
1789 1789 self.define_magic('foo',foo_impl)
1790 1790 """
1791 1791
1792 1792 import new
1793 1793 im = types.MethodType(func,self)
1794 1794 old = getattr(self, "magic_" + magicname, None)
1795 1795 setattr(self, "magic_" + magicname, im)
1796 1796 return old
1797 1797
1798 1798 #-------------------------------------------------------------------------
1799 1799 # Things related to macros
1800 1800 #-------------------------------------------------------------------------
1801 1801
1802 1802 def define_macro(self, name, themacro):
1803 1803 """Define a new macro
1804 1804
1805 1805 Parameters
1806 1806 ----------
1807 1807 name : str
1808 1808 The name of the macro.
1809 1809 themacro : str or Macro
1810 1810 The action to do upon invoking the macro. If a string, a new
1811 1811 Macro object is created by passing the string to it.
1812 1812 """
1813 1813
1814 1814 from IPython.core import macro
1815 1815
1816 1816 if isinstance(themacro, basestring):
1817 1817 themacro = macro.Macro(themacro)
1818 1818 if not isinstance(themacro, macro.Macro):
1819 1819 raise ValueError('A macro must be a string or a Macro instance.')
1820 1820 self.user_ns[name] = themacro
1821 1821
1822 1822 #-------------------------------------------------------------------------
1823 1823 # Things related to the running of system commands
1824 1824 #-------------------------------------------------------------------------
1825 1825
1826 1826 def system(self, cmd):
1827 1827 """Call the given cmd in a subprocess.
1828 1828
1829 1829 Parameters
1830 1830 ----------
1831 1831 cmd : str
1832 1832 Command to execute (can not end in '&', as bacground processes are
1833 1833 not supported.
1834 1834 """
1835 1835 # We do not support backgrounding processes because we either use
1836 1836 # pexpect or pipes to read from. Users can always just call
1837 1837 # os.system() if they really want a background process.
1838 1838 if cmd.endswith('&'):
1839 1839 raise OSError("Background processes not supported.")
1840 1840
1841 1841 return system(self.var_expand(cmd, depth=2))
1842 1842
1843 1843 def getoutput(self, cmd, split=True):
1844 1844 """Get output (possibly including stderr) from a subprocess.
1845 1845
1846 1846 Parameters
1847 1847 ----------
1848 1848 cmd : str
1849 1849 Command to execute (can not end in '&', as background processes are
1850 1850 not supported.
1851 1851 split : bool, optional
1852 1852
1853 1853 If True, split the output into an IPython SList. Otherwise, an
1854 1854 IPython LSString is returned. These are objects similar to normal
1855 1855 lists and strings, with a few convenience attributes for easier
1856 1856 manipulation of line-based output. You can use '?' on them for
1857 1857 details.
1858 1858 """
1859 1859 if cmd.endswith('&'):
1860 1860 raise OSError("Background processes not supported.")
1861 1861 out = getoutput(self.var_expand(cmd, depth=2))
1862 1862 if split:
1863 1863 out = SList(out.splitlines())
1864 1864 else:
1865 1865 out = LSString(out)
1866 1866 return out
1867 1867
1868 1868 #-------------------------------------------------------------------------
1869 1869 # Things related to aliases
1870 1870 #-------------------------------------------------------------------------
1871 1871
1872 1872 def init_alias(self):
1873 1873 self.alias_manager = AliasManager(shell=self, config=self.config)
1874 1874 self.ns_table['alias'] = self.alias_manager.alias_table,
1875 1875
1876 1876 #-------------------------------------------------------------------------
1877 1877 # Things related to extensions and plugins
1878 1878 #-------------------------------------------------------------------------
1879 1879
1880 1880 def init_extension_manager(self):
1881 1881 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1882 1882
1883 1883 def init_plugin_manager(self):
1884 1884 self.plugin_manager = PluginManager(config=self.config)
1885 1885
1886 1886 #-------------------------------------------------------------------------
1887 1887 # Things related to payloads
1888 1888 #-------------------------------------------------------------------------
1889 1889
1890 1890 def init_payload(self):
1891 1891 self.payload_manager = PayloadManager(config=self.config)
1892 1892
1893 1893 #-------------------------------------------------------------------------
1894 1894 # Things related to the prefilter
1895 1895 #-------------------------------------------------------------------------
1896 1896
1897 1897 def init_prefilter(self):
1898 1898 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1899 1899 # Ultimately this will be refactored in the new interpreter code, but
1900 1900 # for now, we should expose the main prefilter method (there's legacy
1901 1901 # code out there that may rely on this).
1902 1902 self.prefilter = self.prefilter_manager.prefilter_lines
1903 1903
1904 1904 def auto_rewrite_input(self, cmd):
1905 1905 """Print to the screen the rewritten form of the user's command.
1906 1906
1907 1907 This shows visual feedback by rewriting input lines that cause
1908 1908 automatic calling to kick in, like::
1909 1909
1910 1910 /f x
1911 1911
1912 1912 into::
1913 1913
1914 1914 ------> f(x)
1915 1915
1916 1916 after the user's input prompt. This helps the user understand that the
1917 1917 input line was transformed automatically by IPython.
1918 1918 """
1919 1919 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1920 1920
1921 1921 try:
1922 1922 # plain ascii works better w/ pyreadline, on some machines, so
1923 1923 # we use it and only print uncolored rewrite if we have unicode
1924 1924 rw = str(rw)
1925 1925 print >> IPython.utils.io.Term.cout, rw
1926 1926 except UnicodeEncodeError:
1927 1927 print "------> " + cmd
1928 1928
1929 1929 #-------------------------------------------------------------------------
1930 1930 # Things related to extracting values/expressions from kernel and user_ns
1931 1931 #-------------------------------------------------------------------------
1932 1932
1933 1933 def _simple_error(self):
1934 1934 etype, value = sys.exc_info()[:2]
1935 1935 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1936 1936
1937 1937 def user_variables(self, names):
1938 1938 """Get a list of variable names from the user's namespace.
1939 1939
1940 1940 Parameters
1941 1941 ----------
1942 1942 names : list of strings
1943 1943 A list of names of variables to be read from the user namespace.
1944 1944
1945 1945 Returns
1946 1946 -------
1947 1947 A dict, keyed by the input names and with the repr() of each value.
1948 1948 """
1949 1949 out = {}
1950 1950 user_ns = self.user_ns
1951 1951 for varname in names:
1952 1952 try:
1953 1953 value = repr(user_ns[varname])
1954 1954 except:
1955 1955 value = self._simple_error()
1956 1956 out[varname] = value
1957 1957 return out
1958 1958
1959 1959 def user_expressions(self, expressions):
1960 1960 """Evaluate a dict of expressions in the user's namespace.
1961 1961
1962 1962 Parameters
1963 1963 ----------
1964 1964 expressions : dict
1965 1965 A dict with string keys and string values. The expression values
1966 1966 should be valid Python expressions, each of which will be evaluated
1967 1967 in the user namespace.
1968 1968
1969 1969 Returns
1970 1970 -------
1971 1971 A dict, keyed like the input expressions dict, with the repr() of each
1972 1972 value.
1973 1973 """
1974 1974 out = {}
1975 1975 user_ns = self.user_ns
1976 1976 global_ns = self.user_global_ns
1977 1977 for key, expr in expressions.iteritems():
1978 1978 try:
1979 1979 value = repr(eval(expr, global_ns, user_ns))
1980 1980 except:
1981 1981 value = self._simple_error()
1982 1982 out[key] = value
1983 1983 return out
1984 1984
1985 1985 #-------------------------------------------------------------------------
1986 1986 # Things related to the running of code
1987 1987 #-------------------------------------------------------------------------
1988 1988
1989 1989 def ex(self, cmd):
1990 1990 """Execute a normal python statement in user namespace."""
1991 1991 with nested(self.builtin_trap,):
1992 1992 exec cmd in self.user_global_ns, self.user_ns
1993 1993
1994 1994 def ev(self, expr):
1995 1995 """Evaluate python expression expr in user namespace.
1996 1996
1997 1997 Returns the result of evaluation
1998 1998 """
1999 1999 with nested(self.builtin_trap,):
2000 2000 return eval(expr, self.user_global_ns, self.user_ns)
2001 2001
2002 2002 def safe_execfile(self, fname, *where, **kw):
2003 2003 """A safe version of the builtin execfile().
2004 2004
2005 2005 This version will never throw an exception, but instead print
2006 2006 helpful error messages to the screen. This only works on pure
2007 2007 Python files with the .py extension.
2008 2008
2009 2009 Parameters
2010 2010 ----------
2011 2011 fname : string
2012 2012 The name of the file to be executed.
2013 2013 where : tuple
2014 2014 One or two namespaces, passed to execfile() as (globals,locals).
2015 2015 If only one is given, it is passed as both.
2016 2016 exit_ignore : bool (False)
2017 2017 If True, then silence SystemExit for non-zero status (it is always
2018 2018 silenced for zero status, as it is so common).
2019 2019 """
2020 2020 kw.setdefault('exit_ignore', False)
2021 2021
2022 2022 fname = os.path.abspath(os.path.expanduser(fname))
2023 2023 # Make sure we have a .py file
2024 2024 if not fname.endswith('.py'):
2025 2025 warn('File must end with .py to be run using execfile: <%s>' % fname)
2026 2026
2027 2027 # Make sure we can open the file
2028 2028 try:
2029 2029 with open(fname) as thefile:
2030 2030 pass
2031 2031 except:
2032 2032 warn('Could not open file <%s> for safe execution.' % fname)
2033 2033 return
2034 2034
2035 2035 # Find things also in current directory. This is needed to mimic the
2036 2036 # behavior of running a script from the system command line, where
2037 2037 # Python inserts the script's directory into sys.path
2038 2038 dname = os.path.dirname(fname)
2039 2039
2040 2040 if isinstance(fname, unicode):
2041 2041 # execfile uses default encoding instead of filesystem encoding
2042 2042 # so unicode filenames will fail
2043 2043 fname = fname.encode(sys.getfilesystemencoding() or sys.getdefaultencoding())
2044 2044
2045 2045 with prepended_to_syspath(dname):
2046 2046 try:
2047 2047 execfile(fname,*where)
2048 2048 except SystemExit, status:
2049 2049 # If the call was made with 0 or None exit status (sys.exit(0)
2050 2050 # or sys.exit() ), don't bother showing a traceback, as both of
2051 2051 # these are considered normal by the OS:
2052 2052 # > python -c'import sys;sys.exit(0)'; echo $?
2053 2053 # 0
2054 2054 # > python -c'import sys;sys.exit()'; echo $?
2055 2055 # 0
2056 2056 # For other exit status, we show the exception unless
2057 2057 # explicitly silenced, but only in short form.
2058 2058 if status.code not in (0, None) and not kw['exit_ignore']:
2059 2059 self.showtraceback(exception_only=True)
2060 2060 except:
2061 2061 self.showtraceback()
2062 2062
2063 2063 def safe_execfile_ipy(self, fname):
2064 2064 """Like safe_execfile, but for .ipy files with IPython syntax.
2065 2065
2066 2066 Parameters
2067 2067 ----------
2068 2068 fname : str
2069 2069 The name of the file to execute. The filename must have a
2070 2070 .ipy extension.
2071 2071 """
2072 2072 fname = os.path.abspath(os.path.expanduser(fname))
2073 2073
2074 2074 # Make sure we have a .py file
2075 2075 if not fname.endswith('.ipy'):
2076 2076 warn('File must end with .py to be run using execfile: <%s>' % fname)
2077 2077
2078 2078 # Make sure we can open the file
2079 2079 try:
2080 2080 with open(fname) as thefile:
2081 2081 pass
2082 2082 except:
2083 2083 warn('Could not open file <%s> for safe execution.' % fname)
2084 2084 return
2085 2085
2086 2086 # Find things also in current directory. This is needed to mimic the
2087 2087 # behavior of running a script from the system command line, where
2088 2088 # Python inserts the script's directory into sys.path
2089 2089 dname = os.path.dirname(fname)
2090 2090
2091 2091 with prepended_to_syspath(dname):
2092 2092 try:
2093 2093 with open(fname) as thefile:
2094 2094 # self.run_cell currently captures all exceptions
2095 2095 # raised in user code. It would be nice if there were
2096 2096 # versions of runlines, execfile that did raise, so
2097 2097 # we could catch the errors.
2098 2098 self.run_cell(thefile.read(), store_history=False)
2099 2099 except:
2100 2100 self.showtraceback()
2101 2101 warn('Unknown failure executing file: <%s>' % fname)
2102 2102
2103 def run_cell_NODE(self, cell, store_history=True):
2103 def run_cell(self, cell, store_history=True):
2104 2104 """Run a complete IPython cell.
2105 2105
2106 2106 Parameters
2107 2107 ----------
2108 2108 cell : str
2109 2109 The code (including IPython code such as %magic functions) to run.
2110 2110 store_history : bool
2111 2111 If True, the raw and translated cell will be stored in IPython's
2112 2112 history. For user code calling back into IPython's machinery, this
2113 2113 should be set to False.
2114 2114 """
2115 2115 raw_cell = cell
2116 2116 with self.builtin_trap:
2117 2117 cell = self.prefilter_manager.prefilter_lines(cell)
2118 2118
2119 2119 # Store raw and processed history
2120 2120 if store_history:
2121 2121 self.history_manager.store_inputs(self.execution_count,
2122 2122 cell, raw_cell)
2123 2123
2124 2124 self.logger.log(cell, raw_cell)
2125 2125
2126 cell_name = self.compile.cache(cell, self.execution_count)
2127
2126 2128 with self.display_trap:
2127 2129 try:
2128 2130 code_ast = ast.parse(cell)
2129 2131 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2130 2132 # Case 1
2131 self.showsyntaxerror(filename)
2133 self.showsyntaxerror()
2134 self.execution_count += 1
2132 2135 return None
2133 2136
2134 2137 interactivity = 1 # Last node to be run interactive
2135 2138 if len(cell.splitlines()) == 1:
2136 2139 interactivity = 2 # Single line; run fully interactive
2137 2140
2138 self.run_ast_nodes(code_ast.body, interactivity)
2141 self.run_ast_nodes(code_ast.body, cell_name, interactivity)
2139 2142
2140 2143 if store_history:
2141 2144 # Write output to the database. Does nothing unless
2142 2145 # history output logging is enabled.
2143 2146 self.history_manager.store_output(self.execution_count)
2144 2147 # Each cell is a *single* input, regardless of how many lines it has
2145 2148 self.execution_count += 1
2146 2149
2147 def run_ast_nodes(self, nodelist, interactivity=1):
2150 def run_ast_nodes(self, nodelist, cell_name, interactivity=1):
2148 2151 """Run a sequence of AST nodes. The execution mode depends on the
2149 2152 interactivity parameter.
2150 2153
2151 2154 Parameters
2152 2155 ----------
2153 2156 nodelist : list
2154 2157 A sequence of AST nodes to run.
2155 2158 interactivity : int
2156 2159 At 0, all nodes are run in 'exec' mode. At '1', the last node alone
2157 2160 is run in interactive mode (so the result of an expression is shown).
2158 2161 At 2, all nodes are run in interactive mode.
2159 2162 """
2160 2163 if not nodelist:
2161 2164 return
2162 2165
2163 2166 if interactivity == 0:
2164 2167 to_run_exec, to_run_interactive = nodelist, []
2165 2168 elif interactivity == 1:
2166 2169 to_run_exec, to_run_interactive = nodelist[:-1], nodelist[-1:]
2167 2170 else:
2168 2171 to_run_exec, to_run_interactive = [], nodelist
2169 2172
2173 exec_count = self.execution_count
2170 2174 if to_run_exec:
2171 2175 mod = ast.Module(to_run_exec)
2172 name = "<ipython-prompt-%d-exec>" % self.execution_count
2173 self.code_to_run = code = compile(mod, name, "exec")
2176 self.code_to_run = code = self.compile(mod, cell_name, "exec")
2174 2177 if self.run_code(code) == 1:
2175 2178 return
2176 2179
2177 2180 if to_run_interactive:
2178 2181 mod = ast.Interactive(to_run_interactive)
2179 name = "<ipython-prompt-%d-interactive>" % self.execution_count
2180 self.code_to_run = code = compile(mod, name, "single")
2182 self.code_to_run = code = self.compile(mod, cell_name, "single")
2181 2183 return self.run_code(code)
2182 2184
2183 2185
2184 def run_cell(self, cell, store_history=True):
2185 """Run the contents of an entire multiline 'cell' of code, and store it
2186 in the history.
2187
2188 The cell is split into separate blocks which can be executed
2189 individually. Then, based on how many blocks there are, they are
2190 executed as follows:
2191
2192 - A single block: 'single' mode. If it is also a single line, dynamic
2193 transformations, including automagic and macros, will be applied.
2194
2195 If there's more than one block, it depends:
2196
2197 - if the last one is no more than two lines long, run all but the last
2198 in 'exec' mode and the very last one in 'single' mode. This makes it
2199 easy to type simple expressions at the end to see computed values. -
2200 otherwise (last one is also multiline), run all in 'exec' mode
2201
2202 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2203 results are displayed and output prompts are computed. In 'exec' mode,
2204 no results are displayed unless :func:`print` is called explicitly;
2205 this mode is more akin to running a script.
2206
2207 Parameters
2208 ----------
2209 cell : str
2210 A single or multiline string.
2211 """
2212 # Store the untransformed code
2213 raw_cell = cell
2214
2215 # Code transformation and execution must take place with our
2216 # modifications to builtins.
2217 with self.builtin_trap:
2218
2219 # We need to break up the input into executable blocks that can
2220 # be runin 'single' mode, to provide comfortable user behavior.
2221 blocks = self.input_splitter.split_blocks(cell)
2222
2223 if not blocks: # Blank cell
2224 return
2225
2226 # We only do dynamic transforms on a single line. But a macro
2227 # can be expanded to several lines, so we need to split it
2228 # into input blocks again.
2229 if len(cell.splitlines()) <= 1:
2230 cell = self.prefilter_manager.prefilter_line(blocks[0])
2231 blocks = self.input_splitter.split_blocks(cell)
2232
2233 # Store the 'ipython' version of the cell as well, since
2234 # that's what needs to go into the translated history and get
2235 # executed (the original cell may contain non-python syntax).
2236 cell = ''.join(blocks)
2237
2238 # Store raw and processed history
2239 if store_history:
2240 self.history_manager.store_inputs(self.execution_count,
2241 cell, raw_cell)
2242
2243 self.logger.log(cell, raw_cell)
2244
2245 # All user code execution should take place with our
2246 # modified displayhook.
2247 with self.display_trap:
2248 # Single-block input should behave like an interactive prompt
2249 if len(blocks) == 1:
2250 out = self.run_source(blocks[0])
2251 # Write output to the database. Does nothing unless
2252 # history output logging is enabled.
2253 if store_history:
2254 self.history_manager.store_output(self.execution_count)
2255 # Since we return here, we need to update the
2256 # execution count
2257 self.execution_count += 1
2258 return out
2259
2260 # In multi-block input, if the last block is a simple (one-two
2261 # lines) expression, run it in single mode so it produces output.
2262 # Otherwise just run it all in 'exec' mode. This seems like a
2263 # reasonable usability design.
2264 last = blocks[-1]
2265 last_nlines = len(last.splitlines())
2266
2267 if last_nlines < 2:
2268 # Here we consider the cell split between 'body' and 'last',
2269 # store all history and execute 'body', and if successful, then
2270 # proceed to execute 'last'.
2271
2272 # Get the main body to run as a cell
2273 ipy_body = ''.join(blocks[:-1])
2274 retcode = self.run_source(ipy_body, symbol='exec',
2275 post_execute=False)
2276 if retcode==0:
2277 # Last expression compiled as 'single' so it
2278 # produces output
2279 self.run_source(last)
2280 else:
2281 # Run the whole cell as one entity, storing both raw and
2282 # processed input in history
2283 self.run_source(cell, symbol='exec')
2284
2285 # Write output to the database. Does nothing unless
2286 # history output logging is enabled.
2287 if store_history:
2288 self.history_manager.store_output(self.execution_count)
2289 # Each cell is a *single* input, regardless of how many lines it has
2290 self.execution_count += 1
2291
2292 2186 # PENDING REMOVAL: this method is slated for deletion, once our new
2293 2187 # input logic has been 100% moved to frontends and is stable.
2294 2188 def runlines(self, lines, clean=False):
2295 2189 """Run a string of one or more lines of source.
2296 2190
2297 2191 This method is capable of running a string containing multiple source
2298 2192 lines, as if they had been entered at the IPython prompt. Since it
2299 2193 exposes IPython's processing machinery, the given strings can contain
2300 2194 magic calls (%magic), special shell access (!cmd), etc.
2301 2195 """
2302 2196
2303 2197 if not isinstance(lines, (list, tuple)):
2304 2198 lines = lines.splitlines()
2305 2199
2306 2200 if clean:
2307 2201 lines = self._cleanup_ipy_script(lines)
2308 2202
2309 2203 # We must start with a clean buffer, in case this is run from an
2310 2204 # interactive IPython session (via a magic, for example).
2311 2205 self.reset_buffer()
2312 2206
2313 2207 # Since we will prefilter all lines, store the user's raw input too
2314 2208 # before we apply any transformations
2315 2209 self.buffer_raw[:] = [ l+'\n' for l in lines]
2316 2210
2317 2211 more = False
2318 2212 prefilter_lines = self.prefilter_manager.prefilter_lines
2319 2213 with nested(self.builtin_trap, self.display_trap):
2320 2214 for line in lines:
2321 2215 # skip blank lines so we don't mess up the prompt counter, but
2322 2216 # do NOT skip even a blank line if we are in a code block (more
2323 2217 # is true)
2324 2218
2325 2219 if line or more:
2326 2220 more = self.push_line(prefilter_lines(line, more))
2327 2221 # IPython's run_source returns None if there was an error
2328 2222 # compiling the code. This allows us to stop processing
2329 2223 # right away, so the user gets the error message at the
2330 2224 # right place.
2331 2225 if more is None:
2332 2226 break
2333 2227 # final newline in case the input didn't have it, so that the code
2334 2228 # actually does get executed
2335 2229 if more:
2336 2230 self.push_line('\n')
2337 2231
2338 2232 def run_source(self, source, filename=None,
2339 2233 symbol='single', post_execute=True):
2340 2234 """Compile and run some source in the interpreter.
2341 2235
2342 2236 Arguments are as for compile_command().
2343 2237
2344 2238 One several things can happen:
2345 2239
2346 2240 1) The input is incorrect; compile_command() raised an
2347 2241 exception (SyntaxError or OverflowError). A syntax traceback
2348 2242 will be printed by calling the showsyntaxerror() method.
2349 2243
2350 2244 2) The input is incomplete, and more input is required;
2351 2245 compile_command() returned None. Nothing happens.
2352 2246
2353 2247 3) The input is complete; compile_command() returned a code
2354 2248 object. The code is executed by calling self.run_code() (which
2355 2249 also handles run-time exceptions, except for SystemExit).
2356 2250
2357 2251 The return value is:
2358 2252
2359 2253 - True in case 2
2360 2254
2361 2255 - False in the other cases, unless an exception is raised, where
2362 2256 None is returned instead. This can be used by external callers to
2363 2257 know whether to continue feeding input or not.
2364 2258
2365 2259 The return value can be used to decide whether to use sys.ps1 or
2366 2260 sys.ps2 to prompt the next line."""
2367 2261
2368 2262 # We need to ensure that the source is unicode from here on.
2369 2263 if type(source)==str:
2370 2264 usource = source.decode(self.stdin_encoding)
2371 2265 else:
2372 2266 usource = source
2373 2267
2374 2268 if False: # dbg
2375 2269 print 'Source:', repr(source) # dbg
2376 2270 print 'USource:', repr(usource) # dbg
2377 2271 print 'type:', type(source) # dbg
2378 2272 print 'encoding', self.stdin_encoding # dbg
2379 2273
2380 2274 try:
2381 code = self.compile(usource, symbol, self.execution_count)
2275 code_name = self.compile.cache(usource, self.execution_count)
2276 code = self.compile(usource, code_name, symbol)
2382 2277 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2383 2278 # Case 1
2384 2279 self.showsyntaxerror(filename)
2385 2280 return None
2386 2281
2387 2282 if code is None:
2388 2283 # Case 2
2389 2284 return True
2390 2285
2391 2286 # Case 3
2392 2287 # We store the code object so that threaded shells and
2393 2288 # custom exception handlers can access all this info if needed.
2394 2289 # The source corresponding to this can be obtained from the
2395 2290 # buffer attribute as '\n'.join(self.buffer).
2396 2291 self.code_to_run = code
2397 2292 # now actually execute the code object
2398 2293 if self.run_code(code, post_execute) == 0:
2399 2294 return False
2400 2295 else:
2401 2296 return None
2402 2297
2403 2298 # For backwards compatibility
2404 2299 runsource = run_source
2405 2300
2406 2301 def run_code(self, code_obj, post_execute=True):
2407 2302 """Execute a code object.
2408 2303
2409 2304 When an exception occurs, self.showtraceback() is called to display a
2410 2305 traceback.
2411 2306
2412 2307 Return value: a flag indicating whether the code to be run completed
2413 2308 successfully:
2414 2309
2415 2310 - 0: successful execution.
2416 2311 - 1: an error occurred.
2417 2312 """
2418 2313
2419 2314 # Set our own excepthook in case the user code tries to call it
2420 2315 # directly, so that the IPython crash handler doesn't get triggered
2421 2316 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2422 2317
2423 2318 # we save the original sys.excepthook in the instance, in case config
2424 2319 # code (such as magics) needs access to it.
2425 2320 self.sys_excepthook = old_excepthook
2426 2321 outflag = 1 # happens in more places, so it's easier as default
2427 2322 try:
2428 2323 try:
2429 2324 self.hooks.pre_run_code_hook()
2430 2325 #rprint('Running code', repr(code_obj)) # dbg
2431 2326 exec code_obj in self.user_global_ns, self.user_ns
2432 2327 finally:
2433 2328 # Reset our crash handler in place
2434 2329 sys.excepthook = old_excepthook
2435 2330 except SystemExit:
2436 2331 self.reset_buffer()
2437 2332 self.showtraceback(exception_only=True)
2438 2333 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2439 2334 except self.custom_exceptions:
2440 2335 etype,value,tb = sys.exc_info()
2441 2336 self.CustomTB(etype,value,tb)
2442 2337 except:
2443 2338 self.showtraceback()
2444 2339 else:
2445 2340 outflag = 0
2446 2341 if softspace(sys.stdout, 0):
2447 2342 print
2448 2343
2449 2344 # Execute any registered post-execution functions. Here, any errors
2450 2345 # are reported only minimally and just on the terminal, because the
2451 2346 # main exception channel may be occupied with a user traceback.
2452 2347 # FIXME: we need to think this mechanism a little more carefully.
2453 2348 if post_execute:
2454 2349 for func in self._post_execute:
2455 2350 try:
2456 2351 func()
2457 2352 except:
2458 2353 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2459 2354 func
2460 2355 print >> io.Term.cout, head
2461 2356 print >> io.Term.cout, self._simple_error()
2462 2357 print >> io.Term.cout, 'Removing from post_execute'
2463 2358 self._post_execute.remove(func)
2464 2359
2465 2360 # Flush out code object which has been run (and source)
2466 2361 self.code_to_run = None
2467 2362 return outflag
2468 2363
2469 2364 # For backwards compatibility
2470 2365 runcode = run_code
2471 2366
2472 2367 # PENDING REMOVAL: this method is slated for deletion, once our new
2473 2368 # input logic has been 100% moved to frontends and is stable.
2474 2369 def push_line(self, line):
2475 2370 """Push a line to the interpreter.
2476 2371
2477 2372 The line should not have a trailing newline; it may have
2478 2373 internal newlines. The line is appended to a buffer and the
2479 2374 interpreter's run_source() method is called with the
2480 2375 concatenated contents of the buffer as source. If this
2481 2376 indicates that the command was executed or invalid, the buffer
2482 2377 is reset; otherwise, the command is incomplete, and the buffer
2483 2378 is left as it was after the line was appended. The return
2484 2379 value is 1 if more input is required, 0 if the line was dealt
2485 2380 with in some way (this is the same as run_source()).
2486 2381 """
2487 2382
2488 2383 # autoindent management should be done here, and not in the
2489 2384 # interactive loop, since that one is only seen by keyboard input. We
2490 2385 # need this done correctly even for code run via runlines (which uses
2491 2386 # push).
2492 2387
2493 2388 #print 'push line: <%s>' % line # dbg
2494 2389 self.buffer.append(line)
2495 2390 full_source = '\n'.join(self.buffer)
2496 2391 more = self.run_source(full_source, self.filename)
2497 2392 if not more:
2498 2393 self.history_manager.store_inputs(self.execution_count,
2499 2394 '\n'.join(self.buffer_raw), full_source)
2500 2395 self.reset_buffer()
2501 2396 self.execution_count += 1
2502 2397 return more
2503 2398
2504 2399 def reset_buffer(self):
2505 2400 """Reset the input buffer."""
2506 2401 self.buffer[:] = []
2507 2402 self.buffer_raw[:] = []
2508 2403 self.input_splitter.reset()
2509 2404
2510 2405 # For backwards compatibility
2511 2406 resetbuffer = reset_buffer
2512 2407
2513 2408 def _is_secondary_block_start(self, s):
2514 2409 if not s.endswith(':'):
2515 2410 return False
2516 2411 if (s.startswith('elif') or
2517 2412 s.startswith('else') or
2518 2413 s.startswith('except') or
2519 2414 s.startswith('finally')):
2520 2415 return True
2521 2416
2522 2417 def _cleanup_ipy_script(self, script):
2523 2418 """Make a script safe for self.runlines()
2524 2419
2525 2420 Currently, IPython is lines based, with blocks being detected by
2526 2421 empty lines. This is a problem for block based scripts that may
2527 2422 not have empty lines after blocks. This script adds those empty
2528 2423 lines to make scripts safe for running in the current line based
2529 2424 IPython.
2530 2425 """
2531 2426 res = []
2532 2427 lines = script.splitlines()
2533 2428 level = 0
2534 2429
2535 2430 for l in lines:
2536 2431 lstripped = l.lstrip()
2537 2432 stripped = l.strip()
2538 2433 if not stripped:
2539 2434 continue
2540 2435 newlevel = len(l) - len(lstripped)
2541 2436 if level > 0 and newlevel == 0 and \
2542 2437 not self._is_secondary_block_start(stripped):
2543 2438 # add empty line
2544 2439 res.append('')
2545 2440 res.append(l)
2546 2441 level = newlevel
2547 2442
2548 2443 return '\n'.join(res) + '\n'
2549 2444
2550 2445 #-------------------------------------------------------------------------
2551 2446 # Things related to GUI support and pylab
2552 2447 #-------------------------------------------------------------------------
2553 2448
2554 2449 def enable_pylab(self, gui=None):
2555 2450 raise NotImplementedError('Implement enable_pylab in a subclass')
2556 2451
2557 2452 #-------------------------------------------------------------------------
2558 2453 # Utilities
2559 2454 #-------------------------------------------------------------------------
2560 2455
2561 2456 def var_expand(self,cmd,depth=0):
2562 2457 """Expand python variables in a string.
2563 2458
2564 2459 The depth argument indicates how many frames above the caller should
2565 2460 be walked to look for the local namespace where to expand variables.
2566 2461
2567 2462 The global namespace for expansion is always the user's interactive
2568 2463 namespace.
2569 2464 """
2570 2465 res = ItplNS(cmd, self.user_ns, # globals
2571 2466 # Skip our own frame in searching for locals:
2572 2467 sys._getframe(depth+1).f_locals # locals
2573 2468 )
2574 2469 return str(res).decode(res.codec)
2575 2470
2576 2471 def mktempfile(self, data=None, prefix='ipython_edit_'):
2577 2472 """Make a new tempfile and return its filename.
2578 2473
2579 2474 This makes a call to tempfile.mktemp, but it registers the created
2580 2475 filename internally so ipython cleans it up at exit time.
2581 2476
2582 2477 Optional inputs:
2583 2478
2584 2479 - data(None): if data is given, it gets written out to the temp file
2585 2480 immediately, and the file is closed again."""
2586 2481
2587 2482 filename = tempfile.mktemp('.py', prefix)
2588 2483 self.tempfiles.append(filename)
2589 2484
2590 2485 if data:
2591 2486 tmp_file = open(filename,'w')
2592 2487 tmp_file.write(data)
2593 2488 tmp_file.close()
2594 2489 return filename
2595 2490
2596 2491 # TODO: This should be removed when Term is refactored.
2597 2492 def write(self,data):
2598 2493 """Write a string to the default output"""
2599 2494 io.Term.cout.write(data)
2600 2495
2601 2496 # TODO: This should be removed when Term is refactored.
2602 2497 def write_err(self,data):
2603 2498 """Write a string to the default error output"""
2604 2499 io.Term.cerr.write(data)
2605 2500
2606 2501 def ask_yes_no(self,prompt,default=True):
2607 2502 if self.quiet:
2608 2503 return True
2609 2504 return ask_yes_no(prompt,default)
2610 2505
2611 2506 def show_usage(self):
2612 2507 """Show a usage message"""
2613 2508 page.page(IPython.core.usage.interactive_usage)
2614 2509
2615 2510 def find_user_code(self, target, raw=True):
2616 2511 """Get a code string from history, file, or a string or macro.
2617 2512
2618 2513 This is mainly used by magic functions.
2619 2514
2620 2515 Parameters
2621 2516 ----------
2622 2517 target : str
2623 2518 A string specifying code to retrieve. This will be tried respectively
2624 2519 as: ranges of input history (see %history for syntax), a filename, or
2625 2520 an expression evaluating to a string or Macro in the user namespace.
2626 2521 raw : bool
2627 2522 If true (default), retrieve raw history. Has no effect on the other
2628 2523 retrieval mechanisms.
2629 2524
2630 2525 Returns
2631 2526 -------
2632 2527 A string of code.
2633 2528
2634 2529 ValueError is raised if nothing is found, and TypeError if it evaluates
2635 2530 to an object of another type. In each case, .args[0] is a printable
2636 2531 message.
2637 2532 """
2638 2533 code = self.extract_input_lines(target, raw=raw) # Grab history
2639 2534 if code:
2640 2535 return code
2641 2536 if os.path.isfile(target): # Read file
2642 2537 return open(target, "r").read()
2643 2538
2644 2539 try: # User namespace
2645 2540 codeobj = eval(target, self.user_ns)
2646 2541 except Exception:
2647 2542 raise ValueError(("'%s' was not found in history, as a file, nor in"
2648 2543 " the user namespace.") % target)
2649 2544 if isinstance(codeobj, basestring):
2650 2545 return codeobj
2651 2546 elif isinstance(codeobj, Macro):
2652 2547 return codeobj.value
2653 2548
2654 2549 raise TypeError("%s is neither a string nor a macro." % target,
2655 2550 codeobj)
2656 2551
2657 2552 #-------------------------------------------------------------------------
2658 2553 # Things related to IPython exiting
2659 2554 #-------------------------------------------------------------------------
2660 2555 def atexit_operations(self):
2661 2556 """This will be executed at the time of exit.
2662 2557
2663 2558 Cleanup operations and saving of persistent data that is done
2664 2559 unconditionally by IPython should be performed here.
2665 2560
2666 2561 For things that may depend on startup flags or platform specifics (such
2667 2562 as having readline or not), register a separate atexit function in the
2668 2563 code that has the appropriate information, rather than trying to
2669 2564 clutter
2670 2565 """
2671 2566 # Cleanup all tempfiles left around
2672 2567 for tfile in self.tempfiles:
2673 2568 try:
2674 2569 os.unlink(tfile)
2675 2570 except OSError:
2676 2571 pass
2677 2572
2678 2573 # Close the history session (this stores the end time and line count)
2679 2574 self.history_manager.end_session()
2680 2575
2681 2576 # Clear all user namespaces to release all references cleanly.
2682 2577 self.reset(new_session=False)
2683 2578
2684 2579 # Run user hooks
2685 2580 self.hooks.shutdown_hook()
2686 2581
2687 2582 def cleanup(self):
2688 2583 self.restore_sys_module_state()
2689 2584
2690 2585
2691 2586 class InteractiveShellABC(object):
2692 2587 """An abstract base class for InteractiveShell."""
2693 2588 __metaclass__ = abc.ABCMeta
2694 2589
2695 2590 InteractiveShellABC.register(InteractiveShell)
General Comments 0
You need to be logged in to leave comments. Login now