##// END OF EJS Templates
Update many names to pep-8: savehist -> save_hist....
Fernando Perez -
Show More
@@ -1,259 +1,259
1 1 """hooks for IPython.
2 2
3 3 In Python, it is possible to overwrite any method of any object if you really
4 4 want to. But IPython exposes a few 'hooks', methods which are _designed_ to
5 5 be overwritten by users for customization purposes. This module defines the
6 6 default versions of all such hooks, which get used by IPython if not
7 7 overridden by the user.
8 8
9 9 hooks are simple functions, but they should be declared with 'self' as their
10 10 first argument, because when activated they are registered into IPython as
11 11 instance methods. The self argument will be the IPython running instance
12 12 itself, so hooks have full access to the entire IPython object.
13 13
14 14 If you wish to define a new hook and activate it, you need to put the
15 15 necessary code into a python file which can be either imported or execfile()'d
16 16 from within your ipythonrc configuration.
17 17
18 18 For example, suppose that you have a module called 'myiphooks' in your
19 19 PYTHONPATH, which contains the following definition:
20 20
21 21 import os
22 22 from IPython.core import ipapi
23 23 ip = ipapi.get()
24 24
25 25 def calljed(self,filename, linenum):
26 26 "My editor hook calls the jed editor directly."
27 27 print "Calling my own editor, jed ..."
28 28 if os.system('jed +%d %s' % (linenum,filename)) != 0:
29 29 raise TryNext()
30 30
31 31 ip.set_hook('editor', calljed)
32 32
33 33 You can then enable the functionality by doing 'import myiphooks'
34 34 somewhere in your configuration files or ipython command line.
35 35 """
36 36
37 37 #*****************************************************************************
38 38 # Copyright (C) 2005 Fernando Perez. <fperez@colorado.edu>
39 39 #
40 40 # Distributed under the terms of the BSD License. The full license is in
41 41 # the file COPYING, distributed as part of this software.
42 42 #*****************************************************************************
43 43
44 44 import os, bisect
45 45 import sys
46 46
47 47 from IPython.core.error import TryNext
48 48 import IPython.utils.io
49 49
50 50 # List here all the default hooks. For now it's just the editor functions
51 51 # but over time we'll move here all the public API for user-accessible things.
52 52
53 53 __all__ = ['editor', 'fix_error_editor', 'synchronize_with_editor',
54 54 'input_prefilter', 'shutdown_hook', 'late_startup_hook',
55 55 'generate_prompt', 'show_in_pager','pre_prompt_hook',
56 'pre_runcode_hook', 'clipboard_get']
56 'pre_run_code_hook', 'clipboard_get']
57 57
58 58 def editor(self,filename, linenum=None):
59 59 """Open the default editor at the given filename and linenumber.
60 60
61 61 This is IPython's default editor hook, you can use it as an example to
62 62 write your own modified one. To set your own editor function as the
63 63 new editor hook, call ip.set_hook('editor',yourfunc)."""
64 64
65 65 # IPython configures a default editor at startup by reading $EDITOR from
66 66 # the environment, and falling back on vi (unix) or notepad (win32).
67 67 editor = self.editor
68 68
69 69 # marker for at which line to open the file (for existing objects)
70 70 if linenum is None or editor=='notepad':
71 71 linemark = ''
72 72 else:
73 73 linemark = '+%d' % int(linenum)
74 74
75 75 # Enclose in quotes if necessary and legal
76 76 if ' ' in editor and os.path.isfile(editor) and editor[0] != '"':
77 77 editor = '"%s"' % editor
78 78
79 79 # Call the actual editor
80 80 if os.system('%s %s %s' % (editor,linemark,filename)) != 0:
81 81 raise TryNext()
82 82
83 83 import tempfile
84 84 def fix_error_editor(self,filename,linenum,column,msg):
85 85 """Open the editor at the given filename, linenumber, column and
86 86 show an error message. This is used for correcting syntax errors.
87 87 The current implementation only has special support for the VIM editor,
88 88 and falls back on the 'editor' hook if VIM is not used.
89 89
90 90 Call ip.set_hook('fix_error_editor',youfunc) to use your own function,
91 91 """
92 92 def vim_quickfix_file():
93 93 t = tempfile.NamedTemporaryFile()
94 94 t.write('%s:%d:%d:%s\n' % (filename,linenum,column,msg))
95 95 t.flush()
96 96 return t
97 97 if os.path.basename(self.editor) != 'vim':
98 98 self.hooks.editor(filename,linenum)
99 99 return
100 100 t = vim_quickfix_file()
101 101 try:
102 102 if os.system('vim --cmd "set errorformat=%f:%l:%c:%m" -q ' + t.name):
103 103 raise TryNext()
104 104 finally:
105 105 t.close()
106 106
107 107
108 108 def synchronize_with_editor(self, filename, linenum, column):
109 109 pass
110 110
111 111
112 112 class CommandChainDispatcher:
113 113 """ Dispatch calls to a chain of commands until some func can handle it
114 114
115 115 Usage: instantiate, execute "add" to add commands (with optional
116 116 priority), execute normally via f() calling mechanism.
117 117
118 118 """
119 119 def __init__(self,commands=None):
120 120 if commands is None:
121 121 self.chain = []
122 122 else:
123 123 self.chain = commands
124 124
125 125
126 126 def __call__(self,*args, **kw):
127 127 """ Command chain is called just like normal func.
128 128
129 129 This will call all funcs in chain with the same args as were given to this
130 130 function, and return the result of first func that didn't raise
131 131 TryNext """
132 132
133 133 for prio,cmd in self.chain:
134 134 #print "prio",prio,"cmd",cmd #dbg
135 135 try:
136 136 return cmd(*args, **kw)
137 137 except TryNext, exc:
138 138 if exc.args or exc.kwargs:
139 139 args = exc.args
140 140 kw = exc.kwargs
141 141 # if no function will accept it, raise TryNext up to the caller
142 142 raise TryNext
143 143
144 144 def __str__(self):
145 145 return str(self.chain)
146 146
147 147 def add(self, func, priority=0):
148 148 """ Add a func to the cmd chain with given priority """
149 149 bisect.insort(self.chain,(priority,func))
150 150
151 151 def __iter__(self):
152 152 """ Return all objects in chain.
153 153
154 154 Handy if the objects are not callable.
155 155 """
156 156 return iter(self.chain)
157 157
158 158
159 159 def result_display(self,arg):
160 160 """ Default display hook.
161 161
162 162 Called for displaying the result to the user.
163 163 """
164 164
165 165 if self.pprint:
166 166 out = pformat(arg)
167 167 if '\n' in out:
168 168 # So that multi-line strings line up with the left column of
169 169 # the screen, instead of having the output prompt mess up
170 170 # their first line.
171 171 IPython.utils.io.Term.cout.write('\n')
172 172 print >>IPython.utils.io.Term.cout, out
173 173 else:
174 174 # By default, the interactive prompt uses repr() to display results,
175 175 # so we should honor this. Users who'd rather use a different
176 176 # mechanism can easily override this hook.
177 177 print >>IPython.utils.io.Term.cout, repr(arg)
178 178 # the default display hook doesn't manipulate the value to put in history
179 179 return None
180 180
181 181
182 182 def input_prefilter(self,line):
183 183 """ Default input prefilter
184 184
185 185 This returns the line as unchanged, so that the interpreter
186 186 knows that nothing was done and proceeds with "classic" prefiltering
187 187 (%magics, !shell commands etc.).
188 188
189 189 Note that leading whitespace is not passed to this hook. Prefilter
190 190 can't alter indentation.
191 191
192 192 """
193 193 #print "attempt to rewrite",line #dbg
194 194 return line
195 195
196 196
197 197 def shutdown_hook(self):
198 198 """ default shutdown hook
199 199
200 200 Typically, shotdown hooks should raise TryNext so all shutdown ops are done
201 201 """
202 202
203 203 #print "default shutdown hook ok" # dbg
204 204 return
205 205
206 206
207 207 def late_startup_hook(self):
208 208 """ Executed after ipython has been constructed and configured
209 209
210 210 """
211 211 #print "default startup hook ok" # dbg
212 212
213 213
214 214 def generate_prompt(self, is_continuation):
215 215 """ calculate and return a string with the prompt to display """
216 216 if is_continuation:
217 217 return str(self.displayhook.prompt2)
218 218 return str(self.displayhook.prompt1)
219 219
220 220
221 221 def show_in_pager(self,s):
222 222 """ Run a string through pager """
223 223 # raising TryNext here will use the default paging functionality
224 224 raise TryNext
225 225
226 226
227 227 def pre_prompt_hook(self):
228 228 """ Run before displaying the next prompt
229 229
230 230 Use this e.g. to display output from asynchronous operations (in order
231 231 to not mess up text entry)
232 232 """
233 233
234 234 return None
235 235
236 236
237 def pre_runcode_hook(self):
237 def pre_run_code_hook(self):
238 238 """ Executed before running the (prefiltered) code in IPython """
239 239 return None
240 240
241 241
242 242 def clipboard_get(self):
243 243 """ Get text from the clipboard.
244 244 """
245 245 from IPython.lib.clipboard import (
246 246 osx_clipboard_get, tkinter_clipboard_get,
247 247 win32_clipboard_get
248 248 )
249 249 if sys.platform == 'win32':
250 250 chain = [win32_clipboard_get, tkinter_clipboard_get]
251 251 elif sys.platform == 'darwin':
252 252 chain = [osx_clipboard_get, tkinter_clipboard_get]
253 253 else:
254 254 chain = [tkinter_clipboard_get]
255 255 dispatcher = CommandChainDispatcher()
256 256 for func in chain:
257 257 dispatcher.add(func)
258 258 text = dispatcher()
259 259 return text
@@ -1,2516 +1,2531
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2010 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import exceptions
26 26 import new
27 27 import os
28 28 import re
29 29 import string
30 30 import sys
31 31 import tempfile
32 32 from contextlib import nested
33 33
34 34 from IPython.config.configurable import Configurable
35 35 from IPython.core import debugger, oinspect
36 36 from IPython.core import history as ipcorehist
37 37 from IPython.core import page
38 38 from IPython.core import prefilter
39 39 from IPython.core import shadowns
40 40 from IPython.core import ultratb
41 41 from IPython.core.alias import AliasManager
42 42 from IPython.core.builtin_trap import BuiltinTrap
43 43 from IPython.core.display_trap import DisplayTrap
44 44 from IPython.core.displayhook import DisplayHook
45 45 from IPython.core.error import TryNext, UsageError
46 46 from IPython.core.extensions import ExtensionManager
47 47 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 48 from IPython.core.history import HistoryManager
49 49 from IPython.core.inputlist import InputList
50 50 from IPython.core.inputsplitter import IPythonInputSplitter
51 51 from IPython.core.logger import Logger
52 52 from IPython.core.magic import Magic
53 53 from IPython.core.payload import PayloadManager
54 54 from IPython.core.plugin import PluginManager
55 55 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
56 56 from IPython.external.Itpl import ItplNS
57 57 from IPython.utils import PyColorize
58 58 from IPython.utils import io
59 59 from IPython.utils import pickleshare
60 60 from IPython.utils.doctestreload import doctest_reload
61 61 from IPython.utils.io import ask_yes_no, rprint
62 62 from IPython.utils.ipstruct import Struct
63 63 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
64 64 from IPython.utils.process import system, getoutput
65 65 from IPython.utils.strdispatch import StrDispatch
66 66 from IPython.utils.syspathcontext import prepended_to_syspath
67 67 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
68 68 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
69 69 List, Unicode, Instance, Type)
70 70 from IPython.utils.warn import warn, error, fatal
71 71 import IPython.core.hooks
72 72
73 73 #-----------------------------------------------------------------------------
74 74 # Globals
75 75 #-----------------------------------------------------------------------------
76 76
77 77 # compiled regexps for autoindent management
78 78 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
79 79
80 80 #-----------------------------------------------------------------------------
81 81 # Utilities
82 82 #-----------------------------------------------------------------------------
83 83
84 84 # store the builtin raw_input globally, and use this always, in case user code
85 85 # overwrites it (like wx.py.PyShell does)
86 86 raw_input_original = raw_input
87 87
88 88 def softspace(file, newvalue):
89 89 """Copied from code.py, to remove the dependency"""
90 90
91 91 oldvalue = 0
92 92 try:
93 93 oldvalue = file.softspace
94 94 except AttributeError:
95 95 pass
96 96 try:
97 97 file.softspace = newvalue
98 98 except (AttributeError, TypeError):
99 99 # "attribute-less object" or "read-only attributes"
100 100 pass
101 101 return oldvalue
102 102
103 103
104 104 def no_op(*a, **kw): pass
105 105
106 106 class SpaceInInput(exceptions.Exception): pass
107 107
108 108 class Bunch: pass
109 109
110 110
111 111 def get_default_colors():
112 112 if sys.platform=='darwin':
113 113 return "LightBG"
114 114 elif os.name=='nt':
115 115 return 'Linux'
116 116 else:
117 117 return 'Linux'
118 118
119 119
120 120 class SeparateStr(Str):
121 121 """A Str subclass to validate separate_in, separate_out, etc.
122 122
123 123 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
124 124 """
125 125
126 126 def validate(self, obj, value):
127 127 if value == '0': value = ''
128 128 value = value.replace('\\n','\n')
129 129 return super(SeparateStr, self).validate(obj, value)
130 130
131 131 class MultipleInstanceError(Exception):
132 132 pass
133 133
134 134
135 135 #-----------------------------------------------------------------------------
136 136 # Main IPython class
137 137 #-----------------------------------------------------------------------------
138 138
139 139
140 140 class InteractiveShell(Configurable, Magic):
141 141 """An enhanced, interactive shell for Python."""
142 142
143 143 _instance = None
144 144 autocall = Enum((0,1,2), default_value=1, config=True)
145 145 # TODO: remove all autoindent logic and put into frontends.
146 146 # We can't do this yet because even runlines uses the autoindent.
147 147 autoindent = CBool(True, config=True)
148 148 automagic = CBool(True, config=True)
149 149 cache_size = Int(1000, config=True)
150 150 color_info = CBool(True, config=True)
151 151 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
152 152 default_value=get_default_colors(), config=True)
153 153 debug = CBool(False, config=True)
154 154 deep_reload = CBool(False, config=True)
155 155 displayhook_class = Type(DisplayHook)
156 156 exit_now = CBool(False)
157 157 filename = Str("<ipython console>")
158 158 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
159 159
160 160 # Input splitter, to split entire cells of input into either individual
161 161 # interactive statements or whole blocks.
162 162 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
163 163 (), {})
164 164 logstart = CBool(False, config=True)
165 165 logfile = Str('', config=True)
166 166 logappend = Str('', config=True)
167 167 object_info_string_level = Enum((0,1,2), default_value=0,
168 168 config=True)
169 169 pdb = CBool(False, config=True)
170 170
171 171 pprint = CBool(True, config=True)
172 172 profile = Str('', config=True)
173 173 prompt_in1 = Str('In [\\#]: ', config=True)
174 174 prompt_in2 = Str(' .\\D.: ', config=True)
175 175 prompt_out = Str('Out[\\#]: ', config=True)
176 176 prompts_pad_left = CBool(True, config=True)
177 177 quiet = CBool(False, config=True)
178 178
179 179 # The readline stuff will eventually be moved to the terminal subclass
180 180 # but for now, we can't do that as readline is welded in everywhere.
181 181 readline_use = CBool(True, config=True)
182 182 readline_merge_completions = CBool(True, config=True)
183 183 readline_omit__names = Enum((0,1,2), default_value=0, config=True)
184 184 readline_remove_delims = Str('-/~', config=True)
185 185 readline_parse_and_bind = List([
186 186 'tab: complete',
187 187 '"\C-l": clear-screen',
188 188 'set show-all-if-ambiguous on',
189 189 '"\C-o": tab-insert',
190 190 '"\M-i": " "',
191 191 '"\M-o": "\d\d\d\d"',
192 192 '"\M-I": "\d\d\d\d"',
193 193 '"\C-r": reverse-search-history',
194 194 '"\C-s": forward-search-history',
195 195 '"\C-p": history-search-backward',
196 196 '"\C-n": history-search-forward',
197 197 '"\e[A": history-search-backward',
198 198 '"\e[B": history-search-forward',
199 199 '"\C-k": kill-line',
200 200 '"\C-u": unix-line-discard',
201 201 ], allow_none=False, config=True)
202 202
203 203 # TODO: this part of prompt management should be moved to the frontends.
204 204 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
205 205 separate_in = SeparateStr('\n', config=True)
206 206 separate_out = SeparateStr('', config=True)
207 207 separate_out2 = SeparateStr('', config=True)
208 208 wildcards_case_sensitive = CBool(True, config=True)
209 209 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
210 210 default_value='Context', config=True)
211 211
212 212 # Subcomponents of InteractiveShell
213 213 alias_manager = Instance('IPython.core.alias.AliasManager')
214 214 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
215 215 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
216 216 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
217 217 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
218 218 plugin_manager = Instance('IPython.core.plugin.PluginManager')
219 219 payload_manager = Instance('IPython.core.payload.PayloadManager')
220 220 history_manager = Instance('IPython.core.history.HistoryManager')
221 221
222 222 # Private interface
223 223 _post_execute = set()
224 224
225 225 def __init__(self, config=None, ipython_dir=None,
226 226 user_ns=None, user_global_ns=None,
227 227 custom_exceptions=((), None)):
228 228
229 229 # This is where traits with a config_key argument are updated
230 230 # from the values on config.
231 231 super(InteractiveShell, self).__init__(config=config)
232 232
233 233 # These are relatively independent and stateless
234 234 self.init_ipython_dir(ipython_dir)
235 235 self.init_instance_attrs()
236 236 self.init_environment()
237 237
238 238 # Create namespaces (user_ns, user_global_ns, etc.)
239 239 self.init_create_namespaces(user_ns, user_global_ns)
240 240 # This has to be done after init_create_namespaces because it uses
241 241 # something in self.user_ns, but before init_sys_modules, which
242 242 # is the first thing to modify sys.
243 243 # TODO: When we override sys.stdout and sys.stderr before this class
244 244 # is created, we are saving the overridden ones here. Not sure if this
245 245 # is what we want to do.
246 246 self.save_sys_module_state()
247 247 self.init_sys_modules()
248 248
249 249 self.init_history()
250 250 self.init_encoding()
251 251 self.init_prefilter()
252 252
253 253 Magic.__init__(self, self)
254 254
255 255 self.init_syntax_highlighting()
256 256 self.init_hooks()
257 257 self.init_pushd_popd_magic()
258 258 # self.init_traceback_handlers use to be here, but we moved it below
259 259 # because it and init_io have to come after init_readline.
260 260 self.init_user_ns()
261 261 self.init_logger()
262 262 self.init_alias()
263 263 self.init_builtins()
264 264
265 265 # pre_config_initialization
266 266
267 267 # The next section should contain everything that was in ipmaker.
268 268 self.init_logstart()
269 269
270 270 # The following was in post_config_initialization
271 271 self.init_inspector()
272 272 # init_readline() must come before init_io(), because init_io uses
273 273 # readline related things.
274 274 self.init_readline()
275 275 # init_completer must come after init_readline, because it needs to
276 276 # know whether readline is present or not system-wide to configure the
277 277 # completers, since the completion machinery can now operate
278 278 # independently of readline (e.g. over the network)
279 279 self.init_completer()
280 280 # TODO: init_io() needs to happen before init_traceback handlers
281 281 # because the traceback handlers hardcode the stdout/stderr streams.
282 282 # This logic in in debugger.Pdb and should eventually be changed.
283 283 self.init_io()
284 284 self.init_traceback_handlers(custom_exceptions)
285 285 self.init_prompts()
286 286 self.init_displayhook()
287 287 self.init_reload_doctest()
288 288 self.init_magics()
289 289 self.init_pdb()
290 290 self.init_extension_manager()
291 291 self.init_plugin_manager()
292 292 self.init_payload()
293 293 self.hooks.late_startup_hook()
294 294 atexit.register(self.atexit_operations)
295 295
296 296 @classmethod
297 297 def instance(cls, *args, **kwargs):
298 298 """Returns a global InteractiveShell instance."""
299 299 if cls._instance is None:
300 300 inst = cls(*args, **kwargs)
301 301 # Now make sure that the instance will also be returned by
302 302 # the subclasses instance attribute.
303 303 for subclass in cls.mro():
304 304 if issubclass(cls, subclass) and \
305 305 issubclass(subclass, InteractiveShell):
306 306 subclass._instance = inst
307 307 else:
308 308 break
309 309 if isinstance(cls._instance, cls):
310 310 return cls._instance
311 311 else:
312 312 raise MultipleInstanceError(
313 313 'Multiple incompatible subclass instances of '
314 314 'InteractiveShell are being created.'
315 315 )
316 316
317 317 @classmethod
318 318 def initialized(cls):
319 319 return hasattr(cls, "_instance")
320 320
321 321 def get_ipython(self):
322 322 """Return the currently running IPython instance."""
323 323 return self
324 324
325 325 #-------------------------------------------------------------------------
326 326 # Trait changed handlers
327 327 #-------------------------------------------------------------------------
328 328
329 329 def _ipython_dir_changed(self, name, new):
330 330 if not os.path.isdir(new):
331 331 os.makedirs(new, mode = 0777)
332 332
333 333 def set_autoindent(self,value=None):
334 334 """Set the autoindent flag, checking for readline support.
335 335
336 336 If called with no arguments, it acts as a toggle."""
337 337
338 338 if not self.has_readline:
339 339 if os.name == 'posix':
340 340 warn("The auto-indent feature requires the readline library")
341 341 self.autoindent = 0
342 342 return
343 343 if value is None:
344 344 self.autoindent = not self.autoindent
345 345 else:
346 346 self.autoindent = value
347 347
348 348 #-------------------------------------------------------------------------
349 349 # init_* methods called by __init__
350 350 #-------------------------------------------------------------------------
351 351
352 352 def init_ipython_dir(self, ipython_dir):
353 353 if ipython_dir is not None:
354 354 self.ipython_dir = ipython_dir
355 355 self.config.Global.ipython_dir = self.ipython_dir
356 356 return
357 357
358 358 if hasattr(self.config.Global, 'ipython_dir'):
359 359 self.ipython_dir = self.config.Global.ipython_dir
360 360 else:
361 361 self.ipython_dir = get_ipython_dir()
362 362
363 363 # All children can just read this
364 364 self.config.Global.ipython_dir = self.ipython_dir
365 365
366 366 def init_instance_attrs(self):
367 367 self.more = False
368 368
369 369 # command compiler
370 370 self.compile = codeop.CommandCompiler()
371 371
372 372 # User input buffers
373 373 self.buffer = []
374 374 self.buffer_raw = []
375 375
376 376 # Make an empty namespace, which extension writers can rely on both
377 377 # existing and NEVER being used by ipython itself. This gives them a
378 378 # convenient location for storing additional information and state
379 379 # their extensions may require, without fear of collisions with other
380 380 # ipython names that may develop later.
381 381 self.meta = Struct()
382 382
383 383 # Object variable to store code object waiting execution. This is
384 384 # used mainly by the multithreaded shells, but it can come in handy in
385 385 # other situations. No need to use a Queue here, since it's a single
386 386 # item which gets cleared once run.
387 387 self.code_to_run = None
388 388
389 389 # Temporary files used for various purposes. Deleted at exit.
390 390 self.tempfiles = []
391 391
392 392 # Keep track of readline usage (later set by init_readline)
393 393 self.has_readline = False
394 394
395 395 # keep track of where we started running (mainly for crash post-mortem)
396 396 # This is not being used anywhere currently.
397 397 self.starting_dir = os.getcwd()
398 398
399 399 # Indentation management
400 400 self.indent_current_nsp = 0
401 401
402 402 # Increasing execution counter
403 403 self.execution_count = 1
404 404
405 405 def init_environment(self):
406 406 """Any changes we need to make to the user's environment."""
407 407 pass
408 408
409 409 def init_encoding(self):
410 410 # Get system encoding at startup time. Certain terminals (like Emacs
411 411 # under Win32 have it set to None, and we need to have a known valid
412 412 # encoding to use in the raw_input() method
413 413 try:
414 414 self.stdin_encoding = sys.stdin.encoding or 'ascii'
415 415 except AttributeError:
416 416 self.stdin_encoding = 'ascii'
417 417
418 418 def init_syntax_highlighting(self):
419 419 # Python source parser/formatter for syntax highlighting
420 420 pyformat = PyColorize.Parser().format
421 421 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
422 422
423 423 def init_pushd_popd_magic(self):
424 424 # for pushd/popd management
425 425 try:
426 426 self.home_dir = get_home_dir()
427 427 except HomeDirError, msg:
428 428 fatal(msg)
429 429
430 430 self.dir_stack = []
431 431
432 432 def init_logger(self):
433 433 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
434 434 logmode='rotate')
435 435
436 436 def init_logstart(self):
437 437 """Initialize logging in case it was requested at the command line.
438 438 """
439 439 if self.logappend:
440 440 self.magic_logstart(self.logappend + ' append')
441 441 elif self.logfile:
442 442 self.magic_logstart(self.logfile)
443 443 elif self.logstart:
444 444 self.magic_logstart()
445 445
446 446 def init_builtins(self):
447 447 self.builtin_trap = BuiltinTrap(shell=self)
448 448
449 449 def init_inspector(self):
450 450 # Object inspector
451 451 self.inspector = oinspect.Inspector(oinspect.InspectColors,
452 452 PyColorize.ANSICodeColors,
453 453 'NoColor',
454 454 self.object_info_string_level)
455 455
456 456 def init_io(self):
457 457 # This will just use sys.stdout and sys.stderr. If you want to
458 458 # override sys.stdout and sys.stderr themselves, you need to do that
459 459 # *before* instantiating this class, because Term holds onto
460 460 # references to the underlying streams.
461 461 if sys.platform == 'win32' and self.has_readline:
462 462 Term = io.IOTerm(cout=self.readline._outputfile,
463 463 cerr=self.readline._outputfile)
464 464 else:
465 465 Term = io.IOTerm()
466 466 io.Term = Term
467 467
468 468 def init_prompts(self):
469 469 # TODO: This is a pass for now because the prompts are managed inside
470 470 # the DisplayHook. Once there is a separate prompt manager, this
471 471 # will initialize that object and all prompt related information.
472 472 pass
473 473
474 474 def init_displayhook(self):
475 475 # Initialize displayhook, set in/out prompts and printing system
476 476 self.displayhook = self.displayhook_class(
477 477 shell=self,
478 478 cache_size=self.cache_size,
479 479 input_sep = self.separate_in,
480 480 output_sep = self.separate_out,
481 481 output_sep2 = self.separate_out2,
482 482 ps1 = self.prompt_in1,
483 483 ps2 = self.prompt_in2,
484 484 ps_out = self.prompt_out,
485 485 pad_left = self.prompts_pad_left
486 486 )
487 487 # This is a context manager that installs/revmoes the displayhook at
488 488 # the appropriate time.
489 489 self.display_trap = DisplayTrap(hook=self.displayhook)
490 490
491 491 def init_reload_doctest(self):
492 492 # Do a proper resetting of doctest, including the necessary displayhook
493 493 # monkeypatching
494 494 try:
495 495 doctest_reload()
496 496 except ImportError:
497 497 warn("doctest module does not exist.")
498 498
499 499 #-------------------------------------------------------------------------
500 500 # Things related to injections into the sys module
501 501 #-------------------------------------------------------------------------
502 502
503 503 def save_sys_module_state(self):
504 504 """Save the state of hooks in the sys module.
505 505
506 506 This has to be called after self.user_ns is created.
507 507 """
508 508 self._orig_sys_module_state = {}
509 509 self._orig_sys_module_state['stdin'] = sys.stdin
510 510 self._orig_sys_module_state['stdout'] = sys.stdout
511 511 self._orig_sys_module_state['stderr'] = sys.stderr
512 512 self._orig_sys_module_state['excepthook'] = sys.excepthook
513 513 try:
514 514 self._orig_sys_modules_main_name = self.user_ns['__name__']
515 515 except KeyError:
516 516 pass
517 517
518 518 def restore_sys_module_state(self):
519 519 """Restore the state of the sys module."""
520 520 try:
521 521 for k, v in self._orig_sys_module_state.items():
522 522 setattr(sys, k, v)
523 523 except AttributeError:
524 524 pass
525 525 # Reset what what done in self.init_sys_modules
526 526 try:
527 527 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
528 528 except (AttributeError, KeyError):
529 529 pass
530 530
531 531 #-------------------------------------------------------------------------
532 532 # Things related to hooks
533 533 #-------------------------------------------------------------------------
534 534
535 535 def init_hooks(self):
536 536 # hooks holds pointers used for user-side customizations
537 537 self.hooks = Struct()
538 538
539 539 self.strdispatchers = {}
540 540
541 541 # Set all default hooks, defined in the IPython.hooks module.
542 542 hooks = IPython.core.hooks
543 543 for hook_name in hooks.__all__:
544 544 # default hooks have priority 100, i.e. low; user hooks should have
545 545 # 0-100 priority
546 546 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
547 547
548 548 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
549 549 """set_hook(name,hook) -> sets an internal IPython hook.
550 550
551 551 IPython exposes some of its internal API as user-modifiable hooks. By
552 552 adding your function to one of these hooks, you can modify IPython's
553 553 behavior to call at runtime your own routines."""
554 554
555 555 # At some point in the future, this should validate the hook before it
556 556 # accepts it. Probably at least check that the hook takes the number
557 557 # of args it's supposed to.
558 558
559 559 f = new.instancemethod(hook,self,self.__class__)
560 560
561 561 # check if the hook is for strdispatcher first
562 562 if str_key is not None:
563 563 sdp = self.strdispatchers.get(name, StrDispatch())
564 564 sdp.add_s(str_key, f, priority )
565 565 self.strdispatchers[name] = sdp
566 566 return
567 567 if re_key is not None:
568 568 sdp = self.strdispatchers.get(name, StrDispatch())
569 569 sdp.add_re(re.compile(re_key), f, priority )
570 570 self.strdispatchers[name] = sdp
571 571 return
572 572
573 573 dp = getattr(self.hooks, name, None)
574 574 if name not in IPython.core.hooks.__all__:
575 575 print "Warning! Hook '%s' is not one of %s" % \
576 576 (name, IPython.core.hooks.__all__ )
577 577 if not dp:
578 578 dp = IPython.core.hooks.CommandChainDispatcher()
579 579
580 580 try:
581 581 dp.add(f,priority)
582 582 except AttributeError:
583 583 # it was not commandchain, plain old func - replace
584 584 dp = f
585 585
586 586 setattr(self.hooks,name, dp)
587 587
588 588 def register_post_execute(self, func):
589 589 """Register a function for calling after code execution.
590 590 """
591 591 if not callable(func):
592 592 raise ValueError('argument %s must be callable' % func)
593 593 self._post_execute.add(func)
594 594
595 595 #-------------------------------------------------------------------------
596 596 # Things related to the "main" module
597 597 #-------------------------------------------------------------------------
598 598
599 599 def new_main_mod(self,ns=None):
600 600 """Return a new 'main' module object for user code execution.
601 601 """
602 602 main_mod = self._user_main_module
603 603 init_fakemod_dict(main_mod,ns)
604 604 return main_mod
605 605
606 606 def cache_main_mod(self,ns,fname):
607 607 """Cache a main module's namespace.
608 608
609 609 When scripts are executed via %run, we must keep a reference to the
610 610 namespace of their __main__ module (a FakeModule instance) around so
611 611 that Python doesn't clear it, rendering objects defined therein
612 612 useless.
613 613
614 614 This method keeps said reference in a private dict, keyed by the
615 615 absolute path of the module object (which corresponds to the script
616 616 path). This way, for multiple executions of the same script we only
617 617 keep one copy of the namespace (the last one), thus preventing memory
618 618 leaks from old references while allowing the objects from the last
619 619 execution to be accessible.
620 620
621 621 Note: we can not allow the actual FakeModule instances to be deleted,
622 622 because of how Python tears down modules (it hard-sets all their
623 623 references to None without regard for reference counts). This method
624 624 must therefore make a *copy* of the given namespace, to allow the
625 625 original module's __dict__ to be cleared and reused.
626 626
627 627
628 628 Parameters
629 629 ----------
630 630 ns : a namespace (a dict, typically)
631 631
632 632 fname : str
633 633 Filename associated with the namespace.
634 634
635 635 Examples
636 636 --------
637 637
638 638 In [10]: import IPython
639 639
640 640 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
641 641
642 642 In [12]: IPython.__file__ in _ip._main_ns_cache
643 643 Out[12]: True
644 644 """
645 645 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
646 646
647 647 def clear_main_mod_cache(self):
648 648 """Clear the cache of main modules.
649 649
650 650 Mainly for use by utilities like %reset.
651 651
652 652 Examples
653 653 --------
654 654
655 655 In [15]: import IPython
656 656
657 657 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
658 658
659 659 In [17]: len(_ip._main_ns_cache) > 0
660 660 Out[17]: True
661 661
662 662 In [18]: _ip.clear_main_mod_cache()
663 663
664 664 In [19]: len(_ip._main_ns_cache) == 0
665 665 Out[19]: True
666 666 """
667 667 self._main_ns_cache.clear()
668 668
669 669 #-------------------------------------------------------------------------
670 670 # Things related to debugging
671 671 #-------------------------------------------------------------------------
672 672
673 673 def init_pdb(self):
674 674 # Set calling of pdb on exceptions
675 675 # self.call_pdb is a property
676 676 self.call_pdb = self.pdb
677 677
678 678 def _get_call_pdb(self):
679 679 return self._call_pdb
680 680
681 681 def _set_call_pdb(self,val):
682 682
683 683 if val not in (0,1,False,True):
684 684 raise ValueError,'new call_pdb value must be boolean'
685 685
686 686 # store value in instance
687 687 self._call_pdb = val
688 688
689 689 # notify the actual exception handlers
690 690 self.InteractiveTB.call_pdb = val
691 691
692 692 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
693 693 'Control auto-activation of pdb at exceptions')
694 694
695 695 def debugger(self,force=False):
696 696 """Call the pydb/pdb debugger.
697 697
698 698 Keywords:
699 699
700 700 - force(False): by default, this routine checks the instance call_pdb
701 701 flag and does not actually invoke the debugger if the flag is false.
702 702 The 'force' option forces the debugger to activate even if the flag
703 703 is false.
704 704 """
705 705
706 706 if not (force or self.call_pdb):
707 707 return
708 708
709 709 if not hasattr(sys,'last_traceback'):
710 710 error('No traceback has been produced, nothing to debug.')
711 711 return
712 712
713 713 # use pydb if available
714 714 if debugger.has_pydb:
715 715 from pydb import pm
716 716 else:
717 717 # fallback to our internal debugger
718 718 pm = lambda : self.InteractiveTB.debugger(force=True)
719 719 self.history_saving_wrapper(pm)()
720 720
721 721 #-------------------------------------------------------------------------
722 722 # Things related to IPython's various namespaces
723 723 #-------------------------------------------------------------------------
724 724
725 725 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
726 726 # Create the namespace where the user will operate. user_ns is
727 727 # normally the only one used, and it is passed to the exec calls as
728 728 # the locals argument. But we do carry a user_global_ns namespace
729 729 # given as the exec 'globals' argument, This is useful in embedding
730 730 # situations where the ipython shell opens in a context where the
731 731 # distinction between locals and globals is meaningful. For
732 732 # non-embedded contexts, it is just the same object as the user_ns dict.
733 733
734 734 # FIXME. For some strange reason, __builtins__ is showing up at user
735 735 # level as a dict instead of a module. This is a manual fix, but I
736 736 # should really track down where the problem is coming from. Alex
737 737 # Schmolck reported this problem first.
738 738
739 739 # A useful post by Alex Martelli on this topic:
740 740 # Re: inconsistent value from __builtins__
741 741 # Von: Alex Martelli <aleaxit@yahoo.com>
742 742 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
743 743 # Gruppen: comp.lang.python
744 744
745 745 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
746 746 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
747 747 # > <type 'dict'>
748 748 # > >>> print type(__builtins__)
749 749 # > <type 'module'>
750 750 # > Is this difference in return value intentional?
751 751
752 752 # Well, it's documented that '__builtins__' can be either a dictionary
753 753 # or a module, and it's been that way for a long time. Whether it's
754 754 # intentional (or sensible), I don't know. In any case, the idea is
755 755 # that if you need to access the built-in namespace directly, you
756 756 # should start with "import __builtin__" (note, no 's') which will
757 757 # definitely give you a module. Yeah, it's somewhat confusing:-(.
758 758
759 759 # These routines return properly built dicts as needed by the rest of
760 760 # the code, and can also be used by extension writers to generate
761 761 # properly initialized namespaces.
762 762 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
763 763 user_global_ns)
764 764
765 765 # Assign namespaces
766 766 # This is the namespace where all normal user variables live
767 767 self.user_ns = user_ns
768 768 self.user_global_ns = user_global_ns
769 769
770 770 # An auxiliary namespace that checks what parts of the user_ns were
771 771 # loaded at startup, so we can list later only variables defined in
772 772 # actual interactive use. Since it is always a subset of user_ns, it
773 773 # doesn't need to be separately tracked in the ns_table.
774 774 self.user_ns_hidden = {}
775 775
776 776 # A namespace to keep track of internal data structures to prevent
777 777 # them from cluttering user-visible stuff. Will be updated later
778 778 self.internal_ns = {}
779 779
780 780 # Now that FakeModule produces a real module, we've run into a nasty
781 781 # problem: after script execution (via %run), the module where the user
782 782 # code ran is deleted. Now that this object is a true module (needed
783 783 # so docetst and other tools work correctly), the Python module
784 784 # teardown mechanism runs over it, and sets to None every variable
785 785 # present in that module. Top-level references to objects from the
786 786 # script survive, because the user_ns is updated with them. However,
787 787 # calling functions defined in the script that use other things from
788 788 # the script will fail, because the function's closure had references
789 789 # to the original objects, which are now all None. So we must protect
790 790 # these modules from deletion by keeping a cache.
791 791 #
792 792 # To avoid keeping stale modules around (we only need the one from the
793 793 # last run), we use a dict keyed with the full path to the script, so
794 794 # only the last version of the module is held in the cache. Note,
795 795 # however, that we must cache the module *namespace contents* (their
796 796 # __dict__). Because if we try to cache the actual modules, old ones
797 797 # (uncached) could be destroyed while still holding references (such as
798 798 # those held by GUI objects that tend to be long-lived)>
799 799 #
800 800 # The %reset command will flush this cache. See the cache_main_mod()
801 801 # and clear_main_mod_cache() methods for details on use.
802 802
803 803 # This is the cache used for 'main' namespaces
804 804 self._main_ns_cache = {}
805 805 # And this is the single instance of FakeModule whose __dict__ we keep
806 806 # copying and clearing for reuse on each %run
807 807 self._user_main_module = FakeModule()
808 808
809 809 # A table holding all the namespaces IPython deals with, so that
810 810 # introspection facilities can search easily.
811 811 self.ns_table = {'user':user_ns,
812 812 'user_global':user_global_ns,
813 813 'internal':self.internal_ns,
814 814 'builtin':__builtin__.__dict__
815 815 }
816 816
817 817 # Similarly, track all namespaces where references can be held and that
818 818 # we can safely clear (so it can NOT include builtin). This one can be
819 819 # a simple list.
820 820 self.ns_refs_table = [ user_ns, user_global_ns, self.user_ns_hidden,
821 821 self.internal_ns, self._main_ns_cache ]
822 822
823 823 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
824 824 """Return a valid local and global user interactive namespaces.
825 825
826 826 This builds a dict with the minimal information needed to operate as a
827 827 valid IPython user namespace, which you can pass to the various
828 828 embedding classes in ipython. The default implementation returns the
829 829 same dict for both the locals and the globals to allow functions to
830 830 refer to variables in the namespace. Customized implementations can
831 831 return different dicts. The locals dictionary can actually be anything
832 832 following the basic mapping protocol of a dict, but the globals dict
833 833 must be a true dict, not even a subclass. It is recommended that any
834 834 custom object for the locals namespace synchronize with the globals
835 835 dict somehow.
836 836
837 837 Raises TypeError if the provided globals namespace is not a true dict.
838 838
839 839 Parameters
840 840 ----------
841 841 user_ns : dict-like, optional
842 842 The current user namespace. The items in this namespace should
843 843 be included in the output. If None, an appropriate blank
844 844 namespace should be created.
845 845 user_global_ns : dict, optional
846 846 The current user global namespace. The items in this namespace
847 847 should be included in the output. If None, an appropriate
848 848 blank namespace should be created.
849 849
850 850 Returns
851 851 -------
852 852 A pair of dictionary-like object to be used as the local namespace
853 853 of the interpreter and a dict to be used as the global namespace.
854 854 """
855 855
856 856
857 857 # We must ensure that __builtin__ (without the final 's') is always
858 858 # available and pointing to the __builtin__ *module*. For more details:
859 859 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
860 860
861 861 if user_ns is None:
862 862 # Set __name__ to __main__ to better match the behavior of the
863 863 # normal interpreter.
864 864 user_ns = {'__name__' :'__main__',
865 865 '__builtin__' : __builtin__,
866 866 '__builtins__' : __builtin__,
867 867 }
868 868 else:
869 869 user_ns.setdefault('__name__','__main__')
870 870 user_ns.setdefault('__builtin__',__builtin__)
871 871 user_ns.setdefault('__builtins__',__builtin__)
872 872
873 873 if user_global_ns is None:
874 874 user_global_ns = user_ns
875 875 if type(user_global_ns) is not dict:
876 876 raise TypeError("user_global_ns must be a true dict; got %r"
877 877 % type(user_global_ns))
878 878
879 879 return user_ns, user_global_ns
880 880
881 881 def init_sys_modules(self):
882 882 # We need to insert into sys.modules something that looks like a
883 883 # module but which accesses the IPython namespace, for shelve and
884 884 # pickle to work interactively. Normally they rely on getting
885 885 # everything out of __main__, but for embedding purposes each IPython
886 886 # instance has its own private namespace, so we can't go shoving
887 887 # everything into __main__.
888 888
889 889 # note, however, that we should only do this for non-embedded
890 890 # ipythons, which really mimic the __main__.__dict__ with their own
891 891 # namespace. Embedded instances, on the other hand, should not do
892 892 # this because they need to manage the user local/global namespaces
893 893 # only, but they live within a 'normal' __main__ (meaning, they
894 894 # shouldn't overtake the execution environment of the script they're
895 895 # embedded in).
896 896
897 897 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
898 898
899 899 try:
900 900 main_name = self.user_ns['__name__']
901 901 except KeyError:
902 902 raise KeyError('user_ns dictionary MUST have a "__name__" key')
903 903 else:
904 904 sys.modules[main_name] = FakeModule(self.user_ns)
905 905
906 906 def init_user_ns(self):
907 907 """Initialize all user-visible namespaces to their minimum defaults.
908 908
909 909 Certain history lists are also initialized here, as they effectively
910 910 act as user namespaces.
911 911
912 912 Notes
913 913 -----
914 914 All data structures here are only filled in, they are NOT reset by this
915 915 method. If they were not empty before, data will simply be added to
916 916 therm.
917 917 """
918 918 # This function works in two parts: first we put a few things in
919 919 # user_ns, and we sync that contents into user_ns_hidden so that these
920 920 # initial variables aren't shown by %who. After the sync, we add the
921 921 # rest of what we *do* want the user to see with %who even on a new
922 922 # session (probably nothing, so theye really only see their own stuff)
923 923
924 924 # The user dict must *always* have a __builtin__ reference to the
925 925 # Python standard __builtin__ namespace, which must be imported.
926 926 # This is so that certain operations in prompt evaluation can be
927 927 # reliably executed with builtins. Note that we can NOT use
928 928 # __builtins__ (note the 's'), because that can either be a dict or a
929 929 # module, and can even mutate at runtime, depending on the context
930 930 # (Python makes no guarantees on it). In contrast, __builtin__ is
931 931 # always a module object, though it must be explicitly imported.
932 932
933 933 # For more details:
934 934 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
935 935 ns = dict(__builtin__ = __builtin__)
936 936
937 937 # Put 'help' in the user namespace
938 938 try:
939 939 from site import _Helper
940 940 ns['help'] = _Helper()
941 941 except ImportError:
942 942 warn('help() not available - check site.py')
943 943
944 944 # make global variables for user access to the histories
945 945 ns['_ih'] = self.input_hist
946 946 ns['_oh'] = self.output_hist
947 947 ns['_dh'] = self.dir_hist
948 948
949 949 ns['_sh'] = shadowns
950 950
951 951 # user aliases to input and output histories. These shouldn't show up
952 952 # in %who, as they can have very large reprs.
953 953 ns['In'] = self.input_hist
954 954 ns['Out'] = self.output_hist
955 955
956 956 # Store myself as the public api!!!
957 957 ns['get_ipython'] = self.get_ipython
958 958
959 959 # Sync what we've added so far to user_ns_hidden so these aren't seen
960 960 # by %who
961 961 self.user_ns_hidden.update(ns)
962 962
963 963 # Anything put into ns now would show up in %who. Think twice before
964 964 # putting anything here, as we really want %who to show the user their
965 965 # stuff, not our variables.
966 966
967 967 # Finally, update the real user's namespace
968 968 self.user_ns.update(ns)
969 969
970 970 def reset(self):
971 971 """Clear all internal namespaces.
972 972
973 973 Note that this is much more aggressive than %reset, since it clears
974 974 fully all namespaces, as well as all input/output lists.
975 975 """
976 976 # Clear histories
977 977 self.history_manager.reset()
978 978
979 979 # Reset counter used to index all histories
980 980 self.execution_count = 0
981 981
982 982 # Restore the user namespaces to minimal usability
983 983 for ns in self.ns_refs_table:
984 984 ns.clear()
985 985 self.init_user_ns()
986 986
987 987 # Restore the default and user aliases
988 988 self.alias_manager.clear_aliases()
989 989 self.alias_manager.init_aliases()
990 990
991 991 def reset_selective(self, regex=None):
992 992 """Clear selective variables from internal namespaces based on a
993 993 specified regular expression.
994 994
995 995 Parameters
996 996 ----------
997 997 regex : string or compiled pattern, optional
998 998 A regular expression pattern that will be used in searching
999 999 variable names in the users namespaces.
1000 1000 """
1001 1001 if regex is not None:
1002 1002 try:
1003 1003 m = re.compile(regex)
1004 1004 except TypeError:
1005 1005 raise TypeError('regex must be a string or compiled pattern')
1006 1006 # Search for keys in each namespace that match the given regex
1007 1007 # If a match is found, delete the key/value pair.
1008 1008 for ns in self.ns_refs_table:
1009 1009 for var in ns:
1010 1010 if m.search(var):
1011 1011 del ns[var]
1012 1012
1013 1013 def push(self, variables, interactive=True):
1014 1014 """Inject a group of variables into the IPython user namespace.
1015 1015
1016 1016 Parameters
1017 1017 ----------
1018 1018 variables : dict, str or list/tuple of str
1019 1019 The variables to inject into the user's namespace. If a dict, a
1020 1020 simple update is done. If a str, the string is assumed to have
1021 1021 variable names separated by spaces. A list/tuple of str can also
1022 1022 be used to give the variable names. If just the variable names are
1023 1023 give (list/tuple/str) then the variable values looked up in the
1024 1024 callers frame.
1025 1025 interactive : bool
1026 1026 If True (default), the variables will be listed with the ``who``
1027 1027 magic.
1028 1028 """
1029 1029 vdict = None
1030 1030
1031 1031 # We need a dict of name/value pairs to do namespace updates.
1032 1032 if isinstance(variables, dict):
1033 1033 vdict = variables
1034 1034 elif isinstance(variables, (basestring, list, tuple)):
1035 1035 if isinstance(variables, basestring):
1036 1036 vlist = variables.split()
1037 1037 else:
1038 1038 vlist = variables
1039 1039 vdict = {}
1040 1040 cf = sys._getframe(1)
1041 1041 for name in vlist:
1042 1042 try:
1043 1043 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1044 1044 except:
1045 1045 print ('Could not get variable %s from %s' %
1046 1046 (name,cf.f_code.co_name))
1047 1047 else:
1048 1048 raise ValueError('variables must be a dict/str/list/tuple')
1049 1049
1050 1050 # Propagate variables to user namespace
1051 1051 self.user_ns.update(vdict)
1052 1052
1053 1053 # And configure interactive visibility
1054 1054 config_ns = self.user_ns_hidden
1055 1055 if interactive:
1056 1056 for name, val in vdict.iteritems():
1057 1057 config_ns.pop(name, None)
1058 1058 else:
1059 1059 for name,val in vdict.iteritems():
1060 1060 config_ns[name] = val
1061 1061
1062 1062 #-------------------------------------------------------------------------
1063 1063 # Things related to object introspection
1064 1064 #-------------------------------------------------------------------------
1065 1065
1066 1066 def _ofind(self, oname, namespaces=None):
1067 1067 """Find an object in the available namespaces.
1068 1068
1069 1069 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1070 1070
1071 1071 Has special code to detect magic functions.
1072 1072 """
1073 1073 #oname = oname.strip()
1074 1074 #print '1- oname: <%r>' % oname # dbg
1075 1075 try:
1076 1076 oname = oname.strip().encode('ascii')
1077 1077 #print '2- oname: <%r>' % oname # dbg
1078 1078 except UnicodeEncodeError:
1079 1079 print 'Python identifiers can only contain ascii characters.'
1080 1080 return dict(found=False)
1081 1081
1082 1082 alias_ns = None
1083 1083 if namespaces is None:
1084 1084 # Namespaces to search in:
1085 1085 # Put them in a list. The order is important so that we
1086 1086 # find things in the same order that Python finds them.
1087 1087 namespaces = [ ('Interactive', self.user_ns),
1088 1088 ('IPython internal', self.internal_ns),
1089 1089 ('Python builtin', __builtin__.__dict__),
1090 1090 ('Alias', self.alias_manager.alias_table),
1091 1091 ]
1092 1092 alias_ns = self.alias_manager.alias_table
1093 1093
1094 1094 # initialize results to 'null'
1095 1095 found = False; obj = None; ospace = None; ds = None;
1096 1096 ismagic = False; isalias = False; parent = None
1097 1097
1098 1098 # We need to special-case 'print', which as of python2.6 registers as a
1099 1099 # function but should only be treated as one if print_function was
1100 1100 # loaded with a future import. In this case, just bail.
1101 1101 if (oname == 'print' and not (self.compile.compiler.flags &
1102 1102 __future__.CO_FUTURE_PRINT_FUNCTION)):
1103 1103 return {'found':found, 'obj':obj, 'namespace':ospace,
1104 1104 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1105 1105
1106 1106 # Look for the given name by splitting it in parts. If the head is
1107 1107 # found, then we look for all the remaining parts as members, and only
1108 1108 # declare success if we can find them all.
1109 1109 oname_parts = oname.split('.')
1110 1110 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1111 1111 for nsname,ns in namespaces:
1112 1112 try:
1113 1113 obj = ns[oname_head]
1114 1114 except KeyError:
1115 1115 continue
1116 1116 else:
1117 1117 #print 'oname_rest:', oname_rest # dbg
1118 1118 for part in oname_rest:
1119 1119 try:
1120 1120 parent = obj
1121 1121 obj = getattr(obj,part)
1122 1122 except:
1123 1123 # Blanket except b/c some badly implemented objects
1124 1124 # allow __getattr__ to raise exceptions other than
1125 1125 # AttributeError, which then crashes IPython.
1126 1126 break
1127 1127 else:
1128 1128 # If we finish the for loop (no break), we got all members
1129 1129 found = True
1130 1130 ospace = nsname
1131 1131 if ns == alias_ns:
1132 1132 isalias = True
1133 1133 break # namespace loop
1134 1134
1135 1135 # Try to see if it's magic
1136 1136 if not found:
1137 1137 if oname.startswith(ESC_MAGIC):
1138 1138 oname = oname[1:]
1139 1139 obj = getattr(self,'magic_'+oname,None)
1140 1140 if obj is not None:
1141 1141 found = True
1142 1142 ospace = 'IPython internal'
1143 1143 ismagic = True
1144 1144
1145 1145 # Last try: special-case some literals like '', [], {}, etc:
1146 1146 if not found and oname_head in ["''",'""','[]','{}','()']:
1147 1147 obj = eval(oname_head)
1148 1148 found = True
1149 1149 ospace = 'Interactive'
1150 1150
1151 1151 return {'found':found, 'obj':obj, 'namespace':ospace,
1152 1152 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1153 1153
1154 1154 def _ofind_property(self, oname, info):
1155 1155 """Second part of object finding, to look for property details."""
1156 1156 if info.found:
1157 1157 # Get the docstring of the class property if it exists.
1158 1158 path = oname.split('.')
1159 1159 root = '.'.join(path[:-1])
1160 1160 if info.parent is not None:
1161 1161 try:
1162 1162 target = getattr(info.parent, '__class__')
1163 1163 # The object belongs to a class instance.
1164 1164 try:
1165 1165 target = getattr(target, path[-1])
1166 1166 # The class defines the object.
1167 1167 if isinstance(target, property):
1168 1168 oname = root + '.__class__.' + path[-1]
1169 1169 info = Struct(self._ofind(oname))
1170 1170 except AttributeError: pass
1171 1171 except AttributeError: pass
1172 1172
1173 1173 # We return either the new info or the unmodified input if the object
1174 1174 # hadn't been found
1175 1175 return info
1176 1176
1177 1177 def _object_find(self, oname, namespaces=None):
1178 1178 """Find an object and return a struct with info about it."""
1179 1179 inf = Struct(self._ofind(oname, namespaces))
1180 1180 return Struct(self._ofind_property(oname, inf))
1181 1181
1182 1182 def _inspect(self, meth, oname, namespaces=None, **kw):
1183 1183 """Generic interface to the inspector system.
1184 1184
1185 1185 This function is meant to be called by pdef, pdoc & friends."""
1186 1186 info = self._object_find(oname)
1187 1187 if info.found:
1188 1188 pmethod = getattr(self.inspector, meth)
1189 1189 formatter = format_screen if info.ismagic else None
1190 1190 if meth == 'pdoc':
1191 1191 pmethod(info.obj, oname, formatter)
1192 1192 elif meth == 'pinfo':
1193 1193 pmethod(info.obj, oname, formatter, info, **kw)
1194 1194 else:
1195 1195 pmethod(info.obj, oname)
1196 1196 else:
1197 1197 print 'Object `%s` not found.' % oname
1198 1198 return 'not found' # so callers can take other action
1199 1199
1200 1200 def object_inspect(self, oname):
1201 1201 info = self._object_find(oname)
1202 1202 if info.found:
1203 1203 return self.inspector.info(info.obj, oname, info=info)
1204 1204 else:
1205 1205 return oinspect.object_info(name=oname, found=False)
1206 1206
1207 1207 #-------------------------------------------------------------------------
1208 1208 # Things related to history management
1209 1209 #-------------------------------------------------------------------------
1210 1210
1211 1211 def init_history(self):
1212 1212 self.history_manager = HistoryManager(shell=self)
1213 1213
1214 def savehist(self):
1214 def save_hist(self):
1215 1215 """Save input history to a file (via readline library)."""
1216 1216 self.history_manager.save_hist()
1217 1217
1218 def reloadhist(self):
1218 # For backwards compatibility
1219 savehist = save_hist
1220
1221 def reload_hist(self):
1219 1222 """Reload the input history from disk file."""
1220 1223 self.history_manager.reload_hist()
1221 1224
1225 # For backwards compatibility
1226 reloadhist = reload_hist
1227
1222 1228 def history_saving_wrapper(self, func):
1223 1229 """ Wrap func for readline history saving
1224 1230
1225 1231 Convert func into callable that saves & restores
1226 1232 history around the call """
1227 1233
1228 1234 if self.has_readline:
1229 1235 from IPython.utils import rlineimpl as readline
1230 1236 else:
1231 1237 return func
1232 1238
1233 1239 def wrapper():
1234 self.savehist()
1240 self.save_hist()
1235 1241 try:
1236 1242 func()
1237 1243 finally:
1238 1244 readline.read_history_file(self.histfile)
1239 1245 return wrapper
1240 1246
1241 1247 #-------------------------------------------------------------------------
1242 1248 # Things related to exception handling and tracebacks (not debugging)
1243 1249 #-------------------------------------------------------------------------
1244 1250
1245 1251 def init_traceback_handlers(self, custom_exceptions):
1246 1252 # Syntax error handler.
1247 1253 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1248 1254
1249 1255 # The interactive one is initialized with an offset, meaning we always
1250 1256 # want to remove the topmost item in the traceback, which is our own
1251 1257 # internal code. Valid modes: ['Plain','Context','Verbose']
1252 1258 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1253 1259 color_scheme='NoColor',
1254 1260 tb_offset = 1)
1255 1261
1256 1262 # The instance will store a pointer to the system-wide exception hook,
1257 1263 # so that runtime code (such as magics) can access it. This is because
1258 1264 # during the read-eval loop, it may get temporarily overwritten.
1259 1265 self.sys_excepthook = sys.excepthook
1260 1266
1261 1267 # and add any custom exception handlers the user may have specified
1262 1268 self.set_custom_exc(*custom_exceptions)
1263 1269
1264 1270 # Set the exception mode
1265 1271 self.InteractiveTB.set_mode(mode=self.xmode)
1266 1272
1267 1273 def set_custom_exc(self, exc_tuple, handler):
1268 1274 """set_custom_exc(exc_tuple,handler)
1269 1275
1270 1276 Set a custom exception handler, which will be called if any of the
1271 1277 exceptions in exc_tuple occur in the mainloop (specifically, in the
1272 runcode() method.
1278 run_code() method.
1273 1279
1274 1280 Inputs:
1275 1281
1276 1282 - exc_tuple: a *tuple* of valid exceptions to call the defined
1277 1283 handler for. It is very important that you use a tuple, and NOT A
1278 1284 LIST here, because of the way Python's except statement works. If
1279 1285 you only want to trap a single exception, use a singleton tuple:
1280 1286
1281 1287 exc_tuple == (MyCustomException,)
1282 1288
1283 1289 - handler: this must be defined as a function with the following
1284 1290 basic interface::
1285 1291
1286 1292 def my_handler(self, etype, value, tb, tb_offset=None)
1287 1293 ...
1288 1294 # The return value must be
1289 1295 return structured_traceback
1290 1296
1291 1297 This will be made into an instance method (via new.instancemethod)
1292 1298 of IPython itself, and it will be called if any of the exceptions
1293 1299 listed in the exc_tuple are caught. If the handler is None, an
1294 1300 internal basic one is used, which just prints basic info.
1295 1301
1296 1302 WARNING: by putting in your own exception handler into IPython's main
1297 1303 execution loop, you run a very good chance of nasty crashes. This
1298 1304 facility should only be used if you really know what you are doing."""
1299 1305
1300 1306 assert type(exc_tuple)==type(()) , \
1301 1307 "The custom exceptions must be given AS A TUPLE."
1302 1308
1303 1309 def dummy_handler(self,etype,value,tb):
1304 1310 print '*** Simple custom exception handler ***'
1305 1311 print 'Exception type :',etype
1306 1312 print 'Exception value:',value
1307 1313 print 'Traceback :',tb
1308 1314 print 'Source code :','\n'.join(self.buffer)
1309 1315
1310 1316 if handler is None: handler = dummy_handler
1311 1317
1312 1318 self.CustomTB = new.instancemethod(handler,self,self.__class__)
1313 1319 self.custom_exceptions = exc_tuple
1314 1320
1315 1321 def excepthook(self, etype, value, tb):
1316 1322 """One more defense for GUI apps that call sys.excepthook.
1317 1323
1318 1324 GUI frameworks like wxPython trap exceptions and call
1319 1325 sys.excepthook themselves. I guess this is a feature that
1320 1326 enables them to keep running after exceptions that would
1321 1327 otherwise kill their mainloop. This is a bother for IPython
1322 1328 which excepts to catch all of the program exceptions with a try:
1323 1329 except: statement.
1324 1330
1325 1331 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1326 1332 any app directly invokes sys.excepthook, it will look to the user like
1327 1333 IPython crashed. In order to work around this, we can disable the
1328 1334 CrashHandler and replace it with this excepthook instead, which prints a
1329 1335 regular traceback using our InteractiveTB. In this fashion, apps which
1330 1336 call sys.excepthook will generate a regular-looking exception from
1331 1337 IPython, and the CrashHandler will only be triggered by real IPython
1332 1338 crashes.
1333 1339
1334 1340 This hook should be used sparingly, only in places which are not likely
1335 1341 to be true IPython errors.
1336 1342 """
1337 1343 self.showtraceback((etype,value,tb),tb_offset=0)
1338 1344
1339 1345 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1340 1346 exception_only=False):
1341 1347 """Display the exception that just occurred.
1342 1348
1343 1349 If nothing is known about the exception, this is the method which
1344 1350 should be used throughout the code for presenting user tracebacks,
1345 1351 rather than directly invoking the InteractiveTB object.
1346 1352
1347 1353 A specific showsyntaxerror() also exists, but this method can take
1348 1354 care of calling it if needed, so unless you are explicitly catching a
1349 1355 SyntaxError exception, don't try to analyze the stack manually and
1350 1356 simply call this method."""
1351 1357
1352 1358 try:
1353 1359 if exc_tuple is None:
1354 1360 etype, value, tb = sys.exc_info()
1355 1361 else:
1356 1362 etype, value, tb = exc_tuple
1357 1363
1358 1364 if etype is None:
1359 1365 if hasattr(sys, 'last_type'):
1360 1366 etype, value, tb = sys.last_type, sys.last_value, \
1361 1367 sys.last_traceback
1362 1368 else:
1363 1369 self.write_err('No traceback available to show.\n')
1364 1370 return
1365 1371
1366 1372 if etype is SyntaxError:
1367 1373 # Though this won't be called by syntax errors in the input
1368 1374 # line, there may be SyntaxError cases whith imported code.
1369 1375 self.showsyntaxerror(filename)
1370 1376 elif etype is UsageError:
1371 1377 print "UsageError:", value
1372 1378 else:
1373 1379 # WARNING: these variables are somewhat deprecated and not
1374 1380 # necessarily safe to use in a threaded environment, but tools
1375 1381 # like pdb depend on their existence, so let's set them. If we
1376 1382 # find problems in the field, we'll need to revisit their use.
1377 1383 sys.last_type = etype
1378 1384 sys.last_value = value
1379 1385 sys.last_traceback = tb
1380 1386
1381 1387 if etype in self.custom_exceptions:
1382 1388 # FIXME: Old custom traceback objects may just return a
1383 1389 # string, in that case we just put it into a list
1384 1390 stb = self.CustomTB(etype, value, tb, tb_offset)
1385 1391 if isinstance(ctb, basestring):
1386 1392 stb = [stb]
1387 1393 else:
1388 1394 if exception_only:
1389 1395 stb = ['An exception has occurred, use %tb to see '
1390 1396 'the full traceback.\n']
1391 1397 stb.extend(self.InteractiveTB.get_exception_only(etype,
1392 1398 value))
1393 1399 else:
1394 1400 stb = self.InteractiveTB.structured_traceback(etype,
1395 1401 value, tb, tb_offset=tb_offset)
1396 1402 # FIXME: the pdb calling should be done by us, not by
1397 1403 # the code computing the traceback.
1398 1404 if self.InteractiveTB.call_pdb:
1399 1405 # pdb mucks up readline, fix it back
1400 1406 self.set_readline_completer()
1401 1407
1402 1408 # Actually show the traceback
1403 1409 self._showtraceback(etype, value, stb)
1404 1410
1405 1411 except KeyboardInterrupt:
1406 1412 self.write_err("\nKeyboardInterrupt\n")
1407 1413
1408 1414 def _showtraceback(self, etype, evalue, stb):
1409 1415 """Actually show a traceback.
1410 1416
1411 1417 Subclasses may override this method to put the traceback on a different
1412 1418 place, like a side channel.
1413 1419 """
1414 1420 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1415 1421
1416 1422 def showsyntaxerror(self, filename=None):
1417 1423 """Display the syntax error that just occurred.
1418 1424
1419 1425 This doesn't display a stack trace because there isn't one.
1420 1426
1421 1427 If a filename is given, it is stuffed in the exception instead
1422 1428 of what was there before (because Python's parser always uses
1423 1429 "<string>" when reading from a string).
1424 1430 """
1425 1431 etype, value, last_traceback = sys.exc_info()
1426 1432
1427 1433 # See note about these variables in showtraceback() above
1428 1434 sys.last_type = etype
1429 1435 sys.last_value = value
1430 1436 sys.last_traceback = last_traceback
1431 1437
1432 1438 if filename and etype is SyntaxError:
1433 1439 # Work hard to stuff the correct filename in the exception
1434 1440 try:
1435 1441 msg, (dummy_filename, lineno, offset, line) = value
1436 1442 except:
1437 1443 # Not the format we expect; leave it alone
1438 1444 pass
1439 1445 else:
1440 1446 # Stuff in the right filename
1441 1447 try:
1442 1448 # Assume SyntaxError is a class exception
1443 1449 value = SyntaxError(msg, (filename, lineno, offset, line))
1444 1450 except:
1445 1451 # If that failed, assume SyntaxError is a string
1446 1452 value = msg, (filename, lineno, offset, line)
1447 1453 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1448 1454 self._showtraceback(etype, value, stb)
1449 1455
1450 1456 #-------------------------------------------------------------------------
1451 1457 # Things related to readline
1452 1458 #-------------------------------------------------------------------------
1453 1459
1454 1460 def init_readline(self):
1455 1461 """Command history completion/saving/reloading."""
1456 1462
1457 1463 if self.readline_use:
1458 1464 import IPython.utils.rlineimpl as readline
1459 1465
1460 1466 self.rl_next_input = None
1461 1467 self.rl_do_indent = False
1462 1468
1463 1469 if not self.readline_use or not readline.have_readline:
1464 1470 self.has_readline = False
1465 1471 self.readline = None
1466 1472 # Set a number of methods that depend on readline to be no-op
1467 self.savehist = no_op
1468 self.reloadhist = no_op
1473 self.save_hist = no_op
1474 self.reload_hist = no_op
1469 1475 self.set_readline_completer = no_op
1470 1476 self.set_custom_completer = no_op
1471 1477 self.set_completer_frame = no_op
1472 1478 warn('Readline services not available or not loaded.')
1473 1479 else:
1474 1480 self.has_readline = True
1475 1481 self.readline = readline
1476 1482 sys.modules['readline'] = readline
1477 1483
1478 1484 # Platform-specific configuration
1479 1485 if os.name == 'nt':
1480 1486 # FIXME - check with Frederick to see if we can harmonize
1481 1487 # naming conventions with pyreadline to avoid this
1482 1488 # platform-dependent check
1483 1489 self.readline_startup_hook = readline.set_pre_input_hook
1484 1490 else:
1485 1491 self.readline_startup_hook = readline.set_startup_hook
1486 1492
1487 1493 # Load user's initrc file (readline config)
1488 1494 # Or if libedit is used, load editrc.
1489 1495 inputrc_name = os.environ.get('INPUTRC')
1490 1496 if inputrc_name is None:
1491 1497 home_dir = get_home_dir()
1492 1498 if home_dir is not None:
1493 1499 inputrc_name = '.inputrc'
1494 1500 if readline.uses_libedit:
1495 1501 inputrc_name = '.editrc'
1496 1502 inputrc_name = os.path.join(home_dir, inputrc_name)
1497 1503 if os.path.isfile(inputrc_name):
1498 1504 try:
1499 1505 readline.read_init_file(inputrc_name)
1500 1506 except:
1501 1507 warn('Problems reading readline initialization file <%s>'
1502 1508 % inputrc_name)
1503 1509
1504 1510 # Configure readline according to user's prefs
1505 1511 # This is only done if GNU readline is being used. If libedit
1506 1512 # is being used (as on Leopard) the readline config is
1507 1513 # not run as the syntax for libedit is different.
1508 1514 if not readline.uses_libedit:
1509 1515 for rlcommand in self.readline_parse_and_bind:
1510 1516 #print "loading rl:",rlcommand # dbg
1511 1517 readline.parse_and_bind(rlcommand)
1512 1518
1513 1519 # Remove some chars from the delimiters list. If we encounter
1514 1520 # unicode chars, discard them.
1515 1521 delims = readline.get_completer_delims().encode("ascii", "ignore")
1516 1522 delims = delims.translate(string._idmap,
1517 1523 self.readline_remove_delims)
1518 1524 delims = delims.replace(ESC_MAGIC, '')
1519 1525 readline.set_completer_delims(delims)
1520 1526 # otherwise we end up with a monster history after a while:
1521 1527 readline.set_history_length(1000)
1522 1528 try:
1523 1529 #print '*** Reading readline history' # dbg
1524 1530 readline.read_history_file(self.histfile)
1525 1531 except IOError:
1526 1532 pass # It doesn't exist yet.
1527 1533
1528 1534 # If we have readline, we want our history saved upon ipython
1529 1535 # exiting.
1530 atexit.register(self.savehist)
1536 atexit.register(self.save_hist)
1531 1537
1532 1538 # Configure auto-indent for all platforms
1533 1539 self.set_autoindent(self.autoindent)
1534 1540
1535 1541 def set_next_input(self, s):
1536 1542 """ Sets the 'default' input string for the next command line.
1537 1543
1538 1544 Requires readline.
1539 1545
1540 1546 Example:
1541 1547
1542 1548 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1543 1549 [D:\ipython]|2> Hello Word_ # cursor is here
1544 1550 """
1545 1551
1546 1552 self.rl_next_input = s
1547 1553
1548 1554 # Maybe move this to the terminal subclass?
1549 1555 def pre_readline(self):
1550 1556 """readline hook to be used at the start of each line.
1551 1557
1552 1558 Currently it handles auto-indent only."""
1553 1559
1554 1560 if self.rl_do_indent:
1555 1561 self.readline.insert_text(self._indent_current_str())
1556 1562 if self.rl_next_input is not None:
1557 1563 self.readline.insert_text(self.rl_next_input)
1558 1564 self.rl_next_input = None
1559 1565
1560 1566 def _indent_current_str(self):
1561 1567 """return the current level of indentation as a string"""
1562 1568 #return self.indent_current_nsp * ' '
1563 1569 return self.input_splitter.indent_spaces * ' '
1564 1570
1565 1571 #-------------------------------------------------------------------------
1566 1572 # Things related to text completion
1567 1573 #-------------------------------------------------------------------------
1568 1574
1569 1575 def init_completer(self):
1570 1576 """Initialize the completion machinery.
1571 1577
1572 1578 This creates completion machinery that can be used by client code,
1573 1579 either interactively in-process (typically triggered by the readline
1574 1580 library), programatically (such as in test suites) or out-of-prcess
1575 1581 (typically over the network by remote frontends).
1576 1582 """
1577 1583 from IPython.core.completer import IPCompleter
1578 1584 from IPython.core.completerlib import (module_completer,
1579 1585 magic_run_completer, cd_completer)
1580 1586
1581 1587 self.Completer = IPCompleter(self,
1582 1588 self.user_ns,
1583 1589 self.user_global_ns,
1584 1590 self.readline_omit__names,
1585 1591 self.alias_manager.alias_table,
1586 1592 self.has_readline)
1587 1593
1588 1594 # Add custom completers to the basic ones built into IPCompleter
1589 1595 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1590 1596 self.strdispatchers['complete_command'] = sdisp
1591 1597 self.Completer.custom_completers = sdisp
1592 1598
1593 1599 self.set_hook('complete_command', module_completer, str_key = 'import')
1594 1600 self.set_hook('complete_command', module_completer, str_key = 'from')
1595 1601 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1596 1602 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1597 1603
1598 1604 # Only configure readline if we truly are using readline. IPython can
1599 1605 # do tab-completion over the network, in GUIs, etc, where readline
1600 1606 # itself may be absent
1601 1607 if self.has_readline:
1602 1608 self.set_readline_completer()
1603 1609
1604 1610 def complete(self, text, line=None, cursor_pos=None):
1605 1611 """Return the completed text and a list of completions.
1606 1612
1607 1613 Parameters
1608 1614 ----------
1609 1615
1610 1616 text : string
1611 1617 A string of text to be completed on. It can be given as empty and
1612 1618 instead a line/position pair are given. In this case, the
1613 1619 completer itself will split the line like readline does.
1614 1620
1615 1621 line : string, optional
1616 1622 The complete line that text is part of.
1617 1623
1618 1624 cursor_pos : int, optional
1619 1625 The position of the cursor on the input line.
1620 1626
1621 1627 Returns
1622 1628 -------
1623 1629 text : string
1624 1630 The actual text that was completed.
1625 1631
1626 1632 matches : list
1627 1633 A sorted list with all possible completions.
1628 1634
1629 1635 The optional arguments allow the completion to take more context into
1630 1636 account, and are part of the low-level completion API.
1631 1637
1632 1638 This is a wrapper around the completion mechanism, similar to what
1633 1639 readline does at the command line when the TAB key is hit. By
1634 1640 exposing it as a method, it can be used by other non-readline
1635 1641 environments (such as GUIs) for text completion.
1636 1642
1637 1643 Simple usage example:
1638 1644
1639 1645 In [1]: x = 'hello'
1640 1646
1641 1647 In [2]: _ip.complete('x.l')
1642 1648 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1643 1649 """
1644 1650
1645 1651 # Inject names into __builtin__ so we can complete on the added names.
1646 1652 with self.builtin_trap:
1647 1653 return self.Completer.complete(text, line, cursor_pos)
1648 1654
1649 1655 def set_custom_completer(self, completer, pos=0):
1650 1656 """Adds a new custom completer function.
1651 1657
1652 1658 The position argument (defaults to 0) is the index in the completers
1653 1659 list where you want the completer to be inserted."""
1654 1660
1655 1661 newcomp = new.instancemethod(completer,self.Completer,
1656 1662 self.Completer.__class__)
1657 1663 self.Completer.matchers.insert(pos,newcomp)
1658 1664
1659 1665 def set_readline_completer(self):
1660 1666 """Reset readline's completer to be our own."""
1661 1667 self.readline.set_completer(self.Completer.rlcomplete)
1662 1668
1663 1669 def set_completer_frame(self, frame=None):
1664 1670 """Set the frame of the completer."""
1665 1671 if frame:
1666 1672 self.Completer.namespace = frame.f_locals
1667 1673 self.Completer.global_namespace = frame.f_globals
1668 1674 else:
1669 1675 self.Completer.namespace = self.user_ns
1670 1676 self.Completer.global_namespace = self.user_global_ns
1671 1677
1672 1678 #-------------------------------------------------------------------------
1673 1679 # Things related to magics
1674 1680 #-------------------------------------------------------------------------
1675 1681
1676 1682 def init_magics(self):
1677 1683 # FIXME: Move the color initialization to the DisplayHook, which
1678 1684 # should be split into a prompt manager and displayhook. We probably
1679 1685 # even need a centralize colors management object.
1680 1686 self.magic_colors(self.colors)
1681 1687 # History was moved to a separate module
1682 1688 from . import history
1683 1689 history.init_ipython(self)
1684 1690
1685 1691 def magic(self,arg_s):
1686 1692 """Call a magic function by name.
1687 1693
1688 1694 Input: a string containing the name of the magic function to call and
1689 1695 any additional arguments to be passed to the magic.
1690 1696
1691 1697 magic('name -opt foo bar') is equivalent to typing at the ipython
1692 1698 prompt:
1693 1699
1694 1700 In[1]: %name -opt foo bar
1695 1701
1696 1702 To call a magic without arguments, simply use magic('name').
1697 1703
1698 1704 This provides a proper Python function to call IPython's magics in any
1699 1705 valid Python code you can type at the interpreter, including loops and
1700 1706 compound statements.
1701 1707 """
1702 1708 args = arg_s.split(' ',1)
1703 1709 magic_name = args[0]
1704 1710 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1705 1711
1706 1712 try:
1707 1713 magic_args = args[1]
1708 1714 except IndexError:
1709 1715 magic_args = ''
1710 1716 fn = getattr(self,'magic_'+magic_name,None)
1711 1717 if fn is None:
1712 1718 error("Magic function `%s` not found." % magic_name)
1713 1719 else:
1714 1720 magic_args = self.var_expand(magic_args,1)
1715 1721 with nested(self.builtin_trap,):
1716 1722 result = fn(magic_args)
1717 1723 return result
1718 1724
1719 1725 def define_magic(self, magicname, func):
1720 1726 """Expose own function as magic function for ipython
1721 1727
1722 1728 def foo_impl(self,parameter_s=''):
1723 1729 'My very own magic!. (Use docstrings, IPython reads them).'
1724 1730 print 'Magic function. Passed parameter is between < >:'
1725 1731 print '<%s>' % parameter_s
1726 1732 print 'The self object is:',self
1727 1733
1728 1734 self.define_magic('foo',foo_impl)
1729 1735 """
1730 1736
1731 1737 import new
1732 1738 im = new.instancemethod(func,self, self.__class__)
1733 1739 old = getattr(self, "magic_" + magicname, None)
1734 1740 setattr(self, "magic_" + magicname, im)
1735 1741 return old
1736 1742
1737 1743 #-------------------------------------------------------------------------
1738 1744 # Things related to macros
1739 1745 #-------------------------------------------------------------------------
1740 1746
1741 1747 def define_macro(self, name, themacro):
1742 1748 """Define a new macro
1743 1749
1744 1750 Parameters
1745 1751 ----------
1746 1752 name : str
1747 1753 The name of the macro.
1748 1754 themacro : str or Macro
1749 1755 The action to do upon invoking the macro. If a string, a new
1750 1756 Macro object is created by passing the string to it.
1751 1757 """
1752 1758
1753 1759 from IPython.core import macro
1754 1760
1755 1761 if isinstance(themacro, basestring):
1756 1762 themacro = macro.Macro(themacro)
1757 1763 if not isinstance(themacro, macro.Macro):
1758 1764 raise ValueError('A macro must be a string or a Macro instance.')
1759 1765 self.user_ns[name] = themacro
1760 1766
1761 1767 #-------------------------------------------------------------------------
1762 1768 # Things related to the running of system commands
1763 1769 #-------------------------------------------------------------------------
1764 1770
1765 1771 def system(self, cmd):
1766 1772 """Call the given cmd in a subprocess.
1767 1773
1768 1774 Parameters
1769 1775 ----------
1770 1776 cmd : str
1771 1777 Command to execute (can not end in '&', as bacground processes are
1772 1778 not supported.
1773 1779 """
1774 1780 # We do not support backgrounding processes because we either use
1775 1781 # pexpect or pipes to read from. Users can always just call
1776 1782 # os.system() if they really want a background process.
1777 1783 if cmd.endswith('&'):
1778 1784 raise OSError("Background processes not supported.")
1779 1785
1780 1786 return system(self.var_expand(cmd, depth=2))
1781 1787
1782 1788 def getoutput(self, cmd, split=True):
1783 1789 """Get output (possibly including stderr) from a subprocess.
1784 1790
1785 1791 Parameters
1786 1792 ----------
1787 1793 cmd : str
1788 1794 Command to execute (can not end in '&', as background processes are
1789 1795 not supported.
1790 1796 split : bool, optional
1791 1797
1792 1798 If True, split the output into an IPython SList. Otherwise, an
1793 1799 IPython LSString is returned. These are objects similar to normal
1794 1800 lists and strings, with a few convenience attributes for easier
1795 1801 manipulation of line-based output. You can use '?' on them for
1796 1802 details.
1797 1803 """
1798 1804 if cmd.endswith('&'):
1799 1805 raise OSError("Background processes not supported.")
1800 1806 out = getoutput(self.var_expand(cmd, depth=2))
1801 1807 if split:
1802 1808 out = SList(out.splitlines())
1803 1809 else:
1804 1810 out = LSString(out)
1805 1811 return out
1806 1812
1807 1813 #-------------------------------------------------------------------------
1808 1814 # Things related to aliases
1809 1815 #-------------------------------------------------------------------------
1810 1816
1811 1817 def init_alias(self):
1812 1818 self.alias_manager = AliasManager(shell=self, config=self.config)
1813 1819 self.ns_table['alias'] = self.alias_manager.alias_table,
1814 1820
1815 1821 #-------------------------------------------------------------------------
1816 1822 # Things related to extensions and plugins
1817 1823 #-------------------------------------------------------------------------
1818 1824
1819 1825 def init_extension_manager(self):
1820 1826 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1821 1827
1822 1828 def init_plugin_manager(self):
1823 1829 self.plugin_manager = PluginManager(config=self.config)
1824 1830
1825 1831 #-------------------------------------------------------------------------
1826 1832 # Things related to payloads
1827 1833 #-------------------------------------------------------------------------
1828 1834
1829 1835 def init_payload(self):
1830 1836 self.payload_manager = PayloadManager(config=self.config)
1831 1837
1832 1838 #-------------------------------------------------------------------------
1833 1839 # Things related to the prefilter
1834 1840 #-------------------------------------------------------------------------
1835 1841
1836 1842 def init_prefilter(self):
1837 1843 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1838 1844 # Ultimately this will be refactored in the new interpreter code, but
1839 1845 # for now, we should expose the main prefilter method (there's legacy
1840 1846 # code out there that may rely on this).
1841 1847 self.prefilter = self.prefilter_manager.prefilter_lines
1842 1848
1843 1849 def auto_rewrite_input(self, cmd):
1844 1850 """Print to the screen the rewritten form of the user's command.
1845 1851
1846 1852 This shows visual feedback by rewriting input lines that cause
1847 1853 automatic calling to kick in, like::
1848 1854
1849 1855 /f x
1850 1856
1851 1857 into::
1852 1858
1853 1859 ------> f(x)
1854 1860
1855 1861 after the user's input prompt. This helps the user understand that the
1856 1862 input line was transformed automatically by IPython.
1857 1863 """
1858 1864 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1859 1865
1860 1866 try:
1861 1867 # plain ascii works better w/ pyreadline, on some machines, so
1862 1868 # we use it and only print uncolored rewrite if we have unicode
1863 1869 rw = str(rw)
1864 1870 print >> IPython.utils.io.Term.cout, rw
1865 1871 except UnicodeEncodeError:
1866 1872 print "------> " + cmd
1867 1873
1868 1874 #-------------------------------------------------------------------------
1869 1875 # Things related to extracting values/expressions from kernel and user_ns
1870 1876 #-------------------------------------------------------------------------
1871 1877
1872 1878 def _simple_error(self):
1873 1879 etype, value = sys.exc_info()[:2]
1874 1880 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1875 1881
1876 1882 def user_variables(self, names):
1877 1883 """Get a list of variable names from the user's namespace.
1878 1884
1879 1885 Parameters
1880 1886 ----------
1881 1887 names : list of strings
1882 1888 A list of names of variables to be read from the user namespace.
1883 1889
1884 1890 Returns
1885 1891 -------
1886 1892 A dict, keyed by the input names and with the repr() of each value.
1887 1893 """
1888 1894 out = {}
1889 1895 user_ns = self.user_ns
1890 1896 for varname in names:
1891 1897 try:
1892 1898 value = repr(user_ns[varname])
1893 1899 except:
1894 1900 value = self._simple_error()
1895 1901 out[varname] = value
1896 1902 return out
1897 1903
1898 1904 def user_expressions(self, expressions):
1899 1905 """Evaluate a dict of expressions in the user's namespace.
1900 1906
1901 1907 Parameters
1902 1908 ----------
1903 1909 expressions : dict
1904 1910 A dict with string keys and string values. The expression values
1905 1911 should be valid Python expressions, each of which will be evaluated
1906 1912 in the user namespace.
1907 1913
1908 1914 Returns
1909 1915 -------
1910 1916 A dict, keyed like the input expressions dict, with the repr() of each
1911 1917 value.
1912 1918 """
1913 1919 out = {}
1914 1920 user_ns = self.user_ns
1915 1921 global_ns = self.user_global_ns
1916 1922 for key, expr in expressions.iteritems():
1917 1923 try:
1918 1924 value = repr(eval(expr, global_ns, user_ns))
1919 1925 except:
1920 1926 value = self._simple_error()
1921 1927 out[key] = value
1922 1928 return out
1923 1929
1924 1930 #-------------------------------------------------------------------------
1925 1931 # Things related to the running of code
1926 1932 #-------------------------------------------------------------------------
1927 1933
1928 1934 def ex(self, cmd):
1929 1935 """Execute a normal python statement in user namespace."""
1930 1936 with nested(self.builtin_trap,):
1931 1937 exec cmd in self.user_global_ns, self.user_ns
1932 1938
1933 1939 def ev(self, expr):
1934 1940 """Evaluate python expression expr in user namespace.
1935 1941
1936 1942 Returns the result of evaluation
1937 1943 """
1938 1944 with nested(self.builtin_trap,):
1939 1945 return eval(expr, self.user_global_ns, self.user_ns)
1940 1946
1941 1947 def safe_execfile(self, fname, *where, **kw):
1942 1948 """A safe version of the builtin execfile().
1943 1949
1944 1950 This version will never throw an exception, but instead print
1945 1951 helpful error messages to the screen. This only works on pure
1946 1952 Python files with the .py extension.
1947 1953
1948 1954 Parameters
1949 1955 ----------
1950 1956 fname : string
1951 1957 The name of the file to be executed.
1952 1958 where : tuple
1953 1959 One or two namespaces, passed to execfile() as (globals,locals).
1954 1960 If only one is given, it is passed as both.
1955 1961 exit_ignore : bool (False)
1956 1962 If True, then silence SystemExit for non-zero status (it is always
1957 1963 silenced for zero status, as it is so common).
1958 1964 """
1959 1965 kw.setdefault('exit_ignore', False)
1960 1966
1961 1967 fname = os.path.abspath(os.path.expanduser(fname))
1962 1968
1963 1969 # Make sure we have a .py file
1964 1970 if not fname.endswith('.py'):
1965 1971 warn('File must end with .py to be run using execfile: <%s>' % fname)
1966 1972
1967 1973 # Make sure we can open the file
1968 1974 try:
1969 1975 with open(fname) as thefile:
1970 1976 pass
1971 1977 except:
1972 1978 warn('Could not open file <%s> for safe execution.' % fname)
1973 1979 return
1974 1980
1975 1981 # Find things also in current directory. This is needed to mimic the
1976 1982 # behavior of running a script from the system command line, where
1977 1983 # Python inserts the script's directory into sys.path
1978 1984 dname = os.path.dirname(fname)
1979 1985
1980 1986 with prepended_to_syspath(dname):
1981 1987 try:
1982 1988 execfile(fname,*where)
1983 1989 except SystemExit, status:
1984 1990 # If the call was made with 0 or None exit status (sys.exit(0)
1985 1991 # or sys.exit() ), don't bother showing a traceback, as both of
1986 1992 # these are considered normal by the OS:
1987 1993 # > python -c'import sys;sys.exit(0)'; echo $?
1988 1994 # 0
1989 1995 # > python -c'import sys;sys.exit()'; echo $?
1990 1996 # 0
1991 1997 # For other exit status, we show the exception unless
1992 1998 # explicitly silenced, but only in short form.
1993 1999 if status.code not in (0, None) and not kw['exit_ignore']:
1994 2000 self.showtraceback(exception_only=True)
1995 2001 except:
1996 2002 self.showtraceback()
1997 2003
1998 2004 def safe_execfile_ipy(self, fname):
1999 2005 """Like safe_execfile, but for .ipy files with IPython syntax.
2000 2006
2001 2007 Parameters
2002 2008 ----------
2003 2009 fname : str
2004 2010 The name of the file to execute. The filename must have a
2005 2011 .ipy extension.
2006 2012 """
2007 2013 fname = os.path.abspath(os.path.expanduser(fname))
2008 2014
2009 2015 # Make sure we have a .py file
2010 2016 if not fname.endswith('.ipy'):
2011 2017 warn('File must end with .py to be run using execfile: <%s>' % fname)
2012 2018
2013 2019 # Make sure we can open the file
2014 2020 try:
2015 2021 with open(fname) as thefile:
2016 2022 pass
2017 2023 except:
2018 2024 warn('Could not open file <%s> for safe execution.' % fname)
2019 2025 return
2020 2026
2021 2027 # Find things also in current directory. This is needed to mimic the
2022 2028 # behavior of running a script from the system command line, where
2023 2029 # Python inserts the script's directory into sys.path
2024 2030 dname = os.path.dirname(fname)
2025 2031
2026 2032 with prepended_to_syspath(dname):
2027 2033 try:
2028 2034 with open(fname) as thefile:
2029 2035 # self.run_cell currently captures all exceptions
2030 2036 # raised in user code. It would be nice if there were
2031 2037 # versions of runlines, execfile that did raise, so
2032 2038 # we could catch the errors.
2033 2039 self.run_cell(thefile.read())
2034 2040 except:
2035 2041 self.showtraceback()
2036 2042 warn('Unknown failure executing file: <%s>' % fname)
2037 2043
2038 2044 def run_cell(self, cell):
2039 2045 """Run the contents of an entire multiline 'cell' of code.
2040 2046
2041 2047 The cell is split into separate blocks which can be executed
2042 2048 individually. Then, based on how many blocks there are, they are
2043 2049 executed as follows:
2044 2050
2045 2051 - A single block: 'single' mode.
2046 2052
2047 2053 If there's more than one block, it depends:
2048 2054
2049 2055 - if the last one is no more than two lines long, run all but the last
2050 2056 in 'exec' mode and the very last one in 'single' mode. This makes it
2051 2057 easy to type simple expressions at the end to see computed values. -
2052 2058 otherwise (last one is also multiline), run all in 'exec' mode
2053 2059
2054 2060 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2055 2061 results are displayed and output prompts are computed. In 'exec' mode,
2056 2062 no results are displayed unless :func:`print` is called explicitly;
2057 2063 this mode is more akin to running a script.
2058 2064
2059 2065 Parameters
2060 2066 ----------
2061 2067 cell : str
2062 2068 A single or multiline string.
2063 2069 """
2064 2070 #################################################################
2065 2071 # FIXME
2066 2072 # =====
2067 2073 # This execution logic should stop calling runlines altogether, and
2068 2074 # instead we should do what runlines does, in a controlled manner, here
2069 2075 # (runlines mutates lots of state as it goes calling sub-methods that
2070 2076 # also mutate state). Basically we should:
2071 2077 # - apply dynamic transforms for single-line input (the ones that
2072 2078 # split_blocks won't apply since they need context).
2073 2079 # - increment the global execution counter (we need to pull that out
2074 2080 # from outputcache's control; outputcache should instead read it from
2075 2081 # the main object).
2076 2082 # - do any logging of input
2077 2083 # - update histories (raw/translated)
2078 # - then, call plain runsource (for single blocks, so displayhook is
2079 # triggered) or runcode (for multiline blocks in exec mode).
2084 # - then, call plain run_source (for single blocks, so displayhook is
2085 # triggered) or run_code (for multiline blocks in exec mode).
2080 2086 #
2081 2087 # Once this is done, we'll be able to stop using runlines and we'll
2082 2088 # also have a much cleaner separation of logging, input history and
2083 2089 # output cache management.
2084 2090 #################################################################
2085 2091
2086 2092 # We need to break up the input into executable blocks that can be run
2087 2093 # in 'single' mode, to provide comfortable user behavior.
2088 2094 blocks = self.input_splitter.split_blocks(cell)
2089 2095
2090 2096 if not blocks:
2091 2097 return
2092 2098
2093 2099 # Store the 'ipython' version of the cell as well, since that's what
2094 2100 # needs to go into the translated history and get executed (the
2095 2101 # original cell may contain non-python syntax).
2096 2102 ipy_cell = ''.join(blocks)
2097 2103
2098 2104 # Store raw and processed history
2099 2105 self.history_manager.store_inputs(ipy_cell, cell)
2100 2106
2101 2107 self.logger.log(ipy_cell, cell)
2102 2108 # dbg code!!!
2103 2109 if 0:
2104 2110 def myapp(self, val): # dbg
2105 2111 import traceback as tb
2106 2112 stack = ''.join(tb.format_stack())
2107 2113 print 'Value:', val
2108 2114 print 'Stack:\n', stack
2109 2115 list.append(self, val)
2110 2116
2111 2117 import new
2112 2118 self.input_hist.append = new.instancemethod(myapp, self.input_hist,
2113 2119 list)
2114 2120 # End dbg
2115 2121
2116 2122 # All user code execution must happen with our context managers active
2117 2123 with nested(self.builtin_trap, self.display_trap):
2118 2124
2119 2125 # Single-block input should behave like an interactive prompt
2120 2126 if len(blocks) == 1:
2121 2127 # since we return here, we need to update the execution count
2122 2128 out = self.run_one_block(blocks[0])
2123 2129 self.execution_count += 1
2124 2130 return out
2125 2131
2126 2132 # In multi-block input, if the last block is a simple (one-two
2127 2133 # lines) expression, run it in single mode so it produces output.
2128 # Otherwise just feed the whole thing to runcode. This seems like
2134 # Otherwise just feed the whole thing to run_code. This seems like
2129 2135 # a reasonable usability design.
2130 2136 last = blocks[-1]
2131 2137 last_nlines = len(last.splitlines())
2132 2138
2133 # Note: below, whenever we call runcode, we must sync history
2134 # ourselves, because runcode is NOT meant to manage history at all.
2139 # Note: below, whenever we call run_code, we must sync history
2140 # ourselves, because run_code is NOT meant to manage history at all.
2135 2141 if last_nlines < 2:
2136 2142 # Here we consider the cell split between 'body' and 'last',
2137 2143 # store all history and execute 'body', and if successful, then
2138 2144 # proceed to execute 'last'.
2139 2145
2140 2146 # Get the main body to run as a cell
2141 2147 ipy_body = ''.join(blocks[:-1])
2142 retcode = self.runcode(ipy_body, post_execute=False)
2148 retcode = self.run_code(ipy_body, post_execute=False)
2143 2149 if retcode==0:
2144 2150 # And the last expression via runlines so it produces output
2145 2151 self.run_one_block(last)
2146 2152 else:
2147 2153 # Run the whole cell as one entity, storing both raw and
2148 2154 # processed input in history
2149 self.runcode(ipy_cell)
2155 self.run_code(ipy_cell)
2150 2156
2151 2157 # Each cell is a *single* input, regardless of how many lines it has
2152 2158 self.execution_count += 1
2153 2159
2154 2160 def run_one_block(self, block):
2155 2161 """Run a single interactive block.
2156 2162
2157 2163 If the block is single-line, dynamic transformations are applied to it
2158 2164 (like automagics, autocall and alias recognition).
2159 2165 """
2160 2166 if len(block.splitlines()) <= 1:
2161 2167 out = self.run_single_line(block)
2162 2168 else:
2163 out = self.runcode(block)
2169 out = self.run_code(block)
2164 2170 return out
2165 2171
2166 2172 def run_single_line(self, line):
2167 2173 """Run a single-line interactive statement.
2168 2174
2169 2175 This assumes the input has been transformed to IPython syntax by
2170 2176 applying all static transformations (those with an explicit prefix like
2171 2177 % or !), but it will further try to apply the dynamic ones.
2172 2178
2173 2179 It does not update history.
2174 2180 """
2175 2181 tline = self.prefilter_manager.prefilter_line(line)
2176 return self.runsource(tline)
2182 return self.run_source(tline)
2177 2183
2178 2184 def runlines(self, lines, clean=False):
2179 2185 """Run a string of one or more lines of source.
2180 2186
2181 2187 This method is capable of running a string containing multiple source
2182 2188 lines, as if they had been entered at the IPython prompt. Since it
2183 2189 exposes IPython's processing machinery, the given strings can contain
2184 2190 magic calls (%magic), special shell access (!cmd), etc.
2185 2191 """
2186 2192
2187 2193 if isinstance(lines, (list, tuple)):
2188 2194 lines = '\n'.join(lines)
2189 2195
2190 2196 if clean:
2191 2197 lines = self._cleanup_ipy_script(lines)
2192 2198
2193 2199 # We must start with a clean buffer, in case this is run from an
2194 2200 # interactive IPython session (via a magic, for example).
2195 self.resetbuffer()
2201 self.reset_buffer()
2196 2202 lines = lines.splitlines()
2197 2203
2198 2204 # Since we will prefilter all lines, store the user's raw input too
2199 2205 # before we apply any transformations
2200 2206 self.buffer_raw[:] = [ l+'\n' for l in lines]
2201 2207
2202 2208 more = False
2203 2209 prefilter_lines = self.prefilter_manager.prefilter_lines
2204 2210 with nested(self.builtin_trap, self.display_trap):
2205 2211 for line in lines:
2206 2212 # skip blank lines so we don't mess up the prompt counter, but
2207 2213 # do NOT skip even a blank line if we are in a code block (more
2208 2214 # is true)
2209 2215
2210 2216 if line or more:
2211 2217 more = self.push_line(prefilter_lines(line, more))
2212 # IPython's runsource returns None if there was an error
2218 # IPython's run_source returns None if there was an error
2213 2219 # compiling the code. This allows us to stop processing
2214 2220 # right away, so the user gets the error message at the
2215 2221 # right place.
2216 2222 if more is None:
2217 2223 break
2218 2224 # final newline in case the input didn't have it, so that the code
2219 2225 # actually does get executed
2220 2226 if more:
2221 2227 self.push_line('\n')
2222 2228
2223 def runsource(self, source, filename='<ipython console>', symbol='single'):
2229 def run_source(self, source, filename='<ipython console>', symbol='single'):
2224 2230 """Compile and run some source in the interpreter.
2225 2231
2226 2232 Arguments are as for compile_command().
2227 2233
2228 2234 One several things can happen:
2229 2235
2230 2236 1) The input is incorrect; compile_command() raised an
2231 2237 exception (SyntaxError or OverflowError). A syntax traceback
2232 2238 will be printed by calling the showsyntaxerror() method.
2233 2239
2234 2240 2) The input is incomplete, and more input is required;
2235 2241 compile_command() returned None. Nothing happens.
2236 2242
2237 2243 3) The input is complete; compile_command() returned a code
2238 object. The code is executed by calling self.runcode() (which
2244 object. The code is executed by calling self.run_code() (which
2239 2245 also handles run-time exceptions, except for SystemExit).
2240 2246
2241 2247 The return value is:
2242 2248
2243 2249 - True in case 2
2244 2250
2245 2251 - False in the other cases, unless an exception is raised, where
2246 2252 None is returned instead. This can be used by external callers to
2247 2253 know whether to continue feeding input or not.
2248 2254
2249 2255 The return value can be used to decide whether to use sys.ps1 or
2250 2256 sys.ps2 to prompt the next line."""
2251 2257
2252 2258 # We need to ensure that the source is unicode from here on.
2253 2259 if type(source)==str:
2254 2260 source = source.decode(self.stdin_encoding)
2255 2261
2256 2262 try:
2257 2263 code = self.compile(source,filename,symbol)
2258 2264 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2259 2265 # Case 1
2260 2266 self.showsyntaxerror(filename)
2261 2267 return None
2262 2268
2263 2269 if code is None:
2264 2270 # Case 2
2265 2271 return True
2266 2272
2267 2273 # Case 3
2268 2274 # We store the code object so that threaded shells and
2269 2275 # custom exception handlers can access all this info if needed.
2270 2276 # The source corresponding to this can be obtained from the
2271 2277 # buffer attribute as '\n'.join(self.buffer).
2272 2278 self.code_to_run = code
2273 2279 # now actually execute the code object
2274 if self.runcode(code) == 0:
2280 if self.run_code(code) == 0:
2275 2281 return False
2276 2282 else:
2277 2283 return None
2278 2284
2279 def runcode(self, code_obj, post_execute=True):
2285 # For backwards compatibility
2286 runsource = run_source
2287
2288 def run_code(self, code_obj, post_execute=True):
2280 2289 """Execute a code object.
2281 2290
2282 2291 When an exception occurs, self.showtraceback() is called to display a
2283 2292 traceback.
2284 2293
2285 2294 Return value: a flag indicating whether the code to be run completed
2286 2295 successfully:
2287 2296
2288 2297 - 0: successful execution.
2289 2298 - 1: an error occurred.
2290 2299 """
2291 2300
2292 2301 # Set our own excepthook in case the user code tries to call it
2293 2302 # directly, so that the IPython crash handler doesn't get triggered
2294 2303 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2295 2304
2296 2305 # we save the original sys.excepthook in the instance, in case config
2297 2306 # code (such as magics) needs access to it.
2298 2307 self.sys_excepthook = old_excepthook
2299 2308 outflag = 1 # happens in more places, so it's easier as default
2300 2309 try:
2301 2310 try:
2302 self.hooks.pre_runcode_hook()
2311 self.hooks.pre_run_code_hook()
2303 2312 #rprint('Running code') # dbg
2304 2313 exec code_obj in self.user_global_ns, self.user_ns
2305 2314 finally:
2306 2315 # Reset our crash handler in place
2307 2316 sys.excepthook = old_excepthook
2308 2317 except SystemExit:
2309 self.resetbuffer()
2318 self.reset_buffer()
2310 2319 self.showtraceback(exception_only=True)
2311 2320 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2312 2321 except self.custom_exceptions:
2313 2322 etype,value,tb = sys.exc_info()
2314 2323 self.CustomTB(etype,value,tb)
2315 2324 except:
2316 2325 self.showtraceback()
2317 2326 else:
2318 2327 outflag = 0
2319 2328 if softspace(sys.stdout, 0):
2320 2329 print
2321 2330
2322 2331 # Execute any registered post-execution functions. Here, any errors
2323 2332 # are reported only minimally and just on the terminal, because the
2324 2333 # main exception channel may be occupied with a user traceback.
2325 2334 # FIXME: we need to think this mechanism a little more carefully.
2326 2335 if post_execute:
2327 2336 for func in self._post_execute:
2328 2337 try:
2329 2338 func()
2330 2339 except:
2331 2340 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2332 2341 func
2333 2342 print >> io.Term.cout, head
2334 2343 print >> io.Term.cout, self._simple_error()
2335 2344 print >> io.Term.cout, 'Removing from post_execute'
2336 2345 self._post_execute.remove(func)
2337 2346
2338 2347 # Flush out code object which has been run (and source)
2339 2348 self.code_to_run = None
2340 2349 return outflag
2341 2350
2351 # For backwards compatibility
2352 runcode = run_code
2353
2342 2354 def push_line(self, line):
2343 2355 """Push a line to the interpreter.
2344 2356
2345 2357 The line should not have a trailing newline; it may have
2346 2358 internal newlines. The line is appended to a buffer and the
2347 interpreter's runsource() method is called with the
2359 interpreter's run_source() method is called with the
2348 2360 concatenated contents of the buffer as source. If this
2349 2361 indicates that the command was executed or invalid, the buffer
2350 2362 is reset; otherwise, the command is incomplete, and the buffer
2351 2363 is left as it was after the line was appended. The return
2352 2364 value is 1 if more input is required, 0 if the line was dealt
2353 with in some way (this is the same as runsource()).
2365 with in some way (this is the same as run_source()).
2354 2366 """
2355 2367
2356 2368 # autoindent management should be done here, and not in the
2357 2369 # interactive loop, since that one is only seen by keyboard input. We
2358 2370 # need this done correctly even for code run via runlines (which uses
2359 2371 # push).
2360 2372
2361 2373 #print 'push line: <%s>' % line # dbg
2362 2374 self.buffer.append(line)
2363 2375 full_source = '\n'.join(self.buffer)
2364 more = self.runsource(full_source, self.filename)
2376 more = self.run_source(full_source, self.filename)
2365 2377 if not more:
2366 2378 self.history_manager.store_inputs('\n'.join(self.buffer_raw),
2367 2379 full_source)
2368 self.resetbuffer()
2380 self.reset_buffer()
2369 2381 self.execution_count += 1
2370 2382 return more
2371 2383
2372 def resetbuffer(self):
2384 def reset_buffer(self):
2373 2385 """Reset the input buffer."""
2374 2386 self.buffer[:] = []
2375 2387 self.buffer_raw[:] = []
2376 2388 self.input_splitter.reset()
2377 2389
2390 # For backwards compatibility
2391 resetbuffer = reset_buffer
2392
2378 2393 def _is_secondary_block_start(self, s):
2379 2394 if not s.endswith(':'):
2380 2395 return False
2381 2396 if (s.startswith('elif') or
2382 2397 s.startswith('else') or
2383 2398 s.startswith('except') or
2384 2399 s.startswith('finally')):
2385 2400 return True
2386 2401
2387 2402 def _cleanup_ipy_script(self, script):
2388 2403 """Make a script safe for self.runlines()
2389 2404
2390 2405 Currently, IPython is lines based, with blocks being detected by
2391 2406 empty lines. This is a problem for block based scripts that may
2392 2407 not have empty lines after blocks. This script adds those empty
2393 2408 lines to make scripts safe for running in the current line based
2394 2409 IPython.
2395 2410 """
2396 2411 res = []
2397 2412 lines = script.splitlines()
2398 2413 level = 0
2399 2414
2400 2415 for l in lines:
2401 2416 lstripped = l.lstrip()
2402 2417 stripped = l.strip()
2403 2418 if not stripped:
2404 2419 continue
2405 2420 newlevel = len(l) - len(lstripped)
2406 2421 if level > 0 and newlevel == 0 and \
2407 2422 not self._is_secondary_block_start(stripped):
2408 2423 # add empty line
2409 2424 res.append('')
2410 2425 res.append(l)
2411 2426 level = newlevel
2412 2427
2413 2428 return '\n'.join(res) + '\n'
2414 2429
2415 2430 #-------------------------------------------------------------------------
2416 2431 # Things related to GUI support and pylab
2417 2432 #-------------------------------------------------------------------------
2418 2433
2419 2434 def enable_pylab(self, gui=None):
2420 2435 raise NotImplementedError('Implement enable_pylab in a subclass')
2421 2436
2422 2437 #-------------------------------------------------------------------------
2423 2438 # Utilities
2424 2439 #-------------------------------------------------------------------------
2425 2440
2426 2441 def var_expand(self,cmd,depth=0):
2427 2442 """Expand python variables in a string.
2428 2443
2429 2444 The depth argument indicates how many frames above the caller should
2430 2445 be walked to look for the local namespace where to expand variables.
2431 2446
2432 2447 The global namespace for expansion is always the user's interactive
2433 2448 namespace.
2434 2449 """
2435 2450
2436 2451 return str(ItplNS(cmd,
2437 2452 self.user_ns, # globals
2438 2453 # Skip our own frame in searching for locals:
2439 2454 sys._getframe(depth+1).f_locals # locals
2440 2455 ))
2441 2456
2442 2457 def mktempfile(self,data=None):
2443 2458 """Make a new tempfile and return its filename.
2444 2459
2445 2460 This makes a call to tempfile.mktemp, but it registers the created
2446 2461 filename internally so ipython cleans it up at exit time.
2447 2462
2448 2463 Optional inputs:
2449 2464
2450 2465 - data(None): if data is given, it gets written out to the temp file
2451 2466 immediately, and the file is closed again."""
2452 2467
2453 2468 filename = tempfile.mktemp('.py','ipython_edit_')
2454 2469 self.tempfiles.append(filename)
2455 2470
2456 2471 if data:
2457 2472 tmp_file = open(filename,'w')
2458 2473 tmp_file.write(data)
2459 2474 tmp_file.close()
2460 2475 return filename
2461 2476
2462 2477 # TODO: This should be removed when Term is refactored.
2463 2478 def write(self,data):
2464 2479 """Write a string to the default output"""
2465 2480 io.Term.cout.write(data)
2466 2481
2467 2482 # TODO: This should be removed when Term is refactored.
2468 2483 def write_err(self,data):
2469 2484 """Write a string to the default error output"""
2470 2485 io.Term.cerr.write(data)
2471 2486
2472 2487 def ask_yes_no(self,prompt,default=True):
2473 2488 if self.quiet:
2474 2489 return True
2475 2490 return ask_yes_no(prompt,default)
2476 2491
2477 2492 def show_usage(self):
2478 2493 """Show a usage message"""
2479 2494 page.page(IPython.core.usage.interactive_usage)
2480 2495
2481 2496 #-------------------------------------------------------------------------
2482 2497 # Things related to IPython exiting
2483 2498 #-------------------------------------------------------------------------
2484 2499 def atexit_operations(self):
2485 2500 """This will be executed at the time of exit.
2486 2501
2487 2502 Cleanup operations and saving of persistent data that is done
2488 2503 unconditionally by IPython should be performed here.
2489 2504
2490 2505 For things that may depend on startup flags or platform specifics (such
2491 2506 as having readline or not), register a separate atexit function in the
2492 2507 code that has the appropriate information, rather than trying to
2493 2508 clutter
2494 2509 """
2495 2510 # Cleanup all tempfiles left around
2496 2511 for tfile in self.tempfiles:
2497 2512 try:
2498 2513 os.unlink(tfile)
2499 2514 except OSError:
2500 2515 pass
2501 2516
2502 2517 # Clear all user namespaces to release all references cleanly.
2503 2518 self.reset()
2504 2519
2505 2520 # Run user hooks
2506 2521 self.hooks.shutdown_hook()
2507 2522
2508 2523 def cleanup(self):
2509 2524 self.restore_sys_module_state()
2510 2525
2511 2526
2512 2527 class InteractiveShellABC(object):
2513 2528 """An abstract base class for InteractiveShell."""
2514 2529 __metaclass__ = abc.ABCMeta
2515 2530
2516 2531 InteractiveShellABC.register(InteractiveShell)
@@ -1,3367 +1,3367
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 import types
29 29 from cStringIO import StringIO
30 30 from getopt import getopt,GetoptError
31 31 from pprint import pformat
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.macro import Macro
50 50 from IPython.core import page
51 51 from IPython.core.prefilter import ESC_MAGIC
52 52 from IPython.lib.pylabtools import mpl_runner
53 53 from IPython.external.Itpl import itpl, printpl
54 54 from IPython.testing import decorators as testdec
55 55 from IPython.utils.io import file_read, nlprint
56 56 import IPython.utils.io
57 57 from IPython.utils.path import get_py_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, StringTypes, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 import IPython.utils.generics
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89
90 90 #***************************************************************************
91 91 # Main class implementing Magic functionality
92 92
93 93 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
94 94 # on construction of the main InteractiveShell object. Something odd is going
95 95 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
96 96 # eventually this needs to be clarified.
97 97 # BG: This is because InteractiveShell inherits from this, but is itself a
98 98 # Configurable. This messes up the MRO in some way. The fix is that we need to
99 99 # make Magic a configurable that InteractiveShell does not subclass.
100 100
101 101 class Magic:
102 102 """Magic functions for InteractiveShell.
103 103
104 104 Shell functions which can be reached as %function_name. All magic
105 105 functions should accept a string, which they can parse for their own
106 106 needs. This can make some functions easier to type, eg `%cd ../`
107 107 vs. `%cd("../")`
108 108
109 109 ALL definitions MUST begin with the prefix magic_. The user won't need it
110 110 at the command line, but it is is needed in the definition. """
111 111
112 112 # class globals
113 113 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
114 114 'Automagic is ON, % prefix NOT needed for magic functions.']
115 115
116 116 #......................................................................
117 117 # some utility functions
118 118
119 119 def __init__(self,shell):
120 120
121 121 self.options_table = {}
122 122 if profile is None:
123 123 self.magic_prun = self.profile_missing_notice
124 124 self.shell = shell
125 125
126 126 # namespace for holding state we may need
127 127 self._magic_state = Bunch()
128 128
129 129 def profile_missing_notice(self, *args, **kwargs):
130 130 error("""\
131 131 The profile module could not be found. It has been removed from the standard
132 132 python packages because of its non-free license. To use profiling, install the
133 133 python-profiler package from non-free.""")
134 134
135 135 def default_option(self,fn,optstr):
136 136 """Make an entry in the options_table for fn, with value optstr"""
137 137
138 138 if fn not in self.lsmagic():
139 139 error("%s is not a magic function" % fn)
140 140 self.options_table[fn] = optstr
141 141
142 142 def lsmagic(self):
143 143 """Return a list of currently available magic functions.
144 144
145 145 Gives a list of the bare names after mangling (['ls','cd', ...], not
146 146 ['magic_ls','magic_cd',...]"""
147 147
148 148 # FIXME. This needs a cleanup, in the way the magics list is built.
149 149
150 150 # magics in class definition
151 151 class_magic = lambda fn: fn.startswith('magic_') and \
152 152 callable(Magic.__dict__[fn])
153 153 # in instance namespace (run-time user additions)
154 154 inst_magic = lambda fn: fn.startswith('magic_') and \
155 155 callable(self.__dict__[fn])
156 156 # and bound magics by user (so they can access self):
157 157 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
158 158 callable(self.__class__.__dict__[fn])
159 159 magics = filter(class_magic,Magic.__dict__.keys()) + \
160 160 filter(inst_magic,self.__dict__.keys()) + \
161 161 filter(inst_bound_magic,self.__class__.__dict__.keys())
162 162 out = []
163 163 for fn in set(magics):
164 164 out.append(fn.replace('magic_','',1))
165 165 out.sort()
166 166 return out
167 167
168 168 def extract_input_slices(self,slices,raw=False):
169 169 """Return as a string a set of input history slices.
170 170
171 171 Inputs:
172 172
173 173 - slices: the set of slices is given as a list of strings (like
174 174 ['1','4:8','9'], since this function is for use by magic functions
175 175 which get their arguments as strings.
176 176
177 177 Optional inputs:
178 178
179 179 - raw(False): by default, the processed input is used. If this is
180 180 true, the raw input history is used instead.
181 181
182 182 Note that slices can be called with two notations:
183 183
184 184 N:M -> standard python form, means including items N...(M-1).
185 185
186 186 N-M -> include items N..M (closed endpoint)."""
187 187
188 188 if raw:
189 189 hist = self.shell.input_hist_raw
190 190 else:
191 191 hist = self.shell.input_hist
192 192
193 193 cmds = []
194 194 for chunk in slices:
195 195 if ':' in chunk:
196 196 ini,fin = map(int,chunk.split(':'))
197 197 elif '-' in chunk:
198 198 ini,fin = map(int,chunk.split('-'))
199 199 fin += 1
200 200 else:
201 201 ini = int(chunk)
202 202 fin = ini+1
203 203 cmds.append(hist[ini:fin])
204 204 return cmds
205 205
206 206 def arg_err(self,func):
207 207 """Print docstring if incorrect arguments were passed"""
208 208 print 'Error in arguments:'
209 209 print oinspect.getdoc(func)
210 210
211 211 def format_latex(self,strng):
212 212 """Format a string for latex inclusion."""
213 213
214 214 # Characters that need to be escaped for latex:
215 215 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
216 216 # Magic command names as headers:
217 217 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
218 218 re.MULTILINE)
219 219 # Magic commands
220 220 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
221 221 re.MULTILINE)
222 222 # Paragraph continue
223 223 par_re = re.compile(r'\\$',re.MULTILINE)
224 224
225 225 # The "\n" symbol
226 226 newline_re = re.compile(r'\\n')
227 227
228 228 # Now build the string for output:
229 229 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
230 230 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
231 231 strng)
232 232 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
233 233 strng = par_re.sub(r'\\\\',strng)
234 234 strng = escape_re.sub(r'\\\1',strng)
235 235 strng = newline_re.sub(r'\\textbackslash{}n',strng)
236 236 return strng
237 237
238 238 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
239 239 """Parse options passed to an argument string.
240 240
241 241 The interface is similar to that of getopt(), but it returns back a
242 242 Struct with the options as keys and the stripped argument string still
243 243 as a string.
244 244
245 245 arg_str is quoted as a true sys.argv vector by using shlex.split.
246 246 This allows us to easily expand variables, glob files, quote
247 247 arguments, etc.
248 248
249 249 Options:
250 250 -mode: default 'string'. If given as 'list', the argument string is
251 251 returned as a list (split on whitespace) instead of a string.
252 252
253 253 -list_all: put all option values in lists. Normally only options
254 254 appearing more than once are put in a list.
255 255
256 256 -posix (True): whether to split the input line in POSIX mode or not,
257 257 as per the conventions outlined in the shlex module from the
258 258 standard library."""
259 259
260 260 # inject default options at the beginning of the input line
261 261 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
262 262 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
263 263
264 264 mode = kw.get('mode','string')
265 265 if mode not in ['string','list']:
266 266 raise ValueError,'incorrect mode given: %s' % mode
267 267 # Get options
268 268 list_all = kw.get('list_all',0)
269 269 posix = kw.get('posix', os.name == 'posix')
270 270
271 271 # Check if we have more than one argument to warrant extra processing:
272 272 odict = {} # Dictionary with options
273 273 args = arg_str.split()
274 274 if len(args) >= 1:
275 275 # If the list of inputs only has 0 or 1 thing in it, there's no
276 276 # need to look for options
277 277 argv = arg_split(arg_str,posix)
278 278 # Do regular option processing
279 279 try:
280 280 opts,args = getopt(argv,opt_str,*long_opts)
281 281 except GetoptError,e:
282 282 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
283 283 " ".join(long_opts)))
284 284 for o,a in opts:
285 285 if o.startswith('--'):
286 286 o = o[2:]
287 287 else:
288 288 o = o[1:]
289 289 try:
290 290 odict[o].append(a)
291 291 except AttributeError:
292 292 odict[o] = [odict[o],a]
293 293 except KeyError:
294 294 if list_all:
295 295 odict[o] = [a]
296 296 else:
297 297 odict[o] = a
298 298
299 299 # Prepare opts,args for return
300 300 opts = Struct(odict)
301 301 if mode == 'string':
302 302 args = ' '.join(args)
303 303
304 304 return opts,args
305 305
306 306 #......................................................................
307 307 # And now the actual magic functions
308 308
309 309 # Functions for IPython shell work (vars,funcs, config, etc)
310 310 def magic_lsmagic(self, parameter_s = ''):
311 311 """List currently available magic functions."""
312 312 mesc = ESC_MAGIC
313 313 print 'Available magic functions:\n'+mesc+\
314 314 (' '+mesc).join(self.lsmagic())
315 315 print '\n' + Magic.auto_status[self.shell.automagic]
316 316 return None
317 317
318 318 def magic_magic(self, parameter_s = ''):
319 319 """Print information about the magic function system.
320 320
321 321 Supported formats: -latex, -brief, -rest
322 322 """
323 323
324 324 mode = ''
325 325 try:
326 326 if parameter_s.split()[0] == '-latex':
327 327 mode = 'latex'
328 328 if parameter_s.split()[0] == '-brief':
329 329 mode = 'brief'
330 330 if parameter_s.split()[0] == '-rest':
331 331 mode = 'rest'
332 332 rest_docs = []
333 333 except:
334 334 pass
335 335
336 336 magic_docs = []
337 337 for fname in self.lsmagic():
338 338 mname = 'magic_' + fname
339 339 for space in (Magic,self,self.__class__):
340 340 try:
341 341 fn = space.__dict__[mname]
342 342 except KeyError:
343 343 pass
344 344 else:
345 345 break
346 346 if mode == 'brief':
347 347 # only first line
348 348 if fn.__doc__:
349 349 fndoc = fn.__doc__.split('\n',1)[0]
350 350 else:
351 351 fndoc = 'No documentation'
352 352 else:
353 353 if fn.__doc__:
354 354 fndoc = fn.__doc__.rstrip()
355 355 else:
356 356 fndoc = 'No documentation'
357 357
358 358
359 359 if mode == 'rest':
360 360 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
361 361 fname,fndoc))
362 362
363 363 else:
364 364 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
365 365 fname,fndoc))
366 366
367 367 magic_docs = ''.join(magic_docs)
368 368
369 369 if mode == 'rest':
370 370 return "".join(rest_docs)
371 371
372 372 if mode == 'latex':
373 373 print self.format_latex(magic_docs)
374 374 return
375 375 else:
376 376 magic_docs = format_screen(magic_docs)
377 377 if mode == 'brief':
378 378 return magic_docs
379 379
380 380 outmsg = """
381 381 IPython's 'magic' functions
382 382 ===========================
383 383
384 384 The magic function system provides a series of functions which allow you to
385 385 control the behavior of IPython itself, plus a lot of system-type
386 386 features. All these functions are prefixed with a % character, but parameters
387 387 are given without parentheses or quotes.
388 388
389 389 NOTE: If you have 'automagic' enabled (via the command line option or with the
390 390 %automagic function), you don't need to type in the % explicitly. By default,
391 391 IPython ships with automagic on, so you should only rarely need the % escape.
392 392
393 393 Example: typing '%cd mydir' (without the quotes) changes you working directory
394 394 to 'mydir', if it exists.
395 395
396 396 You can define your own magic functions to extend the system. See the supplied
397 397 ipythonrc and example-magic.py files for details (in your ipython
398 398 configuration directory, typically $HOME/.ipython/).
399 399
400 400 You can also define your own aliased names for magic functions. In your
401 401 ipythonrc file, placing a line like:
402 402
403 403 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
404 404
405 405 will define %pf as a new name for %profile.
406 406
407 407 You can also call magics in code using the magic() function, which IPython
408 408 automatically adds to the builtin namespace. Type 'magic?' for details.
409 409
410 410 For a list of the available magic functions, use %lsmagic. For a description
411 411 of any of them, type %magic_name?, e.g. '%cd?'.
412 412
413 413 Currently the magic system has the following functions:\n"""
414 414
415 415 mesc = ESC_MAGIC
416 416 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
417 417 "\n\n%s%s\n\n%s" % (outmsg,
418 418 magic_docs,mesc,mesc,
419 419 (' '+mesc).join(self.lsmagic()),
420 420 Magic.auto_status[self.shell.automagic] ) )
421 421 page.page(outmsg)
422 422
423 423 def magic_automagic(self, parameter_s = ''):
424 424 """Make magic functions callable without having to type the initial %.
425 425
426 426 Without argumentsl toggles on/off (when off, you must call it as
427 427 %automagic, of course). With arguments it sets the value, and you can
428 428 use any of (case insensitive):
429 429
430 430 - on,1,True: to activate
431 431
432 432 - off,0,False: to deactivate.
433 433
434 434 Note that magic functions have lowest priority, so if there's a
435 435 variable whose name collides with that of a magic fn, automagic won't
436 436 work for that function (you get the variable instead). However, if you
437 437 delete the variable (del var), the previously shadowed magic function
438 438 becomes visible to automagic again."""
439 439
440 440 arg = parameter_s.lower()
441 441 if parameter_s in ('on','1','true'):
442 442 self.shell.automagic = True
443 443 elif parameter_s in ('off','0','false'):
444 444 self.shell.automagic = False
445 445 else:
446 446 self.shell.automagic = not self.shell.automagic
447 447 print '\n' + Magic.auto_status[self.shell.automagic]
448 448
449 449 @testdec.skip_doctest
450 450 def magic_autocall(self, parameter_s = ''):
451 451 """Make functions callable without having to type parentheses.
452 452
453 453 Usage:
454 454
455 455 %autocall [mode]
456 456
457 457 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
458 458 value is toggled on and off (remembering the previous state).
459 459
460 460 In more detail, these values mean:
461 461
462 462 0 -> fully disabled
463 463
464 464 1 -> active, but do not apply if there are no arguments on the line.
465 465
466 466 In this mode, you get:
467 467
468 468 In [1]: callable
469 469 Out[1]: <built-in function callable>
470 470
471 471 In [2]: callable 'hello'
472 472 ------> callable('hello')
473 473 Out[2]: False
474 474
475 475 2 -> Active always. Even if no arguments are present, the callable
476 476 object is called:
477 477
478 478 In [2]: float
479 479 ------> float()
480 480 Out[2]: 0.0
481 481
482 482 Note that even with autocall off, you can still use '/' at the start of
483 483 a line to treat the first argument on the command line as a function
484 484 and add parentheses to it:
485 485
486 486 In [8]: /str 43
487 487 ------> str(43)
488 488 Out[8]: '43'
489 489
490 490 # all-random (note for auto-testing)
491 491 """
492 492
493 493 if parameter_s:
494 494 arg = int(parameter_s)
495 495 else:
496 496 arg = 'toggle'
497 497
498 498 if not arg in (0,1,2,'toggle'):
499 499 error('Valid modes: (0->Off, 1->Smart, 2->Full')
500 500 return
501 501
502 502 if arg in (0,1,2):
503 503 self.shell.autocall = arg
504 504 else: # toggle
505 505 if self.shell.autocall:
506 506 self._magic_state.autocall_save = self.shell.autocall
507 507 self.shell.autocall = 0
508 508 else:
509 509 try:
510 510 self.shell.autocall = self._magic_state.autocall_save
511 511 except AttributeError:
512 512 self.shell.autocall = self._magic_state.autocall_save = 1
513 513
514 514 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
515 515
516 516
517 517 def magic_page(self, parameter_s=''):
518 518 """Pretty print the object and display it through a pager.
519 519
520 520 %page [options] OBJECT
521 521
522 522 If no object is given, use _ (last output).
523 523
524 524 Options:
525 525
526 526 -r: page str(object), don't pretty-print it."""
527 527
528 528 # After a function contributed by Olivier Aubert, slightly modified.
529 529
530 530 # Process options/args
531 531 opts,args = self.parse_options(parameter_s,'r')
532 532 raw = 'r' in opts
533 533
534 534 oname = args and args or '_'
535 535 info = self._ofind(oname)
536 536 if info['found']:
537 537 txt = (raw and str or pformat)( info['obj'] )
538 538 page.page(txt)
539 539 else:
540 540 print 'Object `%s` not found' % oname
541 541
542 542 def magic_profile(self, parameter_s=''):
543 543 """Print your currently active IPython profile."""
544 544 if self.shell.profile:
545 545 printpl('Current IPython profile: $self.shell.profile.')
546 546 else:
547 547 print 'No profile active.'
548 548
549 549 def magic_pinfo(self, parameter_s='', namespaces=None):
550 550 """Provide detailed information about an object.
551 551
552 552 '%pinfo object' is just a synonym for object? or ?object."""
553 553
554 554 #print 'pinfo par: <%s>' % parameter_s # dbg
555 555
556 556
557 557 # detail_level: 0 -> obj? , 1 -> obj??
558 558 detail_level = 0
559 559 # We need to detect if we got called as 'pinfo pinfo foo', which can
560 560 # happen if the user types 'pinfo foo?' at the cmd line.
561 561 pinfo,qmark1,oname,qmark2 = \
562 562 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
563 563 if pinfo or qmark1 or qmark2:
564 564 detail_level = 1
565 565 if "*" in oname:
566 566 self.magic_psearch(oname)
567 567 else:
568 568 self.shell._inspect('pinfo', oname, detail_level=detail_level,
569 569 namespaces=namespaces)
570 570
571 571 def magic_pinfo2(self, parameter_s='', namespaces=None):
572 572 """Provide extra detailed information about an object.
573 573
574 574 '%pinfo2 object' is just a synonym for object?? or ??object."""
575 575 self.shell._inspect('pinfo', parameter_s, detail_level=1,
576 576 namespaces=namespaces)
577 577
578 578 def magic_pdef(self, parameter_s='', namespaces=None):
579 579 """Print the definition header for any callable object.
580 580
581 581 If the object is a class, print the constructor information."""
582 582 self._inspect('pdef',parameter_s, namespaces)
583 583
584 584 def magic_pdoc(self, parameter_s='', namespaces=None):
585 585 """Print the docstring for an object.
586 586
587 587 If the given object is a class, it will print both the class and the
588 588 constructor docstrings."""
589 589 self._inspect('pdoc',parameter_s, namespaces)
590 590
591 591 def magic_psource(self, parameter_s='', namespaces=None):
592 592 """Print (or run through pager) the source code for an object."""
593 593 self._inspect('psource',parameter_s, namespaces)
594 594
595 595 def magic_pfile(self, parameter_s=''):
596 596 """Print (or run through pager) the file where an object is defined.
597 597
598 598 The file opens at the line where the object definition begins. IPython
599 599 will honor the environment variable PAGER if set, and otherwise will
600 600 do its best to print the file in a convenient form.
601 601
602 602 If the given argument is not an object currently defined, IPython will
603 603 try to interpret it as a filename (automatically adding a .py extension
604 604 if needed). You can thus use %pfile as a syntax highlighting code
605 605 viewer."""
606 606
607 607 # first interpret argument as an object name
608 608 out = self._inspect('pfile',parameter_s)
609 609 # if not, try the input as a filename
610 610 if out == 'not found':
611 611 try:
612 612 filename = get_py_filename(parameter_s)
613 613 except IOError,msg:
614 614 print msg
615 615 return
616 616 page.page(self.shell.inspector.format(file(filename).read()))
617 617
618 618 def magic_psearch(self, parameter_s=''):
619 619 """Search for object in namespaces by wildcard.
620 620
621 621 %psearch [options] PATTERN [OBJECT TYPE]
622 622
623 623 Note: ? can be used as a synonym for %psearch, at the beginning or at
624 624 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
625 625 rest of the command line must be unchanged (options come first), so
626 626 for example the following forms are equivalent
627 627
628 628 %psearch -i a* function
629 629 -i a* function?
630 630 ?-i a* function
631 631
632 632 Arguments:
633 633
634 634 PATTERN
635 635
636 636 where PATTERN is a string containing * as a wildcard similar to its
637 637 use in a shell. The pattern is matched in all namespaces on the
638 638 search path. By default objects starting with a single _ are not
639 639 matched, many IPython generated objects have a single
640 640 underscore. The default is case insensitive matching. Matching is
641 641 also done on the attributes of objects and not only on the objects
642 642 in a module.
643 643
644 644 [OBJECT TYPE]
645 645
646 646 Is the name of a python type from the types module. The name is
647 647 given in lowercase without the ending type, ex. StringType is
648 648 written string. By adding a type here only objects matching the
649 649 given type are matched. Using all here makes the pattern match all
650 650 types (this is the default).
651 651
652 652 Options:
653 653
654 654 -a: makes the pattern match even objects whose names start with a
655 655 single underscore. These names are normally ommitted from the
656 656 search.
657 657
658 658 -i/-c: make the pattern case insensitive/sensitive. If neither of
659 659 these options is given, the default is read from your ipythonrc
660 660 file. The option name which sets this value is
661 661 'wildcards_case_sensitive'. If this option is not specified in your
662 662 ipythonrc file, IPython's internal default is to do a case sensitive
663 663 search.
664 664
665 665 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
666 666 specifiy can be searched in any of the following namespaces:
667 667 'builtin', 'user', 'user_global','internal', 'alias', where
668 668 'builtin' and 'user' are the search defaults. Note that you should
669 669 not use quotes when specifying namespaces.
670 670
671 671 'Builtin' contains the python module builtin, 'user' contains all
672 672 user data, 'alias' only contain the shell aliases and no python
673 673 objects, 'internal' contains objects used by IPython. The
674 674 'user_global' namespace is only used by embedded IPython instances,
675 675 and it contains module-level globals. You can add namespaces to the
676 676 search with -s or exclude them with -e (these options can be given
677 677 more than once).
678 678
679 679 Examples:
680 680
681 681 %psearch a* -> objects beginning with an a
682 682 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
683 683 %psearch a* function -> all functions beginning with an a
684 684 %psearch re.e* -> objects beginning with an e in module re
685 685 %psearch r*.e* -> objects that start with e in modules starting in r
686 686 %psearch r*.* string -> all strings in modules beginning with r
687 687
688 688 Case sensitve search:
689 689
690 690 %psearch -c a* list all object beginning with lower case a
691 691
692 692 Show objects beginning with a single _:
693 693
694 694 %psearch -a _* list objects beginning with a single underscore"""
695 695 try:
696 696 parameter_s = parameter_s.encode('ascii')
697 697 except UnicodeEncodeError:
698 698 print 'Python identifiers can only contain ascii characters.'
699 699 return
700 700
701 701 # default namespaces to be searched
702 702 def_search = ['user','builtin']
703 703
704 704 # Process options/args
705 705 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
706 706 opt = opts.get
707 707 shell = self.shell
708 708 psearch = shell.inspector.psearch
709 709
710 710 # select case options
711 711 if opts.has_key('i'):
712 712 ignore_case = True
713 713 elif opts.has_key('c'):
714 714 ignore_case = False
715 715 else:
716 716 ignore_case = not shell.wildcards_case_sensitive
717 717
718 718 # Build list of namespaces to search from user options
719 719 def_search.extend(opt('s',[]))
720 720 ns_exclude = ns_exclude=opt('e',[])
721 721 ns_search = [nm for nm in def_search if nm not in ns_exclude]
722 722
723 723 # Call the actual search
724 724 try:
725 725 psearch(args,shell.ns_table,ns_search,
726 726 show_all=opt('a'),ignore_case=ignore_case)
727 727 except:
728 728 shell.showtraceback()
729 729
730 730 def magic_who_ls(self, parameter_s=''):
731 731 """Return a sorted list of all interactive variables.
732 732
733 733 If arguments are given, only variables of types matching these
734 734 arguments are returned."""
735 735
736 736 user_ns = self.shell.user_ns
737 737 internal_ns = self.shell.internal_ns
738 738 user_ns_hidden = self.shell.user_ns_hidden
739 739 out = [ i for i in user_ns
740 740 if not i.startswith('_') \
741 741 and not (i in internal_ns or i in user_ns_hidden) ]
742 742
743 743 typelist = parameter_s.split()
744 744 if typelist:
745 745 typeset = set(typelist)
746 746 out = [i for i in out if type(i).__name__ in typeset]
747 747
748 748 out.sort()
749 749 return out
750 750
751 751 def magic_who(self, parameter_s=''):
752 752 """Print all interactive variables, with some minimal formatting.
753 753
754 754 If any arguments are given, only variables whose type matches one of
755 755 these are printed. For example:
756 756
757 757 %who function str
758 758
759 759 will only list functions and strings, excluding all other types of
760 760 variables. To find the proper type names, simply use type(var) at a
761 761 command line to see how python prints type names. For example:
762 762
763 763 In [1]: type('hello')\\
764 764 Out[1]: <type 'str'>
765 765
766 766 indicates that the type name for strings is 'str'.
767 767
768 768 %who always excludes executed names loaded through your configuration
769 769 file and things which are internal to IPython.
770 770
771 771 This is deliberate, as typically you may load many modules and the
772 772 purpose of %who is to show you only what you've manually defined."""
773 773
774 774 varlist = self.magic_who_ls(parameter_s)
775 775 if not varlist:
776 776 if parameter_s:
777 777 print 'No variables match your requested type.'
778 778 else:
779 779 print 'Interactive namespace is empty.'
780 780 return
781 781
782 782 # if we have variables, move on...
783 783 count = 0
784 784 for i in varlist:
785 785 print i+'\t',
786 786 count += 1
787 787 if count > 8:
788 788 count = 0
789 789 print
790 790 print
791 791
792 792 def magic_whos(self, parameter_s=''):
793 793 """Like %who, but gives some extra information about each variable.
794 794
795 795 The same type filtering of %who can be applied here.
796 796
797 797 For all variables, the type is printed. Additionally it prints:
798 798
799 799 - For {},[],(): their length.
800 800
801 801 - For numpy and Numeric arrays, a summary with shape, number of
802 802 elements, typecode and size in memory.
803 803
804 804 - Everything else: a string representation, snipping their middle if
805 805 too long."""
806 806
807 807 varnames = self.magic_who_ls(parameter_s)
808 808 if not varnames:
809 809 if parameter_s:
810 810 print 'No variables match your requested type.'
811 811 else:
812 812 print 'Interactive namespace is empty.'
813 813 return
814 814
815 815 # if we have variables, move on...
816 816
817 817 # for these types, show len() instead of data:
818 818 seq_types = [types.DictType,types.ListType,types.TupleType]
819 819
820 820 # for numpy/Numeric arrays, display summary info
821 821 try:
822 822 import numpy
823 823 except ImportError:
824 824 ndarray_type = None
825 825 else:
826 826 ndarray_type = numpy.ndarray.__name__
827 827 try:
828 828 import Numeric
829 829 except ImportError:
830 830 array_type = None
831 831 else:
832 832 array_type = Numeric.ArrayType.__name__
833 833
834 834 # Find all variable names and types so we can figure out column sizes
835 835 def get_vars(i):
836 836 return self.shell.user_ns[i]
837 837
838 838 # some types are well known and can be shorter
839 839 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
840 840 def type_name(v):
841 841 tn = type(v).__name__
842 842 return abbrevs.get(tn,tn)
843 843
844 844 varlist = map(get_vars,varnames)
845 845
846 846 typelist = []
847 847 for vv in varlist:
848 848 tt = type_name(vv)
849 849
850 850 if tt=='instance':
851 851 typelist.append( abbrevs.get(str(vv.__class__),
852 852 str(vv.__class__)))
853 853 else:
854 854 typelist.append(tt)
855 855
856 856 # column labels and # of spaces as separator
857 857 varlabel = 'Variable'
858 858 typelabel = 'Type'
859 859 datalabel = 'Data/Info'
860 860 colsep = 3
861 861 # variable format strings
862 862 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
863 863 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
864 864 aformat = "%s: %s elems, type `%s`, %s bytes"
865 865 # find the size of the columns to format the output nicely
866 866 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
867 867 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
868 868 # table header
869 869 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
870 870 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
871 871 # and the table itself
872 872 kb = 1024
873 873 Mb = 1048576 # kb**2
874 874 for vname,var,vtype in zip(varnames,varlist,typelist):
875 875 print itpl(vformat),
876 876 if vtype in seq_types:
877 877 print len(var)
878 878 elif vtype in [array_type,ndarray_type]:
879 879 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
880 880 if vtype==ndarray_type:
881 881 # numpy
882 882 vsize = var.size
883 883 vbytes = vsize*var.itemsize
884 884 vdtype = var.dtype
885 885 else:
886 886 # Numeric
887 887 vsize = Numeric.size(var)
888 888 vbytes = vsize*var.itemsize()
889 889 vdtype = var.typecode()
890 890
891 891 if vbytes < 100000:
892 892 print aformat % (vshape,vsize,vdtype,vbytes)
893 893 else:
894 894 print aformat % (vshape,vsize,vdtype,vbytes),
895 895 if vbytes < Mb:
896 896 print '(%s kb)' % (vbytes/kb,)
897 897 else:
898 898 print '(%s Mb)' % (vbytes/Mb,)
899 899 else:
900 900 try:
901 901 vstr = str(var)
902 902 except UnicodeEncodeError:
903 903 vstr = unicode(var).encode(sys.getdefaultencoding(),
904 904 'backslashreplace')
905 905 vstr = vstr.replace('\n','\\n')
906 906 if len(vstr) < 50:
907 907 print vstr
908 908 else:
909 909 printpl(vfmt_short)
910 910
911 911 def magic_reset(self, parameter_s=''):
912 912 """Resets the namespace by removing all names defined by the user.
913 913
914 914 Input/Output history are left around in case you need them.
915 915
916 916 Parameters
917 917 ----------
918 918 -y : force reset without asking for confirmation.
919 919
920 920 Examples
921 921 --------
922 922 In [6]: a = 1
923 923
924 924 In [7]: a
925 925 Out[7]: 1
926 926
927 927 In [8]: 'a' in _ip.user_ns
928 928 Out[8]: True
929 929
930 930 In [9]: %reset -f
931 931
932 932 In [10]: 'a' in _ip.user_ns
933 933 Out[10]: False
934 934 """
935 935
936 936 if parameter_s == '-f':
937 937 ans = True
938 938 else:
939 939 ans = self.shell.ask_yes_no(
940 940 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
941 941 if not ans:
942 942 print 'Nothing done.'
943 943 return
944 944 user_ns = self.shell.user_ns
945 945 for i in self.magic_who_ls():
946 946 del(user_ns[i])
947 947
948 948 # Also flush the private list of module references kept for script
949 949 # execution protection
950 950 self.shell.clear_main_mod_cache()
951 951
952 952 def magic_reset_selective(self, parameter_s=''):
953 953 """Resets the namespace by removing names defined by the user.
954 954
955 955 Input/Output history are left around in case you need them.
956 956
957 957 %reset_selective [-f] regex
958 958
959 959 No action is taken if regex is not included
960 960
961 961 Options
962 962 -f : force reset without asking for confirmation.
963 963
964 964 Examples
965 965 --------
966 966
967 967 We first fully reset the namespace so your output looks identical to
968 968 this example for pedagogical reasons; in practice you do not need a
969 969 full reset.
970 970
971 971 In [1]: %reset -f
972 972
973 973 Now, with a clean namespace we can make a few variables and use
974 974 %reset_selective to only delete names that match our regexp:
975 975
976 976 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
977 977
978 978 In [3]: who_ls
979 979 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
980 980
981 981 In [4]: %reset_selective -f b[2-3]m
982 982
983 983 In [5]: who_ls
984 984 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
985 985
986 986 In [6]: %reset_selective -f d
987 987
988 988 In [7]: who_ls
989 989 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
990 990
991 991 In [8]: %reset_selective -f c
992 992
993 993 In [9]: who_ls
994 994 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
995 995
996 996 In [10]: %reset_selective -f b
997 997
998 998 In [11]: who_ls
999 999 Out[11]: ['a']
1000 1000 """
1001 1001
1002 1002 opts, regex = self.parse_options(parameter_s,'f')
1003 1003
1004 1004 if opts.has_key('f'):
1005 1005 ans = True
1006 1006 else:
1007 1007 ans = self.shell.ask_yes_no(
1008 1008 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1009 1009 if not ans:
1010 1010 print 'Nothing done.'
1011 1011 return
1012 1012 user_ns = self.shell.user_ns
1013 1013 if not regex:
1014 1014 print 'No regex pattern specified. Nothing done.'
1015 1015 return
1016 1016 else:
1017 1017 try:
1018 1018 m = re.compile(regex)
1019 1019 except TypeError:
1020 1020 raise TypeError('regex must be a string or compiled pattern')
1021 1021 for i in self.magic_who_ls():
1022 1022 if m.search(i):
1023 1023 del(user_ns[i])
1024 1024
1025 1025 def magic_logstart(self,parameter_s=''):
1026 1026 """Start logging anywhere in a session.
1027 1027
1028 1028 %logstart [-o|-r|-t] [log_name [log_mode]]
1029 1029
1030 1030 If no name is given, it defaults to a file named 'ipython_log.py' in your
1031 1031 current directory, in 'rotate' mode (see below).
1032 1032
1033 1033 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1034 1034 history up to that point and then continues logging.
1035 1035
1036 1036 %logstart takes a second optional parameter: logging mode. This can be one
1037 1037 of (note that the modes are given unquoted):\\
1038 1038 append: well, that says it.\\
1039 1039 backup: rename (if exists) to name~ and start name.\\
1040 1040 global: single logfile in your home dir, appended to.\\
1041 1041 over : overwrite existing log.\\
1042 1042 rotate: create rotating logs name.1~, name.2~, etc.
1043 1043
1044 1044 Options:
1045 1045
1046 1046 -o: log also IPython's output. In this mode, all commands which
1047 1047 generate an Out[NN] prompt are recorded to the logfile, right after
1048 1048 their corresponding input line. The output lines are always
1049 1049 prepended with a '#[Out]# ' marker, so that the log remains valid
1050 1050 Python code.
1051 1051
1052 1052 Since this marker is always the same, filtering only the output from
1053 1053 a log is very easy, using for example a simple awk call:
1054 1054
1055 1055 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1056 1056
1057 1057 -r: log 'raw' input. Normally, IPython's logs contain the processed
1058 1058 input, so that user lines are logged in their final form, converted
1059 1059 into valid Python. For example, %Exit is logged as
1060 1060 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1061 1061 exactly as typed, with no transformations applied.
1062 1062
1063 1063 -t: put timestamps before each input line logged (these are put in
1064 1064 comments)."""
1065 1065
1066 1066 opts,par = self.parse_options(parameter_s,'ort')
1067 1067 log_output = 'o' in opts
1068 1068 log_raw_input = 'r' in opts
1069 1069 timestamp = 't' in opts
1070 1070
1071 1071 logger = self.shell.logger
1072 1072
1073 1073 # if no args are given, the defaults set in the logger constructor by
1074 1074 # ipytohn remain valid
1075 1075 if par:
1076 1076 try:
1077 1077 logfname,logmode = par.split()
1078 1078 except:
1079 1079 logfname = par
1080 1080 logmode = 'backup'
1081 1081 else:
1082 1082 logfname = logger.logfname
1083 1083 logmode = logger.logmode
1084 1084 # put logfname into rc struct as if it had been called on the command
1085 1085 # line, so it ends up saved in the log header Save it in case we need
1086 1086 # to restore it...
1087 1087 old_logfile = self.shell.logfile
1088 1088 if logfname:
1089 1089 logfname = os.path.expanduser(logfname)
1090 1090 self.shell.logfile = logfname
1091 1091
1092 1092 loghead = '# IPython log file\n\n'
1093 1093 try:
1094 1094 started = logger.logstart(logfname,loghead,logmode,
1095 1095 log_output,timestamp,log_raw_input)
1096 1096 except:
1097 1097 self.shell.logfile = old_logfile
1098 1098 warn("Couldn't start log: %s" % sys.exc_info()[1])
1099 1099 else:
1100 1100 # log input history up to this point, optionally interleaving
1101 1101 # output if requested
1102 1102
1103 1103 if timestamp:
1104 1104 # disable timestamping for the previous history, since we've
1105 1105 # lost those already (no time machine here).
1106 1106 logger.timestamp = False
1107 1107
1108 1108 if log_raw_input:
1109 1109 input_hist = self.shell.input_hist_raw
1110 1110 else:
1111 1111 input_hist = self.shell.input_hist
1112 1112
1113 1113 if log_output:
1114 1114 log_write = logger.log_write
1115 1115 output_hist = self.shell.output_hist
1116 1116 for n in range(1,len(input_hist)-1):
1117 1117 log_write(input_hist[n].rstrip())
1118 1118 if n in output_hist:
1119 1119 log_write(repr(output_hist[n]),'output')
1120 1120 else:
1121 1121 logger.log_write(input_hist[1:])
1122 1122 if timestamp:
1123 1123 # re-enable timestamping
1124 1124 logger.timestamp = True
1125 1125
1126 1126 print ('Activating auto-logging. '
1127 1127 'Current session state plus future input saved.')
1128 1128 logger.logstate()
1129 1129
1130 1130 def magic_logstop(self,parameter_s=''):
1131 1131 """Fully stop logging and close log file.
1132 1132
1133 1133 In order to start logging again, a new %logstart call needs to be made,
1134 1134 possibly (though not necessarily) with a new filename, mode and other
1135 1135 options."""
1136 1136 self.logger.logstop()
1137 1137
1138 1138 def magic_logoff(self,parameter_s=''):
1139 1139 """Temporarily stop logging.
1140 1140
1141 1141 You must have previously started logging."""
1142 1142 self.shell.logger.switch_log(0)
1143 1143
1144 1144 def magic_logon(self,parameter_s=''):
1145 1145 """Restart logging.
1146 1146
1147 1147 This function is for restarting logging which you've temporarily
1148 1148 stopped with %logoff. For starting logging for the first time, you
1149 1149 must use the %logstart function, which allows you to specify an
1150 1150 optional log filename."""
1151 1151
1152 1152 self.shell.logger.switch_log(1)
1153 1153
1154 1154 def magic_logstate(self,parameter_s=''):
1155 1155 """Print the status of the logging system."""
1156 1156
1157 1157 self.shell.logger.logstate()
1158 1158
1159 1159 def magic_pdb(self, parameter_s=''):
1160 1160 """Control the automatic calling of the pdb interactive debugger.
1161 1161
1162 1162 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1163 1163 argument it works as a toggle.
1164 1164
1165 1165 When an exception is triggered, IPython can optionally call the
1166 1166 interactive pdb debugger after the traceback printout. %pdb toggles
1167 1167 this feature on and off.
1168 1168
1169 1169 The initial state of this feature is set in your ipythonrc
1170 1170 configuration file (the variable is called 'pdb').
1171 1171
1172 1172 If you want to just activate the debugger AFTER an exception has fired,
1173 1173 without having to type '%pdb on' and rerunning your code, you can use
1174 1174 the %debug magic."""
1175 1175
1176 1176 par = parameter_s.strip().lower()
1177 1177
1178 1178 if par:
1179 1179 try:
1180 1180 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1181 1181 except KeyError:
1182 1182 print ('Incorrect argument. Use on/1, off/0, '
1183 1183 'or nothing for a toggle.')
1184 1184 return
1185 1185 else:
1186 1186 # toggle
1187 1187 new_pdb = not self.shell.call_pdb
1188 1188
1189 1189 # set on the shell
1190 1190 self.shell.call_pdb = new_pdb
1191 1191 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1192 1192
1193 1193 def magic_debug(self, parameter_s=''):
1194 1194 """Activate the interactive debugger in post-mortem mode.
1195 1195
1196 1196 If an exception has just occurred, this lets you inspect its stack
1197 1197 frames interactively. Note that this will always work only on the last
1198 1198 traceback that occurred, so you must call this quickly after an
1199 1199 exception that you wish to inspect has fired, because if another one
1200 1200 occurs, it clobbers the previous one.
1201 1201
1202 1202 If you want IPython to automatically do this on every exception, see
1203 1203 the %pdb magic for more details.
1204 1204 """
1205 1205 self.shell.debugger(force=True)
1206 1206
1207 1207 @testdec.skip_doctest
1208 1208 def magic_prun(self, parameter_s ='',user_mode=1,
1209 1209 opts=None,arg_lst=None,prog_ns=None):
1210 1210
1211 1211 """Run a statement through the python code profiler.
1212 1212
1213 1213 Usage:
1214 1214 %prun [options] statement
1215 1215
1216 1216 The given statement (which doesn't require quote marks) is run via the
1217 1217 python profiler in a manner similar to the profile.run() function.
1218 1218 Namespaces are internally managed to work correctly; profile.run
1219 1219 cannot be used in IPython because it makes certain assumptions about
1220 1220 namespaces which do not hold under IPython.
1221 1221
1222 1222 Options:
1223 1223
1224 1224 -l <limit>: you can place restrictions on what or how much of the
1225 1225 profile gets printed. The limit value can be:
1226 1226
1227 1227 * A string: only information for function names containing this string
1228 1228 is printed.
1229 1229
1230 1230 * An integer: only these many lines are printed.
1231 1231
1232 1232 * A float (between 0 and 1): this fraction of the report is printed
1233 1233 (for example, use a limit of 0.4 to see the topmost 40% only).
1234 1234
1235 1235 You can combine several limits with repeated use of the option. For
1236 1236 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1237 1237 information about class constructors.
1238 1238
1239 1239 -r: return the pstats.Stats object generated by the profiling. This
1240 1240 object has all the information about the profile in it, and you can
1241 1241 later use it for further analysis or in other functions.
1242 1242
1243 1243 -s <key>: sort profile by given key. You can provide more than one key
1244 1244 by using the option several times: '-s key1 -s key2 -s key3...'. The
1245 1245 default sorting key is 'time'.
1246 1246
1247 1247 The following is copied verbatim from the profile documentation
1248 1248 referenced below:
1249 1249
1250 1250 When more than one key is provided, additional keys are used as
1251 1251 secondary criteria when the there is equality in all keys selected
1252 1252 before them.
1253 1253
1254 1254 Abbreviations can be used for any key names, as long as the
1255 1255 abbreviation is unambiguous. The following are the keys currently
1256 1256 defined:
1257 1257
1258 1258 Valid Arg Meaning
1259 1259 "calls" call count
1260 1260 "cumulative" cumulative time
1261 1261 "file" file name
1262 1262 "module" file name
1263 1263 "pcalls" primitive call count
1264 1264 "line" line number
1265 1265 "name" function name
1266 1266 "nfl" name/file/line
1267 1267 "stdname" standard name
1268 1268 "time" internal time
1269 1269
1270 1270 Note that all sorts on statistics are in descending order (placing
1271 1271 most time consuming items first), where as name, file, and line number
1272 1272 searches are in ascending order (i.e., alphabetical). The subtle
1273 1273 distinction between "nfl" and "stdname" is that the standard name is a
1274 1274 sort of the name as printed, which means that the embedded line
1275 1275 numbers get compared in an odd way. For example, lines 3, 20, and 40
1276 1276 would (if the file names were the same) appear in the string order
1277 1277 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1278 1278 line numbers. In fact, sort_stats("nfl") is the same as
1279 1279 sort_stats("name", "file", "line").
1280 1280
1281 1281 -T <filename>: save profile results as shown on screen to a text
1282 1282 file. The profile is still shown on screen.
1283 1283
1284 1284 -D <filename>: save (via dump_stats) profile statistics to given
1285 1285 filename. This data is in a format understod by the pstats module, and
1286 1286 is generated by a call to the dump_stats() method of profile
1287 1287 objects. The profile is still shown on screen.
1288 1288
1289 1289 If you want to run complete programs under the profiler's control, use
1290 1290 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1291 1291 contains profiler specific options as described here.
1292 1292
1293 1293 You can read the complete documentation for the profile module with::
1294 1294
1295 1295 In [1]: import profile; profile.help()
1296 1296 """
1297 1297
1298 1298 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1299 1299 # protect user quote marks
1300 1300 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1301 1301
1302 1302 if user_mode: # regular user call
1303 1303 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1304 1304 list_all=1)
1305 1305 namespace = self.shell.user_ns
1306 1306 else: # called to run a program by %run -p
1307 1307 try:
1308 1308 filename = get_py_filename(arg_lst[0])
1309 1309 except IOError,msg:
1310 1310 error(msg)
1311 1311 return
1312 1312
1313 1313 arg_str = 'execfile(filename,prog_ns)'
1314 1314 namespace = locals()
1315 1315
1316 1316 opts.merge(opts_def)
1317 1317
1318 1318 prof = profile.Profile()
1319 1319 try:
1320 1320 prof = prof.runctx(arg_str,namespace,namespace)
1321 1321 sys_exit = ''
1322 1322 except SystemExit:
1323 1323 sys_exit = """*** SystemExit exception caught in code being profiled."""
1324 1324
1325 1325 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1326 1326
1327 1327 lims = opts.l
1328 1328 if lims:
1329 1329 lims = [] # rebuild lims with ints/floats/strings
1330 1330 for lim in opts.l:
1331 1331 try:
1332 1332 lims.append(int(lim))
1333 1333 except ValueError:
1334 1334 try:
1335 1335 lims.append(float(lim))
1336 1336 except ValueError:
1337 1337 lims.append(lim)
1338 1338
1339 1339 # Trap output.
1340 1340 stdout_trap = StringIO()
1341 1341
1342 1342 if hasattr(stats,'stream'):
1343 1343 # In newer versions of python, the stats object has a 'stream'
1344 1344 # attribute to write into.
1345 1345 stats.stream = stdout_trap
1346 1346 stats.print_stats(*lims)
1347 1347 else:
1348 1348 # For older versions, we manually redirect stdout during printing
1349 1349 sys_stdout = sys.stdout
1350 1350 try:
1351 1351 sys.stdout = stdout_trap
1352 1352 stats.print_stats(*lims)
1353 1353 finally:
1354 1354 sys.stdout = sys_stdout
1355 1355
1356 1356 output = stdout_trap.getvalue()
1357 1357 output = output.rstrip()
1358 1358
1359 1359 page.page(output)
1360 1360 print sys_exit,
1361 1361
1362 1362 dump_file = opts.D[0]
1363 1363 text_file = opts.T[0]
1364 1364 if dump_file:
1365 1365 prof.dump_stats(dump_file)
1366 1366 print '\n*** Profile stats marshalled to file',\
1367 1367 `dump_file`+'.',sys_exit
1368 1368 if text_file:
1369 1369 pfile = file(text_file,'w')
1370 1370 pfile.write(output)
1371 1371 pfile.close()
1372 1372 print '\n*** Profile printout saved to text file',\
1373 1373 `text_file`+'.',sys_exit
1374 1374
1375 1375 if opts.has_key('r'):
1376 1376 return stats
1377 1377 else:
1378 1378 return None
1379 1379
1380 1380 @testdec.skip_doctest
1381 1381 def magic_run(self, parameter_s ='',runner=None,
1382 1382 file_finder=get_py_filename):
1383 1383 """Run the named file inside IPython as a program.
1384 1384
1385 1385 Usage:\\
1386 1386 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1387 1387
1388 1388 Parameters after the filename are passed as command-line arguments to
1389 1389 the program (put in sys.argv). Then, control returns to IPython's
1390 1390 prompt.
1391 1391
1392 1392 This is similar to running at a system prompt:\\
1393 1393 $ python file args\\
1394 1394 but with the advantage of giving you IPython's tracebacks, and of
1395 1395 loading all variables into your interactive namespace for further use
1396 1396 (unless -p is used, see below).
1397 1397
1398 1398 The file is executed in a namespace initially consisting only of
1399 1399 __name__=='__main__' and sys.argv constructed as indicated. It thus
1400 1400 sees its environment as if it were being run as a stand-alone program
1401 1401 (except for sharing global objects such as previously imported
1402 1402 modules). But after execution, the IPython interactive namespace gets
1403 1403 updated with all variables defined in the program (except for __name__
1404 1404 and sys.argv). This allows for very convenient loading of code for
1405 1405 interactive work, while giving each program a 'clean sheet' to run in.
1406 1406
1407 1407 Options:
1408 1408
1409 1409 -n: __name__ is NOT set to '__main__', but to the running file's name
1410 1410 without extension (as python does under import). This allows running
1411 1411 scripts and reloading the definitions in them without calling code
1412 1412 protected by an ' if __name__ == "__main__" ' clause.
1413 1413
1414 1414 -i: run the file in IPython's namespace instead of an empty one. This
1415 1415 is useful if you are experimenting with code written in a text editor
1416 1416 which depends on variables defined interactively.
1417 1417
1418 1418 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1419 1419 being run. This is particularly useful if IPython is being used to
1420 1420 run unittests, which always exit with a sys.exit() call. In such
1421 1421 cases you are interested in the output of the test results, not in
1422 1422 seeing a traceback of the unittest module.
1423 1423
1424 1424 -t: print timing information at the end of the run. IPython will give
1425 1425 you an estimated CPU time consumption for your script, which under
1426 1426 Unix uses the resource module to avoid the wraparound problems of
1427 1427 time.clock(). Under Unix, an estimate of time spent on system tasks
1428 1428 is also given (for Windows platforms this is reported as 0.0).
1429 1429
1430 1430 If -t is given, an additional -N<N> option can be given, where <N>
1431 1431 must be an integer indicating how many times you want the script to
1432 1432 run. The final timing report will include total and per run results.
1433 1433
1434 1434 For example (testing the script uniq_stable.py):
1435 1435
1436 1436 In [1]: run -t uniq_stable
1437 1437
1438 1438 IPython CPU timings (estimated):\\
1439 1439 User : 0.19597 s.\\
1440 1440 System: 0.0 s.\\
1441 1441
1442 1442 In [2]: run -t -N5 uniq_stable
1443 1443
1444 1444 IPython CPU timings (estimated):\\
1445 1445 Total runs performed: 5\\
1446 1446 Times : Total Per run\\
1447 1447 User : 0.910862 s, 0.1821724 s.\\
1448 1448 System: 0.0 s, 0.0 s.
1449 1449
1450 1450 -d: run your program under the control of pdb, the Python debugger.
1451 1451 This allows you to execute your program step by step, watch variables,
1452 1452 etc. Internally, what IPython does is similar to calling:
1453 1453
1454 1454 pdb.run('execfile("YOURFILENAME")')
1455 1455
1456 1456 with a breakpoint set on line 1 of your file. You can change the line
1457 1457 number for this automatic breakpoint to be <N> by using the -bN option
1458 1458 (where N must be an integer). For example:
1459 1459
1460 1460 %run -d -b40 myscript
1461 1461
1462 1462 will set the first breakpoint at line 40 in myscript.py. Note that
1463 1463 the first breakpoint must be set on a line which actually does
1464 1464 something (not a comment or docstring) for it to stop execution.
1465 1465
1466 1466 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1467 1467 first enter 'c' (without qoutes) to start execution up to the first
1468 1468 breakpoint.
1469 1469
1470 1470 Entering 'help' gives information about the use of the debugger. You
1471 1471 can easily see pdb's full documentation with "import pdb;pdb.help()"
1472 1472 at a prompt.
1473 1473
1474 1474 -p: run program under the control of the Python profiler module (which
1475 1475 prints a detailed report of execution times, function calls, etc).
1476 1476
1477 1477 You can pass other options after -p which affect the behavior of the
1478 1478 profiler itself. See the docs for %prun for details.
1479 1479
1480 1480 In this mode, the program's variables do NOT propagate back to the
1481 1481 IPython interactive namespace (because they remain in the namespace
1482 1482 where the profiler executes them).
1483 1483
1484 1484 Internally this triggers a call to %prun, see its documentation for
1485 1485 details on the options available specifically for profiling.
1486 1486
1487 1487 There is one special usage for which the text above doesn't apply:
1488 1488 if the filename ends with .ipy, the file is run as ipython script,
1489 1489 just as if the commands were written on IPython prompt.
1490 1490 """
1491 1491
1492 1492 # get arguments and set sys.argv for program to be run.
1493 1493 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1494 1494 mode='list',list_all=1)
1495 1495
1496 1496 try:
1497 1497 filename = file_finder(arg_lst[0])
1498 1498 except IndexError:
1499 1499 warn('you must provide at least a filename.')
1500 1500 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1501 1501 return
1502 1502 except IOError,msg:
1503 1503 error(msg)
1504 1504 return
1505 1505
1506 1506 if filename.lower().endswith('.ipy'):
1507 1507 self.shell.safe_execfile_ipy(filename)
1508 1508 return
1509 1509
1510 1510 # Control the response to exit() calls made by the script being run
1511 1511 exit_ignore = opts.has_key('e')
1512 1512
1513 1513 # Make sure that the running script gets a proper sys.argv as if it
1514 1514 # were run from a system shell.
1515 1515 save_argv = sys.argv # save it for later restoring
1516 1516 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1517 1517
1518 1518 if opts.has_key('i'):
1519 1519 # Run in user's interactive namespace
1520 1520 prog_ns = self.shell.user_ns
1521 1521 __name__save = self.shell.user_ns['__name__']
1522 1522 prog_ns['__name__'] = '__main__'
1523 1523 main_mod = self.shell.new_main_mod(prog_ns)
1524 1524 else:
1525 1525 # Run in a fresh, empty namespace
1526 1526 if opts.has_key('n'):
1527 1527 name = os.path.splitext(os.path.basename(filename))[0]
1528 1528 else:
1529 1529 name = '__main__'
1530 1530
1531 1531 main_mod = self.shell.new_main_mod()
1532 1532 prog_ns = main_mod.__dict__
1533 1533 prog_ns['__name__'] = name
1534 1534
1535 1535 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1536 1536 # set the __file__ global in the script's namespace
1537 1537 prog_ns['__file__'] = filename
1538 1538
1539 1539 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1540 1540 # that, if we overwrite __main__, we replace it at the end
1541 1541 main_mod_name = prog_ns['__name__']
1542 1542
1543 1543 if main_mod_name == '__main__':
1544 1544 restore_main = sys.modules['__main__']
1545 1545 else:
1546 1546 restore_main = False
1547 1547
1548 1548 # This needs to be undone at the end to prevent holding references to
1549 1549 # every single object ever created.
1550 1550 sys.modules[main_mod_name] = main_mod
1551 1551
1552 1552 stats = None
1553 1553 try:
1554 self.shell.savehist()
1554 self.shell.save_hist()
1555 1555
1556 1556 if opts.has_key('p'):
1557 1557 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1558 1558 else:
1559 1559 if opts.has_key('d'):
1560 1560 deb = debugger.Pdb(self.shell.colors)
1561 1561 # reset Breakpoint state, which is moronically kept
1562 1562 # in a class
1563 1563 bdb.Breakpoint.next = 1
1564 1564 bdb.Breakpoint.bplist = {}
1565 1565 bdb.Breakpoint.bpbynumber = [None]
1566 1566 # Set an initial breakpoint to stop execution
1567 1567 maxtries = 10
1568 1568 bp = int(opts.get('b',[1])[0])
1569 1569 checkline = deb.checkline(filename,bp)
1570 1570 if not checkline:
1571 1571 for bp in range(bp+1,bp+maxtries+1):
1572 1572 if deb.checkline(filename,bp):
1573 1573 break
1574 1574 else:
1575 1575 msg = ("\nI failed to find a valid line to set "
1576 1576 "a breakpoint\n"
1577 1577 "after trying up to line: %s.\n"
1578 1578 "Please set a valid breakpoint manually "
1579 1579 "with the -b option." % bp)
1580 1580 error(msg)
1581 1581 return
1582 1582 # if we find a good linenumber, set the breakpoint
1583 1583 deb.do_break('%s:%s' % (filename,bp))
1584 1584 # Start file run
1585 1585 print "NOTE: Enter 'c' at the",
1586 1586 print "%s prompt to start your script." % deb.prompt
1587 1587 try:
1588 1588 deb.run('execfile("%s")' % filename,prog_ns)
1589 1589
1590 1590 except:
1591 1591 etype, value, tb = sys.exc_info()
1592 1592 # Skip three frames in the traceback: the %run one,
1593 1593 # one inside bdb.py, and the command-line typed by the
1594 1594 # user (run by exec in pdb itself).
1595 1595 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1596 1596 else:
1597 1597 if runner is None:
1598 1598 runner = self.shell.safe_execfile
1599 1599 if opts.has_key('t'):
1600 1600 # timed execution
1601 1601 try:
1602 1602 nruns = int(opts['N'][0])
1603 1603 if nruns < 1:
1604 1604 error('Number of runs must be >=1')
1605 1605 return
1606 1606 except (KeyError):
1607 1607 nruns = 1
1608 1608 if nruns == 1:
1609 1609 t0 = clock2()
1610 1610 runner(filename,prog_ns,prog_ns,
1611 1611 exit_ignore=exit_ignore)
1612 1612 t1 = clock2()
1613 1613 t_usr = t1[0]-t0[0]
1614 1614 t_sys = t1[1]-t0[1]
1615 1615 print "\nIPython CPU timings (estimated):"
1616 1616 print " User : %10s s." % t_usr
1617 1617 print " System: %10s s." % t_sys
1618 1618 else:
1619 1619 runs = range(nruns)
1620 1620 t0 = clock2()
1621 1621 for nr in runs:
1622 1622 runner(filename,prog_ns,prog_ns,
1623 1623 exit_ignore=exit_ignore)
1624 1624 t1 = clock2()
1625 1625 t_usr = t1[0]-t0[0]
1626 1626 t_sys = t1[1]-t0[1]
1627 1627 print "\nIPython CPU timings (estimated):"
1628 1628 print "Total runs performed:",nruns
1629 1629 print " Times : %10s %10s" % ('Total','Per run')
1630 1630 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1631 1631 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1632 1632
1633 1633 else:
1634 1634 # regular execution
1635 1635 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1636 1636
1637 1637 if opts.has_key('i'):
1638 1638 self.shell.user_ns['__name__'] = __name__save
1639 1639 else:
1640 1640 # The shell MUST hold a reference to prog_ns so after %run
1641 1641 # exits, the python deletion mechanism doesn't zero it out
1642 1642 # (leaving dangling references).
1643 1643 self.shell.cache_main_mod(prog_ns,filename)
1644 1644 # update IPython interactive namespace
1645 1645
1646 1646 # Some forms of read errors on the file may mean the
1647 1647 # __name__ key was never set; using pop we don't have to
1648 1648 # worry about a possible KeyError.
1649 1649 prog_ns.pop('__name__', None)
1650 1650
1651 1651 self.shell.user_ns.update(prog_ns)
1652 1652 finally:
1653 1653 # It's a bit of a mystery why, but __builtins__ can change from
1654 1654 # being a module to becoming a dict missing some key data after
1655 1655 # %run. As best I can see, this is NOT something IPython is doing
1656 1656 # at all, and similar problems have been reported before:
1657 1657 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1658 1658 # Since this seems to be done by the interpreter itself, the best
1659 1659 # we can do is to at least restore __builtins__ for the user on
1660 1660 # exit.
1661 1661 self.shell.user_ns['__builtins__'] = __builtin__
1662 1662
1663 1663 # Ensure key global structures are restored
1664 1664 sys.argv = save_argv
1665 1665 if restore_main:
1666 1666 sys.modules['__main__'] = restore_main
1667 1667 else:
1668 1668 # Remove from sys.modules the reference to main_mod we'd
1669 1669 # added. Otherwise it will trap references to objects
1670 1670 # contained therein.
1671 1671 del sys.modules[main_mod_name]
1672 1672
1673 self.shell.reloadhist()
1673 self.shell.reload_hist()
1674 1674
1675 1675 return stats
1676 1676
1677 1677 @testdec.skip_doctest
1678 1678 def magic_timeit(self, parameter_s =''):
1679 1679 """Time execution of a Python statement or expression
1680 1680
1681 1681 Usage:\\
1682 1682 %timeit [-n<N> -r<R> [-t|-c]] statement
1683 1683
1684 1684 Time execution of a Python statement or expression using the timeit
1685 1685 module.
1686 1686
1687 1687 Options:
1688 1688 -n<N>: execute the given statement <N> times in a loop. If this value
1689 1689 is not given, a fitting value is chosen.
1690 1690
1691 1691 -r<R>: repeat the loop iteration <R> times and take the best result.
1692 1692 Default: 3
1693 1693
1694 1694 -t: use time.time to measure the time, which is the default on Unix.
1695 1695 This function measures wall time.
1696 1696
1697 1697 -c: use time.clock to measure the time, which is the default on
1698 1698 Windows and measures wall time. On Unix, resource.getrusage is used
1699 1699 instead and returns the CPU user time.
1700 1700
1701 1701 -p<P>: use a precision of <P> digits to display the timing result.
1702 1702 Default: 3
1703 1703
1704 1704
1705 1705 Examples:
1706 1706
1707 1707 In [1]: %timeit pass
1708 1708 10000000 loops, best of 3: 53.3 ns per loop
1709 1709
1710 1710 In [2]: u = None
1711 1711
1712 1712 In [3]: %timeit u is None
1713 1713 10000000 loops, best of 3: 184 ns per loop
1714 1714
1715 1715 In [4]: %timeit -r 4 u == None
1716 1716 1000000 loops, best of 4: 242 ns per loop
1717 1717
1718 1718 In [5]: import time
1719 1719
1720 1720 In [6]: %timeit -n1 time.sleep(2)
1721 1721 1 loops, best of 3: 2 s per loop
1722 1722
1723 1723
1724 1724 The times reported by %timeit will be slightly higher than those
1725 1725 reported by the timeit.py script when variables are accessed. This is
1726 1726 due to the fact that %timeit executes the statement in the namespace
1727 1727 of the shell, compared with timeit.py, which uses a single setup
1728 1728 statement to import function or create variables. Generally, the bias
1729 1729 does not matter as long as results from timeit.py are not mixed with
1730 1730 those from %timeit."""
1731 1731
1732 1732 import timeit
1733 1733 import math
1734 1734
1735 1735 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1736 1736 # certain terminals. Until we figure out a robust way of
1737 1737 # auto-detecting if the terminal can deal with it, use plain 'us' for
1738 1738 # microseconds. I am really NOT happy about disabling the proper
1739 1739 # 'micro' prefix, but crashing is worse... If anyone knows what the
1740 1740 # right solution for this is, I'm all ears...
1741 1741 #
1742 1742 # Note: using
1743 1743 #
1744 1744 # s = u'\xb5'
1745 1745 # s.encode(sys.getdefaultencoding())
1746 1746 #
1747 1747 # is not sufficient, as I've seen terminals where that fails but
1748 1748 # print s
1749 1749 #
1750 1750 # succeeds
1751 1751 #
1752 1752 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1753 1753
1754 1754 #units = [u"s", u"ms",u'\xb5',"ns"]
1755 1755 units = [u"s", u"ms",u'us',"ns"]
1756 1756
1757 1757 scaling = [1, 1e3, 1e6, 1e9]
1758 1758
1759 1759 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1760 1760 posix=False)
1761 1761 if stmt == "":
1762 1762 return
1763 1763 timefunc = timeit.default_timer
1764 1764 number = int(getattr(opts, "n", 0))
1765 1765 repeat = int(getattr(opts, "r", timeit.default_repeat))
1766 1766 precision = int(getattr(opts, "p", 3))
1767 1767 if hasattr(opts, "t"):
1768 1768 timefunc = time.time
1769 1769 if hasattr(opts, "c"):
1770 1770 timefunc = clock
1771 1771
1772 1772 timer = timeit.Timer(timer=timefunc)
1773 1773 # this code has tight coupling to the inner workings of timeit.Timer,
1774 1774 # but is there a better way to achieve that the code stmt has access
1775 1775 # to the shell namespace?
1776 1776
1777 1777 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1778 1778 'setup': "pass"}
1779 1779 # Track compilation time so it can be reported if too long
1780 1780 # Minimum time above which compilation time will be reported
1781 1781 tc_min = 0.1
1782 1782
1783 1783 t0 = clock()
1784 1784 code = compile(src, "<magic-timeit>", "exec")
1785 1785 tc = clock()-t0
1786 1786
1787 1787 ns = {}
1788 1788 exec code in self.shell.user_ns, ns
1789 1789 timer.inner = ns["inner"]
1790 1790
1791 1791 if number == 0:
1792 1792 # determine number so that 0.2 <= total time < 2.0
1793 1793 number = 1
1794 1794 for i in range(1, 10):
1795 1795 if timer.timeit(number) >= 0.2:
1796 1796 break
1797 1797 number *= 10
1798 1798
1799 1799 best = min(timer.repeat(repeat, number)) / number
1800 1800
1801 1801 if best > 0.0 and best < 1000.0:
1802 1802 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1803 1803 elif best >= 1000.0:
1804 1804 order = 0
1805 1805 else:
1806 1806 order = 3
1807 1807 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1808 1808 precision,
1809 1809 best * scaling[order],
1810 1810 units[order])
1811 1811 if tc > tc_min:
1812 1812 print "Compiler time: %.2f s" % tc
1813 1813
1814 1814 @testdec.skip_doctest
1815 1815 def magic_time(self,parameter_s = ''):
1816 1816 """Time execution of a Python statement or expression.
1817 1817
1818 1818 The CPU and wall clock times are printed, and the value of the
1819 1819 expression (if any) is returned. Note that under Win32, system time
1820 1820 is always reported as 0, since it can not be measured.
1821 1821
1822 1822 This function provides very basic timing functionality. In Python
1823 1823 2.3, the timeit module offers more control and sophistication, so this
1824 1824 could be rewritten to use it (patches welcome).
1825 1825
1826 1826 Some examples:
1827 1827
1828 1828 In [1]: time 2**128
1829 1829 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1830 1830 Wall time: 0.00
1831 1831 Out[1]: 340282366920938463463374607431768211456L
1832 1832
1833 1833 In [2]: n = 1000000
1834 1834
1835 1835 In [3]: time sum(range(n))
1836 1836 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1837 1837 Wall time: 1.37
1838 1838 Out[3]: 499999500000L
1839 1839
1840 1840 In [4]: time print 'hello world'
1841 1841 hello world
1842 1842 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1843 1843 Wall time: 0.00
1844 1844
1845 1845 Note that the time needed by Python to compile the given expression
1846 1846 will be reported if it is more than 0.1s. In this example, the
1847 1847 actual exponentiation is done by Python at compilation time, so while
1848 1848 the expression can take a noticeable amount of time to compute, that
1849 1849 time is purely due to the compilation:
1850 1850
1851 1851 In [5]: time 3**9999;
1852 1852 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1853 1853 Wall time: 0.00 s
1854 1854
1855 1855 In [6]: time 3**999999;
1856 1856 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1857 1857 Wall time: 0.00 s
1858 1858 Compiler : 0.78 s
1859 1859 """
1860 1860
1861 1861 # fail immediately if the given expression can't be compiled
1862 1862
1863 1863 expr = self.shell.prefilter(parameter_s,False)
1864 1864
1865 1865 # Minimum time above which compilation time will be reported
1866 1866 tc_min = 0.1
1867 1867
1868 1868 try:
1869 1869 mode = 'eval'
1870 1870 t0 = clock()
1871 1871 code = compile(expr,'<timed eval>',mode)
1872 1872 tc = clock()-t0
1873 1873 except SyntaxError:
1874 1874 mode = 'exec'
1875 1875 t0 = clock()
1876 1876 code = compile(expr,'<timed exec>',mode)
1877 1877 tc = clock()-t0
1878 1878 # skew measurement as little as possible
1879 1879 glob = self.shell.user_ns
1880 1880 clk = clock2
1881 1881 wtime = time.time
1882 1882 # time execution
1883 1883 wall_st = wtime()
1884 1884 if mode=='eval':
1885 1885 st = clk()
1886 1886 out = eval(code,glob)
1887 1887 end = clk()
1888 1888 else:
1889 1889 st = clk()
1890 1890 exec code in glob
1891 1891 end = clk()
1892 1892 out = None
1893 1893 wall_end = wtime()
1894 1894 # Compute actual times and report
1895 1895 wall_time = wall_end-wall_st
1896 1896 cpu_user = end[0]-st[0]
1897 1897 cpu_sys = end[1]-st[1]
1898 1898 cpu_tot = cpu_user+cpu_sys
1899 1899 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1900 1900 (cpu_user,cpu_sys,cpu_tot)
1901 1901 print "Wall time: %.2f s" % wall_time
1902 1902 if tc > tc_min:
1903 1903 print "Compiler : %.2f s" % tc
1904 1904 return out
1905 1905
1906 1906 @testdec.skip_doctest
1907 1907 def magic_macro(self,parameter_s = ''):
1908 1908 """Define a set of input lines as a macro for future re-execution.
1909 1909
1910 1910 Usage:\\
1911 1911 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1912 1912
1913 1913 Options:
1914 1914
1915 1915 -r: use 'raw' input. By default, the 'processed' history is used,
1916 1916 so that magics are loaded in their transformed version to valid
1917 1917 Python. If this option is given, the raw input as typed as the
1918 1918 command line is used instead.
1919 1919
1920 1920 This will define a global variable called `name` which is a string
1921 1921 made of joining the slices and lines you specify (n1,n2,... numbers
1922 1922 above) from your input history into a single string. This variable
1923 1923 acts like an automatic function which re-executes those lines as if
1924 1924 you had typed them. You just type 'name' at the prompt and the code
1925 1925 executes.
1926 1926
1927 1927 The notation for indicating number ranges is: n1-n2 means 'use line
1928 1928 numbers n1,...n2' (the endpoint is included). That is, '5-7' means
1929 1929 using the lines numbered 5,6 and 7.
1930 1930
1931 1931 Note: as a 'hidden' feature, you can also use traditional python slice
1932 1932 notation, where N:M means numbers N through M-1.
1933 1933
1934 1934 For example, if your history contains (%hist prints it):
1935 1935
1936 1936 44: x=1
1937 1937 45: y=3
1938 1938 46: z=x+y
1939 1939 47: print x
1940 1940 48: a=5
1941 1941 49: print 'x',x,'y',y
1942 1942
1943 1943 you can create a macro with lines 44 through 47 (included) and line 49
1944 1944 called my_macro with:
1945 1945
1946 1946 In [55]: %macro my_macro 44-47 49
1947 1947
1948 1948 Now, typing `my_macro` (without quotes) will re-execute all this code
1949 1949 in one pass.
1950 1950
1951 1951 You don't need to give the line-numbers in order, and any given line
1952 1952 number can appear multiple times. You can assemble macros with any
1953 1953 lines from your input history in any order.
1954 1954
1955 1955 The macro is a simple object which holds its value in an attribute,
1956 1956 but IPython's display system checks for macros and executes them as
1957 1957 code instead of printing them when you type their name.
1958 1958
1959 1959 You can view a macro's contents by explicitly printing it with:
1960 1960
1961 1961 'print macro_name'.
1962 1962
1963 1963 For one-off cases which DON'T contain magic function calls in them you
1964 1964 can obtain similar results by explicitly executing slices from your
1965 1965 input history with:
1966 1966
1967 1967 In [60]: exec In[44:48]+In[49]"""
1968 1968
1969 1969 opts,args = self.parse_options(parameter_s,'r',mode='list')
1970 1970 if not args:
1971 1971 macs = [k for k,v in self.shell.user_ns.items() if isinstance(v, Macro)]
1972 1972 macs.sort()
1973 1973 return macs
1974 1974 if len(args) == 1:
1975 1975 raise UsageError(
1976 1976 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
1977 1977 name,ranges = args[0], args[1:]
1978 1978
1979 1979 #print 'rng',ranges # dbg
1980 1980 lines = self.extract_input_slices(ranges,opts.has_key('r'))
1981 1981 macro = Macro(lines)
1982 1982 self.shell.define_macro(name, macro)
1983 1983 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
1984 1984 print 'Macro contents:'
1985 1985 print macro,
1986 1986
1987 1987 def magic_save(self,parameter_s = ''):
1988 1988 """Save a set of lines to a given filename.
1989 1989
1990 1990 Usage:\\
1991 1991 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
1992 1992
1993 1993 Options:
1994 1994
1995 1995 -r: use 'raw' input. By default, the 'processed' history is used,
1996 1996 so that magics are loaded in their transformed version to valid
1997 1997 Python. If this option is given, the raw input as typed as the
1998 1998 command line is used instead.
1999 1999
2000 2000 This function uses the same syntax as %macro for line extraction, but
2001 2001 instead of creating a macro it saves the resulting string to the
2002 2002 filename you specify.
2003 2003
2004 2004 It adds a '.py' extension to the file if you don't do so yourself, and
2005 2005 it asks for confirmation before overwriting existing files."""
2006 2006
2007 2007 opts,args = self.parse_options(parameter_s,'r',mode='list')
2008 2008 fname,ranges = args[0], args[1:]
2009 2009 if not fname.endswith('.py'):
2010 2010 fname += '.py'
2011 2011 if os.path.isfile(fname):
2012 2012 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2013 2013 if ans.lower() not in ['y','yes']:
2014 2014 print 'Operation cancelled.'
2015 2015 return
2016 2016 cmds = ''.join(self.extract_input_slices(ranges,opts.has_key('r')))
2017 2017 f = file(fname,'w')
2018 2018 f.write(cmds)
2019 2019 f.close()
2020 2020 print 'The following commands were written to file `%s`:' % fname
2021 2021 print cmds
2022 2022
2023 2023 def _edit_macro(self,mname,macro):
2024 2024 """open an editor with the macro data in a file"""
2025 2025 filename = self.shell.mktempfile(macro.value)
2026 2026 self.shell.hooks.editor(filename)
2027 2027
2028 2028 # and make a new macro object, to replace the old one
2029 2029 mfile = open(filename)
2030 2030 mvalue = mfile.read()
2031 2031 mfile.close()
2032 2032 self.shell.user_ns[mname] = Macro(mvalue)
2033 2033
2034 2034 def magic_ed(self,parameter_s=''):
2035 2035 """Alias to %edit."""
2036 2036 return self.magic_edit(parameter_s)
2037 2037
2038 2038 @testdec.skip_doctest
2039 2039 def magic_edit(self,parameter_s='',last_call=['','']):
2040 2040 """Bring up an editor and execute the resulting code.
2041 2041
2042 2042 Usage:
2043 2043 %edit [options] [args]
2044 2044
2045 2045 %edit runs IPython's editor hook. The default version of this hook is
2046 2046 set to call the __IPYTHON__.rc.editor command. This is read from your
2047 2047 environment variable $EDITOR. If this isn't found, it will default to
2048 2048 vi under Linux/Unix and to notepad under Windows. See the end of this
2049 2049 docstring for how to change the editor hook.
2050 2050
2051 2051 You can also set the value of this editor via the command line option
2052 2052 '-editor' or in your ipythonrc file. This is useful if you wish to use
2053 2053 specifically for IPython an editor different from your typical default
2054 2054 (and for Windows users who typically don't set environment variables).
2055 2055
2056 2056 This command allows you to conveniently edit multi-line code right in
2057 2057 your IPython session.
2058 2058
2059 2059 If called without arguments, %edit opens up an empty editor with a
2060 2060 temporary file and will execute the contents of this file when you
2061 2061 close it (don't forget to save it!).
2062 2062
2063 2063
2064 2064 Options:
2065 2065
2066 2066 -n <number>: open the editor at a specified line number. By default,
2067 2067 the IPython editor hook uses the unix syntax 'editor +N filename', but
2068 2068 you can configure this by providing your own modified hook if your
2069 2069 favorite editor supports line-number specifications with a different
2070 2070 syntax.
2071 2071
2072 2072 -p: this will call the editor with the same data as the previous time
2073 2073 it was used, regardless of how long ago (in your current session) it
2074 2074 was.
2075 2075
2076 2076 -r: use 'raw' input. This option only applies to input taken from the
2077 2077 user's history. By default, the 'processed' history is used, so that
2078 2078 magics are loaded in their transformed version to valid Python. If
2079 2079 this option is given, the raw input as typed as the command line is
2080 2080 used instead. When you exit the editor, it will be executed by
2081 2081 IPython's own processor.
2082 2082
2083 2083 -x: do not execute the edited code immediately upon exit. This is
2084 2084 mainly useful if you are editing programs which need to be called with
2085 2085 command line arguments, which you can then do using %run.
2086 2086
2087 2087
2088 2088 Arguments:
2089 2089
2090 2090 If arguments are given, the following possibilites exist:
2091 2091
2092 2092 - The arguments are numbers or pairs of colon-separated numbers (like
2093 2093 1 4:8 9). These are interpreted as lines of previous input to be
2094 2094 loaded into the editor. The syntax is the same of the %macro command.
2095 2095
2096 2096 - If the argument doesn't start with a number, it is evaluated as a
2097 2097 variable and its contents loaded into the editor. You can thus edit
2098 2098 any string which contains python code (including the result of
2099 2099 previous edits).
2100 2100
2101 2101 - If the argument is the name of an object (other than a string),
2102 2102 IPython will try to locate the file where it was defined and open the
2103 2103 editor at the point where it is defined. You can use `%edit function`
2104 2104 to load an editor exactly at the point where 'function' is defined,
2105 2105 edit it and have the file be executed automatically.
2106 2106
2107 2107 If the object is a macro (see %macro for details), this opens up your
2108 2108 specified editor with a temporary file containing the macro's data.
2109 2109 Upon exit, the macro is reloaded with the contents of the file.
2110 2110
2111 2111 Note: opening at an exact line is only supported under Unix, and some
2112 2112 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2113 2113 '+NUMBER' parameter necessary for this feature. Good editors like
2114 2114 (X)Emacs, vi, jed, pico and joe all do.
2115 2115
2116 2116 - If the argument is not found as a variable, IPython will look for a
2117 2117 file with that name (adding .py if necessary) and load it into the
2118 2118 editor. It will execute its contents with execfile() when you exit,
2119 2119 loading any code in the file into your interactive namespace.
2120 2120
2121 2121 After executing your code, %edit will return as output the code you
2122 2122 typed in the editor (except when it was an existing file). This way
2123 2123 you can reload the code in further invocations of %edit as a variable,
2124 2124 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2125 2125 the output.
2126 2126
2127 2127 Note that %edit is also available through the alias %ed.
2128 2128
2129 2129 This is an example of creating a simple function inside the editor and
2130 2130 then modifying it. First, start up the editor:
2131 2131
2132 2132 In [1]: ed
2133 2133 Editing... done. Executing edited code...
2134 2134 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2135 2135
2136 2136 We can then call the function foo():
2137 2137
2138 2138 In [2]: foo()
2139 2139 foo() was defined in an editing session
2140 2140
2141 2141 Now we edit foo. IPython automatically loads the editor with the
2142 2142 (temporary) file where foo() was previously defined:
2143 2143
2144 2144 In [3]: ed foo
2145 2145 Editing... done. Executing edited code...
2146 2146
2147 2147 And if we call foo() again we get the modified version:
2148 2148
2149 2149 In [4]: foo()
2150 2150 foo() has now been changed!
2151 2151
2152 2152 Here is an example of how to edit a code snippet successive
2153 2153 times. First we call the editor:
2154 2154
2155 2155 In [5]: ed
2156 2156 Editing... done. Executing edited code...
2157 2157 hello
2158 2158 Out[5]: "print 'hello'n"
2159 2159
2160 2160 Now we call it again with the previous output (stored in _):
2161 2161
2162 2162 In [6]: ed _
2163 2163 Editing... done. Executing edited code...
2164 2164 hello world
2165 2165 Out[6]: "print 'hello world'n"
2166 2166
2167 2167 Now we call it with the output #8 (stored in _8, also as Out[8]):
2168 2168
2169 2169 In [7]: ed _8
2170 2170 Editing... done. Executing edited code...
2171 2171 hello again
2172 2172 Out[7]: "print 'hello again'n"
2173 2173
2174 2174
2175 2175 Changing the default editor hook:
2176 2176
2177 2177 If you wish to write your own editor hook, you can put it in a
2178 2178 configuration file which you load at startup time. The default hook
2179 2179 is defined in the IPython.core.hooks module, and you can use that as a
2180 2180 starting example for further modifications. That file also has
2181 2181 general instructions on how to set a new hook for use once you've
2182 2182 defined it."""
2183 2183
2184 2184 # FIXME: This function has become a convoluted mess. It needs a
2185 2185 # ground-up rewrite with clean, simple logic.
2186 2186
2187 2187 def make_filename(arg):
2188 2188 "Make a filename from the given args"
2189 2189 try:
2190 2190 filename = get_py_filename(arg)
2191 2191 except IOError:
2192 2192 if args.endswith('.py'):
2193 2193 filename = arg
2194 2194 else:
2195 2195 filename = None
2196 2196 return filename
2197 2197
2198 2198 # custom exceptions
2199 2199 class DataIsObject(Exception): pass
2200 2200
2201 2201 opts,args = self.parse_options(parameter_s,'prxn:')
2202 2202 # Set a few locals from the options for convenience:
2203 2203 opts_p = opts.has_key('p')
2204 2204 opts_r = opts.has_key('r')
2205 2205
2206 2206 # Default line number value
2207 2207 lineno = opts.get('n',None)
2208 2208
2209 2209 if opts_p:
2210 2210 args = '_%s' % last_call[0]
2211 2211 if not self.shell.user_ns.has_key(args):
2212 2212 args = last_call[1]
2213 2213
2214 2214 # use last_call to remember the state of the previous call, but don't
2215 2215 # let it be clobbered by successive '-p' calls.
2216 2216 try:
2217 2217 last_call[0] = self.shell.displayhook.prompt_count
2218 2218 if not opts_p:
2219 2219 last_call[1] = parameter_s
2220 2220 except:
2221 2221 pass
2222 2222
2223 2223 # by default this is done with temp files, except when the given
2224 2224 # arg is a filename
2225 2225 use_temp = 1
2226 2226
2227 2227 if re.match(r'\d',args):
2228 2228 # Mode where user specifies ranges of lines, like in %macro.
2229 2229 # This means that you can't edit files whose names begin with
2230 2230 # numbers this way. Tough.
2231 2231 ranges = args.split()
2232 2232 data = ''.join(self.extract_input_slices(ranges,opts_r))
2233 2233 elif args.endswith('.py'):
2234 2234 filename = make_filename(args)
2235 2235 data = ''
2236 2236 use_temp = 0
2237 2237 elif args:
2238 2238 try:
2239 2239 # Load the parameter given as a variable. If not a string,
2240 2240 # process it as an object instead (below)
2241 2241
2242 2242 #print '*** args',args,'type',type(args) # dbg
2243 2243 data = eval(args,self.shell.user_ns)
2244 2244 if not type(data) in StringTypes:
2245 2245 raise DataIsObject
2246 2246
2247 2247 except (NameError,SyntaxError):
2248 2248 # given argument is not a variable, try as a filename
2249 2249 filename = make_filename(args)
2250 2250 if filename is None:
2251 2251 warn("Argument given (%s) can't be found as a variable "
2252 2252 "or as a filename." % args)
2253 2253 return
2254 2254
2255 2255 data = ''
2256 2256 use_temp = 0
2257 2257 except DataIsObject:
2258 2258
2259 2259 # macros have a special edit function
2260 2260 if isinstance(data,Macro):
2261 2261 self._edit_macro(args,data)
2262 2262 return
2263 2263
2264 2264 # For objects, try to edit the file where they are defined
2265 2265 try:
2266 2266 filename = inspect.getabsfile(data)
2267 2267 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2268 2268 # class created by %edit? Try to find source
2269 2269 # by looking for method definitions instead, the
2270 2270 # __module__ in those classes is FakeModule.
2271 2271 attrs = [getattr(data, aname) for aname in dir(data)]
2272 2272 for attr in attrs:
2273 2273 if not inspect.ismethod(attr):
2274 2274 continue
2275 2275 filename = inspect.getabsfile(attr)
2276 2276 if filename and 'fakemodule' not in filename.lower():
2277 2277 # change the attribute to be the edit target instead
2278 2278 data = attr
2279 2279 break
2280 2280
2281 2281 datafile = 1
2282 2282 except TypeError:
2283 2283 filename = make_filename(args)
2284 2284 datafile = 1
2285 2285 warn('Could not find file where `%s` is defined.\n'
2286 2286 'Opening a file named `%s`' % (args,filename))
2287 2287 # Now, make sure we can actually read the source (if it was in
2288 2288 # a temp file it's gone by now).
2289 2289 if datafile:
2290 2290 try:
2291 2291 if lineno is None:
2292 2292 lineno = inspect.getsourcelines(data)[1]
2293 2293 except IOError:
2294 2294 filename = make_filename(args)
2295 2295 if filename is None:
2296 2296 warn('The file `%s` where `%s` was defined cannot '
2297 2297 'be read.' % (filename,data))
2298 2298 return
2299 2299 use_temp = 0
2300 2300 else:
2301 2301 data = ''
2302 2302
2303 2303 if use_temp:
2304 2304 filename = self.shell.mktempfile(data)
2305 2305 print 'IPython will make a temporary file named:',filename
2306 2306
2307 2307 # do actual editing here
2308 2308 print 'Editing...',
2309 2309 sys.stdout.flush()
2310 2310 try:
2311 2311 # Quote filenames that may have spaces in them
2312 2312 if ' ' in filename:
2313 2313 filename = "%s" % filename
2314 2314 self.shell.hooks.editor(filename,lineno)
2315 2315 except TryNext:
2316 2316 warn('Could not open editor')
2317 2317 return
2318 2318
2319 2319 # XXX TODO: should this be generalized for all string vars?
2320 2320 # For now, this is special-cased to blocks created by cpaste
2321 2321 if args.strip() == 'pasted_block':
2322 2322 self.shell.user_ns['pasted_block'] = file_read(filename)
2323 2323
2324 2324 if opts.has_key('x'): # -x prevents actual execution
2325 2325 print
2326 2326 else:
2327 2327 print 'done. Executing edited code...'
2328 2328 if opts_r:
2329 2329 self.shell.run_cell(file_read(filename))
2330 2330 else:
2331 2331 self.shell.safe_execfile(filename,self.shell.user_ns,
2332 2332 self.shell.user_ns)
2333 2333
2334 2334
2335 2335 if use_temp:
2336 2336 try:
2337 2337 return open(filename).read()
2338 2338 except IOError,msg:
2339 2339 if msg.filename == filename:
2340 2340 warn('File not found. Did you forget to save?')
2341 2341 return
2342 2342 else:
2343 2343 self.shell.showtraceback()
2344 2344
2345 2345 def magic_xmode(self,parameter_s = ''):
2346 2346 """Switch modes for the exception handlers.
2347 2347
2348 2348 Valid modes: Plain, Context and Verbose.
2349 2349
2350 2350 If called without arguments, acts as a toggle."""
2351 2351
2352 2352 def xmode_switch_err(name):
2353 2353 warn('Error changing %s exception modes.\n%s' %
2354 2354 (name,sys.exc_info()[1]))
2355 2355
2356 2356 shell = self.shell
2357 2357 new_mode = parameter_s.strip().capitalize()
2358 2358 try:
2359 2359 shell.InteractiveTB.set_mode(mode=new_mode)
2360 2360 print 'Exception reporting mode:',shell.InteractiveTB.mode
2361 2361 except:
2362 2362 xmode_switch_err('user')
2363 2363
2364 2364 def magic_colors(self,parameter_s = ''):
2365 2365 """Switch color scheme for prompts, info system and exception handlers.
2366 2366
2367 2367 Currently implemented schemes: NoColor, Linux, LightBG.
2368 2368
2369 2369 Color scheme names are not case-sensitive."""
2370 2370
2371 2371 def color_switch_err(name):
2372 2372 warn('Error changing %s color schemes.\n%s' %
2373 2373 (name,sys.exc_info()[1]))
2374 2374
2375 2375
2376 2376 new_scheme = parameter_s.strip()
2377 2377 if not new_scheme:
2378 2378 raise UsageError(
2379 2379 "%colors: you must specify a color scheme. See '%colors?'")
2380 2380 return
2381 2381 # local shortcut
2382 2382 shell = self.shell
2383 2383
2384 2384 import IPython.utils.rlineimpl as readline
2385 2385
2386 2386 if not readline.have_readline and sys.platform == "win32":
2387 2387 msg = """\
2388 2388 Proper color support under MS Windows requires the pyreadline library.
2389 2389 You can find it at:
2390 2390 http://ipython.scipy.org/moin/PyReadline/Intro
2391 2391 Gary's readline needs the ctypes module, from:
2392 2392 http://starship.python.net/crew/theller/ctypes
2393 2393 (Note that ctypes is already part of Python versions 2.5 and newer).
2394 2394
2395 2395 Defaulting color scheme to 'NoColor'"""
2396 2396 new_scheme = 'NoColor'
2397 2397 warn(msg)
2398 2398
2399 2399 # readline option is 0
2400 2400 if not shell.has_readline:
2401 2401 new_scheme = 'NoColor'
2402 2402
2403 2403 # Set prompt colors
2404 2404 try:
2405 2405 shell.displayhook.set_colors(new_scheme)
2406 2406 except:
2407 2407 color_switch_err('prompt')
2408 2408 else:
2409 2409 shell.colors = \
2410 2410 shell.displayhook.color_table.active_scheme_name
2411 2411 # Set exception colors
2412 2412 try:
2413 2413 shell.InteractiveTB.set_colors(scheme = new_scheme)
2414 2414 shell.SyntaxTB.set_colors(scheme = new_scheme)
2415 2415 except:
2416 2416 color_switch_err('exception')
2417 2417
2418 2418 # Set info (for 'object?') colors
2419 2419 if shell.color_info:
2420 2420 try:
2421 2421 shell.inspector.set_active_scheme(new_scheme)
2422 2422 except:
2423 2423 color_switch_err('object inspector')
2424 2424 else:
2425 2425 shell.inspector.set_active_scheme('NoColor')
2426 2426
2427 2427 def magic_Pprint(self, parameter_s=''):
2428 2428 """Toggle pretty printing on/off."""
2429 2429
2430 2430 self.shell.pprint = 1 - self.shell.pprint
2431 2431 print 'Pretty printing has been turned', \
2432 2432 ['OFF','ON'][self.shell.pprint]
2433 2433
2434 2434 def magic_Exit(self, parameter_s=''):
2435 2435 """Exit IPython."""
2436 2436
2437 2437 self.shell.ask_exit()
2438 2438
2439 2439 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2440 2440 magic_exit = magic_quit = magic_Quit = magic_Exit
2441 2441
2442 2442 #......................................................................
2443 2443 # Functions to implement unix shell-type things
2444 2444
2445 2445 @testdec.skip_doctest
2446 2446 def magic_alias(self, parameter_s = ''):
2447 2447 """Define an alias for a system command.
2448 2448
2449 2449 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2450 2450
2451 2451 Then, typing 'alias_name params' will execute the system command 'cmd
2452 2452 params' (from your underlying operating system).
2453 2453
2454 2454 Aliases have lower precedence than magic functions and Python normal
2455 2455 variables, so if 'foo' is both a Python variable and an alias, the
2456 2456 alias can not be executed until 'del foo' removes the Python variable.
2457 2457
2458 2458 You can use the %l specifier in an alias definition to represent the
2459 2459 whole line when the alias is called. For example:
2460 2460
2461 2461 In [2]: alias bracket echo "Input in brackets: <%l>"
2462 2462 In [3]: bracket hello world
2463 2463 Input in brackets: <hello world>
2464 2464
2465 2465 You can also define aliases with parameters using %s specifiers (one
2466 2466 per parameter):
2467 2467
2468 2468 In [1]: alias parts echo first %s second %s
2469 2469 In [2]: %parts A B
2470 2470 first A second B
2471 2471 In [3]: %parts A
2472 2472 Incorrect number of arguments: 2 expected.
2473 2473 parts is an alias to: 'echo first %s second %s'
2474 2474
2475 2475 Note that %l and %s are mutually exclusive. You can only use one or
2476 2476 the other in your aliases.
2477 2477
2478 2478 Aliases expand Python variables just like system calls using ! or !!
2479 2479 do: all expressions prefixed with '$' get expanded. For details of
2480 2480 the semantic rules, see PEP-215:
2481 2481 http://www.python.org/peps/pep-0215.html. This is the library used by
2482 2482 IPython for variable expansion. If you want to access a true shell
2483 2483 variable, an extra $ is necessary to prevent its expansion by IPython:
2484 2484
2485 2485 In [6]: alias show echo
2486 2486 In [7]: PATH='A Python string'
2487 2487 In [8]: show $PATH
2488 2488 A Python string
2489 2489 In [9]: show $$PATH
2490 2490 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2491 2491
2492 2492 You can use the alias facility to acess all of $PATH. See the %rehash
2493 2493 and %rehashx functions, which automatically create aliases for the
2494 2494 contents of your $PATH.
2495 2495
2496 2496 If called with no parameters, %alias prints the current alias table."""
2497 2497
2498 2498 par = parameter_s.strip()
2499 2499 if not par:
2500 2500 stored = self.db.get('stored_aliases', {} )
2501 2501 aliases = sorted(self.shell.alias_manager.aliases)
2502 2502 # for k, v in stored:
2503 2503 # atab.append(k, v[0])
2504 2504
2505 2505 print "Total number of aliases:", len(aliases)
2506 2506 sys.stdout.flush()
2507 2507 return aliases
2508 2508
2509 2509 # Now try to define a new one
2510 2510 try:
2511 2511 alias,cmd = par.split(None, 1)
2512 2512 except:
2513 2513 print oinspect.getdoc(self.magic_alias)
2514 2514 else:
2515 2515 self.shell.alias_manager.soft_define_alias(alias, cmd)
2516 2516 # end magic_alias
2517 2517
2518 2518 def magic_unalias(self, parameter_s = ''):
2519 2519 """Remove an alias"""
2520 2520
2521 2521 aname = parameter_s.strip()
2522 2522 self.shell.alias_manager.undefine_alias(aname)
2523 2523 stored = self.db.get('stored_aliases', {} )
2524 2524 if aname in stored:
2525 2525 print "Removing %stored alias",aname
2526 2526 del stored[aname]
2527 2527 self.db['stored_aliases'] = stored
2528 2528
2529 2529 def magic_rehashx(self, parameter_s = ''):
2530 2530 """Update the alias table with all executable files in $PATH.
2531 2531
2532 2532 This version explicitly checks that every entry in $PATH is a file
2533 2533 with execute access (os.X_OK), so it is much slower than %rehash.
2534 2534
2535 2535 Under Windows, it checks executability as a match agains a
2536 2536 '|'-separated string of extensions, stored in the IPython config
2537 2537 variable win_exec_ext. This defaults to 'exe|com|bat'.
2538 2538
2539 2539 This function also resets the root module cache of module completer,
2540 2540 used on slow filesystems.
2541 2541 """
2542 2542 from IPython.core.alias import InvalidAliasError
2543 2543
2544 2544 # for the benefit of module completer in ipy_completers.py
2545 2545 del self.db['rootmodules']
2546 2546
2547 2547 path = [os.path.abspath(os.path.expanduser(p)) for p in
2548 2548 os.environ.get('PATH','').split(os.pathsep)]
2549 2549 path = filter(os.path.isdir,path)
2550 2550
2551 2551 syscmdlist = []
2552 2552 # Now define isexec in a cross platform manner.
2553 2553 if os.name == 'posix':
2554 2554 isexec = lambda fname:os.path.isfile(fname) and \
2555 2555 os.access(fname,os.X_OK)
2556 2556 else:
2557 2557 try:
2558 2558 winext = os.environ['pathext'].replace(';','|').replace('.','')
2559 2559 except KeyError:
2560 2560 winext = 'exe|com|bat|py'
2561 2561 if 'py' not in winext:
2562 2562 winext += '|py'
2563 2563 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2564 2564 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2565 2565 savedir = os.getcwd()
2566 2566
2567 2567 # Now walk the paths looking for executables to alias.
2568 2568 try:
2569 2569 # write the whole loop for posix/Windows so we don't have an if in
2570 2570 # the innermost part
2571 2571 if os.name == 'posix':
2572 2572 for pdir in path:
2573 2573 os.chdir(pdir)
2574 2574 for ff in os.listdir(pdir):
2575 2575 if isexec(ff):
2576 2576 try:
2577 2577 # Removes dots from the name since ipython
2578 2578 # will assume names with dots to be python.
2579 2579 self.shell.alias_manager.define_alias(
2580 2580 ff.replace('.',''), ff)
2581 2581 except InvalidAliasError:
2582 2582 pass
2583 2583 else:
2584 2584 syscmdlist.append(ff)
2585 2585 else:
2586 2586 no_alias = self.shell.alias_manager.no_alias
2587 2587 for pdir in path:
2588 2588 os.chdir(pdir)
2589 2589 for ff in os.listdir(pdir):
2590 2590 base, ext = os.path.splitext(ff)
2591 2591 if isexec(ff) and base.lower() not in no_alias:
2592 2592 if ext.lower() == '.exe':
2593 2593 ff = base
2594 2594 try:
2595 2595 # Removes dots from the name since ipython
2596 2596 # will assume names with dots to be python.
2597 2597 self.shell.alias_manager.define_alias(
2598 2598 base.lower().replace('.',''), ff)
2599 2599 except InvalidAliasError:
2600 2600 pass
2601 2601 syscmdlist.append(ff)
2602 2602 db = self.db
2603 2603 db['syscmdlist'] = syscmdlist
2604 2604 finally:
2605 2605 os.chdir(savedir)
2606 2606
2607 2607 def magic_pwd(self, parameter_s = ''):
2608 2608 """Return the current working directory path."""
2609 2609 return os.getcwd()
2610 2610
2611 2611 def magic_cd(self, parameter_s=''):
2612 2612 """Change the current working directory.
2613 2613
2614 2614 This command automatically maintains an internal list of directories
2615 2615 you visit during your IPython session, in the variable _dh. The
2616 2616 command %dhist shows this history nicely formatted. You can also
2617 2617 do 'cd -<tab>' to see directory history conveniently.
2618 2618
2619 2619 Usage:
2620 2620
2621 2621 cd 'dir': changes to directory 'dir'.
2622 2622
2623 2623 cd -: changes to the last visited directory.
2624 2624
2625 2625 cd -<n>: changes to the n-th directory in the directory history.
2626 2626
2627 2627 cd --foo: change to directory that matches 'foo' in history
2628 2628
2629 2629 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2630 2630 (note: cd <bookmark_name> is enough if there is no
2631 2631 directory <bookmark_name>, but a bookmark with the name exists.)
2632 2632 'cd -b <tab>' allows you to tab-complete bookmark names.
2633 2633
2634 2634 Options:
2635 2635
2636 2636 -q: quiet. Do not print the working directory after the cd command is
2637 2637 executed. By default IPython's cd command does print this directory,
2638 2638 since the default prompts do not display path information.
2639 2639
2640 2640 Note that !cd doesn't work for this purpose because the shell where
2641 2641 !command runs is immediately discarded after executing 'command'."""
2642 2642
2643 2643 parameter_s = parameter_s.strip()
2644 2644 #bkms = self.shell.persist.get("bookmarks",{})
2645 2645
2646 2646 oldcwd = os.getcwd()
2647 2647 numcd = re.match(r'(-)(\d+)$',parameter_s)
2648 2648 # jump in directory history by number
2649 2649 if numcd:
2650 2650 nn = int(numcd.group(2))
2651 2651 try:
2652 2652 ps = self.shell.user_ns['_dh'][nn]
2653 2653 except IndexError:
2654 2654 print 'The requested directory does not exist in history.'
2655 2655 return
2656 2656 else:
2657 2657 opts = {}
2658 2658 elif parameter_s.startswith('--'):
2659 2659 ps = None
2660 2660 fallback = None
2661 2661 pat = parameter_s[2:]
2662 2662 dh = self.shell.user_ns['_dh']
2663 2663 # first search only by basename (last component)
2664 2664 for ent in reversed(dh):
2665 2665 if pat in os.path.basename(ent) and os.path.isdir(ent):
2666 2666 ps = ent
2667 2667 break
2668 2668
2669 2669 if fallback is None and pat in ent and os.path.isdir(ent):
2670 2670 fallback = ent
2671 2671
2672 2672 # if we have no last part match, pick the first full path match
2673 2673 if ps is None:
2674 2674 ps = fallback
2675 2675
2676 2676 if ps is None:
2677 2677 print "No matching entry in directory history"
2678 2678 return
2679 2679 else:
2680 2680 opts = {}
2681 2681
2682 2682
2683 2683 else:
2684 2684 #turn all non-space-escaping backslashes to slashes,
2685 2685 # for c:\windows\directory\names\
2686 2686 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2687 2687 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2688 2688 # jump to previous
2689 2689 if ps == '-':
2690 2690 try:
2691 2691 ps = self.shell.user_ns['_dh'][-2]
2692 2692 except IndexError:
2693 2693 raise UsageError('%cd -: No previous directory to change to.')
2694 2694 # jump to bookmark if needed
2695 2695 else:
2696 2696 if not os.path.isdir(ps) or opts.has_key('b'):
2697 2697 bkms = self.db.get('bookmarks', {})
2698 2698
2699 2699 if bkms.has_key(ps):
2700 2700 target = bkms[ps]
2701 2701 print '(bookmark:%s) -> %s' % (ps,target)
2702 2702 ps = target
2703 2703 else:
2704 2704 if opts.has_key('b'):
2705 2705 raise UsageError("Bookmark '%s' not found. "
2706 2706 "Use '%%bookmark -l' to see your bookmarks." % ps)
2707 2707
2708 2708 # at this point ps should point to the target dir
2709 2709 if ps:
2710 2710 try:
2711 2711 os.chdir(os.path.expanduser(ps))
2712 2712 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2713 2713 set_term_title('IPython: ' + abbrev_cwd())
2714 2714 except OSError:
2715 2715 print sys.exc_info()[1]
2716 2716 else:
2717 2717 cwd = os.getcwd()
2718 2718 dhist = self.shell.user_ns['_dh']
2719 2719 if oldcwd != cwd:
2720 2720 dhist.append(cwd)
2721 2721 self.db['dhist'] = compress_dhist(dhist)[-100:]
2722 2722
2723 2723 else:
2724 2724 os.chdir(self.shell.home_dir)
2725 2725 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2726 2726 set_term_title('IPython: ' + '~')
2727 2727 cwd = os.getcwd()
2728 2728 dhist = self.shell.user_ns['_dh']
2729 2729
2730 2730 if oldcwd != cwd:
2731 2731 dhist.append(cwd)
2732 2732 self.db['dhist'] = compress_dhist(dhist)[-100:]
2733 2733 if not 'q' in opts and self.shell.user_ns['_dh']:
2734 2734 print self.shell.user_ns['_dh'][-1]
2735 2735
2736 2736
2737 2737 def magic_env(self, parameter_s=''):
2738 2738 """List environment variables."""
2739 2739
2740 2740 return os.environ.data
2741 2741
2742 2742 def magic_pushd(self, parameter_s=''):
2743 2743 """Place the current dir on stack and change directory.
2744 2744
2745 2745 Usage:\\
2746 2746 %pushd ['dirname']
2747 2747 """
2748 2748
2749 2749 dir_s = self.shell.dir_stack
2750 2750 tgt = os.path.expanduser(parameter_s)
2751 2751 cwd = os.getcwd().replace(self.home_dir,'~')
2752 2752 if tgt:
2753 2753 self.magic_cd(parameter_s)
2754 2754 dir_s.insert(0,cwd)
2755 2755 return self.magic_dirs()
2756 2756
2757 2757 def magic_popd(self, parameter_s=''):
2758 2758 """Change to directory popped off the top of the stack.
2759 2759 """
2760 2760 if not self.shell.dir_stack:
2761 2761 raise UsageError("%popd on empty stack")
2762 2762 top = self.shell.dir_stack.pop(0)
2763 2763 self.magic_cd(top)
2764 2764 print "popd ->",top
2765 2765
2766 2766 def magic_dirs(self, parameter_s=''):
2767 2767 """Return the current directory stack."""
2768 2768
2769 2769 return self.shell.dir_stack
2770 2770
2771 2771 def magic_dhist(self, parameter_s=''):
2772 2772 """Print your history of visited directories.
2773 2773
2774 2774 %dhist -> print full history\\
2775 2775 %dhist n -> print last n entries only\\
2776 2776 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2777 2777
2778 2778 This history is automatically maintained by the %cd command, and
2779 2779 always available as the global list variable _dh. You can use %cd -<n>
2780 2780 to go to directory number <n>.
2781 2781
2782 2782 Note that most of time, you should view directory history by entering
2783 2783 cd -<TAB>.
2784 2784
2785 2785 """
2786 2786
2787 2787 dh = self.shell.user_ns['_dh']
2788 2788 if parameter_s:
2789 2789 try:
2790 2790 args = map(int,parameter_s.split())
2791 2791 except:
2792 2792 self.arg_err(Magic.magic_dhist)
2793 2793 return
2794 2794 if len(args) == 1:
2795 2795 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2796 2796 elif len(args) == 2:
2797 2797 ini,fin = args
2798 2798 else:
2799 2799 self.arg_err(Magic.magic_dhist)
2800 2800 return
2801 2801 else:
2802 2802 ini,fin = 0,len(dh)
2803 2803 nlprint(dh,
2804 2804 header = 'Directory history (kept in _dh)',
2805 2805 start=ini,stop=fin)
2806 2806
2807 2807 @testdec.skip_doctest
2808 2808 def magic_sc(self, parameter_s=''):
2809 2809 """Shell capture - execute a shell command and capture its output.
2810 2810
2811 2811 DEPRECATED. Suboptimal, retained for backwards compatibility.
2812 2812
2813 2813 You should use the form 'var = !command' instead. Example:
2814 2814
2815 2815 "%sc -l myfiles = ls ~" should now be written as
2816 2816
2817 2817 "myfiles = !ls ~"
2818 2818
2819 2819 myfiles.s, myfiles.l and myfiles.n still apply as documented
2820 2820 below.
2821 2821
2822 2822 --
2823 2823 %sc [options] varname=command
2824 2824
2825 2825 IPython will run the given command using commands.getoutput(), and
2826 2826 will then update the user's interactive namespace with a variable
2827 2827 called varname, containing the value of the call. Your command can
2828 2828 contain shell wildcards, pipes, etc.
2829 2829
2830 2830 The '=' sign in the syntax is mandatory, and the variable name you
2831 2831 supply must follow Python's standard conventions for valid names.
2832 2832
2833 2833 (A special format without variable name exists for internal use)
2834 2834
2835 2835 Options:
2836 2836
2837 2837 -l: list output. Split the output on newlines into a list before
2838 2838 assigning it to the given variable. By default the output is stored
2839 2839 as a single string.
2840 2840
2841 2841 -v: verbose. Print the contents of the variable.
2842 2842
2843 2843 In most cases you should not need to split as a list, because the
2844 2844 returned value is a special type of string which can automatically
2845 2845 provide its contents either as a list (split on newlines) or as a
2846 2846 space-separated string. These are convenient, respectively, either
2847 2847 for sequential processing or to be passed to a shell command.
2848 2848
2849 2849 For example:
2850 2850
2851 2851 # all-random
2852 2852
2853 2853 # Capture into variable a
2854 2854 In [1]: sc a=ls *py
2855 2855
2856 2856 # a is a string with embedded newlines
2857 2857 In [2]: a
2858 2858 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2859 2859
2860 2860 # which can be seen as a list:
2861 2861 In [3]: a.l
2862 2862 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2863 2863
2864 2864 # or as a whitespace-separated string:
2865 2865 In [4]: a.s
2866 2866 Out[4]: 'setup.py win32_manual_post_install.py'
2867 2867
2868 2868 # a.s is useful to pass as a single command line:
2869 2869 In [5]: !wc -l $a.s
2870 2870 146 setup.py
2871 2871 130 win32_manual_post_install.py
2872 2872 276 total
2873 2873
2874 2874 # while the list form is useful to loop over:
2875 2875 In [6]: for f in a.l:
2876 2876 ...: !wc -l $f
2877 2877 ...:
2878 2878 146 setup.py
2879 2879 130 win32_manual_post_install.py
2880 2880
2881 2881 Similiarly, the lists returned by the -l option are also special, in
2882 2882 the sense that you can equally invoke the .s attribute on them to
2883 2883 automatically get a whitespace-separated string from their contents:
2884 2884
2885 2885 In [7]: sc -l b=ls *py
2886 2886
2887 2887 In [8]: b
2888 2888 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2889 2889
2890 2890 In [9]: b.s
2891 2891 Out[9]: 'setup.py win32_manual_post_install.py'
2892 2892
2893 2893 In summary, both the lists and strings used for ouptut capture have
2894 2894 the following special attributes:
2895 2895
2896 2896 .l (or .list) : value as list.
2897 2897 .n (or .nlstr): value as newline-separated string.
2898 2898 .s (or .spstr): value as space-separated string.
2899 2899 """
2900 2900
2901 2901 opts,args = self.parse_options(parameter_s,'lv')
2902 2902 # Try to get a variable name and command to run
2903 2903 try:
2904 2904 # the variable name must be obtained from the parse_options
2905 2905 # output, which uses shlex.split to strip options out.
2906 2906 var,_ = args.split('=',1)
2907 2907 var = var.strip()
2908 2908 # But the the command has to be extracted from the original input
2909 2909 # parameter_s, not on what parse_options returns, to avoid the
2910 2910 # quote stripping which shlex.split performs on it.
2911 2911 _,cmd = parameter_s.split('=',1)
2912 2912 except ValueError:
2913 2913 var,cmd = '',''
2914 2914 # If all looks ok, proceed
2915 2915 split = 'l' in opts
2916 2916 out = self.shell.getoutput(cmd, split=split)
2917 2917 if opts.has_key('v'):
2918 2918 print '%s ==\n%s' % (var,pformat(out))
2919 2919 if var:
2920 2920 self.shell.user_ns.update({var:out})
2921 2921 else:
2922 2922 return out
2923 2923
2924 2924 def magic_sx(self, parameter_s=''):
2925 2925 """Shell execute - run a shell command and capture its output.
2926 2926
2927 2927 %sx command
2928 2928
2929 2929 IPython will run the given command using commands.getoutput(), and
2930 2930 return the result formatted as a list (split on '\\n'). Since the
2931 2931 output is _returned_, it will be stored in ipython's regular output
2932 2932 cache Out[N] and in the '_N' automatic variables.
2933 2933
2934 2934 Notes:
2935 2935
2936 2936 1) If an input line begins with '!!', then %sx is automatically
2937 2937 invoked. That is, while:
2938 2938 !ls
2939 2939 causes ipython to simply issue system('ls'), typing
2940 2940 !!ls
2941 2941 is a shorthand equivalent to:
2942 2942 %sx ls
2943 2943
2944 2944 2) %sx differs from %sc in that %sx automatically splits into a list,
2945 2945 like '%sc -l'. The reason for this is to make it as easy as possible
2946 2946 to process line-oriented shell output via further python commands.
2947 2947 %sc is meant to provide much finer control, but requires more
2948 2948 typing.
2949 2949
2950 2950 3) Just like %sc -l, this is a list with special attributes:
2951 2951
2952 2952 .l (or .list) : value as list.
2953 2953 .n (or .nlstr): value as newline-separated string.
2954 2954 .s (or .spstr): value as whitespace-separated string.
2955 2955
2956 2956 This is very useful when trying to use such lists as arguments to
2957 2957 system commands."""
2958 2958
2959 2959 if parameter_s:
2960 2960 return self.shell.getoutput(parameter_s)
2961 2961
2962 2962 def magic_r(self, parameter_s=''):
2963 2963 """Repeat previous input.
2964 2964
2965 2965 Note: Consider using the more powerfull %rep instead!
2966 2966
2967 2967 If given an argument, repeats the previous command which starts with
2968 2968 the same string, otherwise it just repeats the previous input.
2969 2969
2970 2970 Shell escaped commands (with ! as first character) are not recognized
2971 2971 by this system, only pure python code and magic commands.
2972 2972 """
2973 2973
2974 2974 start = parameter_s.strip()
2975 2975 esc_magic = ESC_MAGIC
2976 2976 # Identify magic commands even if automagic is on (which means
2977 2977 # the in-memory version is different from that typed by the user).
2978 2978 if self.shell.automagic:
2979 2979 start_magic = esc_magic+start
2980 2980 else:
2981 2981 start_magic = start
2982 2982 # Look through the input history in reverse
2983 2983 for n in range(len(self.shell.input_hist)-2,0,-1):
2984 2984 input = self.shell.input_hist[n]
2985 2985 # skip plain 'r' lines so we don't recurse to infinity
2986 2986 if input != '_ip.magic("r")\n' and \
2987 2987 (input.startswith(start) or input.startswith(start_magic)):
2988 2988 #print 'match',`input` # dbg
2989 2989 print 'Executing:',input,
2990 2990 self.shell.run_cell(input)
2991 2991 return
2992 2992 print 'No previous input matching `%s` found.' % start
2993 2993
2994 2994
2995 2995 def magic_bookmark(self, parameter_s=''):
2996 2996 """Manage IPython's bookmark system.
2997 2997
2998 2998 %bookmark <name> - set bookmark to current dir
2999 2999 %bookmark <name> <dir> - set bookmark to <dir>
3000 3000 %bookmark -l - list all bookmarks
3001 3001 %bookmark -d <name> - remove bookmark
3002 3002 %bookmark -r - remove all bookmarks
3003 3003
3004 3004 You can later on access a bookmarked folder with:
3005 3005 %cd -b <name>
3006 3006 or simply '%cd <name>' if there is no directory called <name> AND
3007 3007 there is such a bookmark defined.
3008 3008
3009 3009 Your bookmarks persist through IPython sessions, but they are
3010 3010 associated with each profile."""
3011 3011
3012 3012 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3013 3013 if len(args) > 2:
3014 3014 raise UsageError("%bookmark: too many arguments")
3015 3015
3016 3016 bkms = self.db.get('bookmarks',{})
3017 3017
3018 3018 if opts.has_key('d'):
3019 3019 try:
3020 3020 todel = args[0]
3021 3021 except IndexError:
3022 3022 raise UsageError(
3023 3023 "%bookmark -d: must provide a bookmark to delete")
3024 3024 else:
3025 3025 try:
3026 3026 del bkms[todel]
3027 3027 except KeyError:
3028 3028 raise UsageError(
3029 3029 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3030 3030
3031 3031 elif opts.has_key('r'):
3032 3032 bkms = {}
3033 3033 elif opts.has_key('l'):
3034 3034 bks = bkms.keys()
3035 3035 bks.sort()
3036 3036 if bks:
3037 3037 size = max(map(len,bks))
3038 3038 else:
3039 3039 size = 0
3040 3040 fmt = '%-'+str(size)+'s -> %s'
3041 3041 print 'Current bookmarks:'
3042 3042 for bk in bks:
3043 3043 print fmt % (bk,bkms[bk])
3044 3044 else:
3045 3045 if not args:
3046 3046 raise UsageError("%bookmark: You must specify the bookmark name")
3047 3047 elif len(args)==1:
3048 3048 bkms[args[0]] = os.getcwd()
3049 3049 elif len(args)==2:
3050 3050 bkms[args[0]] = args[1]
3051 3051 self.db['bookmarks'] = bkms
3052 3052
3053 3053 def magic_pycat(self, parameter_s=''):
3054 3054 """Show a syntax-highlighted file through a pager.
3055 3055
3056 3056 This magic is similar to the cat utility, but it will assume the file
3057 3057 to be Python source and will show it with syntax highlighting. """
3058 3058
3059 3059 try:
3060 3060 filename = get_py_filename(parameter_s)
3061 3061 cont = file_read(filename)
3062 3062 except IOError:
3063 3063 try:
3064 3064 cont = eval(parameter_s,self.user_ns)
3065 3065 except NameError:
3066 3066 cont = None
3067 3067 if cont is None:
3068 3068 print "Error: no such file or variable"
3069 3069 return
3070 3070
3071 3071 page.page(self.shell.pycolorize(cont))
3072 3072
3073 3073 def _rerun_pasted(self):
3074 3074 """ Rerun a previously pasted command.
3075 3075 """
3076 3076 b = self.user_ns.get('pasted_block', None)
3077 3077 if b is None:
3078 3078 raise UsageError('No previous pasted block available')
3079 3079 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3080 3080 exec b in self.user_ns
3081 3081
3082 3082 def _get_pasted_lines(self, sentinel):
3083 3083 """ Yield pasted lines until the user enters the given sentinel value.
3084 3084 """
3085 3085 from IPython.core import interactiveshell
3086 3086 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3087 3087 while True:
3088 3088 l = interactiveshell.raw_input_original(':')
3089 3089 if l == sentinel:
3090 3090 return
3091 3091 else:
3092 3092 yield l
3093 3093
3094 3094 def _strip_pasted_lines_for_code(self, raw_lines):
3095 3095 """ Strip non-code parts of a sequence of lines to return a block of
3096 3096 code.
3097 3097 """
3098 3098 # Regular expressions that declare text we strip from the input:
3099 3099 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3100 3100 r'^\s*(\s?>)+', # Python input prompt
3101 3101 r'^\s*\.{3,}', # Continuation prompts
3102 3102 r'^\++',
3103 3103 ]
3104 3104
3105 3105 strip_from_start = map(re.compile,strip_re)
3106 3106
3107 3107 lines = []
3108 3108 for l in raw_lines:
3109 3109 for pat in strip_from_start:
3110 3110 l = pat.sub('',l)
3111 3111 lines.append(l)
3112 3112
3113 3113 block = "\n".join(lines) + '\n'
3114 3114 #print "block:\n",block
3115 3115 return block
3116 3116
3117 3117 def _execute_block(self, block, par):
3118 3118 """ Execute a block, or store it in a variable, per the user's request.
3119 3119 """
3120 3120 if not par:
3121 3121 b = textwrap.dedent(block)
3122 3122 self.user_ns['pasted_block'] = b
3123 3123 exec b in self.user_ns
3124 3124 else:
3125 3125 self.user_ns[par] = SList(block.splitlines())
3126 3126 print "Block assigned to '%s'" % par
3127 3127
3128 3128 def magic_quickref(self,arg):
3129 3129 """ Show a quick reference sheet """
3130 3130 import IPython.core.usage
3131 3131 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3132 3132
3133 3133 page.page(qr)
3134 3134
3135 3135 def magic_doctest_mode(self,parameter_s=''):
3136 3136 """Toggle doctest mode on and off.
3137 3137
3138 3138 This mode is intended to make IPython behave as much as possible like a
3139 3139 plain Python shell, from the perspective of how its prompts, exceptions
3140 3140 and output look. This makes it easy to copy and paste parts of a
3141 3141 session into doctests. It does so by:
3142 3142
3143 3143 - Changing the prompts to the classic ``>>>`` ones.
3144 3144 - Changing the exception reporting mode to 'Plain'.
3145 3145 - Disabling pretty-printing of output.
3146 3146
3147 3147 Note that IPython also supports the pasting of code snippets that have
3148 3148 leading '>>>' and '...' prompts in them. This means that you can paste
3149 3149 doctests from files or docstrings (even if they have leading
3150 3150 whitespace), and the code will execute correctly. You can then use
3151 3151 '%history -t' to see the translated history; this will give you the
3152 3152 input after removal of all the leading prompts and whitespace, which
3153 3153 can be pasted back into an editor.
3154 3154
3155 3155 With these features, you can switch into this mode easily whenever you
3156 3156 need to do testing and changes to doctests, without having to leave
3157 3157 your existing IPython session.
3158 3158 """
3159 3159
3160 3160 from IPython.utils.ipstruct import Struct
3161 3161
3162 3162 # Shorthands
3163 3163 shell = self.shell
3164 3164 oc = shell.displayhook
3165 3165 meta = shell.meta
3166 3166 # dstore is a data store kept in the instance metadata bag to track any
3167 3167 # changes we make, so we can undo them later.
3168 3168 dstore = meta.setdefault('doctest_mode',Struct())
3169 3169 save_dstore = dstore.setdefault
3170 3170
3171 3171 # save a few values we'll need to recover later
3172 3172 mode = save_dstore('mode',False)
3173 3173 save_dstore('rc_pprint',shell.pprint)
3174 3174 save_dstore('xmode',shell.InteractiveTB.mode)
3175 3175 save_dstore('rc_separate_out',shell.separate_out)
3176 3176 save_dstore('rc_separate_out2',shell.separate_out2)
3177 3177 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3178 3178 save_dstore('rc_separate_in',shell.separate_in)
3179 3179
3180 3180 if mode == False:
3181 3181 # turn on
3182 3182 oc.prompt1.p_template = '>>> '
3183 3183 oc.prompt2.p_template = '... '
3184 3184 oc.prompt_out.p_template = ''
3185 3185
3186 3186 # Prompt separators like plain python
3187 3187 oc.input_sep = oc.prompt1.sep = ''
3188 3188 oc.output_sep = ''
3189 3189 oc.output_sep2 = ''
3190 3190
3191 3191 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3192 3192 oc.prompt_out.pad_left = False
3193 3193
3194 3194 shell.pprint = False
3195 3195
3196 3196 shell.magic_xmode('Plain')
3197 3197 else:
3198 3198 # turn off
3199 3199 oc.prompt1.p_template = shell.prompt_in1
3200 3200 oc.prompt2.p_template = shell.prompt_in2
3201 3201 oc.prompt_out.p_template = shell.prompt_out
3202 3202
3203 3203 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3204 3204
3205 3205 oc.output_sep = dstore.rc_separate_out
3206 3206 oc.output_sep2 = dstore.rc_separate_out2
3207 3207
3208 3208 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3209 3209 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3210 3210
3211 3211 shell.pprint = dstore.rc_pprint
3212 3212
3213 3213 shell.magic_xmode(dstore.xmode)
3214 3214
3215 3215 # Store new mode and inform
3216 3216 dstore.mode = bool(1-int(mode))
3217 3217 mode_label = ['OFF','ON'][dstore.mode]
3218 3218 print 'Doctest mode is:', mode_label
3219 3219
3220 3220 def magic_gui(self, parameter_s=''):
3221 3221 """Enable or disable IPython GUI event loop integration.
3222 3222
3223 3223 %gui [GUINAME]
3224 3224
3225 3225 This magic replaces IPython's threaded shells that were activated
3226 3226 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3227 3227 can now be enabled, disabled and swtiched at runtime and keyboard
3228 3228 interrupts should work without any problems. The following toolkits
3229 3229 are supported: wxPython, PyQt4, PyGTK, and Tk::
3230 3230
3231 3231 %gui wx # enable wxPython event loop integration
3232 3232 %gui qt4|qt # enable PyQt4 event loop integration
3233 3233 %gui gtk # enable PyGTK event loop integration
3234 3234 %gui tk # enable Tk event loop integration
3235 3235 %gui # disable all event loop integration
3236 3236
3237 3237 WARNING: after any of these has been called you can simply create
3238 3238 an application object, but DO NOT start the event loop yourself, as
3239 3239 we have already handled that.
3240 3240 """
3241 3241 from IPython.lib.inputhook import enable_gui
3242 3242 opts, arg = self.parse_options(parameter_s='')
3243 3243 if arg=='': arg = None
3244 3244 return enable_gui(arg)
3245 3245
3246 3246 def magic_load_ext(self, module_str):
3247 3247 """Load an IPython extension by its module name."""
3248 3248 return self.extension_manager.load_extension(module_str)
3249 3249
3250 3250 def magic_unload_ext(self, module_str):
3251 3251 """Unload an IPython extension by its module name."""
3252 3252 self.extension_manager.unload_extension(module_str)
3253 3253
3254 3254 def magic_reload_ext(self, module_str):
3255 3255 """Reload an IPython extension by its module name."""
3256 3256 self.extension_manager.reload_extension(module_str)
3257 3257
3258 3258 @testdec.skip_doctest
3259 3259 def magic_install_profiles(self, s):
3260 3260 """Install the default IPython profiles into the .ipython dir.
3261 3261
3262 3262 If the default profiles have already been installed, they will not
3263 3263 be overwritten. You can force overwriting them by using the ``-o``
3264 3264 option::
3265 3265
3266 3266 In [1]: %install_profiles -o
3267 3267 """
3268 3268 if '-o' in s:
3269 3269 overwrite = True
3270 3270 else:
3271 3271 overwrite = False
3272 3272 from IPython.config import profile
3273 3273 profile_dir = os.path.split(profile.__file__)[0]
3274 3274 ipython_dir = self.ipython_dir
3275 3275 files = os.listdir(profile_dir)
3276 3276
3277 3277 to_install = []
3278 3278 for f in files:
3279 3279 if f.startswith('ipython_config'):
3280 3280 src = os.path.join(profile_dir, f)
3281 3281 dst = os.path.join(ipython_dir, f)
3282 3282 if (not os.path.isfile(dst)) or overwrite:
3283 3283 to_install.append((f, src, dst))
3284 3284 if len(to_install)>0:
3285 3285 print "Installing profiles to: ", ipython_dir
3286 3286 for (f, src, dst) in to_install:
3287 3287 shutil.copy(src, dst)
3288 3288 print " %s" % f
3289 3289
3290 3290 def magic_install_default_config(self, s):
3291 3291 """Install IPython's default config file into the .ipython dir.
3292 3292
3293 3293 If the default config file (:file:`ipython_config.py`) is already
3294 3294 installed, it will not be overwritten. You can force overwriting
3295 3295 by using the ``-o`` option::
3296 3296
3297 3297 In [1]: %install_default_config
3298 3298 """
3299 3299 if '-o' in s:
3300 3300 overwrite = True
3301 3301 else:
3302 3302 overwrite = False
3303 3303 from IPython.config import default
3304 3304 config_dir = os.path.split(default.__file__)[0]
3305 3305 ipython_dir = self.ipython_dir
3306 3306 default_config_file_name = 'ipython_config.py'
3307 3307 src = os.path.join(config_dir, default_config_file_name)
3308 3308 dst = os.path.join(ipython_dir, default_config_file_name)
3309 3309 if (not os.path.isfile(dst)) or overwrite:
3310 3310 shutil.copy(src, dst)
3311 3311 print "Installing default config file: %s" % dst
3312 3312
3313 3313 # Pylab support: simple wrappers that activate pylab, load gui input
3314 3314 # handling and modify slightly %run
3315 3315
3316 3316 @testdec.skip_doctest
3317 3317 def _pylab_magic_run(self, parameter_s=''):
3318 3318 Magic.magic_run(self, parameter_s,
3319 3319 runner=mpl_runner(self.shell.safe_execfile))
3320 3320
3321 3321 _pylab_magic_run.__doc__ = magic_run.__doc__
3322 3322
3323 3323 @testdec.skip_doctest
3324 3324 def magic_pylab(self, s):
3325 3325 """Load numpy and matplotlib to work interactively.
3326 3326
3327 3327 %pylab [GUINAME]
3328 3328
3329 3329 This function lets you activate pylab (matplotlib, numpy and
3330 3330 interactive support) at any point during an IPython session.
3331 3331
3332 3332 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3333 3333 pylab and mlab, as well as all names from numpy and pylab.
3334 3334
3335 3335 Parameters
3336 3336 ----------
3337 3337 guiname : optional
3338 3338 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk' or
3339 3339 'tk'). If given, the corresponding Matplotlib backend is used,
3340 3340 otherwise matplotlib's default (which you can override in your
3341 3341 matplotlib config file) is used.
3342 3342
3343 3343 Examples
3344 3344 --------
3345 3345 In this case, where the MPL default is TkAgg:
3346 3346 In [2]: %pylab
3347 3347
3348 3348 Welcome to pylab, a matplotlib-based Python environment.
3349 3349 Backend in use: TkAgg
3350 3350 For more information, type 'help(pylab)'.
3351 3351
3352 3352 But you can explicitly request a different backend:
3353 3353 In [3]: %pylab qt
3354 3354
3355 3355 Welcome to pylab, a matplotlib-based Python environment.
3356 3356 Backend in use: Qt4Agg
3357 3357 For more information, type 'help(pylab)'.
3358 3358 """
3359 3359 self.shell.enable_pylab(s)
3360 3360
3361 3361 def magic_tb(self, s):
3362 3362 """Print the last traceback with the currently active exception mode.
3363 3363
3364 3364 See %xmode for changing exception reporting modes."""
3365 3365 self.shell.showtraceback()
3366 3366
3367 3367 # end Magic
@@ -1,201 +1,202
1 1 #!/usr/bin/env python
2 2 # encoding: utf-8
3 3
4 4 """Magic command interface for interactive parallel work."""
5 5
6 6 #-----------------------------------------------------------------------------
7 7 # Copyright (C) 2008-2009 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 import new
18 18
19 19 from IPython.core.plugin import Plugin
20 20 from IPython.utils.traitlets import Bool, Any, Instance
21 21 from IPython.utils.autoattr import auto_attr
22 22 from IPython.testing import decorators as testdec
23 23
24 24 #-----------------------------------------------------------------------------
25 25 # Definitions of magic functions for use with IPython
26 26 #-----------------------------------------------------------------------------
27 27
28 28
29 29 NO_ACTIVE_MULTIENGINE_CLIENT = """
30 30 Use activate() on a MultiEngineClient object to activate it for magics.
31 31 """
32 32
33 33
34 34 class ParalleMagic(Plugin):
35 35 """A component to manage the %result, %px and %autopx magics."""
36 36
37 37 active_multiengine_client = Any()
38 38 verbose = Bool(False, config=True)
39 39 shell = Instance('IPython.core.interactiveshell.InteractiveShellABC')
40 40
41 41 def __init__(self, shell=None, config=None):
42 42 super(ParalleMagic, self).__init__(shell=shell, config=config)
43 43 self._define_magics()
44 44 # A flag showing if autopx is activated or not
45 45 self.autopx = False
46 46
47 47 def _define_magics(self):
48 48 """Define the magic functions."""
49 49 self.shell.define_magic('result', self.magic_result)
50 50 self.shell.define_magic('px', self.magic_px)
51 51 self.shell.define_magic('autopx', self.magic_autopx)
52 52
53 53 @testdec.skip_doctest
54 54 def magic_result(self, ipself, parameter_s=''):
55 55 """Print the result of command i on all engines..
56 56
57 57 To use this a :class:`MultiEngineClient` instance must be created
58 58 and then activated by calling its :meth:`activate` method.
59 59
60 60 Then you can do the following::
61 61
62 62 In [23]: %result
63 63 Out[23]:
64 64 <Results List>
65 65 [0] In [6]: a = 10
66 66 [1] In [6]: a = 10
67 67
68 68 In [22]: %result 6
69 69 Out[22]:
70 70 <Results List>
71 71 [0] In [6]: a = 10
72 72 [1] In [6]: a = 10
73 73 """
74 74 if self.active_multiengine_client is None:
75 75 print NO_ACTIVE_MULTIENGINE_CLIENT
76 76 return
77 77
78 78 try:
79 79 index = int(parameter_s)
80 80 except:
81 81 index = None
82 82 result = self.active_multiengine_client.get_result(index)
83 83 return result
84 84
85 85 @testdec.skip_doctest
86 86 def magic_px(self, ipself, parameter_s=''):
87 87 """Executes the given python command in parallel.
88 88
89 89 To use this a :class:`MultiEngineClient` instance must be created
90 90 and then activated by calling its :meth:`activate` method.
91 91
92 92 Then you can do the following::
93 93
94 94 In [24]: %px a = 5
95 95 Parallel execution on engines: all
96 96 Out[24]:
97 97 <Results List>
98 98 [0] In [7]: a = 5
99 99 [1] In [7]: a = 5
100 100 """
101 101
102 102 if self.active_multiengine_client is None:
103 103 print NO_ACTIVE_MULTIENGINE_CLIENT
104 104 return
105 105 print "Parallel execution on engines: %s" % self.active_multiengine_client.targets
106 106 result = self.active_multiengine_client.execute(parameter_s)
107 107 return result
108 108
109 109 @testdec.skip_doctest
110 110 def magic_autopx(self, ipself, parameter_s=''):
111 111 """Toggles auto parallel mode.
112 112
113 113 To use this a :class:`MultiEngineClient` instance must be created
114 114 and then activated by calling its :meth:`activate` method. Once this
115 115 is called, all commands typed at the command line are send to
116 116 the engines to be executed in parallel. To control which engine
117 117 are used, set the ``targets`` attributed of the multiengine client
118 118 before entering ``%autopx`` mode.
119 119
120 120 Then you can do the following::
121 121
122 122 In [25]: %autopx
123 123 %autopx to enabled
124 124
125 125 In [26]: a = 10
126 126 <Results List>
127 127 [0] In [8]: a = 10
128 128 [1] In [8]: a = 10
129 129
130 130
131 131 In [27]: %autopx
132 132 %autopx disabled
133 133 """
134 134 if self.autopx:
135 135 self._disable_autopx()
136 136 else:
137 137 self._enable_autopx()
138 138
139 139 def _enable_autopx(self):
140 """Enable %autopx mode by saving the original runsource and installing
141 pxrunsource.
140 """Enable %autopx mode by saving the original run_source and installing
141 pxrun_source.
142 142 """
143 143 if self.active_multiengine_client is None:
144 144 print NO_ACTIVE_MULTIENGINE_CLIENT
145 145 return
146 146
147 self._original_runsource = self.shell.runsource
148 self.shell.runsource = new.instancemethod(
149 self.pxrunsource, self.shell, self.shell.__class__
147 self._original_run_source = self.shell.run_source
148 self.shell.run_source = new.instancemethod(
149 self.pxrun_source, self.shell, self.shell.__class__
150 150 )
151 151 self.autopx = True
152 152 print "%autopx enabled"
153 153
154 154 def _disable_autopx(self):
155 """Disable %autopx by restoring the original InteractiveShell.runsource."""
155 """Disable %autopx by restoring the original InteractiveShell.run_source.
156 """
156 157 if self.autopx:
157 self.shell.runsource = self._original_runsource
158 self.shell.run_source = self._original_run_source
158 159 self.autopx = False
159 160 print "%autopx disabled"
160 161
161 def pxrunsource(self, ipself, source, filename="<input>", symbol="single"):
162 """A parallel replacement for InteractiveShell.runsource."""
162 def pxrun_source(self, ipself, source, filename="<input>", symbol="single"):
163 """A parallel replacement for InteractiveShell.run_source."""
163 164
164 165 try:
165 166 code = ipself.compile(source, filename, symbol)
166 167 except (OverflowError, SyntaxError, ValueError):
167 168 # Case 1
168 169 ipself.showsyntaxerror(filename)
169 170 return None
170 171
171 172 if code is None:
172 173 # Case 2
173 174 return True
174 175
175 176 # Case 3
176 177 # Because autopx is enabled, we now call executeAll or disable autopx if
177 178 # %autopx or autopx has been called
178 179 if 'get_ipython().magic("%autopx' in source or 'get_ipython().magic("autopx' in source:
179 180 self._disable_autopx()
180 181 return False
181 182 else:
182 183 try:
183 184 result = self.active_multiengine_client.execute(source)
184 185 except:
185 186 ipself.showtraceback()
186 187 else:
187 188 print result.__repr__()
188 189 return False
189 190
190 191
191 192 _loaded = False
192 193
193 194
194 195 def load_ipython_extension(ip):
195 196 """Load the extension in IPython."""
196 197 global _loaded
197 198 if not _loaded:
198 199 plugin = ParalleMagic(shell=ip, config=ip.config)
199 200 ip.plugin_manager.register_plugin('parallel_magic', plugin)
200 201 _loaded = True
201 202
@@ -1,621 +1,621
1 1 #!/usr/bin/env python
2 2 """A simple interactive kernel that talks to a frontend over 0MQ.
3 3
4 4 Things to do:
5 5
6 6 * Implement `set_parent` logic. Right before doing exec, the Kernel should
7 7 call set_parent on all the PUB objects with the message about to be executed.
8 8 * Implement random port and security key logic.
9 9 * Implement control messages.
10 10 * Implement event loop and poll version.
11 11 """
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16 from __future__ import print_function
17 17
18 18 # Standard library imports.
19 19 import __builtin__
20 20 import atexit
21 21 import sys
22 22 import time
23 23 import traceback
24 24
25 25 # System library imports.
26 26 import zmq
27 27
28 28 # Local imports.
29 29 from IPython.config.configurable import Configurable
30 30 from IPython.utils import io
31 31 from IPython.utils.jsonutil import json_clean
32 32 from IPython.lib import pylabtools
33 33 from IPython.utils.traitlets import Instance, Float
34 34 from entry_point import (base_launch_kernel, make_argument_parser, make_kernel,
35 35 start_kernel)
36 36 from iostream import OutStream
37 37 from session import Session, Message
38 38 from zmqshell import ZMQInteractiveShell
39 39
40 40 #-----------------------------------------------------------------------------
41 41 # Main kernel class
42 42 #-----------------------------------------------------------------------------
43 43
44 44 class Kernel(Configurable):
45 45
46 46 #---------------------------------------------------------------------------
47 47 # Kernel interface
48 48 #---------------------------------------------------------------------------
49 49
50 50 shell = Instance('IPython.core.interactiveshell.InteractiveShellABC')
51 51 session = Instance(Session)
52 52 reply_socket = Instance('zmq.Socket')
53 53 pub_socket = Instance('zmq.Socket')
54 54 req_socket = Instance('zmq.Socket')
55 55
56 56 # Private interface
57 57
58 58 # Time to sleep after flushing the stdout/err buffers in each execute
59 59 # cycle. While this introduces a hard limit on the minimal latency of the
60 60 # execute cycle, it helps prevent output synchronization problems for
61 61 # clients.
62 62 # Units are in seconds. The minimum zmq latency on local host is probably
63 63 # ~150 microseconds, set this to 500us for now. We may need to increase it
64 64 # a little if it's not enough after more interactive testing.
65 65 _execute_sleep = Float(0.0005, config=True)
66 66
67 67 # Frequency of the kernel's event loop.
68 68 # Units are in seconds, kernel subclasses for GUI toolkits may need to
69 69 # adapt to milliseconds.
70 70 _poll_interval = Float(0.05, config=True)
71 71
72 72 # If the shutdown was requested over the network, we leave here the
73 73 # necessary reply message so it can be sent by our registered atexit
74 74 # handler. This ensures that the reply is only sent to clients truly at
75 75 # the end of our shutdown process (which happens after the underlying
76 76 # IPython shell's own shutdown).
77 77 _shutdown_message = None
78 78
79 79 # This is a dict of port number that the kernel is listening on. It is set
80 80 # by record_ports and used by connect_request.
81 81 _recorded_ports = None
82 82
83 83 def __init__(self, **kwargs):
84 84 super(Kernel, self).__init__(**kwargs)
85 85
86 86 # Before we even start up the shell, register *first* our exit handlers
87 87 # so they come before the shell's
88 88 atexit.register(self._at_shutdown)
89 89
90 90 # Initialize the InteractiveShell subclass
91 91 self.shell = ZMQInteractiveShell.instance()
92 92 self.shell.displayhook.session = self.session
93 93 self.shell.displayhook.pub_socket = self.pub_socket
94 94
95 95 # TMP - hack while developing
96 96 self.shell._reply_content = None
97 97
98 98 # Build dict of handlers for message types
99 99 msg_types = [ 'execute_request', 'complete_request',
100 100 'object_info_request', 'history_request',
101 101 'connect_request', 'shutdown_request']
102 102 self.handlers = {}
103 103 for msg_type in msg_types:
104 104 self.handlers[msg_type] = getattr(self, msg_type)
105 105
106 106 def do_one_iteration(self):
107 107 """Do one iteration of the kernel's evaluation loop.
108 108 """
109 109 try:
110 110 ident = self.reply_socket.recv(zmq.NOBLOCK)
111 111 except zmq.ZMQError, e:
112 112 if e.errno == zmq.EAGAIN:
113 113 return
114 114 else:
115 115 raise
116 116 # FIXME: Bug in pyzmq/zmq?
117 117 # assert self.reply_socket.rcvmore(), "Missing message part."
118 118 msg = self.reply_socket.recv_json()
119 119
120 120 # Print some info about this message and leave a '--->' marker, so it's
121 121 # easier to trace visually the message chain when debugging. Each
122 122 # handler prints its message at the end.
123 123 # Eventually we'll move these from stdout to a logger.
124 124 io.raw_print('\n*** MESSAGE TYPE:', msg['msg_type'], '***')
125 125 io.raw_print(' Content: ', msg['content'],
126 126 '\n --->\n ', sep='', end='')
127 127
128 128 # Find and call actual handler for message
129 129 handler = self.handlers.get(msg['msg_type'], None)
130 130 if handler is None:
131 131 io.raw_print_err("UNKNOWN MESSAGE TYPE:", msg)
132 132 else:
133 133 handler(ident, msg)
134 134
135 135 # Check whether we should exit, in case the incoming message set the
136 136 # exit flag on
137 137 if self.shell.exit_now:
138 138 io.raw_print('\nExiting IPython kernel...')
139 139 # We do a normal, clean exit, which allows any actions registered
140 140 # via atexit (such as history saving) to take place.
141 141 sys.exit(0)
142 142
143 143
144 144 def start(self):
145 145 """ Start the kernel main loop.
146 146 """
147 147 while True:
148 148 time.sleep(self._poll_interval)
149 149 self.do_one_iteration()
150 150
151 151 def record_ports(self, xrep_port, pub_port, req_port, hb_port):
152 152 """Record the ports that this kernel is using.
153 153
154 154 The creator of the Kernel instance must call this methods if they
155 155 want the :meth:`connect_request` method to return the port numbers.
156 156 """
157 157 self._recorded_ports = {
158 158 'xrep_port' : xrep_port,
159 159 'pub_port' : pub_port,
160 160 'req_port' : req_port,
161 161 'hb_port' : hb_port
162 162 }
163 163
164 164 #---------------------------------------------------------------------------
165 165 # Kernel request handlers
166 166 #---------------------------------------------------------------------------
167 167
168 168 def _publish_pyin(self, code, parent):
169 169 """Publish the code request on the pyin stream."""
170 170
171 171 pyin_msg = self.session.msg(u'pyin',{u'code':code}, parent=parent)
172 172 self.pub_socket.send_json(pyin_msg)
173 173
174 174 def execute_request(self, ident, parent):
175 175
176 176 status_msg = self.session.msg(
177 177 u'status',
178 178 {u'execution_state':u'busy'},
179 179 parent=parent
180 180 )
181 181 self.pub_socket.send_json(status_msg)
182 182
183 183 try:
184 184 content = parent[u'content']
185 185 code = content[u'code']
186 186 silent = content[u'silent']
187 187 except:
188 188 io.raw_print_err("Got bad msg: ")
189 189 io.raw_print_err(Message(parent))
190 190 return
191 191
192 192 shell = self.shell # we'll need this a lot here
193 193
194 194 # Replace raw_input. Note that is not sufficient to replace
195 195 # raw_input in the user namespace.
196 196 raw_input = lambda prompt='': self._raw_input(prompt, ident, parent)
197 197 __builtin__.raw_input = raw_input
198 198
199 199 # Set the parent message of the display hook and out streams.
200 200 shell.displayhook.set_parent(parent)
201 201 sys.stdout.set_parent(parent)
202 202 sys.stderr.set_parent(parent)
203 203
204 204 # Re-broadcast our input for the benefit of listening clients, and
205 205 # start computing output
206 206 if not silent:
207 207 self._publish_pyin(code, parent)
208 208
209 209 reply_content = {}
210 210 try:
211 211 if silent:
212 # runcode uses 'exec' mode, so no displayhook will fire, and it
212 # run_code uses 'exec' mode, so no displayhook will fire, and it
213 213 # doesn't call logging or history manipulations. Print
214 214 # statements in that code will obviously still execute.
215 shell.runcode(code)
215 shell.run_code(code)
216 216 else:
217 217 # FIXME: the shell calls the exception handler itself.
218 218 shell._reply_content = None
219 219 shell.run_cell(code)
220 220 except:
221 221 status = u'error'
222 222 # FIXME: this code right now isn't being used yet by default,
223 223 # because the runlines() call above directly fires off exception
224 224 # reporting. This code, therefore, is only active in the scenario
225 225 # where runlines itself has an unhandled exception. We need to
226 226 # uniformize this, for all exception construction to come from a
227 227 # single location in the codbase.
228 228 etype, evalue, tb = sys.exc_info()
229 229 tb_list = traceback.format_exception(etype, evalue, tb)
230 230 reply_content.update(shell._showtraceback(etype, evalue, tb_list))
231 231 else:
232 232 status = u'ok'
233 233
234 234 reply_content[u'status'] = status
235 235
236 236 # Return the execution counter so clients can display prompts
237 237 reply_content['execution_count'] = shell.execution_count -1
238 238
239 239 # FIXME - fish exception info out of shell, possibly left there by
240 240 # runlines. We'll need to clean up this logic later.
241 241 if shell._reply_content is not None:
242 242 reply_content.update(shell._reply_content)
243 243
244 244 # At this point, we can tell whether the main code execution succeeded
245 245 # or not. If it did, we proceed to evaluate user_variables/expressions
246 246 if reply_content['status'] == 'ok':
247 247 reply_content[u'user_variables'] = \
248 248 shell.user_variables(content[u'user_variables'])
249 249 reply_content[u'user_expressions'] = \
250 250 shell.user_expressions(content[u'user_expressions'])
251 251 else:
252 252 # If there was an error, don't even try to compute variables or
253 253 # expressions
254 254 reply_content[u'user_variables'] = {}
255 255 reply_content[u'user_expressions'] = {}
256 256
257 257 # Payloads should be retrieved regardless of outcome, so we can both
258 258 # recover partial output (that could have been generated early in a
259 259 # block, before an error) and clear the payload system always.
260 260 reply_content[u'payload'] = shell.payload_manager.read_payload()
261 261 # Be agressive about clearing the payload because we don't want
262 262 # it to sit in memory until the next execute_request comes in.
263 263 shell.payload_manager.clear_payload()
264 264
265 265 # Send the reply.
266 266 reply_msg = self.session.msg(u'execute_reply', reply_content, parent)
267 267 io.raw_print(reply_msg)
268 268
269 269 # Flush output before sending the reply.
270 270 sys.stdout.flush()
271 271 sys.stderr.flush()
272 272 # FIXME: on rare occasions, the flush doesn't seem to make it to the
273 273 # clients... This seems to mitigate the problem, but we definitely need
274 274 # to better understand what's going on.
275 275 if self._execute_sleep:
276 276 time.sleep(self._execute_sleep)
277 277
278 278 self.reply_socket.send(ident, zmq.SNDMORE)
279 279 self.reply_socket.send_json(reply_msg)
280 280 if reply_msg['content']['status'] == u'error':
281 281 self._abort_queue()
282 282
283 283 status_msg = self.session.msg(
284 284 u'status',
285 285 {u'execution_state':u'idle'},
286 286 parent=parent
287 287 )
288 288 self.pub_socket.send_json(status_msg)
289 289
290 290 def complete_request(self, ident, parent):
291 291 txt, matches = self._complete(parent)
292 292 matches = {'matches' : matches,
293 293 'matched_text' : txt,
294 294 'status' : 'ok'}
295 295 completion_msg = self.session.send(self.reply_socket, 'complete_reply',
296 296 matches, parent, ident)
297 297 io.raw_print(completion_msg)
298 298
299 299 def object_info_request(self, ident, parent):
300 300 object_info = self.shell.object_inspect(parent['content']['oname'])
301 301 # Before we send this object over, we scrub it for JSON usage
302 302 oinfo = json_clean(object_info)
303 303 msg = self.session.send(self.reply_socket, 'object_info_reply',
304 304 oinfo, parent, ident)
305 305 io.raw_print(msg)
306 306
307 307 def history_request(self, ident, parent):
308 308 output = parent['content']['output']
309 309 index = parent['content']['index']
310 310 raw = parent['content']['raw']
311 311 hist = self.shell.get_history(index=index, raw=raw, output=output)
312 312 content = {'history' : hist}
313 313 msg = self.session.send(self.reply_socket, 'history_reply',
314 314 content, parent, ident)
315 315 io.raw_print(msg)
316 316
317 317 def connect_request(self, ident, parent):
318 318 if self._recorded_ports is not None:
319 319 content = self._recorded_ports.copy()
320 320 else:
321 321 content = {}
322 322 msg = self.session.send(self.reply_socket, 'connect_reply',
323 323 content, parent, ident)
324 324 io.raw_print(msg)
325 325
326 326 def shutdown_request(self, ident, parent):
327 327 self.shell.exit_now = True
328 328 self._shutdown_message = self.session.msg(u'shutdown_reply', {}, parent)
329 329 sys.exit(0)
330 330
331 331 #---------------------------------------------------------------------------
332 332 # Protected interface
333 333 #---------------------------------------------------------------------------
334 334
335 335 def _abort_queue(self):
336 336 while True:
337 337 try:
338 338 ident = self.reply_socket.recv(zmq.NOBLOCK)
339 339 except zmq.ZMQError, e:
340 340 if e.errno == zmq.EAGAIN:
341 341 break
342 342 else:
343 343 assert self.reply_socket.rcvmore(), \
344 344 "Unexpected missing message part."
345 345 msg = self.reply_socket.recv_json()
346 346 io.raw_print("Aborting:\n", Message(msg))
347 347 msg_type = msg['msg_type']
348 348 reply_type = msg_type.split('_')[0] + '_reply'
349 349 reply_msg = self.session.msg(reply_type, {'status' : 'aborted'}, msg)
350 350 io.raw_print(reply_msg)
351 351 self.reply_socket.send(ident,zmq.SNDMORE)
352 352 self.reply_socket.send_json(reply_msg)
353 353 # We need to wait a bit for requests to come in. This can probably
354 354 # be set shorter for true asynchronous clients.
355 355 time.sleep(0.1)
356 356
357 357 def _raw_input(self, prompt, ident, parent):
358 358 # Flush output before making the request.
359 359 sys.stderr.flush()
360 360 sys.stdout.flush()
361 361
362 362 # Send the input request.
363 363 content = dict(prompt=prompt)
364 364 msg = self.session.msg(u'input_request', content, parent)
365 365 self.req_socket.send_json(msg)
366 366
367 367 # Await a response.
368 368 reply = self.req_socket.recv_json()
369 369 try:
370 370 value = reply['content']['value']
371 371 except:
372 372 io.raw_print_err("Got bad raw_input reply: ")
373 373 io.raw_print_err(Message(parent))
374 374 value = ''
375 375 return value
376 376
377 377 def _complete(self, msg):
378 378 c = msg['content']
379 379 try:
380 380 cpos = int(c['cursor_pos'])
381 381 except:
382 382 # If we don't get something that we can convert to an integer, at
383 383 # least attempt the completion guessing the cursor is at the end of
384 384 # the text, if there's any, and otherwise of the line
385 385 cpos = len(c['text'])
386 386 if cpos==0:
387 387 cpos = len(c['line'])
388 388 return self.shell.complete(c['text'], c['line'], cpos)
389 389
390 390 def _object_info(self, context):
391 391 symbol, leftover = self._symbol_from_context(context)
392 392 if symbol is not None and not leftover:
393 393 doc = getattr(symbol, '__doc__', '')
394 394 else:
395 395 doc = ''
396 396 object_info = dict(docstring = doc)
397 397 return object_info
398 398
399 399 def _symbol_from_context(self, context):
400 400 if not context:
401 401 return None, context
402 402
403 403 base_symbol_string = context[0]
404 404 symbol = self.shell.user_ns.get(base_symbol_string, None)
405 405 if symbol is None:
406 406 symbol = __builtin__.__dict__.get(base_symbol_string, None)
407 407 if symbol is None:
408 408 return None, context
409 409
410 410 context = context[1:]
411 411 for i, name in enumerate(context):
412 412 new_symbol = getattr(symbol, name, None)
413 413 if new_symbol is None:
414 414 return symbol, context[i:]
415 415 else:
416 416 symbol = new_symbol
417 417
418 418 return symbol, []
419 419
420 420 def _at_shutdown(self):
421 421 """Actions taken at shutdown by the kernel, called by python's atexit.
422 422 """
423 423 # io.rprint("Kernel at_shutdown") # dbg
424 424 if self._shutdown_message is not None:
425 425 self.reply_socket.send_json(self._shutdown_message)
426 426 io.raw_print(self._shutdown_message)
427 427 # A very short sleep to give zmq time to flush its message buffers
428 428 # before Python truly shuts down.
429 429 time.sleep(0.01)
430 430
431 431
432 432 class QtKernel(Kernel):
433 433 """A Kernel subclass with Qt support."""
434 434
435 435 def start(self):
436 436 """Start a kernel with QtPy4 event loop integration."""
437 437
438 438 from PyQt4 import QtCore
439 439 from IPython.lib.guisupport import get_app_qt4, start_event_loop_qt4
440 440
441 441 self.app = get_app_qt4([" "])
442 442 self.app.setQuitOnLastWindowClosed(False)
443 443 self.timer = QtCore.QTimer()
444 444 self.timer.timeout.connect(self.do_one_iteration)
445 445 # Units for the timer are in milliseconds
446 446 self.timer.start(1000*self._poll_interval)
447 447 start_event_loop_qt4(self.app)
448 448
449 449
450 450 class WxKernel(Kernel):
451 451 """A Kernel subclass with Wx support."""
452 452
453 453 def start(self):
454 454 """Start a kernel with wx event loop support."""
455 455
456 456 import wx
457 457 from IPython.lib.guisupport import start_event_loop_wx
458 458
459 459 doi = self.do_one_iteration
460 460 # Wx uses milliseconds
461 461 poll_interval = int(1000*self._poll_interval)
462 462
463 463 # We have to put the wx.Timer in a wx.Frame for it to fire properly.
464 464 # We make the Frame hidden when we create it in the main app below.
465 465 class TimerFrame(wx.Frame):
466 466 def __init__(self, func):
467 467 wx.Frame.__init__(self, None, -1)
468 468 self.timer = wx.Timer(self)
469 469 # Units for the timer are in milliseconds
470 470 self.timer.Start(poll_interval)
471 471 self.Bind(wx.EVT_TIMER, self.on_timer)
472 472 self.func = func
473 473
474 474 def on_timer(self, event):
475 475 self.func()
476 476
477 477 # We need a custom wx.App to create our Frame subclass that has the
478 478 # wx.Timer to drive the ZMQ event loop.
479 479 class IPWxApp(wx.App):
480 480 def OnInit(self):
481 481 self.frame = TimerFrame(doi)
482 482 self.frame.Show(False)
483 483 return True
484 484
485 485 # The redirect=False here makes sure that wx doesn't replace
486 486 # sys.stdout/stderr with its own classes.
487 487 self.app = IPWxApp(redirect=False)
488 488 start_event_loop_wx(self.app)
489 489
490 490
491 491 class TkKernel(Kernel):
492 492 """A Kernel subclass with Tk support."""
493 493
494 494 def start(self):
495 495 """Start a Tk enabled event loop."""
496 496
497 497 import Tkinter
498 498 doi = self.do_one_iteration
499 499 # Tk uses milliseconds
500 500 poll_interval = int(1000*self._poll_interval)
501 501 # For Tkinter, we create a Tk object and call its withdraw method.
502 502 class Timer(object):
503 503 def __init__(self, func):
504 504 self.app = Tkinter.Tk()
505 505 self.app.withdraw()
506 506 self.func = func
507 507
508 508 def on_timer(self):
509 509 self.func()
510 510 self.app.after(poll_interval, self.on_timer)
511 511
512 512 def start(self):
513 513 self.on_timer() # Call it once to get things going.
514 514 self.app.mainloop()
515 515
516 516 self.timer = Timer(doi)
517 517 self.timer.start()
518 518
519 519
520 520 class GTKKernel(Kernel):
521 521 """A Kernel subclass with GTK support."""
522 522
523 523 def start(self):
524 524 """Start the kernel, coordinating with the GTK event loop"""
525 525 from .gui.gtkembed import GTKEmbed
526 526
527 527 gtk_kernel = GTKEmbed(self)
528 528 gtk_kernel.start()
529 529
530 530
531 531 #-----------------------------------------------------------------------------
532 532 # Kernel main and launch functions
533 533 #-----------------------------------------------------------------------------
534 534
535 535 def launch_kernel(xrep_port=0, pub_port=0, req_port=0, hb_port=0,
536 536 independent=False, pylab=False):
537 537 """Launches a localhost kernel, binding to the specified ports.
538 538
539 539 Parameters
540 540 ----------
541 541 xrep_port : int, optional
542 542 The port to use for XREP channel.
543 543
544 544 pub_port : int, optional
545 545 The port to use for the SUB channel.
546 546
547 547 req_port : int, optional
548 548 The port to use for the REQ (raw input) channel.
549 549
550 550 hb_port : int, optional
551 551 The port to use for the hearbeat REP channel.
552 552
553 553 independent : bool, optional (default False)
554 554 If set, the kernel process is guaranteed to survive if this process
555 555 dies. If not set, an effort is made to ensure that the kernel is killed
556 556 when this process dies. Note that in this case it is still good practice
557 557 to kill kernels manually before exiting.
558 558
559 559 pylab : bool or string, optional (default False)
560 560 If not False, the kernel will be launched with pylab enabled. If a
561 561 string is passed, matplotlib will use the specified backend. Otherwise,
562 562 matplotlib's default backend will be used.
563 563
564 564 Returns
565 565 -------
566 566 A tuple of form:
567 567 (kernel_process, xrep_port, pub_port, req_port)
568 568 where kernel_process is a Popen object and the ports are integers.
569 569 """
570 570 extra_arguments = []
571 571 if pylab:
572 572 extra_arguments.append('--pylab')
573 573 if isinstance(pylab, basestring):
574 574 extra_arguments.append(pylab)
575 575 return base_launch_kernel('from IPython.zmq.ipkernel import main; main()',
576 576 xrep_port, pub_port, req_port, hb_port,
577 577 independent, extra_arguments)
578 578
579 579
580 580 def main():
581 581 """ The IPython kernel main entry point.
582 582 """
583 583 parser = make_argument_parser()
584 584 parser.add_argument('--pylab', type=str, metavar='GUI', nargs='?',
585 585 const='auto', help = \
586 586 "Pre-load matplotlib and numpy for interactive use. If GUI is not \
587 587 given, the GUI backend is matplotlib's, otherwise use one of: \
588 588 ['tk', 'gtk', 'qt', 'wx', 'inline'].")
589 589 namespace = parser.parse_args()
590 590
591 591 kernel_class = Kernel
592 592
593 593 kernel_classes = {
594 594 'qt' : QtKernel,
595 595 'qt4': QtKernel,
596 596 'inline': Kernel,
597 597 'wx' : WxKernel,
598 598 'tk' : TkKernel,
599 599 'gtk': GTKKernel,
600 600 }
601 601 if namespace.pylab:
602 602 if namespace.pylab == 'auto':
603 603 gui, backend = pylabtools.find_gui_and_backend()
604 604 else:
605 605 gui, backend = pylabtools.find_gui_and_backend(namespace.pylab)
606 606 kernel_class = kernel_classes.get(gui)
607 607 if kernel_class is None:
608 608 raise ValueError('GUI is not supported: %r' % gui)
609 609 pylabtools.activate_matplotlib(backend)
610 610
611 611 kernel = make_kernel(namespace, kernel_class, OutStream)
612 612
613 613 if namespace.pylab:
614 614 pylabtools.import_pylab(kernel.shell.user_ns, backend,
615 615 shell=kernel.shell)
616 616
617 617 start_kernel(namespace, kernel)
618 618
619 619
620 620 if __name__ == '__main__':
621 621 main()
General Comments 0
You need to be logged in to leave comments. Login now