##// END OF EJS Templates
Hide private names by default in tab completion....
Fernando Perez -
Show More
@@ -1,2538 +1,2538
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2010 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import os
26 26 import re
27 27 import sys
28 28 import tempfile
29 29 import types
30 30 from contextlib import nested
31 31
32 32 from IPython.config.configurable import Configurable
33 33 from IPython.core import debugger, oinspect
34 34 from IPython.core import history as ipcorehist
35 35 from IPython.core import page
36 36 from IPython.core import prefilter
37 37 from IPython.core import shadowns
38 38 from IPython.core import ultratb
39 39 from IPython.core.alias import AliasManager
40 40 from IPython.core.builtin_trap import BuiltinTrap
41 41 from IPython.core.compilerop import CachingCompiler
42 42 from IPython.core.display_trap import DisplayTrap
43 43 from IPython.core.displayhook import DisplayHook
44 44 from IPython.core.error import TryNext, UsageError
45 45 from IPython.core.extensions import ExtensionManager
46 46 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
47 47 from IPython.core.history import HistoryManager
48 48 from IPython.core.inputlist import InputList
49 49 from IPython.core.inputsplitter import IPythonInputSplitter
50 50 from IPython.core.logger import Logger
51 51 from IPython.core.magic import Magic
52 52 from IPython.core.payload import PayloadManager
53 53 from IPython.core.plugin import PluginManager
54 54 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
55 55 from IPython.external.Itpl import ItplNS
56 56 from IPython.utils import PyColorize
57 57 from IPython.utils import io
58 58 from IPython.utils import pickleshare
59 59 from IPython.utils.doctestreload import doctest_reload
60 60 from IPython.utils.io import ask_yes_no, rprint
61 61 from IPython.utils.ipstruct import Struct
62 62 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
63 63 from IPython.utils.process import system, getoutput
64 64 from IPython.utils.strdispatch import StrDispatch
65 65 from IPython.utils.syspathcontext import prepended_to_syspath
66 66 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
67 67 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
68 68 List, Unicode, Instance, Type)
69 69 from IPython.utils.warn import warn, error, fatal
70 70 import IPython.core.hooks
71 71
72 72 #-----------------------------------------------------------------------------
73 73 # Globals
74 74 #-----------------------------------------------------------------------------
75 75
76 76 # compiled regexps for autoindent management
77 77 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
78 78
79 79 #-----------------------------------------------------------------------------
80 80 # Utilities
81 81 #-----------------------------------------------------------------------------
82 82
83 83 # store the builtin raw_input globally, and use this always, in case user code
84 84 # overwrites it (like wx.py.PyShell does)
85 85 raw_input_original = raw_input
86 86
87 87 def softspace(file, newvalue):
88 88 """Copied from code.py, to remove the dependency"""
89 89
90 90 oldvalue = 0
91 91 try:
92 92 oldvalue = file.softspace
93 93 except AttributeError:
94 94 pass
95 95 try:
96 96 file.softspace = newvalue
97 97 except (AttributeError, TypeError):
98 98 # "attribute-less object" or "read-only attributes"
99 99 pass
100 100 return oldvalue
101 101
102 102
103 103 def no_op(*a, **kw): pass
104 104
105 105 class SpaceInInput(Exception): pass
106 106
107 107 class Bunch: pass
108 108
109 109
110 110 def get_default_colors():
111 111 if sys.platform=='darwin':
112 112 return "LightBG"
113 113 elif os.name=='nt':
114 114 return 'Linux'
115 115 else:
116 116 return 'Linux'
117 117
118 118
119 119 class SeparateStr(Str):
120 120 """A Str subclass to validate separate_in, separate_out, etc.
121 121
122 122 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
123 123 """
124 124
125 125 def validate(self, obj, value):
126 126 if value == '0': value = ''
127 127 value = value.replace('\\n','\n')
128 128 return super(SeparateStr, self).validate(obj, value)
129 129
130 130 class MultipleInstanceError(Exception):
131 131 pass
132 132
133 133
134 134 #-----------------------------------------------------------------------------
135 135 # Main IPython class
136 136 #-----------------------------------------------------------------------------
137 137
138 138 class InteractiveShell(Configurable, Magic):
139 139 """An enhanced, interactive shell for Python."""
140 140
141 141 _instance = None
142 142 autocall = Enum((0,1,2), default_value=1, config=True)
143 143 # TODO: remove all autoindent logic and put into frontends.
144 144 # We can't do this yet because even runlines uses the autoindent.
145 145 autoindent = CBool(True, config=True)
146 146 automagic = CBool(True, config=True)
147 147 cache_size = Int(1000, config=True)
148 148 color_info = CBool(True, config=True)
149 149 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
150 150 default_value=get_default_colors(), config=True)
151 151 debug = CBool(False, config=True)
152 152 deep_reload = CBool(False, config=True)
153 153 displayhook_class = Type(DisplayHook)
154 154 exit_now = CBool(False)
155 155 # Monotonically increasing execution counter
156 156 execution_count = Int(1)
157 157 filename = Str("<ipython console>")
158 158 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
159 159
160 160 # Input splitter, to split entire cells of input into either individual
161 161 # interactive statements or whole blocks.
162 162 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
163 163 (), {})
164 164 logstart = CBool(False, config=True)
165 165 logfile = Str('', config=True)
166 166 logappend = Str('', config=True)
167 167 object_info_string_level = Enum((0,1,2), default_value=0,
168 168 config=True)
169 169 pdb = CBool(False, config=True)
170 170
171 171 pprint = CBool(True, config=True)
172 172 profile = Str('', config=True)
173 173 prompt_in1 = Str('In [\\#]: ', config=True)
174 174 prompt_in2 = Str(' .\\D.: ', config=True)
175 175 prompt_out = Str('Out[\\#]: ', config=True)
176 176 prompts_pad_left = CBool(True, config=True)
177 177 quiet = CBool(False, config=True)
178 178
179 179 # The readline stuff will eventually be moved to the terminal subclass
180 180 # but for now, we can't do that as readline is welded in everywhere.
181 181 readline_use = CBool(True, config=True)
182 182 readline_merge_completions = CBool(True, config=True)
183 readline_omit__names = Enum((0,1,2), default_value=0, config=True)
183 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
184 184 readline_remove_delims = Str('-/~', config=True)
185 185 readline_parse_and_bind = List([
186 186 'tab: complete',
187 187 '"\C-l": clear-screen',
188 188 'set show-all-if-ambiguous on',
189 189 '"\C-o": tab-insert',
190 190 '"\M-i": " "',
191 191 '"\M-o": "\d\d\d\d"',
192 192 '"\M-I": "\d\d\d\d"',
193 193 '"\C-r": reverse-search-history',
194 194 '"\C-s": forward-search-history',
195 195 '"\C-p": history-search-backward',
196 196 '"\C-n": history-search-forward',
197 197 '"\e[A": history-search-backward',
198 198 '"\e[B": history-search-forward',
199 199 '"\C-k": kill-line',
200 200 '"\C-u": unix-line-discard',
201 201 ], allow_none=False, config=True)
202 202
203 203 # TODO: this part of prompt management should be moved to the frontends.
204 204 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
205 205 separate_in = SeparateStr('\n', config=True)
206 206 separate_out = SeparateStr('', config=True)
207 207 separate_out2 = SeparateStr('', config=True)
208 208 wildcards_case_sensitive = CBool(True, config=True)
209 209 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
210 210 default_value='Context', config=True)
211 211
212 212 # Subcomponents of InteractiveShell
213 213 alias_manager = Instance('IPython.core.alias.AliasManager')
214 214 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
215 215 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
216 216 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
217 217 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
218 218 plugin_manager = Instance('IPython.core.plugin.PluginManager')
219 219 payload_manager = Instance('IPython.core.payload.PayloadManager')
220 220 history_manager = Instance('IPython.core.history.HistoryManager')
221 221
222 222 # Private interface
223 223 _post_execute = set()
224 224
225 225 def __init__(self, config=None, ipython_dir=None,
226 226 user_ns=None, user_global_ns=None,
227 227 custom_exceptions=((), None)):
228 228
229 229 # This is where traits with a config_key argument are updated
230 230 # from the values on config.
231 231 super(InteractiveShell, self).__init__(config=config)
232 232
233 233 # These are relatively independent and stateless
234 234 self.init_ipython_dir(ipython_dir)
235 235 self.init_instance_attrs()
236 236 self.init_environment()
237 237
238 238 # Create namespaces (user_ns, user_global_ns, etc.)
239 239 self.init_create_namespaces(user_ns, user_global_ns)
240 240 # This has to be done after init_create_namespaces because it uses
241 241 # something in self.user_ns, but before init_sys_modules, which
242 242 # is the first thing to modify sys.
243 243 # TODO: When we override sys.stdout and sys.stderr before this class
244 244 # is created, we are saving the overridden ones here. Not sure if this
245 245 # is what we want to do.
246 246 self.save_sys_module_state()
247 247 self.init_sys_modules()
248 248
249 249 self.init_history()
250 250 self.init_encoding()
251 251 self.init_prefilter()
252 252
253 253 Magic.__init__(self, self)
254 254
255 255 self.init_syntax_highlighting()
256 256 self.init_hooks()
257 257 self.init_pushd_popd_magic()
258 258 # self.init_traceback_handlers use to be here, but we moved it below
259 259 # because it and init_io have to come after init_readline.
260 260 self.init_user_ns()
261 261 self.init_logger()
262 262 self.init_alias()
263 263 self.init_builtins()
264 264
265 265 # pre_config_initialization
266 266
267 267 # The next section should contain everything that was in ipmaker.
268 268 self.init_logstart()
269 269
270 270 # The following was in post_config_initialization
271 271 self.init_inspector()
272 272 # init_readline() must come before init_io(), because init_io uses
273 273 # readline related things.
274 274 self.init_readline()
275 275 # init_completer must come after init_readline, because it needs to
276 276 # know whether readline is present or not system-wide to configure the
277 277 # completers, since the completion machinery can now operate
278 278 # independently of readline (e.g. over the network)
279 279 self.init_completer()
280 280 # TODO: init_io() needs to happen before init_traceback handlers
281 281 # because the traceback handlers hardcode the stdout/stderr streams.
282 282 # This logic in in debugger.Pdb and should eventually be changed.
283 283 self.init_io()
284 284 self.init_traceback_handlers(custom_exceptions)
285 285 self.init_prompts()
286 286 self.init_displayhook()
287 287 self.init_reload_doctest()
288 288 self.init_magics()
289 289 self.init_pdb()
290 290 self.init_extension_manager()
291 291 self.init_plugin_manager()
292 292 self.init_payload()
293 293 self.hooks.late_startup_hook()
294 294 atexit.register(self.atexit_operations)
295 295
296 296 @classmethod
297 297 def instance(cls, *args, **kwargs):
298 298 """Returns a global InteractiveShell instance."""
299 299 if cls._instance is None:
300 300 inst = cls(*args, **kwargs)
301 301 # Now make sure that the instance will also be returned by
302 302 # the subclasses instance attribute.
303 303 for subclass in cls.mro():
304 304 if issubclass(cls, subclass) and \
305 305 issubclass(subclass, InteractiveShell):
306 306 subclass._instance = inst
307 307 else:
308 308 break
309 309 if isinstance(cls._instance, cls):
310 310 return cls._instance
311 311 else:
312 312 raise MultipleInstanceError(
313 313 'Multiple incompatible subclass instances of '
314 314 'InteractiveShell are being created.'
315 315 )
316 316
317 317 @classmethod
318 318 def initialized(cls):
319 319 return hasattr(cls, "_instance")
320 320
321 321 def get_ipython(self):
322 322 """Return the currently running IPython instance."""
323 323 return self
324 324
325 325 #-------------------------------------------------------------------------
326 326 # Trait changed handlers
327 327 #-------------------------------------------------------------------------
328 328
329 329 def _ipython_dir_changed(self, name, new):
330 330 if not os.path.isdir(new):
331 331 os.makedirs(new, mode = 0777)
332 332
333 333 def set_autoindent(self,value=None):
334 334 """Set the autoindent flag, checking for readline support.
335 335
336 336 If called with no arguments, it acts as a toggle."""
337 337
338 338 if not self.has_readline:
339 339 if os.name == 'posix':
340 340 warn("The auto-indent feature requires the readline library")
341 341 self.autoindent = 0
342 342 return
343 343 if value is None:
344 344 self.autoindent = not self.autoindent
345 345 else:
346 346 self.autoindent = value
347 347
348 348 #-------------------------------------------------------------------------
349 349 # init_* methods called by __init__
350 350 #-------------------------------------------------------------------------
351 351
352 352 def init_ipython_dir(self, ipython_dir):
353 353 if ipython_dir is not None:
354 354 self.ipython_dir = ipython_dir
355 355 self.config.Global.ipython_dir = self.ipython_dir
356 356 return
357 357
358 358 if hasattr(self.config.Global, 'ipython_dir'):
359 359 self.ipython_dir = self.config.Global.ipython_dir
360 360 else:
361 361 self.ipython_dir = get_ipython_dir()
362 362
363 363 # All children can just read this
364 364 self.config.Global.ipython_dir = self.ipython_dir
365 365
366 366 def init_instance_attrs(self):
367 367 self.more = False
368 368
369 369 # command compiler
370 370 self.compile = CachingCompiler()
371 371
372 372 # User input buffers
373 373 # NOTE: these variables are slated for full removal, once we are 100%
374 374 # sure that the new execution logic is solid. We will delte runlines,
375 375 # push_line and these buffers, as all input will be managed by the
376 376 # frontends via an inputsplitter instance.
377 377 self.buffer = []
378 378 self.buffer_raw = []
379 379
380 380 # Make an empty namespace, which extension writers can rely on both
381 381 # existing and NEVER being used by ipython itself. This gives them a
382 382 # convenient location for storing additional information and state
383 383 # their extensions may require, without fear of collisions with other
384 384 # ipython names that may develop later.
385 385 self.meta = Struct()
386 386
387 387 # Object variable to store code object waiting execution. This is
388 388 # used mainly by the multithreaded shells, but it can come in handy in
389 389 # other situations. No need to use a Queue here, since it's a single
390 390 # item which gets cleared once run.
391 391 self.code_to_run = None
392 392
393 393 # Temporary files used for various purposes. Deleted at exit.
394 394 self.tempfiles = []
395 395
396 396 # Keep track of readline usage (later set by init_readline)
397 397 self.has_readline = False
398 398
399 399 # keep track of where we started running (mainly for crash post-mortem)
400 400 # This is not being used anywhere currently.
401 401 self.starting_dir = os.getcwd()
402 402
403 403 # Indentation management
404 404 self.indent_current_nsp = 0
405 405
406 406 def init_environment(self):
407 407 """Any changes we need to make to the user's environment."""
408 408 pass
409 409
410 410 def init_encoding(self):
411 411 # Get system encoding at startup time. Certain terminals (like Emacs
412 412 # under Win32 have it set to None, and we need to have a known valid
413 413 # encoding to use in the raw_input() method
414 414 try:
415 415 self.stdin_encoding = sys.stdin.encoding or 'ascii'
416 416 except AttributeError:
417 417 self.stdin_encoding = 'ascii'
418 418
419 419 def init_syntax_highlighting(self):
420 420 # Python source parser/formatter for syntax highlighting
421 421 pyformat = PyColorize.Parser().format
422 422 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
423 423
424 424 def init_pushd_popd_magic(self):
425 425 # for pushd/popd management
426 426 try:
427 427 self.home_dir = get_home_dir()
428 428 except HomeDirError, msg:
429 429 fatal(msg)
430 430
431 431 self.dir_stack = []
432 432
433 433 def init_logger(self):
434 434 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
435 435 logmode='rotate')
436 436
437 437 def init_logstart(self):
438 438 """Initialize logging in case it was requested at the command line.
439 439 """
440 440 if self.logappend:
441 441 self.magic_logstart(self.logappend + ' append')
442 442 elif self.logfile:
443 443 self.magic_logstart(self.logfile)
444 444 elif self.logstart:
445 445 self.magic_logstart()
446 446
447 447 def init_builtins(self):
448 448 self.builtin_trap = BuiltinTrap(shell=self)
449 449
450 450 def init_inspector(self):
451 451 # Object inspector
452 452 self.inspector = oinspect.Inspector(oinspect.InspectColors,
453 453 PyColorize.ANSICodeColors,
454 454 'NoColor',
455 455 self.object_info_string_level)
456 456
457 457 def init_io(self):
458 458 # This will just use sys.stdout and sys.stderr. If you want to
459 459 # override sys.stdout and sys.stderr themselves, you need to do that
460 460 # *before* instantiating this class, because Term holds onto
461 461 # references to the underlying streams.
462 462 if sys.platform == 'win32' and self.has_readline:
463 463 Term = io.IOTerm(cout=self.readline._outputfile,
464 464 cerr=self.readline._outputfile)
465 465 else:
466 466 Term = io.IOTerm()
467 467 io.Term = Term
468 468
469 469 def init_prompts(self):
470 470 # TODO: This is a pass for now because the prompts are managed inside
471 471 # the DisplayHook. Once there is a separate prompt manager, this
472 472 # will initialize that object and all prompt related information.
473 473 pass
474 474
475 475 def init_displayhook(self):
476 476 # Initialize displayhook, set in/out prompts and printing system
477 477 self.displayhook = self.displayhook_class(
478 478 config=self.config,
479 479 shell=self,
480 480 cache_size=self.cache_size,
481 481 input_sep = self.separate_in,
482 482 output_sep = self.separate_out,
483 483 output_sep2 = self.separate_out2,
484 484 ps1 = self.prompt_in1,
485 485 ps2 = self.prompt_in2,
486 486 ps_out = self.prompt_out,
487 487 pad_left = self.prompts_pad_left
488 488 )
489 489 # This is a context manager that installs/revmoes the displayhook at
490 490 # the appropriate time.
491 491 self.display_trap = DisplayTrap(hook=self.displayhook)
492 492
493 493 def init_reload_doctest(self):
494 494 # Do a proper resetting of doctest, including the necessary displayhook
495 495 # monkeypatching
496 496 try:
497 497 doctest_reload()
498 498 except ImportError:
499 499 warn("doctest module does not exist.")
500 500
501 501 #-------------------------------------------------------------------------
502 502 # Things related to injections into the sys module
503 503 #-------------------------------------------------------------------------
504 504
505 505 def save_sys_module_state(self):
506 506 """Save the state of hooks in the sys module.
507 507
508 508 This has to be called after self.user_ns is created.
509 509 """
510 510 self._orig_sys_module_state = {}
511 511 self._orig_sys_module_state['stdin'] = sys.stdin
512 512 self._orig_sys_module_state['stdout'] = sys.stdout
513 513 self._orig_sys_module_state['stderr'] = sys.stderr
514 514 self._orig_sys_module_state['excepthook'] = sys.excepthook
515 515 try:
516 516 self._orig_sys_modules_main_name = self.user_ns['__name__']
517 517 except KeyError:
518 518 pass
519 519
520 520 def restore_sys_module_state(self):
521 521 """Restore the state of the sys module."""
522 522 try:
523 523 for k, v in self._orig_sys_module_state.iteritems():
524 524 setattr(sys, k, v)
525 525 except AttributeError:
526 526 pass
527 527 # Reset what what done in self.init_sys_modules
528 528 try:
529 529 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
530 530 except (AttributeError, KeyError):
531 531 pass
532 532
533 533 #-------------------------------------------------------------------------
534 534 # Things related to hooks
535 535 #-------------------------------------------------------------------------
536 536
537 537 def init_hooks(self):
538 538 # hooks holds pointers used for user-side customizations
539 539 self.hooks = Struct()
540 540
541 541 self.strdispatchers = {}
542 542
543 543 # Set all default hooks, defined in the IPython.hooks module.
544 544 hooks = IPython.core.hooks
545 545 for hook_name in hooks.__all__:
546 546 # default hooks have priority 100, i.e. low; user hooks should have
547 547 # 0-100 priority
548 548 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
549 549
550 550 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
551 551 """set_hook(name,hook) -> sets an internal IPython hook.
552 552
553 553 IPython exposes some of its internal API as user-modifiable hooks. By
554 554 adding your function to one of these hooks, you can modify IPython's
555 555 behavior to call at runtime your own routines."""
556 556
557 557 # At some point in the future, this should validate the hook before it
558 558 # accepts it. Probably at least check that the hook takes the number
559 559 # of args it's supposed to.
560 560
561 561 f = types.MethodType(hook,self)
562 562
563 563 # check if the hook is for strdispatcher first
564 564 if str_key is not None:
565 565 sdp = self.strdispatchers.get(name, StrDispatch())
566 566 sdp.add_s(str_key, f, priority )
567 567 self.strdispatchers[name] = sdp
568 568 return
569 569 if re_key is not None:
570 570 sdp = self.strdispatchers.get(name, StrDispatch())
571 571 sdp.add_re(re.compile(re_key), f, priority )
572 572 self.strdispatchers[name] = sdp
573 573 return
574 574
575 575 dp = getattr(self.hooks, name, None)
576 576 if name not in IPython.core.hooks.__all__:
577 577 print "Warning! Hook '%s' is not one of %s" % \
578 578 (name, IPython.core.hooks.__all__ )
579 579 if not dp:
580 580 dp = IPython.core.hooks.CommandChainDispatcher()
581 581
582 582 try:
583 583 dp.add(f,priority)
584 584 except AttributeError:
585 585 # it was not commandchain, plain old func - replace
586 586 dp = f
587 587
588 588 setattr(self.hooks,name, dp)
589 589
590 590 def register_post_execute(self, func):
591 591 """Register a function for calling after code execution.
592 592 """
593 593 if not callable(func):
594 594 raise ValueError('argument %s must be callable' % func)
595 595 self._post_execute.add(func)
596 596
597 597 #-------------------------------------------------------------------------
598 598 # Things related to the "main" module
599 599 #-------------------------------------------------------------------------
600 600
601 601 def new_main_mod(self,ns=None):
602 602 """Return a new 'main' module object for user code execution.
603 603 """
604 604 main_mod = self._user_main_module
605 605 init_fakemod_dict(main_mod,ns)
606 606 return main_mod
607 607
608 608 def cache_main_mod(self,ns,fname):
609 609 """Cache a main module's namespace.
610 610
611 611 When scripts are executed via %run, we must keep a reference to the
612 612 namespace of their __main__ module (a FakeModule instance) around so
613 613 that Python doesn't clear it, rendering objects defined therein
614 614 useless.
615 615
616 616 This method keeps said reference in a private dict, keyed by the
617 617 absolute path of the module object (which corresponds to the script
618 618 path). This way, for multiple executions of the same script we only
619 619 keep one copy of the namespace (the last one), thus preventing memory
620 620 leaks from old references while allowing the objects from the last
621 621 execution to be accessible.
622 622
623 623 Note: we can not allow the actual FakeModule instances to be deleted,
624 624 because of how Python tears down modules (it hard-sets all their
625 625 references to None without regard for reference counts). This method
626 626 must therefore make a *copy* of the given namespace, to allow the
627 627 original module's __dict__ to be cleared and reused.
628 628
629 629
630 630 Parameters
631 631 ----------
632 632 ns : a namespace (a dict, typically)
633 633
634 634 fname : str
635 635 Filename associated with the namespace.
636 636
637 637 Examples
638 638 --------
639 639
640 640 In [10]: import IPython
641 641
642 642 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
643 643
644 644 In [12]: IPython.__file__ in _ip._main_ns_cache
645 645 Out[12]: True
646 646 """
647 647 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
648 648
649 649 def clear_main_mod_cache(self):
650 650 """Clear the cache of main modules.
651 651
652 652 Mainly for use by utilities like %reset.
653 653
654 654 Examples
655 655 --------
656 656
657 657 In [15]: import IPython
658 658
659 659 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
660 660
661 661 In [17]: len(_ip._main_ns_cache) > 0
662 662 Out[17]: True
663 663
664 664 In [18]: _ip.clear_main_mod_cache()
665 665
666 666 In [19]: len(_ip._main_ns_cache) == 0
667 667 Out[19]: True
668 668 """
669 669 self._main_ns_cache.clear()
670 670
671 671 #-------------------------------------------------------------------------
672 672 # Things related to debugging
673 673 #-------------------------------------------------------------------------
674 674
675 675 def init_pdb(self):
676 676 # Set calling of pdb on exceptions
677 677 # self.call_pdb is a property
678 678 self.call_pdb = self.pdb
679 679
680 680 def _get_call_pdb(self):
681 681 return self._call_pdb
682 682
683 683 def _set_call_pdb(self,val):
684 684
685 685 if val not in (0,1,False,True):
686 686 raise ValueError,'new call_pdb value must be boolean'
687 687
688 688 # store value in instance
689 689 self._call_pdb = val
690 690
691 691 # notify the actual exception handlers
692 692 self.InteractiveTB.call_pdb = val
693 693
694 694 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
695 695 'Control auto-activation of pdb at exceptions')
696 696
697 697 def debugger(self,force=False):
698 698 """Call the pydb/pdb debugger.
699 699
700 700 Keywords:
701 701
702 702 - force(False): by default, this routine checks the instance call_pdb
703 703 flag and does not actually invoke the debugger if the flag is false.
704 704 The 'force' option forces the debugger to activate even if the flag
705 705 is false.
706 706 """
707 707
708 708 if not (force or self.call_pdb):
709 709 return
710 710
711 711 if not hasattr(sys,'last_traceback'):
712 712 error('No traceback has been produced, nothing to debug.')
713 713 return
714 714
715 715 # use pydb if available
716 716 if debugger.has_pydb:
717 717 from pydb import pm
718 718 else:
719 719 # fallback to our internal debugger
720 720 pm = lambda : self.InteractiveTB.debugger(force=True)
721 721 self.history_saving_wrapper(pm)()
722 722
723 723 #-------------------------------------------------------------------------
724 724 # Things related to IPython's various namespaces
725 725 #-------------------------------------------------------------------------
726 726
727 727 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
728 728 # Create the namespace where the user will operate. user_ns is
729 729 # normally the only one used, and it is passed to the exec calls as
730 730 # the locals argument. But we do carry a user_global_ns namespace
731 731 # given as the exec 'globals' argument, This is useful in embedding
732 732 # situations where the ipython shell opens in a context where the
733 733 # distinction between locals and globals is meaningful. For
734 734 # non-embedded contexts, it is just the same object as the user_ns dict.
735 735
736 736 # FIXME. For some strange reason, __builtins__ is showing up at user
737 737 # level as a dict instead of a module. This is a manual fix, but I
738 738 # should really track down where the problem is coming from. Alex
739 739 # Schmolck reported this problem first.
740 740
741 741 # A useful post by Alex Martelli on this topic:
742 742 # Re: inconsistent value from __builtins__
743 743 # Von: Alex Martelli <aleaxit@yahoo.com>
744 744 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
745 745 # Gruppen: comp.lang.python
746 746
747 747 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
748 748 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
749 749 # > <type 'dict'>
750 750 # > >>> print type(__builtins__)
751 751 # > <type 'module'>
752 752 # > Is this difference in return value intentional?
753 753
754 754 # Well, it's documented that '__builtins__' can be either a dictionary
755 755 # or a module, and it's been that way for a long time. Whether it's
756 756 # intentional (or sensible), I don't know. In any case, the idea is
757 757 # that if you need to access the built-in namespace directly, you
758 758 # should start with "import __builtin__" (note, no 's') which will
759 759 # definitely give you a module. Yeah, it's somewhat confusing:-(.
760 760
761 761 # These routines return properly built dicts as needed by the rest of
762 762 # the code, and can also be used by extension writers to generate
763 763 # properly initialized namespaces.
764 764 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
765 765 user_global_ns)
766 766
767 767 # Assign namespaces
768 768 # This is the namespace where all normal user variables live
769 769 self.user_ns = user_ns
770 770 self.user_global_ns = user_global_ns
771 771
772 772 # An auxiliary namespace that checks what parts of the user_ns were
773 773 # loaded at startup, so we can list later only variables defined in
774 774 # actual interactive use. Since it is always a subset of user_ns, it
775 775 # doesn't need to be separately tracked in the ns_table.
776 776 self.user_ns_hidden = {}
777 777
778 778 # A namespace to keep track of internal data structures to prevent
779 779 # them from cluttering user-visible stuff. Will be updated later
780 780 self.internal_ns = {}
781 781
782 782 # Now that FakeModule produces a real module, we've run into a nasty
783 783 # problem: after script execution (via %run), the module where the user
784 784 # code ran is deleted. Now that this object is a true module (needed
785 785 # so docetst and other tools work correctly), the Python module
786 786 # teardown mechanism runs over it, and sets to None every variable
787 787 # present in that module. Top-level references to objects from the
788 788 # script survive, because the user_ns is updated with them. However,
789 789 # calling functions defined in the script that use other things from
790 790 # the script will fail, because the function's closure had references
791 791 # to the original objects, which are now all None. So we must protect
792 792 # these modules from deletion by keeping a cache.
793 793 #
794 794 # To avoid keeping stale modules around (we only need the one from the
795 795 # last run), we use a dict keyed with the full path to the script, so
796 796 # only the last version of the module is held in the cache. Note,
797 797 # however, that we must cache the module *namespace contents* (their
798 798 # __dict__). Because if we try to cache the actual modules, old ones
799 799 # (uncached) could be destroyed while still holding references (such as
800 800 # those held by GUI objects that tend to be long-lived)>
801 801 #
802 802 # The %reset command will flush this cache. See the cache_main_mod()
803 803 # and clear_main_mod_cache() methods for details on use.
804 804
805 805 # This is the cache used for 'main' namespaces
806 806 self._main_ns_cache = {}
807 807 # And this is the single instance of FakeModule whose __dict__ we keep
808 808 # copying and clearing for reuse on each %run
809 809 self._user_main_module = FakeModule()
810 810
811 811 # A table holding all the namespaces IPython deals with, so that
812 812 # introspection facilities can search easily.
813 813 self.ns_table = {'user':user_ns,
814 814 'user_global':user_global_ns,
815 815 'internal':self.internal_ns,
816 816 'builtin':__builtin__.__dict__
817 817 }
818 818
819 819 # Similarly, track all namespaces where references can be held and that
820 820 # we can safely clear (so it can NOT include builtin). This one can be
821 821 # a simple list. Note that the main execution namespaces, user_ns and
822 822 # user_global_ns, can NOT be listed here, as clearing them blindly
823 823 # causes errors in object __del__ methods. Instead, the reset() method
824 824 # clears them manually and carefully.
825 825 self.ns_refs_table = [ self.user_ns_hidden,
826 826 self.internal_ns, self._main_ns_cache ]
827 827
828 828 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
829 829 """Return a valid local and global user interactive namespaces.
830 830
831 831 This builds a dict with the minimal information needed to operate as a
832 832 valid IPython user namespace, which you can pass to the various
833 833 embedding classes in ipython. The default implementation returns the
834 834 same dict for both the locals and the globals to allow functions to
835 835 refer to variables in the namespace. Customized implementations can
836 836 return different dicts. The locals dictionary can actually be anything
837 837 following the basic mapping protocol of a dict, but the globals dict
838 838 must be a true dict, not even a subclass. It is recommended that any
839 839 custom object for the locals namespace synchronize with the globals
840 840 dict somehow.
841 841
842 842 Raises TypeError if the provided globals namespace is not a true dict.
843 843
844 844 Parameters
845 845 ----------
846 846 user_ns : dict-like, optional
847 847 The current user namespace. The items in this namespace should
848 848 be included in the output. If None, an appropriate blank
849 849 namespace should be created.
850 850 user_global_ns : dict, optional
851 851 The current user global namespace. The items in this namespace
852 852 should be included in the output. If None, an appropriate
853 853 blank namespace should be created.
854 854
855 855 Returns
856 856 -------
857 857 A pair of dictionary-like object to be used as the local namespace
858 858 of the interpreter and a dict to be used as the global namespace.
859 859 """
860 860
861 861
862 862 # We must ensure that __builtin__ (without the final 's') is always
863 863 # available and pointing to the __builtin__ *module*. For more details:
864 864 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
865 865
866 866 if user_ns is None:
867 867 # Set __name__ to __main__ to better match the behavior of the
868 868 # normal interpreter.
869 869 user_ns = {'__name__' :'__main__',
870 870 '__builtin__' : __builtin__,
871 871 '__builtins__' : __builtin__,
872 872 }
873 873 else:
874 874 user_ns.setdefault('__name__','__main__')
875 875 user_ns.setdefault('__builtin__',__builtin__)
876 876 user_ns.setdefault('__builtins__',__builtin__)
877 877
878 878 if user_global_ns is None:
879 879 user_global_ns = user_ns
880 880 if type(user_global_ns) is not dict:
881 881 raise TypeError("user_global_ns must be a true dict; got %r"
882 882 % type(user_global_ns))
883 883
884 884 return user_ns, user_global_ns
885 885
886 886 def init_sys_modules(self):
887 887 # We need to insert into sys.modules something that looks like a
888 888 # module but which accesses the IPython namespace, for shelve and
889 889 # pickle to work interactively. Normally they rely on getting
890 890 # everything out of __main__, but for embedding purposes each IPython
891 891 # instance has its own private namespace, so we can't go shoving
892 892 # everything into __main__.
893 893
894 894 # note, however, that we should only do this for non-embedded
895 895 # ipythons, which really mimic the __main__.__dict__ with their own
896 896 # namespace. Embedded instances, on the other hand, should not do
897 897 # this because they need to manage the user local/global namespaces
898 898 # only, but they live within a 'normal' __main__ (meaning, they
899 899 # shouldn't overtake the execution environment of the script they're
900 900 # embedded in).
901 901
902 902 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
903 903
904 904 try:
905 905 main_name = self.user_ns['__name__']
906 906 except KeyError:
907 907 raise KeyError('user_ns dictionary MUST have a "__name__" key')
908 908 else:
909 909 sys.modules[main_name] = FakeModule(self.user_ns)
910 910
911 911 def init_user_ns(self):
912 912 """Initialize all user-visible namespaces to their minimum defaults.
913 913
914 914 Certain history lists are also initialized here, as they effectively
915 915 act as user namespaces.
916 916
917 917 Notes
918 918 -----
919 919 All data structures here are only filled in, they are NOT reset by this
920 920 method. If they were not empty before, data will simply be added to
921 921 therm.
922 922 """
923 923 # This function works in two parts: first we put a few things in
924 924 # user_ns, and we sync that contents into user_ns_hidden so that these
925 925 # initial variables aren't shown by %who. After the sync, we add the
926 926 # rest of what we *do* want the user to see with %who even on a new
927 927 # session (probably nothing, so theye really only see their own stuff)
928 928
929 929 # The user dict must *always* have a __builtin__ reference to the
930 930 # Python standard __builtin__ namespace, which must be imported.
931 931 # This is so that certain operations in prompt evaluation can be
932 932 # reliably executed with builtins. Note that we can NOT use
933 933 # __builtins__ (note the 's'), because that can either be a dict or a
934 934 # module, and can even mutate at runtime, depending on the context
935 935 # (Python makes no guarantees on it). In contrast, __builtin__ is
936 936 # always a module object, though it must be explicitly imported.
937 937
938 938 # For more details:
939 939 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
940 940 ns = dict(__builtin__ = __builtin__)
941 941
942 942 # Put 'help' in the user namespace
943 943 try:
944 944 from site import _Helper
945 945 ns['help'] = _Helper()
946 946 except ImportError:
947 947 warn('help() not available - check site.py')
948 948
949 949 # make global variables for user access to the histories
950 950 ns['_ih'] = self.input_hist
951 951 ns['_oh'] = self.output_hist
952 952 ns['_dh'] = self.dir_hist
953 953
954 954 ns['_sh'] = shadowns
955 955
956 956 # user aliases to input and output histories. These shouldn't show up
957 957 # in %who, as they can have very large reprs.
958 958 ns['In'] = self.input_hist
959 959 ns['Out'] = self.output_hist
960 960
961 961 # Store myself as the public api!!!
962 962 ns['get_ipython'] = self.get_ipython
963 963
964 964 # Sync what we've added so far to user_ns_hidden so these aren't seen
965 965 # by %who
966 966 self.user_ns_hidden.update(ns)
967 967
968 968 # Anything put into ns now would show up in %who. Think twice before
969 969 # putting anything here, as we really want %who to show the user their
970 970 # stuff, not our variables.
971 971
972 972 # Finally, update the real user's namespace
973 973 self.user_ns.update(ns)
974 974
975 975 def reset(self):
976 976 """Clear all internal namespaces.
977 977
978 978 Note that this is much more aggressive than %reset, since it clears
979 979 fully all namespaces, as well as all input/output lists.
980 980 """
981 981 # Clear histories
982 982 self.history_manager.reset()
983 983
984 984 # Reset counter used to index all histories
985 985 self.execution_count = 0
986 986
987 987 # Restore the user namespaces to minimal usability
988 988 for ns in self.ns_refs_table:
989 989 ns.clear()
990 990
991 991 # The main execution namespaces must be cleared very carefully,
992 992 # skipping the deletion of the builtin-related keys, because doing so
993 993 # would cause errors in many object's __del__ methods.
994 994 for ns in [self.user_ns, self.user_global_ns]:
995 995 drop_keys = set(ns.keys())
996 996 drop_keys.discard('__builtin__')
997 997 drop_keys.discard('__builtins__')
998 998 for k in drop_keys:
999 999 del ns[k]
1000 1000
1001 1001 # Restore the user namespaces to minimal usability
1002 1002 self.init_user_ns()
1003 1003
1004 1004 # Restore the default and user aliases
1005 1005 self.alias_manager.clear_aliases()
1006 1006 self.alias_manager.init_aliases()
1007 1007
1008 1008 def reset_selective(self, regex=None):
1009 1009 """Clear selective variables from internal namespaces based on a
1010 1010 specified regular expression.
1011 1011
1012 1012 Parameters
1013 1013 ----------
1014 1014 regex : string or compiled pattern, optional
1015 1015 A regular expression pattern that will be used in searching
1016 1016 variable names in the users namespaces.
1017 1017 """
1018 1018 if regex is not None:
1019 1019 try:
1020 1020 m = re.compile(regex)
1021 1021 except TypeError:
1022 1022 raise TypeError('regex must be a string or compiled pattern')
1023 1023 # Search for keys in each namespace that match the given regex
1024 1024 # If a match is found, delete the key/value pair.
1025 1025 for ns in self.ns_refs_table:
1026 1026 for var in ns:
1027 1027 if m.search(var):
1028 1028 del ns[var]
1029 1029
1030 1030 def push(self, variables, interactive=True):
1031 1031 """Inject a group of variables into the IPython user namespace.
1032 1032
1033 1033 Parameters
1034 1034 ----------
1035 1035 variables : dict, str or list/tuple of str
1036 1036 The variables to inject into the user's namespace. If a dict, a
1037 1037 simple update is done. If a str, the string is assumed to have
1038 1038 variable names separated by spaces. A list/tuple of str can also
1039 1039 be used to give the variable names. If just the variable names are
1040 1040 give (list/tuple/str) then the variable values looked up in the
1041 1041 callers frame.
1042 1042 interactive : bool
1043 1043 If True (default), the variables will be listed with the ``who``
1044 1044 magic.
1045 1045 """
1046 1046 vdict = None
1047 1047
1048 1048 # We need a dict of name/value pairs to do namespace updates.
1049 1049 if isinstance(variables, dict):
1050 1050 vdict = variables
1051 1051 elif isinstance(variables, (basestring, list, tuple)):
1052 1052 if isinstance(variables, basestring):
1053 1053 vlist = variables.split()
1054 1054 else:
1055 1055 vlist = variables
1056 1056 vdict = {}
1057 1057 cf = sys._getframe(1)
1058 1058 for name in vlist:
1059 1059 try:
1060 1060 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1061 1061 except:
1062 1062 print ('Could not get variable %s from %s' %
1063 1063 (name,cf.f_code.co_name))
1064 1064 else:
1065 1065 raise ValueError('variables must be a dict/str/list/tuple')
1066 1066
1067 1067 # Propagate variables to user namespace
1068 1068 self.user_ns.update(vdict)
1069 1069
1070 1070 # And configure interactive visibility
1071 1071 config_ns = self.user_ns_hidden
1072 1072 if interactive:
1073 1073 for name, val in vdict.iteritems():
1074 1074 config_ns.pop(name, None)
1075 1075 else:
1076 1076 for name,val in vdict.iteritems():
1077 1077 config_ns[name] = val
1078 1078
1079 1079 #-------------------------------------------------------------------------
1080 1080 # Things related to object introspection
1081 1081 #-------------------------------------------------------------------------
1082 1082
1083 1083 def _ofind(self, oname, namespaces=None):
1084 1084 """Find an object in the available namespaces.
1085 1085
1086 1086 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1087 1087
1088 1088 Has special code to detect magic functions.
1089 1089 """
1090 1090 #oname = oname.strip()
1091 1091 #print '1- oname: <%r>' % oname # dbg
1092 1092 try:
1093 1093 oname = oname.strip().encode('ascii')
1094 1094 #print '2- oname: <%r>' % oname # dbg
1095 1095 except UnicodeEncodeError:
1096 1096 print 'Python identifiers can only contain ascii characters.'
1097 1097 return dict(found=False)
1098 1098
1099 1099 alias_ns = None
1100 1100 if namespaces is None:
1101 1101 # Namespaces to search in:
1102 1102 # Put them in a list. The order is important so that we
1103 1103 # find things in the same order that Python finds them.
1104 1104 namespaces = [ ('Interactive', self.user_ns),
1105 1105 ('IPython internal', self.internal_ns),
1106 1106 ('Python builtin', __builtin__.__dict__),
1107 1107 ('Alias', self.alias_manager.alias_table),
1108 1108 ]
1109 1109 alias_ns = self.alias_manager.alias_table
1110 1110
1111 1111 # initialize results to 'null'
1112 1112 found = False; obj = None; ospace = None; ds = None;
1113 1113 ismagic = False; isalias = False; parent = None
1114 1114
1115 1115 # We need to special-case 'print', which as of python2.6 registers as a
1116 1116 # function but should only be treated as one if print_function was
1117 1117 # loaded with a future import. In this case, just bail.
1118 1118 if (oname == 'print' and not (self.compile.compiler_flags &
1119 1119 __future__.CO_FUTURE_PRINT_FUNCTION)):
1120 1120 return {'found':found, 'obj':obj, 'namespace':ospace,
1121 1121 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1122 1122
1123 1123 # Look for the given name by splitting it in parts. If the head is
1124 1124 # found, then we look for all the remaining parts as members, and only
1125 1125 # declare success if we can find them all.
1126 1126 oname_parts = oname.split('.')
1127 1127 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1128 1128 for nsname,ns in namespaces:
1129 1129 try:
1130 1130 obj = ns[oname_head]
1131 1131 except KeyError:
1132 1132 continue
1133 1133 else:
1134 1134 #print 'oname_rest:', oname_rest # dbg
1135 1135 for part in oname_rest:
1136 1136 try:
1137 1137 parent = obj
1138 1138 obj = getattr(obj,part)
1139 1139 except:
1140 1140 # Blanket except b/c some badly implemented objects
1141 1141 # allow __getattr__ to raise exceptions other than
1142 1142 # AttributeError, which then crashes IPython.
1143 1143 break
1144 1144 else:
1145 1145 # If we finish the for loop (no break), we got all members
1146 1146 found = True
1147 1147 ospace = nsname
1148 1148 if ns == alias_ns:
1149 1149 isalias = True
1150 1150 break # namespace loop
1151 1151
1152 1152 # Try to see if it's magic
1153 1153 if not found:
1154 1154 if oname.startswith(ESC_MAGIC):
1155 1155 oname = oname[1:]
1156 1156 obj = getattr(self,'magic_'+oname,None)
1157 1157 if obj is not None:
1158 1158 found = True
1159 1159 ospace = 'IPython internal'
1160 1160 ismagic = True
1161 1161
1162 1162 # Last try: special-case some literals like '', [], {}, etc:
1163 1163 if not found and oname_head in ["''",'""','[]','{}','()']:
1164 1164 obj = eval(oname_head)
1165 1165 found = True
1166 1166 ospace = 'Interactive'
1167 1167
1168 1168 return {'found':found, 'obj':obj, 'namespace':ospace,
1169 1169 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1170 1170
1171 1171 def _ofind_property(self, oname, info):
1172 1172 """Second part of object finding, to look for property details."""
1173 1173 if info.found:
1174 1174 # Get the docstring of the class property if it exists.
1175 1175 path = oname.split('.')
1176 1176 root = '.'.join(path[:-1])
1177 1177 if info.parent is not None:
1178 1178 try:
1179 1179 target = getattr(info.parent, '__class__')
1180 1180 # The object belongs to a class instance.
1181 1181 try:
1182 1182 target = getattr(target, path[-1])
1183 1183 # The class defines the object.
1184 1184 if isinstance(target, property):
1185 1185 oname = root + '.__class__.' + path[-1]
1186 1186 info = Struct(self._ofind(oname))
1187 1187 except AttributeError: pass
1188 1188 except AttributeError: pass
1189 1189
1190 1190 # We return either the new info or the unmodified input if the object
1191 1191 # hadn't been found
1192 1192 return info
1193 1193
1194 1194 def _object_find(self, oname, namespaces=None):
1195 1195 """Find an object and return a struct with info about it."""
1196 1196 inf = Struct(self._ofind(oname, namespaces))
1197 1197 return Struct(self._ofind_property(oname, inf))
1198 1198
1199 1199 def _inspect(self, meth, oname, namespaces=None, **kw):
1200 1200 """Generic interface to the inspector system.
1201 1201
1202 1202 This function is meant to be called by pdef, pdoc & friends."""
1203 1203 info = self._object_find(oname)
1204 1204 if info.found:
1205 1205 pmethod = getattr(self.inspector, meth)
1206 1206 formatter = format_screen if info.ismagic else None
1207 1207 if meth == 'pdoc':
1208 1208 pmethod(info.obj, oname, formatter)
1209 1209 elif meth == 'pinfo':
1210 1210 pmethod(info.obj, oname, formatter, info, **kw)
1211 1211 else:
1212 1212 pmethod(info.obj, oname)
1213 1213 else:
1214 1214 print 'Object `%s` not found.' % oname
1215 1215 return 'not found' # so callers can take other action
1216 1216
1217 1217 def object_inspect(self, oname):
1218 1218 info = self._object_find(oname)
1219 1219 if info.found:
1220 1220 return self.inspector.info(info.obj, oname, info=info)
1221 1221 else:
1222 1222 return oinspect.object_info(name=oname, found=False)
1223 1223
1224 1224 #-------------------------------------------------------------------------
1225 1225 # Things related to history management
1226 1226 #-------------------------------------------------------------------------
1227 1227
1228 1228 def init_history(self):
1229 1229 self.history_manager = HistoryManager(shell=self)
1230 1230
1231 1231 def save_hist(self):
1232 1232 """Save input history to a file (via readline library)."""
1233 1233 self.history_manager.save_hist()
1234 1234
1235 1235 # For backwards compatibility
1236 1236 savehist = save_hist
1237 1237
1238 1238 def reload_hist(self):
1239 1239 """Reload the input history from disk file."""
1240 1240 self.history_manager.reload_hist()
1241 1241
1242 1242 # For backwards compatibility
1243 1243 reloadhist = reload_hist
1244 1244
1245 1245 def history_saving_wrapper(self, func):
1246 1246 """ Wrap func for readline history saving
1247 1247
1248 1248 Convert func into callable that saves & restores
1249 1249 history around the call """
1250 1250
1251 1251 if self.has_readline:
1252 1252 from IPython.utils import rlineimpl as readline
1253 1253 else:
1254 1254 return func
1255 1255
1256 1256 def wrapper():
1257 1257 self.save_hist()
1258 1258 try:
1259 1259 func()
1260 1260 finally:
1261 1261 readline.read_history_file(self.histfile)
1262 1262 return wrapper
1263 1263
1264 1264 #-------------------------------------------------------------------------
1265 1265 # Things related to exception handling and tracebacks (not debugging)
1266 1266 #-------------------------------------------------------------------------
1267 1267
1268 1268 def init_traceback_handlers(self, custom_exceptions):
1269 1269 # Syntax error handler.
1270 1270 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1271 1271
1272 1272 # The interactive one is initialized with an offset, meaning we always
1273 1273 # want to remove the topmost item in the traceback, which is our own
1274 1274 # internal code. Valid modes: ['Plain','Context','Verbose']
1275 1275 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1276 1276 color_scheme='NoColor',
1277 1277 tb_offset = 1,
1278 1278 check_cache=self.compile.check_cache)
1279 1279
1280 1280 # The instance will store a pointer to the system-wide exception hook,
1281 1281 # so that runtime code (such as magics) can access it. This is because
1282 1282 # during the read-eval loop, it may get temporarily overwritten.
1283 1283 self.sys_excepthook = sys.excepthook
1284 1284
1285 1285 # and add any custom exception handlers the user may have specified
1286 1286 self.set_custom_exc(*custom_exceptions)
1287 1287
1288 1288 # Set the exception mode
1289 1289 self.InteractiveTB.set_mode(mode=self.xmode)
1290 1290
1291 1291 def set_custom_exc(self, exc_tuple, handler):
1292 1292 """set_custom_exc(exc_tuple,handler)
1293 1293
1294 1294 Set a custom exception handler, which will be called if any of the
1295 1295 exceptions in exc_tuple occur in the mainloop (specifically, in the
1296 1296 run_code() method.
1297 1297
1298 1298 Inputs:
1299 1299
1300 1300 - exc_tuple: a *tuple* of valid exceptions to call the defined
1301 1301 handler for. It is very important that you use a tuple, and NOT A
1302 1302 LIST here, because of the way Python's except statement works. If
1303 1303 you only want to trap a single exception, use a singleton tuple:
1304 1304
1305 1305 exc_tuple == (MyCustomException,)
1306 1306
1307 1307 - handler: this must be defined as a function with the following
1308 1308 basic interface::
1309 1309
1310 1310 def my_handler(self, etype, value, tb, tb_offset=None)
1311 1311 ...
1312 1312 # The return value must be
1313 1313 return structured_traceback
1314 1314
1315 1315 This will be made into an instance method (via types.MethodType)
1316 1316 of IPython itself, and it will be called if any of the exceptions
1317 1317 listed in the exc_tuple are caught. If the handler is None, an
1318 1318 internal basic one is used, which just prints basic info.
1319 1319
1320 1320 WARNING: by putting in your own exception handler into IPython's main
1321 1321 execution loop, you run a very good chance of nasty crashes. This
1322 1322 facility should only be used if you really know what you are doing."""
1323 1323
1324 1324 assert type(exc_tuple)==type(()) , \
1325 1325 "The custom exceptions must be given AS A TUPLE."
1326 1326
1327 1327 def dummy_handler(self,etype,value,tb):
1328 1328 print '*** Simple custom exception handler ***'
1329 1329 print 'Exception type :',etype
1330 1330 print 'Exception value:',value
1331 1331 print 'Traceback :',tb
1332 1332 print 'Source code :','\n'.join(self.buffer)
1333 1333
1334 1334 if handler is None: handler = dummy_handler
1335 1335
1336 1336 self.CustomTB = types.MethodType(handler,self)
1337 1337 self.custom_exceptions = exc_tuple
1338 1338
1339 1339 def excepthook(self, etype, value, tb):
1340 1340 """One more defense for GUI apps that call sys.excepthook.
1341 1341
1342 1342 GUI frameworks like wxPython trap exceptions and call
1343 1343 sys.excepthook themselves. I guess this is a feature that
1344 1344 enables them to keep running after exceptions that would
1345 1345 otherwise kill their mainloop. This is a bother for IPython
1346 1346 which excepts to catch all of the program exceptions with a try:
1347 1347 except: statement.
1348 1348
1349 1349 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1350 1350 any app directly invokes sys.excepthook, it will look to the user like
1351 1351 IPython crashed. In order to work around this, we can disable the
1352 1352 CrashHandler and replace it with this excepthook instead, which prints a
1353 1353 regular traceback using our InteractiveTB. In this fashion, apps which
1354 1354 call sys.excepthook will generate a regular-looking exception from
1355 1355 IPython, and the CrashHandler will only be triggered by real IPython
1356 1356 crashes.
1357 1357
1358 1358 This hook should be used sparingly, only in places which are not likely
1359 1359 to be true IPython errors.
1360 1360 """
1361 1361 self.showtraceback((etype,value,tb),tb_offset=0)
1362 1362
1363 1363 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1364 1364 exception_only=False):
1365 1365 """Display the exception that just occurred.
1366 1366
1367 1367 If nothing is known about the exception, this is the method which
1368 1368 should be used throughout the code for presenting user tracebacks,
1369 1369 rather than directly invoking the InteractiveTB object.
1370 1370
1371 1371 A specific showsyntaxerror() also exists, but this method can take
1372 1372 care of calling it if needed, so unless you are explicitly catching a
1373 1373 SyntaxError exception, don't try to analyze the stack manually and
1374 1374 simply call this method."""
1375 1375
1376 1376 try:
1377 1377 if exc_tuple is None:
1378 1378 etype, value, tb = sys.exc_info()
1379 1379 else:
1380 1380 etype, value, tb = exc_tuple
1381 1381
1382 1382 if etype is None:
1383 1383 if hasattr(sys, 'last_type'):
1384 1384 etype, value, tb = sys.last_type, sys.last_value, \
1385 1385 sys.last_traceback
1386 1386 else:
1387 1387 self.write_err('No traceback available to show.\n')
1388 1388 return
1389 1389
1390 1390 if etype is SyntaxError:
1391 1391 # Though this won't be called by syntax errors in the input
1392 1392 # line, there may be SyntaxError cases whith imported code.
1393 1393 self.showsyntaxerror(filename)
1394 1394 elif etype is UsageError:
1395 1395 print "UsageError:", value
1396 1396 else:
1397 1397 # WARNING: these variables are somewhat deprecated and not
1398 1398 # necessarily safe to use in a threaded environment, but tools
1399 1399 # like pdb depend on their existence, so let's set them. If we
1400 1400 # find problems in the field, we'll need to revisit their use.
1401 1401 sys.last_type = etype
1402 1402 sys.last_value = value
1403 1403 sys.last_traceback = tb
1404 1404
1405 1405 if etype in self.custom_exceptions:
1406 1406 # FIXME: Old custom traceback objects may just return a
1407 1407 # string, in that case we just put it into a list
1408 1408 stb = self.CustomTB(etype, value, tb, tb_offset)
1409 1409 if isinstance(ctb, basestring):
1410 1410 stb = [stb]
1411 1411 else:
1412 1412 if exception_only:
1413 1413 stb = ['An exception has occurred, use %tb to see '
1414 1414 'the full traceback.\n']
1415 1415 stb.extend(self.InteractiveTB.get_exception_only(etype,
1416 1416 value))
1417 1417 else:
1418 1418 stb = self.InteractiveTB.structured_traceback(etype,
1419 1419 value, tb, tb_offset=tb_offset)
1420 1420 # FIXME: the pdb calling should be done by us, not by
1421 1421 # the code computing the traceback.
1422 1422 if self.InteractiveTB.call_pdb:
1423 1423 # pdb mucks up readline, fix it back
1424 1424 self.set_readline_completer()
1425 1425
1426 1426 # Actually show the traceback
1427 1427 self._showtraceback(etype, value, stb)
1428 1428
1429 1429 except KeyboardInterrupt:
1430 1430 self.write_err("\nKeyboardInterrupt\n")
1431 1431
1432 1432 def _showtraceback(self, etype, evalue, stb):
1433 1433 """Actually show a traceback.
1434 1434
1435 1435 Subclasses may override this method to put the traceback on a different
1436 1436 place, like a side channel.
1437 1437 """
1438 1438 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1439 1439
1440 1440 def showsyntaxerror(self, filename=None):
1441 1441 """Display the syntax error that just occurred.
1442 1442
1443 1443 This doesn't display a stack trace because there isn't one.
1444 1444
1445 1445 If a filename is given, it is stuffed in the exception instead
1446 1446 of what was there before (because Python's parser always uses
1447 1447 "<string>" when reading from a string).
1448 1448 """
1449 1449 etype, value, last_traceback = sys.exc_info()
1450 1450
1451 1451 # See note about these variables in showtraceback() above
1452 1452 sys.last_type = etype
1453 1453 sys.last_value = value
1454 1454 sys.last_traceback = last_traceback
1455 1455
1456 1456 if filename and etype is SyntaxError:
1457 1457 # Work hard to stuff the correct filename in the exception
1458 1458 try:
1459 1459 msg, (dummy_filename, lineno, offset, line) = value
1460 1460 except:
1461 1461 # Not the format we expect; leave it alone
1462 1462 pass
1463 1463 else:
1464 1464 # Stuff in the right filename
1465 1465 try:
1466 1466 # Assume SyntaxError is a class exception
1467 1467 value = SyntaxError(msg, (filename, lineno, offset, line))
1468 1468 except:
1469 1469 # If that failed, assume SyntaxError is a string
1470 1470 value = msg, (filename, lineno, offset, line)
1471 1471 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1472 1472 self._showtraceback(etype, value, stb)
1473 1473
1474 1474 #-------------------------------------------------------------------------
1475 1475 # Things related to readline
1476 1476 #-------------------------------------------------------------------------
1477 1477
1478 1478 def init_readline(self):
1479 1479 """Command history completion/saving/reloading."""
1480 1480
1481 1481 if self.readline_use:
1482 1482 import IPython.utils.rlineimpl as readline
1483 1483
1484 1484 self.rl_next_input = None
1485 1485 self.rl_do_indent = False
1486 1486
1487 1487 if not self.readline_use or not readline.have_readline:
1488 1488 self.has_readline = False
1489 1489 self.readline = None
1490 1490 # Set a number of methods that depend on readline to be no-op
1491 1491 self.save_hist = no_op
1492 1492 self.reload_hist = no_op
1493 1493 self.set_readline_completer = no_op
1494 1494 self.set_custom_completer = no_op
1495 1495 self.set_completer_frame = no_op
1496 1496 warn('Readline services not available or not loaded.')
1497 1497 else:
1498 1498 self.has_readline = True
1499 1499 self.readline = readline
1500 1500 sys.modules['readline'] = readline
1501 1501
1502 1502 # Platform-specific configuration
1503 1503 if os.name == 'nt':
1504 1504 # FIXME - check with Frederick to see if we can harmonize
1505 1505 # naming conventions with pyreadline to avoid this
1506 1506 # platform-dependent check
1507 1507 self.readline_startup_hook = readline.set_pre_input_hook
1508 1508 else:
1509 1509 self.readline_startup_hook = readline.set_startup_hook
1510 1510
1511 1511 # Load user's initrc file (readline config)
1512 1512 # Or if libedit is used, load editrc.
1513 1513 inputrc_name = os.environ.get('INPUTRC')
1514 1514 if inputrc_name is None:
1515 1515 home_dir = get_home_dir()
1516 1516 if home_dir is not None:
1517 1517 inputrc_name = '.inputrc'
1518 1518 if readline.uses_libedit:
1519 1519 inputrc_name = '.editrc'
1520 1520 inputrc_name = os.path.join(home_dir, inputrc_name)
1521 1521 if os.path.isfile(inputrc_name):
1522 1522 try:
1523 1523 readline.read_init_file(inputrc_name)
1524 1524 except:
1525 1525 warn('Problems reading readline initialization file <%s>'
1526 1526 % inputrc_name)
1527 1527
1528 1528 # Configure readline according to user's prefs
1529 1529 # This is only done if GNU readline is being used. If libedit
1530 1530 # is being used (as on Leopard) the readline config is
1531 1531 # not run as the syntax for libedit is different.
1532 1532 if not readline.uses_libedit:
1533 1533 for rlcommand in self.readline_parse_and_bind:
1534 1534 #print "loading rl:",rlcommand # dbg
1535 1535 readline.parse_and_bind(rlcommand)
1536 1536
1537 1537 # Remove some chars from the delimiters list. If we encounter
1538 1538 # unicode chars, discard them.
1539 1539 delims = readline.get_completer_delims().encode("ascii", "ignore")
1540 1540 delims = delims.translate(None, self.readline_remove_delims)
1541 1541 delims = delims.replace(ESC_MAGIC, '')
1542 1542 readline.set_completer_delims(delims)
1543 1543 # otherwise we end up with a monster history after a while:
1544 1544 readline.set_history_length(1000)
1545 1545 try:
1546 1546 #print '*** Reading readline history' # dbg
1547 1547 readline.read_history_file(self.histfile)
1548 1548 except IOError:
1549 1549 pass # It doesn't exist yet.
1550 1550
1551 1551 # If we have readline, we want our history saved upon ipython
1552 1552 # exiting.
1553 1553 atexit.register(self.save_hist)
1554 1554
1555 1555 # Configure auto-indent for all platforms
1556 1556 self.set_autoindent(self.autoindent)
1557 1557
1558 1558 def set_next_input(self, s):
1559 1559 """ Sets the 'default' input string for the next command line.
1560 1560
1561 1561 Requires readline.
1562 1562
1563 1563 Example:
1564 1564
1565 1565 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1566 1566 [D:\ipython]|2> Hello Word_ # cursor is here
1567 1567 """
1568 1568
1569 1569 self.rl_next_input = s
1570 1570
1571 1571 # Maybe move this to the terminal subclass?
1572 1572 def pre_readline(self):
1573 1573 """readline hook to be used at the start of each line.
1574 1574
1575 1575 Currently it handles auto-indent only."""
1576 1576
1577 1577 if self.rl_do_indent:
1578 1578 self.readline.insert_text(self._indent_current_str())
1579 1579 if self.rl_next_input is not None:
1580 1580 self.readline.insert_text(self.rl_next_input)
1581 1581 self.rl_next_input = None
1582 1582
1583 1583 def _indent_current_str(self):
1584 1584 """return the current level of indentation as a string"""
1585 1585 return self.input_splitter.indent_spaces * ' '
1586 1586
1587 1587 #-------------------------------------------------------------------------
1588 1588 # Things related to text completion
1589 1589 #-------------------------------------------------------------------------
1590 1590
1591 1591 def init_completer(self):
1592 1592 """Initialize the completion machinery.
1593 1593
1594 1594 This creates completion machinery that can be used by client code,
1595 1595 either interactively in-process (typically triggered by the readline
1596 1596 library), programatically (such as in test suites) or out-of-prcess
1597 1597 (typically over the network by remote frontends).
1598 1598 """
1599 1599 from IPython.core.completer import IPCompleter
1600 1600 from IPython.core.completerlib import (module_completer,
1601 1601 magic_run_completer, cd_completer)
1602 1602
1603 1603 self.Completer = IPCompleter(self,
1604 1604 self.user_ns,
1605 1605 self.user_global_ns,
1606 1606 self.readline_omit__names,
1607 1607 self.alias_manager.alias_table,
1608 1608 self.has_readline)
1609 1609
1610 1610 # Add custom completers to the basic ones built into IPCompleter
1611 1611 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1612 1612 self.strdispatchers['complete_command'] = sdisp
1613 1613 self.Completer.custom_completers = sdisp
1614 1614
1615 1615 self.set_hook('complete_command', module_completer, str_key = 'import')
1616 1616 self.set_hook('complete_command', module_completer, str_key = 'from')
1617 1617 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1618 1618 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1619 1619
1620 1620 # Only configure readline if we truly are using readline. IPython can
1621 1621 # do tab-completion over the network, in GUIs, etc, where readline
1622 1622 # itself may be absent
1623 1623 if self.has_readline:
1624 1624 self.set_readline_completer()
1625 1625
1626 1626 def complete(self, text, line=None, cursor_pos=None):
1627 1627 """Return the completed text and a list of completions.
1628 1628
1629 1629 Parameters
1630 1630 ----------
1631 1631
1632 1632 text : string
1633 1633 A string of text to be completed on. It can be given as empty and
1634 1634 instead a line/position pair are given. In this case, the
1635 1635 completer itself will split the line like readline does.
1636 1636
1637 1637 line : string, optional
1638 1638 The complete line that text is part of.
1639 1639
1640 1640 cursor_pos : int, optional
1641 1641 The position of the cursor on the input line.
1642 1642
1643 1643 Returns
1644 1644 -------
1645 1645 text : string
1646 1646 The actual text that was completed.
1647 1647
1648 1648 matches : list
1649 1649 A sorted list with all possible completions.
1650 1650
1651 1651 The optional arguments allow the completion to take more context into
1652 1652 account, and are part of the low-level completion API.
1653 1653
1654 1654 This is a wrapper around the completion mechanism, similar to what
1655 1655 readline does at the command line when the TAB key is hit. By
1656 1656 exposing it as a method, it can be used by other non-readline
1657 1657 environments (such as GUIs) for text completion.
1658 1658
1659 1659 Simple usage example:
1660 1660
1661 1661 In [1]: x = 'hello'
1662 1662
1663 1663 In [2]: _ip.complete('x.l')
1664 1664 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1665 1665 """
1666 1666
1667 1667 # Inject names into __builtin__ so we can complete on the added names.
1668 1668 with self.builtin_trap:
1669 1669 return self.Completer.complete(text, line, cursor_pos)
1670 1670
1671 1671 def set_custom_completer(self, completer, pos=0):
1672 1672 """Adds a new custom completer function.
1673 1673
1674 1674 The position argument (defaults to 0) is the index in the completers
1675 1675 list where you want the completer to be inserted."""
1676 1676
1677 1677 newcomp = types.MethodType(completer,self.Completer)
1678 1678 self.Completer.matchers.insert(pos,newcomp)
1679 1679
1680 1680 def set_readline_completer(self):
1681 1681 """Reset readline's completer to be our own."""
1682 1682 self.readline.set_completer(self.Completer.rlcomplete)
1683 1683
1684 1684 def set_completer_frame(self, frame=None):
1685 1685 """Set the frame of the completer."""
1686 1686 if frame:
1687 1687 self.Completer.namespace = frame.f_locals
1688 1688 self.Completer.global_namespace = frame.f_globals
1689 1689 else:
1690 1690 self.Completer.namespace = self.user_ns
1691 1691 self.Completer.global_namespace = self.user_global_ns
1692 1692
1693 1693 #-------------------------------------------------------------------------
1694 1694 # Things related to magics
1695 1695 #-------------------------------------------------------------------------
1696 1696
1697 1697 def init_magics(self):
1698 1698 # FIXME: Move the color initialization to the DisplayHook, which
1699 1699 # should be split into a prompt manager and displayhook. We probably
1700 1700 # even need a centralize colors management object.
1701 1701 self.magic_colors(self.colors)
1702 1702 # History was moved to a separate module
1703 1703 from . import history
1704 1704 history.init_ipython(self)
1705 1705
1706 1706 def magic(self,arg_s):
1707 1707 """Call a magic function by name.
1708 1708
1709 1709 Input: a string containing the name of the magic function to call and
1710 1710 any additional arguments to be passed to the magic.
1711 1711
1712 1712 magic('name -opt foo bar') is equivalent to typing at the ipython
1713 1713 prompt:
1714 1714
1715 1715 In[1]: %name -opt foo bar
1716 1716
1717 1717 To call a magic without arguments, simply use magic('name').
1718 1718
1719 1719 This provides a proper Python function to call IPython's magics in any
1720 1720 valid Python code you can type at the interpreter, including loops and
1721 1721 compound statements.
1722 1722 """
1723 1723 args = arg_s.split(' ',1)
1724 1724 magic_name = args[0]
1725 1725 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1726 1726
1727 1727 try:
1728 1728 magic_args = args[1]
1729 1729 except IndexError:
1730 1730 magic_args = ''
1731 1731 fn = getattr(self,'magic_'+magic_name,None)
1732 1732 if fn is None:
1733 1733 error("Magic function `%s` not found." % magic_name)
1734 1734 else:
1735 1735 magic_args = self.var_expand(magic_args,1)
1736 1736 with nested(self.builtin_trap,):
1737 1737 result = fn(magic_args)
1738 1738 return result
1739 1739
1740 1740 def define_magic(self, magicname, func):
1741 1741 """Expose own function as magic function for ipython
1742 1742
1743 1743 def foo_impl(self,parameter_s=''):
1744 1744 'My very own magic!. (Use docstrings, IPython reads them).'
1745 1745 print 'Magic function. Passed parameter is between < >:'
1746 1746 print '<%s>' % parameter_s
1747 1747 print 'The self object is:',self
1748 1748
1749 1749 self.define_magic('foo',foo_impl)
1750 1750 """
1751 1751
1752 1752 import new
1753 1753 im = types.MethodType(func,self)
1754 1754 old = getattr(self, "magic_" + magicname, None)
1755 1755 setattr(self, "magic_" + magicname, im)
1756 1756 return old
1757 1757
1758 1758 #-------------------------------------------------------------------------
1759 1759 # Things related to macros
1760 1760 #-------------------------------------------------------------------------
1761 1761
1762 1762 def define_macro(self, name, themacro):
1763 1763 """Define a new macro
1764 1764
1765 1765 Parameters
1766 1766 ----------
1767 1767 name : str
1768 1768 The name of the macro.
1769 1769 themacro : str or Macro
1770 1770 The action to do upon invoking the macro. If a string, a new
1771 1771 Macro object is created by passing the string to it.
1772 1772 """
1773 1773
1774 1774 from IPython.core import macro
1775 1775
1776 1776 if isinstance(themacro, basestring):
1777 1777 themacro = macro.Macro(themacro)
1778 1778 if not isinstance(themacro, macro.Macro):
1779 1779 raise ValueError('A macro must be a string or a Macro instance.')
1780 1780 self.user_ns[name] = themacro
1781 1781
1782 1782 #-------------------------------------------------------------------------
1783 1783 # Things related to the running of system commands
1784 1784 #-------------------------------------------------------------------------
1785 1785
1786 1786 def system(self, cmd):
1787 1787 """Call the given cmd in a subprocess.
1788 1788
1789 1789 Parameters
1790 1790 ----------
1791 1791 cmd : str
1792 1792 Command to execute (can not end in '&', as bacground processes are
1793 1793 not supported.
1794 1794 """
1795 1795 # We do not support backgrounding processes because we either use
1796 1796 # pexpect or pipes to read from. Users can always just call
1797 1797 # os.system() if they really want a background process.
1798 1798 if cmd.endswith('&'):
1799 1799 raise OSError("Background processes not supported.")
1800 1800
1801 1801 return system(self.var_expand(cmd, depth=2))
1802 1802
1803 1803 def getoutput(self, cmd, split=True):
1804 1804 """Get output (possibly including stderr) from a subprocess.
1805 1805
1806 1806 Parameters
1807 1807 ----------
1808 1808 cmd : str
1809 1809 Command to execute (can not end in '&', as background processes are
1810 1810 not supported.
1811 1811 split : bool, optional
1812 1812
1813 1813 If True, split the output into an IPython SList. Otherwise, an
1814 1814 IPython LSString is returned. These are objects similar to normal
1815 1815 lists and strings, with a few convenience attributes for easier
1816 1816 manipulation of line-based output. You can use '?' on them for
1817 1817 details.
1818 1818 """
1819 1819 if cmd.endswith('&'):
1820 1820 raise OSError("Background processes not supported.")
1821 1821 out = getoutput(self.var_expand(cmd, depth=2))
1822 1822 if split:
1823 1823 out = SList(out.splitlines())
1824 1824 else:
1825 1825 out = LSString(out)
1826 1826 return out
1827 1827
1828 1828 #-------------------------------------------------------------------------
1829 1829 # Things related to aliases
1830 1830 #-------------------------------------------------------------------------
1831 1831
1832 1832 def init_alias(self):
1833 1833 self.alias_manager = AliasManager(shell=self, config=self.config)
1834 1834 self.ns_table['alias'] = self.alias_manager.alias_table,
1835 1835
1836 1836 #-------------------------------------------------------------------------
1837 1837 # Things related to extensions and plugins
1838 1838 #-------------------------------------------------------------------------
1839 1839
1840 1840 def init_extension_manager(self):
1841 1841 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1842 1842
1843 1843 def init_plugin_manager(self):
1844 1844 self.plugin_manager = PluginManager(config=self.config)
1845 1845
1846 1846 #-------------------------------------------------------------------------
1847 1847 # Things related to payloads
1848 1848 #-------------------------------------------------------------------------
1849 1849
1850 1850 def init_payload(self):
1851 1851 self.payload_manager = PayloadManager(config=self.config)
1852 1852
1853 1853 #-------------------------------------------------------------------------
1854 1854 # Things related to the prefilter
1855 1855 #-------------------------------------------------------------------------
1856 1856
1857 1857 def init_prefilter(self):
1858 1858 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1859 1859 # Ultimately this will be refactored in the new interpreter code, but
1860 1860 # for now, we should expose the main prefilter method (there's legacy
1861 1861 # code out there that may rely on this).
1862 1862 self.prefilter = self.prefilter_manager.prefilter_lines
1863 1863
1864 1864 def auto_rewrite_input(self, cmd):
1865 1865 """Print to the screen the rewritten form of the user's command.
1866 1866
1867 1867 This shows visual feedback by rewriting input lines that cause
1868 1868 automatic calling to kick in, like::
1869 1869
1870 1870 /f x
1871 1871
1872 1872 into::
1873 1873
1874 1874 ------> f(x)
1875 1875
1876 1876 after the user's input prompt. This helps the user understand that the
1877 1877 input line was transformed automatically by IPython.
1878 1878 """
1879 1879 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1880 1880
1881 1881 try:
1882 1882 # plain ascii works better w/ pyreadline, on some machines, so
1883 1883 # we use it and only print uncolored rewrite if we have unicode
1884 1884 rw = str(rw)
1885 1885 print >> IPython.utils.io.Term.cout, rw
1886 1886 except UnicodeEncodeError:
1887 1887 print "------> " + cmd
1888 1888
1889 1889 #-------------------------------------------------------------------------
1890 1890 # Things related to extracting values/expressions from kernel and user_ns
1891 1891 #-------------------------------------------------------------------------
1892 1892
1893 1893 def _simple_error(self):
1894 1894 etype, value = sys.exc_info()[:2]
1895 1895 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1896 1896
1897 1897 def user_variables(self, names):
1898 1898 """Get a list of variable names from the user's namespace.
1899 1899
1900 1900 Parameters
1901 1901 ----------
1902 1902 names : list of strings
1903 1903 A list of names of variables to be read from the user namespace.
1904 1904
1905 1905 Returns
1906 1906 -------
1907 1907 A dict, keyed by the input names and with the repr() of each value.
1908 1908 """
1909 1909 out = {}
1910 1910 user_ns = self.user_ns
1911 1911 for varname in names:
1912 1912 try:
1913 1913 value = repr(user_ns[varname])
1914 1914 except:
1915 1915 value = self._simple_error()
1916 1916 out[varname] = value
1917 1917 return out
1918 1918
1919 1919 def user_expressions(self, expressions):
1920 1920 """Evaluate a dict of expressions in the user's namespace.
1921 1921
1922 1922 Parameters
1923 1923 ----------
1924 1924 expressions : dict
1925 1925 A dict with string keys and string values. The expression values
1926 1926 should be valid Python expressions, each of which will be evaluated
1927 1927 in the user namespace.
1928 1928
1929 1929 Returns
1930 1930 -------
1931 1931 A dict, keyed like the input expressions dict, with the repr() of each
1932 1932 value.
1933 1933 """
1934 1934 out = {}
1935 1935 user_ns = self.user_ns
1936 1936 global_ns = self.user_global_ns
1937 1937 for key, expr in expressions.iteritems():
1938 1938 try:
1939 1939 value = repr(eval(expr, global_ns, user_ns))
1940 1940 except:
1941 1941 value = self._simple_error()
1942 1942 out[key] = value
1943 1943 return out
1944 1944
1945 1945 #-------------------------------------------------------------------------
1946 1946 # Things related to the running of code
1947 1947 #-------------------------------------------------------------------------
1948 1948
1949 1949 def ex(self, cmd):
1950 1950 """Execute a normal python statement in user namespace."""
1951 1951 with nested(self.builtin_trap,):
1952 1952 exec cmd in self.user_global_ns, self.user_ns
1953 1953
1954 1954 def ev(self, expr):
1955 1955 """Evaluate python expression expr in user namespace.
1956 1956
1957 1957 Returns the result of evaluation
1958 1958 """
1959 1959 with nested(self.builtin_trap,):
1960 1960 return eval(expr, self.user_global_ns, self.user_ns)
1961 1961
1962 1962 def safe_execfile(self, fname, *where, **kw):
1963 1963 """A safe version of the builtin execfile().
1964 1964
1965 1965 This version will never throw an exception, but instead print
1966 1966 helpful error messages to the screen. This only works on pure
1967 1967 Python files with the .py extension.
1968 1968
1969 1969 Parameters
1970 1970 ----------
1971 1971 fname : string
1972 1972 The name of the file to be executed.
1973 1973 where : tuple
1974 1974 One or two namespaces, passed to execfile() as (globals,locals).
1975 1975 If only one is given, it is passed as both.
1976 1976 exit_ignore : bool (False)
1977 1977 If True, then silence SystemExit for non-zero status (it is always
1978 1978 silenced for zero status, as it is so common).
1979 1979 """
1980 1980 kw.setdefault('exit_ignore', False)
1981 1981
1982 1982 fname = os.path.abspath(os.path.expanduser(fname))
1983 1983
1984 1984 # Make sure we have a .py file
1985 1985 if not fname.endswith('.py'):
1986 1986 warn('File must end with .py to be run using execfile: <%s>' % fname)
1987 1987
1988 1988 # Make sure we can open the file
1989 1989 try:
1990 1990 with open(fname) as thefile:
1991 1991 pass
1992 1992 except:
1993 1993 warn('Could not open file <%s> for safe execution.' % fname)
1994 1994 return
1995 1995
1996 1996 # Find things also in current directory. This is needed to mimic the
1997 1997 # behavior of running a script from the system command line, where
1998 1998 # Python inserts the script's directory into sys.path
1999 1999 dname = os.path.dirname(fname)
2000 2000
2001 2001 with prepended_to_syspath(dname):
2002 2002 try:
2003 2003 execfile(fname,*where)
2004 2004 except SystemExit, status:
2005 2005 # If the call was made with 0 or None exit status (sys.exit(0)
2006 2006 # or sys.exit() ), don't bother showing a traceback, as both of
2007 2007 # these are considered normal by the OS:
2008 2008 # > python -c'import sys;sys.exit(0)'; echo $?
2009 2009 # 0
2010 2010 # > python -c'import sys;sys.exit()'; echo $?
2011 2011 # 0
2012 2012 # For other exit status, we show the exception unless
2013 2013 # explicitly silenced, but only in short form.
2014 2014 if status.code not in (0, None) and not kw['exit_ignore']:
2015 2015 self.showtraceback(exception_only=True)
2016 2016 except:
2017 2017 self.showtraceback()
2018 2018
2019 2019 def safe_execfile_ipy(self, fname):
2020 2020 """Like safe_execfile, but for .ipy files with IPython syntax.
2021 2021
2022 2022 Parameters
2023 2023 ----------
2024 2024 fname : str
2025 2025 The name of the file to execute. The filename must have a
2026 2026 .ipy extension.
2027 2027 """
2028 2028 fname = os.path.abspath(os.path.expanduser(fname))
2029 2029
2030 2030 # Make sure we have a .py file
2031 2031 if not fname.endswith('.ipy'):
2032 2032 warn('File must end with .py to be run using execfile: <%s>' % fname)
2033 2033
2034 2034 # Make sure we can open the file
2035 2035 try:
2036 2036 with open(fname) as thefile:
2037 2037 pass
2038 2038 except:
2039 2039 warn('Could not open file <%s> for safe execution.' % fname)
2040 2040 return
2041 2041
2042 2042 # Find things also in current directory. This is needed to mimic the
2043 2043 # behavior of running a script from the system command line, where
2044 2044 # Python inserts the script's directory into sys.path
2045 2045 dname = os.path.dirname(fname)
2046 2046
2047 2047 with prepended_to_syspath(dname):
2048 2048 try:
2049 2049 with open(fname) as thefile:
2050 2050 # self.run_cell currently captures all exceptions
2051 2051 # raised in user code. It would be nice if there were
2052 2052 # versions of runlines, execfile that did raise, so
2053 2053 # we could catch the errors.
2054 2054 self.run_cell(thefile.read())
2055 2055 except:
2056 2056 self.showtraceback()
2057 2057 warn('Unknown failure executing file: <%s>' % fname)
2058 2058
2059 2059 def run_cell(self, cell):
2060 2060 """Run the contents of an entire multiline 'cell' of code.
2061 2061
2062 2062 The cell is split into separate blocks which can be executed
2063 2063 individually. Then, based on how many blocks there are, they are
2064 2064 executed as follows:
2065 2065
2066 2066 - A single block: 'single' mode.
2067 2067
2068 2068 If there's more than one block, it depends:
2069 2069
2070 2070 - if the last one is no more than two lines long, run all but the last
2071 2071 in 'exec' mode and the very last one in 'single' mode. This makes it
2072 2072 easy to type simple expressions at the end to see computed values. -
2073 2073 otherwise (last one is also multiline), run all in 'exec' mode
2074 2074
2075 2075 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2076 2076 results are displayed and output prompts are computed. In 'exec' mode,
2077 2077 no results are displayed unless :func:`print` is called explicitly;
2078 2078 this mode is more akin to running a script.
2079 2079
2080 2080 Parameters
2081 2081 ----------
2082 2082 cell : str
2083 2083 A single or multiline string.
2084 2084 """
2085 2085
2086 2086 # We need to break up the input into executable blocks that can be run
2087 2087 # in 'single' mode, to provide comfortable user behavior.
2088 2088 blocks = self.input_splitter.split_blocks(cell)
2089 2089
2090 2090 if not blocks:
2091 2091 return
2092 2092
2093 2093 # Store the 'ipython' version of the cell as well, since that's what
2094 2094 # needs to go into the translated history and get executed (the
2095 2095 # original cell may contain non-python syntax).
2096 2096 ipy_cell = ''.join(blocks)
2097 2097
2098 2098 # Store raw and processed history
2099 2099 self.history_manager.store_inputs(ipy_cell, cell)
2100 2100
2101 2101 self.logger.log(ipy_cell, cell)
2102 2102 # dbg code!!!
2103 2103 if 0:
2104 2104 def myapp(self, val): # dbg
2105 2105 import traceback as tb
2106 2106 stack = ''.join(tb.format_stack())
2107 2107 print 'Value:', val
2108 2108 print 'Stack:\n', stack
2109 2109 list.append(self, val)
2110 2110
2111 2111 import new
2112 2112 self.input_hist.append = types.MethodType(myapp, self.input_hist)
2113 2113 # End dbg
2114 2114
2115 2115 # All user code execution must happen with our context managers active
2116 2116 with nested(self.builtin_trap, self.display_trap):
2117 2117
2118 2118 # Single-block input should behave like an interactive prompt
2119 2119 if len(blocks) == 1:
2120 2120 # since we return here, we need to update the execution count
2121 2121 out = self.run_one_block(blocks[0])
2122 2122 self.execution_count += 1
2123 2123 return out
2124 2124
2125 2125 # In multi-block input, if the last block is a simple (one-two
2126 2126 # lines) expression, run it in single mode so it produces output.
2127 2127 # Otherwise just feed the whole thing to run_code. This seems like
2128 2128 # a reasonable usability design.
2129 2129 last = blocks[-1]
2130 2130 last_nlines = len(last.splitlines())
2131 2131
2132 2132 # Note: below, whenever we call run_code, we must sync history
2133 2133 # ourselves, because run_code is NOT meant to manage history at all.
2134 2134 if last_nlines < 2:
2135 2135 # Here we consider the cell split between 'body' and 'last',
2136 2136 # store all history and execute 'body', and if successful, then
2137 2137 # proceed to execute 'last'.
2138 2138
2139 2139 # Get the main body to run as a cell
2140 2140 ipy_body = ''.join(blocks[:-1])
2141 2141 retcode = self.run_source(ipy_body, symbol='exec',
2142 2142 post_execute=False)
2143 2143 if retcode==0:
2144 2144 # And the last expression via runlines so it produces output
2145 2145 self.run_one_block(last)
2146 2146 else:
2147 2147 # Run the whole cell as one entity, storing both raw and
2148 2148 # processed input in history
2149 2149 self.run_source(ipy_cell, symbol='exec')
2150 2150
2151 2151 # Each cell is a *single* input, regardless of how many lines it has
2152 2152 self.execution_count += 1
2153 2153
2154 2154 def run_one_block(self, block):
2155 2155 """Run a single interactive block.
2156 2156
2157 2157 If the block is single-line, dynamic transformations are applied to it
2158 2158 (like automagics, autocall and alias recognition).
2159 2159 """
2160 2160 if len(block.splitlines()) <= 1:
2161 2161 out = self.run_single_line(block)
2162 2162 else:
2163 2163 out = self.run_code(block)
2164 2164 return out
2165 2165
2166 2166 def run_single_line(self, line):
2167 2167 """Run a single-line interactive statement.
2168 2168
2169 2169 This assumes the input has been transformed to IPython syntax by
2170 2170 applying all static transformations (those with an explicit prefix like
2171 2171 % or !), but it will further try to apply the dynamic ones.
2172 2172
2173 2173 It does not update history.
2174 2174 """
2175 2175 tline = self.prefilter_manager.prefilter_line(line)
2176 2176 return self.run_source(tline)
2177 2177
2178 2178 # PENDING REMOVAL: this method is slated for deletion, once our new
2179 2179 # input logic has been 100% moved to frontends and is stable.
2180 2180 def runlines(self, lines, clean=False):
2181 2181 """Run a string of one or more lines of source.
2182 2182
2183 2183 This method is capable of running a string containing multiple source
2184 2184 lines, as if they had been entered at the IPython prompt. Since it
2185 2185 exposes IPython's processing machinery, the given strings can contain
2186 2186 magic calls (%magic), special shell access (!cmd), etc.
2187 2187 """
2188 2188
2189 2189 if isinstance(lines, (list, tuple)):
2190 2190 lines = '\n'.join(lines)
2191 2191
2192 2192 if clean:
2193 2193 lines = self._cleanup_ipy_script(lines)
2194 2194
2195 2195 # We must start with a clean buffer, in case this is run from an
2196 2196 # interactive IPython session (via a magic, for example).
2197 2197 self.reset_buffer()
2198 2198 lines = lines.splitlines()
2199 2199
2200 2200 # Since we will prefilter all lines, store the user's raw input too
2201 2201 # before we apply any transformations
2202 2202 self.buffer_raw[:] = [ l+'\n' for l in lines]
2203 2203
2204 2204 more = False
2205 2205 prefilter_lines = self.prefilter_manager.prefilter_lines
2206 2206 with nested(self.builtin_trap, self.display_trap):
2207 2207 for line in lines:
2208 2208 # skip blank lines so we don't mess up the prompt counter, but
2209 2209 # do NOT skip even a blank line if we are in a code block (more
2210 2210 # is true)
2211 2211
2212 2212 if line or more:
2213 2213 more = self.push_line(prefilter_lines(line, more))
2214 2214 # IPython's run_source returns None if there was an error
2215 2215 # compiling the code. This allows us to stop processing
2216 2216 # right away, so the user gets the error message at the
2217 2217 # right place.
2218 2218 if more is None:
2219 2219 break
2220 2220 # final newline in case the input didn't have it, so that the code
2221 2221 # actually does get executed
2222 2222 if more:
2223 2223 self.push_line('\n')
2224 2224
2225 2225 def run_source(self, source, filename=None,
2226 2226 symbol='single', post_execute=True):
2227 2227 """Compile and run some source in the interpreter.
2228 2228
2229 2229 Arguments are as for compile_command().
2230 2230
2231 2231 One several things can happen:
2232 2232
2233 2233 1) The input is incorrect; compile_command() raised an
2234 2234 exception (SyntaxError or OverflowError). A syntax traceback
2235 2235 will be printed by calling the showsyntaxerror() method.
2236 2236
2237 2237 2) The input is incomplete, and more input is required;
2238 2238 compile_command() returned None. Nothing happens.
2239 2239
2240 2240 3) The input is complete; compile_command() returned a code
2241 2241 object. The code is executed by calling self.run_code() (which
2242 2242 also handles run-time exceptions, except for SystemExit).
2243 2243
2244 2244 The return value is:
2245 2245
2246 2246 - True in case 2
2247 2247
2248 2248 - False in the other cases, unless an exception is raised, where
2249 2249 None is returned instead. This can be used by external callers to
2250 2250 know whether to continue feeding input or not.
2251 2251
2252 2252 The return value can be used to decide whether to use sys.ps1 or
2253 2253 sys.ps2 to prompt the next line."""
2254 2254
2255 2255 # We need to ensure that the source is unicode from here on.
2256 2256 if type(source)==str:
2257 2257 usource = source.decode(self.stdin_encoding)
2258 2258 else:
2259 2259 usource = source
2260 2260
2261 2261 if 0: # dbg
2262 2262 print 'Source:', repr(source) # dbg
2263 2263 print 'USource:', repr(usource) # dbg
2264 2264 print 'type:', type(source) # dbg
2265 2265 print 'encoding', self.stdin_encoding # dbg
2266 2266
2267 2267 try:
2268 2268 code = self.compile(usource, symbol, self.execution_count)
2269 2269 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2270 2270 # Case 1
2271 2271 self.showsyntaxerror(filename)
2272 2272 return None
2273 2273
2274 2274 if code is None:
2275 2275 # Case 2
2276 2276 return True
2277 2277
2278 2278 # Case 3
2279 2279 # We store the code object so that threaded shells and
2280 2280 # custom exception handlers can access all this info if needed.
2281 2281 # The source corresponding to this can be obtained from the
2282 2282 # buffer attribute as '\n'.join(self.buffer).
2283 2283 self.code_to_run = code
2284 2284 # now actually execute the code object
2285 2285 if self.run_code(code, post_execute) == 0:
2286 2286 return False
2287 2287 else:
2288 2288 return None
2289 2289
2290 2290 # For backwards compatibility
2291 2291 runsource = run_source
2292 2292
2293 2293 def run_code(self, code_obj, post_execute=True):
2294 2294 """Execute a code object.
2295 2295
2296 2296 When an exception occurs, self.showtraceback() is called to display a
2297 2297 traceback.
2298 2298
2299 2299 Return value: a flag indicating whether the code to be run completed
2300 2300 successfully:
2301 2301
2302 2302 - 0: successful execution.
2303 2303 - 1: an error occurred.
2304 2304 """
2305 2305
2306 2306 # Set our own excepthook in case the user code tries to call it
2307 2307 # directly, so that the IPython crash handler doesn't get triggered
2308 2308 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2309 2309
2310 2310 # we save the original sys.excepthook in the instance, in case config
2311 2311 # code (such as magics) needs access to it.
2312 2312 self.sys_excepthook = old_excepthook
2313 2313 outflag = 1 # happens in more places, so it's easier as default
2314 2314 try:
2315 2315 try:
2316 2316 self.hooks.pre_run_code_hook()
2317 2317 #rprint('Running code') # dbg
2318 2318 exec code_obj in self.user_global_ns, self.user_ns
2319 2319 finally:
2320 2320 # Reset our crash handler in place
2321 2321 sys.excepthook = old_excepthook
2322 2322 except SystemExit:
2323 2323 self.reset_buffer()
2324 2324 self.showtraceback(exception_only=True)
2325 2325 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2326 2326 except self.custom_exceptions:
2327 2327 etype,value,tb = sys.exc_info()
2328 2328 self.CustomTB(etype,value,tb)
2329 2329 except:
2330 2330 self.showtraceback()
2331 2331 else:
2332 2332 outflag = 0
2333 2333 if softspace(sys.stdout, 0):
2334 2334 print
2335 2335
2336 2336 # Execute any registered post-execution functions. Here, any errors
2337 2337 # are reported only minimally and just on the terminal, because the
2338 2338 # main exception channel may be occupied with a user traceback.
2339 2339 # FIXME: we need to think this mechanism a little more carefully.
2340 2340 if post_execute:
2341 2341 for func in self._post_execute:
2342 2342 try:
2343 2343 func()
2344 2344 except:
2345 2345 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2346 2346 func
2347 2347 print >> io.Term.cout, head
2348 2348 print >> io.Term.cout, self._simple_error()
2349 2349 print >> io.Term.cout, 'Removing from post_execute'
2350 2350 self._post_execute.remove(func)
2351 2351
2352 2352 # Flush out code object which has been run (and source)
2353 2353 self.code_to_run = None
2354 2354 return outflag
2355 2355
2356 2356 # For backwards compatibility
2357 2357 runcode = run_code
2358 2358
2359 2359 # PENDING REMOVAL: this method is slated for deletion, once our new
2360 2360 # input logic has been 100% moved to frontends and is stable.
2361 2361 def push_line(self, line):
2362 2362 """Push a line to the interpreter.
2363 2363
2364 2364 The line should not have a trailing newline; it may have
2365 2365 internal newlines. The line is appended to a buffer and the
2366 2366 interpreter's run_source() method is called with the
2367 2367 concatenated contents of the buffer as source. If this
2368 2368 indicates that the command was executed or invalid, the buffer
2369 2369 is reset; otherwise, the command is incomplete, and the buffer
2370 2370 is left as it was after the line was appended. The return
2371 2371 value is 1 if more input is required, 0 if the line was dealt
2372 2372 with in some way (this is the same as run_source()).
2373 2373 """
2374 2374
2375 2375 # autoindent management should be done here, and not in the
2376 2376 # interactive loop, since that one is only seen by keyboard input. We
2377 2377 # need this done correctly even for code run via runlines (which uses
2378 2378 # push).
2379 2379
2380 2380 #print 'push line: <%s>' % line # dbg
2381 2381 self.buffer.append(line)
2382 2382 full_source = '\n'.join(self.buffer)
2383 2383 more = self.run_source(full_source, self.filename)
2384 2384 if not more:
2385 2385 self.history_manager.store_inputs('\n'.join(self.buffer_raw),
2386 2386 full_source)
2387 2387 self.reset_buffer()
2388 2388 self.execution_count += 1
2389 2389 return more
2390 2390
2391 2391 def reset_buffer(self):
2392 2392 """Reset the input buffer."""
2393 2393 self.buffer[:] = []
2394 2394 self.buffer_raw[:] = []
2395 2395 self.input_splitter.reset()
2396 2396
2397 2397 # For backwards compatibility
2398 2398 resetbuffer = reset_buffer
2399 2399
2400 2400 def _is_secondary_block_start(self, s):
2401 2401 if not s.endswith(':'):
2402 2402 return False
2403 2403 if (s.startswith('elif') or
2404 2404 s.startswith('else') or
2405 2405 s.startswith('except') or
2406 2406 s.startswith('finally')):
2407 2407 return True
2408 2408
2409 2409 def _cleanup_ipy_script(self, script):
2410 2410 """Make a script safe for self.runlines()
2411 2411
2412 2412 Currently, IPython is lines based, with blocks being detected by
2413 2413 empty lines. This is a problem for block based scripts that may
2414 2414 not have empty lines after blocks. This script adds those empty
2415 2415 lines to make scripts safe for running in the current line based
2416 2416 IPython.
2417 2417 """
2418 2418 res = []
2419 2419 lines = script.splitlines()
2420 2420 level = 0
2421 2421
2422 2422 for l in lines:
2423 2423 lstripped = l.lstrip()
2424 2424 stripped = l.strip()
2425 2425 if not stripped:
2426 2426 continue
2427 2427 newlevel = len(l) - len(lstripped)
2428 2428 if level > 0 and newlevel == 0 and \
2429 2429 not self._is_secondary_block_start(stripped):
2430 2430 # add empty line
2431 2431 res.append('')
2432 2432 res.append(l)
2433 2433 level = newlevel
2434 2434
2435 2435 return '\n'.join(res) + '\n'
2436 2436
2437 2437 #-------------------------------------------------------------------------
2438 2438 # Things related to GUI support and pylab
2439 2439 #-------------------------------------------------------------------------
2440 2440
2441 2441 def enable_pylab(self, gui=None):
2442 2442 raise NotImplementedError('Implement enable_pylab in a subclass')
2443 2443
2444 2444 #-------------------------------------------------------------------------
2445 2445 # Utilities
2446 2446 #-------------------------------------------------------------------------
2447 2447
2448 2448 def var_expand(self,cmd,depth=0):
2449 2449 """Expand python variables in a string.
2450 2450
2451 2451 The depth argument indicates how many frames above the caller should
2452 2452 be walked to look for the local namespace where to expand variables.
2453 2453
2454 2454 The global namespace for expansion is always the user's interactive
2455 2455 namespace.
2456 2456 """
2457 2457
2458 2458 return str(ItplNS(cmd,
2459 2459 self.user_ns, # globals
2460 2460 # Skip our own frame in searching for locals:
2461 2461 sys._getframe(depth+1).f_locals # locals
2462 2462 ))
2463 2463
2464 2464 def mktempfile(self, data=None, prefix='ipython_edit_'):
2465 2465 """Make a new tempfile and return its filename.
2466 2466
2467 2467 This makes a call to tempfile.mktemp, but it registers the created
2468 2468 filename internally so ipython cleans it up at exit time.
2469 2469
2470 2470 Optional inputs:
2471 2471
2472 2472 - data(None): if data is given, it gets written out to the temp file
2473 2473 immediately, and the file is closed again."""
2474 2474
2475 2475 filename = tempfile.mktemp('.py', prefix)
2476 2476 self.tempfiles.append(filename)
2477 2477
2478 2478 if data:
2479 2479 tmp_file = open(filename,'w')
2480 2480 tmp_file.write(data)
2481 2481 tmp_file.close()
2482 2482 return filename
2483 2483
2484 2484 # TODO: This should be removed when Term is refactored.
2485 2485 def write(self,data):
2486 2486 """Write a string to the default output"""
2487 2487 io.Term.cout.write(data)
2488 2488
2489 2489 # TODO: This should be removed when Term is refactored.
2490 2490 def write_err(self,data):
2491 2491 """Write a string to the default error output"""
2492 2492 io.Term.cerr.write(data)
2493 2493
2494 2494 def ask_yes_no(self,prompt,default=True):
2495 2495 if self.quiet:
2496 2496 return True
2497 2497 return ask_yes_no(prompt,default)
2498 2498
2499 2499 def show_usage(self):
2500 2500 """Show a usage message"""
2501 2501 page.page(IPython.core.usage.interactive_usage)
2502 2502
2503 2503 #-------------------------------------------------------------------------
2504 2504 # Things related to IPython exiting
2505 2505 #-------------------------------------------------------------------------
2506 2506 def atexit_operations(self):
2507 2507 """This will be executed at the time of exit.
2508 2508
2509 2509 Cleanup operations and saving of persistent data that is done
2510 2510 unconditionally by IPython should be performed here.
2511 2511
2512 2512 For things that may depend on startup flags or platform specifics (such
2513 2513 as having readline or not), register a separate atexit function in the
2514 2514 code that has the appropriate information, rather than trying to
2515 2515 clutter
2516 2516 """
2517 2517 # Cleanup all tempfiles left around
2518 2518 for tfile in self.tempfiles:
2519 2519 try:
2520 2520 os.unlink(tfile)
2521 2521 except OSError:
2522 2522 pass
2523 2523
2524 2524 # Clear all user namespaces to release all references cleanly.
2525 2525 self.reset()
2526 2526
2527 2527 # Run user hooks
2528 2528 self.hooks.shutdown_hook()
2529 2529
2530 2530 def cleanup(self):
2531 2531 self.restore_sys_module_state()
2532 2532
2533 2533
2534 2534 class InteractiveShellABC(object):
2535 2535 """An abstract base class for InteractiveShell."""
2536 2536 __metaclass__ = abc.ABCMeta
2537 2537
2538 2538 InteractiveShellABC.register(InteractiveShell)
General Comments 0
You need to be logged in to leave comments. Login now