##// END OF EJS Templates
Cleanup old calls to save_history and reload_history methods, which were removed....
Thomas Kluyver -
Show More
@@ -1,2539 +1,2519
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import os
26 26 import re
27 27 import sys
28 28 import tempfile
29 29 import types
30 30 from contextlib import nested
31 31
32 32 from IPython.config.configurable import Configurable
33 33 from IPython.core import debugger, oinspect
34 34 from IPython.core import history as ipcorehist
35 35 from IPython.core import page
36 36 from IPython.core import prefilter
37 37 from IPython.core import shadowns
38 38 from IPython.core import ultratb
39 39 from IPython.core.alias import AliasManager
40 40 from IPython.core.builtin_trap import BuiltinTrap
41 41 from IPython.core.compilerop import CachingCompiler
42 42 from IPython.core.display_trap import DisplayTrap
43 43 from IPython.core.displayhook import DisplayHook
44 44 from IPython.core.displaypub import DisplayPublisher
45 45 from IPython.core.error import TryNext, UsageError
46 46 from IPython.core.extensions import ExtensionManager
47 47 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 48 from IPython.core.formatters import DisplayFormatter
49 49 from IPython.core.history import HistoryManager
50 50 from IPython.core.inputsplitter import IPythonInputSplitter
51 51 from IPython.core.logger import Logger
52 52 from IPython.core.magic import Magic
53 53 from IPython.core.payload import PayloadManager
54 54 from IPython.core.plugin import PluginManager
55 55 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
56 56 from IPython.external.Itpl import ItplNS
57 57 from IPython.utils import PyColorize
58 58 from IPython.utils import io
59 59 from IPython.utils.doctestreload import doctest_reload
60 60 from IPython.utils.io import ask_yes_no, rprint
61 61 from IPython.utils.ipstruct import Struct
62 62 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
63 63 from IPython.utils.pickleshare import PickleShareDB
64 64 from IPython.utils.process import system, getoutput
65 65 from IPython.utils.strdispatch import StrDispatch
66 66 from IPython.utils.syspathcontext import prepended_to_syspath
67 67 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
68 68 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
69 69 List, Unicode, Instance, Type)
70 70 from IPython.utils.warn import warn, error, fatal
71 71 import IPython.core.hooks
72 72
73 73 #-----------------------------------------------------------------------------
74 74 # Globals
75 75 #-----------------------------------------------------------------------------
76 76
77 77 # compiled regexps for autoindent management
78 78 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
79 79
80 80 #-----------------------------------------------------------------------------
81 81 # Utilities
82 82 #-----------------------------------------------------------------------------
83 83
84 84 # store the builtin raw_input globally, and use this always, in case user code
85 85 # overwrites it (like wx.py.PyShell does)
86 86 raw_input_original = raw_input
87 87
88 88 def softspace(file, newvalue):
89 89 """Copied from code.py, to remove the dependency"""
90 90
91 91 oldvalue = 0
92 92 try:
93 93 oldvalue = file.softspace
94 94 except AttributeError:
95 95 pass
96 96 try:
97 97 file.softspace = newvalue
98 98 except (AttributeError, TypeError):
99 99 # "attribute-less object" or "read-only attributes"
100 100 pass
101 101 return oldvalue
102 102
103 103
104 104 def no_op(*a, **kw): pass
105 105
106 106 class SpaceInInput(Exception): pass
107 107
108 108 class Bunch: pass
109 109
110 110
111 111 def get_default_colors():
112 112 if sys.platform=='darwin':
113 113 return "LightBG"
114 114 elif os.name=='nt':
115 115 return 'Linux'
116 116 else:
117 117 return 'Linux'
118 118
119 119
120 120 class SeparateStr(Str):
121 121 """A Str subclass to validate separate_in, separate_out, etc.
122 122
123 123 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
124 124 """
125 125
126 126 def validate(self, obj, value):
127 127 if value == '0': value = ''
128 128 value = value.replace('\\n','\n')
129 129 return super(SeparateStr, self).validate(obj, value)
130 130
131 131 class MultipleInstanceError(Exception):
132 132 pass
133 133
134 134
135 135 #-----------------------------------------------------------------------------
136 136 # Main IPython class
137 137 #-----------------------------------------------------------------------------
138 138
139 139 class InteractiveShell(Configurable, Magic):
140 140 """An enhanced, interactive shell for Python."""
141 141
142 142 _instance = None
143 143 autocall = Enum((0,1,2), default_value=1, config=True)
144 144 # TODO: remove all autoindent logic and put into frontends.
145 145 # We can't do this yet because even runlines uses the autoindent.
146 146 autoindent = CBool(True, config=True)
147 147 automagic = CBool(True, config=True)
148 148 cache_size = Int(1000, config=True)
149 149 color_info = CBool(True, config=True)
150 150 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
151 151 default_value=get_default_colors(), config=True)
152 152 debug = CBool(False, config=True)
153 153 deep_reload = CBool(False, config=True)
154 154 display_formatter = Instance(DisplayFormatter)
155 155 displayhook_class = Type(DisplayHook)
156 156 display_pub_class = Type(DisplayPublisher)
157 157
158 158 exit_now = CBool(False)
159 159 # Monotonically increasing execution counter
160 160 execution_count = Int(1)
161 161 filename = Unicode("<ipython console>")
162 162 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
163 163
164 164 # Input splitter, to split entire cells of input into either individual
165 165 # interactive statements or whole blocks.
166 166 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
167 167 (), {})
168 168 logstart = CBool(False, config=True)
169 169 logfile = Unicode('', config=True)
170 170 logappend = Unicode('', config=True)
171 171 object_info_string_level = Enum((0,1,2), default_value=0,
172 172 config=True)
173 173 pdb = CBool(False, config=True)
174 174
175 175 profile = Unicode('', config=True)
176 176 prompt_in1 = Str('In [\\#]: ', config=True)
177 177 prompt_in2 = Str(' .\\D.: ', config=True)
178 178 prompt_out = Str('Out[\\#]: ', config=True)
179 179 prompts_pad_left = CBool(True, config=True)
180 180 quiet = CBool(False, config=True)
181 181
182 182 history_length = Int(10000, config=True)
183 183
184 184 # The readline stuff will eventually be moved to the terminal subclass
185 185 # but for now, we can't do that as readline is welded in everywhere.
186 186 readline_use = CBool(True, config=True)
187 187 readline_merge_completions = CBool(True, config=True)
188 188 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
189 189 readline_remove_delims = Str('-/~', config=True)
190 190 readline_parse_and_bind = List([
191 191 'tab: complete',
192 192 '"\C-l": clear-screen',
193 193 'set show-all-if-ambiguous on',
194 194 '"\C-o": tab-insert',
195 195 # See bug gh-58 - with \M-i enabled, chars 0x9000-0x9fff
196 196 # crash IPython.
197 197 '"\M-o": "\d\d\d\d"',
198 198 '"\M-I": "\d\d\d\d"',
199 199 '"\C-r": reverse-search-history',
200 200 '"\C-s": forward-search-history',
201 201 '"\C-p": history-search-backward',
202 202 '"\C-n": history-search-forward',
203 203 '"\e[A": history-search-backward',
204 204 '"\e[B": history-search-forward',
205 205 '"\C-k": kill-line',
206 206 '"\C-u": unix-line-discard',
207 207 ], allow_none=False, config=True)
208 208
209 209 # TODO: this part of prompt management should be moved to the frontends.
210 210 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
211 211 separate_in = SeparateStr('\n', config=True)
212 212 separate_out = SeparateStr('', config=True)
213 213 separate_out2 = SeparateStr('', config=True)
214 214 wildcards_case_sensitive = CBool(True, config=True)
215 215 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
216 216 default_value='Context', config=True)
217 217
218 218 # Subcomponents of InteractiveShell
219 219 alias_manager = Instance('IPython.core.alias.AliasManager')
220 220 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
221 221 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
222 222 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
223 223 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
224 224 plugin_manager = Instance('IPython.core.plugin.PluginManager')
225 225 payload_manager = Instance('IPython.core.payload.PayloadManager')
226 226 history_manager = Instance('IPython.core.history.HistoryManager')
227 227
228 228 # Private interface
229 229 _post_execute = set()
230 230
231 231 def __init__(self, config=None, ipython_dir=None,
232 232 user_ns=None, user_global_ns=None,
233 233 custom_exceptions=((), None)):
234 234
235 235 # This is where traits with a config_key argument are updated
236 236 # from the values on config.
237 237 super(InteractiveShell, self).__init__(config=config)
238 238
239 239 # These are relatively independent and stateless
240 240 self.init_ipython_dir(ipython_dir)
241 241 self.init_instance_attrs()
242 242 self.init_environment()
243 243
244 244 # Create namespaces (user_ns, user_global_ns, etc.)
245 245 self.init_create_namespaces(user_ns, user_global_ns)
246 246 # This has to be done after init_create_namespaces because it uses
247 247 # something in self.user_ns, but before init_sys_modules, which
248 248 # is the first thing to modify sys.
249 249 # TODO: When we override sys.stdout and sys.stderr before this class
250 250 # is created, we are saving the overridden ones here. Not sure if this
251 251 # is what we want to do.
252 252 self.save_sys_module_state()
253 253 self.init_sys_modules()
254 254
255 255 # While we're trying to have each part of the code directly access what
256 256 # it needs without keeping redundant references to objects, we have too
257 257 # much legacy code that expects ip.db to exist.
258 258 self.db = PickleShareDB(os.path.join(self.ipython_dir, 'db'))
259 259
260 260 self.init_history()
261 261 self.init_encoding()
262 262 self.init_prefilter()
263 263
264 264 Magic.__init__(self, self)
265 265
266 266 self.init_syntax_highlighting()
267 267 self.init_hooks()
268 268 self.init_pushd_popd_magic()
269 269 # self.init_traceback_handlers use to be here, but we moved it below
270 270 # because it and init_io have to come after init_readline.
271 271 self.init_user_ns()
272 272 self.init_logger()
273 273 self.init_alias()
274 274 self.init_builtins()
275 275
276 276 # pre_config_initialization
277 277
278 278 # The next section should contain everything that was in ipmaker.
279 279 self.init_logstart()
280 280
281 281 # The following was in post_config_initialization
282 282 self.init_inspector()
283 283 # init_readline() must come before init_io(), because init_io uses
284 284 # readline related things.
285 285 self.init_readline()
286 286 # init_completer must come after init_readline, because it needs to
287 287 # know whether readline is present or not system-wide to configure the
288 288 # completers, since the completion machinery can now operate
289 289 # independently of readline (e.g. over the network)
290 290 self.init_completer()
291 291 # TODO: init_io() needs to happen before init_traceback handlers
292 292 # because the traceback handlers hardcode the stdout/stderr streams.
293 293 # This logic in in debugger.Pdb and should eventually be changed.
294 294 self.init_io()
295 295 self.init_traceback_handlers(custom_exceptions)
296 296 self.init_prompts()
297 297 self.init_display_formatter()
298 298 self.init_display_pub()
299 299 self.init_displayhook()
300 300 self.init_reload_doctest()
301 301 self.init_magics()
302 302 self.init_pdb()
303 303 self.init_extension_manager()
304 304 self.init_plugin_manager()
305 305 self.init_payload()
306 306 self.hooks.late_startup_hook()
307 307 atexit.register(self.atexit_operations)
308 308
309 309 @classmethod
310 310 def instance(cls, *args, **kwargs):
311 311 """Returns a global InteractiveShell instance."""
312 312 if cls._instance is None:
313 313 inst = cls(*args, **kwargs)
314 314 # Now make sure that the instance will also be returned by
315 315 # the subclasses instance attribute.
316 316 for subclass in cls.mro():
317 317 if issubclass(cls, subclass) and \
318 318 issubclass(subclass, InteractiveShell):
319 319 subclass._instance = inst
320 320 else:
321 321 break
322 322 if isinstance(cls._instance, cls):
323 323 return cls._instance
324 324 else:
325 325 raise MultipleInstanceError(
326 326 'Multiple incompatible subclass instances of '
327 327 'InteractiveShell are being created.'
328 328 )
329 329
330 330 @classmethod
331 331 def initialized(cls):
332 332 return hasattr(cls, "_instance")
333 333
334 334 def get_ipython(self):
335 335 """Return the currently running IPython instance."""
336 336 return self
337 337
338 338 #-------------------------------------------------------------------------
339 339 # Trait changed handlers
340 340 #-------------------------------------------------------------------------
341 341
342 342 def _ipython_dir_changed(self, name, new):
343 343 if not os.path.isdir(new):
344 344 os.makedirs(new, mode = 0777)
345 345
346 346 def set_autoindent(self,value=None):
347 347 """Set the autoindent flag, checking for readline support.
348 348
349 349 If called with no arguments, it acts as a toggle."""
350 350
351 351 if not self.has_readline:
352 352 if os.name == 'posix':
353 353 warn("The auto-indent feature requires the readline library")
354 354 self.autoindent = 0
355 355 return
356 356 if value is None:
357 357 self.autoindent = not self.autoindent
358 358 else:
359 359 self.autoindent = value
360 360
361 361 #-------------------------------------------------------------------------
362 362 # init_* methods called by __init__
363 363 #-------------------------------------------------------------------------
364 364
365 365 def init_ipython_dir(self, ipython_dir):
366 366 if ipython_dir is not None:
367 367 self.ipython_dir = ipython_dir
368 368 self.config.Global.ipython_dir = self.ipython_dir
369 369 return
370 370
371 371 if hasattr(self.config.Global, 'ipython_dir'):
372 372 self.ipython_dir = self.config.Global.ipython_dir
373 373 else:
374 374 self.ipython_dir = get_ipython_dir()
375 375
376 376 # All children can just read this
377 377 self.config.Global.ipython_dir = self.ipython_dir
378 378
379 379 def init_instance_attrs(self):
380 380 self.more = False
381 381
382 382 # command compiler
383 383 self.compile = CachingCompiler()
384 384
385 385 # User input buffers
386 386 # NOTE: these variables are slated for full removal, once we are 100%
387 387 # sure that the new execution logic is solid. We will delte runlines,
388 388 # push_line and these buffers, as all input will be managed by the
389 389 # frontends via an inputsplitter instance.
390 390 self.buffer = []
391 391 self.buffer_raw = []
392 392
393 393 # Make an empty namespace, which extension writers can rely on both
394 394 # existing and NEVER being used by ipython itself. This gives them a
395 395 # convenient location for storing additional information and state
396 396 # their extensions may require, without fear of collisions with other
397 397 # ipython names that may develop later.
398 398 self.meta = Struct()
399 399
400 400 # Object variable to store code object waiting execution. This is
401 401 # used mainly by the multithreaded shells, but it can come in handy in
402 402 # other situations. No need to use a Queue here, since it's a single
403 403 # item which gets cleared once run.
404 404 self.code_to_run = None
405 405
406 406 # Temporary files used for various purposes. Deleted at exit.
407 407 self.tempfiles = []
408 408
409 409 # Keep track of readline usage (later set by init_readline)
410 410 self.has_readline = False
411 411
412 412 # keep track of where we started running (mainly for crash post-mortem)
413 413 # This is not being used anywhere currently.
414 414 self.starting_dir = os.getcwd()
415 415
416 416 # Indentation management
417 417 self.indent_current_nsp = 0
418 418
419 419 def init_environment(self):
420 420 """Any changes we need to make to the user's environment."""
421 421 pass
422 422
423 423 def init_encoding(self):
424 424 # Get system encoding at startup time. Certain terminals (like Emacs
425 425 # under Win32 have it set to None, and we need to have a known valid
426 426 # encoding to use in the raw_input() method
427 427 try:
428 428 self.stdin_encoding = sys.stdin.encoding or 'ascii'
429 429 except AttributeError:
430 430 self.stdin_encoding = 'ascii'
431 431
432 432 def init_syntax_highlighting(self):
433 433 # Python source parser/formatter for syntax highlighting
434 434 pyformat = PyColorize.Parser().format
435 435 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
436 436
437 437 def init_pushd_popd_magic(self):
438 438 # for pushd/popd management
439 439 try:
440 440 self.home_dir = get_home_dir()
441 441 except HomeDirError, msg:
442 442 fatal(msg)
443 443
444 444 self.dir_stack = []
445 445
446 446 def init_logger(self):
447 447 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
448 448 logmode='rotate')
449 449
450 450 def init_logstart(self):
451 451 """Initialize logging in case it was requested at the command line.
452 452 """
453 453 if self.logappend:
454 454 self.magic_logstart(self.logappend + ' append')
455 455 elif self.logfile:
456 456 self.magic_logstart(self.logfile)
457 457 elif self.logstart:
458 458 self.magic_logstart()
459 459
460 460 def init_builtins(self):
461 461 self.builtin_trap = BuiltinTrap(shell=self)
462 462
463 463 def init_inspector(self):
464 464 # Object inspector
465 465 self.inspector = oinspect.Inspector(oinspect.InspectColors,
466 466 PyColorize.ANSICodeColors,
467 467 'NoColor',
468 468 self.object_info_string_level)
469 469
470 470 def init_io(self):
471 471 # This will just use sys.stdout and sys.stderr. If you want to
472 472 # override sys.stdout and sys.stderr themselves, you need to do that
473 473 # *before* instantiating this class, because Term holds onto
474 474 # references to the underlying streams.
475 475 if sys.platform == 'win32' and self.has_readline:
476 476 Term = io.IOTerm(cout=self.readline._outputfile,
477 477 cerr=self.readline._outputfile)
478 478 else:
479 479 Term = io.IOTerm()
480 480 io.Term = Term
481 481
482 482 def init_prompts(self):
483 483 # TODO: This is a pass for now because the prompts are managed inside
484 484 # the DisplayHook. Once there is a separate prompt manager, this
485 485 # will initialize that object and all prompt related information.
486 486 pass
487 487
488 488 def init_display_formatter(self):
489 489 self.display_formatter = DisplayFormatter(config=self.config)
490 490
491 491 def init_display_pub(self):
492 492 self.display_pub = self.display_pub_class(config=self.config)
493 493
494 494 def init_displayhook(self):
495 495 # Initialize displayhook, set in/out prompts and printing system
496 496 self.displayhook = self.displayhook_class(
497 497 config=self.config,
498 498 shell=self,
499 499 cache_size=self.cache_size,
500 500 input_sep = self.separate_in,
501 501 output_sep = self.separate_out,
502 502 output_sep2 = self.separate_out2,
503 503 ps1 = self.prompt_in1,
504 504 ps2 = self.prompt_in2,
505 505 ps_out = self.prompt_out,
506 506 pad_left = self.prompts_pad_left
507 507 )
508 508 # This is a context manager that installs/revmoes the displayhook at
509 509 # the appropriate time.
510 510 self.display_trap = DisplayTrap(hook=self.displayhook)
511 511
512 512 def init_reload_doctest(self):
513 513 # Do a proper resetting of doctest, including the necessary displayhook
514 514 # monkeypatching
515 515 try:
516 516 doctest_reload()
517 517 except ImportError:
518 518 warn("doctest module does not exist.")
519 519
520 520 #-------------------------------------------------------------------------
521 521 # Things related to injections into the sys module
522 522 #-------------------------------------------------------------------------
523 523
524 524 def save_sys_module_state(self):
525 525 """Save the state of hooks in the sys module.
526 526
527 527 This has to be called after self.user_ns is created.
528 528 """
529 529 self._orig_sys_module_state = {}
530 530 self._orig_sys_module_state['stdin'] = sys.stdin
531 531 self._orig_sys_module_state['stdout'] = sys.stdout
532 532 self._orig_sys_module_state['stderr'] = sys.stderr
533 533 self._orig_sys_module_state['excepthook'] = sys.excepthook
534 534 try:
535 535 self._orig_sys_modules_main_name = self.user_ns['__name__']
536 536 except KeyError:
537 537 pass
538 538
539 539 def restore_sys_module_state(self):
540 540 """Restore the state of the sys module."""
541 541 try:
542 542 for k, v in self._orig_sys_module_state.iteritems():
543 543 setattr(sys, k, v)
544 544 except AttributeError:
545 545 pass
546 546 # Reset what what done in self.init_sys_modules
547 547 try:
548 548 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
549 549 except (AttributeError, KeyError):
550 550 pass
551 551
552 552 #-------------------------------------------------------------------------
553 553 # Things related to hooks
554 554 #-------------------------------------------------------------------------
555 555
556 556 def init_hooks(self):
557 557 # hooks holds pointers used for user-side customizations
558 558 self.hooks = Struct()
559 559
560 560 self.strdispatchers = {}
561 561
562 562 # Set all default hooks, defined in the IPython.hooks module.
563 563 hooks = IPython.core.hooks
564 564 for hook_name in hooks.__all__:
565 565 # default hooks have priority 100, i.e. low; user hooks should have
566 566 # 0-100 priority
567 567 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
568 568
569 569 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
570 570 """set_hook(name,hook) -> sets an internal IPython hook.
571 571
572 572 IPython exposes some of its internal API as user-modifiable hooks. By
573 573 adding your function to one of these hooks, you can modify IPython's
574 574 behavior to call at runtime your own routines."""
575 575
576 576 # At some point in the future, this should validate the hook before it
577 577 # accepts it. Probably at least check that the hook takes the number
578 578 # of args it's supposed to.
579 579
580 580 f = types.MethodType(hook,self)
581 581
582 582 # check if the hook is for strdispatcher first
583 583 if str_key is not None:
584 584 sdp = self.strdispatchers.get(name, StrDispatch())
585 585 sdp.add_s(str_key, f, priority )
586 586 self.strdispatchers[name] = sdp
587 587 return
588 588 if re_key is not None:
589 589 sdp = self.strdispatchers.get(name, StrDispatch())
590 590 sdp.add_re(re.compile(re_key), f, priority )
591 591 self.strdispatchers[name] = sdp
592 592 return
593 593
594 594 dp = getattr(self.hooks, name, None)
595 595 if name not in IPython.core.hooks.__all__:
596 596 print "Warning! Hook '%s' is not one of %s" % \
597 597 (name, IPython.core.hooks.__all__ )
598 598 if not dp:
599 599 dp = IPython.core.hooks.CommandChainDispatcher()
600 600
601 601 try:
602 602 dp.add(f,priority)
603 603 except AttributeError:
604 604 # it was not commandchain, plain old func - replace
605 605 dp = f
606 606
607 607 setattr(self.hooks,name, dp)
608 608
609 609 def register_post_execute(self, func):
610 610 """Register a function for calling after code execution.
611 611 """
612 612 if not callable(func):
613 613 raise ValueError('argument %s must be callable' % func)
614 614 self._post_execute.add(func)
615 615
616 616 #-------------------------------------------------------------------------
617 617 # Things related to the "main" module
618 618 #-------------------------------------------------------------------------
619 619
620 620 def new_main_mod(self,ns=None):
621 621 """Return a new 'main' module object for user code execution.
622 622 """
623 623 main_mod = self._user_main_module
624 624 init_fakemod_dict(main_mod,ns)
625 625 return main_mod
626 626
627 627 def cache_main_mod(self,ns,fname):
628 628 """Cache a main module's namespace.
629 629
630 630 When scripts are executed via %run, we must keep a reference to the
631 631 namespace of their __main__ module (a FakeModule instance) around so
632 632 that Python doesn't clear it, rendering objects defined therein
633 633 useless.
634 634
635 635 This method keeps said reference in a private dict, keyed by the
636 636 absolute path of the module object (which corresponds to the script
637 637 path). This way, for multiple executions of the same script we only
638 638 keep one copy of the namespace (the last one), thus preventing memory
639 639 leaks from old references while allowing the objects from the last
640 640 execution to be accessible.
641 641
642 642 Note: we can not allow the actual FakeModule instances to be deleted,
643 643 because of how Python tears down modules (it hard-sets all their
644 644 references to None without regard for reference counts). This method
645 645 must therefore make a *copy* of the given namespace, to allow the
646 646 original module's __dict__ to be cleared and reused.
647 647
648 648
649 649 Parameters
650 650 ----------
651 651 ns : a namespace (a dict, typically)
652 652
653 653 fname : str
654 654 Filename associated with the namespace.
655 655
656 656 Examples
657 657 --------
658 658
659 659 In [10]: import IPython
660 660
661 661 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
662 662
663 663 In [12]: IPython.__file__ in _ip._main_ns_cache
664 664 Out[12]: True
665 665 """
666 666 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
667 667
668 668 def clear_main_mod_cache(self):
669 669 """Clear the cache of main modules.
670 670
671 671 Mainly for use by utilities like %reset.
672 672
673 673 Examples
674 674 --------
675 675
676 676 In [15]: import IPython
677 677
678 678 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
679 679
680 680 In [17]: len(_ip._main_ns_cache) > 0
681 681 Out[17]: True
682 682
683 683 In [18]: _ip.clear_main_mod_cache()
684 684
685 685 In [19]: len(_ip._main_ns_cache) == 0
686 686 Out[19]: True
687 687 """
688 688 self._main_ns_cache.clear()
689 689
690 690 #-------------------------------------------------------------------------
691 691 # Things related to debugging
692 692 #-------------------------------------------------------------------------
693 693
694 694 def init_pdb(self):
695 695 # Set calling of pdb on exceptions
696 696 # self.call_pdb is a property
697 697 self.call_pdb = self.pdb
698 698
699 699 def _get_call_pdb(self):
700 700 return self._call_pdb
701 701
702 702 def _set_call_pdb(self,val):
703 703
704 704 if val not in (0,1,False,True):
705 705 raise ValueError,'new call_pdb value must be boolean'
706 706
707 707 # store value in instance
708 708 self._call_pdb = val
709 709
710 710 # notify the actual exception handlers
711 711 self.InteractiveTB.call_pdb = val
712 712
713 713 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
714 714 'Control auto-activation of pdb at exceptions')
715 715
716 716 def debugger(self,force=False):
717 717 """Call the pydb/pdb debugger.
718 718
719 719 Keywords:
720 720
721 721 - force(False): by default, this routine checks the instance call_pdb
722 722 flag and does not actually invoke the debugger if the flag is false.
723 723 The 'force' option forces the debugger to activate even if the flag
724 724 is false.
725 725 """
726 726
727 727 if not (force or self.call_pdb):
728 728 return
729 729
730 730 if not hasattr(sys,'last_traceback'):
731 731 error('No traceback has been produced, nothing to debug.')
732 732 return
733 733
734 734 # use pydb if available
735 735 if debugger.has_pydb:
736 736 from pydb import pm
737 737 else:
738 738 # fallback to our internal debugger
739 739 pm = lambda : self.InteractiveTB.debugger(force=True)
740 self.history_saving_wrapper(pm)()
740 pm()
741 741
742 742 #-------------------------------------------------------------------------
743 743 # Things related to IPython's various namespaces
744 744 #-------------------------------------------------------------------------
745 745
746 746 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
747 747 # Create the namespace where the user will operate. user_ns is
748 748 # normally the only one used, and it is passed to the exec calls as
749 749 # the locals argument. But we do carry a user_global_ns namespace
750 750 # given as the exec 'globals' argument, This is useful in embedding
751 751 # situations where the ipython shell opens in a context where the
752 752 # distinction between locals and globals is meaningful. For
753 753 # non-embedded contexts, it is just the same object as the user_ns dict.
754 754
755 755 # FIXME. For some strange reason, __builtins__ is showing up at user
756 756 # level as a dict instead of a module. This is a manual fix, but I
757 757 # should really track down where the problem is coming from. Alex
758 758 # Schmolck reported this problem first.
759 759
760 760 # A useful post by Alex Martelli on this topic:
761 761 # Re: inconsistent value from __builtins__
762 762 # Von: Alex Martelli <aleaxit@yahoo.com>
763 763 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
764 764 # Gruppen: comp.lang.python
765 765
766 766 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
767 767 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
768 768 # > <type 'dict'>
769 769 # > >>> print type(__builtins__)
770 770 # > <type 'module'>
771 771 # > Is this difference in return value intentional?
772 772
773 773 # Well, it's documented that '__builtins__' can be either a dictionary
774 774 # or a module, and it's been that way for a long time. Whether it's
775 775 # intentional (or sensible), I don't know. In any case, the idea is
776 776 # that if you need to access the built-in namespace directly, you
777 777 # should start with "import __builtin__" (note, no 's') which will
778 778 # definitely give you a module. Yeah, it's somewhat confusing:-(.
779 779
780 780 # These routines return properly built dicts as needed by the rest of
781 781 # the code, and can also be used by extension writers to generate
782 782 # properly initialized namespaces.
783 783 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
784 784 user_global_ns)
785 785
786 786 # Assign namespaces
787 787 # This is the namespace where all normal user variables live
788 788 self.user_ns = user_ns
789 789 self.user_global_ns = user_global_ns
790 790
791 791 # An auxiliary namespace that checks what parts of the user_ns were
792 792 # loaded at startup, so we can list later only variables defined in
793 793 # actual interactive use. Since it is always a subset of user_ns, it
794 794 # doesn't need to be separately tracked in the ns_table.
795 795 self.user_ns_hidden = {}
796 796
797 797 # A namespace to keep track of internal data structures to prevent
798 798 # them from cluttering user-visible stuff. Will be updated later
799 799 self.internal_ns = {}
800 800
801 801 # Now that FakeModule produces a real module, we've run into a nasty
802 802 # problem: after script execution (via %run), the module where the user
803 803 # code ran is deleted. Now that this object is a true module (needed
804 804 # so docetst and other tools work correctly), the Python module
805 805 # teardown mechanism runs over it, and sets to None every variable
806 806 # present in that module. Top-level references to objects from the
807 807 # script survive, because the user_ns is updated with them. However,
808 808 # calling functions defined in the script that use other things from
809 809 # the script will fail, because the function's closure had references
810 810 # to the original objects, which are now all None. So we must protect
811 811 # these modules from deletion by keeping a cache.
812 812 #
813 813 # To avoid keeping stale modules around (we only need the one from the
814 814 # last run), we use a dict keyed with the full path to the script, so
815 815 # only the last version of the module is held in the cache. Note,
816 816 # however, that we must cache the module *namespace contents* (their
817 817 # __dict__). Because if we try to cache the actual modules, old ones
818 818 # (uncached) could be destroyed while still holding references (such as
819 819 # those held by GUI objects that tend to be long-lived)>
820 820 #
821 821 # The %reset command will flush this cache. See the cache_main_mod()
822 822 # and clear_main_mod_cache() methods for details on use.
823 823
824 824 # This is the cache used for 'main' namespaces
825 825 self._main_ns_cache = {}
826 826 # And this is the single instance of FakeModule whose __dict__ we keep
827 827 # copying and clearing for reuse on each %run
828 828 self._user_main_module = FakeModule()
829 829
830 830 # A table holding all the namespaces IPython deals with, so that
831 831 # introspection facilities can search easily.
832 832 self.ns_table = {'user':user_ns,
833 833 'user_global':user_global_ns,
834 834 'internal':self.internal_ns,
835 835 'builtin':__builtin__.__dict__
836 836 }
837 837
838 838 # Similarly, track all namespaces where references can be held and that
839 839 # we can safely clear (so it can NOT include builtin). This one can be
840 840 # a simple list. Note that the main execution namespaces, user_ns and
841 841 # user_global_ns, can NOT be listed here, as clearing them blindly
842 842 # causes errors in object __del__ methods. Instead, the reset() method
843 843 # clears them manually and carefully.
844 844 self.ns_refs_table = [ self.user_ns_hidden,
845 845 self.internal_ns, self._main_ns_cache ]
846 846
847 847 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
848 848 """Return a valid local and global user interactive namespaces.
849 849
850 850 This builds a dict with the minimal information needed to operate as a
851 851 valid IPython user namespace, which you can pass to the various
852 852 embedding classes in ipython. The default implementation returns the
853 853 same dict for both the locals and the globals to allow functions to
854 854 refer to variables in the namespace. Customized implementations can
855 855 return different dicts. The locals dictionary can actually be anything
856 856 following the basic mapping protocol of a dict, but the globals dict
857 857 must be a true dict, not even a subclass. It is recommended that any
858 858 custom object for the locals namespace synchronize with the globals
859 859 dict somehow.
860 860
861 861 Raises TypeError if the provided globals namespace is not a true dict.
862 862
863 863 Parameters
864 864 ----------
865 865 user_ns : dict-like, optional
866 866 The current user namespace. The items in this namespace should
867 867 be included in the output. If None, an appropriate blank
868 868 namespace should be created.
869 869 user_global_ns : dict, optional
870 870 The current user global namespace. The items in this namespace
871 871 should be included in the output. If None, an appropriate
872 872 blank namespace should be created.
873 873
874 874 Returns
875 875 -------
876 876 A pair of dictionary-like object to be used as the local namespace
877 877 of the interpreter and a dict to be used as the global namespace.
878 878 """
879 879
880 880
881 881 # We must ensure that __builtin__ (without the final 's') is always
882 882 # available and pointing to the __builtin__ *module*. For more details:
883 883 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
884 884
885 885 if user_ns is None:
886 886 # Set __name__ to __main__ to better match the behavior of the
887 887 # normal interpreter.
888 888 user_ns = {'__name__' :'__main__',
889 889 '__builtin__' : __builtin__,
890 890 '__builtins__' : __builtin__,
891 891 }
892 892 else:
893 893 user_ns.setdefault('__name__','__main__')
894 894 user_ns.setdefault('__builtin__',__builtin__)
895 895 user_ns.setdefault('__builtins__',__builtin__)
896 896
897 897 if user_global_ns is None:
898 898 user_global_ns = user_ns
899 899 if type(user_global_ns) is not dict:
900 900 raise TypeError("user_global_ns must be a true dict; got %r"
901 901 % type(user_global_ns))
902 902
903 903 return user_ns, user_global_ns
904 904
905 905 def init_sys_modules(self):
906 906 # We need to insert into sys.modules something that looks like a
907 907 # module but which accesses the IPython namespace, for shelve and
908 908 # pickle to work interactively. Normally they rely on getting
909 909 # everything out of __main__, but for embedding purposes each IPython
910 910 # instance has its own private namespace, so we can't go shoving
911 911 # everything into __main__.
912 912
913 913 # note, however, that we should only do this for non-embedded
914 914 # ipythons, which really mimic the __main__.__dict__ with their own
915 915 # namespace. Embedded instances, on the other hand, should not do
916 916 # this because they need to manage the user local/global namespaces
917 917 # only, but they live within a 'normal' __main__ (meaning, they
918 918 # shouldn't overtake the execution environment of the script they're
919 919 # embedded in).
920 920
921 921 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
922 922
923 923 try:
924 924 main_name = self.user_ns['__name__']
925 925 except KeyError:
926 926 raise KeyError('user_ns dictionary MUST have a "__name__" key')
927 927 else:
928 928 sys.modules[main_name] = FakeModule(self.user_ns)
929 929
930 930 def init_user_ns(self):
931 931 """Initialize all user-visible namespaces to their minimum defaults.
932 932
933 933 Certain history lists are also initialized here, as they effectively
934 934 act as user namespaces.
935 935
936 936 Notes
937 937 -----
938 938 All data structures here are only filled in, they are NOT reset by this
939 939 method. If they were not empty before, data will simply be added to
940 940 therm.
941 941 """
942 942 # This function works in two parts: first we put a few things in
943 943 # user_ns, and we sync that contents into user_ns_hidden so that these
944 944 # initial variables aren't shown by %who. After the sync, we add the
945 945 # rest of what we *do* want the user to see with %who even on a new
946 946 # session (probably nothing, so theye really only see their own stuff)
947 947
948 948 # The user dict must *always* have a __builtin__ reference to the
949 949 # Python standard __builtin__ namespace, which must be imported.
950 950 # This is so that certain operations in prompt evaluation can be
951 951 # reliably executed with builtins. Note that we can NOT use
952 952 # __builtins__ (note the 's'), because that can either be a dict or a
953 953 # module, and can even mutate at runtime, depending on the context
954 954 # (Python makes no guarantees on it). In contrast, __builtin__ is
955 955 # always a module object, though it must be explicitly imported.
956 956
957 957 # For more details:
958 958 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
959 959 ns = dict(__builtin__ = __builtin__)
960 960
961 961 # Put 'help' in the user namespace
962 962 try:
963 963 from site import _Helper
964 964 ns['help'] = _Helper()
965 965 except ImportError:
966 966 warn('help() not available - check site.py')
967 967
968 968 # make global variables for user access to the histories
969 969 ns['_ih'] = self.history_manager.input_hist_parsed
970 970 ns['_oh'] = self.history_manager.output_hist
971 971 ns['_dh'] = self.history_manager.dir_hist
972 972
973 973 ns['_sh'] = shadowns
974 974
975 975 # user aliases to input and output histories. These shouldn't show up
976 976 # in %who, as they can have very large reprs.
977 977 ns['In'] = self.history_manager.input_hist_parsed
978 978 ns['Out'] = self.history_manager.output_hist
979 979
980 980 # Store myself as the public api!!!
981 981 ns['get_ipython'] = self.get_ipython
982 982
983 983 # Sync what we've added so far to user_ns_hidden so these aren't seen
984 984 # by %who
985 985 self.user_ns_hidden.update(ns)
986 986
987 987 # Anything put into ns now would show up in %who. Think twice before
988 988 # putting anything here, as we really want %who to show the user their
989 989 # stuff, not our variables.
990 990
991 991 # Finally, update the real user's namespace
992 992 self.user_ns.update(ns)
993 993
994 994 def reset(self, new_session=True):
995 995 """Clear all internal namespaces.
996 996
997 997 Note that this is much more aggressive than %reset, since it clears
998 998 fully all namespaces, as well as all input/output lists.
999 999
1000 1000 If new_session is True, a new history session will be opened.
1001 1001 """
1002 1002 # Clear histories
1003 1003 self.history_manager.reset(new_session)
1004 1004
1005 1005 # Reset counter used to index all histories
1006 1006 self.execution_count = 0
1007 1007
1008 1008 # Restore the user namespaces to minimal usability
1009 1009 for ns in self.ns_refs_table:
1010 1010 ns.clear()
1011 1011
1012 1012 # The main execution namespaces must be cleared very carefully,
1013 1013 # skipping the deletion of the builtin-related keys, because doing so
1014 1014 # would cause errors in many object's __del__ methods.
1015 1015 for ns in [self.user_ns, self.user_global_ns]:
1016 1016 drop_keys = set(ns.keys())
1017 1017 drop_keys.discard('__builtin__')
1018 1018 drop_keys.discard('__builtins__')
1019 1019 for k in drop_keys:
1020 1020 del ns[k]
1021 1021
1022 1022 # Restore the user namespaces to minimal usability
1023 1023 self.init_user_ns()
1024 1024
1025 1025 # Restore the default and user aliases
1026 1026 self.alias_manager.clear_aliases()
1027 1027 self.alias_manager.init_aliases()
1028 1028
1029 1029 def reset_selective(self, regex=None):
1030 1030 """Clear selective variables from internal namespaces based on a
1031 1031 specified regular expression.
1032 1032
1033 1033 Parameters
1034 1034 ----------
1035 1035 regex : string or compiled pattern, optional
1036 1036 A regular expression pattern that will be used in searching
1037 1037 variable names in the users namespaces.
1038 1038 """
1039 1039 if regex is not None:
1040 1040 try:
1041 1041 m = re.compile(regex)
1042 1042 except TypeError:
1043 1043 raise TypeError('regex must be a string or compiled pattern')
1044 1044 # Search for keys in each namespace that match the given regex
1045 1045 # If a match is found, delete the key/value pair.
1046 1046 for ns in self.ns_refs_table:
1047 1047 for var in ns:
1048 1048 if m.search(var):
1049 1049 del ns[var]
1050 1050
1051 1051 def push(self, variables, interactive=True):
1052 1052 """Inject a group of variables into the IPython user namespace.
1053 1053
1054 1054 Parameters
1055 1055 ----------
1056 1056 variables : dict, str or list/tuple of str
1057 1057 The variables to inject into the user's namespace. If a dict, a
1058 1058 simple update is done. If a str, the string is assumed to have
1059 1059 variable names separated by spaces. A list/tuple of str can also
1060 1060 be used to give the variable names. If just the variable names are
1061 1061 give (list/tuple/str) then the variable values looked up in the
1062 1062 callers frame.
1063 1063 interactive : bool
1064 1064 If True (default), the variables will be listed with the ``who``
1065 1065 magic.
1066 1066 """
1067 1067 vdict = None
1068 1068
1069 1069 # We need a dict of name/value pairs to do namespace updates.
1070 1070 if isinstance(variables, dict):
1071 1071 vdict = variables
1072 1072 elif isinstance(variables, (basestring, list, tuple)):
1073 1073 if isinstance(variables, basestring):
1074 1074 vlist = variables.split()
1075 1075 else:
1076 1076 vlist = variables
1077 1077 vdict = {}
1078 1078 cf = sys._getframe(1)
1079 1079 for name in vlist:
1080 1080 try:
1081 1081 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1082 1082 except:
1083 1083 print ('Could not get variable %s from %s' %
1084 1084 (name,cf.f_code.co_name))
1085 1085 else:
1086 1086 raise ValueError('variables must be a dict/str/list/tuple')
1087 1087
1088 1088 # Propagate variables to user namespace
1089 1089 self.user_ns.update(vdict)
1090 1090
1091 1091 # And configure interactive visibility
1092 1092 config_ns = self.user_ns_hidden
1093 1093 if interactive:
1094 1094 for name, val in vdict.iteritems():
1095 1095 config_ns.pop(name, None)
1096 1096 else:
1097 1097 for name,val in vdict.iteritems():
1098 1098 config_ns[name] = val
1099 1099
1100 1100 #-------------------------------------------------------------------------
1101 1101 # Things related to object introspection
1102 1102 #-------------------------------------------------------------------------
1103 1103
1104 1104 def _ofind(self, oname, namespaces=None):
1105 1105 """Find an object in the available namespaces.
1106 1106
1107 1107 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1108 1108
1109 1109 Has special code to detect magic functions.
1110 1110 """
1111 1111 #oname = oname.strip()
1112 1112 #print '1- oname: <%r>' % oname # dbg
1113 1113 try:
1114 1114 oname = oname.strip().encode('ascii')
1115 1115 #print '2- oname: <%r>' % oname # dbg
1116 1116 except UnicodeEncodeError:
1117 1117 print 'Python identifiers can only contain ascii characters.'
1118 1118 return dict(found=False)
1119 1119
1120 1120 alias_ns = None
1121 1121 if namespaces is None:
1122 1122 # Namespaces to search in:
1123 1123 # Put them in a list. The order is important so that we
1124 1124 # find things in the same order that Python finds them.
1125 1125 namespaces = [ ('Interactive', self.user_ns),
1126 1126 ('IPython internal', self.internal_ns),
1127 1127 ('Python builtin', __builtin__.__dict__),
1128 1128 ('Alias', self.alias_manager.alias_table),
1129 1129 ]
1130 1130 alias_ns = self.alias_manager.alias_table
1131 1131
1132 1132 # initialize results to 'null'
1133 1133 found = False; obj = None; ospace = None; ds = None;
1134 1134 ismagic = False; isalias = False; parent = None
1135 1135
1136 1136 # We need to special-case 'print', which as of python2.6 registers as a
1137 1137 # function but should only be treated as one if print_function was
1138 1138 # loaded with a future import. In this case, just bail.
1139 1139 if (oname == 'print' and not (self.compile.compiler_flags &
1140 1140 __future__.CO_FUTURE_PRINT_FUNCTION)):
1141 1141 return {'found':found, 'obj':obj, 'namespace':ospace,
1142 1142 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1143 1143
1144 1144 # Look for the given name by splitting it in parts. If the head is
1145 1145 # found, then we look for all the remaining parts as members, and only
1146 1146 # declare success if we can find them all.
1147 1147 oname_parts = oname.split('.')
1148 1148 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1149 1149 for nsname,ns in namespaces:
1150 1150 try:
1151 1151 obj = ns[oname_head]
1152 1152 except KeyError:
1153 1153 continue
1154 1154 else:
1155 1155 #print 'oname_rest:', oname_rest # dbg
1156 1156 for part in oname_rest:
1157 1157 try:
1158 1158 parent = obj
1159 1159 obj = getattr(obj,part)
1160 1160 except:
1161 1161 # Blanket except b/c some badly implemented objects
1162 1162 # allow __getattr__ to raise exceptions other than
1163 1163 # AttributeError, which then crashes IPython.
1164 1164 break
1165 1165 else:
1166 1166 # If we finish the for loop (no break), we got all members
1167 1167 found = True
1168 1168 ospace = nsname
1169 1169 if ns == alias_ns:
1170 1170 isalias = True
1171 1171 break # namespace loop
1172 1172
1173 1173 # Try to see if it's magic
1174 1174 if not found:
1175 1175 if oname.startswith(ESC_MAGIC):
1176 1176 oname = oname[1:]
1177 1177 obj = getattr(self,'magic_'+oname,None)
1178 1178 if obj is not None:
1179 1179 found = True
1180 1180 ospace = 'IPython internal'
1181 1181 ismagic = True
1182 1182
1183 1183 # Last try: special-case some literals like '', [], {}, etc:
1184 1184 if not found and oname_head in ["''",'""','[]','{}','()']:
1185 1185 obj = eval(oname_head)
1186 1186 found = True
1187 1187 ospace = 'Interactive'
1188 1188
1189 1189 return {'found':found, 'obj':obj, 'namespace':ospace,
1190 1190 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1191 1191
1192 1192 def _ofind_property(self, oname, info):
1193 1193 """Second part of object finding, to look for property details."""
1194 1194 if info.found:
1195 1195 # Get the docstring of the class property if it exists.
1196 1196 path = oname.split('.')
1197 1197 root = '.'.join(path[:-1])
1198 1198 if info.parent is not None:
1199 1199 try:
1200 1200 target = getattr(info.parent, '__class__')
1201 1201 # The object belongs to a class instance.
1202 1202 try:
1203 1203 target = getattr(target, path[-1])
1204 1204 # The class defines the object.
1205 1205 if isinstance(target, property):
1206 1206 oname = root + '.__class__.' + path[-1]
1207 1207 info = Struct(self._ofind(oname))
1208 1208 except AttributeError: pass
1209 1209 except AttributeError: pass
1210 1210
1211 1211 # We return either the new info or the unmodified input if the object
1212 1212 # hadn't been found
1213 1213 return info
1214 1214
1215 1215 def _object_find(self, oname, namespaces=None):
1216 1216 """Find an object and return a struct with info about it."""
1217 1217 inf = Struct(self._ofind(oname, namespaces))
1218 1218 return Struct(self._ofind_property(oname, inf))
1219 1219
1220 1220 def _inspect(self, meth, oname, namespaces=None, **kw):
1221 1221 """Generic interface to the inspector system.
1222 1222
1223 1223 This function is meant to be called by pdef, pdoc & friends."""
1224 1224 info = self._object_find(oname)
1225 1225 if info.found:
1226 1226 pmethod = getattr(self.inspector, meth)
1227 1227 formatter = format_screen if info.ismagic else None
1228 1228 if meth == 'pdoc':
1229 1229 pmethod(info.obj, oname, formatter)
1230 1230 elif meth == 'pinfo':
1231 1231 pmethod(info.obj, oname, formatter, info, **kw)
1232 1232 else:
1233 1233 pmethod(info.obj, oname)
1234 1234 else:
1235 1235 print 'Object `%s` not found.' % oname
1236 1236 return 'not found' # so callers can take other action
1237 1237
1238 1238 def object_inspect(self, oname):
1239 1239 info = self._object_find(oname)
1240 1240 if info.found:
1241 1241 return self.inspector.info(info.obj, oname, info=info)
1242 1242 else:
1243 1243 return oinspect.object_info(name=oname, found=False)
1244 1244
1245 1245 #-------------------------------------------------------------------------
1246 1246 # Things related to history management
1247 1247 #-------------------------------------------------------------------------
1248 1248
1249 1249 def init_history(self):
1250 1250 """Sets up the command history, and starts regular autosaves."""
1251 1251 self.history_manager = HistoryManager(shell=self, config=self.config)
1252 1252
1253 def history_saving_wrapper(self, func):
1254 """ Wrap func for readline history saving
1255
1256 Convert func into callable that saves & restores
1257 history around the call """
1258
1259 if self.has_readline:
1260 from IPython.utils import rlineimpl as readline
1261 else:
1262 return func
1263
1264 def wrapper():
1265 self.save_history()
1266 try:
1267 func()
1268 finally:
1269 self.reload_history()
1270 return wrapper
1271
1272
1273 1253 #-------------------------------------------------------------------------
1274 1254 # Things related to exception handling and tracebacks (not debugging)
1275 1255 #-------------------------------------------------------------------------
1276 1256
1277 1257 def init_traceback_handlers(self, custom_exceptions):
1278 1258 # Syntax error handler.
1279 1259 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1280 1260
1281 1261 # The interactive one is initialized with an offset, meaning we always
1282 1262 # want to remove the topmost item in the traceback, which is our own
1283 1263 # internal code. Valid modes: ['Plain','Context','Verbose']
1284 1264 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1285 1265 color_scheme='NoColor',
1286 1266 tb_offset = 1,
1287 1267 check_cache=self.compile.check_cache)
1288 1268
1289 1269 # The instance will store a pointer to the system-wide exception hook,
1290 1270 # so that runtime code (such as magics) can access it. This is because
1291 1271 # during the read-eval loop, it may get temporarily overwritten.
1292 1272 self.sys_excepthook = sys.excepthook
1293 1273
1294 1274 # and add any custom exception handlers the user may have specified
1295 1275 self.set_custom_exc(*custom_exceptions)
1296 1276
1297 1277 # Set the exception mode
1298 1278 self.InteractiveTB.set_mode(mode=self.xmode)
1299 1279
1300 1280 def set_custom_exc(self, exc_tuple, handler):
1301 1281 """set_custom_exc(exc_tuple,handler)
1302 1282
1303 1283 Set a custom exception handler, which will be called if any of the
1304 1284 exceptions in exc_tuple occur in the mainloop (specifically, in the
1305 1285 run_code() method.
1306 1286
1307 1287 Inputs:
1308 1288
1309 1289 - exc_tuple: a *tuple* of valid exceptions to call the defined
1310 1290 handler for. It is very important that you use a tuple, and NOT A
1311 1291 LIST here, because of the way Python's except statement works. If
1312 1292 you only want to trap a single exception, use a singleton tuple:
1313 1293
1314 1294 exc_tuple == (MyCustomException,)
1315 1295
1316 1296 - handler: this must be defined as a function with the following
1317 1297 basic interface::
1318 1298
1319 1299 def my_handler(self, etype, value, tb, tb_offset=None)
1320 1300 ...
1321 1301 # The return value must be
1322 1302 return structured_traceback
1323 1303
1324 1304 This will be made into an instance method (via types.MethodType)
1325 1305 of IPython itself, and it will be called if any of the exceptions
1326 1306 listed in the exc_tuple are caught. If the handler is None, an
1327 1307 internal basic one is used, which just prints basic info.
1328 1308
1329 1309 WARNING: by putting in your own exception handler into IPython's main
1330 1310 execution loop, you run a very good chance of nasty crashes. This
1331 1311 facility should only be used if you really know what you are doing."""
1332 1312
1333 1313 assert type(exc_tuple)==type(()) , \
1334 1314 "The custom exceptions must be given AS A TUPLE."
1335 1315
1336 1316 def dummy_handler(self,etype,value,tb):
1337 1317 print '*** Simple custom exception handler ***'
1338 1318 print 'Exception type :',etype
1339 1319 print 'Exception value:',value
1340 1320 print 'Traceback :',tb
1341 1321 print 'Source code :','\n'.join(self.buffer)
1342 1322
1343 1323 if handler is None: handler = dummy_handler
1344 1324
1345 1325 self.CustomTB = types.MethodType(handler,self)
1346 1326 self.custom_exceptions = exc_tuple
1347 1327
1348 1328 def excepthook(self, etype, value, tb):
1349 1329 """One more defense for GUI apps that call sys.excepthook.
1350 1330
1351 1331 GUI frameworks like wxPython trap exceptions and call
1352 1332 sys.excepthook themselves. I guess this is a feature that
1353 1333 enables them to keep running after exceptions that would
1354 1334 otherwise kill their mainloop. This is a bother for IPython
1355 1335 which excepts to catch all of the program exceptions with a try:
1356 1336 except: statement.
1357 1337
1358 1338 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1359 1339 any app directly invokes sys.excepthook, it will look to the user like
1360 1340 IPython crashed. In order to work around this, we can disable the
1361 1341 CrashHandler and replace it with this excepthook instead, which prints a
1362 1342 regular traceback using our InteractiveTB. In this fashion, apps which
1363 1343 call sys.excepthook will generate a regular-looking exception from
1364 1344 IPython, and the CrashHandler will only be triggered by real IPython
1365 1345 crashes.
1366 1346
1367 1347 This hook should be used sparingly, only in places which are not likely
1368 1348 to be true IPython errors.
1369 1349 """
1370 1350 self.showtraceback((etype,value,tb),tb_offset=0)
1371 1351
1372 1352 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1373 1353 exception_only=False):
1374 1354 """Display the exception that just occurred.
1375 1355
1376 1356 If nothing is known about the exception, this is the method which
1377 1357 should be used throughout the code for presenting user tracebacks,
1378 1358 rather than directly invoking the InteractiveTB object.
1379 1359
1380 1360 A specific showsyntaxerror() also exists, but this method can take
1381 1361 care of calling it if needed, so unless you are explicitly catching a
1382 1362 SyntaxError exception, don't try to analyze the stack manually and
1383 1363 simply call this method."""
1384 1364
1385 1365 try:
1386 1366 if exc_tuple is None:
1387 1367 etype, value, tb = sys.exc_info()
1388 1368 else:
1389 1369 etype, value, tb = exc_tuple
1390 1370
1391 1371 if etype is None:
1392 1372 if hasattr(sys, 'last_type'):
1393 1373 etype, value, tb = sys.last_type, sys.last_value, \
1394 1374 sys.last_traceback
1395 1375 else:
1396 1376 self.write_err('No traceback available to show.\n')
1397 1377 return
1398 1378
1399 1379 if etype is SyntaxError:
1400 1380 # Though this won't be called by syntax errors in the input
1401 1381 # line, there may be SyntaxError cases whith imported code.
1402 1382 self.showsyntaxerror(filename)
1403 1383 elif etype is UsageError:
1404 1384 print "UsageError:", value
1405 1385 else:
1406 1386 # WARNING: these variables are somewhat deprecated and not
1407 1387 # necessarily safe to use in a threaded environment, but tools
1408 1388 # like pdb depend on their existence, so let's set them. If we
1409 1389 # find problems in the field, we'll need to revisit their use.
1410 1390 sys.last_type = etype
1411 1391 sys.last_value = value
1412 1392 sys.last_traceback = tb
1413 1393
1414 1394 if etype in self.custom_exceptions:
1415 1395 # FIXME: Old custom traceback objects may just return a
1416 1396 # string, in that case we just put it into a list
1417 1397 stb = self.CustomTB(etype, value, tb, tb_offset)
1418 1398 if isinstance(ctb, basestring):
1419 1399 stb = [stb]
1420 1400 else:
1421 1401 if exception_only:
1422 1402 stb = ['An exception has occurred, use %tb to see '
1423 1403 'the full traceback.\n']
1424 1404 stb.extend(self.InteractiveTB.get_exception_only(etype,
1425 1405 value))
1426 1406 else:
1427 1407 stb = self.InteractiveTB.structured_traceback(etype,
1428 1408 value, tb, tb_offset=tb_offset)
1429 1409 # FIXME: the pdb calling should be done by us, not by
1430 1410 # the code computing the traceback.
1431 1411 if self.InteractiveTB.call_pdb:
1432 1412 # pdb mucks up readline, fix it back
1433 1413 self.set_readline_completer()
1434 1414
1435 1415 # Actually show the traceback
1436 1416 self._showtraceback(etype, value, stb)
1437 1417
1438 1418 except KeyboardInterrupt:
1439 1419 self.write_err("\nKeyboardInterrupt\n")
1440 1420
1441 1421 def _showtraceback(self, etype, evalue, stb):
1442 1422 """Actually show a traceback.
1443 1423
1444 1424 Subclasses may override this method to put the traceback on a different
1445 1425 place, like a side channel.
1446 1426 """
1447 1427 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1448 1428
1449 1429 def showsyntaxerror(self, filename=None):
1450 1430 """Display the syntax error that just occurred.
1451 1431
1452 1432 This doesn't display a stack trace because there isn't one.
1453 1433
1454 1434 If a filename is given, it is stuffed in the exception instead
1455 1435 of what was there before (because Python's parser always uses
1456 1436 "<string>" when reading from a string).
1457 1437 """
1458 1438 etype, value, last_traceback = sys.exc_info()
1459 1439
1460 1440 # See note about these variables in showtraceback() above
1461 1441 sys.last_type = etype
1462 1442 sys.last_value = value
1463 1443 sys.last_traceback = last_traceback
1464 1444
1465 1445 if filename and etype is SyntaxError:
1466 1446 # Work hard to stuff the correct filename in the exception
1467 1447 try:
1468 1448 msg, (dummy_filename, lineno, offset, line) = value
1469 1449 except:
1470 1450 # Not the format we expect; leave it alone
1471 1451 pass
1472 1452 else:
1473 1453 # Stuff in the right filename
1474 1454 try:
1475 1455 # Assume SyntaxError is a class exception
1476 1456 value = SyntaxError(msg, (filename, lineno, offset, line))
1477 1457 except:
1478 1458 # If that failed, assume SyntaxError is a string
1479 1459 value = msg, (filename, lineno, offset, line)
1480 1460 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1481 1461 self._showtraceback(etype, value, stb)
1482 1462
1483 1463 #-------------------------------------------------------------------------
1484 1464 # Things related to readline
1485 1465 #-------------------------------------------------------------------------
1486 1466
1487 1467 def init_readline(self):
1488 1468 """Command history completion/saving/reloading."""
1489 1469
1490 1470 if self.readline_use:
1491 1471 import IPython.utils.rlineimpl as readline
1492 1472
1493 1473 self.rl_next_input = None
1494 1474 self.rl_do_indent = False
1495 1475
1496 1476 if not self.readline_use or not readline.have_readline:
1497 1477 self.has_readline = False
1498 1478 self.readline = None
1499 1479 # Set a number of methods that depend on readline to be no-op
1500 1480 self.set_readline_completer = no_op
1501 1481 self.set_custom_completer = no_op
1502 1482 self.set_completer_frame = no_op
1503 1483 warn('Readline services not available or not loaded.')
1504 1484 else:
1505 1485 self.has_readline = True
1506 1486 self.readline = readline
1507 1487 sys.modules['readline'] = readline
1508 1488
1509 1489 # Platform-specific configuration
1510 1490 if os.name == 'nt':
1511 1491 # FIXME - check with Frederick to see if we can harmonize
1512 1492 # naming conventions with pyreadline to avoid this
1513 1493 # platform-dependent check
1514 1494 self.readline_startup_hook = readline.set_pre_input_hook
1515 1495 else:
1516 1496 self.readline_startup_hook = readline.set_startup_hook
1517 1497
1518 1498 # Load user's initrc file (readline config)
1519 1499 # Or if libedit is used, load editrc.
1520 1500 inputrc_name = os.environ.get('INPUTRC')
1521 1501 if inputrc_name is None:
1522 1502 home_dir = get_home_dir()
1523 1503 if home_dir is not None:
1524 1504 inputrc_name = '.inputrc'
1525 1505 if readline.uses_libedit:
1526 1506 inputrc_name = '.editrc'
1527 1507 inputrc_name = os.path.join(home_dir, inputrc_name)
1528 1508 if os.path.isfile(inputrc_name):
1529 1509 try:
1530 1510 readline.read_init_file(inputrc_name)
1531 1511 except:
1532 1512 warn('Problems reading readline initialization file <%s>'
1533 1513 % inputrc_name)
1534 1514
1535 1515 # Configure readline according to user's prefs
1536 1516 # This is only done if GNU readline is being used. If libedit
1537 1517 # is being used (as on Leopard) the readline config is
1538 1518 # not run as the syntax for libedit is different.
1539 1519 if not readline.uses_libedit:
1540 1520 for rlcommand in self.readline_parse_and_bind:
1541 1521 #print "loading rl:",rlcommand # dbg
1542 1522 readline.parse_and_bind(rlcommand)
1543 1523
1544 1524 # Remove some chars from the delimiters list. If we encounter
1545 1525 # unicode chars, discard them.
1546 1526 delims = readline.get_completer_delims().encode("ascii", "ignore")
1547 1527 delims = delims.translate(None, self.readline_remove_delims)
1548 1528 delims = delims.replace(ESC_MAGIC, '')
1549 1529 readline.set_completer_delims(delims)
1550 1530 # otherwise we end up with a monster history after a while:
1551 1531 readline.set_history_length(self.history_length)
1552 1532
1553 1533 stdin_encoding = sys.stdin.encoding or "utf-8"
1554 1534
1555 1535 # Load the last 1000 lines from history
1556 1536 for _, _, cell in self.history_manager.get_tail(1000,
1557 1537 include_latest=True):
1558 1538 if cell.strip(): # Ignore blank lines
1559 1539 for line in cell.splitlines():
1560 1540 readline.add_history(line.encode(stdin_encoding))
1561 1541
1562 1542 # Configure auto-indent for all platforms
1563 1543 self.set_autoindent(self.autoindent)
1564 1544
1565 1545 def set_next_input(self, s):
1566 1546 """ Sets the 'default' input string for the next command line.
1567 1547
1568 1548 Requires readline.
1569 1549
1570 1550 Example:
1571 1551
1572 1552 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1573 1553 [D:\ipython]|2> Hello Word_ # cursor is here
1574 1554 """
1575 1555
1576 1556 self.rl_next_input = s
1577 1557
1578 1558 # Maybe move this to the terminal subclass?
1579 1559 def pre_readline(self):
1580 1560 """readline hook to be used at the start of each line.
1581 1561
1582 1562 Currently it handles auto-indent only."""
1583 1563
1584 1564 if self.rl_do_indent:
1585 1565 self.readline.insert_text(self._indent_current_str())
1586 1566 if self.rl_next_input is not None:
1587 1567 self.readline.insert_text(self.rl_next_input)
1588 1568 self.rl_next_input = None
1589 1569
1590 1570 def _indent_current_str(self):
1591 1571 """return the current level of indentation as a string"""
1592 1572 return self.input_splitter.indent_spaces * ' '
1593 1573
1594 1574 #-------------------------------------------------------------------------
1595 1575 # Things related to text completion
1596 1576 #-------------------------------------------------------------------------
1597 1577
1598 1578 def init_completer(self):
1599 1579 """Initialize the completion machinery.
1600 1580
1601 1581 This creates completion machinery that can be used by client code,
1602 1582 either interactively in-process (typically triggered by the readline
1603 1583 library), programatically (such as in test suites) or out-of-prcess
1604 1584 (typically over the network by remote frontends).
1605 1585 """
1606 1586 from IPython.core.completer import IPCompleter
1607 1587 from IPython.core.completerlib import (module_completer,
1608 1588 magic_run_completer, cd_completer)
1609 1589
1610 1590 self.Completer = IPCompleter(self,
1611 1591 self.user_ns,
1612 1592 self.user_global_ns,
1613 1593 self.readline_omit__names,
1614 1594 self.alias_manager.alias_table,
1615 1595 self.has_readline)
1616 1596
1617 1597 # Add custom completers to the basic ones built into IPCompleter
1618 1598 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1619 1599 self.strdispatchers['complete_command'] = sdisp
1620 1600 self.Completer.custom_completers = sdisp
1621 1601
1622 1602 self.set_hook('complete_command', module_completer, str_key = 'import')
1623 1603 self.set_hook('complete_command', module_completer, str_key = 'from')
1624 1604 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1625 1605 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1626 1606
1627 1607 # Only configure readline if we truly are using readline. IPython can
1628 1608 # do tab-completion over the network, in GUIs, etc, where readline
1629 1609 # itself may be absent
1630 1610 if self.has_readline:
1631 1611 self.set_readline_completer()
1632 1612
1633 1613 def complete(self, text, line=None, cursor_pos=None):
1634 1614 """Return the completed text and a list of completions.
1635 1615
1636 1616 Parameters
1637 1617 ----------
1638 1618
1639 1619 text : string
1640 1620 A string of text to be completed on. It can be given as empty and
1641 1621 instead a line/position pair are given. In this case, the
1642 1622 completer itself will split the line like readline does.
1643 1623
1644 1624 line : string, optional
1645 1625 The complete line that text is part of.
1646 1626
1647 1627 cursor_pos : int, optional
1648 1628 The position of the cursor on the input line.
1649 1629
1650 1630 Returns
1651 1631 -------
1652 1632 text : string
1653 1633 The actual text that was completed.
1654 1634
1655 1635 matches : list
1656 1636 A sorted list with all possible completions.
1657 1637
1658 1638 The optional arguments allow the completion to take more context into
1659 1639 account, and are part of the low-level completion API.
1660 1640
1661 1641 This is a wrapper around the completion mechanism, similar to what
1662 1642 readline does at the command line when the TAB key is hit. By
1663 1643 exposing it as a method, it can be used by other non-readline
1664 1644 environments (such as GUIs) for text completion.
1665 1645
1666 1646 Simple usage example:
1667 1647
1668 1648 In [1]: x = 'hello'
1669 1649
1670 1650 In [2]: _ip.complete('x.l')
1671 1651 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1672 1652 """
1673 1653
1674 1654 # Inject names into __builtin__ so we can complete on the added names.
1675 1655 with self.builtin_trap:
1676 1656 return self.Completer.complete(text, line, cursor_pos)
1677 1657
1678 1658 def set_custom_completer(self, completer, pos=0):
1679 1659 """Adds a new custom completer function.
1680 1660
1681 1661 The position argument (defaults to 0) is the index in the completers
1682 1662 list where you want the completer to be inserted."""
1683 1663
1684 1664 newcomp = types.MethodType(completer,self.Completer)
1685 1665 self.Completer.matchers.insert(pos,newcomp)
1686 1666
1687 1667 def set_readline_completer(self):
1688 1668 """Reset readline's completer to be our own."""
1689 1669 self.readline.set_completer(self.Completer.rlcomplete)
1690 1670
1691 1671 def set_completer_frame(self, frame=None):
1692 1672 """Set the frame of the completer."""
1693 1673 if frame:
1694 1674 self.Completer.namespace = frame.f_locals
1695 1675 self.Completer.global_namespace = frame.f_globals
1696 1676 else:
1697 1677 self.Completer.namespace = self.user_ns
1698 1678 self.Completer.global_namespace = self.user_global_ns
1699 1679
1700 1680 #-------------------------------------------------------------------------
1701 1681 # Things related to magics
1702 1682 #-------------------------------------------------------------------------
1703 1683
1704 1684 def init_magics(self):
1705 1685 # FIXME: Move the color initialization to the DisplayHook, which
1706 1686 # should be split into a prompt manager and displayhook. We probably
1707 1687 # even need a centralize colors management object.
1708 1688 self.magic_colors(self.colors)
1709 1689 # History was moved to a separate module
1710 1690 from . import history
1711 1691 history.init_ipython(self)
1712 1692
1713 1693 def magic(self,arg_s):
1714 1694 """Call a magic function by name.
1715 1695
1716 1696 Input: a string containing the name of the magic function to call and
1717 1697 any additional arguments to be passed to the magic.
1718 1698
1719 1699 magic('name -opt foo bar') is equivalent to typing at the ipython
1720 1700 prompt:
1721 1701
1722 1702 In[1]: %name -opt foo bar
1723 1703
1724 1704 To call a magic without arguments, simply use magic('name').
1725 1705
1726 1706 This provides a proper Python function to call IPython's magics in any
1727 1707 valid Python code you can type at the interpreter, including loops and
1728 1708 compound statements.
1729 1709 """
1730 1710 args = arg_s.split(' ',1)
1731 1711 magic_name = args[0]
1732 1712 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1733 1713
1734 1714 try:
1735 1715 magic_args = args[1]
1736 1716 except IndexError:
1737 1717 magic_args = ''
1738 1718 fn = getattr(self,'magic_'+magic_name,None)
1739 1719 if fn is None:
1740 1720 error("Magic function `%s` not found." % magic_name)
1741 1721 else:
1742 1722 magic_args = self.var_expand(magic_args,1)
1743 1723 with nested(self.builtin_trap,):
1744 1724 result = fn(magic_args)
1745 1725 return result
1746 1726
1747 1727 def define_magic(self, magicname, func):
1748 1728 """Expose own function as magic function for ipython
1749 1729
1750 1730 def foo_impl(self,parameter_s=''):
1751 1731 'My very own magic!. (Use docstrings, IPython reads them).'
1752 1732 print 'Magic function. Passed parameter is between < >:'
1753 1733 print '<%s>' % parameter_s
1754 1734 print 'The self object is:',self
1755 1735
1756 1736 self.define_magic('foo',foo_impl)
1757 1737 """
1758 1738
1759 1739 import new
1760 1740 im = types.MethodType(func,self)
1761 1741 old = getattr(self, "magic_" + magicname, None)
1762 1742 setattr(self, "magic_" + magicname, im)
1763 1743 return old
1764 1744
1765 1745 #-------------------------------------------------------------------------
1766 1746 # Things related to macros
1767 1747 #-------------------------------------------------------------------------
1768 1748
1769 1749 def define_macro(self, name, themacro):
1770 1750 """Define a new macro
1771 1751
1772 1752 Parameters
1773 1753 ----------
1774 1754 name : str
1775 1755 The name of the macro.
1776 1756 themacro : str or Macro
1777 1757 The action to do upon invoking the macro. If a string, a new
1778 1758 Macro object is created by passing the string to it.
1779 1759 """
1780 1760
1781 1761 from IPython.core import macro
1782 1762
1783 1763 if isinstance(themacro, basestring):
1784 1764 themacro = macro.Macro(themacro)
1785 1765 if not isinstance(themacro, macro.Macro):
1786 1766 raise ValueError('A macro must be a string or a Macro instance.')
1787 1767 self.user_ns[name] = themacro
1788 1768
1789 1769 #-------------------------------------------------------------------------
1790 1770 # Things related to the running of system commands
1791 1771 #-------------------------------------------------------------------------
1792 1772
1793 1773 def system(self, cmd):
1794 1774 """Call the given cmd in a subprocess.
1795 1775
1796 1776 Parameters
1797 1777 ----------
1798 1778 cmd : str
1799 1779 Command to execute (can not end in '&', as bacground processes are
1800 1780 not supported.
1801 1781 """
1802 1782 # We do not support backgrounding processes because we either use
1803 1783 # pexpect or pipes to read from. Users can always just call
1804 1784 # os.system() if they really want a background process.
1805 1785 if cmd.endswith('&'):
1806 1786 raise OSError("Background processes not supported.")
1807 1787
1808 1788 return system(self.var_expand(cmd, depth=2))
1809 1789
1810 1790 def getoutput(self, cmd, split=True):
1811 1791 """Get output (possibly including stderr) from a subprocess.
1812 1792
1813 1793 Parameters
1814 1794 ----------
1815 1795 cmd : str
1816 1796 Command to execute (can not end in '&', as background processes are
1817 1797 not supported.
1818 1798 split : bool, optional
1819 1799
1820 1800 If True, split the output into an IPython SList. Otherwise, an
1821 1801 IPython LSString is returned. These are objects similar to normal
1822 1802 lists and strings, with a few convenience attributes for easier
1823 1803 manipulation of line-based output. You can use '?' on them for
1824 1804 details.
1825 1805 """
1826 1806 if cmd.endswith('&'):
1827 1807 raise OSError("Background processes not supported.")
1828 1808 out = getoutput(self.var_expand(cmd, depth=2))
1829 1809 if split:
1830 1810 out = SList(out.splitlines())
1831 1811 else:
1832 1812 out = LSString(out)
1833 1813 return out
1834 1814
1835 1815 #-------------------------------------------------------------------------
1836 1816 # Things related to aliases
1837 1817 #-------------------------------------------------------------------------
1838 1818
1839 1819 def init_alias(self):
1840 1820 self.alias_manager = AliasManager(shell=self, config=self.config)
1841 1821 self.ns_table['alias'] = self.alias_manager.alias_table,
1842 1822
1843 1823 #-------------------------------------------------------------------------
1844 1824 # Things related to extensions and plugins
1845 1825 #-------------------------------------------------------------------------
1846 1826
1847 1827 def init_extension_manager(self):
1848 1828 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1849 1829
1850 1830 def init_plugin_manager(self):
1851 1831 self.plugin_manager = PluginManager(config=self.config)
1852 1832
1853 1833 #-------------------------------------------------------------------------
1854 1834 # Things related to payloads
1855 1835 #-------------------------------------------------------------------------
1856 1836
1857 1837 def init_payload(self):
1858 1838 self.payload_manager = PayloadManager(config=self.config)
1859 1839
1860 1840 #-------------------------------------------------------------------------
1861 1841 # Things related to the prefilter
1862 1842 #-------------------------------------------------------------------------
1863 1843
1864 1844 def init_prefilter(self):
1865 1845 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1866 1846 # Ultimately this will be refactored in the new interpreter code, but
1867 1847 # for now, we should expose the main prefilter method (there's legacy
1868 1848 # code out there that may rely on this).
1869 1849 self.prefilter = self.prefilter_manager.prefilter_lines
1870 1850
1871 1851 def auto_rewrite_input(self, cmd):
1872 1852 """Print to the screen the rewritten form of the user's command.
1873 1853
1874 1854 This shows visual feedback by rewriting input lines that cause
1875 1855 automatic calling to kick in, like::
1876 1856
1877 1857 /f x
1878 1858
1879 1859 into::
1880 1860
1881 1861 ------> f(x)
1882 1862
1883 1863 after the user's input prompt. This helps the user understand that the
1884 1864 input line was transformed automatically by IPython.
1885 1865 """
1886 1866 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1887 1867
1888 1868 try:
1889 1869 # plain ascii works better w/ pyreadline, on some machines, so
1890 1870 # we use it and only print uncolored rewrite if we have unicode
1891 1871 rw = str(rw)
1892 1872 print >> IPython.utils.io.Term.cout, rw
1893 1873 except UnicodeEncodeError:
1894 1874 print "------> " + cmd
1895 1875
1896 1876 #-------------------------------------------------------------------------
1897 1877 # Things related to extracting values/expressions from kernel and user_ns
1898 1878 #-------------------------------------------------------------------------
1899 1879
1900 1880 def _simple_error(self):
1901 1881 etype, value = sys.exc_info()[:2]
1902 1882 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1903 1883
1904 1884 def user_variables(self, names):
1905 1885 """Get a list of variable names from the user's namespace.
1906 1886
1907 1887 Parameters
1908 1888 ----------
1909 1889 names : list of strings
1910 1890 A list of names of variables to be read from the user namespace.
1911 1891
1912 1892 Returns
1913 1893 -------
1914 1894 A dict, keyed by the input names and with the repr() of each value.
1915 1895 """
1916 1896 out = {}
1917 1897 user_ns = self.user_ns
1918 1898 for varname in names:
1919 1899 try:
1920 1900 value = repr(user_ns[varname])
1921 1901 except:
1922 1902 value = self._simple_error()
1923 1903 out[varname] = value
1924 1904 return out
1925 1905
1926 1906 def user_expressions(self, expressions):
1927 1907 """Evaluate a dict of expressions in the user's namespace.
1928 1908
1929 1909 Parameters
1930 1910 ----------
1931 1911 expressions : dict
1932 1912 A dict with string keys and string values. The expression values
1933 1913 should be valid Python expressions, each of which will be evaluated
1934 1914 in the user namespace.
1935 1915
1936 1916 Returns
1937 1917 -------
1938 1918 A dict, keyed like the input expressions dict, with the repr() of each
1939 1919 value.
1940 1920 """
1941 1921 out = {}
1942 1922 user_ns = self.user_ns
1943 1923 global_ns = self.user_global_ns
1944 1924 for key, expr in expressions.iteritems():
1945 1925 try:
1946 1926 value = repr(eval(expr, global_ns, user_ns))
1947 1927 except:
1948 1928 value = self._simple_error()
1949 1929 out[key] = value
1950 1930 return out
1951 1931
1952 1932 #-------------------------------------------------------------------------
1953 1933 # Things related to the running of code
1954 1934 #-------------------------------------------------------------------------
1955 1935
1956 1936 def ex(self, cmd):
1957 1937 """Execute a normal python statement in user namespace."""
1958 1938 with nested(self.builtin_trap,):
1959 1939 exec cmd in self.user_global_ns, self.user_ns
1960 1940
1961 1941 def ev(self, expr):
1962 1942 """Evaluate python expression expr in user namespace.
1963 1943
1964 1944 Returns the result of evaluation
1965 1945 """
1966 1946 with nested(self.builtin_trap,):
1967 1947 return eval(expr, self.user_global_ns, self.user_ns)
1968 1948
1969 1949 def safe_execfile(self, fname, *where, **kw):
1970 1950 """A safe version of the builtin execfile().
1971 1951
1972 1952 This version will never throw an exception, but instead print
1973 1953 helpful error messages to the screen. This only works on pure
1974 1954 Python files with the .py extension.
1975 1955
1976 1956 Parameters
1977 1957 ----------
1978 1958 fname : string
1979 1959 The name of the file to be executed.
1980 1960 where : tuple
1981 1961 One or two namespaces, passed to execfile() as (globals,locals).
1982 1962 If only one is given, it is passed as both.
1983 1963 exit_ignore : bool (False)
1984 1964 If True, then silence SystemExit for non-zero status (it is always
1985 1965 silenced for zero status, as it is so common).
1986 1966 """
1987 1967 kw.setdefault('exit_ignore', False)
1988 1968
1989 1969 fname = os.path.abspath(os.path.expanduser(fname))
1990 1970 # Make sure we have a .py file
1991 1971 if not fname.endswith('.py'):
1992 1972 warn('File must end with .py to be run using execfile: <%s>' % fname)
1993 1973
1994 1974 # Make sure we can open the file
1995 1975 try:
1996 1976 with open(fname) as thefile:
1997 1977 pass
1998 1978 except:
1999 1979 warn('Could not open file <%s> for safe execution.' % fname)
2000 1980 return
2001 1981
2002 1982 # Find things also in current directory. This is needed to mimic the
2003 1983 # behavior of running a script from the system command line, where
2004 1984 # Python inserts the script's directory into sys.path
2005 1985 dname = os.path.dirname(fname)
2006 1986
2007 1987 if isinstance(fname, unicode):
2008 1988 # execfile uses default encoding instead of filesystem encoding
2009 1989 # so unicode filenames will fail
2010 1990 fname = fname.encode(sys.getfilesystemencoding() or sys.getdefaultencoding())
2011 1991
2012 1992 with prepended_to_syspath(dname):
2013 1993 try:
2014 1994 execfile(fname,*where)
2015 1995 except SystemExit, status:
2016 1996 # If the call was made with 0 or None exit status (sys.exit(0)
2017 1997 # or sys.exit() ), don't bother showing a traceback, as both of
2018 1998 # these are considered normal by the OS:
2019 1999 # > python -c'import sys;sys.exit(0)'; echo $?
2020 2000 # 0
2021 2001 # > python -c'import sys;sys.exit()'; echo $?
2022 2002 # 0
2023 2003 # For other exit status, we show the exception unless
2024 2004 # explicitly silenced, but only in short form.
2025 2005 if status.code not in (0, None) and not kw['exit_ignore']:
2026 2006 self.showtraceback(exception_only=True)
2027 2007 except:
2028 2008 self.showtraceback()
2029 2009
2030 2010 def safe_execfile_ipy(self, fname):
2031 2011 """Like safe_execfile, but for .ipy files with IPython syntax.
2032 2012
2033 2013 Parameters
2034 2014 ----------
2035 2015 fname : str
2036 2016 The name of the file to execute. The filename must have a
2037 2017 .ipy extension.
2038 2018 """
2039 2019 fname = os.path.abspath(os.path.expanduser(fname))
2040 2020
2041 2021 # Make sure we have a .py file
2042 2022 if not fname.endswith('.ipy'):
2043 2023 warn('File must end with .py to be run using execfile: <%s>' % fname)
2044 2024
2045 2025 # Make sure we can open the file
2046 2026 try:
2047 2027 with open(fname) as thefile:
2048 2028 pass
2049 2029 except:
2050 2030 warn('Could not open file <%s> for safe execution.' % fname)
2051 2031 return
2052 2032
2053 2033 # Find things also in current directory. This is needed to mimic the
2054 2034 # behavior of running a script from the system command line, where
2055 2035 # Python inserts the script's directory into sys.path
2056 2036 dname = os.path.dirname(fname)
2057 2037
2058 2038 with prepended_to_syspath(dname):
2059 2039 try:
2060 2040 with open(fname) as thefile:
2061 2041 # self.run_cell currently captures all exceptions
2062 2042 # raised in user code. It would be nice if there were
2063 2043 # versions of runlines, execfile that did raise, so
2064 2044 # we could catch the errors.
2065 self.run_cell(thefile.read())
2045 self.run_cell(thefile.read(), store_history=False)
2066 2046 except:
2067 2047 self.showtraceback()
2068 2048 warn('Unknown failure executing file: <%s>' % fname)
2069 2049
2070 2050 def run_cell(self, cell, store_history=True):
2071 2051 """Run the contents of an entire multiline 'cell' of code, and store it
2072 2052 in the history.
2073 2053
2074 2054 The cell is split into separate blocks which can be executed
2075 2055 individually. Then, based on how many blocks there are, they are
2076 2056 executed as follows:
2077 2057
2078 2058 - A single block: 'single' mode. If it is also a single line, dynamic
2079 2059 transformations, including automagic and macros, will be applied.
2080 2060
2081 2061 If there's more than one block, it depends:
2082 2062
2083 2063 - if the last one is no more than two lines long, run all but the last
2084 2064 in 'exec' mode and the very last one in 'single' mode. This makes it
2085 2065 easy to type simple expressions at the end to see computed values. -
2086 2066 otherwise (last one is also multiline), run all in 'exec' mode
2087 2067
2088 2068 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2089 2069 results are displayed and output prompts are computed. In 'exec' mode,
2090 2070 no results are displayed unless :func:`print` is called explicitly;
2091 2071 this mode is more akin to running a script.
2092 2072
2093 2073 Parameters
2094 2074 ----------
2095 2075 cell : str
2096 2076 A single or multiline string.
2097 2077 """
2098 2078 # Store the untransformed code
2099 2079 raw_cell = cell
2100 2080
2101 2081 # Code transformation and execution must take place with our
2102 2082 # modifications to builtins.
2103 2083 with self.builtin_trap:
2104 2084
2105 2085 # We need to break up the input into executable blocks that can
2106 2086 # be runin 'single' mode, to provide comfortable user behavior.
2107 2087 blocks = self.input_splitter.split_blocks(cell)
2108 2088
2109 2089 if not blocks: # Blank cell
2110 2090 return
2111 2091
2112 2092 # We only do dynamic transforms on a single line. But a macro
2113 2093 # can be expanded to several lines, so we need to split it
2114 2094 # into input blocks again.
2115 2095 if len(cell.splitlines()) <= 1:
2116 2096 cell = self.prefilter_manager.prefilter_line(blocks[0])
2117 2097 blocks = self.input_splitter.split_blocks(cell)
2118 2098
2119 2099 # Store the 'ipython' version of the cell as well, since
2120 2100 # that's what needs to go into the translated history and get
2121 2101 # executed (the original cell may contain non-python syntax).
2122 2102 cell = ''.join(blocks)
2123 2103
2124 2104 # Store raw and processed history
2125 2105 if store_history:
2126 2106 self.history_manager.store_inputs(self.execution_count,
2127 2107 cell, raw_cell)
2128 2108
2129 2109 self.logger.log(cell, raw_cell)
2130 2110
2131 2111 # All user code execution should take place with our
2132 2112 # modified displayhook.
2133 2113 with self.display_trap:
2134 2114 # Single-block input should behave like an interactive prompt
2135 2115 if len(blocks) == 1:
2136 2116 out = self.run_source(blocks[0])
2137 2117 # Write output to the database. Does nothing unless
2138 2118 # history output logging is enabled.
2139 2119 if store_history:
2140 2120 self.history_manager.store_output(self.execution_count)
2141 2121 # Since we return here, we need to update the
2142 2122 # execution count
2143 2123 self.execution_count += 1
2144 2124 return out
2145 2125
2146 2126 # In multi-block input, if the last block is a simple (one-two
2147 2127 # lines) expression, run it in single mode so it produces output.
2148 2128 # Otherwise just run it all in 'exec' mode. This seems like a
2149 2129 # reasonable usability design.
2150 2130 last = blocks[-1]
2151 2131 last_nlines = len(last.splitlines())
2152 2132
2153 2133 if last_nlines < 2:
2154 2134 # Here we consider the cell split between 'body' and 'last',
2155 2135 # store all history and execute 'body', and if successful, then
2156 2136 # proceed to execute 'last'.
2157 2137
2158 2138 # Get the main body to run as a cell
2159 2139 ipy_body = ''.join(blocks[:-1])
2160 2140 retcode = self.run_source(ipy_body, symbol='exec',
2161 2141 post_execute=False)
2162 2142 if retcode==0:
2163 2143 # Last expression compiled as 'single' so it
2164 2144 # produces output
2165 2145 self.run_source(last)
2166 2146 else:
2167 2147 # Run the whole cell as one entity, storing both raw and
2168 2148 # processed input in history
2169 2149 self.run_source(cell, symbol='exec')
2170 2150
2171 2151 # Write output to the database. Does nothing unless
2172 2152 # history output logging is enabled.
2173 2153 if store_history:
2174 2154 self.history_manager.store_output(self.execution_count)
2175 2155 # Each cell is a *single* input, regardless of how many lines it has
2176 2156 self.execution_count += 1
2177 2157
2178 2158 # PENDING REMOVAL: this method is slated for deletion, once our new
2179 2159 # input logic has been 100% moved to frontends and is stable.
2180 2160 def runlines(self, lines, clean=False):
2181 2161 """Run a string of one or more lines of source.
2182 2162
2183 2163 This method is capable of running a string containing multiple source
2184 2164 lines, as if they had been entered at the IPython prompt. Since it
2185 2165 exposes IPython's processing machinery, the given strings can contain
2186 2166 magic calls (%magic), special shell access (!cmd), etc.
2187 2167 """
2188 2168
2189 2169 if not isinstance(lines, (list, tuple)):
2190 2170 lines = lines.splitlines()
2191 2171
2192 2172 if clean:
2193 2173 lines = self._cleanup_ipy_script(lines)
2194 2174
2195 2175 # We must start with a clean buffer, in case this is run from an
2196 2176 # interactive IPython session (via a magic, for example).
2197 2177 self.reset_buffer()
2198 2178
2199 2179 # Since we will prefilter all lines, store the user's raw input too
2200 2180 # before we apply any transformations
2201 2181 self.buffer_raw[:] = [ l+'\n' for l in lines]
2202 2182
2203 2183 more = False
2204 2184 prefilter_lines = self.prefilter_manager.prefilter_lines
2205 2185 with nested(self.builtin_trap, self.display_trap):
2206 2186 for line in lines:
2207 2187 # skip blank lines so we don't mess up the prompt counter, but
2208 2188 # do NOT skip even a blank line if we are in a code block (more
2209 2189 # is true)
2210 2190
2211 2191 if line or more:
2212 2192 more = self.push_line(prefilter_lines(line, more))
2213 2193 # IPython's run_source returns None if there was an error
2214 2194 # compiling the code. This allows us to stop processing
2215 2195 # right away, so the user gets the error message at the
2216 2196 # right place.
2217 2197 if more is None:
2218 2198 break
2219 2199 # final newline in case the input didn't have it, so that the code
2220 2200 # actually does get executed
2221 2201 if more:
2222 2202 self.push_line('\n')
2223 2203
2224 2204 def run_source(self, source, filename=None,
2225 2205 symbol='single', post_execute=True):
2226 2206 """Compile and run some source in the interpreter.
2227 2207
2228 2208 Arguments are as for compile_command().
2229 2209
2230 2210 One several things can happen:
2231 2211
2232 2212 1) The input is incorrect; compile_command() raised an
2233 2213 exception (SyntaxError or OverflowError). A syntax traceback
2234 2214 will be printed by calling the showsyntaxerror() method.
2235 2215
2236 2216 2) The input is incomplete, and more input is required;
2237 2217 compile_command() returned None. Nothing happens.
2238 2218
2239 2219 3) The input is complete; compile_command() returned a code
2240 2220 object. The code is executed by calling self.run_code() (which
2241 2221 also handles run-time exceptions, except for SystemExit).
2242 2222
2243 2223 The return value is:
2244 2224
2245 2225 - True in case 2
2246 2226
2247 2227 - False in the other cases, unless an exception is raised, where
2248 2228 None is returned instead. This can be used by external callers to
2249 2229 know whether to continue feeding input or not.
2250 2230
2251 2231 The return value can be used to decide whether to use sys.ps1 or
2252 2232 sys.ps2 to prompt the next line."""
2253 2233
2254 2234 # We need to ensure that the source is unicode from here on.
2255 2235 if type(source)==str:
2256 2236 usource = source.decode(self.stdin_encoding)
2257 2237 else:
2258 2238 usource = source
2259 2239
2260 2240 if False: # dbg
2261 2241 print 'Source:', repr(source) # dbg
2262 2242 print 'USource:', repr(usource) # dbg
2263 2243 print 'type:', type(source) # dbg
2264 2244 print 'encoding', self.stdin_encoding # dbg
2265 2245
2266 2246 try:
2267 2247 code = self.compile(usource, symbol, self.execution_count)
2268 2248 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2269 2249 # Case 1
2270 2250 self.showsyntaxerror(filename)
2271 2251 return None
2272 2252
2273 2253 if code is None:
2274 2254 # Case 2
2275 2255 return True
2276 2256
2277 2257 # Case 3
2278 2258 # We store the code object so that threaded shells and
2279 2259 # custom exception handlers can access all this info if needed.
2280 2260 # The source corresponding to this can be obtained from the
2281 2261 # buffer attribute as '\n'.join(self.buffer).
2282 2262 self.code_to_run = code
2283 2263 # now actually execute the code object
2284 2264 if self.run_code(code, post_execute) == 0:
2285 2265 return False
2286 2266 else:
2287 2267 return None
2288 2268
2289 2269 # For backwards compatibility
2290 2270 runsource = run_source
2291 2271
2292 2272 def run_code(self, code_obj, post_execute=True):
2293 2273 """Execute a code object.
2294 2274
2295 2275 When an exception occurs, self.showtraceback() is called to display a
2296 2276 traceback.
2297 2277
2298 2278 Return value: a flag indicating whether the code to be run completed
2299 2279 successfully:
2300 2280
2301 2281 - 0: successful execution.
2302 2282 - 1: an error occurred.
2303 2283 """
2304 2284
2305 2285 # Set our own excepthook in case the user code tries to call it
2306 2286 # directly, so that the IPython crash handler doesn't get triggered
2307 2287 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2308 2288
2309 2289 # we save the original sys.excepthook in the instance, in case config
2310 2290 # code (such as magics) needs access to it.
2311 2291 self.sys_excepthook = old_excepthook
2312 2292 outflag = 1 # happens in more places, so it's easier as default
2313 2293 try:
2314 2294 try:
2315 2295 self.hooks.pre_run_code_hook()
2316 2296 #rprint('Running code', repr(code_obj)) # dbg
2317 2297 exec code_obj in self.user_global_ns, self.user_ns
2318 2298 finally:
2319 2299 # Reset our crash handler in place
2320 2300 sys.excepthook = old_excepthook
2321 2301 except SystemExit:
2322 2302 self.reset_buffer()
2323 2303 self.showtraceback(exception_only=True)
2324 2304 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2325 2305 except self.custom_exceptions:
2326 2306 etype,value,tb = sys.exc_info()
2327 2307 self.CustomTB(etype,value,tb)
2328 2308 except:
2329 2309 self.showtraceback()
2330 2310 else:
2331 2311 outflag = 0
2332 2312 if softspace(sys.stdout, 0):
2333 2313 print
2334 2314
2335 2315 # Execute any registered post-execution functions. Here, any errors
2336 2316 # are reported only minimally and just on the terminal, because the
2337 2317 # main exception channel may be occupied with a user traceback.
2338 2318 # FIXME: we need to think this mechanism a little more carefully.
2339 2319 if post_execute:
2340 2320 for func in self._post_execute:
2341 2321 try:
2342 2322 func()
2343 2323 except:
2344 2324 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2345 2325 func
2346 2326 print >> io.Term.cout, head
2347 2327 print >> io.Term.cout, self._simple_error()
2348 2328 print >> io.Term.cout, 'Removing from post_execute'
2349 2329 self._post_execute.remove(func)
2350 2330
2351 2331 # Flush out code object which has been run (and source)
2352 2332 self.code_to_run = None
2353 2333 return outflag
2354 2334
2355 2335 # For backwards compatibility
2356 2336 runcode = run_code
2357 2337
2358 2338 # PENDING REMOVAL: this method is slated for deletion, once our new
2359 2339 # input logic has been 100% moved to frontends and is stable.
2360 2340 def push_line(self, line):
2361 2341 """Push a line to the interpreter.
2362 2342
2363 2343 The line should not have a trailing newline; it may have
2364 2344 internal newlines. The line is appended to a buffer and the
2365 2345 interpreter's run_source() method is called with the
2366 2346 concatenated contents of the buffer as source. If this
2367 2347 indicates that the command was executed or invalid, the buffer
2368 2348 is reset; otherwise, the command is incomplete, and the buffer
2369 2349 is left as it was after the line was appended. The return
2370 2350 value is 1 if more input is required, 0 if the line was dealt
2371 2351 with in some way (this is the same as run_source()).
2372 2352 """
2373 2353
2374 2354 # autoindent management should be done here, and not in the
2375 2355 # interactive loop, since that one is only seen by keyboard input. We
2376 2356 # need this done correctly even for code run via runlines (which uses
2377 2357 # push).
2378 2358
2379 2359 #print 'push line: <%s>' % line # dbg
2380 2360 self.buffer.append(line)
2381 2361 full_source = '\n'.join(self.buffer)
2382 2362 more = self.run_source(full_source, self.filename)
2383 2363 if not more:
2384 2364 self.history_manager.store_inputs(self.execution_count,
2385 2365 '\n'.join(self.buffer_raw), full_source)
2386 2366 self.reset_buffer()
2387 2367 self.execution_count += 1
2388 2368 return more
2389 2369
2390 2370 def reset_buffer(self):
2391 2371 """Reset the input buffer."""
2392 2372 self.buffer[:] = []
2393 2373 self.buffer_raw[:] = []
2394 2374 self.input_splitter.reset()
2395 2375
2396 2376 # For backwards compatibility
2397 2377 resetbuffer = reset_buffer
2398 2378
2399 2379 def _is_secondary_block_start(self, s):
2400 2380 if not s.endswith(':'):
2401 2381 return False
2402 2382 if (s.startswith('elif') or
2403 2383 s.startswith('else') or
2404 2384 s.startswith('except') or
2405 2385 s.startswith('finally')):
2406 2386 return True
2407 2387
2408 2388 def _cleanup_ipy_script(self, script):
2409 2389 """Make a script safe for self.runlines()
2410 2390
2411 2391 Currently, IPython is lines based, with blocks being detected by
2412 2392 empty lines. This is a problem for block based scripts that may
2413 2393 not have empty lines after blocks. This script adds those empty
2414 2394 lines to make scripts safe for running in the current line based
2415 2395 IPython.
2416 2396 """
2417 2397 res = []
2418 2398 lines = script.splitlines()
2419 2399 level = 0
2420 2400
2421 2401 for l in lines:
2422 2402 lstripped = l.lstrip()
2423 2403 stripped = l.strip()
2424 2404 if not stripped:
2425 2405 continue
2426 2406 newlevel = len(l) - len(lstripped)
2427 2407 if level > 0 and newlevel == 0 and \
2428 2408 not self._is_secondary_block_start(stripped):
2429 2409 # add empty line
2430 2410 res.append('')
2431 2411 res.append(l)
2432 2412 level = newlevel
2433 2413
2434 2414 return '\n'.join(res) + '\n'
2435 2415
2436 2416 #-------------------------------------------------------------------------
2437 2417 # Things related to GUI support and pylab
2438 2418 #-------------------------------------------------------------------------
2439 2419
2440 2420 def enable_pylab(self, gui=None):
2441 2421 raise NotImplementedError('Implement enable_pylab in a subclass')
2442 2422
2443 2423 #-------------------------------------------------------------------------
2444 2424 # Utilities
2445 2425 #-------------------------------------------------------------------------
2446 2426
2447 2427 def var_expand(self,cmd,depth=0):
2448 2428 """Expand python variables in a string.
2449 2429
2450 2430 The depth argument indicates how many frames above the caller should
2451 2431 be walked to look for the local namespace where to expand variables.
2452 2432
2453 2433 The global namespace for expansion is always the user's interactive
2454 2434 namespace.
2455 2435 """
2456 2436 res = ItplNS(cmd, self.user_ns, # globals
2457 2437 # Skip our own frame in searching for locals:
2458 2438 sys._getframe(depth+1).f_locals # locals
2459 2439 )
2460 2440 return str(res).decode(res.codec)
2461 2441
2462 2442 def mktempfile(self, data=None, prefix='ipython_edit_'):
2463 2443 """Make a new tempfile and return its filename.
2464 2444
2465 2445 This makes a call to tempfile.mktemp, but it registers the created
2466 2446 filename internally so ipython cleans it up at exit time.
2467 2447
2468 2448 Optional inputs:
2469 2449
2470 2450 - data(None): if data is given, it gets written out to the temp file
2471 2451 immediately, and the file is closed again."""
2472 2452
2473 2453 filename = tempfile.mktemp('.py', prefix)
2474 2454 self.tempfiles.append(filename)
2475 2455
2476 2456 if data:
2477 2457 tmp_file = open(filename,'w')
2478 2458 tmp_file.write(data)
2479 2459 tmp_file.close()
2480 2460 return filename
2481 2461
2482 2462 # TODO: This should be removed when Term is refactored.
2483 2463 def write(self,data):
2484 2464 """Write a string to the default output"""
2485 2465 io.Term.cout.write(data)
2486 2466
2487 2467 # TODO: This should be removed when Term is refactored.
2488 2468 def write_err(self,data):
2489 2469 """Write a string to the default error output"""
2490 2470 io.Term.cerr.write(data)
2491 2471
2492 2472 def ask_yes_no(self,prompt,default=True):
2493 2473 if self.quiet:
2494 2474 return True
2495 2475 return ask_yes_no(prompt,default)
2496 2476
2497 2477 def show_usage(self):
2498 2478 """Show a usage message"""
2499 2479 page.page(IPython.core.usage.interactive_usage)
2500 2480
2501 2481 #-------------------------------------------------------------------------
2502 2482 # Things related to IPython exiting
2503 2483 #-------------------------------------------------------------------------
2504 2484 def atexit_operations(self):
2505 2485 """This will be executed at the time of exit.
2506 2486
2507 2487 Cleanup operations and saving of persistent data that is done
2508 2488 unconditionally by IPython should be performed here.
2509 2489
2510 2490 For things that may depend on startup flags or platform specifics (such
2511 2491 as having readline or not), register a separate atexit function in the
2512 2492 code that has the appropriate information, rather than trying to
2513 2493 clutter
2514 2494 """
2515 2495 # Cleanup all tempfiles left around
2516 2496 for tfile in self.tempfiles:
2517 2497 try:
2518 2498 os.unlink(tfile)
2519 2499 except OSError:
2520 2500 pass
2521 2501
2522 2502 # Close the history session (this stores the end time and line count)
2523 2503 self.history_manager.end_session()
2524 2504
2525 2505 # Clear all user namespaces to release all references cleanly.
2526 2506 self.reset(new_session=False)
2527 2507
2528 2508 # Run user hooks
2529 2509 self.hooks.shutdown_hook()
2530 2510
2531 2511 def cleanup(self):
2532 2512 self.restore_sys_module_state()
2533 2513
2534 2514
2535 2515 class InteractiveShellABC(object):
2536 2516 """An abstract base class for InteractiveShell."""
2537 2517 __metaclass__ = abc.ABCMeta
2538 2518
2539 2519 InteractiveShellABC.register(InteractiveShell)
@@ -1,3450 +1,3446
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 from cStringIO import StringIO
29 29 from getopt import getopt,GetoptError
30 30 from pprint import pformat
31 31
32 32 # cProfile was added in Python2.5
33 33 try:
34 34 import cProfile as profile
35 35 import pstats
36 36 except ImportError:
37 37 # profile isn't bundled by default in Debian for license reasons
38 38 try:
39 39 import profile,pstats
40 40 except ImportError:
41 41 profile = pstats = None
42 42
43 43 import IPython
44 44 from IPython.core import debugger, oinspect
45 45 from IPython.core.error import TryNext
46 46 from IPython.core.error import UsageError
47 47 from IPython.core.fakemodule import FakeModule
48 48 from IPython.core.macro import Macro
49 49 from IPython.core import page
50 50 from IPython.core.prefilter import ESC_MAGIC
51 51 from IPython.lib.pylabtools import mpl_runner
52 52 from IPython.external.Itpl import itpl, printpl
53 53 from IPython.testing import decorators as testdec
54 54 from IPython.utils.io import file_read, nlprint
55 55 import IPython.utils.io
56 56 from IPython.utils.path import get_py_filename
57 57 from IPython.utils.process import arg_split, abbrev_cwd
58 58 from IPython.utils.terminal import set_term_title
59 59 from IPython.utils.text import LSString, SList, format_screen
60 60 from IPython.utils.timing import clock, clock2
61 61 from IPython.utils.warn import warn, error
62 62 from IPython.utils.ipstruct import Struct
63 63 import IPython.utils.generics
64 64
65 65 #-----------------------------------------------------------------------------
66 66 # Utility functions
67 67 #-----------------------------------------------------------------------------
68 68
69 69 def on_off(tag):
70 70 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
71 71 return ['OFF','ON'][tag]
72 72
73 73 class Bunch: pass
74 74
75 75 def compress_dhist(dh):
76 76 head, tail = dh[:-10], dh[-10:]
77 77
78 78 newhead = []
79 79 done = set()
80 80 for h in head:
81 81 if h in done:
82 82 continue
83 83 newhead.append(h)
84 84 done.add(h)
85 85
86 86 return newhead + tail
87 87
88 88
89 89 #***************************************************************************
90 90 # Main class implementing Magic functionality
91 91
92 92 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
93 93 # on construction of the main InteractiveShell object. Something odd is going
94 94 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
95 95 # eventually this needs to be clarified.
96 96 # BG: This is because InteractiveShell inherits from this, but is itself a
97 97 # Configurable. This messes up the MRO in some way. The fix is that we need to
98 98 # make Magic a configurable that InteractiveShell does not subclass.
99 99
100 100 class Magic:
101 101 """Magic functions for InteractiveShell.
102 102
103 103 Shell functions which can be reached as %function_name. All magic
104 104 functions should accept a string, which they can parse for their own
105 105 needs. This can make some functions easier to type, eg `%cd ../`
106 106 vs. `%cd("../")`
107 107
108 108 ALL definitions MUST begin with the prefix magic_. The user won't need it
109 109 at the command line, but it is is needed in the definition. """
110 110
111 111 # class globals
112 112 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
113 113 'Automagic is ON, % prefix NOT needed for magic functions.']
114 114
115 115 #......................................................................
116 116 # some utility functions
117 117
118 118 def __init__(self,shell):
119 119
120 120 self.options_table = {}
121 121 if profile is None:
122 122 self.magic_prun = self.profile_missing_notice
123 123 self.shell = shell
124 124
125 125 # namespace for holding state we may need
126 126 self._magic_state = Bunch()
127 127
128 128 def profile_missing_notice(self, *args, **kwargs):
129 129 error("""\
130 130 The profile module could not be found. It has been removed from the standard
131 131 python packages because of its non-free license. To use profiling, install the
132 132 python-profiler package from non-free.""")
133 133
134 134 def default_option(self,fn,optstr):
135 135 """Make an entry in the options_table for fn, with value optstr"""
136 136
137 137 if fn not in self.lsmagic():
138 138 error("%s is not a magic function" % fn)
139 139 self.options_table[fn] = optstr
140 140
141 141 def lsmagic(self):
142 142 """Return a list of currently available magic functions.
143 143
144 144 Gives a list of the bare names after mangling (['ls','cd', ...], not
145 145 ['magic_ls','magic_cd',...]"""
146 146
147 147 # FIXME. This needs a cleanup, in the way the magics list is built.
148 148
149 149 # magics in class definition
150 150 class_magic = lambda fn: fn.startswith('magic_') and \
151 151 callable(Magic.__dict__[fn])
152 152 # in instance namespace (run-time user additions)
153 153 inst_magic = lambda fn: fn.startswith('magic_') and \
154 154 callable(self.__dict__[fn])
155 155 # and bound magics by user (so they can access self):
156 156 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
157 157 callable(self.__class__.__dict__[fn])
158 158 magics = filter(class_magic,Magic.__dict__.keys()) + \
159 159 filter(inst_magic,self.__dict__.keys()) + \
160 160 filter(inst_bound_magic,self.__class__.__dict__.keys())
161 161 out = []
162 162 for fn in set(magics):
163 163 out.append(fn.replace('magic_','',1))
164 164 out.sort()
165 165 return out
166 166
167 167 def extract_input_lines(self, range_str, raw=False):
168 168 """Return as a string a set of input history slices.
169 169
170 170 Inputs:
171 171
172 172 - range_str: the set of slices is given as a string, like
173 173 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
174 174 which get their arguments as strings. The number before the / is the
175 175 session number: ~n goes n back from the current session.
176 176
177 177 Optional inputs:
178 178
179 179 - raw(False): by default, the processed input is used. If this is
180 180 true, the raw input history is used instead.
181 181
182 182 Note that slices can be called with two notations:
183 183
184 184 N:M -> standard python form, means including items N...(M-1).
185 185
186 186 N-M -> include items N..M (closed endpoint)."""
187 187 lines = self.shell.history_manager.\
188 188 get_range_by_str(range_str, raw=raw)
189 189 return "\n".join(x for _, _, x in lines)
190 190
191 191 def arg_err(self,func):
192 192 """Print docstring if incorrect arguments were passed"""
193 193 print 'Error in arguments:'
194 194 print oinspect.getdoc(func)
195 195
196 196 def format_latex(self,strng):
197 197 """Format a string for latex inclusion."""
198 198
199 199 # Characters that need to be escaped for latex:
200 200 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
201 201 # Magic command names as headers:
202 202 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
203 203 re.MULTILINE)
204 204 # Magic commands
205 205 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
206 206 re.MULTILINE)
207 207 # Paragraph continue
208 208 par_re = re.compile(r'\\$',re.MULTILINE)
209 209
210 210 # The "\n" symbol
211 211 newline_re = re.compile(r'\\n')
212 212
213 213 # Now build the string for output:
214 214 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
215 215 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
216 216 strng)
217 217 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
218 218 strng = par_re.sub(r'\\\\',strng)
219 219 strng = escape_re.sub(r'\\\1',strng)
220 220 strng = newline_re.sub(r'\\textbackslash{}n',strng)
221 221 return strng
222 222
223 223 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
224 224 """Parse options passed to an argument string.
225 225
226 226 The interface is similar to that of getopt(), but it returns back a
227 227 Struct with the options as keys and the stripped argument string still
228 228 as a string.
229 229
230 230 arg_str is quoted as a true sys.argv vector by using shlex.split.
231 231 This allows us to easily expand variables, glob files, quote
232 232 arguments, etc.
233 233
234 234 Options:
235 235 -mode: default 'string'. If given as 'list', the argument string is
236 236 returned as a list (split on whitespace) instead of a string.
237 237
238 238 -list_all: put all option values in lists. Normally only options
239 239 appearing more than once are put in a list.
240 240
241 241 -posix (True): whether to split the input line in POSIX mode or not,
242 242 as per the conventions outlined in the shlex module from the
243 243 standard library."""
244 244
245 245 # inject default options at the beginning of the input line
246 246 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
247 247 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
248 248
249 249 mode = kw.get('mode','string')
250 250 if mode not in ['string','list']:
251 251 raise ValueError,'incorrect mode given: %s' % mode
252 252 # Get options
253 253 list_all = kw.get('list_all',0)
254 254 posix = kw.get('posix', os.name == 'posix')
255 255
256 256 # Check if we have more than one argument to warrant extra processing:
257 257 odict = {} # Dictionary with options
258 258 args = arg_str.split()
259 259 if len(args) >= 1:
260 260 # If the list of inputs only has 0 or 1 thing in it, there's no
261 261 # need to look for options
262 262 argv = arg_split(arg_str,posix)
263 263 # Do regular option processing
264 264 try:
265 265 opts,args = getopt(argv,opt_str,*long_opts)
266 266 except GetoptError,e:
267 267 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
268 268 " ".join(long_opts)))
269 269 for o,a in opts:
270 270 if o.startswith('--'):
271 271 o = o[2:]
272 272 else:
273 273 o = o[1:]
274 274 try:
275 275 odict[o].append(a)
276 276 except AttributeError:
277 277 odict[o] = [odict[o],a]
278 278 except KeyError:
279 279 if list_all:
280 280 odict[o] = [a]
281 281 else:
282 282 odict[o] = a
283 283
284 284 # Prepare opts,args for return
285 285 opts = Struct(odict)
286 286 if mode == 'string':
287 287 args = ' '.join(args)
288 288
289 289 return opts,args
290 290
291 291 #......................................................................
292 292 # And now the actual magic functions
293 293
294 294 # Functions for IPython shell work (vars,funcs, config, etc)
295 295 def magic_lsmagic(self, parameter_s = ''):
296 296 """List currently available magic functions."""
297 297 mesc = ESC_MAGIC
298 298 print 'Available magic functions:\n'+mesc+\
299 299 (' '+mesc).join(self.lsmagic())
300 300 print '\n' + Magic.auto_status[self.shell.automagic]
301 301 return None
302 302
303 303 def magic_magic(self, parameter_s = ''):
304 304 """Print information about the magic function system.
305 305
306 306 Supported formats: -latex, -brief, -rest
307 307 """
308 308
309 309 mode = ''
310 310 try:
311 311 if parameter_s.split()[0] == '-latex':
312 312 mode = 'latex'
313 313 if parameter_s.split()[0] == '-brief':
314 314 mode = 'brief'
315 315 if parameter_s.split()[0] == '-rest':
316 316 mode = 'rest'
317 317 rest_docs = []
318 318 except:
319 319 pass
320 320
321 321 magic_docs = []
322 322 for fname in self.lsmagic():
323 323 mname = 'magic_' + fname
324 324 for space in (Magic,self,self.__class__):
325 325 try:
326 326 fn = space.__dict__[mname]
327 327 except KeyError:
328 328 pass
329 329 else:
330 330 break
331 331 if mode == 'brief':
332 332 # only first line
333 333 if fn.__doc__:
334 334 fndoc = fn.__doc__.split('\n',1)[0]
335 335 else:
336 336 fndoc = 'No documentation'
337 337 else:
338 338 if fn.__doc__:
339 339 fndoc = fn.__doc__.rstrip()
340 340 else:
341 341 fndoc = 'No documentation'
342 342
343 343
344 344 if mode == 'rest':
345 345 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
346 346 fname,fndoc))
347 347
348 348 else:
349 349 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
350 350 fname,fndoc))
351 351
352 352 magic_docs = ''.join(magic_docs)
353 353
354 354 if mode == 'rest':
355 355 return "".join(rest_docs)
356 356
357 357 if mode == 'latex':
358 358 print self.format_latex(magic_docs)
359 359 return
360 360 else:
361 361 magic_docs = format_screen(magic_docs)
362 362 if mode == 'brief':
363 363 return magic_docs
364 364
365 365 outmsg = """
366 366 IPython's 'magic' functions
367 367 ===========================
368 368
369 369 The magic function system provides a series of functions which allow you to
370 370 control the behavior of IPython itself, plus a lot of system-type
371 371 features. All these functions are prefixed with a % character, but parameters
372 372 are given without parentheses or quotes.
373 373
374 374 NOTE: If you have 'automagic' enabled (via the command line option or with the
375 375 %automagic function), you don't need to type in the % explicitly. By default,
376 376 IPython ships with automagic on, so you should only rarely need the % escape.
377 377
378 378 Example: typing '%cd mydir' (without the quotes) changes you working directory
379 379 to 'mydir', if it exists.
380 380
381 381 You can define your own magic functions to extend the system. See the supplied
382 382 ipythonrc and example-magic.py files for details (in your ipython
383 383 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
384 384
385 385 You can also define your own aliased names for magic functions. In your
386 386 ipythonrc file, placing a line like:
387 387
388 388 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
389 389
390 390 will define %pf as a new name for %profile.
391 391
392 392 You can also call magics in code using the magic() function, which IPython
393 393 automatically adds to the builtin namespace. Type 'magic?' for details.
394 394
395 395 For a list of the available magic functions, use %lsmagic. For a description
396 396 of any of them, type %magic_name?, e.g. '%cd?'.
397 397
398 398 Currently the magic system has the following functions:\n"""
399 399
400 400 mesc = ESC_MAGIC
401 401 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
402 402 "\n\n%s%s\n\n%s" % (outmsg,
403 403 magic_docs,mesc,mesc,
404 404 (' '+mesc).join(self.lsmagic()),
405 405 Magic.auto_status[self.shell.automagic] ) )
406 406 page.page(outmsg)
407 407
408 408 def magic_automagic(self, parameter_s = ''):
409 409 """Make magic functions callable without having to type the initial %.
410 410
411 411 Without argumentsl toggles on/off (when off, you must call it as
412 412 %automagic, of course). With arguments it sets the value, and you can
413 413 use any of (case insensitive):
414 414
415 415 - on,1,True: to activate
416 416
417 417 - off,0,False: to deactivate.
418 418
419 419 Note that magic functions have lowest priority, so if there's a
420 420 variable whose name collides with that of a magic fn, automagic won't
421 421 work for that function (you get the variable instead). However, if you
422 422 delete the variable (del var), the previously shadowed magic function
423 423 becomes visible to automagic again."""
424 424
425 425 arg = parameter_s.lower()
426 426 if parameter_s in ('on','1','true'):
427 427 self.shell.automagic = True
428 428 elif parameter_s in ('off','0','false'):
429 429 self.shell.automagic = False
430 430 else:
431 431 self.shell.automagic = not self.shell.automagic
432 432 print '\n' + Magic.auto_status[self.shell.automagic]
433 433
434 434 @testdec.skip_doctest
435 435 def magic_autocall(self, parameter_s = ''):
436 436 """Make functions callable without having to type parentheses.
437 437
438 438 Usage:
439 439
440 440 %autocall [mode]
441 441
442 442 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
443 443 value is toggled on and off (remembering the previous state).
444 444
445 445 In more detail, these values mean:
446 446
447 447 0 -> fully disabled
448 448
449 449 1 -> active, but do not apply if there are no arguments on the line.
450 450
451 451 In this mode, you get:
452 452
453 453 In [1]: callable
454 454 Out[1]: <built-in function callable>
455 455
456 456 In [2]: callable 'hello'
457 457 ------> callable('hello')
458 458 Out[2]: False
459 459
460 460 2 -> Active always. Even if no arguments are present, the callable
461 461 object is called:
462 462
463 463 In [2]: float
464 464 ------> float()
465 465 Out[2]: 0.0
466 466
467 467 Note that even with autocall off, you can still use '/' at the start of
468 468 a line to treat the first argument on the command line as a function
469 469 and add parentheses to it:
470 470
471 471 In [8]: /str 43
472 472 ------> str(43)
473 473 Out[8]: '43'
474 474
475 475 # all-random (note for auto-testing)
476 476 """
477 477
478 478 if parameter_s:
479 479 arg = int(parameter_s)
480 480 else:
481 481 arg = 'toggle'
482 482
483 483 if not arg in (0,1,2,'toggle'):
484 484 error('Valid modes: (0->Off, 1->Smart, 2->Full')
485 485 return
486 486
487 487 if arg in (0,1,2):
488 488 self.shell.autocall = arg
489 489 else: # toggle
490 490 if self.shell.autocall:
491 491 self._magic_state.autocall_save = self.shell.autocall
492 492 self.shell.autocall = 0
493 493 else:
494 494 try:
495 495 self.shell.autocall = self._magic_state.autocall_save
496 496 except AttributeError:
497 497 self.shell.autocall = self._magic_state.autocall_save = 1
498 498
499 499 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
500 500
501 501
502 502 def magic_page(self, parameter_s=''):
503 503 """Pretty print the object and display it through a pager.
504 504
505 505 %page [options] OBJECT
506 506
507 507 If no object is given, use _ (last output).
508 508
509 509 Options:
510 510
511 511 -r: page str(object), don't pretty-print it."""
512 512
513 513 # After a function contributed by Olivier Aubert, slightly modified.
514 514
515 515 # Process options/args
516 516 opts,args = self.parse_options(parameter_s,'r')
517 517 raw = 'r' in opts
518 518
519 519 oname = args and args or '_'
520 520 info = self._ofind(oname)
521 521 if info['found']:
522 522 txt = (raw and str or pformat)( info['obj'] )
523 523 page.page(txt)
524 524 else:
525 525 print 'Object `%s` not found' % oname
526 526
527 527 def magic_profile(self, parameter_s=''):
528 528 """Print your currently active IPython profile."""
529 529 if self.shell.profile:
530 530 printpl('Current IPython profile: $self.shell.profile.')
531 531 else:
532 532 print 'No profile active.'
533 533
534 534 def magic_pinfo(self, parameter_s='', namespaces=None):
535 535 """Provide detailed information about an object.
536 536
537 537 '%pinfo object' is just a synonym for object? or ?object."""
538 538
539 539 #print 'pinfo par: <%s>' % parameter_s # dbg
540 540
541 541
542 542 # detail_level: 0 -> obj? , 1 -> obj??
543 543 detail_level = 0
544 544 # We need to detect if we got called as 'pinfo pinfo foo', which can
545 545 # happen if the user types 'pinfo foo?' at the cmd line.
546 546 pinfo,qmark1,oname,qmark2 = \
547 547 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
548 548 if pinfo or qmark1 or qmark2:
549 549 detail_level = 1
550 550 if "*" in oname:
551 551 self.magic_psearch(oname)
552 552 else:
553 553 self.shell._inspect('pinfo', oname, detail_level=detail_level,
554 554 namespaces=namespaces)
555 555
556 556 def magic_pinfo2(self, parameter_s='', namespaces=None):
557 557 """Provide extra detailed information about an object.
558 558
559 559 '%pinfo2 object' is just a synonym for object?? or ??object."""
560 560 self.shell._inspect('pinfo', parameter_s, detail_level=1,
561 561 namespaces=namespaces)
562 562
563 563 @testdec.skip_doctest
564 564 def magic_pdef(self, parameter_s='', namespaces=None):
565 565 """Print the definition header for any callable object.
566 566
567 567 If the object is a class, print the constructor information.
568 568
569 569 Examples
570 570 --------
571 571 ::
572 572
573 573 In [3]: %pdef urllib.urlopen
574 574 urllib.urlopen(url, data=None, proxies=None)
575 575 """
576 576 self._inspect('pdef',parameter_s, namespaces)
577 577
578 578 def magic_pdoc(self, parameter_s='', namespaces=None):
579 579 """Print the docstring for an object.
580 580
581 581 If the given object is a class, it will print both the class and the
582 582 constructor docstrings."""
583 583 self._inspect('pdoc',parameter_s, namespaces)
584 584
585 585 def magic_psource(self, parameter_s='', namespaces=None):
586 586 """Print (or run through pager) the source code for an object."""
587 587 self._inspect('psource',parameter_s, namespaces)
588 588
589 589 def magic_pfile(self, parameter_s=''):
590 590 """Print (or run through pager) the file where an object is defined.
591 591
592 592 The file opens at the line where the object definition begins. IPython
593 593 will honor the environment variable PAGER if set, and otherwise will
594 594 do its best to print the file in a convenient form.
595 595
596 596 If the given argument is not an object currently defined, IPython will
597 597 try to interpret it as a filename (automatically adding a .py extension
598 598 if needed). You can thus use %pfile as a syntax highlighting code
599 599 viewer."""
600 600
601 601 # first interpret argument as an object name
602 602 out = self._inspect('pfile',parameter_s)
603 603 # if not, try the input as a filename
604 604 if out == 'not found':
605 605 try:
606 606 filename = get_py_filename(parameter_s)
607 607 except IOError,msg:
608 608 print msg
609 609 return
610 610 page.page(self.shell.inspector.format(file(filename).read()))
611 611
612 612 def magic_psearch(self, parameter_s=''):
613 613 """Search for object in namespaces by wildcard.
614 614
615 615 %psearch [options] PATTERN [OBJECT TYPE]
616 616
617 617 Note: ? can be used as a synonym for %psearch, at the beginning or at
618 618 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
619 619 rest of the command line must be unchanged (options come first), so
620 620 for example the following forms are equivalent
621 621
622 622 %psearch -i a* function
623 623 -i a* function?
624 624 ?-i a* function
625 625
626 626 Arguments:
627 627
628 628 PATTERN
629 629
630 630 where PATTERN is a string containing * as a wildcard similar to its
631 631 use in a shell. The pattern is matched in all namespaces on the
632 632 search path. By default objects starting with a single _ are not
633 633 matched, many IPython generated objects have a single
634 634 underscore. The default is case insensitive matching. Matching is
635 635 also done on the attributes of objects and not only on the objects
636 636 in a module.
637 637
638 638 [OBJECT TYPE]
639 639
640 640 Is the name of a python type from the types module. The name is
641 641 given in lowercase without the ending type, ex. StringType is
642 642 written string. By adding a type here only objects matching the
643 643 given type are matched. Using all here makes the pattern match all
644 644 types (this is the default).
645 645
646 646 Options:
647 647
648 648 -a: makes the pattern match even objects whose names start with a
649 649 single underscore. These names are normally ommitted from the
650 650 search.
651 651
652 652 -i/-c: make the pattern case insensitive/sensitive. If neither of
653 653 these options is given, the default is read from your ipythonrc
654 654 file. The option name which sets this value is
655 655 'wildcards_case_sensitive'. If this option is not specified in your
656 656 ipythonrc file, IPython's internal default is to do a case sensitive
657 657 search.
658 658
659 659 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
660 660 specifiy can be searched in any of the following namespaces:
661 661 'builtin', 'user', 'user_global','internal', 'alias', where
662 662 'builtin' and 'user' are the search defaults. Note that you should
663 663 not use quotes when specifying namespaces.
664 664
665 665 'Builtin' contains the python module builtin, 'user' contains all
666 666 user data, 'alias' only contain the shell aliases and no python
667 667 objects, 'internal' contains objects used by IPython. The
668 668 'user_global' namespace is only used by embedded IPython instances,
669 669 and it contains module-level globals. You can add namespaces to the
670 670 search with -s or exclude them with -e (these options can be given
671 671 more than once).
672 672
673 673 Examples:
674 674
675 675 %psearch a* -> objects beginning with an a
676 676 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
677 677 %psearch a* function -> all functions beginning with an a
678 678 %psearch re.e* -> objects beginning with an e in module re
679 679 %psearch r*.e* -> objects that start with e in modules starting in r
680 680 %psearch r*.* string -> all strings in modules beginning with r
681 681
682 682 Case sensitve search:
683 683
684 684 %psearch -c a* list all object beginning with lower case a
685 685
686 686 Show objects beginning with a single _:
687 687
688 688 %psearch -a _* list objects beginning with a single underscore"""
689 689 try:
690 690 parameter_s = parameter_s.encode('ascii')
691 691 except UnicodeEncodeError:
692 692 print 'Python identifiers can only contain ascii characters.'
693 693 return
694 694
695 695 # default namespaces to be searched
696 696 def_search = ['user','builtin']
697 697
698 698 # Process options/args
699 699 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
700 700 opt = opts.get
701 701 shell = self.shell
702 702 psearch = shell.inspector.psearch
703 703
704 704 # select case options
705 705 if opts.has_key('i'):
706 706 ignore_case = True
707 707 elif opts.has_key('c'):
708 708 ignore_case = False
709 709 else:
710 710 ignore_case = not shell.wildcards_case_sensitive
711 711
712 712 # Build list of namespaces to search from user options
713 713 def_search.extend(opt('s',[]))
714 714 ns_exclude = ns_exclude=opt('e',[])
715 715 ns_search = [nm for nm in def_search if nm not in ns_exclude]
716 716
717 717 # Call the actual search
718 718 try:
719 719 psearch(args,shell.ns_table,ns_search,
720 720 show_all=opt('a'),ignore_case=ignore_case)
721 721 except:
722 722 shell.showtraceback()
723 723
724 724 @testdec.skip_doctest
725 725 def magic_who_ls(self, parameter_s=''):
726 726 """Return a sorted list of all interactive variables.
727 727
728 728 If arguments are given, only variables of types matching these
729 729 arguments are returned.
730 730
731 731 Examples
732 732 --------
733 733
734 734 Define two variables and list them with who_ls::
735 735
736 736 In [1]: alpha = 123
737 737
738 738 In [2]: beta = 'test'
739 739
740 740 In [3]: %who_ls
741 741 Out[3]: ['alpha', 'beta']
742 742
743 743 In [4]: %who_ls int
744 744 Out[4]: ['alpha']
745 745
746 746 In [5]: %who_ls str
747 747 Out[5]: ['beta']
748 748 """
749 749
750 750 user_ns = self.shell.user_ns
751 751 internal_ns = self.shell.internal_ns
752 752 user_ns_hidden = self.shell.user_ns_hidden
753 753 out = [ i for i in user_ns
754 754 if not i.startswith('_') \
755 755 and not (i in internal_ns or i in user_ns_hidden) ]
756 756
757 757 typelist = parameter_s.split()
758 758 if typelist:
759 759 typeset = set(typelist)
760 760 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
761 761
762 762 out.sort()
763 763 return out
764 764
765 765 @testdec.skip_doctest
766 766 def magic_who(self, parameter_s=''):
767 767 """Print all interactive variables, with some minimal formatting.
768 768
769 769 If any arguments are given, only variables whose type matches one of
770 770 these are printed. For example:
771 771
772 772 %who function str
773 773
774 774 will only list functions and strings, excluding all other types of
775 775 variables. To find the proper type names, simply use type(var) at a
776 776 command line to see how python prints type names. For example:
777 777
778 778 In [1]: type('hello')\\
779 779 Out[1]: <type 'str'>
780 780
781 781 indicates that the type name for strings is 'str'.
782 782
783 783 %who always excludes executed names loaded through your configuration
784 784 file and things which are internal to IPython.
785 785
786 786 This is deliberate, as typically you may load many modules and the
787 787 purpose of %who is to show you only what you've manually defined.
788 788
789 789 Examples
790 790 --------
791 791
792 792 Define two variables and list them with who::
793 793
794 794 In [1]: alpha = 123
795 795
796 796 In [2]: beta = 'test'
797 797
798 798 In [3]: %who
799 799 alpha beta
800 800
801 801 In [4]: %who int
802 802 alpha
803 803
804 804 In [5]: %who str
805 805 beta
806 806 """
807 807
808 808 varlist = self.magic_who_ls(parameter_s)
809 809 if not varlist:
810 810 if parameter_s:
811 811 print 'No variables match your requested type.'
812 812 else:
813 813 print 'Interactive namespace is empty.'
814 814 return
815 815
816 816 # if we have variables, move on...
817 817 count = 0
818 818 for i in varlist:
819 819 print i+'\t',
820 820 count += 1
821 821 if count > 8:
822 822 count = 0
823 823 print
824 824 print
825 825
826 826 @testdec.skip_doctest
827 827 def magic_whos(self, parameter_s=''):
828 828 """Like %who, but gives some extra information about each variable.
829 829
830 830 The same type filtering of %who can be applied here.
831 831
832 832 For all variables, the type is printed. Additionally it prints:
833 833
834 834 - For {},[],(): their length.
835 835
836 836 - For numpy arrays, a summary with shape, number of
837 837 elements, typecode and size in memory.
838 838
839 839 - Everything else: a string representation, snipping their middle if
840 840 too long.
841 841
842 842 Examples
843 843 --------
844 844
845 845 Define two variables and list them with whos::
846 846
847 847 In [1]: alpha = 123
848 848
849 849 In [2]: beta = 'test'
850 850
851 851 In [3]: %whos
852 852 Variable Type Data/Info
853 853 --------------------------------
854 854 alpha int 123
855 855 beta str test
856 856 """
857 857
858 858 varnames = self.magic_who_ls(parameter_s)
859 859 if not varnames:
860 860 if parameter_s:
861 861 print 'No variables match your requested type.'
862 862 else:
863 863 print 'Interactive namespace is empty.'
864 864 return
865 865
866 866 # if we have variables, move on...
867 867
868 868 # for these types, show len() instead of data:
869 869 seq_types = ['dict', 'list', 'tuple']
870 870
871 871 # for numpy/Numeric arrays, display summary info
872 872 try:
873 873 import numpy
874 874 except ImportError:
875 875 ndarray_type = None
876 876 else:
877 877 ndarray_type = numpy.ndarray.__name__
878 878 try:
879 879 import Numeric
880 880 except ImportError:
881 881 array_type = None
882 882 else:
883 883 array_type = Numeric.ArrayType.__name__
884 884
885 885 # Find all variable names and types so we can figure out column sizes
886 886 def get_vars(i):
887 887 return self.shell.user_ns[i]
888 888
889 889 # some types are well known and can be shorter
890 890 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
891 891 def type_name(v):
892 892 tn = type(v).__name__
893 893 return abbrevs.get(tn,tn)
894 894
895 895 varlist = map(get_vars,varnames)
896 896
897 897 typelist = []
898 898 for vv in varlist:
899 899 tt = type_name(vv)
900 900
901 901 if tt=='instance':
902 902 typelist.append( abbrevs.get(str(vv.__class__),
903 903 str(vv.__class__)))
904 904 else:
905 905 typelist.append(tt)
906 906
907 907 # column labels and # of spaces as separator
908 908 varlabel = 'Variable'
909 909 typelabel = 'Type'
910 910 datalabel = 'Data/Info'
911 911 colsep = 3
912 912 # variable format strings
913 913 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
914 914 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
915 915 aformat = "%s: %s elems, type `%s`, %s bytes"
916 916 # find the size of the columns to format the output nicely
917 917 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
918 918 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
919 919 # table header
920 920 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
921 921 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
922 922 # and the table itself
923 923 kb = 1024
924 924 Mb = 1048576 # kb**2
925 925 for vname,var,vtype in zip(varnames,varlist,typelist):
926 926 print itpl(vformat),
927 927 if vtype in seq_types:
928 928 print "n="+str(len(var))
929 929 elif vtype in [array_type,ndarray_type]:
930 930 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
931 931 if vtype==ndarray_type:
932 932 # numpy
933 933 vsize = var.size
934 934 vbytes = vsize*var.itemsize
935 935 vdtype = var.dtype
936 936 else:
937 937 # Numeric
938 938 vsize = Numeric.size(var)
939 939 vbytes = vsize*var.itemsize()
940 940 vdtype = var.typecode()
941 941
942 942 if vbytes < 100000:
943 943 print aformat % (vshape,vsize,vdtype,vbytes)
944 944 else:
945 945 print aformat % (vshape,vsize,vdtype,vbytes),
946 946 if vbytes < Mb:
947 947 print '(%s kb)' % (vbytes/kb,)
948 948 else:
949 949 print '(%s Mb)' % (vbytes/Mb,)
950 950 else:
951 951 try:
952 952 vstr = str(var)
953 953 except UnicodeEncodeError:
954 954 vstr = unicode(var).encode(sys.getdefaultencoding(),
955 955 'backslashreplace')
956 956 vstr = vstr.replace('\n','\\n')
957 957 if len(vstr) < 50:
958 958 print vstr
959 959 else:
960 960 printpl(vfmt_short)
961 961
962 962 def magic_reset(self, parameter_s=''):
963 963 """Resets the namespace by removing all names defined by the user.
964 964
965 965 Input/Output history are left around in case you need them.
966 966
967 967 Parameters
968 968 ----------
969 969 -f : force reset without asking for confirmation.
970 970
971 971 Examples
972 972 --------
973 973 In [6]: a = 1
974 974
975 975 In [7]: a
976 976 Out[7]: 1
977 977
978 978 In [8]: 'a' in _ip.user_ns
979 979 Out[8]: True
980 980
981 981 In [9]: %reset -f
982 982
983 983 In [10]: 'a' in _ip.user_ns
984 984 Out[10]: False
985 985 """
986 986
987 987 if parameter_s == '-f':
988 988 ans = True
989 989 else:
990 990 ans = self.shell.ask_yes_no(
991 991 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
992 992 if not ans:
993 993 print 'Nothing done.'
994 994 return
995 995 user_ns = self.shell.user_ns
996 996 for i in self.magic_who_ls():
997 997 del(user_ns[i])
998 998
999 999 # Also flush the private list of module references kept for script
1000 1000 # execution protection
1001 1001 self.shell.clear_main_mod_cache()
1002 1002
1003 1003 def magic_reset_selective(self, parameter_s=''):
1004 1004 """Resets the namespace by removing names defined by the user.
1005 1005
1006 1006 Input/Output history are left around in case you need them.
1007 1007
1008 1008 %reset_selective [-f] regex
1009 1009
1010 1010 No action is taken if regex is not included
1011 1011
1012 1012 Options
1013 1013 -f : force reset without asking for confirmation.
1014 1014
1015 1015 Examples
1016 1016 --------
1017 1017
1018 1018 We first fully reset the namespace so your output looks identical to
1019 1019 this example for pedagogical reasons; in practice you do not need a
1020 1020 full reset.
1021 1021
1022 1022 In [1]: %reset -f
1023 1023
1024 1024 Now, with a clean namespace we can make a few variables and use
1025 1025 %reset_selective to only delete names that match our regexp:
1026 1026
1027 1027 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1028 1028
1029 1029 In [3]: who_ls
1030 1030 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1031 1031
1032 1032 In [4]: %reset_selective -f b[2-3]m
1033 1033
1034 1034 In [5]: who_ls
1035 1035 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1036 1036
1037 1037 In [6]: %reset_selective -f d
1038 1038
1039 1039 In [7]: who_ls
1040 1040 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1041 1041
1042 1042 In [8]: %reset_selective -f c
1043 1043
1044 1044 In [9]: who_ls
1045 1045 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1046 1046
1047 1047 In [10]: %reset_selective -f b
1048 1048
1049 1049 In [11]: who_ls
1050 1050 Out[11]: ['a']
1051 1051 """
1052 1052
1053 1053 opts, regex = self.parse_options(parameter_s,'f')
1054 1054
1055 1055 if opts.has_key('f'):
1056 1056 ans = True
1057 1057 else:
1058 1058 ans = self.shell.ask_yes_no(
1059 1059 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1060 1060 if not ans:
1061 1061 print 'Nothing done.'
1062 1062 return
1063 1063 user_ns = self.shell.user_ns
1064 1064 if not regex:
1065 1065 print 'No regex pattern specified. Nothing done.'
1066 1066 return
1067 1067 else:
1068 1068 try:
1069 1069 m = re.compile(regex)
1070 1070 except TypeError:
1071 1071 raise TypeError('regex must be a string or compiled pattern')
1072 1072 for i in self.magic_who_ls():
1073 1073 if m.search(i):
1074 1074 del(user_ns[i])
1075 1075
1076 1076 def magic_logstart(self,parameter_s=''):
1077 1077 """Start logging anywhere in a session.
1078 1078
1079 1079 %logstart [-o|-r|-t] [log_name [log_mode]]
1080 1080
1081 1081 If no name is given, it defaults to a file named 'ipython_log.py' in your
1082 1082 current directory, in 'rotate' mode (see below).
1083 1083
1084 1084 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1085 1085 history up to that point and then continues logging.
1086 1086
1087 1087 %logstart takes a second optional parameter: logging mode. This can be one
1088 1088 of (note that the modes are given unquoted):\\
1089 1089 append: well, that says it.\\
1090 1090 backup: rename (if exists) to name~ and start name.\\
1091 1091 global: single logfile in your home dir, appended to.\\
1092 1092 over : overwrite existing log.\\
1093 1093 rotate: create rotating logs name.1~, name.2~, etc.
1094 1094
1095 1095 Options:
1096 1096
1097 1097 -o: log also IPython's output. In this mode, all commands which
1098 1098 generate an Out[NN] prompt are recorded to the logfile, right after
1099 1099 their corresponding input line. The output lines are always
1100 1100 prepended with a '#[Out]# ' marker, so that the log remains valid
1101 1101 Python code.
1102 1102
1103 1103 Since this marker is always the same, filtering only the output from
1104 1104 a log is very easy, using for example a simple awk call:
1105 1105
1106 1106 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1107 1107
1108 1108 -r: log 'raw' input. Normally, IPython's logs contain the processed
1109 1109 input, so that user lines are logged in their final form, converted
1110 1110 into valid Python. For example, %Exit is logged as
1111 1111 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1112 1112 exactly as typed, with no transformations applied.
1113 1113
1114 1114 -t: put timestamps before each input line logged (these are put in
1115 1115 comments)."""
1116 1116
1117 1117 opts,par = self.parse_options(parameter_s,'ort')
1118 1118 log_output = 'o' in opts
1119 1119 log_raw_input = 'r' in opts
1120 1120 timestamp = 't' in opts
1121 1121
1122 1122 logger = self.shell.logger
1123 1123
1124 1124 # if no args are given, the defaults set in the logger constructor by
1125 1125 # ipytohn remain valid
1126 1126 if par:
1127 1127 try:
1128 1128 logfname,logmode = par.split()
1129 1129 except:
1130 1130 logfname = par
1131 1131 logmode = 'backup'
1132 1132 else:
1133 1133 logfname = logger.logfname
1134 1134 logmode = logger.logmode
1135 1135 # put logfname into rc struct as if it had been called on the command
1136 1136 # line, so it ends up saved in the log header Save it in case we need
1137 1137 # to restore it...
1138 1138 old_logfile = self.shell.logfile
1139 1139 if logfname:
1140 1140 logfname = os.path.expanduser(logfname)
1141 1141 self.shell.logfile = logfname
1142 1142
1143 1143 loghead = '# IPython log file\n\n'
1144 1144 try:
1145 1145 started = logger.logstart(logfname,loghead,logmode,
1146 1146 log_output,timestamp,log_raw_input)
1147 1147 except:
1148 1148 self.shell.logfile = old_logfile
1149 1149 warn("Couldn't start log: %s" % sys.exc_info()[1])
1150 1150 else:
1151 1151 # log input history up to this point, optionally interleaving
1152 1152 # output if requested
1153 1153
1154 1154 if timestamp:
1155 1155 # disable timestamping for the previous history, since we've
1156 1156 # lost those already (no time machine here).
1157 1157 logger.timestamp = False
1158 1158
1159 1159 if log_raw_input:
1160 1160 input_hist = self.shell.history_manager.input_hist_raw
1161 1161 else:
1162 1162 input_hist = self.shell.history_manager.input_hist_parsed
1163 1163
1164 1164 if log_output:
1165 1165 log_write = logger.log_write
1166 1166 output_hist = self.shell.history_manager.output_hist
1167 1167 for n in range(1,len(input_hist)-1):
1168 1168 log_write(input_hist[n].rstrip())
1169 1169 if n in output_hist:
1170 1170 log_write(repr(output_hist[n]),'output')
1171 1171 else:
1172 1172 logger.log_write(''.join(input_hist[1:]))
1173 1173 if timestamp:
1174 1174 # re-enable timestamping
1175 1175 logger.timestamp = True
1176 1176
1177 1177 print ('Activating auto-logging. '
1178 1178 'Current session state plus future input saved.')
1179 1179 logger.logstate()
1180 1180
1181 1181 def magic_logstop(self,parameter_s=''):
1182 1182 """Fully stop logging and close log file.
1183 1183
1184 1184 In order to start logging again, a new %logstart call needs to be made,
1185 1185 possibly (though not necessarily) with a new filename, mode and other
1186 1186 options."""
1187 1187 self.logger.logstop()
1188 1188
1189 1189 def magic_logoff(self,parameter_s=''):
1190 1190 """Temporarily stop logging.
1191 1191
1192 1192 You must have previously started logging."""
1193 1193 self.shell.logger.switch_log(0)
1194 1194
1195 1195 def magic_logon(self,parameter_s=''):
1196 1196 """Restart logging.
1197 1197
1198 1198 This function is for restarting logging which you've temporarily
1199 1199 stopped with %logoff. For starting logging for the first time, you
1200 1200 must use the %logstart function, which allows you to specify an
1201 1201 optional log filename."""
1202 1202
1203 1203 self.shell.logger.switch_log(1)
1204 1204
1205 1205 def magic_logstate(self,parameter_s=''):
1206 1206 """Print the status of the logging system."""
1207 1207
1208 1208 self.shell.logger.logstate()
1209 1209
1210 1210 def magic_pdb(self, parameter_s=''):
1211 1211 """Control the automatic calling of the pdb interactive debugger.
1212 1212
1213 1213 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1214 1214 argument it works as a toggle.
1215 1215
1216 1216 When an exception is triggered, IPython can optionally call the
1217 1217 interactive pdb debugger after the traceback printout. %pdb toggles
1218 1218 this feature on and off.
1219 1219
1220 1220 The initial state of this feature is set in your ipythonrc
1221 1221 configuration file (the variable is called 'pdb').
1222 1222
1223 1223 If you want to just activate the debugger AFTER an exception has fired,
1224 1224 without having to type '%pdb on' and rerunning your code, you can use
1225 1225 the %debug magic."""
1226 1226
1227 1227 par = parameter_s.strip().lower()
1228 1228
1229 1229 if par:
1230 1230 try:
1231 1231 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1232 1232 except KeyError:
1233 1233 print ('Incorrect argument. Use on/1, off/0, '
1234 1234 'or nothing for a toggle.')
1235 1235 return
1236 1236 else:
1237 1237 # toggle
1238 1238 new_pdb = not self.shell.call_pdb
1239 1239
1240 1240 # set on the shell
1241 1241 self.shell.call_pdb = new_pdb
1242 1242 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1243 1243
1244 1244 def magic_debug(self, parameter_s=''):
1245 1245 """Activate the interactive debugger in post-mortem mode.
1246 1246
1247 1247 If an exception has just occurred, this lets you inspect its stack
1248 1248 frames interactively. Note that this will always work only on the last
1249 1249 traceback that occurred, so you must call this quickly after an
1250 1250 exception that you wish to inspect has fired, because if another one
1251 1251 occurs, it clobbers the previous one.
1252 1252
1253 1253 If you want IPython to automatically do this on every exception, see
1254 1254 the %pdb magic for more details.
1255 1255 """
1256 1256 self.shell.debugger(force=True)
1257 1257
1258 1258 @testdec.skip_doctest
1259 1259 def magic_prun(self, parameter_s ='',user_mode=1,
1260 1260 opts=None,arg_lst=None,prog_ns=None):
1261 1261
1262 1262 """Run a statement through the python code profiler.
1263 1263
1264 1264 Usage:
1265 1265 %prun [options] statement
1266 1266
1267 1267 The given statement (which doesn't require quote marks) is run via the
1268 1268 python profiler in a manner similar to the profile.run() function.
1269 1269 Namespaces are internally managed to work correctly; profile.run
1270 1270 cannot be used in IPython because it makes certain assumptions about
1271 1271 namespaces which do not hold under IPython.
1272 1272
1273 1273 Options:
1274 1274
1275 1275 -l <limit>: you can place restrictions on what or how much of the
1276 1276 profile gets printed. The limit value can be:
1277 1277
1278 1278 * A string: only information for function names containing this string
1279 1279 is printed.
1280 1280
1281 1281 * An integer: only these many lines are printed.
1282 1282
1283 1283 * A float (between 0 and 1): this fraction of the report is printed
1284 1284 (for example, use a limit of 0.4 to see the topmost 40% only).
1285 1285
1286 1286 You can combine several limits with repeated use of the option. For
1287 1287 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1288 1288 information about class constructors.
1289 1289
1290 1290 -r: return the pstats.Stats object generated by the profiling. This
1291 1291 object has all the information about the profile in it, and you can
1292 1292 later use it for further analysis or in other functions.
1293 1293
1294 1294 -s <key>: sort profile by given key. You can provide more than one key
1295 1295 by using the option several times: '-s key1 -s key2 -s key3...'. The
1296 1296 default sorting key is 'time'.
1297 1297
1298 1298 The following is copied verbatim from the profile documentation
1299 1299 referenced below:
1300 1300
1301 1301 When more than one key is provided, additional keys are used as
1302 1302 secondary criteria when the there is equality in all keys selected
1303 1303 before them.
1304 1304
1305 1305 Abbreviations can be used for any key names, as long as the
1306 1306 abbreviation is unambiguous. The following are the keys currently
1307 1307 defined:
1308 1308
1309 1309 Valid Arg Meaning
1310 1310 "calls" call count
1311 1311 "cumulative" cumulative time
1312 1312 "file" file name
1313 1313 "module" file name
1314 1314 "pcalls" primitive call count
1315 1315 "line" line number
1316 1316 "name" function name
1317 1317 "nfl" name/file/line
1318 1318 "stdname" standard name
1319 1319 "time" internal time
1320 1320
1321 1321 Note that all sorts on statistics are in descending order (placing
1322 1322 most time consuming items first), where as name, file, and line number
1323 1323 searches are in ascending order (i.e., alphabetical). The subtle
1324 1324 distinction between "nfl" and "stdname" is that the standard name is a
1325 1325 sort of the name as printed, which means that the embedded line
1326 1326 numbers get compared in an odd way. For example, lines 3, 20, and 40
1327 1327 would (if the file names were the same) appear in the string order
1328 1328 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1329 1329 line numbers. In fact, sort_stats("nfl") is the same as
1330 1330 sort_stats("name", "file", "line").
1331 1331
1332 1332 -T <filename>: save profile results as shown on screen to a text
1333 1333 file. The profile is still shown on screen.
1334 1334
1335 1335 -D <filename>: save (via dump_stats) profile statistics to given
1336 1336 filename. This data is in a format understod by the pstats module, and
1337 1337 is generated by a call to the dump_stats() method of profile
1338 1338 objects. The profile is still shown on screen.
1339 1339
1340 1340 If you want to run complete programs under the profiler's control, use
1341 1341 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1342 1342 contains profiler specific options as described here.
1343 1343
1344 1344 You can read the complete documentation for the profile module with::
1345 1345
1346 1346 In [1]: import profile; profile.help()
1347 1347 """
1348 1348
1349 1349 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1350 1350 # protect user quote marks
1351 1351 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1352 1352
1353 1353 if user_mode: # regular user call
1354 1354 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1355 1355 list_all=1)
1356 1356 namespace = self.shell.user_ns
1357 1357 else: # called to run a program by %run -p
1358 1358 try:
1359 1359 filename = get_py_filename(arg_lst[0])
1360 1360 except IOError,msg:
1361 1361 error(msg)
1362 1362 return
1363 1363
1364 1364 arg_str = 'execfile(filename,prog_ns)'
1365 1365 namespace = locals()
1366 1366
1367 1367 opts.merge(opts_def)
1368 1368
1369 1369 prof = profile.Profile()
1370 1370 try:
1371 1371 prof = prof.runctx(arg_str,namespace,namespace)
1372 1372 sys_exit = ''
1373 1373 except SystemExit:
1374 1374 sys_exit = """*** SystemExit exception caught in code being profiled."""
1375 1375
1376 1376 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1377 1377
1378 1378 lims = opts.l
1379 1379 if lims:
1380 1380 lims = [] # rebuild lims with ints/floats/strings
1381 1381 for lim in opts.l:
1382 1382 try:
1383 1383 lims.append(int(lim))
1384 1384 except ValueError:
1385 1385 try:
1386 1386 lims.append(float(lim))
1387 1387 except ValueError:
1388 1388 lims.append(lim)
1389 1389
1390 1390 # Trap output.
1391 1391 stdout_trap = StringIO()
1392 1392
1393 1393 if hasattr(stats,'stream'):
1394 1394 # In newer versions of python, the stats object has a 'stream'
1395 1395 # attribute to write into.
1396 1396 stats.stream = stdout_trap
1397 1397 stats.print_stats(*lims)
1398 1398 else:
1399 1399 # For older versions, we manually redirect stdout during printing
1400 1400 sys_stdout = sys.stdout
1401 1401 try:
1402 1402 sys.stdout = stdout_trap
1403 1403 stats.print_stats(*lims)
1404 1404 finally:
1405 1405 sys.stdout = sys_stdout
1406 1406
1407 1407 output = stdout_trap.getvalue()
1408 1408 output = output.rstrip()
1409 1409
1410 1410 page.page(output)
1411 1411 print sys_exit,
1412 1412
1413 1413 dump_file = opts.D[0]
1414 1414 text_file = opts.T[0]
1415 1415 if dump_file:
1416 1416 prof.dump_stats(dump_file)
1417 1417 print '\n*** Profile stats marshalled to file',\
1418 1418 `dump_file`+'.',sys_exit
1419 1419 if text_file:
1420 1420 pfile = file(text_file,'w')
1421 1421 pfile.write(output)
1422 1422 pfile.close()
1423 1423 print '\n*** Profile printout saved to text file',\
1424 1424 `text_file`+'.',sys_exit
1425 1425
1426 1426 if opts.has_key('r'):
1427 1427 return stats
1428 1428 else:
1429 1429 return None
1430 1430
1431 1431 @testdec.skip_doctest
1432 1432 def magic_run(self, parameter_s ='',runner=None,
1433 1433 file_finder=get_py_filename):
1434 1434 """Run the named file inside IPython as a program.
1435 1435
1436 1436 Usage:\\
1437 1437 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1438 1438
1439 1439 Parameters after the filename are passed as command-line arguments to
1440 1440 the program (put in sys.argv). Then, control returns to IPython's
1441 1441 prompt.
1442 1442
1443 1443 This is similar to running at a system prompt:\\
1444 1444 $ python file args\\
1445 1445 but with the advantage of giving you IPython's tracebacks, and of
1446 1446 loading all variables into your interactive namespace for further use
1447 1447 (unless -p is used, see below).
1448 1448
1449 1449 The file is executed in a namespace initially consisting only of
1450 1450 __name__=='__main__' and sys.argv constructed as indicated. It thus
1451 1451 sees its environment as if it were being run as a stand-alone program
1452 1452 (except for sharing global objects such as previously imported
1453 1453 modules). But after execution, the IPython interactive namespace gets
1454 1454 updated with all variables defined in the program (except for __name__
1455 1455 and sys.argv). This allows for very convenient loading of code for
1456 1456 interactive work, while giving each program a 'clean sheet' to run in.
1457 1457
1458 1458 Options:
1459 1459
1460 1460 -n: __name__ is NOT set to '__main__', but to the running file's name
1461 1461 without extension (as python does under import). This allows running
1462 1462 scripts and reloading the definitions in them without calling code
1463 1463 protected by an ' if __name__ == "__main__" ' clause.
1464 1464
1465 1465 -i: run the file in IPython's namespace instead of an empty one. This
1466 1466 is useful if you are experimenting with code written in a text editor
1467 1467 which depends on variables defined interactively.
1468 1468
1469 1469 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1470 1470 being run. This is particularly useful if IPython is being used to
1471 1471 run unittests, which always exit with a sys.exit() call. In such
1472 1472 cases you are interested in the output of the test results, not in
1473 1473 seeing a traceback of the unittest module.
1474 1474
1475 1475 -t: print timing information at the end of the run. IPython will give
1476 1476 you an estimated CPU time consumption for your script, which under
1477 1477 Unix uses the resource module to avoid the wraparound problems of
1478 1478 time.clock(). Under Unix, an estimate of time spent on system tasks
1479 1479 is also given (for Windows platforms this is reported as 0.0).
1480 1480
1481 1481 If -t is given, an additional -N<N> option can be given, where <N>
1482 1482 must be an integer indicating how many times you want the script to
1483 1483 run. The final timing report will include total and per run results.
1484 1484
1485 1485 For example (testing the script uniq_stable.py):
1486 1486
1487 1487 In [1]: run -t uniq_stable
1488 1488
1489 1489 IPython CPU timings (estimated):\\
1490 1490 User : 0.19597 s.\\
1491 1491 System: 0.0 s.\\
1492 1492
1493 1493 In [2]: run -t -N5 uniq_stable
1494 1494
1495 1495 IPython CPU timings (estimated):\\
1496 1496 Total runs performed: 5\\
1497 1497 Times : Total Per run\\
1498 1498 User : 0.910862 s, 0.1821724 s.\\
1499 1499 System: 0.0 s, 0.0 s.
1500 1500
1501 1501 -d: run your program under the control of pdb, the Python debugger.
1502 1502 This allows you to execute your program step by step, watch variables,
1503 1503 etc. Internally, what IPython does is similar to calling:
1504 1504
1505 1505 pdb.run('execfile("YOURFILENAME")')
1506 1506
1507 1507 with a breakpoint set on line 1 of your file. You can change the line
1508 1508 number for this automatic breakpoint to be <N> by using the -bN option
1509 1509 (where N must be an integer). For example:
1510 1510
1511 1511 %run -d -b40 myscript
1512 1512
1513 1513 will set the first breakpoint at line 40 in myscript.py. Note that
1514 1514 the first breakpoint must be set on a line which actually does
1515 1515 something (not a comment or docstring) for it to stop execution.
1516 1516
1517 1517 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1518 1518 first enter 'c' (without qoutes) to start execution up to the first
1519 1519 breakpoint.
1520 1520
1521 1521 Entering 'help' gives information about the use of the debugger. You
1522 1522 can easily see pdb's full documentation with "import pdb;pdb.help()"
1523 1523 at a prompt.
1524 1524
1525 1525 -p: run program under the control of the Python profiler module (which
1526 1526 prints a detailed report of execution times, function calls, etc).
1527 1527
1528 1528 You can pass other options after -p which affect the behavior of the
1529 1529 profiler itself. See the docs for %prun for details.
1530 1530
1531 1531 In this mode, the program's variables do NOT propagate back to the
1532 1532 IPython interactive namespace (because they remain in the namespace
1533 1533 where the profiler executes them).
1534 1534
1535 1535 Internally this triggers a call to %prun, see its documentation for
1536 1536 details on the options available specifically for profiling.
1537 1537
1538 1538 There is one special usage for which the text above doesn't apply:
1539 1539 if the filename ends with .ipy, the file is run as ipython script,
1540 1540 just as if the commands were written on IPython prompt.
1541 1541 """
1542 1542
1543 1543 # get arguments and set sys.argv for program to be run.
1544 1544 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1545 1545 mode='list',list_all=1)
1546 1546
1547 1547 try:
1548 1548 filename = file_finder(arg_lst[0])
1549 1549 except IndexError:
1550 1550 warn('you must provide at least a filename.')
1551 1551 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1552 1552 return
1553 1553 except IOError,msg:
1554 1554 error(msg)
1555 1555 return
1556 1556
1557 1557 if filename.lower().endswith('.ipy'):
1558 1558 self.shell.safe_execfile_ipy(filename)
1559 1559 return
1560 1560
1561 1561 # Control the response to exit() calls made by the script being run
1562 1562 exit_ignore = opts.has_key('e')
1563 1563
1564 1564 # Make sure that the running script gets a proper sys.argv as if it
1565 1565 # were run from a system shell.
1566 1566 save_argv = sys.argv # save it for later restoring
1567 1567 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1568 1568
1569 1569 if opts.has_key('i'):
1570 1570 # Run in user's interactive namespace
1571 1571 prog_ns = self.shell.user_ns
1572 1572 __name__save = self.shell.user_ns['__name__']
1573 1573 prog_ns['__name__'] = '__main__'
1574 1574 main_mod = self.shell.new_main_mod(prog_ns)
1575 1575 else:
1576 1576 # Run in a fresh, empty namespace
1577 1577 if opts.has_key('n'):
1578 1578 name = os.path.splitext(os.path.basename(filename))[0]
1579 1579 else:
1580 1580 name = '__main__'
1581 1581
1582 1582 main_mod = self.shell.new_main_mod()
1583 1583 prog_ns = main_mod.__dict__
1584 1584 prog_ns['__name__'] = name
1585 1585
1586 1586 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1587 1587 # set the __file__ global in the script's namespace
1588 1588 prog_ns['__file__'] = filename
1589 1589
1590 1590 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1591 1591 # that, if we overwrite __main__, we replace it at the end
1592 1592 main_mod_name = prog_ns['__name__']
1593 1593
1594 1594 if main_mod_name == '__main__':
1595 1595 restore_main = sys.modules['__main__']
1596 1596 else:
1597 1597 restore_main = False
1598 1598
1599 1599 # This needs to be undone at the end to prevent holding references to
1600 1600 # every single object ever created.
1601 1601 sys.modules[main_mod_name] = main_mod
1602 1602
1603 1603 stats = None
1604 1604 try:
1605 #self.shell.save_history()
1606
1607 1605 if opts.has_key('p'):
1608 1606 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1609 1607 else:
1610 1608 if opts.has_key('d'):
1611 1609 deb = debugger.Pdb(self.shell.colors)
1612 1610 # reset Breakpoint state, which is moronically kept
1613 1611 # in a class
1614 1612 bdb.Breakpoint.next = 1
1615 1613 bdb.Breakpoint.bplist = {}
1616 1614 bdb.Breakpoint.bpbynumber = [None]
1617 1615 # Set an initial breakpoint to stop execution
1618 1616 maxtries = 10
1619 1617 bp = int(opts.get('b',[1])[0])
1620 1618 checkline = deb.checkline(filename,bp)
1621 1619 if not checkline:
1622 1620 for bp in range(bp+1,bp+maxtries+1):
1623 1621 if deb.checkline(filename,bp):
1624 1622 break
1625 1623 else:
1626 1624 msg = ("\nI failed to find a valid line to set "
1627 1625 "a breakpoint\n"
1628 1626 "after trying up to line: %s.\n"
1629 1627 "Please set a valid breakpoint manually "
1630 1628 "with the -b option." % bp)
1631 1629 error(msg)
1632 1630 return
1633 1631 # if we find a good linenumber, set the breakpoint
1634 1632 deb.do_break('%s:%s' % (filename,bp))
1635 1633 # Start file run
1636 1634 print "NOTE: Enter 'c' at the",
1637 1635 print "%s prompt to start your script." % deb.prompt
1638 1636 try:
1639 1637 deb.run('execfile("%s")' % filename,prog_ns)
1640 1638
1641 1639 except:
1642 1640 etype, value, tb = sys.exc_info()
1643 1641 # Skip three frames in the traceback: the %run one,
1644 1642 # one inside bdb.py, and the command-line typed by the
1645 1643 # user (run by exec in pdb itself).
1646 1644 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1647 1645 else:
1648 1646 if runner is None:
1649 1647 runner = self.shell.safe_execfile
1650 1648 if opts.has_key('t'):
1651 1649 # timed execution
1652 1650 try:
1653 1651 nruns = int(opts['N'][0])
1654 1652 if nruns < 1:
1655 1653 error('Number of runs must be >=1')
1656 1654 return
1657 1655 except (KeyError):
1658 1656 nruns = 1
1659 1657 if nruns == 1:
1660 1658 t0 = clock2()
1661 1659 runner(filename,prog_ns,prog_ns,
1662 1660 exit_ignore=exit_ignore)
1663 1661 t1 = clock2()
1664 1662 t_usr = t1[0]-t0[0]
1665 1663 t_sys = t1[1]-t0[1]
1666 1664 print "\nIPython CPU timings (estimated):"
1667 1665 print " User : %10s s." % t_usr
1668 1666 print " System: %10s s." % t_sys
1669 1667 else:
1670 1668 runs = range(nruns)
1671 1669 t0 = clock2()
1672 1670 for nr in runs:
1673 1671 runner(filename,prog_ns,prog_ns,
1674 1672 exit_ignore=exit_ignore)
1675 1673 t1 = clock2()
1676 1674 t_usr = t1[0]-t0[0]
1677 1675 t_sys = t1[1]-t0[1]
1678 1676 print "\nIPython CPU timings (estimated):"
1679 1677 print "Total runs performed:",nruns
1680 1678 print " Times : %10s %10s" % ('Total','Per run')
1681 1679 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1682 1680 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1683 1681
1684 1682 else:
1685 1683 # regular execution
1686 1684 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1687 1685
1688 1686 if opts.has_key('i'):
1689 1687 self.shell.user_ns['__name__'] = __name__save
1690 1688 else:
1691 1689 # The shell MUST hold a reference to prog_ns so after %run
1692 1690 # exits, the python deletion mechanism doesn't zero it out
1693 1691 # (leaving dangling references).
1694 1692 self.shell.cache_main_mod(prog_ns,filename)
1695 1693 # update IPython interactive namespace
1696 1694
1697 1695 # Some forms of read errors on the file may mean the
1698 1696 # __name__ key was never set; using pop we don't have to
1699 1697 # worry about a possible KeyError.
1700 1698 prog_ns.pop('__name__', None)
1701 1699
1702 1700 self.shell.user_ns.update(prog_ns)
1703 1701 finally:
1704 1702 # It's a bit of a mystery why, but __builtins__ can change from
1705 1703 # being a module to becoming a dict missing some key data after
1706 1704 # %run. As best I can see, this is NOT something IPython is doing
1707 1705 # at all, and similar problems have been reported before:
1708 1706 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1709 1707 # Since this seems to be done by the interpreter itself, the best
1710 1708 # we can do is to at least restore __builtins__ for the user on
1711 1709 # exit.
1712 1710 self.shell.user_ns['__builtins__'] = __builtin__
1713 1711
1714 1712 # Ensure key global structures are restored
1715 1713 sys.argv = save_argv
1716 1714 if restore_main:
1717 1715 sys.modules['__main__'] = restore_main
1718 1716 else:
1719 1717 # Remove from sys.modules the reference to main_mod we'd
1720 1718 # added. Otherwise it will trap references to objects
1721 1719 # contained therein.
1722 1720 del sys.modules[main_mod_name]
1723 1721
1724 #self.shell.reload_history()
1725
1726 1722 return stats
1727 1723
1728 1724 @testdec.skip_doctest
1729 1725 def magic_timeit(self, parameter_s =''):
1730 1726 """Time execution of a Python statement or expression
1731 1727
1732 1728 Usage:\\
1733 1729 %timeit [-n<N> -r<R> [-t|-c]] statement
1734 1730
1735 1731 Time execution of a Python statement or expression using the timeit
1736 1732 module.
1737 1733
1738 1734 Options:
1739 1735 -n<N>: execute the given statement <N> times in a loop. If this value
1740 1736 is not given, a fitting value is chosen.
1741 1737
1742 1738 -r<R>: repeat the loop iteration <R> times and take the best result.
1743 1739 Default: 3
1744 1740
1745 1741 -t: use time.time to measure the time, which is the default on Unix.
1746 1742 This function measures wall time.
1747 1743
1748 1744 -c: use time.clock to measure the time, which is the default on
1749 1745 Windows and measures wall time. On Unix, resource.getrusage is used
1750 1746 instead and returns the CPU user time.
1751 1747
1752 1748 -p<P>: use a precision of <P> digits to display the timing result.
1753 1749 Default: 3
1754 1750
1755 1751
1756 1752 Examples:
1757 1753
1758 1754 In [1]: %timeit pass
1759 1755 10000000 loops, best of 3: 53.3 ns per loop
1760 1756
1761 1757 In [2]: u = None
1762 1758
1763 1759 In [3]: %timeit u is None
1764 1760 10000000 loops, best of 3: 184 ns per loop
1765 1761
1766 1762 In [4]: %timeit -r 4 u == None
1767 1763 1000000 loops, best of 4: 242 ns per loop
1768 1764
1769 1765 In [5]: import time
1770 1766
1771 1767 In [6]: %timeit -n1 time.sleep(2)
1772 1768 1 loops, best of 3: 2 s per loop
1773 1769
1774 1770
1775 1771 The times reported by %timeit will be slightly higher than those
1776 1772 reported by the timeit.py script when variables are accessed. This is
1777 1773 due to the fact that %timeit executes the statement in the namespace
1778 1774 of the shell, compared with timeit.py, which uses a single setup
1779 1775 statement to import function or create variables. Generally, the bias
1780 1776 does not matter as long as results from timeit.py are not mixed with
1781 1777 those from %timeit."""
1782 1778
1783 1779 import timeit
1784 1780 import math
1785 1781
1786 1782 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1787 1783 # certain terminals. Until we figure out a robust way of
1788 1784 # auto-detecting if the terminal can deal with it, use plain 'us' for
1789 1785 # microseconds. I am really NOT happy about disabling the proper
1790 1786 # 'micro' prefix, but crashing is worse... If anyone knows what the
1791 1787 # right solution for this is, I'm all ears...
1792 1788 #
1793 1789 # Note: using
1794 1790 #
1795 1791 # s = u'\xb5'
1796 1792 # s.encode(sys.getdefaultencoding())
1797 1793 #
1798 1794 # is not sufficient, as I've seen terminals where that fails but
1799 1795 # print s
1800 1796 #
1801 1797 # succeeds
1802 1798 #
1803 1799 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1804 1800
1805 1801 #units = [u"s", u"ms",u'\xb5',"ns"]
1806 1802 units = [u"s", u"ms",u'us',"ns"]
1807 1803
1808 1804 scaling = [1, 1e3, 1e6, 1e9]
1809 1805
1810 1806 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1811 1807 posix=False)
1812 1808 if stmt == "":
1813 1809 return
1814 1810 timefunc = timeit.default_timer
1815 1811 number = int(getattr(opts, "n", 0))
1816 1812 repeat = int(getattr(opts, "r", timeit.default_repeat))
1817 1813 precision = int(getattr(opts, "p", 3))
1818 1814 if hasattr(opts, "t"):
1819 1815 timefunc = time.time
1820 1816 if hasattr(opts, "c"):
1821 1817 timefunc = clock
1822 1818
1823 1819 timer = timeit.Timer(timer=timefunc)
1824 1820 # this code has tight coupling to the inner workings of timeit.Timer,
1825 1821 # but is there a better way to achieve that the code stmt has access
1826 1822 # to the shell namespace?
1827 1823
1828 1824 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1829 1825 'setup': "pass"}
1830 1826 # Track compilation time so it can be reported if too long
1831 1827 # Minimum time above which compilation time will be reported
1832 1828 tc_min = 0.1
1833 1829
1834 1830 t0 = clock()
1835 1831 code = compile(src, "<magic-timeit>", "exec")
1836 1832 tc = clock()-t0
1837 1833
1838 1834 ns = {}
1839 1835 exec code in self.shell.user_ns, ns
1840 1836 timer.inner = ns["inner"]
1841 1837
1842 1838 if number == 0:
1843 1839 # determine number so that 0.2 <= total time < 2.0
1844 1840 number = 1
1845 1841 for i in range(1, 10):
1846 1842 if timer.timeit(number) >= 0.2:
1847 1843 break
1848 1844 number *= 10
1849 1845
1850 1846 best = min(timer.repeat(repeat, number)) / number
1851 1847
1852 1848 if best > 0.0 and best < 1000.0:
1853 1849 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1854 1850 elif best >= 1000.0:
1855 1851 order = 0
1856 1852 else:
1857 1853 order = 3
1858 1854 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1859 1855 precision,
1860 1856 best * scaling[order],
1861 1857 units[order])
1862 1858 if tc > tc_min:
1863 1859 print "Compiler time: %.2f s" % tc
1864 1860
1865 1861 @testdec.skip_doctest
1866 1862 def magic_time(self,parameter_s = ''):
1867 1863 """Time execution of a Python statement or expression.
1868 1864
1869 1865 The CPU and wall clock times are printed, and the value of the
1870 1866 expression (if any) is returned. Note that under Win32, system time
1871 1867 is always reported as 0, since it can not be measured.
1872 1868
1873 1869 This function provides very basic timing functionality. In Python
1874 1870 2.3, the timeit module offers more control and sophistication, so this
1875 1871 could be rewritten to use it (patches welcome).
1876 1872
1877 1873 Some examples:
1878 1874
1879 1875 In [1]: time 2**128
1880 1876 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1881 1877 Wall time: 0.00
1882 1878 Out[1]: 340282366920938463463374607431768211456L
1883 1879
1884 1880 In [2]: n = 1000000
1885 1881
1886 1882 In [3]: time sum(range(n))
1887 1883 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1888 1884 Wall time: 1.37
1889 1885 Out[3]: 499999500000L
1890 1886
1891 1887 In [4]: time print 'hello world'
1892 1888 hello world
1893 1889 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1894 1890 Wall time: 0.00
1895 1891
1896 1892 Note that the time needed by Python to compile the given expression
1897 1893 will be reported if it is more than 0.1s. In this example, the
1898 1894 actual exponentiation is done by Python at compilation time, so while
1899 1895 the expression can take a noticeable amount of time to compute, that
1900 1896 time is purely due to the compilation:
1901 1897
1902 1898 In [5]: time 3**9999;
1903 1899 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1904 1900 Wall time: 0.00 s
1905 1901
1906 1902 In [6]: time 3**999999;
1907 1903 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1908 1904 Wall time: 0.00 s
1909 1905 Compiler : 0.78 s
1910 1906 """
1911 1907
1912 1908 # fail immediately if the given expression can't be compiled
1913 1909
1914 1910 expr = self.shell.prefilter(parameter_s,False)
1915 1911
1916 1912 # Minimum time above which compilation time will be reported
1917 1913 tc_min = 0.1
1918 1914
1919 1915 try:
1920 1916 mode = 'eval'
1921 1917 t0 = clock()
1922 1918 code = compile(expr,'<timed eval>',mode)
1923 1919 tc = clock()-t0
1924 1920 except SyntaxError:
1925 1921 mode = 'exec'
1926 1922 t0 = clock()
1927 1923 code = compile(expr,'<timed exec>',mode)
1928 1924 tc = clock()-t0
1929 1925 # skew measurement as little as possible
1930 1926 glob = self.shell.user_ns
1931 1927 clk = clock2
1932 1928 wtime = time.time
1933 1929 # time execution
1934 1930 wall_st = wtime()
1935 1931 if mode=='eval':
1936 1932 st = clk()
1937 1933 out = eval(code,glob)
1938 1934 end = clk()
1939 1935 else:
1940 1936 st = clk()
1941 1937 exec code in glob
1942 1938 end = clk()
1943 1939 out = None
1944 1940 wall_end = wtime()
1945 1941 # Compute actual times and report
1946 1942 wall_time = wall_end-wall_st
1947 1943 cpu_user = end[0]-st[0]
1948 1944 cpu_sys = end[1]-st[1]
1949 1945 cpu_tot = cpu_user+cpu_sys
1950 1946 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1951 1947 (cpu_user,cpu_sys,cpu_tot)
1952 1948 print "Wall time: %.2f s" % wall_time
1953 1949 if tc > tc_min:
1954 1950 print "Compiler : %.2f s" % tc
1955 1951 return out
1956 1952
1957 1953 @testdec.skip_doctest
1958 1954 def magic_macro(self,parameter_s = ''):
1959 1955 """Define a set of input lines as a macro for future re-execution.
1960 1956
1961 1957 Usage:\\
1962 1958 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1963 1959
1964 1960 Options:
1965 1961
1966 1962 -r: use 'raw' input. By default, the 'processed' history is used,
1967 1963 so that magics are loaded in their transformed version to valid
1968 1964 Python. If this option is given, the raw input as typed as the
1969 1965 command line is used instead.
1970 1966
1971 1967 This will define a global variable called `name` which is a string
1972 1968 made of joining the slices and lines you specify (n1,n2,... numbers
1973 1969 above) from your input history into a single string. This variable
1974 1970 acts like an automatic function which re-executes those lines as if
1975 1971 you had typed them. You just type 'name' at the prompt and the code
1976 1972 executes.
1977 1973
1978 1974 The syntax for indicating input ranges is described in %history.
1979 1975
1980 1976 Note: as a 'hidden' feature, you can also use traditional python slice
1981 1977 notation, where N:M means numbers N through M-1.
1982 1978
1983 1979 For example, if your history contains (%hist prints it):
1984 1980
1985 1981 44: x=1
1986 1982 45: y=3
1987 1983 46: z=x+y
1988 1984 47: print x
1989 1985 48: a=5
1990 1986 49: print 'x',x,'y',y
1991 1987
1992 1988 you can create a macro with lines 44 through 47 (included) and line 49
1993 1989 called my_macro with:
1994 1990
1995 1991 In [55]: %macro my_macro 44-47 49
1996 1992
1997 1993 Now, typing `my_macro` (without quotes) will re-execute all this code
1998 1994 in one pass.
1999 1995
2000 1996 You don't need to give the line-numbers in order, and any given line
2001 1997 number can appear multiple times. You can assemble macros with any
2002 1998 lines from your input history in any order.
2003 1999
2004 2000 The macro is a simple object which holds its value in an attribute,
2005 2001 but IPython's display system checks for macros and executes them as
2006 2002 code instead of printing them when you type their name.
2007 2003
2008 2004 You can view a macro's contents by explicitly printing it with:
2009 2005
2010 2006 'print macro_name'.
2011 2007
2012 2008 For one-off cases which DON'T contain magic function calls in them you
2013 2009 can obtain similar results by explicitly executing slices from your
2014 2010 input history with:
2015 2011
2016 2012 In [60]: exec In[44:48]+In[49]"""
2017 2013
2018 2014 opts,args = self.parse_options(parameter_s,'r',mode='list')
2019 2015 if not args: # List existing macros
2020 2016 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2021 2017 isinstance(v, Macro))
2022 2018 if len(args) == 1:
2023 2019 raise UsageError(
2024 2020 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2025 2021 name, ranges = args[0], " ".join(args[1:])
2026 2022
2027 2023 #print 'rng',ranges # dbg
2028 2024 lines = self.extract_input_lines(ranges,'r' in opts)
2029 2025 macro = Macro(lines)
2030 2026 self.shell.define_macro(name, macro)
2031 2027 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2032 2028 print 'Macro contents:'
2033 2029 print macro,
2034 2030
2035 2031 def magic_save(self,parameter_s = ''):
2036 2032 """Save a set of lines to a given filename.
2037 2033
2038 2034 Usage:\\
2039 2035 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2040 2036
2041 2037 Options:
2042 2038
2043 2039 -r: use 'raw' input. By default, the 'processed' history is used,
2044 2040 so that magics are loaded in their transformed version to valid
2045 2041 Python. If this option is given, the raw input as typed as the
2046 2042 command line is used instead.
2047 2043
2048 2044 This function uses the same syntax as %history for input ranges,
2049 2045 then saves the lines to the filename you specify.
2050 2046
2051 2047 It adds a '.py' extension to the file if you don't do so yourself, and
2052 2048 it asks for confirmation before overwriting existing files."""
2053 2049
2054 2050 opts,args = self.parse_options(parameter_s,'r',mode='list')
2055 2051 fname,ranges = args[0], " ".join(args[1:])
2056 2052 if not fname.endswith('.py'):
2057 2053 fname += '.py'
2058 2054 if os.path.isfile(fname):
2059 2055 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2060 2056 if ans.lower() not in ['y','yes']:
2061 2057 print 'Operation cancelled.'
2062 2058 return
2063 2059 cmds = self.extract_input_lines(ranges, 'r' in opts)
2064 2060 with open(fname,'w') as f:
2065 2061 f.write("# coding: utf-8\n")
2066 2062 f.write(cmds.encode("utf-8"))
2067 2063 print 'The following commands were written to file `%s`:' % fname
2068 2064 print cmds
2069 2065
2070 2066 def _edit_macro(self,mname,macro):
2071 2067 """open an editor with the macro data in a file"""
2072 2068 filename = self.shell.mktempfile(macro.value)
2073 2069 self.shell.hooks.editor(filename)
2074 2070
2075 2071 # and make a new macro object, to replace the old one
2076 2072 mfile = open(filename)
2077 2073 mvalue = mfile.read()
2078 2074 mfile.close()
2079 2075 self.shell.user_ns[mname] = Macro(mvalue)
2080 2076
2081 2077 def magic_ed(self,parameter_s=''):
2082 2078 """Alias to %edit."""
2083 2079 return self.magic_edit(parameter_s)
2084 2080
2085 2081 @testdec.skip_doctest
2086 2082 def magic_edit(self,parameter_s='',last_call=['','']):
2087 2083 """Bring up an editor and execute the resulting code.
2088 2084
2089 2085 Usage:
2090 2086 %edit [options] [args]
2091 2087
2092 2088 %edit runs IPython's editor hook. The default version of this hook is
2093 2089 set to call the __IPYTHON__.rc.editor command. This is read from your
2094 2090 environment variable $EDITOR. If this isn't found, it will default to
2095 2091 vi under Linux/Unix and to notepad under Windows. See the end of this
2096 2092 docstring for how to change the editor hook.
2097 2093
2098 2094 You can also set the value of this editor via the command line option
2099 2095 '-editor' or in your ipythonrc file. This is useful if you wish to use
2100 2096 specifically for IPython an editor different from your typical default
2101 2097 (and for Windows users who typically don't set environment variables).
2102 2098
2103 2099 This command allows you to conveniently edit multi-line code right in
2104 2100 your IPython session.
2105 2101
2106 2102 If called without arguments, %edit opens up an empty editor with a
2107 2103 temporary file and will execute the contents of this file when you
2108 2104 close it (don't forget to save it!).
2109 2105
2110 2106
2111 2107 Options:
2112 2108
2113 2109 -n <number>: open the editor at a specified line number. By default,
2114 2110 the IPython editor hook uses the unix syntax 'editor +N filename', but
2115 2111 you can configure this by providing your own modified hook if your
2116 2112 favorite editor supports line-number specifications with a different
2117 2113 syntax.
2118 2114
2119 2115 -p: this will call the editor with the same data as the previous time
2120 2116 it was used, regardless of how long ago (in your current session) it
2121 2117 was.
2122 2118
2123 2119 -r: use 'raw' input. This option only applies to input taken from the
2124 2120 user's history. By default, the 'processed' history is used, so that
2125 2121 magics are loaded in their transformed version to valid Python. If
2126 2122 this option is given, the raw input as typed as the command line is
2127 2123 used instead. When you exit the editor, it will be executed by
2128 2124 IPython's own processor.
2129 2125
2130 2126 -x: do not execute the edited code immediately upon exit. This is
2131 2127 mainly useful if you are editing programs which need to be called with
2132 2128 command line arguments, which you can then do using %run.
2133 2129
2134 2130
2135 2131 Arguments:
2136 2132
2137 2133 If arguments are given, the following possibilites exist:
2138 2134
2139 2135 - If the argument is a filename, IPython will load that into the
2140 2136 editor. It will execute its contents with execfile() when you exit,
2141 2137 loading any code in the file into your interactive namespace.
2142 2138
2143 2139 - The arguments are ranges of input history, e.g. "7 ~1/4-6".
2144 2140 The syntax is the same as in the %history magic.
2145 2141
2146 2142 - If the argument is a string variable, its contents are loaded
2147 2143 into the editor. You can thus edit any string which contains
2148 2144 python code (including the result of previous edits).
2149 2145
2150 2146 - If the argument is the name of an object (other than a string),
2151 2147 IPython will try to locate the file where it was defined and open the
2152 2148 editor at the point where it is defined. You can use `%edit function`
2153 2149 to load an editor exactly at the point where 'function' is defined,
2154 2150 edit it and have the file be executed automatically.
2155 2151
2156 2152 If the object is a macro (see %macro for details), this opens up your
2157 2153 specified editor with a temporary file containing the macro's data.
2158 2154 Upon exit, the macro is reloaded with the contents of the file.
2159 2155
2160 2156 Note: opening at an exact line is only supported under Unix, and some
2161 2157 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2162 2158 '+NUMBER' parameter necessary for this feature. Good editors like
2163 2159 (X)Emacs, vi, jed, pico and joe all do.
2164 2160
2165 2161 After executing your code, %edit will return as output the code you
2166 2162 typed in the editor (except when it was an existing file). This way
2167 2163 you can reload the code in further invocations of %edit as a variable,
2168 2164 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2169 2165 the output.
2170 2166
2171 2167 Note that %edit is also available through the alias %ed.
2172 2168
2173 2169 This is an example of creating a simple function inside the editor and
2174 2170 then modifying it. First, start up the editor:
2175 2171
2176 2172 In [1]: ed
2177 2173 Editing... done. Executing edited code...
2178 2174 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2179 2175
2180 2176 We can then call the function foo():
2181 2177
2182 2178 In [2]: foo()
2183 2179 foo() was defined in an editing session
2184 2180
2185 2181 Now we edit foo. IPython automatically loads the editor with the
2186 2182 (temporary) file where foo() was previously defined:
2187 2183
2188 2184 In [3]: ed foo
2189 2185 Editing... done. Executing edited code...
2190 2186
2191 2187 And if we call foo() again we get the modified version:
2192 2188
2193 2189 In [4]: foo()
2194 2190 foo() has now been changed!
2195 2191
2196 2192 Here is an example of how to edit a code snippet successive
2197 2193 times. First we call the editor:
2198 2194
2199 2195 In [5]: ed
2200 2196 Editing... done. Executing edited code...
2201 2197 hello
2202 2198 Out[5]: "print 'hello'n"
2203 2199
2204 2200 Now we call it again with the previous output (stored in _):
2205 2201
2206 2202 In [6]: ed _
2207 2203 Editing... done. Executing edited code...
2208 2204 hello world
2209 2205 Out[6]: "print 'hello world'n"
2210 2206
2211 2207 Now we call it with the output #8 (stored in _8, also as Out[8]):
2212 2208
2213 2209 In [7]: ed _8
2214 2210 Editing... done. Executing edited code...
2215 2211 hello again
2216 2212 Out[7]: "print 'hello again'n"
2217 2213
2218 2214
2219 2215 Changing the default editor hook:
2220 2216
2221 2217 If you wish to write your own editor hook, you can put it in a
2222 2218 configuration file which you load at startup time. The default hook
2223 2219 is defined in the IPython.core.hooks module, and you can use that as a
2224 2220 starting example for further modifications. That file also has
2225 2221 general instructions on how to set a new hook for use once you've
2226 2222 defined it."""
2227 2223
2228 2224 # FIXME: This function has become a convoluted mess. It needs a
2229 2225 # ground-up rewrite with clean, simple logic.
2230 2226
2231 2227 def make_filename(arg):
2232 2228 "Make a filename from the given args"
2233 2229 try:
2234 2230 filename = get_py_filename(arg)
2235 2231 except IOError:
2236 2232 if args.endswith('.py'):
2237 2233 filename = arg
2238 2234 else:
2239 2235 filename = None
2240 2236 return filename
2241 2237
2242 2238 # custom exceptions
2243 2239 class DataIsObject(Exception): pass
2244 2240
2245 2241 opts,args = self.parse_options(parameter_s,'prxn:')
2246 2242 # Set a few locals from the options for convenience:
2247 2243 opts_prev = 'p' in opts
2248 2244 opts_raw = 'r' in opts
2249 2245
2250 2246 # Default line number value
2251 2247 lineno = opts.get('n',None)
2252 2248
2253 2249 if opts_prev:
2254 2250 args = '_%s' % last_call[0]
2255 2251 if not self.shell.user_ns.has_key(args):
2256 2252 args = last_call[1]
2257 2253
2258 2254 # use last_call to remember the state of the previous call, but don't
2259 2255 # let it be clobbered by successive '-p' calls.
2260 2256 try:
2261 2257 last_call[0] = self.shell.displayhook.prompt_count
2262 2258 if not opts_prev:
2263 2259 last_call[1] = parameter_s
2264 2260 except:
2265 2261 pass
2266 2262
2267 2263 # by default this is done with temp files, except when the given
2268 2264 # arg is a filename
2269 2265 use_temp = True
2270 2266
2271 2267 data = ''
2272 2268 if args.endswith('.py'):
2273 2269 filename = make_filename(args)
2274 2270 use_temp = False
2275 2271 elif args:
2276 2272 # Mode where user specifies ranges of lines, like in %macro.
2277 2273 data = self.extract_input_lines(args, opts_raw)
2278 2274 if not data:
2279 2275 try:
2280 2276 # Load the parameter given as a variable. If not a string,
2281 2277 # process it as an object instead (below)
2282 2278
2283 2279 #print '*** args',args,'type',type(args) # dbg
2284 2280 data = eval(args, self.shell.user_ns)
2285 2281 if not isinstance(data, basestring):
2286 2282 raise DataIsObject
2287 2283
2288 2284 except (NameError,SyntaxError):
2289 2285 # given argument is not a variable, try as a filename
2290 2286 filename = make_filename(args)
2291 2287 if filename is None:
2292 2288 warn("Argument given (%s) can't be found as a variable "
2293 2289 "or as a filename." % args)
2294 2290 return
2295 2291 use_temp = False
2296 2292
2297 2293 except DataIsObject:
2298 2294 # macros have a special edit function
2299 2295 if isinstance(data, Macro):
2300 2296 self._edit_macro(args,data)
2301 2297 return
2302 2298
2303 2299 # For objects, try to edit the file where they are defined
2304 2300 try:
2305 2301 filename = inspect.getabsfile(data)
2306 2302 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2307 2303 # class created by %edit? Try to find source
2308 2304 # by looking for method definitions instead, the
2309 2305 # __module__ in those classes is FakeModule.
2310 2306 attrs = [getattr(data, aname) for aname in dir(data)]
2311 2307 for attr in attrs:
2312 2308 if not inspect.ismethod(attr):
2313 2309 continue
2314 2310 filename = inspect.getabsfile(attr)
2315 2311 if filename and 'fakemodule' not in filename.lower():
2316 2312 # change the attribute to be the edit target instead
2317 2313 data = attr
2318 2314 break
2319 2315
2320 2316 datafile = 1
2321 2317 except TypeError:
2322 2318 filename = make_filename(args)
2323 2319 datafile = 1
2324 2320 warn('Could not find file where `%s` is defined.\n'
2325 2321 'Opening a file named `%s`' % (args,filename))
2326 2322 # Now, make sure we can actually read the source (if it was in
2327 2323 # a temp file it's gone by now).
2328 2324 if datafile:
2329 2325 try:
2330 2326 if lineno is None:
2331 2327 lineno = inspect.getsourcelines(data)[1]
2332 2328 except IOError:
2333 2329 filename = make_filename(args)
2334 2330 if filename is None:
2335 2331 warn('The file `%s` where `%s` was defined cannot '
2336 2332 'be read.' % (filename,data))
2337 2333 return
2338 2334 use_temp = False
2339 2335
2340 2336 if use_temp:
2341 2337 filename = self.shell.mktempfile(data)
2342 2338 print 'IPython will make a temporary file named:',filename
2343 2339
2344 2340 # do actual editing here
2345 2341 print 'Editing...',
2346 2342 sys.stdout.flush()
2347 2343 try:
2348 2344 # Quote filenames that may have spaces in them
2349 2345 if ' ' in filename:
2350 2346 filename = "%s" % filename
2351 2347 self.shell.hooks.editor(filename,lineno)
2352 2348 except TryNext:
2353 2349 warn('Could not open editor')
2354 2350 return
2355 2351
2356 2352 # XXX TODO: should this be generalized for all string vars?
2357 2353 # For now, this is special-cased to blocks created by cpaste
2358 2354 if args.strip() == 'pasted_block':
2359 2355 self.shell.user_ns['pasted_block'] = file_read(filename)
2360 2356
2361 2357 if 'x' in opts: # -x prevents actual execution
2362 2358 print
2363 2359 else:
2364 2360 print 'done. Executing edited code...'
2365 2361 if opts_raw:
2366 2362 self.shell.run_cell(file_read(filename),
2367 2363 store_history=False)
2368 2364 else:
2369 2365 self.shell.safe_execfile(filename,self.shell.user_ns,
2370 2366 self.shell.user_ns)
2371 2367
2372 2368
2373 2369 if use_temp:
2374 2370 try:
2375 2371 return open(filename).read()
2376 2372 except IOError,msg:
2377 2373 if msg.filename == filename:
2378 2374 warn('File not found. Did you forget to save?')
2379 2375 return
2380 2376 else:
2381 2377 self.shell.showtraceback()
2382 2378
2383 2379 def magic_xmode(self,parameter_s = ''):
2384 2380 """Switch modes for the exception handlers.
2385 2381
2386 2382 Valid modes: Plain, Context and Verbose.
2387 2383
2388 2384 If called without arguments, acts as a toggle."""
2389 2385
2390 2386 def xmode_switch_err(name):
2391 2387 warn('Error changing %s exception modes.\n%s' %
2392 2388 (name,sys.exc_info()[1]))
2393 2389
2394 2390 shell = self.shell
2395 2391 new_mode = parameter_s.strip().capitalize()
2396 2392 try:
2397 2393 shell.InteractiveTB.set_mode(mode=new_mode)
2398 2394 print 'Exception reporting mode:',shell.InteractiveTB.mode
2399 2395 except:
2400 2396 xmode_switch_err('user')
2401 2397
2402 2398 def magic_colors(self,parameter_s = ''):
2403 2399 """Switch color scheme for prompts, info system and exception handlers.
2404 2400
2405 2401 Currently implemented schemes: NoColor, Linux, LightBG.
2406 2402
2407 2403 Color scheme names are not case-sensitive.
2408 2404
2409 2405 Examples
2410 2406 --------
2411 2407 To get a plain black and white terminal::
2412 2408
2413 2409 %colors nocolor
2414 2410 """
2415 2411
2416 2412 def color_switch_err(name):
2417 2413 warn('Error changing %s color schemes.\n%s' %
2418 2414 (name,sys.exc_info()[1]))
2419 2415
2420 2416
2421 2417 new_scheme = parameter_s.strip()
2422 2418 if not new_scheme:
2423 2419 raise UsageError(
2424 2420 "%colors: you must specify a color scheme. See '%colors?'")
2425 2421 return
2426 2422 # local shortcut
2427 2423 shell = self.shell
2428 2424
2429 2425 import IPython.utils.rlineimpl as readline
2430 2426
2431 2427 if not readline.have_readline and sys.platform == "win32":
2432 2428 msg = """\
2433 2429 Proper color support under MS Windows requires the pyreadline library.
2434 2430 You can find it at:
2435 2431 http://ipython.scipy.org/moin/PyReadline/Intro
2436 2432 Gary's readline needs the ctypes module, from:
2437 2433 http://starship.python.net/crew/theller/ctypes
2438 2434 (Note that ctypes is already part of Python versions 2.5 and newer).
2439 2435
2440 2436 Defaulting color scheme to 'NoColor'"""
2441 2437 new_scheme = 'NoColor'
2442 2438 warn(msg)
2443 2439
2444 2440 # readline option is 0
2445 2441 if not shell.has_readline:
2446 2442 new_scheme = 'NoColor'
2447 2443
2448 2444 # Set prompt colors
2449 2445 try:
2450 2446 shell.displayhook.set_colors(new_scheme)
2451 2447 except:
2452 2448 color_switch_err('prompt')
2453 2449 else:
2454 2450 shell.colors = \
2455 2451 shell.displayhook.color_table.active_scheme_name
2456 2452 # Set exception colors
2457 2453 try:
2458 2454 shell.InteractiveTB.set_colors(scheme = new_scheme)
2459 2455 shell.SyntaxTB.set_colors(scheme = new_scheme)
2460 2456 except:
2461 2457 color_switch_err('exception')
2462 2458
2463 2459 # Set info (for 'object?') colors
2464 2460 if shell.color_info:
2465 2461 try:
2466 2462 shell.inspector.set_active_scheme(new_scheme)
2467 2463 except:
2468 2464 color_switch_err('object inspector')
2469 2465 else:
2470 2466 shell.inspector.set_active_scheme('NoColor')
2471 2467
2472 2468 def magic_pprint(self, parameter_s=''):
2473 2469 """Toggle pretty printing on/off."""
2474 2470 ptformatter = self.shell.display_formatter.formatters['text/plain']
2475 2471 ptformatter.pprint = bool(1 - ptformatter.pprint)
2476 2472 print 'Pretty printing has been turned', \
2477 2473 ['OFF','ON'][ptformatter.pprint]
2478 2474
2479 2475 def magic_Exit(self, parameter_s=''):
2480 2476 """Exit IPython."""
2481 2477
2482 2478 self.shell.ask_exit()
2483 2479
2484 2480 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2485 2481 magic_exit = magic_quit = magic_Quit = magic_Exit
2486 2482
2487 2483 #......................................................................
2488 2484 # Functions to implement unix shell-type things
2489 2485
2490 2486 @testdec.skip_doctest
2491 2487 def magic_alias(self, parameter_s = ''):
2492 2488 """Define an alias for a system command.
2493 2489
2494 2490 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2495 2491
2496 2492 Then, typing 'alias_name params' will execute the system command 'cmd
2497 2493 params' (from your underlying operating system).
2498 2494
2499 2495 Aliases have lower precedence than magic functions and Python normal
2500 2496 variables, so if 'foo' is both a Python variable and an alias, the
2501 2497 alias can not be executed until 'del foo' removes the Python variable.
2502 2498
2503 2499 You can use the %l specifier in an alias definition to represent the
2504 2500 whole line when the alias is called. For example:
2505 2501
2506 2502 In [2]: alias bracket echo "Input in brackets: <%l>"
2507 2503 In [3]: bracket hello world
2508 2504 Input in brackets: <hello world>
2509 2505
2510 2506 You can also define aliases with parameters using %s specifiers (one
2511 2507 per parameter):
2512 2508
2513 2509 In [1]: alias parts echo first %s second %s
2514 2510 In [2]: %parts A B
2515 2511 first A second B
2516 2512 In [3]: %parts A
2517 2513 Incorrect number of arguments: 2 expected.
2518 2514 parts is an alias to: 'echo first %s second %s'
2519 2515
2520 2516 Note that %l and %s are mutually exclusive. You can only use one or
2521 2517 the other in your aliases.
2522 2518
2523 2519 Aliases expand Python variables just like system calls using ! or !!
2524 2520 do: all expressions prefixed with '$' get expanded. For details of
2525 2521 the semantic rules, see PEP-215:
2526 2522 http://www.python.org/peps/pep-0215.html. This is the library used by
2527 2523 IPython for variable expansion. If you want to access a true shell
2528 2524 variable, an extra $ is necessary to prevent its expansion by IPython:
2529 2525
2530 2526 In [6]: alias show echo
2531 2527 In [7]: PATH='A Python string'
2532 2528 In [8]: show $PATH
2533 2529 A Python string
2534 2530 In [9]: show $$PATH
2535 2531 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2536 2532
2537 2533 You can use the alias facility to acess all of $PATH. See the %rehash
2538 2534 and %rehashx functions, which automatically create aliases for the
2539 2535 contents of your $PATH.
2540 2536
2541 2537 If called with no parameters, %alias prints the current alias table."""
2542 2538
2543 2539 par = parameter_s.strip()
2544 2540 if not par:
2545 2541 stored = self.db.get('stored_aliases', {} )
2546 2542 aliases = sorted(self.shell.alias_manager.aliases)
2547 2543 # for k, v in stored:
2548 2544 # atab.append(k, v[0])
2549 2545
2550 2546 print "Total number of aliases:", len(aliases)
2551 2547 sys.stdout.flush()
2552 2548 return aliases
2553 2549
2554 2550 # Now try to define a new one
2555 2551 try:
2556 2552 alias,cmd = par.split(None, 1)
2557 2553 except:
2558 2554 print oinspect.getdoc(self.magic_alias)
2559 2555 else:
2560 2556 self.shell.alias_manager.soft_define_alias(alias, cmd)
2561 2557 # end magic_alias
2562 2558
2563 2559 def magic_unalias(self, parameter_s = ''):
2564 2560 """Remove an alias"""
2565 2561
2566 2562 aname = parameter_s.strip()
2567 2563 self.shell.alias_manager.undefine_alias(aname)
2568 2564 stored = self.db.get('stored_aliases', {} )
2569 2565 if aname in stored:
2570 2566 print "Removing %stored alias",aname
2571 2567 del stored[aname]
2572 2568 self.db['stored_aliases'] = stored
2573 2569
2574 2570 def magic_rehashx(self, parameter_s = ''):
2575 2571 """Update the alias table with all executable files in $PATH.
2576 2572
2577 2573 This version explicitly checks that every entry in $PATH is a file
2578 2574 with execute access (os.X_OK), so it is much slower than %rehash.
2579 2575
2580 2576 Under Windows, it checks executability as a match agains a
2581 2577 '|'-separated string of extensions, stored in the IPython config
2582 2578 variable win_exec_ext. This defaults to 'exe|com|bat'.
2583 2579
2584 2580 This function also resets the root module cache of module completer,
2585 2581 used on slow filesystems.
2586 2582 """
2587 2583 from IPython.core.alias import InvalidAliasError
2588 2584
2589 2585 # for the benefit of module completer in ipy_completers.py
2590 2586 del self.db['rootmodules']
2591 2587
2592 2588 path = [os.path.abspath(os.path.expanduser(p)) for p in
2593 2589 os.environ.get('PATH','').split(os.pathsep)]
2594 2590 path = filter(os.path.isdir,path)
2595 2591
2596 2592 syscmdlist = []
2597 2593 # Now define isexec in a cross platform manner.
2598 2594 if os.name == 'posix':
2599 2595 isexec = lambda fname:os.path.isfile(fname) and \
2600 2596 os.access(fname,os.X_OK)
2601 2597 else:
2602 2598 try:
2603 2599 winext = os.environ['pathext'].replace(';','|').replace('.','')
2604 2600 except KeyError:
2605 2601 winext = 'exe|com|bat|py'
2606 2602 if 'py' not in winext:
2607 2603 winext += '|py'
2608 2604 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2609 2605 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2610 2606 savedir = os.getcwd()
2611 2607
2612 2608 # Now walk the paths looking for executables to alias.
2613 2609 try:
2614 2610 # write the whole loop for posix/Windows so we don't have an if in
2615 2611 # the innermost part
2616 2612 if os.name == 'posix':
2617 2613 for pdir in path:
2618 2614 os.chdir(pdir)
2619 2615 for ff in os.listdir(pdir):
2620 2616 if isexec(ff):
2621 2617 try:
2622 2618 # Removes dots from the name since ipython
2623 2619 # will assume names with dots to be python.
2624 2620 self.shell.alias_manager.define_alias(
2625 2621 ff.replace('.',''), ff)
2626 2622 except InvalidAliasError:
2627 2623 pass
2628 2624 else:
2629 2625 syscmdlist.append(ff)
2630 2626 else:
2631 2627 no_alias = self.shell.alias_manager.no_alias
2632 2628 for pdir in path:
2633 2629 os.chdir(pdir)
2634 2630 for ff in os.listdir(pdir):
2635 2631 base, ext = os.path.splitext(ff)
2636 2632 if isexec(ff) and base.lower() not in no_alias:
2637 2633 if ext.lower() == '.exe':
2638 2634 ff = base
2639 2635 try:
2640 2636 # Removes dots from the name since ipython
2641 2637 # will assume names with dots to be python.
2642 2638 self.shell.alias_manager.define_alias(
2643 2639 base.lower().replace('.',''), ff)
2644 2640 except InvalidAliasError:
2645 2641 pass
2646 2642 syscmdlist.append(ff)
2647 2643 db = self.db
2648 2644 db['syscmdlist'] = syscmdlist
2649 2645 finally:
2650 2646 os.chdir(savedir)
2651 2647
2652 2648 @testdec.skip_doctest
2653 2649 def magic_pwd(self, parameter_s = ''):
2654 2650 """Return the current working directory path.
2655 2651
2656 2652 Examples
2657 2653 --------
2658 2654 ::
2659 2655
2660 2656 In [9]: pwd
2661 2657 Out[9]: '/home/tsuser/sprint/ipython'
2662 2658 """
2663 2659 return os.getcwd()
2664 2660
2665 2661 @testdec.skip_doctest
2666 2662 def magic_cd(self, parameter_s=''):
2667 2663 """Change the current working directory.
2668 2664
2669 2665 This command automatically maintains an internal list of directories
2670 2666 you visit during your IPython session, in the variable _dh. The
2671 2667 command %dhist shows this history nicely formatted. You can also
2672 2668 do 'cd -<tab>' to see directory history conveniently.
2673 2669
2674 2670 Usage:
2675 2671
2676 2672 cd 'dir': changes to directory 'dir'.
2677 2673
2678 2674 cd -: changes to the last visited directory.
2679 2675
2680 2676 cd -<n>: changes to the n-th directory in the directory history.
2681 2677
2682 2678 cd --foo: change to directory that matches 'foo' in history
2683 2679
2684 2680 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2685 2681 (note: cd <bookmark_name> is enough if there is no
2686 2682 directory <bookmark_name>, but a bookmark with the name exists.)
2687 2683 'cd -b <tab>' allows you to tab-complete bookmark names.
2688 2684
2689 2685 Options:
2690 2686
2691 2687 -q: quiet. Do not print the working directory after the cd command is
2692 2688 executed. By default IPython's cd command does print this directory,
2693 2689 since the default prompts do not display path information.
2694 2690
2695 2691 Note that !cd doesn't work for this purpose because the shell where
2696 2692 !command runs is immediately discarded after executing 'command'.
2697 2693
2698 2694 Examples
2699 2695 --------
2700 2696 ::
2701 2697
2702 2698 In [10]: cd parent/child
2703 2699 /home/tsuser/parent/child
2704 2700 """
2705 2701
2706 2702 parameter_s = parameter_s.strip()
2707 2703 #bkms = self.shell.persist.get("bookmarks",{})
2708 2704
2709 2705 oldcwd = os.getcwd()
2710 2706 numcd = re.match(r'(-)(\d+)$',parameter_s)
2711 2707 # jump in directory history by number
2712 2708 if numcd:
2713 2709 nn = int(numcd.group(2))
2714 2710 try:
2715 2711 ps = self.shell.user_ns['_dh'][nn]
2716 2712 except IndexError:
2717 2713 print 'The requested directory does not exist in history.'
2718 2714 return
2719 2715 else:
2720 2716 opts = {}
2721 2717 elif parameter_s.startswith('--'):
2722 2718 ps = None
2723 2719 fallback = None
2724 2720 pat = parameter_s[2:]
2725 2721 dh = self.shell.user_ns['_dh']
2726 2722 # first search only by basename (last component)
2727 2723 for ent in reversed(dh):
2728 2724 if pat in os.path.basename(ent) and os.path.isdir(ent):
2729 2725 ps = ent
2730 2726 break
2731 2727
2732 2728 if fallback is None and pat in ent and os.path.isdir(ent):
2733 2729 fallback = ent
2734 2730
2735 2731 # if we have no last part match, pick the first full path match
2736 2732 if ps is None:
2737 2733 ps = fallback
2738 2734
2739 2735 if ps is None:
2740 2736 print "No matching entry in directory history"
2741 2737 return
2742 2738 else:
2743 2739 opts = {}
2744 2740
2745 2741
2746 2742 else:
2747 2743 #turn all non-space-escaping backslashes to slashes,
2748 2744 # for c:\windows\directory\names\
2749 2745 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2750 2746 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2751 2747 # jump to previous
2752 2748 if ps == '-':
2753 2749 try:
2754 2750 ps = self.shell.user_ns['_dh'][-2]
2755 2751 except IndexError:
2756 2752 raise UsageError('%cd -: No previous directory to change to.')
2757 2753 # jump to bookmark if needed
2758 2754 else:
2759 2755 if not os.path.isdir(ps) or opts.has_key('b'):
2760 2756 bkms = self.db.get('bookmarks', {})
2761 2757
2762 2758 if bkms.has_key(ps):
2763 2759 target = bkms[ps]
2764 2760 print '(bookmark:%s) -> %s' % (ps,target)
2765 2761 ps = target
2766 2762 else:
2767 2763 if opts.has_key('b'):
2768 2764 raise UsageError("Bookmark '%s' not found. "
2769 2765 "Use '%%bookmark -l' to see your bookmarks." % ps)
2770 2766
2771 2767 # at this point ps should point to the target dir
2772 2768 if ps:
2773 2769 try:
2774 2770 os.chdir(os.path.expanduser(ps))
2775 2771 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2776 2772 set_term_title('IPython: ' + abbrev_cwd())
2777 2773 except OSError:
2778 2774 print sys.exc_info()[1]
2779 2775 else:
2780 2776 cwd = os.getcwd()
2781 2777 dhist = self.shell.user_ns['_dh']
2782 2778 if oldcwd != cwd:
2783 2779 dhist.append(cwd)
2784 2780 self.db['dhist'] = compress_dhist(dhist)[-100:]
2785 2781
2786 2782 else:
2787 2783 os.chdir(self.shell.home_dir)
2788 2784 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2789 2785 set_term_title('IPython: ' + '~')
2790 2786 cwd = os.getcwd()
2791 2787 dhist = self.shell.user_ns['_dh']
2792 2788
2793 2789 if oldcwd != cwd:
2794 2790 dhist.append(cwd)
2795 2791 self.db['dhist'] = compress_dhist(dhist)[-100:]
2796 2792 if not 'q' in opts and self.shell.user_ns['_dh']:
2797 2793 print self.shell.user_ns['_dh'][-1]
2798 2794
2799 2795
2800 2796 def magic_env(self, parameter_s=''):
2801 2797 """List environment variables."""
2802 2798
2803 2799 return os.environ.data
2804 2800
2805 2801 def magic_pushd(self, parameter_s=''):
2806 2802 """Place the current dir on stack and change directory.
2807 2803
2808 2804 Usage:\\
2809 2805 %pushd ['dirname']
2810 2806 """
2811 2807
2812 2808 dir_s = self.shell.dir_stack
2813 2809 tgt = os.path.expanduser(parameter_s)
2814 2810 cwd = os.getcwd().replace(self.home_dir,'~')
2815 2811 if tgt:
2816 2812 self.magic_cd(parameter_s)
2817 2813 dir_s.insert(0,cwd)
2818 2814 return self.magic_dirs()
2819 2815
2820 2816 def magic_popd(self, parameter_s=''):
2821 2817 """Change to directory popped off the top of the stack.
2822 2818 """
2823 2819 if not self.shell.dir_stack:
2824 2820 raise UsageError("%popd on empty stack")
2825 2821 top = self.shell.dir_stack.pop(0)
2826 2822 self.magic_cd(top)
2827 2823 print "popd ->",top
2828 2824
2829 2825 def magic_dirs(self, parameter_s=''):
2830 2826 """Return the current directory stack."""
2831 2827
2832 2828 return self.shell.dir_stack
2833 2829
2834 2830 def magic_dhist(self, parameter_s=''):
2835 2831 """Print your history of visited directories.
2836 2832
2837 2833 %dhist -> print full history\\
2838 2834 %dhist n -> print last n entries only\\
2839 2835 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2840 2836
2841 2837 This history is automatically maintained by the %cd command, and
2842 2838 always available as the global list variable _dh. You can use %cd -<n>
2843 2839 to go to directory number <n>.
2844 2840
2845 2841 Note that most of time, you should view directory history by entering
2846 2842 cd -<TAB>.
2847 2843
2848 2844 """
2849 2845
2850 2846 dh = self.shell.user_ns['_dh']
2851 2847 if parameter_s:
2852 2848 try:
2853 2849 args = map(int,parameter_s.split())
2854 2850 except:
2855 2851 self.arg_err(Magic.magic_dhist)
2856 2852 return
2857 2853 if len(args) == 1:
2858 2854 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2859 2855 elif len(args) == 2:
2860 2856 ini,fin = args
2861 2857 else:
2862 2858 self.arg_err(Magic.magic_dhist)
2863 2859 return
2864 2860 else:
2865 2861 ini,fin = 0,len(dh)
2866 2862 nlprint(dh,
2867 2863 header = 'Directory history (kept in _dh)',
2868 2864 start=ini,stop=fin)
2869 2865
2870 2866 @testdec.skip_doctest
2871 2867 def magic_sc(self, parameter_s=''):
2872 2868 """Shell capture - execute a shell command and capture its output.
2873 2869
2874 2870 DEPRECATED. Suboptimal, retained for backwards compatibility.
2875 2871
2876 2872 You should use the form 'var = !command' instead. Example:
2877 2873
2878 2874 "%sc -l myfiles = ls ~" should now be written as
2879 2875
2880 2876 "myfiles = !ls ~"
2881 2877
2882 2878 myfiles.s, myfiles.l and myfiles.n still apply as documented
2883 2879 below.
2884 2880
2885 2881 --
2886 2882 %sc [options] varname=command
2887 2883
2888 2884 IPython will run the given command using commands.getoutput(), and
2889 2885 will then update the user's interactive namespace with a variable
2890 2886 called varname, containing the value of the call. Your command can
2891 2887 contain shell wildcards, pipes, etc.
2892 2888
2893 2889 The '=' sign in the syntax is mandatory, and the variable name you
2894 2890 supply must follow Python's standard conventions for valid names.
2895 2891
2896 2892 (A special format without variable name exists for internal use)
2897 2893
2898 2894 Options:
2899 2895
2900 2896 -l: list output. Split the output on newlines into a list before
2901 2897 assigning it to the given variable. By default the output is stored
2902 2898 as a single string.
2903 2899
2904 2900 -v: verbose. Print the contents of the variable.
2905 2901
2906 2902 In most cases you should not need to split as a list, because the
2907 2903 returned value is a special type of string which can automatically
2908 2904 provide its contents either as a list (split on newlines) or as a
2909 2905 space-separated string. These are convenient, respectively, either
2910 2906 for sequential processing or to be passed to a shell command.
2911 2907
2912 2908 For example:
2913 2909
2914 2910 # all-random
2915 2911
2916 2912 # Capture into variable a
2917 2913 In [1]: sc a=ls *py
2918 2914
2919 2915 # a is a string with embedded newlines
2920 2916 In [2]: a
2921 2917 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2922 2918
2923 2919 # which can be seen as a list:
2924 2920 In [3]: a.l
2925 2921 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2926 2922
2927 2923 # or as a whitespace-separated string:
2928 2924 In [4]: a.s
2929 2925 Out[4]: 'setup.py win32_manual_post_install.py'
2930 2926
2931 2927 # a.s is useful to pass as a single command line:
2932 2928 In [5]: !wc -l $a.s
2933 2929 146 setup.py
2934 2930 130 win32_manual_post_install.py
2935 2931 276 total
2936 2932
2937 2933 # while the list form is useful to loop over:
2938 2934 In [6]: for f in a.l:
2939 2935 ...: !wc -l $f
2940 2936 ...:
2941 2937 146 setup.py
2942 2938 130 win32_manual_post_install.py
2943 2939
2944 2940 Similiarly, the lists returned by the -l option are also special, in
2945 2941 the sense that you can equally invoke the .s attribute on them to
2946 2942 automatically get a whitespace-separated string from their contents:
2947 2943
2948 2944 In [7]: sc -l b=ls *py
2949 2945
2950 2946 In [8]: b
2951 2947 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2952 2948
2953 2949 In [9]: b.s
2954 2950 Out[9]: 'setup.py win32_manual_post_install.py'
2955 2951
2956 2952 In summary, both the lists and strings used for ouptut capture have
2957 2953 the following special attributes:
2958 2954
2959 2955 .l (or .list) : value as list.
2960 2956 .n (or .nlstr): value as newline-separated string.
2961 2957 .s (or .spstr): value as space-separated string.
2962 2958 """
2963 2959
2964 2960 opts,args = self.parse_options(parameter_s,'lv')
2965 2961 # Try to get a variable name and command to run
2966 2962 try:
2967 2963 # the variable name must be obtained from the parse_options
2968 2964 # output, which uses shlex.split to strip options out.
2969 2965 var,_ = args.split('=',1)
2970 2966 var = var.strip()
2971 2967 # But the the command has to be extracted from the original input
2972 2968 # parameter_s, not on what parse_options returns, to avoid the
2973 2969 # quote stripping which shlex.split performs on it.
2974 2970 _,cmd = parameter_s.split('=',1)
2975 2971 except ValueError:
2976 2972 var,cmd = '',''
2977 2973 # If all looks ok, proceed
2978 2974 split = 'l' in opts
2979 2975 out = self.shell.getoutput(cmd, split=split)
2980 2976 if opts.has_key('v'):
2981 2977 print '%s ==\n%s' % (var,pformat(out))
2982 2978 if var:
2983 2979 self.shell.user_ns.update({var:out})
2984 2980 else:
2985 2981 return out
2986 2982
2987 2983 def magic_sx(self, parameter_s=''):
2988 2984 """Shell execute - run a shell command and capture its output.
2989 2985
2990 2986 %sx command
2991 2987
2992 2988 IPython will run the given command using commands.getoutput(), and
2993 2989 return the result formatted as a list (split on '\\n'). Since the
2994 2990 output is _returned_, it will be stored in ipython's regular output
2995 2991 cache Out[N] and in the '_N' automatic variables.
2996 2992
2997 2993 Notes:
2998 2994
2999 2995 1) If an input line begins with '!!', then %sx is automatically
3000 2996 invoked. That is, while:
3001 2997 !ls
3002 2998 causes ipython to simply issue system('ls'), typing
3003 2999 !!ls
3004 3000 is a shorthand equivalent to:
3005 3001 %sx ls
3006 3002
3007 3003 2) %sx differs from %sc in that %sx automatically splits into a list,
3008 3004 like '%sc -l'. The reason for this is to make it as easy as possible
3009 3005 to process line-oriented shell output via further python commands.
3010 3006 %sc is meant to provide much finer control, but requires more
3011 3007 typing.
3012 3008
3013 3009 3) Just like %sc -l, this is a list with special attributes:
3014 3010
3015 3011 .l (or .list) : value as list.
3016 3012 .n (or .nlstr): value as newline-separated string.
3017 3013 .s (or .spstr): value as whitespace-separated string.
3018 3014
3019 3015 This is very useful when trying to use such lists as arguments to
3020 3016 system commands."""
3021 3017
3022 3018 if parameter_s:
3023 3019 return self.shell.getoutput(parameter_s)
3024 3020
3025 3021
3026 3022 def magic_bookmark(self, parameter_s=''):
3027 3023 """Manage IPython's bookmark system.
3028 3024
3029 3025 %bookmark <name> - set bookmark to current dir
3030 3026 %bookmark <name> <dir> - set bookmark to <dir>
3031 3027 %bookmark -l - list all bookmarks
3032 3028 %bookmark -d <name> - remove bookmark
3033 3029 %bookmark -r - remove all bookmarks
3034 3030
3035 3031 You can later on access a bookmarked folder with:
3036 3032 %cd -b <name>
3037 3033 or simply '%cd <name>' if there is no directory called <name> AND
3038 3034 there is such a bookmark defined.
3039 3035
3040 3036 Your bookmarks persist through IPython sessions, but they are
3041 3037 associated with each profile."""
3042 3038
3043 3039 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3044 3040 if len(args) > 2:
3045 3041 raise UsageError("%bookmark: too many arguments")
3046 3042
3047 3043 bkms = self.db.get('bookmarks',{})
3048 3044
3049 3045 if opts.has_key('d'):
3050 3046 try:
3051 3047 todel = args[0]
3052 3048 except IndexError:
3053 3049 raise UsageError(
3054 3050 "%bookmark -d: must provide a bookmark to delete")
3055 3051 else:
3056 3052 try:
3057 3053 del bkms[todel]
3058 3054 except KeyError:
3059 3055 raise UsageError(
3060 3056 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3061 3057
3062 3058 elif opts.has_key('r'):
3063 3059 bkms = {}
3064 3060 elif opts.has_key('l'):
3065 3061 bks = bkms.keys()
3066 3062 bks.sort()
3067 3063 if bks:
3068 3064 size = max(map(len,bks))
3069 3065 else:
3070 3066 size = 0
3071 3067 fmt = '%-'+str(size)+'s -> %s'
3072 3068 print 'Current bookmarks:'
3073 3069 for bk in bks:
3074 3070 print fmt % (bk,bkms[bk])
3075 3071 else:
3076 3072 if not args:
3077 3073 raise UsageError("%bookmark: You must specify the bookmark name")
3078 3074 elif len(args)==1:
3079 3075 bkms[args[0]] = os.getcwd()
3080 3076 elif len(args)==2:
3081 3077 bkms[args[0]] = args[1]
3082 3078 self.db['bookmarks'] = bkms
3083 3079
3084 3080 def magic_pycat(self, parameter_s=''):
3085 3081 """Show a syntax-highlighted file through a pager.
3086 3082
3087 3083 This magic is similar to the cat utility, but it will assume the file
3088 3084 to be Python source and will show it with syntax highlighting. """
3089 3085
3090 3086 try:
3091 3087 filename = get_py_filename(parameter_s)
3092 3088 cont = file_read(filename)
3093 3089 except IOError:
3094 3090 try:
3095 3091 cont = eval(parameter_s,self.user_ns)
3096 3092 except NameError:
3097 3093 cont = None
3098 3094 if cont is None:
3099 3095 print "Error: no such file or variable"
3100 3096 return
3101 3097
3102 3098 page.page(self.shell.pycolorize(cont))
3103 3099
3104 3100 def _rerun_pasted(self):
3105 3101 """ Rerun a previously pasted command.
3106 3102 """
3107 3103 b = self.user_ns.get('pasted_block', None)
3108 3104 if b is None:
3109 3105 raise UsageError('No previous pasted block available')
3110 3106 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3111 3107 exec b in self.user_ns
3112 3108
3113 3109 def _get_pasted_lines(self, sentinel):
3114 3110 """ Yield pasted lines until the user enters the given sentinel value.
3115 3111 """
3116 3112 from IPython.core import interactiveshell
3117 3113 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3118 3114 while True:
3119 3115 l = interactiveshell.raw_input_original(':')
3120 3116 if l == sentinel:
3121 3117 return
3122 3118 else:
3123 3119 yield l
3124 3120
3125 3121 def _strip_pasted_lines_for_code(self, raw_lines):
3126 3122 """ Strip non-code parts of a sequence of lines to return a block of
3127 3123 code.
3128 3124 """
3129 3125 # Regular expressions that declare text we strip from the input:
3130 3126 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3131 3127 r'^\s*(\s?>)+', # Python input prompt
3132 3128 r'^\s*\.{3,}', # Continuation prompts
3133 3129 r'^\++',
3134 3130 ]
3135 3131
3136 3132 strip_from_start = map(re.compile,strip_re)
3137 3133
3138 3134 lines = []
3139 3135 for l in raw_lines:
3140 3136 for pat in strip_from_start:
3141 3137 l = pat.sub('',l)
3142 3138 lines.append(l)
3143 3139
3144 3140 block = "\n".join(lines) + '\n'
3145 3141 #print "block:\n",block
3146 3142 return block
3147 3143
3148 3144 def _execute_block(self, block, par):
3149 3145 """ Execute a block, or store it in a variable, per the user's request.
3150 3146 """
3151 3147 if not par:
3152 3148 b = textwrap.dedent(block)
3153 3149 self.user_ns['pasted_block'] = b
3154 3150 exec b in self.user_ns
3155 3151 else:
3156 3152 self.user_ns[par] = SList(block.splitlines())
3157 3153 print "Block assigned to '%s'" % par
3158 3154
3159 3155 def magic_quickref(self,arg):
3160 3156 """ Show a quick reference sheet """
3161 3157 import IPython.core.usage
3162 3158 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3163 3159
3164 3160 page.page(qr)
3165 3161
3166 3162 def magic_doctest_mode(self,parameter_s=''):
3167 3163 """Toggle doctest mode on and off.
3168 3164
3169 3165 This mode is intended to make IPython behave as much as possible like a
3170 3166 plain Python shell, from the perspective of how its prompts, exceptions
3171 3167 and output look. This makes it easy to copy and paste parts of a
3172 3168 session into doctests. It does so by:
3173 3169
3174 3170 - Changing the prompts to the classic ``>>>`` ones.
3175 3171 - Changing the exception reporting mode to 'Plain'.
3176 3172 - Disabling pretty-printing of output.
3177 3173
3178 3174 Note that IPython also supports the pasting of code snippets that have
3179 3175 leading '>>>' and '...' prompts in them. This means that you can paste
3180 3176 doctests from files or docstrings (even if they have leading
3181 3177 whitespace), and the code will execute correctly. You can then use
3182 3178 '%history -t' to see the translated history; this will give you the
3183 3179 input after removal of all the leading prompts and whitespace, which
3184 3180 can be pasted back into an editor.
3185 3181
3186 3182 With these features, you can switch into this mode easily whenever you
3187 3183 need to do testing and changes to doctests, without having to leave
3188 3184 your existing IPython session.
3189 3185 """
3190 3186
3191 3187 from IPython.utils.ipstruct import Struct
3192 3188
3193 3189 # Shorthands
3194 3190 shell = self.shell
3195 3191 oc = shell.displayhook
3196 3192 meta = shell.meta
3197 3193 disp_formatter = self.shell.display_formatter
3198 3194 ptformatter = disp_formatter.formatters['text/plain']
3199 3195 # dstore is a data store kept in the instance metadata bag to track any
3200 3196 # changes we make, so we can undo them later.
3201 3197 dstore = meta.setdefault('doctest_mode',Struct())
3202 3198 save_dstore = dstore.setdefault
3203 3199
3204 3200 # save a few values we'll need to recover later
3205 3201 mode = save_dstore('mode',False)
3206 3202 save_dstore('rc_pprint',ptformatter.pprint)
3207 3203 save_dstore('xmode',shell.InteractiveTB.mode)
3208 3204 save_dstore('rc_separate_out',shell.separate_out)
3209 3205 save_dstore('rc_separate_out2',shell.separate_out2)
3210 3206 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3211 3207 save_dstore('rc_separate_in',shell.separate_in)
3212 3208 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3213 3209
3214 3210 if mode == False:
3215 3211 # turn on
3216 3212 oc.prompt1.p_template = '>>> '
3217 3213 oc.prompt2.p_template = '... '
3218 3214 oc.prompt_out.p_template = ''
3219 3215
3220 3216 # Prompt separators like plain python
3221 3217 oc.input_sep = oc.prompt1.sep = ''
3222 3218 oc.output_sep = ''
3223 3219 oc.output_sep2 = ''
3224 3220
3225 3221 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3226 3222 oc.prompt_out.pad_left = False
3227 3223
3228 3224 ptformatter.pprint = False
3229 3225 disp_formatter.plain_text_only = True
3230 3226
3231 3227 shell.magic_xmode('Plain')
3232 3228 else:
3233 3229 # turn off
3234 3230 oc.prompt1.p_template = shell.prompt_in1
3235 3231 oc.prompt2.p_template = shell.prompt_in2
3236 3232 oc.prompt_out.p_template = shell.prompt_out
3237 3233
3238 3234 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3239 3235
3240 3236 oc.output_sep = dstore.rc_separate_out
3241 3237 oc.output_sep2 = dstore.rc_separate_out2
3242 3238
3243 3239 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3244 3240 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3245 3241
3246 3242 ptformatter.pprint = dstore.rc_pprint
3247 3243 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3248 3244
3249 3245 shell.magic_xmode(dstore.xmode)
3250 3246
3251 3247 # Store new mode and inform
3252 3248 dstore.mode = bool(1-int(mode))
3253 3249 mode_label = ['OFF','ON'][dstore.mode]
3254 3250 print 'Doctest mode is:', mode_label
3255 3251
3256 3252 def magic_gui(self, parameter_s=''):
3257 3253 """Enable or disable IPython GUI event loop integration.
3258 3254
3259 3255 %gui [GUINAME]
3260 3256
3261 3257 This magic replaces IPython's threaded shells that were activated
3262 3258 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3263 3259 can now be enabled, disabled and swtiched at runtime and keyboard
3264 3260 interrupts should work without any problems. The following toolkits
3265 3261 are supported: wxPython, PyQt4, PyGTK, and Tk::
3266 3262
3267 3263 %gui wx # enable wxPython event loop integration
3268 3264 %gui qt4|qt # enable PyQt4 event loop integration
3269 3265 %gui gtk # enable PyGTK event loop integration
3270 3266 %gui tk # enable Tk event loop integration
3271 3267 %gui # disable all event loop integration
3272 3268
3273 3269 WARNING: after any of these has been called you can simply create
3274 3270 an application object, but DO NOT start the event loop yourself, as
3275 3271 we have already handled that.
3276 3272 """
3277 3273 from IPython.lib.inputhook import enable_gui
3278 3274 opts, arg = self.parse_options(parameter_s, '')
3279 3275 if arg=='': arg = None
3280 3276 return enable_gui(arg)
3281 3277
3282 3278 def magic_load_ext(self, module_str):
3283 3279 """Load an IPython extension by its module name."""
3284 3280 return self.extension_manager.load_extension(module_str)
3285 3281
3286 3282 def magic_unload_ext(self, module_str):
3287 3283 """Unload an IPython extension by its module name."""
3288 3284 self.extension_manager.unload_extension(module_str)
3289 3285
3290 3286 def magic_reload_ext(self, module_str):
3291 3287 """Reload an IPython extension by its module name."""
3292 3288 self.extension_manager.reload_extension(module_str)
3293 3289
3294 3290 @testdec.skip_doctest
3295 3291 def magic_install_profiles(self, s):
3296 3292 """Install the default IPython profiles into the .ipython dir.
3297 3293
3298 3294 If the default profiles have already been installed, they will not
3299 3295 be overwritten. You can force overwriting them by using the ``-o``
3300 3296 option::
3301 3297
3302 3298 In [1]: %install_profiles -o
3303 3299 """
3304 3300 if '-o' in s:
3305 3301 overwrite = True
3306 3302 else:
3307 3303 overwrite = False
3308 3304 from IPython.config import profile
3309 3305 profile_dir = os.path.split(profile.__file__)[0]
3310 3306 ipython_dir = self.ipython_dir
3311 3307 files = os.listdir(profile_dir)
3312 3308
3313 3309 to_install = []
3314 3310 for f in files:
3315 3311 if f.startswith('ipython_config'):
3316 3312 src = os.path.join(profile_dir, f)
3317 3313 dst = os.path.join(ipython_dir, f)
3318 3314 if (not os.path.isfile(dst)) or overwrite:
3319 3315 to_install.append((f, src, dst))
3320 3316 if len(to_install)>0:
3321 3317 print "Installing profiles to: ", ipython_dir
3322 3318 for (f, src, dst) in to_install:
3323 3319 shutil.copy(src, dst)
3324 3320 print " %s" % f
3325 3321
3326 3322 def magic_install_default_config(self, s):
3327 3323 """Install IPython's default config file into the .ipython dir.
3328 3324
3329 3325 If the default config file (:file:`ipython_config.py`) is already
3330 3326 installed, it will not be overwritten. You can force overwriting
3331 3327 by using the ``-o`` option::
3332 3328
3333 3329 In [1]: %install_default_config
3334 3330 """
3335 3331 if '-o' in s:
3336 3332 overwrite = True
3337 3333 else:
3338 3334 overwrite = False
3339 3335 from IPython.config import default
3340 3336 config_dir = os.path.split(default.__file__)[0]
3341 3337 ipython_dir = self.ipython_dir
3342 3338 default_config_file_name = 'ipython_config.py'
3343 3339 src = os.path.join(config_dir, default_config_file_name)
3344 3340 dst = os.path.join(ipython_dir, default_config_file_name)
3345 3341 if (not os.path.isfile(dst)) or overwrite:
3346 3342 shutil.copy(src, dst)
3347 3343 print "Installing default config file: %s" % dst
3348 3344
3349 3345 # Pylab support: simple wrappers that activate pylab, load gui input
3350 3346 # handling and modify slightly %run
3351 3347
3352 3348 @testdec.skip_doctest
3353 3349 def _pylab_magic_run(self, parameter_s=''):
3354 3350 Magic.magic_run(self, parameter_s,
3355 3351 runner=mpl_runner(self.shell.safe_execfile))
3356 3352
3357 3353 _pylab_magic_run.__doc__ = magic_run.__doc__
3358 3354
3359 3355 @testdec.skip_doctest
3360 3356 def magic_pylab(self, s):
3361 3357 """Load numpy and matplotlib to work interactively.
3362 3358
3363 3359 %pylab [GUINAME]
3364 3360
3365 3361 This function lets you activate pylab (matplotlib, numpy and
3366 3362 interactive support) at any point during an IPython session.
3367 3363
3368 3364 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3369 3365 pylab and mlab, as well as all names from numpy and pylab.
3370 3366
3371 3367 Parameters
3372 3368 ----------
3373 3369 guiname : optional
3374 3370 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or
3375 3371 'tk'). If given, the corresponding Matplotlib backend is used,
3376 3372 otherwise matplotlib's default (which you can override in your
3377 3373 matplotlib config file) is used.
3378 3374
3379 3375 Examples
3380 3376 --------
3381 3377 In this case, where the MPL default is TkAgg:
3382 3378 In [2]: %pylab
3383 3379
3384 3380 Welcome to pylab, a matplotlib-based Python environment.
3385 3381 Backend in use: TkAgg
3386 3382 For more information, type 'help(pylab)'.
3387 3383
3388 3384 But you can explicitly request a different backend:
3389 3385 In [3]: %pylab qt
3390 3386
3391 3387 Welcome to pylab, a matplotlib-based Python environment.
3392 3388 Backend in use: Qt4Agg
3393 3389 For more information, type 'help(pylab)'.
3394 3390 """
3395 3391 self.shell.enable_pylab(s)
3396 3392
3397 3393 def magic_tb(self, s):
3398 3394 """Print the last traceback with the currently active exception mode.
3399 3395
3400 3396 See %xmode for changing exception reporting modes."""
3401 3397 self.shell.showtraceback()
3402 3398
3403 3399 @testdec.skip_doctest
3404 3400 def magic_precision(self, s=''):
3405 3401 """Set floating point precision for pretty printing.
3406 3402
3407 3403 Can set either integer precision or a format string.
3408 3404
3409 3405 If numpy has been imported and precision is an int,
3410 3406 numpy display precision will also be set, via ``numpy.set_printoptions``.
3411 3407
3412 3408 If no argument is given, defaults will be restored.
3413 3409
3414 3410 Examples
3415 3411 --------
3416 3412 ::
3417 3413
3418 3414 In [1]: from math import pi
3419 3415
3420 3416 In [2]: %precision 3
3421 3417 Out[2]: '%.3f'
3422 3418
3423 3419 In [3]: pi
3424 3420 Out[3]: 3.142
3425 3421
3426 3422 In [4]: %precision %i
3427 3423 Out[4]: '%i'
3428 3424
3429 3425 In [5]: pi
3430 3426 Out[5]: 3
3431 3427
3432 3428 In [6]: %precision %e
3433 3429 Out[6]: '%e'
3434 3430
3435 3431 In [7]: pi**10
3436 3432 Out[7]: 9.364805e+04
3437 3433
3438 3434 In [8]: %precision
3439 3435 Out[8]: '%r'
3440 3436
3441 3437 In [9]: pi**10
3442 3438 Out[9]: 93648.047476082982
3443 3439
3444 3440 """
3445 3441
3446 3442 ptformatter = self.shell.display_formatter.formatters['text/plain']
3447 3443 ptformatter.float_precision = s
3448 3444 return ptformatter.float_format
3449 3445
3450 3446 # end Magic
General Comments 0
You need to be logged in to leave comments. Login now