##// END OF EJS Templates
Modified example_nb_tour to skip local images.
damianavila -
Show More
@@ -1,1328 +1,1332
1 1 {
2 2 "metadata": {
3 3 "name": "example_nb_tour"
4 4 },
5 5 "nbformat": 3,
6 6 "nbformat_minor": 0,
7 7 "worksheets": [
8 8 {
9 9 "cells": [
10 10 {
11 11 "cell_type": "markdown",
12 12 "metadata": {
13 13 "slideshow": {
14 14 "slide_type": "-"
15 15 }
16 16 },
17 17 "source": [
18 18 "# A brief tour of the IPython notebook"
19 19 ]
20 20 },
21 21 {
22 22 "cell_type": "markdown",
23 23 "metadata": {
24 24 "slideshow": {
25 25 "slide_type": "fragment"
26 26 }
27 27 },
28 28 "source": [
29 29 "Rendered by nbconvert using [Reveal.js](http://lab.hakim.se/reveal-js)!\n",
30 30 "\n",
31 31 "by Dami\u00e1n Avila"
32 32 ]
33 33 },
34 34 {
35 35 "cell_type": "markdown",
36 36 "metadata": {
37 37 "slideshow": {
38 38 "slide_type": "slide"
39 39 }
40 40 },
41 41 "source": [
42 42 "This document will give you a brief tour of the capabilities of the IPython notebook. \n",
43 43 "You can view its contents by scrolling around, or execute each cell by typing `Shift-Enter`.\n",
44 44 "After you conclude this brief high-level tour, you should read the accompanying notebook \n",
45 45 "titled `01_notebook_introduction`, which takes a more step-by-step approach to the features of the\n",
46 46 "system. \n",
47 47 "The rest of the notebooks in this directory illustrate various other aspects and \n",
48 48 "capabilities of the IPython notebook; some of them may require additional libraries to be executed."
49 49 ]
50 50 },
51 51 {
52 52 "cell_type": "markdown",
53 53 "metadata": {
54 54 "slideshow": {
55 55 "slide_type": "notes"
56 56 }
57 57 },
58 58 "source": [
59 59 "**NOTE:** This notebook *must* be run from its own directory, so you must ``cd``\n",
60 60 "to this directory and then start the notebook, but do *not* use the ``--notebook-dir``\n",
61 61 "option to run it from another location.\n",
62 62 "\n",
63 63 "The first thing you need to know is that you are still controlling the same old IPython you're used to,\n",
64 64 "so things like shell aliases and magic commands still work:"
65 65 ]
66 66 },
67 67 {
68 68 "cell_type": "code",
69 69 "collapsed": false,
70 70 "input": [
71 71 "pwd"
72 72 ],
73 73 "language": "python",
74 74 "metadata": {
75 75 "slideshow": {
76 76 "slide_type": "header_slide"
77 77 }
78 78 },
79 79 "outputs": [
80 80 {
81 81 "output_type": "pyout",
82 82 "prompt_number": 1,
83 83 "text": [
84 84 "u'/home/damian/Desarrollos/ipython_mtaui_slide'"
85 85 ]
86 86 }
87 87 ],
88 88 "prompt_number": 1
89 89 },
90 90 {
91 91 "cell_type": "code",
92 92 "collapsed": false,
93 93 "input": [
94 94 "ls"
95 95 ],
96 96 "language": "python",
97 97 "metadata": {
98 98 "slideshow": {
99 99 "slide_type": "slide"
100 100 }
101 101 },
102 102 "outputs": [
103 103 {
104 104 "output_type": "stream",
105 105 "stream": "stdout",
106 106 "text": [
107 107 "COPYING.txt \u001b[0m\u001b[01;34mIPython\u001b[0m/ \u001b[01;35mpython-logo.svg\u001b[0m setupbase.py \u001b[01;32msetup.py\u001b[0m*\r\n",
108 108 "\u001b[01;34mdocs\u001b[0m/ \u001b[01;32mipython.py\u001b[0m* README.rst \u001b[01;32msetupegg.py\u001b[0m* \u001b[01;34mtools\u001b[0m/\r\n",
109 109 "example_nb_tour.ipynb MANIFEST.in \u001b[01;34mscripts\u001b[0m/ \u001b[01;34msetupext\u001b[0m/ tox.ini\r\n"
110 110 ]
111 111 }
112 112 ],
113 113 "prompt_number": 2
114 114 },
115 115 {
116 116 "cell_type": "code",
117 117 "collapsed": false,
118 118 "input": [
119 119 "message = 'The IPython notebook is great!'\n",
120 120 "# note: the echo command does not run on Windows, it's a unix command.\n",
121 121 "!echo $message"
122 122 ],
123 123 "language": "python",
124 124 "metadata": {
125 125 "slideshow": {
126 126 "slide_type": "slide"
127 127 }
128 128 },
129 129 "outputs": [
130 130 {
131 131 "output_type": "stream",
132 132 "stream": "stdout",
133 133 "text": [
134 134 "The IPython notebook is great!\r\n"
135 135 ]
136 136 }
137 137 ],
138 138 "prompt_number": 3
139 139 },
140 140 {
141 141 "cell_type": "heading",
142 142 "level": 2,
143 143 "metadata": {
144 144 "slideshow": {
145 145 "slide_type": "header_slide"
146 146 }
147 147 },
148 148 "source": [
149 149 "Plots with matplotlib"
150 150 ]
151 151 },
152 152 {
153 153 "cell_type": "markdown",
154 154 "metadata": {
155 155 "slideshow": {
156 156 "slide_type": "notes"
157 157 }
158 158 },
159 159 "source": [
160 160 "This is a speaker note in the middle of the slide..."
161 161 ]
162 162 },
163 163 {
164 164 "cell_type": "markdown",
165 165 "metadata": {
166 166 "slideshow": {
167 167 "slide_type": "notes"
168 168 }
169 169 },
170 170 "source": [
171 171 "And also another speaker note..."
172 172 ]
173 173 },
174 174 {
175 175 "cell_type": "markdown",
176 176 "metadata": {},
177 177 "source": [
178 178 "IPython adds an 'inline' matplotlib backend,\n",
179 179 "which embeds any matplotlib figures into the notebook."
180 180 ]
181 181 },
182 182 {
183 183 "cell_type": "code",
184 184 "collapsed": false,
185 185 "input": [
186 186 "%pylab inline"
187 187 ],
188 188 "language": "python",
189 189 "metadata": {
190 190 "slideshow": {
191 191 "slide_type": "-"
192 192 }
193 193 },
194 194 "outputs": [
195 195 {
196 196 "output_type": "stream",
197 197 "stream": "stdout",
198 198 "text": [
199 199 "\n",
200 200 "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
201 201 "For more information, type 'help(pylab)'.\n"
202 202 ]
203 203 }
204 204 ],
205 205 "prompt_number": 4
206 206 },
207 207 {
208 208 "cell_type": "code",
209 209 "collapsed": false,
210 210 "input": [
211 211 "x = linspace(0, 3*pi, 500)\n",
212 212 "plot(x, sin(x**2))\n",
213 213 "title('A simple chirp');"
214 214 ],
215 215 "language": "python",
216 216 "metadata": {
217 217 "slideshow": {
218 218 "slide_type": "slide"
219 219 }
220 220 },
221 221 "outputs": [
222 222 {
223 223 "output_type": "display_data",
224 224 "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztfXl0VuWd/+fNwpawJZA9gJgwIS6gYrW0aBTQopi6i2OR\nug3tyNQ6PTPT85szUz0ztXjaHvWMHUXPWMGxSm2rUBdUtFFaRKwiWmVkKdGEQAhkgSyELPf3x+OT\n9+bmLs96732T53NODiS5z/K+ee/n+dzP9/t8n4RlWRYMDAwMDEYE0qKegIGBgYFBeDCkb2BgYDCC\nYEjfwMDAYATBkL6BgYHBCIIhfQMDA4MRBEP6BgYGBiMIhvQNUh5PP/00Lr30Ui19f/vb38a//du/\nKe3znnvuwfLlyz1/f/rpp+Ptt99WOqaBAYUhfYPIUVVVhZycHJw8eVKo/U033YRXX31V8awIEokE\nEomE8j798Je//AUXXHCB0jENDCgM6RtEitraWmzfvh15eXnYuHFj1NNxher9izL99fX1KZyJwUiE\nIX2DSLFu3TosWrQIy5cvx9q1a32vffLJJ3HqqadiwoQJmDlzJn71q18N/HzBggUD16WlpeGRRx5B\neXk5JkyYgH//93/Hvn378NWvfhWTJk3CsmXL0NPTAwCoqalBSUkJfvKTn2Dq1Kk45ZRTBvp1w4sv\nvoi5c+di8uTJ+NrXvoaPP/7Y89pPPvkEixcvRm5uLgoKCvCTn/wEAFH6J0+exIoVKzBhwgScfvrp\neP/99wfazZgxA2+++SYAYgVde+21WL58OSZOnIgnn3xy4GfLli3DhAkTcM455+Cjjz4KeKcNDAgM\n6RtEinXr1uGGG27A9ddfj1dffRWHDx92va6jowN33XUXNm3ahGPHjuGdd97B3LlzPft97bXXsGPH\nDmzbtg33338/7rjjDjzzzDP44osv8PHHH+OZZ54ZuLaxsRFHjx5FQ0MD1q5di7/7u7/Dnj17hvS5\nY8cO3HbbbXj88cfR3NyMlStXorq62tWWOn78OBYtWoTLLrsMBw8exN69e7Fw4UIAROlv3LgRN954\nI9ra2lBdXY1Vq1YNtHXaPxs3bsR1112HtrY23HTTTQM/u/7669HS0oK//du/xZVXXone3l6fd9rA\ngMCQvkFk+OMf/4gDBw6guroa5eXlqKys9FXZaWlp+Pjjj9HV1YX8/HxUVlZ6XvvP//zPyM7ORmVl\nJc444wwsWbIEM2bMwIQJE7BkyRLs2LFj0PX/8R//gczMTFxwwQW4/PLLsX79+oHfURJ+7LHHsHLl\nSpx77rlIJBK4+eabMXr0aGzbtm3I+C+++CKKiopw9913Y9SoUcjOzsZXvvKVgd8vWLAA3/jGN5BI\nJPCtb30LO3fu9Hwt8+fPR3V1NQBgzJgxAIB58+bh6quvRnp6Ov7xH/8RJ06ccJ2HgYEThvQNIsPa\ntWtxySWXYPz48QCA6667ztPiycrKwvr16/Hoo4+iqKgIS5cuxWeffebZd35+/sD/x44dO+j7MWPG\noL29feD7yZMnY+zYsQPfT58+HQcPHhzS5+eff46f//znmDx58sBXfX2967V1dXWYOXMm0/zGjRuH\nEydOoL+/3/XakpIS358lEgmUlJS4zsPAwAlD+gaRoKurC7/+9a/x5ptvorCwEIWFhfj5z3+OnTt3\nevrTl1xyCV577TUcOnQIFRUVuOOOO4TGdtonLS0t6OzsHPj+888/R1FR0ZB206ZNw7/+67+ipaVl\n4Ku9vR033HCD67V//etfmcbnnS9AFhWK/v5+1NfXu87ZwMAJQ/oGkeCFF15ARkYGdu3ahZ07d2Ln\nzp3YtWsXFixYgHXr1g25/vDhw9iwYQM6OjqQmZmJrKwspKenM49nz5hxy5750Y9+hJ6eHmzZsgUv\nvfQSrrvuuoFr6fV33HEHHn30UWzfvh2WZaGjowMvvfTSoKcGiqVLl+LgwYN46KGH0N3djePHj2P7\n9u2e4/Pi/fffx/PPP4/e3l48+OCDGDNmDM4//3zpfg2GPwzpG0SCdevW4dZbb0VJSQny8vKQl5eH\n/Px8rFq1Cr/61a+GWB39/f144IEHUFxcjNzcXGzZsgWPPPIIgKG59G7K2Pl7+/cFBQWYPHkyioqK\nsHz5cqxZswazZs0acu0555yDxx9/HKtWrUJOTg7Ky8tdFygAyM7Oxuuvv47f//73KCwsxKxZs1BT\nU+M6vtec/a795je/ifXr1yMnJwdPP/00fve733EtggYjFwlziIrBSEZNTQ2WL18+yC6JO+69917s\n3bsXTz31VNRTMUhBSCn9W2+9Ffn5+TjjjDM8r/ne976H8vJyzJkzZ0jGhIGBAT+MTjOQgRTp33LL\nLdi0aZPn719++WXs3bsXe/bswWOPPYbvfve7MsMZGGiB6jILuqGjNITByIG0vVNbW4srrrjCdWfi\nd77zHVx00UUD2Q0VFRV46623BqWrGRgYGBiEhwydnR84cAClpaUD35eUlKC+vn4I6RvVYmBgYCAG\nXt2uPXvHOSEvgqepcXH76u21sHSphepqCx99ZGH1agvTplloatIz3o9+9KNQXtcll1i4/HIL558f\nzfv6wAMWcnIs3Hijvveiv98CQL56etTN/dNPSZ+33qqmv6oqC4sXy30uPvuMzGnTJrE5HDxI2m/c\nKP4+r1nD33bRItKWp813vvMjABaOHWNvc/HFfOMcOWLhqacstLezXf/AAxYuukjdZ4z1SwRaSb+4\nuHhQVkR9fT2Ki4t1DqkcDzwAtLUBv/kNcMYZwL/8C3DttcD3vx/1zMTR0gJs3QqsXw98/jmwb1/4\nc9i8mbyXW7fqG2PfPqCwEJg2DaitVdfv//0fMHo0sH+/fF/9/cAHH5D3wbY/jBsbNpB/RefU0ED+\n/e1v+du2tZF/P/iAv+3mzcCUKXxtjhwh/9I5s2DyZL4xfvtbYPly4I9/ZLu+qQlIlQQwraRfXV09\nkMe8bds2TJo0KaX8/KYmYPVq4IkngMzM5M/vvRd44w3Ap8BirPHGG8DXvw5kZQEXXghs2RL+HHbu\nBK65hixAR4/qGWPHDuD884HZswlRq8LevcAVVwCffqqmr5wcID+fj8ScOHAAKCgAXOrEMbcHxP4W\n9fXkX97kPFofLjubr50I6Y8aRf49doztenod6/WU9D0qacQKUqR/4403Yv78+fjss89QWlqKJ554\nAmvWrMGaNWsAAJdddhlmzpyJsrIyrFy5Ev/93/+tZNJh4cc/BpYtA8rKBv88Oxu4807gwQfVj1lV\nVaW+Uwe2bgXoGR1f/zq7mlGF5maiDk85BZg715ssZN+Lujqi8isq1JL+vn1ksezsJK9FBg0NZI55\neUBjo/d1Qe/FkSPAV78qR/qVlWKkX1cHlJYCra187dragIyMJImzIj29CpmZyYWKBU1N5F+fck2D\ncPz44H9Z+u/uTo4TZ0gFcu3lab3w8MMPywwRGY4eBZ580pssbruN3CS/+AXwZeFDJQiD9D/6CPjB\nD8j/zzkH+OUvtQ85CJ9+St67tDRg1ixCoosWDb1OBemXlgJjxwIffijV1SDs2wdceSVQUkJIOydH\nvK8jR4i90dsLeFSVBhD8XjQ1AQsWiNkzACHQM88EbGX9mVFXB5x+Or+909pK/j719cCJE+z30ahR\nVSgr41P6jY1kYW1pYbteROknEsAXX5CntjjDlGHwwJNPkkf4ggL33xcWAnPmAK+9Fuq0pGFZxFqh\npeip9RHmY+kXXwDTp5P/T5tGvtcBqvSLioBDh9T129AAFBcTsuZVqU5Q0s/P9yd9ln7Ky5P+Oi8a\nGsjnWUTpHzxIPke8Sr+1lXjtvO9jRwcRC7ykf8oppC0Ljh8niwSP0p82Tf7zEAYM6bugvx945BFi\n4fjh+uuBX/86nDmpArUQ6GI2cSIwYULSlw0DlIwBovR0BcC++IL0n5/vb53w4uhRIDcXmDpVHenn\n5cmRflMTsSFFSb+pKblo8J7Fcvw4eY/7+4nFwYrWVmDSJP73sb2dPGWxvta+PmLDTZ/OTvrHjpEx\neJT+tGlAVxfb9VHCkL4L3n6bBDnPO8//uquvBl58ERA8zzsS7NlDVJI9c7aiAti1K7w5UNsF0Kv0\n6+vJjStLqHZYFiGQ3Fy1Sl9mjpZFSOfUUwkRimTytbcTAp40id0CsbcdP54ICJ5Fp62NjDdlCp8X\n3t5O3i/WbKfOTpJtNXEin9IvLmZT+pZFFrDiYkP6KYtnngFuumkwMbqhoIDcaO+9F868VGDvXjJn\nO8rKAI/S71oQBulbFiHUvDx568SO48dJJsjo0fxk5QY76Ys+jVDymziRzIuV2Ow4fpwkKEyZwm/x\ntLeTthMn8lk8ra2kzeTJfO3a28nTASvpd3UB48YRIcej9IuL2ZR+dzf5TGRlGdJPSZw8SYJhy5ax\nXV9VBXxZMTclsHfv0Gyk6dNJvn5YoLYLQG6sAwfE1Kkfjh0jgUF6M1oWIQtZUGsHUGvv5OaKp67S\nOSUSRDnzeusAIf3x40lQWoT0x48nY/MofWrvjBvHR5YdHWSRZCXwri4SzOchfR6lT4PQY8ca0k9J\nvP46sTuo5xyEVCP9ffuiJ/1Dh0ggHCA3yqhR7N4pK+zknEioU/vU2gHU2Tu5uYQ0WYOGTrS3k7gM\nwG+x2PsYP56PGCnoUwLv2JT0x45lV+108eaxd0RIn0fpG9JPcWzYQDYNsWLBAmDbNr4AVpTYvx+Y\nMWPwz2bMCI/0+/sJ0U2dmvzZ1Knq85vtpA/I2SfOfmmKpop5HztGiE+W9OkGJ161TUGVvgjpy9o7\n48axE3h3N8ntnziRz9PXqfS7ugzppyz6+0lg9oor2NtMmkQCo6ni69szZyjCVPqtreTmozskgXBI\nPyeHP0AZ1O/EifJPKJRsVZE+L/ECSfWcnS1P+jwLTmcnGY+H9Nvb+dvwevqWRf6uRUVG6Q977NhB\nHpOd9kcQzj8/NUj/5Emisqm1QlFURKwP3lQ9ERw+TFS3HWGQvqjX7URzc1LpT5ighvSzs0lfUSn9\nri6yCGdkEGLkrQFEx8/O5lswqO3CS/rZ2fykzzNOTw/5NyeH7fUY0k9hvPgisHQpf7tzzhHbyRg2\nGhpIxpHzKNX0dOJPq8xl90JT02BrB1CbUklBvXIKVaR/7BhRtABR5zKk399PSCIrixBZe7t4uqWM\n0qdPGwAhRlGlz0t61BbhCeR2dCRJn3WevPZOdzfJgho9ms22PXGC9G9IPwXx+9/zWTsUqUL69lRJ\nJwoLyc5K3YhS6YtuXLLj2LEkQcqoc4AQ0LhxpBxFRoZ8uiVA/uVV6vb2MvaOCOmHpfR57B0R0jdK\nPwXR0EBy1efP529bWUnSEGUIIAzU1ZHNSm4oKgqH9N2U/tSp6pV+S8vgcrqqlL5dFVN1LlrCwt4X\nIL6I2JU+Dxna29N58JL+yZNkx+vo0fykZ1fIvJ4+jQlRK8YPvNk7J04Y0h8ReO01YPHiwSWUWZGZ\nSQpOqSzqpQP2VEknCgvlSvuyoqlpaP30nBz5apVOtLUlbRhAzPZww/HjyfTI9HRyo4uoc9qXvayw\naDDXSfoiKZeipN/RQdomEuEo/Y4OMkeAvR0v6Xd3ExLPyCALel9fcP+G9FMQmze7V3pkRSpYPI2N\n/gXkwlD6ra1Dq1Ly7shkgd17B/QofUDO4nH2JRojkFX6TnuHpz1V3kA4pG+vxsnaTtTTTyTY1L5R\n+ikIyyIHi8iQ/ty5pGRxnHHokHfZ1zBJf9KkwT+bPFlNOqUdbW1JRQ6oDeSqIGpgsK1C+4rC3qGp\nk7Q9j9Lv7CRtgHBInxIyz1ypp89q19jHMKQ/TPHpp+RDccop4n1UVqo5SUknGhu9SV9FSQEWhEX6\nOpW+fTGRSduMi6dvV8+89o69rQzps7Zzkj6PvSNK+idO+F9vsndSEJs3AwsXyvVBSV91DRmVOHTI\n295RUVKABamu9HXaO9nZ0ZA+JUUgXNKnbWXsHValT8t9sFTEtZP+mDFG6Q9LyPr5APGps7L4jnAL\nG35Kf7iRvlPpq9hIRftVZe84A7m8hcco7L56KpE+HZcne4eXkIGkBcWbjQMYe2dYoqeHHAx+8cXy\nfcXZ4unrS5YadkNYpN/SMpT0s7PJjaXyXAJn9g5Nr5SF096R9fSdpM9L2MBQTz4VSN+y5D19VuVu\nV/o9PcEptryePs3eGTMm2AqKA0Y86b//Pik45kwjFEFlJfDJJ/L96MDRo4QEvVJSc3NJ2qTuYxPd\nlL5MSWA3nDhBSIXeuECSzGRen71GDQVv6QE77GQNiJO+nbRFUjZFMmLsbenYPKTf00NSXtPTxe0d\nXuWeSJDPf1Buv2ggly4qcceIJ/233wYuuEBNX3FW+n7WDkBuhqwsNbtWvdDfnzwtyQmVFg+1duyH\n4NCcehFSpejoICSQkZH8mShRA8msEntfIvaAk/RllD6vWhVV+vYxWckb4CdkgDwN8LQRIf2xY8k9\nFPTk0d8f7nnUbhjxpL9lCymPrAJxJ32vIC6FbounvZ2Qkp00KVSSvjOISyFTyRIYqswBsbIF9v4o\n8QFySt+efSNL+jxlwlWQPrVpWJIgROwderIVoI/0WZX+li3kDI4oMaJJv78f+NOf1JH+rFnkDNo4\nwi9Hn0I36btZOxSyhGyH03enkPX17TnpFDJK39mf6JOIrNK3E3dYSt/eLi2NTSUDyd2yAJ/Sp6TP\nslDwWkh0UcnIIJVq/Ravnh6xXf8qMaJJ/5NPiJcdpIBZUVBAbjidFoko4qD0/UhftniZHU7fnUJ2\nYXHaMYC80ldh79h99VS0dwBCmqz+fNzsHUrkiQQhfj+139trSD9SbNmizs8HyB+9rIwcSRg3jCSl\nb6/PYocupS9K+m6evqzSp/YMj29sb5+RQZQq69kKbqTPYtM4SX/0aP4cetY2dqUvQvpBi6BdvQc9\nSfT0uNubYWLEk74qa4eirIwcPh43uJU0diJq0ld1Tq4X6avw9O1EBYh56F79iZB+Xx8haEpqtPAZ\nbwYOJW6AT+3b26ans9s0zjFFdsuyPh04Pf2g+fHuBbCr9yBf3yj9CGFZJHNnpJC+81xaN+gmfbcc\nfYpUVfqq7R1Ra8aeqcSTDWPvg4KH9O1BZJ6x7ZYLTzuRlE2np6/D3qHqPWjRM0o/QuzfT4h/5ky1\n/caV9J2HirghDKVvr3Fvh0rS1+Xpqw7kOu0dkR2dTsIG+DNw3Eiftb2MYrefk6yrGBrAb+/wLiw8\n9o5R+hGCWjt2haQChvS9EVYgV5fS1xHIlbV33EifxYf260PU3gHY0yjtRAyI2zsinj6PvcMyLzuR\nB23+Mko/Qujw8wFD+n6IOpAbN6Wv0t6xg9feUeXp84xtJ1aAncBF7R2eOICMvWOUfoyhi/SLigi5\nqajzogq9vSRI6kW4FFGTvu5ArowqB7wDuSqzd0TsHTvpAvKePs+Tgj1dlGdsFUpfxErSmbIJmOyd\n2KKxkWSznH66+r7T0oDp04HPP1fftyhaWkhZgvR0/+t0nGBlR1hK38vTl1HlQDwDuU7SBdR4+mEr\nfVHS15GyyUPiAJ+9Y5R+RNiyBfja14JJUBQzZsSL9I8eZSsoN3EiWSB0nQnQ2jq48qUdYdg7Okhf\n1t6xk63IebsqPH03e0c0kMuaRimj9Ol4ImOxkLid9FkKtPHYO0bpRwRd1g7F9OlAba2+/nnB4ucD\n5GZKT9dXE9yrPAIQTiBXlvS9ArmdnfwLJSUSu+qjZMvTlwpP36m6eZW+U7HzbrKi7XTsyLWswSTO\nq/QzM4M3qpnsnRSAbtKfMSM1SR9QW+LYCeehIXaoVvq67B0nwdLywLxnAbgtIGlpwdv43fqRIX3L\nkiN9u/LmGTssT5+OQ7P0eLNxWP4eJnsn5jh2DNi9G5g3T98YcfP0eUhfp6/vPB7QDpWBXPtJUnbo\nsHcAQrq8h2e4BWABeT8e4CP93l6y2NitTl7St5M3zy5Zkeydnh4+q8a5uLDaO/bNVirtHaP0I8DW\nrYTw7R8E1Yib0j9yJB5Kv73dn/Tb29XEE/zsHRnryov0x4zh79fphVPI+vF0PjykbSdf3jmIKnaZ\ndjxWjcg4Ip6+yd6JMXRbO0DqBnIBfaRvWd62C0BuhFGj5JQ4RZiePiB2TJ4b2Yr05SxnAIgfSiIy\nB7dyCro8fRF/PgzSd9o7RunHDCpPyvJCfj4hzrgckhwHT5+eOuWXMaUqmKvT01dl73iRvkgQ1vnU\nqoL0edqHpfT7+ogVlZaWbMNr74iQOK+9Yzz9GOHECWDHDuCrX9U7TloaMG1afNR+HEjfz9qhUBXM\n1enpO/1zQMzeUaX0veyZqJS+qKfPq8BZx3KOw0vi9GAU1nkZTz9meO89YPZsb4tBJeKUthkH0vcL\n4lKoCOZSGynugVw/T59H6TuVLBCup69K6fPmz7OOJaL0ddo7RumHjDD8fIpp04C6unDGCkIqkb6s\n0u/uJjeV242li/SHm9JnOeuVIkxP3565A7DV7g+D9HnsHaP0Q0aYpF9SAhw4EM5YQTh6FMjJYbtW\np70T9ISlwtP3CxbznOzkhjACuSJKXwfpx9HTt2fu0HkGEbJu0qenjJnsnRiirw945x3g618PZ7zi\nYqC+PpyxguBXx96JVFf6XtYOQGItvCmRdoQRyBVR+qoDuaw58/39Q5VrmJ4+C4E73x9Wu4Y1T7+v\njyQn0M1fJnsnRvjoI6CwMPj0KFWIi9Lv7iYfTLcApBtSnfS9grgUKmvlUKjO05cpoUDnI+Pp826U\nEjm1S1aBs7aRHScokOtU7iZ7J0YI09oBCOnHQem3tREiZz0sZvJkUnRNNcIK5PrZO4A46ff3Dy05\nQBF1nr5qpc/jy7uNLdI2LNLnzcZhKavgfNIZ9kp/06ZNqKioQHl5Oe6///4hv6+pqcHEiRNx1lln\n4ayzzsJ//ud/yg4phLBJPy72jl85YzdE6elnZ8vVuwf87R1AnPRp2YQ0lztG5JhDlXn6Ojx91pLF\novEAt1RP3uwdXQsFD+nbrSB6fdw9fanh+/r6sGrVKmzevBnFxcU499xzUV1djdmzZw+67sILL8TG\njRulJioDyyKk/7OfhTdmTg5RbEEkpBtxIX0WpZ+VBTQ1yY2jk/Td/HxATOk7q1OK9qUrkCuj9HkP\nNgHYyTiMpwPeAmrO/v2eJFJe6W/fvh1lZWWYMWMGMjMzsWzZMmzYsGHIdZauAu2M2LuXfFimTw9v\nzEQiHr6+Xw17N0ycSNqo/pOxkr6s0tfl6XsFcQHxQK4Kq8iNeMPy9GUWHGdbVqvGTph0d3dfn3cb\nUaXPGsh19h9UlTPllf6BAwdQWlo68H1JSQnefffdQdckEgls3boVc+bMQXFxMX72s5+hsrJySF/3\n3HPPwP+rqqpQVVUlM7VBCNvaoaAWz6xZ4Y9Nwav0R41K1sBR+YTS3g7MnOl/jQrS1+XpewVxAbV5\n+qlk76hU+izpl06CBZKk7FXew6msWVIweQK5bvaOzjz9mpoa1NTUiHcASdJPMEQHzz77bNTV1WHc\nuHF45ZVXcOWVV2L37t1DrrOTvmq8/XY0pB8HpU8DuTyYNIkEc1WSvl8tfYpx4+Lr6fsp/TFj+IPf\nqpS+jkAuj9J3js26scstq4bX06ftenrc30vahoeUnfV9RJQ+T7YPL5yC+N577+XuQ8reKS4uRp1t\n22ldXR1KSkoGXTN+/HiM+/JuWbJkCXp6etDc3CwzLDeiUvpxyODhVfqA2lOsKFjtHdkqm37kDMTH\n3vHy9OOi9EUsGtqWNd1TNijL0o53HN4nA9n+o4AU6c+bNw979uxBbW0tTp48ifXr16O6unrQNY2N\njQOe/vbt22FZFnJYt4cqQEMDIT5HbDkUxCGDR5T0VR1oQsFScE2FveNnwwD6Arki9o4qTz+qPH03\ne4dFsQPutXfiQPq8TwZu9o5Opa8CUsNnZGTg4YcfxqWXXoq+vj7cdtttmD17NtasWQMAWLlyJX7z\nm9/gkUceQUZGBsaNG4dnn31WycRZsWUL2YXrlmqnGyUlwBtvhD+uHa2tQFERXxsdpB9WILery//s\ngLFj1Xv6UZZWjtreEa3b40bGLPaO2yKjmvRlrg8K5MZB6UuvOUuWLMGSJUsG/WzlypUD/7/zzjtx\n5513yg4jjKisHSA+9g5P9g6g9rxaChZPXxXp61L6YQRyoyi45vy7yGzO0mnvOLN3WNqJeO48KZgi\n10et9If9jtwoSd/YO0mEqfR1kL5X2QRAbZ5+2AXXvIKxMkpfxN4R9fRZCpzpVu52Ek8FpT+sSb+l\nBdi/Hzj77GjGz88HmpvZbgJdEMneUXlIOQWLpy9b+hiIhvRTOU9fhrhlPH3e8gVubeh4KgOzbiTe\n1+e9b0U2ZhAFhjXpv/UWMH9+dCtrejpQUAAcPBjN+EA8sncsi60MQ5wDuUFKX2Wefpj2jqzSF2lr\nWYRIeQKmgHggl2cc5xiJhL9657WPjNLXjD/8AbjoomjnELXFEwd758QJ74NN7Bg7NlkVVBR+WTZA\nvJS+l6cfZiBXh73DSt72bT5xSdnkHYN3c5ZR+prx5pvRk35hIXDoUHTji5C+anuHtf5QIiFv8UTl\n6YuUVtal9DMzycLJsnjKkj6vxy7TLorsHdrGS72PuNo7cUZTEzmuMCo/n6KwMDp7p6eHEAjvzlrV\n9g5P0TnZDVqpEsj18/RZVXpfHyn57FSOiYR4XXuAb3OWiKcvotjpeGFvzgL47R2j9CNCTQ3J2on6\nDS4oiE7pt7WRdE3WWvoUUSl9QL4UQyoFcmWVPiVdt7+vDOlTtdrf79/WTXnrUuy0Xdibs4La8G7O\nMkpfI+Jg7QDRBnJFMncAPUo/KIhLIRvM1RXI9VLmgPo8fZmNVRQypJ9IiCtv1nNrRdrF0dM3Sj9G\n+MMfgIsvjnoW0Xr6In4+oD6Qy2vv6FT6IlYMoF7p+x2XyKv03SBD+rQ9izcvqvS9iNWvpLeKlE2a\nXcOaghk0hvH0Y4KGBuLpn3lm1DOJ1t4RJf0o7R0VpO+XvSNyyhXgT/r0RufJOtKt9FkXNy/S103e\nbk8X6elT5zPyAAAgAElEQVTBu1lFArl2ZU0raHr9rdxImcfe8VP6NFXVqwx0WBiWpP+HPwAXXhhN\nvR0nogzkyij94RrI1UH6iYSa8gkAn9LXZe8A7Fk4buQdZHG42Tt0TJXWi0gbN/vFL/eexz6iCwRv\njE01YkCL6vHGG/GwdgAgLw84ckQu91wUInV3gNQN5Pb1ueeO2yFj7wQtJjz9+h2XKJNjTxEG6bsp\nb9qWl4iB4MwfFdk7QW102jtx8POBYUj6lgW8+ipw6aVRz4QgM5Oo7SNHwh9bVOmPG0cIw+9Rmwdh\n2TtUjfspKR1KH+AL5tLTmfxq77AcVxkHpe+l2IPq4biNqZrARdrIbs7iSe+MCsOO9P/yF3IDlpVF\nPZMkovL1RbN3Egm1Fk/QubV2yJB+kLUD6CV9ngCsc0cqRVoaIQ7RHbG88xElbsBf6fMqdkCcwHkK\nrgWNo1PpOxeIqDDsSJ+q/Kh9Mzui8vVFlT6g1uIJy9MPCuICyd2qvE8xQaTPs5j4KXSA3eJxK3hG\noULpB7X3I29eIqZj8rZTHQdwI2ZVKZtG6WvCpk3xsXYoolL6MqSvMm0zLHuHReknEmpTLCl4lL6X\nn0/BGsyN2t6R8fRF7R3e7B3ebBw3YvYL5PJszjJKXwM6OoB3341PEJciqg1asqSvyt4Ji/SDNmZR\n6CB9nj79NnoB7Eo/KJDLWuI4bE9ftb2jcoetzs1ZRulrQE0NcM45wXXbw0ZUG7REs3eA6Owdmewd\nFqUPiBdIUxXIDbJ3VCh9mfLIdA66PH1Re0dV9g5PCmbQGG6k77X5yyh9DXj1VeAb34h6FkNhlH58\n7B1ALJjLQvoqNlXx9OUXyJUpmkbbiyp9Fk8/rtk7spuz/DZ/GaWvAXH084HolL5o9g4wfAO5gPjx\nhn6kz7OpSqWnL2Pv9Pd7q89Uyt7RvTlLlR1klL5i7N1LSGrOnKhnMhSpqvSHYyAX4Ff6lsWmzlV6\n+mHYO5S03TLdZD19kc1ZcdmR63Y9rx3kdr1R+oqxYQNQXR2P0gtORKH0+/oIeYrGN6K0d0SVPk8g\nl4f0/UoYU6i0d2QzbwD2lEu/9iJlGFja+tk7vO3CIH2/4Kybeve63ih9xdiwAfjmN6OehTvGjyck\n3N4e3pjHjpFxRRfBKAO5MvYOayCXt2SCnzIH1NXMAfgOJpdR+rKkr7KcAm2nWumLePS6ngyM0leI\nI0eAnTuBhQujnok7Eonwc/VlMneA6OydMEifV+mzkL7qPH3ZQK5oaWQK3UpfxN4Rzd7h9eh5D1Fh\nfTKIQ1llYJiQ/osvAosWBd+YUSI/Hzh8OLzxZPx8gCj9KOwd2ZRNlkCuLtLnsXeCgsKyO3JV2DtB\n7XVszlJZUkGkjc7Arym4phAbNgBXXhn1LPyRlxcu6ctk7gDqlL5lxU/px93e4SH9KO2dVNmcpSsw\n63W91z4Ao/QVoaODHI142WVRz8QfeXlAY2N448kqfVWkf/IkOTSC9cMuQ/q6Armq7R2VgVxd9k4U\nm7PCKrjGu2s2KJDLuhAZpa8Iv/89MH8+kJsb9Uz8MVLtHZ4Km0CSPIMO5XZDlEqfx95R5enrtnfC\n3pwlkvXjZyXREta6C665XW+UvkY8+yywbFnUswhG2PZOXJQ+j7UDkGwjkdo4QLSBXF57x68/1t20\nUds7op5+WPZOX19yhyxrG50pnkbpK0BrKzkaMe5+PhCNvSOTvaNK6fOSPiBu8UQdyFVp78jUzWHt\nIypPX7W9w2O9BLVRVbbBKH1NeP55UlFThtzCQqrZO1EpfUCc9Fk9/eFk78jU3vEibdo+ioJrKlM2\nvZS16h25rJuzjNJXgGeeAW68MepZsCHVsndGjya+OiuReUGU9EXSNlPJ3tEdyI0ye4dlc1YYKZsi\nTxQ8O2z95mSUvgbU1QF//jOwdGnUM2FDqmXvJBJqLJ6w7Z1Uyd7Rnaev297p6yOB0vR0/rYiZGxZ\nZEzZYmgibVRtzjJKXxK//CUJ4LJ4uHFATg6xS/weX1VClvSB4Uv6Uds7ccnT97JnaHu/OVBy9CrW\nprrgmtd4UZM+z+Yso/Ql0NcH/M//ALffHvVM2JGeTtJKjxwJZzxVpC9bLyiOpB+1vaOyDENUKZs6\n2vrZO6oIHNB7iAq93qv2jlH6gnjjDWDKFODss6OeCR/CtHhks3eA1FP6nZ2pU4ZBd8E13Zuz/IqH\niXjztJ1u1R7URkWBNlN7RwMefzy1VD5FmMHcVLZ3RMsrR23vhO3pRxnIlWkrYu+I5PaLpmy6BXJ5\nsneM0leM/ftJ2YWbbop6JvwIK22zv5+Q9YQJcv2kmtJPFXtHpacflb0TFA8ISr0My95RlbKpYnOW\nUfqCeOABovJlCS0KhGXvtLcT4pRVFdnZ0ZG+zpTNqAO5YeTpq8je8ZuDTI5/nO0dnZuz4qL0YzAF\ndhw9Cvzv/wJ/+UvUMxFDWPaOCmsHSC2l39tLvrxIzA4Rpe9H0kB0Bdd01MOn7YMycFTbO0FkzHuY\nelTZO35KPzvbvZ8wkVJK/5FHyOlYRUVRz0QMYdk7I5H0aQkGvyMNKURIP+gJQmXtnTB35Mp4+qKB\nXJHDV/ziACotIZGCa6lWZTMGU2BDayvw0EPAli1Rz0QcYdk7KjJ3gGhJv7mZrw2rtQPoq6ff3U02\nEQUtPHHK3vF6XTo9/VSzd/wCuV7ZO2ZHrgL89Kfk4POKiqhnIo6RaO/wllYGxJU+K+nrCORmZBCy\n9yIHZ3+pYO+IKn0d9o5I9o5ue8ey+J4MjNLnQG0t8OijwI4dUc9EDmGRvmzdHQpVSp/Xx9RN+mPG\nkOtZVDnARvq03xMngtWcCk/fsvz7SU8nWVx9fe6lEgC92Tui9o7IRitaEsL5t/RS1qo2Z/X2kvfW\nbZewUfqSuOsu4O67gWnTop6JHKi9Y1l6x4mT0g8rT5+H9DMyyM3KWhKDh/RZvXhZT5/Wivci9EQi\n2OKJytP3U+B+/rzbXBMJ/lo3Ip4+D4mb2juSWL8e+Owz4J/+KeqZyGPcOPLBVVGy2A+qSD/KlE1e\n0mfdjUvBY/GwZO8A7MFcFUrfL0efQmaDFQtxh52947fIeJGsKk+fd1ExSl8QtbXAP/wD8PTTbDdd\nKiAMiyfVlb5Inj6P0gf4TufitXdY+lNB+kH3BEuuvS5PXyTdU8TeAfSTvl/e/YhU+ps2bUJFRQXK\ny8tx//33u17zve99D+Xl5ZgzZw52MBrzbW3AFVcA/+//AeecIzvL+CA/X38Gj8rsnVQpuMZL+tTX\nZ4FKeyfIiwfkg7Cs/cgEY3UsGCI7cmm7KJQ+b5mHYaH0+/r6sGrVKmzatAmffvopnnnmGezatWvQ\nNS+//DL27t2LPXv24LHHHsN3v/vdwH5bWkid/Koq4ucPJxilH4wwSJ/X3mEhfRZ7hwb/vLx42o8K\npS/j6VPi8oo/hV1wLSiGoIL0eWv2eyl3r0DxsFD627dvR1lZGWbMmIHMzEwsW7YMGzZsGHTNxo0b\nsWLFCgDAeeedh9bWVjT6SN333gO+9jVg3jzgwQfZsitSCWGQflyyd+iNz7JL1g5RT59X6Udh77CQ\ndWYmIZ/+fu9r/IqtUcjYO2lp/lkuOjJ/olb6vNk4Iv3HQelLrTsHDhxAaWnpwPclJSV49913A6+p\nr69Hfn7+oOuWLr0He/YABw4Ad91VhR//uEpmarFFWPaOStJnTW10QkTlA3I7clnBo/SDsm0oWOwd\nlqBwIpEkbK+FTEUg1y8Ya2/vRlSim7O8ctuD2vmNx0uyvIuEiL2jS+nX1NSgpqZGqg+pKSQYmcBy\nPCO6tSsqugfXXANcey0hm+GKvDzg//5P7xiqSH/UKKL4WEnPibBJPxXsHRalT/sKIn2d9g6QJH23\nv6FoPIASnxt16Mje4bVfVJC4ziqbVVVVqKqqGvj+3nvv5e5DivSLi4tRV1c38H1dXR1KSkp8r6mv\nr0dxcfGQvh57TGYmqYO8POCtt/SOoYr0gWTaZhSkz/OEIRLIZbF3LIs9ZZPV3mFdQEStGQoZe4e2\n582bl2kXdcqmSN592EpfBaQ8/Xnz5mHPnj2ora3FyZMnsX79elRXVw+6prq6GuvWrQMAbNu2DZMm\nTRpi7Ywk5OUBTU36+rcs4umryN4B5Hx9UdJPTyc3DmupYkCf0qc3dhrDnaLK3gGCrRnWlE0VSt+r\nrUggVyQgC4RD+qry7uNeT19q3cnIyMDDDz+MSy+9FH19fbjtttswe/ZsrFmzBgCwcuVKXHbZZXj5\n5ZdRVlaGrKws/PKXv1Qy8VSF7kBuRwe5WVV9uGTSNkVJH0iqfdYnjM5OYPJk9v5ZSZ/V2gH02Dte\nYAnkqrJ33OCn2Gkw1K0EhB95i5ycBaglfRV598O+9s6SJUuwZMmSQT9buXLloO8ffvhh2WGGDXST\nvqrMHYoolD6QJP2cHLbrddk7rMqctU9VpM8ayNVl7/iRsL2t828imuopqvTdFmzebBxax6i/f/AT\nn98iYXbkGgwgJ4cQM2vdF16o9PMBOdIXqbBJwRvM1WXv8Ch9FntHlacftb3DmvnDM2aQvcPbTkS5\nu11P6/s4iVwkOygOSt+QfshITwdyc4EjR/T0HyfSV6H0WaGrDINqe4enjk+c7Z0gpe+l2oNsIYDY\nQm7twgjkepGyWxtTe8eAGTotnpFK+iKbs3Qo/bjZO1EqfTdiZVkseAhcpI3oGE4iH7G1dwz4kUqk\nL1NpM2ylr2Nzlg57RxXp69yRS9vLevpOiNpCUZO+G5Hzbs4ySn8EQzfpq0rXBKLL3snK4qu0qTOQ\nqzp7h6U/WZVO5xNHT19E6avO3uEJ5Hq14d2cZZT+CIZO0h9u2TusiEsgNyxPP+pArg5Pn7bTbe+k\npydP27LDT4m7ETnvomKU/ghGKtk7sqTPe1QiRVxIn6cERZj2jmzBtf5+/8Alba/a3pHx9FVl73id\ntuWnxN3GMCdnGTBjpJB+e3t4pM97claU9k5YgVw/e4eSqF+Zi6C8+aAzAXjJm46pW+l7tQny9Fnt\nnbhX2TSkHwFGCumPRHsnVfL0gxQ3S3sdnn4YgVyvNqquH9a1dwzEoLP+TpxIP0ylr5P0Ve7IVZmn\nL7MjV/bkraD2fp5+1CmbtA3rZive6+Nee8eQfgRIpeyd7Oxoa++wwLJSK3snrIJrfvaObtIX2ZEL\nhJO9A/B7+jzXuy0QbmUcokIMpjDyMFKyd2SVPmvKJr0ZeVRUqufpswZyRVMuaXu/Amgim7PipPR5\n7R2ZzVlU5cfhJEBD+hEgO5ukjPHkobMiTvaObJ4+q9Ln3ZgF6CnDEGY9fdmCa3FV+iIB4LACuTKb\ns+Li5wOG9CNBIqHH17csPZuz4u7p81o7gJ4yDGHW3omDvaM6IAuIxQKiDOSybs4Ket1hwpB+RJg6\nVb3F09VFPEORU668YD8nlxdhefoipD8c7B2dSl22vRd5i3r6YQVy/Tx9VnvHK6ffKP0RDh2+fmsr\n30EiLMjMJB9WFivEDsuKN+nHPZCru/ZOGPZOmJ4+79MBrxrn3ZzFukBEAUP6EUEH6be0qPXzKUQs\nnhMnkguGCHhIn3djFhBtGQYVtXdU5OnLkL5M4bQ4ZO+oCuSybs4ySt8gZZQ+IJa2KePnA+Eo/e5u\nkkbnh1S2d+KaspmKm7N4ngyo0rdbokbpGwx7pR930k8kgokV4Ku9Y+ydJHQUXNOdvaNqc1ZaGvmy\nHwZjlL5BSil9EdKX8fMBvjx9EdIH2Cwenh251Mf2e3pQlbIpm6cfV6UfViCXp5YOvZ63QJu9f6P0\nDYzSDwBPnj7vqVkUrKTPqvQTiWCLR2XKZtztneFUcI1ncxYwdJEwSt/AKP0A8No7vIFcQG3glSLI\n4hkO9o5MWea4KH2dm7Pc+jdK38Ao/QDQG8SrDIAduu0dHtIPWkhU1d6JMk+fqnWRsswyWT+8pM+b\n8cND4nROrHn9RukbYOpUsiM3KHuEBzqVPm/2jqzSB9jVvijp61D6QfZOmKWVddk7MmWZZY5L5Ank\nWpZaEue1d4zSNxiC0aMJKba2qutTl9IXORxdVukD+klfh9IPsnfCPi5Rh73D2jZKT7+3lxyL6FXV\nkncDlYi941T6hvQNlNffUV1sjSIKTx9gJ32RzVlAvO2dINJnmZfsISqipRT8xtbh6bstMCI7f1Vt\nzgKGLhKm4JoBAPW+fktLfAK5qpQ+S9pmqtk7sqTf309ywINIW5e9w1qWWdTTd5JxXx+JH3ipdl4C\nF2kjUrbBKH2DIVBN+iNV6aeKvUN3abIoPj/Sp+maQbXZqVJ3K5YnU8aBZcHwe0rgrbKpmsC92vgF\nW3k2ZwFG6Rt4wCh9f7Dm6seJ9P2eHijRshyk4efHsz4tpKV5H92nm/RVevphkb6I0mddJIzSNwCg\nlvT7+gjRTpigpj874q70RTdnBdk7PMrc3qcsWQP+1oyKflhJnzeTxt5WlacvUo45iPR5A7myi4RR\n+gYA1JJ+WxshfB1ncIqkbIadvaMjkMtTd4fCz94RIWtRa4ZCVq2rbpuqSp/X3nH2b5S+AQC1pK/L\nzwfEUjaHg6fPa+0AwfYOa39paSTl0E1p88zLyyaKq6fvNmaYnr4ue8cofQMAaklfl58PRJu9E+Xm\nLFHS97J3eIq3Ad7B3DDtnZGm9FVtznKrvWOUvkHKKP0oPX2dKZs6lL4qe4f2JUv6XuQrS/osO3J5\nSyMA0ZO+rs1ZRukbAEgtpd/ezndObphKX1cgV4e9EwXpR2HvyByMHgbpiwRyZTZnGaVvAADIySEB\nWJaiYkHQqfQzMsgHluV4QQoVSp8nZVNHIDdqe0dGpVPI2Dteef4sm7NEd/O6PSHoyN5R5ekbpW/A\nhbQ0IDcXOHJEvi+dSh/gz+BJBU8/CnuHZ5467R0WtU7z/J0KV7fSjyqQG+TpyywSRukbDECVxaNT\n6QN8vr5lEdKPe/ZO2IHcri7+3b1ufYWVvUPbO0lYZnNWWKpdh6fPY++4Vdk0St8AgDrS11Vhk4In\nbfPkSaISg4ghCCykb1nxUvp+C8mJE/FR+mGQfliefkYG2ZzIcxC5bKnkoOvd6ukbpW8AQK3S123v\nsJK+CmsHYCP97m5yM6Wn8/fPQvo8Hjzgb++oUvphefqAOOmLevoipJ9IuO+ADVoowtycZZS+wQBU\nlVfWrfR5SF9FEBdgI31RlQ9Ek6cfNulHae+IKH2RzVmAO8mqLLhmau8YKINR+t5gydOXIf242zsq\nsneitHecJElLQvspXpHaO27tdJdhsCz/12Jq7xh4IlU8fZ7snVRR+mHX3lEZyJW1d1iIFBAnfepp\n248DpaQadLYur73j1k735ix6MpfXazFK38ATqki/uZmkf+pCFEqfJU9fdGMWkNr2TtTZO0EElkgM\nVfus+f1hkb7OM2+N0jfwhArSt6xw8vTj6umLbMwCgpV+V5faQG4qZu+4BWRZnxKcbVmPaFRB+kFj\n8ZZVcGbj8D5JGKVvMAAVpH/sGCET2RRJP/CkbIaZvaMzkNvVxb94+fU5XLJ3WBS7W1uWdlEGcnny\n7v2CvoD7ImGUvgEANaR/9Cgp6aATcVX6MmMFKX0R6ygVsnf6+8WJG+CLB/Cob0CtvcOTGtrfT768\nUn/dyiqMOKXf3NyMxYsXY9asWbjkkkvQ2trqet2MGTNw5pln4qyzzsJXvvIV4YkOV2RnkywAlmqS\nXtDt5wP8nr4K0qcqta/P+xoZ0s/MJDe609ul6Ozkt45U2ju6sncoabMe2yiSTeM2tqinH0b2TlCQ\nmXcfwLCsvbN69WosXrwYu3fvxsKFC7F69WrX6xKJBGpqarBjxw5s375deKLDFYmEfK5+3JT+8eNq\njm1MJILVvswCk0gE2zG8pB+GvSObvUMPVmeBjNKP0tPnJeUgJe52fZC9M+yU/saNG7FixQoAwIoV\nK/DCCy94Xmvx1OQdgZC1eI4eDUfps6ZsHjum7qzeINLv6JCLH/hZPCJKPxWyd06eVPOkwNuW1dN3\nI33VSp83u2Y4KX3haTQ2NiI/Px8AkJ+fj8bGRtfrEokEFi1ahPT0dKxcuRJ33HGH63X33HPPwP+r\nqqpQVVUlOrWUgyzpx83eOX4cOOUUNeOykL6MlRRE+ryevursnba2oT+XtXdU2UMsbXk9/fT05MYn\n6q+L2jt+C7YqO8gLupR+TU0NampqpPrwJf3Fixfj0KFDQ37+4x//eND3iUQCCQ8z7E9/+hMKCwvR\n1NSExYsXo6KiAgsWLBhynZ30RxpUKH3d9s6ECUTBs+DYMbJIqEBQrr4s6fvZMaJKP+7ZO2GSPq/S\nB5IEayf9oM9TGCTuVO48gWJVSt8piO+9917uPnyn8frrr3v+Lj8/H4cOHUJBQQEOHjyIvLw81+sK\nCwsBAFOnTsVVV12F7du3u5L+SIYKpa9KWXth4kR31emGsO2dLz9iQlBt71CitqyhQcGosneiIn0R\nT5+26+lJvlfd3cFPsrpJX2QfwLDbkVtdXY21a9cCANauXYsrr7xyyDWdnZ04/qUn0NHRgddeew1n\nnHGG6JDDFqmg9CdOJPV9WKAqkAuEY++oDOSmp5Mvpy8NiGXv6EjZVEH6LAQmq/Tt4+nI3uEJzLp5\n9FEofRUQJv0f/vCHeP311zFr1iy8+eab+OEPfwgAaGhowOWXXw4AOHToEBYsWIC5c+fivPPOw9Kl\nS3HJJZeomfkwQip4+mPHkg+9WwqhEyrtHZ3ZOwBRkyqVPu3TbSERsXfc3u9Uyd4R8fTdxtRB+rKl\nmFkOeOfJ6w8TwmtPTk4ONm/ePOTnRUVFeOmllwAAM2fOxIcffig+uxGCvDzAIw7OhDCydxKJpMUz\ndar/tartHb89DLqzd0RP5JI98QpQl73jRtoySl/njlzA3RZiOc9Xp72Tnp7cwJWWFvxa3BYVnTvm\neWB25MYAhYXAwYPi7Zub9ds7ALuvn0r2jupALuCdwRNV7R0d9o4I6bMq/dGjw7F3nGP4vSf0oBaq\n3nmVPutrDwOG9GMAWdIPQ+kD7KQfpr2jM2VTtJibSnsnlbN3nIqd1eJwLlRhkT7PGEbpG0ghN5eo\nY69NPX7o6yMkq7OWPgUL6ff0kC/RImhOREX6vb3kS+RGdbN3LGvkZe+IevrO1y1yUhdrCibdN8pL\n+kbpG0ghLQ3IzxdT+62txEoROSOWF5MmBWfwUGuHpa4LC6LK06fVO0Veh5u909tL/s48GRzD0d4R\nqezJEnh2q93vR7JpaeSL1nXiXVh4lT7rexYGDOnHBEVFYqR/5Eg41g7ApvRVWjtAdIFcUT8fcF9I\neK0dr34AvieGqLN3nOTNQvqiSt/ehrVeD50fL+mzKH1j7xj4QtTXb2oi2T9hgJX0VQVxAULofjV/\nZFM2dZG+U12LnMLlNTdZpS+bvdPdzb7JSpT0eVM2nW1YSN8eMFat9I29YxAIUdI/fDhepK8ycwfw\nr/ljWXrtHVHSd7N3eDN3vOZGiYTVJnKziHgWDbeTs1hTRkWVvkggV0Tp29uoVvomkGsQiKIioKGB\nv11TU3DevCpEofTHj/eu+dPdTW4umZ2Ofkpf5YlcIvaO29x4CJv24ZyL7JMC61OL02fXae+IKH0n\niRulbxAqUkXpBwVyVXv6EyZ4K30VJ3R5ZQfF1d7hJX23BYinjzFjBpNpb28yZz0IMkqfNwAsovTt\nC4VOpW9Zw6T2joFayHj6cVL6Ydo7Kkg/K8s9UCxD+jrtnShI396epwSE0xpibetU+iyBZ5E4gIy9\nw6P0ad0dVRltsjCkHxMUForZO3Hz9FXbO34lnWUzdwBv0pfx9N2Uvoi9QwON9uMieZ8YKGnbzzHi\nyd5xkr5MCQidgVyn0mcZKyylHyc/HzCkHxuIpmyGqfQnTQo/ZTMVlf6YMUMtIxF7x+04R16ln5Ym\nVsuGwvnUwqP0RT19kUCuc6FgGUu30ufJDAoThvRjgqlTgZYW95K8fjh8eOTaOyoOYPcjfdFAblbW\nUC9exN4Bhvr6PKRLIbNwOJ9aeBYvN6XP0jYspc8byHU+GbDW049TEBcwpB8bpKcT8nY5qMwXwz1P\nn5K+2zHLqpS+2z4AGaXvtqFMxN4BhhK2isPaZTz9MOydsJS+jL3Do/SNvWPgCV6Lp7+fFFubMkXf\nnOyIInsnI4PcnG4ZNnG1d9wygkTsHWCo0o+a9GUCuWHuyNVt7/DU3jFK38ATvBk8LS2EYMP6QI0Z\nkywc5gXVSh/wTtuMayDXi/RV2DsitpOzjzCVvqinT8m1vz/4VCtgsGq3rOiVvgnkGjCBl/TD9PMB\nElgMKrqm4xQvrw1aupW+jKfvJH2V9o5s6qdM9g5vIFdW6VMyDkp3tKt2WtwuqAihUfoGkYM3bTNM\nP58iJ4dYSl5obgYmT1Y7plcwVyXpO2MGqj19VfaOyLycxM2TveNG+mGmbLLO1d6GdVHTuSOXKn3L\nMkrfwAe8pRjCVvoAUfHNzd6/b2lRf4qXl72jInuHqkhnfRnVnr6o0nfz9GWVPk8fMvaOqKfPq8Cd\nbUQXF5VK31662Sh9A0+UlgL19ezXNzaSOvxhIjfXW+n39xPrR/WBLl72jqr0UDeLR8bTd7N3RJ9K\nVNg7Mk8L1EunVkVY9o5dtbMevGJvo2Nx4VH6QDJt0+TpG3hi2jTgiy/Yr29oAIqL9c3HDX6kf+wY\nITaZAmhu8LJ3jh0jGUWycCN91UpfNOisw97hXTjs7cMK5FIyZg2AOwk8aqUPJNM2jb1j4AlK+m45\n6W5oaCCWUJjwI30d1g7gXYpBVaZQdrY76YsGct08fVGlr8Pe4V047Bu0wg7ksr5eUaWvy9MHkqRv\n7B0DT9BjD4Ny4SniRvo6griAt9Jva1Nn7zg3aB0/Lp4O6qX040L6MkqfJ5Ar4+nTdjxlnHk9fZ3Z\nO0BysTRK38AXPBZPHElfl9L3sndUkP748e6kL7rJTKWn77SeROwdZ019EaUvYu846/aIKH1We0dE\n6fiGtdYAAA51SURBVMvaOyy7hE+cMErfIAA8pH/gQLxIX5e94xXIVUX6bvaRDOmrtHecpC+q9GWe\nFpxKn9XeGTdObFOYfTzWrKewlT7LEwh9HUbpG/hi2jSgri74uq4uQgZhHYpOESd7R6XSd/YvQ/r0\n4BF7SeS4kD7NHedRnnbFzmPv2K0py2LPYrG306n0ZTx9lnlRe8cofQNflJayKf2DB4nKD/tghuFo\n7ziVvmURu0eU9BMJQgh2iydKe8duN9FFg+dz47R3eJQ+HZc+IaQxMI69HavSp0HT/n7x1FAe0meZ\nF33fTMqmgS9YlX4Ufj4QH3unr48Qg+zmLNq/fVHp7CQ3qUzqqTMjSDRlU4XSt/chm/LJs3hRxW5Z\nfOM6lT4L6ScSSbtGxN5heV957R27p29I38ATrJ5+lKTf3OyeVqrL3nFT+u3thERZlCNL//ZFRcba\noXAuVKJKPzt7cJBZVOnTPmQ3d/GMn55OFHh3tzjp88yXxhBElD4r6fMEmOliKfKe64Qh/Zhh2jTg\n88+Dr4uK9EePJh9+txr0uuwdt5LOKqt5OpW+CtK3L1TULlJl74St9O3teRcvSuA8T2UiSh/gJ31e\npe/cr8Bi73R3G9I3CEBJCamp41e+GIiO9AFvi0eXvZOTQ/q2o7VVzW5cQJ/Sp6Tf3U2sIhG7yEn6\nIrEGex+y9hAv6VN/nmexccYCWOdL4yispG9PZWVZTGn/dJdx0N/TKH0DJmRkANOnA/v3+19XXx8d\n6XtV2tRl70yePNRSUvlUoUPp2+0dmWqgTtIXmZs9viBrD3V08LWn6ptn3MzMZB19nkJ1dLFgJX2a\nWmtZbMRMXwvr0wf19EXPUtAFQ/oxRFkZsHev/zV//Sswc2Y483HCS+nrsnfGjCH+sD0bRuVYOpS+\n3d6JmvRllb5z0eC1d3iVPs1+4iFYgN/eoYvEyZNsT2L0tbCSuF3pi1RY1QVD+jEEK+mfemo483Fi\nyhTgyJHBP7MsfaQPkH7tJZ1VWkm6lD7tU3Z3LyXc3l5CaDKefNievojSp+06O/kWKUrKrHOkqays\nY9jnxELixtM3YEYQ6R8/Tj7YYZdVpigoGHqAe3s7yaRRkULpBqevr1rp2w98VxEktts7bW3i5abt\nhEszlnj3ZkTp6YsofdpOROnzkD7vwsI7J+PpGzCjrAzYs8f799TaCXtjFoUb6euu7e9U+irjBzoW\nFLu9IxN0thOuaBE4uycvag/JePqypM+bskkXR9a58Sp9Xk/fkL5BIIKU/r590fn5gPtZvocOkcVA\nF2gwl0Kl0ncGilVYR3Z7R0bp05O9urvFbSL7wtHWxr8AyXr6IvYOfUIQCeTqUvr2QC6vp29I38AX\n06eTYmrOI/woovTzgWhIX6enP3bs4ECxigXFbu/IppdOnEj6EiV9Slb9/WLWFV006NF/PEFJUaXP\nmykDJBcYXaRPPfqODmPvGCjGqFGkBs++fe6/j1rpR2HvTJlCDoKnUJ0eal9UVPStSukDpG1Lizjp\np6Uli66Jkn57e9La4bEVZZR+Vxf/jtzOTnZ7Z/RoknN//DjbGIkEeR9bWvgCuSZl04AJZ54JfPSR\n++9GotLPzycLC0VTk9oKo3bSV/EUQYkakFf6kyfLkT6QtGhE7B2q9EVqHcl4+p2dfPPltXcSCdLm\n6FG+DCFW0rd7+iZl0yAQc+cCH37o/ruolX5ubpIEKA4e1Ev6BQWDSf/QIbL4qIJT6cuS/tSpyb0M\nskpfBenTDCURpU8XDJH9BtnZZN6i9g7Pgmm3d1gD3rykP24c+XwYT99AObxIv6uL+P1Rkn5a2tAa\nQZ9/TmIRumC3lHp7yY2al6euf1pIDiAEK2vv2PcyxEHp0w11MkqfN3MHSGZG8ZI+tZR4Fky7vcO6\nOFHS5ykR0dxsPH0DDfAi/U8/BWbNiv5QhhkzBpN+bW14pN/URMhEpvSxE/bSEiqUPiV9yyKkr8LT\nl5kXJX1RpX/8OBmf11KjCxbvecZ0sdBp79A2vPYOK+nTMg+G9A2YUFpKgkDOgOlHHwFnnBHNnOyY\nMYMQPUCyQurqwiP9gwfVWjsAIbOmJnKD9vSIH4pOQQOenZ2EvGTtndZWUohP9OlGRunn5CTHnzKF\nv21zM1kAp07la9fQQD5bIimbOu2dgwfZ3kP69GhI34AJiQRR+zt3Dv75hx+SIG/UsJP+oUPkJtD5\nwZ48ObkxRkfQuLSUFLGrryeVTlVsfKMZR7IVUalalsmQok8yIko/I4P8fXfv5id9OvemJr62ubkk\ndjVpEvvfgu634LV3Dhzgixt8/jnbApabSxbKnh7208bCgCH9GGPePODddwf/bOtWYP78aOZjx6mn\nEhIASDbRjBl6x0skknEEHUq/tJQ8rdTVEdJXgSlTyE1/6JAa0pdV+s3NYkofION+8gmfWgcGK31e\n0v/rX/nmWlBADiBKS2O3P7OyyEZI1s/TuHF8pN/QwJ/mqhuG9GOGmpqagf9fdBHw5pvJ33V0EE//\nnHPCn5cT9pTSjz/WYznZ3wuAxDJ27yZfZWVqx6LHVNbVkQVABaZMIX+vSZPkjsvLzQV27arB4cPi\nSj83l5DbqFFi6YOU9EWU/pEjxB7iiUf4kb7zc0FRUECeDngyjAoKyBMr65NjQQFZOFlIf+JEYk+p\nEhGqIEz6zz33HE477TSkp6fjgw8+8Lxu06ZNqKioQHl5Oe6//37R4UYM7B/oBQuA999PbvJ56y1C\n+HHwB8vLieJubyeW05w56sdwI/3PPiNEWlmpdix6IL1K0i8tBf70J/mbvqwM2L27Bo2Nckr/vffI\nE5qI6szLI++7iKd/+DDJOuIJvOfkEC/cLRbiRfp5eaQNz1MnvZaV9E85hfzLQvppaeR16Ix1iUCY\n9M844ww8//zzuOCCCzyv6evrw6pVq7Bp0yZ8+umneOaZZ7Br1y7RIUccsrOJ2n/+efL9734HXHVV\ntHOiyMgAZs8GduwgpD93rv4xqdLftUs96efkkBIDn3yijvTPPBN45RWguFiun/Jy4se3tIhvSJs6\nlahg0U19eXmkDAOvvUMFCm9+P32dPPbOqFGk3ezZ7G0oiesgfYDMZ9iQfkVFBWbNmuV7zfbt21FW\nVoYZM2YgMzMTy5Ytw4YNG0SHHJH49reBhx4iqvr554Hrr496RklcdhnwX/9FKoKGYTnNmwe89hp5\nL1TvU0gkgPPPB557DjjvPDV9nnkmCRLKWlFjx5LUz6ws8YPg6WsSXTSoNSMam6iv57uezvPCC/na\nFRToJX36uWMl/SlT4kf6sCRRVVVlvf/++66/e+6556zbb7994PunnnrKWrVq1ZDrAJgv82W+zJf5\nEvjiha/LtnjxYhxyJooDuO+++3DFFVf4NQUAJBjNQ8t++KmBgYGBgTb4kv7rr78u1XlxcTHq6uoG\nvq+rq0NJ3ELZBgYGBiMISlI2vZT6vHnzsGfPHtTW1uLkyZNYv349qqurVQxpYGBgYCAAYdJ//vnn\nUVpaim3btuHyyy/HkiVLAAANDQ24/PLLAQAZGRl4+OGHcemll6KyshI33HADZvNEWQwMDAwM1II7\nCqAYr7zyivU3f/M3VllZmbV69eqopxMZvvjiC6uqqsqqrKy0TjvtNOuhhx6KekqRore315o7d661\ndOnSqKcSOVpaWqxrrrnGqqiosGbPnm298847UU8pMtx3331WZWWldfrpp1s33nijdeLEiainFBpu\nueUWKy8vzzr99NMHfnb06FFr0aJFVnl5ubV48WKrpaUlsJ9Id+SaPP4kMjMz8cADD+CTTz7Btm3b\n8Itf/GLEvhcA8NBDD6GyspI5GWA446677sJll12GXbt24aOPPhqxT8u1tbV4/PHH8cEHH+Djjz9G\nX18fnn322ainFRpuueUWbNq0adDPVq9ejcWLF2P37t1YuHAhVq9eHdhPpKRv8viTKCgowNwvdzhl\nZ2dj9uzZaGhoiHhW0aC+vh4vv/wybr/99hGf2dXW1oYtW7bg1ltvBUAs04kyxflTGBMmTEBmZiY6\nOzvR29uLzs5OFMvufEshLFiwAJMdBz1s3LgRK1asAACsWLECL7zwQmA/kZL+gQMHUGrb/lhSUoID\nBw5EOKN4oLa2Fjt27MB5qnYJpRjuvvtu/PSnP0Wa6E6kYYT9+/dj6tSpuOWWW3D22WfjjjvuQKf9\nyLIRhJycHPzgBz/AtGnTUFRUhEmTJmHRokVRTytSNDY2Iv/Lgkz5+flotB8v54FI7yrz6D4U7e3t\nuPbaa/HQQw8hW7aoewrixRdfRF5eHs4666wRr/IBoLe3Fx988AH+/u//Hh988AGysrKYHuGHI/bt\n24cHH3wQtbW1aGhoQHt7O55++umopxUbJBIJJk6NlPRNHv9g9PT04JprrsG3vvUtXHnllVFPJxJs\n3boVGzduxCmnnIIbb7wRb775Jm6++eaopxUZSkpKUFJSgnPPPRcAcO211/oWOBzO+POf/4z58+cj\nNzcXGRkZuPrqq7F169aopxUp8vPzBzbQHjx4EHkMFfkiJX2Tx5+EZVm47bbbUFlZie9///tRTycy\n3Hfffairq8P+/fvx7LPP4uKLL8a6deuinlZkKCgoQGlpKXZ/eXjB5s2bcdppp0U8q2hQUVGBbdu2\noaurC5ZlYfPmzahUXXkvxVBdXY21a9cCANauXcsmFnWlF7Hi5ZdftmbNmmWdeuqp1n333Rf1dCLD\nli1brEQiYc2ZM8eaO3euNXfuXOuVV16JelqRoqamxrriiiuinkbk+PDDD6158+ZZZ555pnXVVVdZ\nra2tUU8pMtx///0DKZs333yzdfLkyainFBqWLVtmFRYWWpmZmVZJSYn1xBNPWEePHrUWLlzIlbKZ\nsCxjnBoYGBiMFJj0CAMDA4MRBEP6BgYGBiMIhvQNDAwMRhAM6RsYGBiMIBjSNzAwMBhBMKRvYGBg\nMILw/wFa1cBzw0Gh4AAAAABJRU5ErkJggg==\n",
225 225 "text": [
226 226 "<matplotlib.figure.Figure at 0xa70a0cc>"
227 227 ]
228 228 }
229 229 ],
230 230 "prompt_number": 5
231 231 },
232 232 {
233 233 "cell_type": "markdown",
234 234 "metadata": {
235 235 "slideshow": {
236 236 "slide_type": "slide"
237 237 }
238 238 },
239 239 "source": [
240 240 "You can paste blocks of input with prompt markers, such as those from\n",
241 241 "[the official Python tutorial](http://docs.python.org/tutorial/interpreter.html#interactive-mode)"
242 242 ]
243 243 },
244 244 {
245 245 "cell_type": "code",
246 246 "collapsed": false,
247 247 "input": [
248 248 ">>> the_world_is_flat = 1\n",
249 249 ">>> if the_world_is_flat:\n",
250 250 "... print \"Be careful not to fall off!\""
251 251 ],
252 252 "language": "python",
253 253 "metadata": {},
254 254 "outputs": [
255 255 {
256 256 "output_type": "stream",
257 257 "stream": "stdout",
258 258 "text": [
259 259 "Be careful not to fall off!\n"
260 260 ]
261 261 }
262 262 ],
263 263 "prompt_number": 6
264 264 },
265 265 {
266 266 "cell_type": "markdown",
267 267 "metadata": {
268 268 "slideshow": {
269 269 "slide_type": "slide"
270 270 }
271 271 },
272 272 "source": [
273 273 "Errors are shown in informative ways:"
274 274 ]
275 275 },
276 276 {
277 277 "cell_type": "code",
278 278 "collapsed": false,
279 279 "input": [
280 280 "%run non_existent_file"
281 281 ],
282 282 "language": "python",
283 283 "metadata": {
284 284 "slideshow": {
285 285 "slide_type": "fragment"
286 286 }
287 287 },
288 288 "outputs": [
289 289 {
290 290 "output_type": "stream",
291 291 "stream": "stderr",
292 292 "text": [
293 293 "ERROR: File `u'non_existent_file.py'` not found.\n"
294 294 ]
295 295 }
296 296 ],
297 297 "prompt_number": 7
298 298 },
299 299 {
300 300 "cell_type": "code",
301 301 "collapsed": false,
302 302 "input": [
303 303 "x = 1\n",
304 304 "y = 4\n",
305 305 "z = y/(1-x)"
306 306 ],
307 307 "language": "python",
308 308 "metadata": {
309 309 "slideshow": {
310 310 "slide_type": "slide"
311 311 }
312 312 },
313 313 "outputs": [
314 314 {
315 315 "ename": "ZeroDivisionError",
316 316 "evalue": "integer division or modulo by zero",
317 317 "output_type": "pyerr",
318 318 "traceback": [
319 319 "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mZeroDivisionError\u001b[0m Traceback (most recent call last)",
320 320 "\u001b[1;32m<ipython-input-8-dc39888fd1d2>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m4\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mz\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m-\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
321 321 "\u001b[1;31mZeroDivisionError\u001b[0m: integer division or modulo by zero"
322 322 ]
323 323 }
324 324 ],
325 325 "prompt_number": 8
326 326 },
327 327 {
328 328 "cell_type": "markdown",
329 329 "metadata": {
330 330 "slideshow": {
331 331 "slide_type": "slide"
332 332 }
333 333 },
334 334 "source": [
335 335 "When IPython needs to display additional information (such as providing details on an object via `x?`\n",
336 336 "it will automatically invoke a pager at the bottom of the screen:"
337 337 ]
338 338 },
339 339 {
340 340 "cell_type": "code",
341 341 "collapsed": false,
342 342 "input": [
343 343 "magic"
344 344 ],
345 345 "language": "python",
346 346 "metadata": {
347 347 "slideshow": {
348 348 "slide_type": "fragment"
349 349 }
350 350 },
351 351 "outputs": [],
352 352 "prompt_number": 9
353 353 },
354 354 {
355 355 "cell_type": "markdown",
356 356 "metadata": {
357 357 "slideshow": {
358 358 "slide_type": "header_slide"
359 359 }
360 360 },
361 361 "source": [
362 362 "## Non-blocking output of kernel\n",
363 363 "\n",
364 364 "If you execute the next cell, you will see the output arriving as it is generated, not all at the end."
365 365 ]
366 366 },
367 367 {
368 368 "cell_type": "code",
369 369 "collapsed": false,
370 370 "input": [
371 371 "import time, sys\n",
372 372 "for i in range(8):\n",
373 373 " print i,\n",
374 374 " time.sleep(0.5)"
375 375 ],
376 376 "language": "python",
377 377 "metadata": {},
378 378 "outputs": [
379 379 {
380 380 "output_type": "stream",
381 381 "stream": "stdout",
382 382 "text": [
383 383 "0 "
384 384 ]
385 385 },
386 386 {
387 387 "output_type": "stream",
388 388 "stream": "stdout",
389 389 "text": [
390 390 "1 "
391 391 ]
392 392 },
393 393 {
394 394 "output_type": "stream",
395 395 "stream": "stdout",
396 396 "text": [
397 397 "2 "
398 398 ]
399 399 },
400 400 {
401 401 "output_type": "stream",
402 402 "stream": "stdout",
403 403 "text": [
404 404 "3 "
405 405 ]
406 406 },
407 407 {
408 408 "output_type": "stream",
409 409 "stream": "stdout",
410 410 "text": [
411 411 "4 "
412 412 ]
413 413 },
414 414 {
415 415 "output_type": "stream",
416 416 "stream": "stdout",
417 417 "text": [
418 418 "5 "
419 419 ]
420 420 },
421 421 {
422 422 "output_type": "stream",
423 423 "stream": "stdout",
424 424 "text": [
425 425 "6 "
426 426 ]
427 427 },
428 428 {
429 429 "output_type": "stream",
430 430 "stream": "stdout",
431 431 "text": [
432 432 "7\n"
433 433 ]
434 434 }
435 435 ],
436 436 "prompt_number": 10
437 437 },
438 438 {
439 439 "cell_type": "markdown",
440 440 "metadata": {
441 441 "slideshow": {
442 442 "slide_type": "slide"
443 443 }
444 444 },
445 445 "source": [
446 446 "## Clean crash and restart\n",
447 447 "\n",
448 448 "We call the low-level system libc.time routine with the wrong argument via\n",
449 449 "ctypes to segfault the Python interpreter:"
450 450 ]
451 451 },
452 452 {
453 453 "cell_type": "code",
454 454 "collapsed": false,
455 455 "input": [
456 456 "import sys\n",
457 457 "from ctypes import CDLL\n",
458 458 "# This will crash a Linux or Mac system; equivalent calls can be made on Windows\n",
459 459 "dll = 'dylib' if sys.platform == 'darwin' else '.so.6'\n",
460 460 "libc = CDLL(\"libc.%s\" % dll) \n",
461 461 "libc.time(-1) # BOOM!!"
462 462 ],
463 463 "language": "python",
464 464 "metadata": {},
465 465 "outputs": [],
466 466 "prompt_number": "*"
467 467 },
468 468 {
469 469 "cell_type": "markdown",
470 470 "metadata": {
471 471 "slideshow": {
472 472 "slide_type": "header_slide"
473 473 }
474 474 },
475 475 "source": [
476 476 "## Markdown cells can contain formatted text and code\n",
477 477 "\n",
478 478 "You can *italicize*, **boldface**\n",
479 479 "\n",
480 480 "* build\n",
481 481 "* lists"
482 482 ]
483 483 },
484 484 {
485 485 "cell_type": "markdown",
486 486 "metadata": {
487 487 "slideshow": {
488 488 "slide_type": "slide"
489 489 }
490 490 },
491 491 "source": [
492 492 "and embed code meant for illustration instead of execution in Python:\n",
493 493 "\n",
494 494 " def f(x):\n",
495 495 " \"\"\"a docstring\"\"\"\n",
496 496 " return x**2\n",
497 497 "\n",
498 498 "or other languages:\n",
499 499 "\n",
500 500 " if (i=0; i<n; i++) {\n",
501 501 " printf(\"hello %d\\n\", i);\n",
502 502 " x += 4;\n",
503 503 " }"
504 504 ]
505 505 },
506 506 {
507 507 "cell_type": "markdown",
508 508 "metadata": {
509 509 "slideshow": {
510 510 "slide_type": "slide"
511 511 }
512 512 },
513 513 "source": [
514 514 "Courtesy of MathJax, you can include mathematical expressions both inline: \n",
515 515 "$e^{i\\pi} + 1 = 0$ and displayed:\n",
516 516 "\n",
517 517 "$$e^x=\\sum_{i=0}^\\infty \\frac{1}{i!}x^i$$"
518 518 ]
519 519 },
520 520 {
521 521 "cell_type": "markdown",
522 522 "metadata": {
523 523 "slideshow": {
524 524 "slide_type": "header_slide"
525 525 }
526 526 },
527 527 "source": [
528 528 "## Rich displays: include anyting a browser can show\n",
529 529 "\n",
530 530 "Note that we have an actual protocol for this, see the `display_protocol` notebook for further details."
531 531 ]
532 532 },
533 533 {
534 534 "cell_type": "markdown",
535 535 "metadata": {
536 536 "slideshow": {
537 537 "slide_type": "slide"
538 538 }
539 539 },
540 540 "source": [
541 541 "### Images"
542 542 ]
543 543 },
544 544 {
545 545 "cell_type": "code",
546 546 "collapsed": false,
547 547 "input": [
548 548 "from IPython.display import Image\n",
549 549 "Image(filename='../../source/_static/logo.png')"
550 550 ],
551 551 "language": "python",
552 552 "metadata": {
553 553 "slideshow": {
554 554 "slide_type": "skip"
555 555 }
556 556 },
557 557 "outputs": [
558 558 {
559 559 "ename": "IOError",
560 560 "evalue": "[Errno 2] No such file or directory: u'../../source/_static/logo.png'",
561 561 "output_type": "pyerr",
562 562 "traceback": [
563 563 "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mIOError\u001b[0m Traceback (most recent call last)",
564 564 "\u001b[1;32m<ipython-input-11-d52b796e1601>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mIPython\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdisplay\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mImage\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'../../source/_static/logo.png'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
565 565 "\u001b[1;32m/home/damian/Desarrollos/ipython_mtaui_slide/IPython/core/display.pyc\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, data, url, filename, format, embed, width, height)\u001b[0m\n\u001b[0;32m 495\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwidth\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mwidth\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 496\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mheight\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mheight\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 497\u001b[1;33m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mImage\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0murl\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 498\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 499\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mreload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
566 566 "\u001b[1;32m/home/damian/Desarrollos/ipython_mtaui_slide/IPython/core/display.pyc\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, data, url, filename)\u001b[0m\n\u001b[0;32m 263\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0murl\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0murl\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 264\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfilename\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mNone\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfilename\u001b[0m \u001b[1;32mis\u001b[0m \u001b[0mNone\u001b[0m \u001b[1;32melse\u001b[0m \u001b[0municode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 265\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 266\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 267\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mreload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
567 567 "\u001b[1;32m/home/damian/Desarrollos/ipython_mtaui_slide/IPython/core/display.pyc\u001b[0m in \u001b[0;36mreload\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 500\u001b[0m \u001b[1;34m\"\"\"Reload the raw data from file or URL.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 501\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0membed\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 502\u001b[1;33m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mImage\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 503\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 504\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_repr_html_\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
568 568 "\u001b[1;32m/home/damian/Desarrollos/ipython_mtaui_slide/IPython/core/display.pyc\u001b[0m in \u001b[0;36mreload\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 268\u001b[0m \u001b[1;34m\"\"\"Reload the raw data from file or URL.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 269\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfilename\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 270\u001b[1;33m \u001b[1;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_read_flags\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 271\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 272\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0murl\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
569 569 "\u001b[1;31mIOError\u001b[0m: [Errno 2] No such file or directory: u'../../source/_static/logo.png'"
570 570 ]
571 571 }
572 572 ],
573 573 "prompt_number": 11
574 574 },
575 575 {
576 576 "cell_type": "markdown",
577 577 "metadata": {
578 578 "slideshow": {
579 579 "slide_type": "slide"
580 580 }
581 581 },
582 582 "source": [
583 583 "An image can also be displayed from raw data or a url"
584 584 ]
585 585 },
586 586 {
587 587 "cell_type": "code",
588 588 "collapsed": false,
589 589 "input": [
590 590 "Image(url='http://python.org/images/python-logo.gif')"
591 591 ],
592 592 "language": "python",
593 593 "metadata": {
594 594 "slideshow": {
595 595 "slide_type": "-"
596 596 }
597 597 },
598 598 "outputs": [
599 599 {
600 600 "html": [
601 601 "<img src=\"http://python.org/images/python-logo.gif\"/>"
602 602 ],
603 603 "output_type": "pyout",
604 604 "prompt_number": 12,
605 605 "text": [
606 606 "<IPython.core.display.Image at 0xa7e68ac>"
607 607 ]
608 608 }
609 609 ],
610 610 "prompt_number": 12
611 611 },
612 612 {
613 613 "cell_type": "markdown",
614 614 "metadata": {
615 615 "slideshow": {
616 "slide_type": "slide"
616 "slide_type": "skip"
617 617 }
618 618 },
619 619 "source": [
620 620 "SVG images are also supported out of the box (since modern browsers do a good job of rendering them):"
621 621 ]
622 622 },
623 623 {
624 624 "cell_type": "code",
625 625 "collapsed": false,
626 626 "input": [
627 627 "from IPython.display import SVG\n",
628 628 "SVG(filename='python-logo.svg')"
629 629 ],
630 630 "language": "python",
631 "metadata": {},
631 "metadata": {
632 "slideshow": {
633 "slide_type": "skip"
634 }
635 },
632 636 "outputs": [
633 637 {
634 638 "output_type": "pyout",
635 639 "prompt_number": 13,
636 640 "svg": [
637 641 "<svg height=\"115.02pt\" id=\"svg2\" inkscape:version=\"0.43\" sodipodi:docbase=\"/home/sdeibel\" sodipodi:docname=\"logo-python-generic.svg\" sodipodi:version=\"0.32\" version=\"1.0\" width=\"388.84pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:cc=\"http://web.resource.org/cc/\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:inkscape=\"http://www.inkscape.org/namespaces/inkscape\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:sodipodi=\"http://inkscape.sourceforge.net/DTD/sodipodi-0.dtd\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n",
638 642 " <metadata id=\"metadata2193\">\n",
639 643 " <rdf:RDF>\n",
640 644 " <cc:Work rdf:about=\"\">\n",
641 645 " <dc:format>image/svg+xml</dc:format>\n",
642 646 " <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n",
643 647 " </cc:Work>\n",
644 648 " </rdf:RDF>\n",
645 649 " </metadata>\n",
646 650 " <sodipodi:namedview bordercolor=\"#666666\" borderopacity=\"1.0\" id=\"base\" inkscape:current-layer=\"svg2\" inkscape:cx=\"243.02499\" inkscape:cy=\"71.887497\" inkscape:pageopacity=\"0.0\" inkscape:pageshadow=\"2\" inkscape:window-height=\"543\" inkscape:window-width=\"791\" inkscape:window-x=\"0\" inkscape:window-y=\"0\" inkscape:zoom=\"1.4340089\" pagecolor=\"#ffffff\"/>\n",
647 651 " <defs id=\"defs4\">\n",
648 652 " <linearGradient id=\"linearGradient2795\">\n",
649 653 " <stop id=\"stop2797\" offset=\"0\" style=\"stop-color:#b8b8b8;stop-opacity:0.49803922\"/>\n",
650 654 " <stop id=\"stop2799\" offset=\"1\" style=\"stop-color:#7f7f7f;stop-opacity:0\"/>\n",
651 655 " </linearGradient>\n",
652 656 " <linearGradient id=\"linearGradient2787\">\n",
653 657 " <stop id=\"stop2789\" offset=\"0\" style=\"stop-color:#7f7f7f;stop-opacity:0.5\"/>\n",
654 658 " <stop id=\"stop2791\" offset=\"1\" style=\"stop-color:#7f7f7f;stop-opacity:0\"/>\n",
655 659 " </linearGradient>\n",
656 660 " <linearGradient id=\"linearGradient3676\">\n",
657 661 " <stop id=\"stop3678\" offset=\"0\" style=\"stop-color:#b2b2b2;stop-opacity:0.5\"/>\n",
658 662 " <stop id=\"stop3680\" offset=\"1\" style=\"stop-color:#b3b3b3;stop-opacity:0\"/>\n",
659 663 " </linearGradient>\n",
660 664 " <linearGradient id=\"linearGradient3236\">\n",
661 665 " <stop id=\"stop3244\" offset=\"0\" style=\"stop-color:#f4f4f4;stop-opacity:1\"/>\n",
662 666 " <stop id=\"stop3240\" offset=\"1\" style=\"stop-color:#ffffff;stop-opacity:1\"/>\n",
663 667 " </linearGradient>\n",
664 668 " <linearGradient id=\"linearGradient4671\">\n",
665 669 " <stop id=\"stop4673\" offset=\"0\" style=\"stop-color:#ffd43b;stop-opacity:1\"/>\n",
666 670 " <stop id=\"stop4675\" offset=\"1\" style=\"stop-color:#ffe873;stop-opacity:1\"/>\n",
667 671 " </linearGradient>\n",
668 672 " <linearGradient id=\"linearGradient4689\">\n",
669 673 " <stop id=\"stop4691\" offset=\"0\" style=\"stop-color:#5a9fd4;stop-opacity:1\"/>\n",
670 674 " <stop id=\"stop4693\" offset=\"1\" style=\"stop-color:#306998;stop-opacity:1\"/>\n",
671 675 " </linearGradient>\n",
672 676 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2987\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n",
673 677 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2990\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"77.475983\" y2=\"76.313133\"/>\n",
674 678 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2587\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"77.475983\" y2=\"76.313133\"/>\n",
675 679 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2589\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n",
676 680 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2248\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"77.475983\" y2=\"76.313133\"/>\n",
677 681 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2250\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n",
678 682 " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-11.5974,-7.60954)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2255\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n",
679 683 " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-11.5974,-7.60954)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2258\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"76.176224\" y2=\"76.313133\"/>\n",
680 684 " <radialGradient cx=\"61.518883\" cy=\"132.28575\" fx=\"61.518883\" fy=\"132.28575\" gradientTransform=\"matrix(1,0,0,0.177966,0,108.7434)\" gradientUnits=\"userSpaceOnUse\" id=\"radialGradient2801\" r=\"29.036913\" xlink:href=\"#linearGradient2795\"/>\n",
681 685 " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-9.399749,-5.305317)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient1475\" x1=\"150.96111\" x2=\"112.03144\" xlink:href=\"#linearGradient4671\" y1=\"192.35176\" y2=\"137.27299\"/>\n",
682 686 " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-9.399749,-5.305317)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient1478\" x1=\"26.648937\" x2=\"135.66525\" xlink:href=\"#linearGradient4689\" y1=\"20.603781\" y2=\"114.39767\"/>\n",
683 687 " <radialGradient cx=\"61.518883\" cy=\"132.28575\" fx=\"61.518883\" fy=\"132.28575\" gradientTransform=\"matrix(2.382716e-8,-0.296405,1.43676,4.683673e-7,-128.544,150.5202)\" gradientUnits=\"userSpaceOnUse\" id=\"radialGradient1480\" r=\"29.036913\" xlink:href=\"#linearGradient2795\"/>\n",
684 688 " </defs>\n",
685 689 " <g id=\"g2303\">\n",
686 690 " <path d=\"M 184.61344,61.929363 C 184.61344,47.367213 180.46118,39.891193 172.15666,39.481813 C 168.85239,39.325863 165.62611,39.852203 162.48754,41.070593 C 159.98254,41.967323 158.2963,42.854313 157.40931,43.751043 L 157.40931,78.509163 C 162.72147,81.842673 167.43907,83.392453 171.55234,83.148783 C 180.25649,82.573703 184.61344,75.507063 184.61344,61.929363 z M 194.85763,62.533683 C 194.85763,69.931723 193.12265,76.072393 189.63319,80.955683 C 185.7441,86.482283 180.35396,89.328433 173.46277,89.484393 C 168.26757,89.650093 162.91642,88.022323 157.40931,84.610843 L 157.40931,116.20116 L 148.50047,113.02361 L 148.50047,42.903043 C 149.96253,41.109583 151.84372,39.569543 154.12454,38.263433 C 159.42696,35.173603 165.86978,33.584823 173.45302,33.506853 L 173.57973,33.633563 C 180.50991,33.545833 185.85132,36.391993 189.60395,42.162263 C 193.10315,47.454933 194.85763,54.238913 194.85763,62.533683 z \" id=\"path46\" style=\"fill:#646464;fill-opacity:1\"/>\n",
687 691 " <path d=\"M 249.30487,83.265743 C 249.30487,93.188283 248.31067,100.05998 246.32227,103.88084 C 244.32411,107.7017 240.52275,110.75254 234.90842,113.02361 C 230.35653,114.81707 225.43425,115.79178 220.15133,115.95748 L 218.67952,110.34316 C 224.05016,109.61213 227.83204,108.88109 230.02513,108.15006 C 234.34309,106.688 237.30621,104.44617 238.93397,101.44406 C 240.24008,98.997543 240.88339,94.328693 240.88339,87.418003 L 240.88339,85.098203 C 234.79146,87.866373 228.40711,89.240713 221.73036,89.240713 C 217.34417,89.240713 213.47457,87.866373 210.14107,85.098203 C 206.39818,82.086343 204.52674,78.265483 204.52674,73.635623 L 204.52674,36.557693 L 213.43558,33.506853 L 213.43558,70.828453 C 213.43558,74.815013 214.7222,77.885353 217.29543,80.039463 C 219.86866,82.193563 223.20217,83.226753 227.2862,83.148783 C 231.37023,83.061053 235.74667,81.482023 240.39603,78.392203 L 240.39603,34.851953 L 249.30487,34.851953 L 249.30487,83.265743 z \" id=\"path48\" style=\"fill:#646464;fill-opacity:1\"/>\n",
688 692 " <path d=\"M 284.08249,88.997033 C 283.02006,89.084753 282.04535,89.123743 281.14862,89.123743 C 276.10937,89.123743 272.18129,87.924853 269.37413,85.517323 C 266.57671,83.109793 265.17314,79.786033 265.17314,75.546053 L 265.17314,40.456523 L 259.07146,40.456523 L 259.07146,34.851953 L 265.17314,34.851953 L 265.17314,19.968143 L 274.07223,16.800333 L 274.07223,34.851953 L 284.08249,34.851953 L 284.08249,40.456523 L 274.07223,40.456523 L 274.07223,75.302373 C 274.07223,78.645623 274.96896,81.014163 276.76243,82.398253 C 278.30247,83.538663 280.74899,84.191723 284.08249,84.357423 L 284.08249,88.997033 z \" id=\"path50\" style=\"fill:#646464;fill-opacity:1\"/>\n",
689 693 " <path d=\"M 338.02288,88.266003 L 329.11404,88.266003 L 329.11404,53.878273 C 329.11404,50.379063 328.29528,47.367213 326.66753,44.852463 C 324.78634,42.006313 322.17411,40.583233 318.82112,40.583233 C 314.73708,40.583233 309.6296,42.737343 303.4987,47.045563 L 303.4987,88.266003 L 294.58985,88.266003 L 294.58985,6.0687929 L 303.4987,3.2616329 L 303.4987,40.700203 C 309.191,36.557693 315.40963,34.481563 322.16436,34.481563 C 326.88196,34.481563 330.70282,36.070333 333.62694,39.238143 C 336.56082,42.405943 338.02288,46.353513 338.02288,51.071103 L 338.02288,88.266003 L 338.02288,88.266003 z \" id=\"path52\" style=\"fill:#646464;fill-opacity:1\"/>\n",
690 694 " <path d=\"M 385.37424,60.525783 C 385.37424,54.930953 384.31182,50.310833 382.19669,46.655673 C 379.68195,42.201253 375.77337,39.852203 370.49044,39.608523 C 360.72386,40.173863 355.85032,47.172273 355.85032,60.584263 C 355.85032,66.734683 356.86401,71.871393 358.91089,75.994413 C 361.52312,81.248093 365.44145,83.840823 370.66589,83.753103 C 380.47146,83.675123 385.37424,75.935933 385.37424,60.525783 z M 395.13109,60.584263 C 395.13109,68.547643 393.09395,75.175663 389.02941,80.468333 C 384.5555,86.394563 378.37584,89.367423 370.49044,89.367423 C 362.67328,89.367423 356.58135,86.394563 352.18541,80.468333 C 348.19885,75.175663 346.21044,68.547643 346.21044,60.584263 C 346.21044,53.098503 348.36455,46.801883 352.67276,41.674913 C 357.22466,36.236033 363.20937,33.506853 370.6074,33.506853 C 378.00545,33.506853 384.02914,36.236033 388.66877,41.674913 C 392.97697,46.801883 395.13109,53.098503 395.13109,60.584263 z \" id=\"path54\" style=\"fill:#646464;fill-opacity:1\"/>\n",
691 695 " <path d=\"M 446.20583,88.266003 L 437.29699,88.266003 L 437.29699,51.928853 C 437.29699,47.942293 436.0981,44.832973 433.70032,42.591133 C 431.30253,40.359053 428.10549,39.277123 424.11893,39.364853 C 419.8887,39.442833 415.86314,40.826913 412.04229,43.507363 L 412.04229,88.266003 L 403.13345,88.266003 L 403.13345,42.405943 C 408.26042,38.672813 412.97801,36.236033 417.28621,35.095623 C 421.35076,34.033193 424.93769,33.506853 428.02752,33.506853 C 430.14264,33.506853 432.13104,33.711543 434.00248,34.120913 C 437.50169,34.929923 440.34783,36.430973 442.54093,38.633823 C 444.98744,41.070593 446.20583,43.994723 446.20583,47.415943 L 446.20583,88.266003 z \" id=\"path56\" style=\"fill:#646464;fill-opacity:1\"/>\n",
692 696 " <path d=\"M 60.510156,6.3979729 C 55.926503,6.4192712 51.549217,6.8101906 47.697656,7.4917229 C 36.35144,9.4962267 34.291407,13.691825 34.291406,21.429223 L 34.291406,31.647973 L 61.103906,31.647973 L 61.103906,35.054223 L 34.291406,35.054223 L 24.228906,35.054223 C 16.436447,35.054223 9.6131468,39.73794 7.4789058,48.647973 C 5.0170858,58.860939 4.9078907,65.233996 7.4789058,75.897973 C 9.3848341,83.835825 13.936449,89.491721 21.728906,89.491723 L 30.947656,89.491723 L 30.947656,77.241723 C 30.947656,68.391821 38.6048,60.585475 47.697656,60.585473 L 74.478906,60.585473 C 81.933857,60.585473 87.885159,54.447309 87.885156,46.960473 L 87.885156,21.429223 C 87.885156,14.162884 81.755176,8.7044455 74.478906,7.4917229 C 69.872919,6.7249976 65.093809,6.3766746 60.510156,6.3979729 z M 46.010156,14.616723 C 48.779703,14.616723 51.041406,16.915369 51.041406,19.741723 C 51.041404,22.558059 48.779703,24.835473 46.010156,24.835473 C 43.23068,24.835472 40.978906,22.558058 40.978906,19.741723 C 40.978905,16.91537 43.23068,14.616723 46.010156,14.616723 z \" id=\"path1948\" style=\"fill:url(#linearGradient1478);fill-opacity:1\"/>\n",
693 697 " <path d=\"M 91.228906,35.054223 L 91.228906,46.960473 C 91.228906,56.191228 83.403011,63.960472 74.478906,63.960473 L 47.697656,63.960473 C 40.361823,63.960473 34.291407,70.238956 34.291406,77.585473 L 34.291406,103.11672 C 34.291406,110.38306 40.609994,114.65704 47.697656,116.74172 C 56.184987,119.23733 64.323893,119.68835 74.478906,116.74172 C 81.229061,114.78733 87.885159,110.85411 87.885156,103.11672 L 87.885156,92.897973 L 61.103906,92.897973 L 61.103906,89.491723 L 87.885156,89.491723 L 101.29141,89.491723 C 109.08387,89.491723 111.98766,84.056315 114.69765,75.897973 C 117.49698,67.499087 117.37787,59.422197 114.69765,48.647973 C 112.77187,40.890532 109.09378,35.054223 101.29141,35.054223 L 91.228906,35.054223 z M 76.166406,99.710473 C 78.945884,99.710476 81.197656,101.98789 81.197656,104.80422 C 81.197654,107.63057 78.945881,109.92922 76.166406,109.92922 C 73.396856,109.92922 71.135156,107.63057 71.135156,104.80422 C 71.135158,101.98789 73.396853,99.710473 76.166406,99.710473 z \" id=\"path1950\" style=\"fill:url(#linearGradient1475);fill-opacity:1\"/>\n",
694 698 " <path d=\"M 463.5544,26.909383 L 465.11635,26.909383 L 465.11635,17.113143 L 468.81648,17.113143 L 468.81648,15.945483 L 459.85427,15.945483 L 459.85427,17.113143 L 463.5544,17.113143 L 463.5544,26.909383 M 470.20142,26.909383 L 471.53589,26.909383 L 471.53589,17.962353 L 474.4323,26.908259 L 475.91799,26.908259 L 478.93615,17.992683 L 478.93615,26.909383 L 480.39194,26.909383 L 480.39194,15.945483 L 478.46605,15.945483 L 475.16774,25.33834 L 472.35477,15.945483 L 470.20142,15.945483 L 470.20142,26.909383\" id=\"text3004\" style=\"font-size:15.16445827px;font-style:normal;font-weight:normal;line-height:125%;fill:#646464;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans\"/>\n",
695 699 " <path d=\"M 110.46717 132.28575 A 48.948284 8.6066771 0 1 1 12.570599,132.28575 A 48.948284 8.6066771 0 1 1 110.46717 132.28575 z\" id=\"path1894\" style=\"opacity:0.44382019;fill:url(#radialGradient1480);fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:20;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1\" transform=\"matrix(0.73406,0,0,0.809524,16.24958,27.00935)\"/>\n",
696 700 " </g>\n",
697 701 "</svg>"
698 702 ],
699 703 "text": [
700 704 "<IPython.core.display.SVG at 0xa7e6e6c>"
701 705 ]
702 706 }
703 707 ],
704 708 "prompt_number": 13
705 709 },
706 710 {
707 711 "cell_type": "markdown",
708 712 "metadata": {
709 713 "slideshow": {
710 714 "slide_type": "header_slide"
711 715 }
712 716 },
713 717 "source": [
714 718 "#### Embedded vs Non-embedded Images"
715 719 ]
716 720 },
717 721 {
718 722 "cell_type": "markdown",
719 723 "metadata": {},
720 724 "source": [
721 725 "As of IPython 0.13, images are embedded by default for compatibility with QtConsole, and the ability to still be displayed offline.\n",
722 726 "\n",
723 727 "Let's look at the differences:"
724 728 ]
725 729 },
726 730 {
727 731 "cell_type": "code",
728 732 "collapsed": false,
729 733 "input": [
730 734 "# by default Image data are embedded\n",
731 735 "Embed = Image( 'http://scienceview.berkeley.edu/view/images/newview.jpg')\n",
732 736 "\n",
733 737 "# if kwarg `url` is given, the embedding is assumed to be false\n",
734 738 "SoftLinked = Image(url='http://scienceview.berkeley.edu/view/images/newview.jpg')\n",
735 739 "\n",
736 740 "# In each case, embed can be specified explicitly with the `embed` kwarg\n",
737 741 "# ForceEmbed = Image(url='http://scienceview.berkeley.edu/view/images/newview.jpg', embed=True)"
738 742 ],
739 743 "language": "python",
740 744 "metadata": {
741 745 "slideshow": {
742 746 "slide_type": "slide"
743 747 }
744 748 },
745 749 "outputs": [],
746 750 "prompt_number": 14
747 751 },
748 752 {
749 753 "cell_type": "markdown",
750 754 "metadata": {
751 755 "slideshow": {
752 756 "slide_type": "skip"
753 757 }
754 758 },
755 759 "source": [
756 760 "Today's image from a webcam at Berkeley, (at the time I created this notebook). This should also work in the Qtconsole.\n",
757 761 "Drawback is that the saved notebook will be larger, but the image will still be present offline."
758 762 ]
759 763 },
760 764 {
761 765 "cell_type": "code",
762 766 "collapsed": false,
763 767 "input": [
764 768 "Embed"
765 769 ],
766 770 "language": "python",
767 771 "metadata": {
768 772 "slideshow": {
769 773 "slide_type": "slide"
770 774 }
771 775 },
772 776 "outputs": [
773 777 {
774 778 "jpeg": "/9j/4AAQSkZJRgABAQEAtAC0AAD//gAdQ29weXJpZ2h0IDIwMTIgVS5DLiBSZWdlbnRz/+Ef/kV4\naWYAAElJKgAIAAAACgAOAQIAIAAAAIYAAAAPAQIABgAAAKYAAAAQAQIAFAAAAKwAAAASAQMAAQAA\nAAEAAAAaAQUAAQAAAMwAAAAbAQUAAQAAANQAAAAoAQMAAQAAAAIAAAAyAQIAFAAAANwAAAATAgMA\nAQAAAAIAAABphwQAAQAAAPAAAADuDAAAICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIABD\nYW5vbgBDYW5vbiBQb3dlclNob3QgRzEwAAAAAAAAAAAAAAAAALQAAAABAAAAtAAAAAEAAAAyMDEy\nOjEyOjE4IDA4OjAxOjQ0ACAAmoIFAAEAAAB2AgAAnYIFAAEAAAB+AgAAJ4gDAAEAAACQAQAAAJAH\nAAQAAAAwMjIxA5ACABQAAACGAgAABJACABQAAACaAgAAAZEHAAQAAAABAgMAApEFAAEAAACuAgAA\nAZIKAAEAAAC2AgAAApIFAAEAAAC+AgAABJIKAAEAAADGAgAABZIFAAEAAADOAgAAB5IDAAEAAAAF\nAAAACZIDAAEAAAAQAAAACpIFAAEAAADWAgAAfJIHALoIAADeAgAAhpIHAAgBAACYCwAAAKAHAAQA\nAAAwMTAwAaADAAEAAAABAAAAAqADAAEAAAAgCgAAA6ADAAEAAACYBwAABaAEAAEAAACgDAAADqIF\nAAEAAADWDAAAD6IFAAEAAADeDAAAEKIDAAEAAAACAAAAF6IDAAEAAAACAAAAAKMHAAEAAAADAAAA\nAaQDAAEAAAAAAAAAAqQDAAEAAAAAAAAAA6QDAAEAAAAAAAAABKQFAAEAAADmDAAABqQDAAEAAAAA\nAAAAAAAAAAoAAAAKAAAAIAAAAAoAAAAyMDEyOjEyOjE4IDA4OjAxOjQ0ADIwMTI6MTI6MTggMDg6\nMDE6NDQABQAAAAEAAAAAAAAAIAAAAGsAAAAgAAAAAAAAAAMAAABrAAAAIAAAADgmAADoAwAAGQAB\nAAMAMAAAABwEAAACAAMABAAAAHwEAAADAAMABAAAAIQEAAAEAAMAIgAAAIwEAAAAAAMABgAAANAE\nAAAGAAIAFwAAANwEAAAHAAIAFgAAAPwEAAAIAAQAAQAAAKBZEQAJAAIAIAAAABQFAAANAAQAogAA\nADQFAAAQAAQAAQAAAAAASQImAAMAMAAAALwHAAATAAMABAAAABwIAAAYAAEAAAEAACQIAAAZAAMA\nAQAAAAEAAAAcAAMAAQAAAAAAAAAdAAMAEAAAACQJAAAeAAQAAQAAAAABAgEfAAMARQAAAEQJAAAi\nAAMA0AAAAM4JAAAjAAQAAgAAAG4LAAAnAAMABQAAAHYLAAAoAAEAEAAAAIALAADQAAQAAQAAAAAA\nAAAtAAQAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAACAAAABQAAAAAAAAAEAP//AQAGAAEAAAAA\nAAAAAAAPAAMAAQABQAEA/3///yR31BfoA2sAwAAAAAAAAAAAAAAAAAAAAAAAQBFAEQAAAAD//wAA\n/3//fwAAAAD//zIAAgA4JisB4AAAAAAAAAAAAEQAQACgAD3/awAAAAAAAAAAAAAABQAAAAAAAAAA\nAAAAAAAAAAMAmRkAAGsAAAAAAAAA/v/6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASU1HOlBv\nd2VyU2hvdCBHMTAgSlBFRwAAAAAAAAAAAABGaXJtd2FyZSBWZXJzaW9uIDEuMDIAAABTY2llbmNl\nVmlldwAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAAABbAgAAmwEAAAAAAAAAAAAAAAAAAEMBAAAAAAAA\nwAAAAAAAAAAAAAAAAAAAAC7///9DAQAAIAEAAAUBAAAAAAAAAAAAAEv///+g////oP///+v////5\n////AAAAAAAAAAAJAAAACgAAALb9//8W/v//5v3//0MBAADaAQAABQEAAAAAAAAAAAAAFv7//+b9\n//8AAAAAAAAAAAEAAAACAAAABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABQAAAAoAAAAKAAAAFQEAABJAgAAJgUAAEcDAACaAwAAgwIAAAcEAABHAwAABAAAACkAAADYAwAA\nnQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGYEAACaAwAAzAQAAP8FAAAAAAAA2AMAAJ0CAADn\n////YgQAAHQEAAC9CgAAYgQAAAAAAAAAAAAAAAAAAAEAAABDAQAA4AEAALb9//+TAgAABQEAAAIA\nAABAAAAAaAEAAJcAAAAAAAAADgQAAAAAAAAAAAAAXwQAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAA\nAFT+//8MBAAAFQQAABUEAAARBAAADgQAAAwEAAAHBAAABwQAABIEAAAOBAAA//8AAAAAAADABQAA\nKAIAAFQBAACAAAAAbwQAAKkBAAAJAQAAYwAAAAAAAAAAAAAAAwAAAAMAAAADAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkAAAANAAAAG+uB52AABAAJAAkAIAqY\nB2QAZAASABIAEgASABIAEgASABIAEgASABIAEgASABIAEgASABIAEgDu/wAAEgDu/wAAEgDu/wAA\nEgDu/+7/7v8AAAAAAAASABIAEgAIAAAAAAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACAAAQAAAAIAAgACAAIAAAAAAAAAAAAAAAAAAAAAAAAAigABAAAABAAIAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAoAEAAAAAEAAIAAEAAQCAAuABAAAAAAAAAAAAAAgAgAEAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAoAAQAAAAAAAACIXEK3L+FUJVCJsJVgaq7+\nSUkqAN4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAEAAgAEAAAAUjk4\nAAIABwAEAAAAMDEwMAEQAwABAAAAIAoAAAIQAwABAAAAmAcAAAAAAAAAjScAJAEAAMCpHQDbAAAA\nQBEAAEARAAAGAAMBAwABAAAABgAAABoBBQABAAAAPA0AABsBBQABAAAARA0AACgBAwABAAAAAgAA\nAAECBAABAAAA9BMAAAICBAABAAAAEgoAAAAAAAC0AAAAAQAAALQAAAABAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9j/2wCEAAkGBggGBQkIBwgK\nCQkLDRYPDQwMDRwTFRAWIR0jIiEcIB8kKTQsJCcxJx4fLT0tMTY3Ojo6Iio/RD44QjM3OTYBCQkJ\nDAoMFAwMFA8KCgoPGhoKChoaTxoaGhoaT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09P\nT09PT//AABEIAHgAoAMBIQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsB\nAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKCxAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEG\nE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVW\nV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLD\nxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6EQACAQIEBAMEBwUEBAABAncAAQID\nEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RF\nRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqy\ns7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/\nAPFyKYRQAnQ5pMUAJijFABijFABijFABikxQAYoxQAYoxQAYoxQAYoxQBYNMNACEUlABRQAlGKAC\nigApKAFpKACigAooAKKAJ2ppoAbRQAlFABRQAUlABRQAUUAFFABRQAUUATGmmgBKKAExRQAUlABR\nQAUUAGKKAEooAKKACigCYimkUABFJigAxRQAmKMUAFFACUUAFFABRQAUUAFJQBYIpuKADFJigBMU\nYoATFGKAEooAKKACkoAKKACigAoxQB0C+H5JFVlmgwRkZkXnnHHNV5NFmS1a4JAiXqzAjuBx69az\nU7u3UpqxX+xFwTG4k6fd5/lTXs3jzuOCB0wc0+YViP7M5UNxg981I+mXSRGQwsFBwSfWndILEC27\nt0AHGfmYD+dMMZB5x+dO4h0cDy8IAx5OAeeBmmFcdxRcACknGR+dGw4zx+dMBpowaAAj3FFABRtP\npQAEEUYoAv8AnXXIEk+RyQAagd25Bd+eoxSskF7kQypypI9xUjTzugRpZCo6KWJFGgCedLuz5j7v\nXcaBPMowJHA/3jRZANeWSTh3ZuMcmmYpgHNP8ps4yvTP3hQA5LcvGWDLkH7vc/T86e9hcIATGeRk\nAdaVx2IzayhlUxsC3TPenLZTtnETdCeRii6EQlSpwRgjtSmNggcqdpJAPY/5zTAbilGcYzQAuKXa\naANqHXGj3NvO84zjI3AYPJz9fzqF9VkLOZBFuYd4+hz1GOhqLPrrbYrT0vuN/tNk2RqsTLk8MvQ5\nPXP1px1gNL5nlxK6sCrYJJx+PHSjl1v+AX6DDqShy+yHeWJBxyM857+tWBrt1tKokAV23FvIXr9c\nVPJd3dx83QpvcxyyCVo0J5yDjH5VJK0JjUxrFs3DOeDn86dmu9haMrtIjAKyr8ucBdv86tWMEl9K\nsNrA7ORgBAGbOfYe9Nuyu9EgWrsjbgsrawkVrxol8oNutflklPrnjA/E8Y6VR1vXE1TUHuIrWKGI\nEBQIlIVR0HT0rKN5O+0Vt53Ldlp16kFuwvGmmNlH5PzH5Ivun2xj1FJBbyeR9ra0PkhwDthJGOM5\nIPA5/WqV7tJ3a6XF2bViG6aG3faY1bcSVZouQMkeopyXlq9t5C20anduJKlmGeDj5sen+NaJvfR6\nENLbVCSfZJIY1ijQuD8x2sCfrzj8qaktrCVYQglQQRtyD74JNLWw7IvQanp6zZltUkAbeAIkXcOv\nIwePbNag8QaGdOYJpNr9qPCZiyAPX68459KLW1106XC/p62OVN3FvRmXKgAEKoXt+tKTayW5Ik2t\nu4Tbz9c/0ofMttfINCWRLV8CMeU55yzkkfkv+c1Zh0+xdXL3kAcPtCyhkDjn5g2PYdcdaTk0nZNt\nbIEv+HKxk0/y2TLZ+UZXJz156irE+hT2QDTKvzKCvlyq2RxyME55NJOUV73V6A1d6DYbGxVFEtzu\nZuNqhhsb345H0NNGnq9wsKq2X6FiFX/9VNyaElct3ehmwkQSSw3DbQSkTbgPYsOM/QnH4VLLqd5H\nYvaWkawKR8yQKBuHYk9T1Pes3abV+n2TTWK069SidOeOMSXpaCLPK/xt7gf41VlPnR+XCnlW6fMW\nYYLfU9z7e9XGSlqvhT0fclq2j3ZXyZCEGVUHAUmlmdyojQsUHAweo+laEgwleKM7XPGAfTmpLkXQ\nZZZ1kRxgZIwenH6UrxvbS76BqJ5hn3OZisvXH94/4/4VGjuuME+39aACSWSTBkdiQAoLEnjFO3+Y\nTwq/KehAqrCKpoH1oAnRiXDBmaQnqM5H0pZ5JLmUvNI8pHGXYk4pWV79Vsw8vwInMWz5C27PQjtU\n0OoTQRqsDFCpyGHUHOeD2/8ArUNXVmGwxbmRWB8xuDkc96mi1LyxJut4ZC/98H5fpg0WQXEEs08q\nqmBnptHrWlGLvRbYyS2jIzEqplyM8c4Ht/WplDmVldL7TGpqLV938KKNzqdxfXM091JveTrvz/Sk\naS5ktFXOIhl9ojxzxyTjmjljFJbJbId223u3uNFzLbDKOrhlIOQDjPY/5/Wo47uaMymJ9u9cMAMY\n5HT0p2TFccLuRYwC2GXkNk5//X71HLdy3Fw007tI7feJNCit+vcLv/gAZ5U2KHGFGRt6VdbVnaxS\nJshkYbcY2gDJ5GPUmk4318xp2K0t3LKMSuGA4AwOKhL5AUYwPYVSSQm29yI0lMQquyMGUkEdxSEk\nnJOaACjpQAUUAWLK/uNPm822k2P64Bx789/eprjVZ7iXfI5cDJCtjAJABIAAA6UdLdHuLlV79Vsy\nH7URwFGM5wefwp82oSSN8qpEpAG1FAH+eKhwTd3d+XQtSsrfiMluPMUkooZvQdB+dRNIW7AfTvVJ\nWEwYlzk80DGKYi9ZX0NnC4+ywyuw+/KpJQ+3IHPvmq1xcPcTNI2FzxhRgAelIBscTSSBVGSegp00\nEltM0UylHU4ZfQ0XV7dew7aX6EBpKYgooAKKACigAooAKKAFwaOlAChiM4OM1J5JKF15UAZP1pN2\nAaqkgkdB15pUfbzjIpgPa4bzFdcKy45FBkEjbpGLMeppWsBCRTTTAKKACigAooAKKACigApaAEpQ\nSOKAAnnil3ADHWgBCc0oNAAaaTQAUUAFFABRQAUUAFFAB1pxQgZI4oAbRQAUUALRQB//2ch9rbjh\ndvOPXPp7U3zLz8haErpayY8r90xycs5JH5L/AJzVmHTrJ43Zr2AMH2hZQybxz8wbHt3x1pOTS6tr\nZAl93cr+Zp/lMmWz8o+UE59+oqxcaBPZIrSqMuMr5cisCOOQQTnk0ryive6vcHq9BkVlYrGvmXG9\n2HCoGGxv9rjkfQ0xdOElyIUV8yH5SSFX9e1U5NCSuXbrQzYSqJJYbh9u4pESwHcgsOM/QnH4VJLq\nd7HZPZ2kawKc5jt1AyPUnqep71k/eav0+yafCvXqUpNMlgXdqG+2jB+ZCD5jdeg/x9aqykyx+XFH\n5VunzFmGC319T7e/1q1JS1Xwp/eS1bfdlbJlIQZVQcBCcUszuVEaFig4GD1H0/OtCRGErxRna7DG\nAR25p86XUZWSVZEYYGW4PtSur20v2DXz9Rd5nLSGYrL1xj7x/wAf8KjV2GME57f1oBhLJJIVMjsx\nA25Yk4GKXcZCeFX5SeCBTArGgfWmInjJLAgkyZ6gHIx6UTSPPIWlkaTGRljzilZXv1WzC/T8CNzE\nF+Qtuz0I7VNDqE8MarAxQqchh1BBzwe3/wBahq6sw2GLcyIwPmNwcjnvU8WqtFHMvkQOZf4nTJT/\nAHfSiyHcaJp55VVCBk8bRjrWpEbrRrHfJZusjMVVpSRn/9j/2wBDAAMCAgICAgMCAgIDAwMDBAYE\nBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQD\nBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ\nEBD/wAARCAHgAoADASEAAhEBAxEB/8QAHQAAAgIDAQEBAAAAAAAAAAAAAAECBQMEBgcICf/EAEUQ\nAAEDAwMCBQIEBQMCBgAEBwECAxEABCEFEjEGQQcTIlFhcYEIFDKRFSNCobFSwdHh8BYkM2Jy8QkX\nGCVDNEWSorK1/8QAGgEBAQEBAQEBAAAAAAAAAAAAAAEDAgQFBv/EADURAAICAQMCAwcEAgICAwEA\nAAABAhEDBCExEkETUWEFInGBkaHwFLHB0TLhI/EVQgYkUjP/2gAMAwEAAhEDEQA/APzIweJHFRVI\nSOOKAiEiIUI+1Y1JkkgxQEVJGBBIHeoREQnM4oBKGeKjOCOT80AwRGIPv2qEdzxHNANUq9RI+1bu\njWdjqOqW1jqOqs6ZbPLCF3byHFtspPK1BtKlkD4ST8VYpN0yN0rRoqyr4n96FAAQBUKHAkHHGagY\nAx296gHAiSJzwKBHJqgI95oAg/WfmgCIgAH60cqz7c0AoMc/tQYAB70AwPifpRtHbMd+1AChMA8Y\nOKikCP8AFAMgREUYAgJme9AIADmmR9OKAX0oAE0ADmY/apHEYoCJicCKIkwaAAI4oMmZ7d5oBcHH\neaZJJoAJIBImJpwOe9ALntj3oGcfegD680SYzNAKIxBpwZymTQCJIImjIAHINAAExEUEZnvzQDjE\nZ/al7pFAPnHelJ96AZ744pAEdooB98jHcUoMdqAZJBilIHvHvQBiaBEZNAAGO3NEE/4oAjMRQQRz\nQEx5QQoEKKyRt4gJzM/2/vWPJoA5xFBigGQDxSjgf4oBkyIPNA4zmKAWDQO5FAXJyCT2PtUSDiAJ\niqCBSrcIPAqBg8JIPzUAiMYlNRUIIJVzigIqSQCY49hUVYERMnGKAAghMwZ7mKR4McfNAIDHz7Cg\nAkEd470AjI9WPpSJnB5OaAZA7DvSKZPEUAwCZkECogQSVDPxQBtKQaCnuBQCAEd+KBE8UAwIyI96\nUAnHtQDIO2lHp4HvJNABHPsKEhIMyBQAe8E/FEAjHNAAHbj60gBGe3xQARJ+uKcAcY9s0AhIIimQ\nTgD70AEEif2o2kD3NALkZ5+lIAHAyTQEoEccfFI9sk/agCCP6cDvRjv3oBxOKXJjnuKAOOTQJ5oA\nAPJHxSIMjmR2oBjJk5zQRACgYNAASYkAYoKR9T9KAWeSB9TRBEe9AP1JjB+tCQoEEgY+KgFChEd6\nD7TIqgcnEj7UvkDmgA+80yZEyIoCInuMVIgAQO3xQAJyADJpCZgn5oAIIEmf3oBmKAIkyeKUGTia\nAYHtzRwoEe3vQBGCeR7Uu8xigDsSRNPgYkj2oAgTEZ96IJSSSZoC7PBO6P8ASP8AasZAgqjMf9iq\nwQ2wRCj81FW6SRPHFQEVDOKjtkErVEdxQCKTAzxkyagQds8/SgEoARjHNBEI++KAiYgJJnHaiDv9\n8cUAH9YgGPrSIVA7TQAI5xzwaQIJ2kRFAH6ZAH7ikrBAPegCCBgSRmjbngkd4oBpn7DFAEqj4qAC\ngDE4peo4/aqAgzAiKRyQeI96AIxunnt80AAnigAJB9/inB/SB80AhlXGBQBIn2oBbRj57U5GT34o\nBGCYHtQCqRAoBgbvagiJG7PvUAbQB6p/ehQ7bY+ntVAv0/qyCKDJMkYoA5OTQEwSInsaAAJM5Ao2\nyOYoBQAM/WaIJgUBIg7ex/4pKHBMyaANvMx+9BMCPfvQBAOATmlyZ7/NAMj1ff2xRBI+B7UADtBp\nYgkz/wAUADJkn/mngEyZHegDaZMyPvSKR/TzHbNAOADnilAmAaAZ5ImTNIA5EjFAMZACpogAfPxQ\nEc8e1PB/pg0AZByc/FGZg0Atsk9z70AK5PagGQcpAijPB4+tAIjgkdqcSrjmgCTzNIzERQFzykpG\nCB/ekciVKBoCO4lUGD9OKicFWSCaoMcEgGYIqISNoJmZqAJOyQIPBPxUFQoyBzjmgFIIBSIjFL1R\nATjvNAM9pEkUifuPagEE8gRQQqYOY4qAX0kkY4oATwJn3iqBQSYPP1ogg4x3qAQBJkR9zTVhWIPG\nKoDdKQCOaIHE0AiBkgYImmBgHnFALdk+w9qN3/tiB70AwnHpiQaUQMiTP71ABE4UfmjE4P8AeqAJ\nkAmRHzSzHNQCHeZpkd+xqgQEmYxUp2q+SPeoCMfWO9PCucfWgEc5nFHPMVQMZ7T96JITzn60AjzB\n7mjHIHxQB9gaPigGDAkgQPikVD2J+h4oAJMZH96CnEjIFAAk5M4xFChu9gTQAR2FIEEEESf2oAgi\nKZ9pA+aAQEEzwakQO+QKAR4AkZoJk5GRQBt4MCfrT9IkiPpFAI95H2ig5zOY/egAJTyOxonvP2oB\nHHb5oMzjNAERJImKIM5MCgHHY9ucUuJjk0A0yOO/akZBmBx2oB88Yx+9REZMUBJIk/FKCIIwKANu\nASDz3oMHlPNAXChyBmTFBCCBuAJHx3qggfSoCJOeMVBSSFcgSM/FQCICsjg1FQKeeDQEckcf/dQ9\nUA7c/FAG4zOB9aid5GASBmgH3KlD6VCJIIHxQEiCkApgHvSylOf3OJoBEmIiSaQCQN2cYqAABJE9\n6OxP/WaoDP6gMxSiCJH/AFoBpEGCkwMxFLEwMzQBieaCSZHtQCMEzHGKAB8g96gHA/04FG7+qIIz\nzVAHgCKUE4AOO9ABFBjOTMUAoERP2pn/AEjtUAwDEbZzURgxBP1qgIAxAB/xQobRMCTQBk5OTFBJ\nUYgmcZoAUIz7YpAmCoSM/wB6AkIHYzz9aUEgAxnIoAIHuePpQrnakfaKAIMxGPmmAJ/270BHaSI7\n/wB6kQAefpigI/7U5kTMe00AZAmZpqQ4glC0lJHII4oCG0jmcVIgARJoACZExxUSPVx8/egHAJ9J\nHvFKDyPpQEu05M0iAPv7UA0gAnaZHJogK4HGJoBE7TM/SiSUmBk0AkieZM/NMkyEq/4oBGBieTTk\nKGUyR29qAEER3AGMURnJ5/xQCIEY96BIExkjFABEGIg0doIPNACgAqJ7c0DIj5oAPsfbFOZGBECg\nLc8HmJOfmngJgDnAkTVBCEmFHgD2rGpIkgn71AIwBt7JzJFRQNwlWIoBbT7Tg4isZzgdu1ABBEmR\nnEcU4iAeYJzQEVSEiFGZ9qiQCf1ZiTioBpncSoCgiBJwJxVAiAZEGDSERlUUAYk7RQQRkRjPFABy\nCScntQc5OP8AaoBJiaAkhQj/AD2qgCI7c0HCcjt7UAgAOBz3p54JA7UAxPOMfFRHJIPOKAcJPImM\nk0oImARxUABP/t+KZgDdPPsKoADbkfePagpAwcA0BEcx+2KcHngH2oAKSFESJAmkYJMTFAI8CCfk\nU0gTxQBknGaRnPegDng/WpYz7n+1ARMz2xTEck/3oBEGSSTEUQMGDntQC2kmU8zTEiYPagGCIgij\nb9JoBbYPqE01LUrctSiVHJnM0AiO6uO2eamEEtKc3pABA2lWTM5A+3+KAiDHeSaFCYAHP9qAiTBn\n29qe4GQOeaAOwjnuKFTmSZoACRH+RRJAnbH0oB8fHvmojHq70AzBwBx80+RPYUAsHJSSKQGZkYoB\nwIJT/fvS745jmaAMnj/FB9PJ4oAG05Ko7ZoIIJAODQAEmYE++afHEg0BEgiPjvTAkSE8fFAXBBAI\nChmZPtQSqP1DiBVBASlOEg4ioKB95GMTUAoCfSCCZqO8gyJPIMCgEcEZINQXCRMxiPqagECDMYgc\n+9RBMyJH07GgGCrBmTSKSM5TVAEj6/EUZIVKsjgRQCBx8AxxQoczGMUAGMZyB2FIBUyAQCO5oBAb\nh3BHtQASv1KIP0oASJkTSzwRMigGkkCJx7e1A+exxQCSSeAIHuKFerJk/SgBJCRwD7UgEq/4qAcZ\nxweaWczBHYmgGJOI5+KUA95A4oAwmMSP801HcSDJjtyKoIhXZWRPamoEz7HNAI8c4PNMAng0Asxj\nEn2qRChnigAnsftUTJhP70AGOPnEU1cmE0BGZI/UakB7gxQACCMiZxikYk4EUAK+owSKCY5OKACI\n/p+Jokk5wOZoAIBTz9KNxxMRQDSkEgkDIqMnigHERiicYkigG4ouKBITwB6QBSgJiCM4oBDgzxRA\njbJz2oByc84pbiRjg/NAMxO4EntmkAkkRQBhJ94oPFAGQZJ7e9PBxH70Agmc/wD1SGP3oCU8mMe1\nLAEg4OKAWR9KIB5NAPIgA/egY4iPk0AgSTsAig9hNAXEgTCSfc0p7QBPM1QRIxPHesZ2qO4Yn2ow\nCgqACCr49qxkjkK49u1QCICIUoyRkZpA4JIx9KAQJGJzQCDKomgFKTG0n5pRIImPigBIKSJHf3oU\nAMBUjsaAjtgxmO9MqEwFR9BUAuBBA+tGEkRMGqBAkHBxT5zI47VAR5HPIyAKaiTAGKoAZOcSKDEy\nOBiaARJKSRkDmlMfqEiaAkcccHil7EjPegHGNpOT8UoEQY94qAIgTk0Scg/5qgAncBz759qQ7pkT\nUAgVRt7jPEzTMcTz8YqgB2kEihM5nBoAPIGY7UgARkcfvQDIM/HNASFcCaACCBtzP+1MbcJ5+aAi\nUwRifqKYAKSPnNARiR/g+1M7gTAwaAEmVFJH2mjaDmRFAIwD6RyDNODgczQBEiSYj5pcdxQDWCIj\n2ogbQAPk4oBCPemJ4x9DQBlP9IP3pjk4GDEVAIBR4SfpNB9h+9UAAkiJz8VEwMA80BIBKhBB4gUg\nQFYJoAgmVTgfNBGAdtABjiI+lIR780AyCk/2ikROSDE4xQABnjvRxxunjFANIjM8dqMlJUD/AGoB\nSO4iKfEgqkc8UAjjIPbijaZkn9+1AXJHIHcz9KS4VgcD3NVgxk7SNojjg1AfqkkzP2qAe2IPBMmK\nxECZEc5JFABSZV3+AOaXYhIBPsKAUHuM/SgzuExmKgAgkHPxE1HnJiKoEJyQeOIHNIoEAnHxQCUY\nOQQJmhOQf96gGClIyRI+KRBAJJGfYUA4MHagHHFRwFcETzVAzkgACfimUgJk57/SoCI9ozj7UwMZ\nEmqBEZx/mkU5AjP1oCRSCJB+tREn74FAAmOCIxQVGTiJ5EVANQ3AH7UYA9Q+04NUCIAGOT8Usntx\nnmoAIIkbYn4k0x6hMmU/FUCJnjHtTxtlUD4oAMciTNEj9Md5zQClPGftRCpAM5FABA5P2NPgggwR\nQC94UCRQQQMA/wCKAB3nEUH5xQAQmRt7CkcZEH6UADaBJxSyCDPegGcK4570CEkTz2oCW0e0R80l\ndtvagEYAI+9PODwfaoBcGDz9KfCoB7zFUCicxA9qQJPYT9KAZgYV2oSJ+vegERCiScfSnKckfagE\nrIA21IEYxkVEBqyP1CPmoBIJBNUDASZjNBJOQBj3oBbpIIx70CAI4PIoB+k4BMmlI5JGBQDkK9ya\nMwAO+JoAhMc/34qIE5OYNAXSSQcjM8VFRBkqn4ANW9gYlkCR75E9qipJA/T9CKgF3BPHese6RtiZ\nn9qAUgDJgxGO1EgHHbmoByZkZI4qIKhJJgH4oBQSZBIH+aRgATxxVAbhG1IIxmmSQIECT2qAh7A/\nbvTkI7k/bNAMwcgyScg09iwjzChQQDtJ7AmYE/Y/tVBEwJKeZpSMKIEe1AMj0gjt/aoGdvpP96Ae\n4EkAY7UKEYIJ+lQDCSk7QQDUVLUqSU96Ae48D/FAIJ9WfpQCAiTER3oGTgSYzRAaVAEmKWCDPPMV\nQBzgCZoEkH6RzUAJMyVD6D3pHk4NUDGTgxS5UZMfWoAlPMf3on3BkVQBEjPagY7j/mgDODGKCrkc\nExQAYgCOPagAEkAd8UAA5JIEHFEAKMiaAUqGR+9GIPaKAE+8AfemBGT/AIoBGQQZ+aCRiQM0AyPg\nR3oSJwBj5oBQDEcUQcGDj3oAJnMyDxTkiVEf3oBAmMH70CTnmgAmSIBzTgEwAcZkdqAjKlEmPrTC\nQYBERjFAEwQIBpEmAI+aAYAHajbOYigEcGYNBJ2iIAoBe0CAKkNqjO4xQC9MjAJ+vzTI5BBBPuKA\nWZmDj5pjiOM0AyBtx9qjHcHmgLgzBCcfFRkn9QyDFXcGNZhJlM5ieaj+qDjPeagF+gxEzniokhKi\nQr/pQBgZBBNRnsE8cCKARMQP+zQogCec8GgFmIT9jFIEknGYzQCgmVD2HNAAIJHbEzmoBkiSRzzU\nYODOe4qgZKc7sfSg5GcUAEEAhKQaW7ICQMRM1AIkbs0YiBOf2oB9hvMkcUAnM8TQCO4Az9aO5iRP\nzVA/TBkcfFIqAjgn39qgIkBMpUJPajHPf96oHCUgAk4NA9wKAQgiRM8E0ZwmagGqYyIjHNJPqx3j\nkcUA4zCz9qjETKs0A9wAiAZwaAYyT3mKoCYM/bFIR/Uo/eoA9Qiexj60QRMAVQLvBEFVSCZyKAWJ\nknnipYVgEH75oBE7Qecd6ScJAEYM0AHaTI+9GVcnigDmJGKRA5/YUAxMke4zQkEiKADCYJGKN39M\nEigCROUwY70biRGCfeKAckfpERzUf1GTOagGByYxQPUPjjiqBwCTBEVD524oBxgHNBIHBHvQDBI4\n5+aR5kj9qAJzkj29oojjMUAZGDjNG0QZoBcDgmeKcGIUR+9ABiMzjv8AFR3EHIxQEiAoyTA70EQY\nAmgLiSUkA9+/aomUzwZ7VQY9smdpAPzxUBtOSMewqAiUpMAAwRSKABBkkdqAQ9IJTnAme1KVdjio\nCMyDAI70wPSQo8f3qgaSMGBPEc1HbKoAx71AG0JSraSe4xUdpVyaoBXAkwB8c0CRERNQDKSE+nvx\nSkCAMfIqgIAMGD7mkBC5zHE1AELBEg/akDJwOaAAFSZMz80ZxETQD27VSMxyKM8kwfY1QAMTJH+1\nKcAASfYUASSmCnPNEDmMfFQBE5ImO4okp7Ae+aoFG4Ax/amfgEj3qARjdjI5pggGIwIkUApxJPOZ\nownKh/eqCJ7QkEEySKkhG8kSkGCeYqAW0iQKAkj/AGg1QM8hJNIk/BqAWCMiTTAyCCZFUBicKHq7\nRQPUT/sKAIlYSSB3k0/UEkAYNQESok+xoTEz7e1UBtkEyAT2FCU5yY+poBHJJI+Jpng/vQApJMd/\nieKkSDj6UBGQsk8UCCOTzNACp3QB9BT243QYoBGOAfrmjgbSYigDmDIj5pCBByKAIJ7RQBj5oAxt\nBgmKIxPtmKAUSZMfOKcAmRH3oBpIJ+KjIM/I70A5MxIikBtOQcd4oB++foKAk54oBYH6Z+9SIgTk\nn4oC2MKBE4+e9QXERJHb61WCKjIwJge/eowRJAPHHsagFIxMcQKgskjdH/WgDAB3SSRUTCvkGoCP\nCSB7YNSEgGTxHFUCgkdiJinhXb5oCJUZAHv2zSJzIE0AyT2n6UgmMlQ9/eoAJkAEZHvSIiSOO/xQ\nAIIjjkR2oGFAn+/FUAoxwokfFIhMQJEDioATBUJwfipJHoJmCO9ARTkyoz25pmT6VAYqgCeEpEFN\nL0hRMZJqAiSZxNP0jttwRVBL3zHxFRgAAHmZ4oABEkqIA4gZpmACoSVexNQEYMkxkf8ANMCARAk8\nE0ASIEwPpQRiSR9IoBY4Vx2E01AckYj2qgQUACkJJJ7k8UpH6VYPNAB5jsMcU4CYkcZFQCJ7BPxT\nMggifqO1UCJGIFAISqORQAeAQYzQNpyo8/2oAJEnGDSPvHNASIP9I7TUTJJnmgH6SIxPPNL0HgTF\nAAPpApgZiQfaTUARGeZoG5R5iDzVAgYOeRwKcA54BE0AbSSY/cDvQpXOOcUAsTiR7UKG4xmTHzQC\n2wMgUAED2FAPckSDPxmmZgxH2oBKiBtBml7YFAOTHImKNoSII/tQC9IwInuSaCSDJ9sfFAEE5/vR\nB9wZoBmDgilyYmIoC2Ue/Gf3pEQmduI7mgMYJKCkyJ/eoqKP9J+KAiuUwCPUfbGKSdxE8J5J96AQ\nKiY5B5peYOBH19qAYMxKcATio9yP0wOxmaAJURIIxg4pSZPz71ANSYGZBNRVg8gmKoGr0jKpxFEQ\nZBCTPPagIhWCdxj3+aYlJA7dqiAE4B4I+KACM7iD80AQMTEfNBAjAIx2oBQVCQc80uORMftQDCUn\nChSJ3EJgj4mqAIyUiTifilMHkQc/SoB4Bg+3FEQACMT2FABI9+KYV2yfpQCOBu4z7VGE5g/370BJ\nQmIUZFNJV3OaoIpSkkTge1BHKjiePmgACIkikQJxz71KAT3MD3o2gQR/agEYGAMe9A+J+s1QPIMz\nM4MGlBA25igAlIEj9qDyBiDzUAEiB7RmjakcGfqaoHu9XYmIpSIAMD5qANp2zz3pCM+/tVAwQCIE\n0omI+mKgApg4P/SmU7v6jiqBAwZIkTipYEkd6AiJHYH5qXwRHzUAiVYSDS2kDckZJxVA5JIUcT7C\npCD+n7mgIp9SxlMnGaRJJMH4NAIATkmmNycUApzHvx8UzyCD+woBHAH0zROQZkmgAyDBAFA4GMUA\nDOSftRIAzP0oBjcIHbkiggZTt9ooC1SUmZnHEUl7eeMGl7AxmBxkR2NKUqkAAY5oBEEEZEjmonaB\nEgjk4qAW0bY7HnNI8FIkn4OaAEkklSuR2pEkKgEiRxQARkgDcD7U8AYgyIIoCBCSYnj71IJAIBMk\n5gGgI4JKo+KIG6SRE0AADPaeI70ts55PINAHJMn/AK0ZOAP2qgUDBIH/ABT2z6gZqAUQYP0qRkD2\nJ70ApAB/wKiAcKJ/vFAMqSBxwf70EZ54ExQAUAepIJn5oKsbT3oBSoAEiaP1GM4oAg7YBz9OaDgY\nAz70AjBIV7dqZ9OQcHIoBQlOTEgU9uD7D2HFUBiJVwKRjaQO/wDaoBAEjkED4mjsAYoBiADB+aWA\ncGaABkSQSfiiNwOKoFAUCDyBFOAP1nHfE1ACk4HHOaICpEx3zQC7HnNMImYH/SqBEHBM5qZ2jIjN\nQEVRxEUAEfAAwKADM7sTSCZVAB+TVAY78CiCSNuZ+aAcH6CiQTk4NAMAEHjHGaRSSOSe9AIc5yAc\niaR90mfpxQAER7THNPnPE+1AA28ASe5oj5wMUAhHvNKO4OY9qAkTIgT/AM0injGKABzM/FGUiAff\ntQAnBB2/XFHHPegEruQfrUogyczwc1AWcH3/AE/tSJJTuiUgRHxQESBtA4nE/FQVtJkYkftQASog\nKjJ7+1R2kTJBnEntQCISMAAFXzQBwpJwPtQBAGT80jA2yQo+0UAQU+kEEe3tSgAkJScUAidwkDH1\no2gAlUEjigDG4EiRxT9x78GgFv8AiYxSx3TiYyaADCsA8YoSIgETQDiAATioFRPbH+1AMjhEyKCR\nBwSDQATwT+88UQJMzI96AUmRtEmKkRBlSo96oIzEqSJT2nFBhQzj5qAAQcA4FBKTnkgUASSNoUB/\nvSVIOAZI+lANISADPPNRwSQmc+/egGDsGUif8UoyZBIJ4oAA3eozialgYwJPaqCIxk9570EYPzUA\nJSdxwY5mgR/SfVVAAoBG7EUEYEzUApAMic0JMjbxVAz8kRRjCpJ+JoAESJUO1ECSAMxk81AISTM/\ntTnP6SJ5oBKCYJnjH/WgE7hmfiKAkkZAkZMRUQDJG0xVAAzk4PeaBtM4Ajg1AAmM8H3o4OINAEDs\nftSIBIAOKAP0wfsKDt/1R9qoCIwkT/tTyfVJJ4oA/TJ4/vRIBOT8moBJiZgDGZoiQSPTVAAExBkj\nmM0YIkgxQCJyeJpjI45yTQCiQSOKOePjNAP425oAGCOxoC0BG2eB796ir18ce/tQEFKEjECf3qOS\nAR2NQAIgREnMVFRxJ4J4A4oAJST8x37UEwnufvzQBCSZJ+1JRVuAgj2M4oBFXYnnk0u5HAPc8mgA\nhOO88RQUk/8AfagCQDxR/UYBkUAt0TAwr3FCQQc7iI96ADEQQc96WIEZ/wAUAyRkHj68Up3ek5x2\noBz6cE/X2pZBiTPeKAUg4B+xoyCZEJ7UACDERGORSUORk96AUY9Mx9eaCCRIyOMdqAACkwnuIoPx\nmOKABhQ9PHFSjck5OKAXsOPrQoGZHJFAR2mSDye0U07pAiftQAEmIB/akDBmTgRQBlI2n6igTMzQ\nBmZPahSiIkYPeKAEyTtkRQQSRnPAmlgNoyN2ffiKJT7k/NUBKZjbM0gTIAj5EUAT8Gkcdvg0BIkA\nSkx8UDOIyfagEIySO2KYSoeoqAniaADESAZpeqYj6iOagAyTER9aBBPBE4PegACYO6BM8UDABJie\n9UCIIEzPc09gHftjNQAQn0kTA5pFJ9qACFGMfSmmTgdjP3qgUZgEmaB29M1ABTP9M++aFKPIGPkU\nAAbZJE/akcjcAR71QMAFQO3gf3oVCTEZ/wAUAZgiT+1IEJnaJFQDxBgT2oJ3RtMVQWpgCJz7RzSE\nbSr34ipYMalBXJPxUQNw2kHMmJoBKAByrj4pEjIIn4/6UsCM7fSIA+KUKJAj2oAk+4Ex96e0YMGg\nIkRyDIpBRBMcc84oCUQDNREcD6g0A/TyTBzmgQBBFAInsB25oE7hIwTQDicwIjilA3ScjtmgAEhM\ngd84xUUqCjkQfrSwBITgH6mKNyTPBj2FAAiYGO80ogbwc1QCZ3wr2xTOeADFQCASMkgHGJoIjCf7\nUAp2ZiMd6JkgYzmgATG0q78HvRG2IUc4xQDO7gwO00ioTPP1qgDBPpzjM0vkCCagD7nPP/SjaBmZ\nJNABIA2kQSOaSTIgc9/mgHkjPOO/ekR/VznmgHIjGaUiPSmM0sEQYEgmTnFS2A5FAMzwT2xA5oSC\nZhPHvVAjhRxSAgnsKADgzE00wiZjPc0AEyfb70QCMj+9QC2mTIEdqP0K5nPtxQDgf3+9EpA5+1AR\nxxnjHxUlAAAiYH96AiU855pkgT6Zx7UATInv7zRIVGPtRAJ2mYJpGCsDI+1UAT2TMnmntIzI+lQA\nAAmFH6UCMAjB5qgIIxEjnilIIndxH2oBlO4DjiaU7vTgZ7UABJPJJApA5wkEUAzG4GT8UEQZBNQF\nqImZ4/4pAwQkfcVQRI4BJJmahuIPOBnioBLgztAjtNIpJIjNUCgn6dzQqCAAcEZkZmoAAjJ4oA3G\nck/WgGfSTAk/7VH3Mc/GKARG0SpIA7UgCBIj3moA27vamCkGFQI9s1ewADlROOADUYmMRQDlIByZ\n+KjC1KJxEcUA9hkTOaDAGM9jNOAIjtHOeYokyEgdu1AOdyZ7xBg1FPJ3AwMGgGE7pPtQSUgJnnig\nEpBjBxNE54AJ4HzQBO1XqieOKiYInbQDg5iMyRQEKOSZMYigCUycYPFLAlMme00AzAAk/aaJkEyK\nAiEyTHb96BuBExGe9UDMzJmPg0oE+rHagEcEAiB2zUoTux24qARgnHBpARM4AqgUCJE0yFGMCPmo\nAjaJ7cUyDHxzQBABG76/NBUMgJoBciAnE8xQATHvPNUBEkqHIHFGQn5oAExj70ogwe3vUAQcxIEc\nU8p5wKAQgiBEHk0FJABjn4qgAMcZ/ekJnI96gH6SIMn27UyIMj5oCIBAgnEYmnEYiT2oBfpn3+Ke\nFjGPfNAM4zzUPT2EigJACJJ5xzSImRt+4oA9ORAB7GgDO0/9mqBwqCCCYpRA3KBEUABJOQM0AnKe\nDQFspMzHPbvUYJ9Qk98ioCOSqeO5pJEmUAR3oCKgpKgf7e1RG4kwIJMmKlgRnb9MfWnwP0kSZmqg\nHcLAED4qMiZHbvSwODMSDI5PNLKQATmoAMATJI+lKFAZSZ947VQOBAEmR/ekEnaQRxUAA4zmRNEA\nYAGcmqBRB5mMRQoDd6YOKAYJiTPeolMplWJpyBFMdz6RRBjHMR80AFMCIGTQBwB98UAEyANs/M0i\nCRn3oBlOMTH9qiIOQc+0U4Ayr0hGJPf2oBHJH3oCMqJI4+lAG6ACZNAPaTAwORQMCVD/AO6AR9Rm\nfnNBBEEjt/agECriOBOe9MqkCIJniqAghJKe1IEcBUjuaAJCTAAnmaZJVxB71ALjMcU1JUQDIPvN\nARkgGfoABTBAG2BnIFABjcR8TxRwSSCAf++KoCCcg/GaRzzzQDSSRB7jOaNuNu75FAKY5I570DEj\nAx71APMEEc+x4pf+3d+/agApAEEj5FACknAIzn4oAkAyQDQTMwZntQCEpPNSIE+0ZBmgEQo8xn+1\nPuPUeMjtVBFRySScHHfFOZ4P1xQCGSCKAQFcYJ71AClCRAFEDkfvVBIGJkTPNRJMgjMYgZoAVJj2\npEDmT9qAaSSmCckTTHwJA96gA+nAEYpYAIk++BVBbgAGYOO4PNRVATjmOalgx7RtkkTxSCUgCD+3\n17VAIklQORPf3qIEnINANIHZP70hAIJMj2pYACeOf2oMScCD2BoAUDGFYAzNJQIg4PPFUCiRA5FB\nCYxknv7VAIiZBA9PtimoZkREUBHnIEfepAgyTGMAkUBFQEzG6KQVKiQY+lVsACB+kzHf/mpYKYMD\n2FECEQf0n4il3iM0AQMkYM4mn8GOP3qICwTMGf7UBUmJHOKoCCD+oGDSMZJH1zQCkCTA+JpgJ3Sr\nioCIGePoae3PMHgVQBkEbVT7AUREFUiacgAInilJg5JoBQc96ZhXwPYUAwQMBUe0UlHBmAR7UAGC\nckewxSiBOIAxmgGD84FLcFJjBIOaIDJJJxJFGSQBH3FAEcgk5HagpgTxOM0AtuIgR80DGQmZHvQC\niM4wKIEgEgH94ogSIT3IPFRAhRxE4FAPmAT96BtAhQzQAkCcnHekDHJ/+qAAkdqPTt55oAUP9PM0\nkqIBx9aAYEjcM570wEqBOOaoFJ2kkTHFMHIkYHeoBKVIJFG0cTjiqBAbjHIE/SgxnI+agGAORJHe\niUwZkEnFUCJJgnOOBTkgBOeD9qgIlJSZnmgSBPfv/wA0A1GYkSPkVIgKA4wOaAtcq4zHxijACvY8\nioCJAGAJn+9Y0IEz/wDVABBKt0c0gkg9z2NANKQmRA+KiltJ/URHJjtRgW3BgSmPemoRI3cUoAkT\nBBweaWQYiQJgGqCORGMUECDx8CoBEQf0wBiZp7ZV3BTg4pyBSTxjPFRCQOVGSKUB44KojmklsFWc\nweKAlEDakCkEn+k5jJntQEVCRBPzJFMwZI4jNARMR6uRx3qRTtAx9qIACoxI55ioq/UTGMniqCJI\niYODmKckxj6CgDaMgZj3qKkkc0BJIBExwKRSUgknJ4ogIxMgCn+qSYgVACkkmTBg4iiAVZODniqA\nxzP1FJQ3xBxQAEjsf70KHdYAn3HNAAAAjb9qZBUJwM0SBFIOQRiohRHGQe1KBICfifikd3scUA4g\n8wfihKd0EESOJFUCIVtgAe4ppKfK4JVmR2+tQCgkQBHvNOArkgwe9ARiSRAEd6eDkE44oAEHmPrR\ngq25/wCaoHnkxmo5Menvj3oBj33RiRSBIB9XInNQABGAZo2/c55oBDiOP96kESJ3fSgInBKTHv8A\nWiMZ4+aAl6sgH25FCSCNsgGeTQCCBuwAAPepEiY5x78UBApEgn/FMJifvFUAFZ2EZmRTMQOR7/NA\nNIB7ftS/p9WO1AIAnA+1G2ARg/WoC5KVbhgj55pQUiFeqPcVAQUBwDgewpK9IwRB4x/vQETtJBMf\nU+9BTz6gP+KAPVA25+aUHcM8ZgZqARGYVMdqFlM+kEk+3aqCHqAHqJSDkfNPaJJHA4xUsB6QMT70\nLABkdsmqBKBAI4mIIFIn24+s0AAAAbTnk0QoHgSMfagFtTn0kg5j4ojulIHfvNAKN2CPsOaRSUqw\niRzRgfAmTiKWCJMfaqgE7TKoOeagIPfIM5qWCXcyr6ClBUmBn3oAAyeCAajJkRA7VQMkD09hmBQp\nOODI5NAIiTAIM8CgJxHBHagAyCSJP3pJEjEAice9ABBAkzg+1IQPf70Ax8j98UhznHxQDCIJClZ+\naWRB5+tAIkzP7xUhke0f3oBkwqO5qIEk9h7RQCiU4gwcYoBElJOSPagHABwSZoMQEjvk0BEEgSBA\nIwRUsJHtPB9qAQlWEkimlKSOADPNEA2omQD+1QzNAMmRGwD6CmQFD9PHeqCISRndFOYBPJHvUAJC\nlAiP3pg4KoE0AgQRng0JiSJzQCVBPODmTigAJEAiRgGgHHyDFISMnk1QACgQqg7gcnPtUAQYEgYF\nGMd8R81QBGMGfpTgGABUARCu3Pc0EZmP27UAAkElFAz2Of2BoAk7pHzk9qIPGB96AvFJgbVA57xW\nJTeCYBBqMCLeciT3kVEk7gmJA4zUAwnBHBjE5qCvQDu5GI5o0BgHgHIz70jO4lKTP7RV7AgQkjMF\nXY5ppABkIPAyKgF/Udw+BigAxE1UAUDIxPHaowAiJE8GgApBJicDM0ifjioAAH37z7UJTGZxVAoB\nkHH/ABQJ9xJ+M0BESMkmJo+SSP8AeiAFI7GO80BPowJng0oEfYpzQBKcn7RQCn34FBIBkjAxFABM\nj0Y/tUcA8iZqgCDODMczT/8AiQfrzRAjBmRAPOaalEgIBzzjigEJnmZ4ppnJMj4qAW4ZViaRJOFA\ngjiqB5gmZ9jUgBEhUke9ARSBuAg/NChJPBigDZIBnGBFOAnAHFEBLwYUDn/NRI3wSeMxQDV25A5m\noye2aoGCAqVA880EkjBigATxH+1KDJOB7CoAOUhRERiaMZEfQigGTtMEziKSioqzED/FAAIkpCSZ\n7UyFSMkZ7UAJSDgwB2mkIBJ5oCQKoAUeO3zUCeSYI+KAcg/PaiNonmgAEk5GO/tQUwYPM4zQDAkS\nOPmolYAiMjNUAMGZP7UziMznNQAfj96JxHM0AEpInIPPxQQmOfVVBEA8dge9SkySRx/aoBxtzuAn\nigAZhOKAAruJEmlBJ54+aA6A5yUwaxlMSdpmIgVGCBRMSYVxnimgQtPp35GAP1fHvUsq5G+3Dykh\nrywFfozj4zWIoIMmAeZPJoHyLaYkGZ9hxUQkzIn96EGsHBIgd8VEAGCkRHelgDBGMScz3qJQg5AO\nPmgGJTJxE8TQY/TIg9xVAkpk880lbgZUD8UABO7tk8z2qKtvsTJ5oAKJE547U9pknHtPMRRAiUhI\ngj9qCITgx25oCEH2Hem3tE8gUAAA+kZ9jUf6QeAeaAWySTzTCTykAAHk0oGMgAFO6MA/enhQBI9+\nOaAiASkwYPcTTkHOI4zVAyVkYTTwJkfv2ogRUAM8kHigQqcZPvQCAIBBBBNS2zt3EY9zQAIn0f5x\nRkHIxGJoCImcH9WeJzQduZORRAP1gmD96AAYE57mgFA4AE/PvTAmQDx2ijBEE4AUR2M0ygk8x7/N\nAM5xu+ue1BQVDBwPc1QRKScJA2jgUx+nJ2Y/tUAjH6dpH0+tLG4A+80AzkzPeTFA9M7efkZoBSYE\nrx8UwRg8zxQBt/pnHc+1InI7D396oDGZzGJmgfsPigCSZxMH3qQIORmgEfY/5pqUSQAOMiagIg+k\n4xQY7cKH7UAxHJOT96NoAxmeM1QI5OOfagQTxPvAzUAwFzPsOJpCMyPrVAJBmQZj5pgndJPPPx96\nAOOFTA7Ux/q2zjNARCQJgEe80yIOIyIqA6i3srq7dLDNu4tZIgBOeRWN21dZcKFsrQoQYV2BHP0z\nXHUrq9zpxdWY1thK9oUFkgH0yeRMfbimi3cSUrxEiYIn9j9KWEiDm3cqEwSZ9zWNSSSlOzngj2o2\nRidQULLZ2mP9KgR+4qChuJUIIoiDLSm20rKVBKsgkc/SgNFRCQlSt2Oai3K01yY1NyQQJ780bYEd\nzzFVEEG1SNxM01JkbgcfXtVBEJxITPzQoGNwkD596AikE8H6VHbMSQVcxNAPYeQgKnJ+KFbQMR7i\ngDZjKTt9hUdpWAJkAxMUAhA/qie9Hzn7CqBBQKM45iltJA3AwMGfegIqChPGc0D3Jk9vmgIFRJk+\n37UQZOcD/NOQIQCc9sGgyACSB8zQASdp9+SRQFZPMR3qgZTAAOJGMUgqVcARgUAzII9UR2qKsiYn\nOPmgHumODAj2mkYmQMHtQDE7SahESqKAnkqBKufmiMCPt80AipKjMxH9qRGJjn+9EBkkDgyO9A57\nn6GgAiRPf6UAqJBg+n2oCJVAgTPuRQZ5jtigAiE4UI/vQCRBjkcHvQBuBPASfigxzE/XNABUJB2g\ngCkTujvHFUDIPBnjil/VKif2qAJKyDEZHNBMn7e9AA24ncD/AIoggQJ47CqAIVuAKY96YKp4nHvQ\nEQYBB5mpAbZG0GPaoBEKURiB8UyexJB+lABgmAM9z7UyBGNpn5zNALIOZ+tBIOPY+1UDyB/ekSkK\n94oAAONszRuIOMg1AAxgwPmmQCRIkwDxVB7PoNjcas5c21tp1ou6cStS3VOKZbKPSUoAEEKJBAJM\nEn4mrFHSDlw+20nQjpziw642m5cVtW2FBO2N5KiXErSExkk5MY+VPJKEnFN/Q9keh05dyPSvhprv\nU94xpXTnTz9w+7dLsVWiLpr8wpWwYLZ9QH6lb/0xifSZxq6N0rTXr9F+3c26rNpxflrcbV5u0xBy\nkgEqCScESSAVDYeZZskpeHj577NfRhRxpdUirt9N1FLLRVoNrdIuwssOqYcS6hJAbBSElPbaUjMk\njGYNx014baX1J1BZtapqz9zo4QhVzcKT5DzTQgKHqCgmFApTkgxwJitXkhhud2cuXWkunjy7lBpv\nhe9qTuruNuFFnoySu5ug24pCUFwIbJKEqCdylJAmBnmeahOgv2ukFFxbsrfeVuSp0EFKEjaAkz7q\nJOI9KYJyK9EpSSTfcwVPY27i/Zb063YGg2TzjHdtP6gBkH/Ukkg4zg8ZrDdaPZnTra8Zs20u3kNr\nPnIhCxyQmJ7dpAgisoLwuZcs6dPejZsui27i8e065tFfmhZrdt21PIaV5qGw6S4HFp2o2BR3YmRE\n4FcoNPCnww4tTQJhaynclAmO3NaQyuW5XFIyrtLNxxthxZbLILSVNoSd5lR3LIV7mAc+kD6VZ6h0\n1olvpf5pjXlG5TcONONLt4SG0oTCwokSSokbQJAEzzF6pJ1QajJ+Q9P6Y0UJW9revOItlsOeSuyt\nw6S+lEhKwtSChElMrg8naFRVBdWK7d9bRQ4jbulDghaSCRCh7iM0hklJ01Rw4pcGNmxdcTIWieIJ\niZ7Acmtx7QXyyl63umLhSlrT5TQWV7UpSd2UgEHcQACTKTIAgnVyS5IominT7vyg75C/LJCd0enc\nRIE/SsqdKvACpTUtgEhcjbIEkAnBPwM1OpEUWzG7ZXCCgFtSyUlQ2HdCZI7fQ1BLW1BClFJSraUg\nequkxQxZNuoStN02VkrltRKVJgAySfTnMQZkHHE6pCkJSOJEiDJ5/wClEQCFlRJHGZmokbNpUFAK\nG4E5ntiqwR25ION3f3FSuA02vaw4paOylJ2k/aT/AJoCCGlPLLbKVLwTtAzHcx9M1DaozAmO1dAm\nu3faShbjZCXU7kmOQTWQ2N22wX12i0tSE7ygwCeBPvg/tUtFowZOO/05qSWXMqQ0ZjmDS6ICW1mA\nEmTkk0Lt3EqlSCD7xQAm2dUyXtsJSoJIPMmf+Kyu2zibNpw22zctXrgyr9OPaBn9zUtcHSRg2LwA\nlUxOAcUFhwKyFAgTkVbRKYilSU/pgzQEqkAAgfShBBAEifmsmwlsq28EQZ45xFUGNQEEwJ4GaexR\nAgd6gIzKgYI7U9pSeeOYoCMEHiYOKAmSVRE1QC4GTEe3agCRg0BFQJMEEECRNBG5Mq/xQAZAAiCK\nz/lnfy/5r0BtShELTu7/ANMz2OY/yKlgFWjoQp3a2AkifWmfsJz9qgpstOqQUoXBIMKBTPEgg5oA\nLDiWkvyjapRQBuEyPjmmlh0gGEAKBUJUAcCT9MfvSwTsLdi4vbe2u71Fow64lty4WlSkspJAKyEg\nqIAJMAE4wKxONoQtYS5uCTAPEiuqVAhCpCjP+cU1GYgRH+agD9SvY/WjPA/xFAAkcnnP1o3QqTEz\nNAHBgJMURBCT70AbdqiTg/tQRuIhQyJMUAwCfTM+4igYTMT2wKAABknHH2FExkZ780QCCO5g9hTE\ndgCY9qoIwAScEH2qQ5M57UB9HNfiDvry8ShvRukdLYD7VykWvTNg2UKSqY3KZWYCSrbJPzMmfSOp\nvHO71S5srHpvrux6jWy1as2we6Ms1LUUfoZiCHF7lrgbexyeT8DJ7PVKMk5bq7b/AH/PPseyLi6p\n8Gjb/iOYR1Dq9vqnSXTmqNJsAyLlroxizunlhG1bai2kls4jd7yJAisumdbr6x1O00q8/C9a2xbC\nzY34u7yz2252kbw4sIeSAUH+n9ZI2zXnyaaOCSnky9Fce9fbjc6T8VdMY2/meYW/S3jT1La39+9+\nVt9Ks7hbb7yX7dDTTm1xwMhwkgeltZSJiECP0prrelfCPWNOtTb3njH0ho98Hm0rsL55TVwgqQl1\nKlr2lCYEfpUT6u4Jr3Ty4+noxY3JP0/lmUdPLGuptJ+rO+0bp9vw86T6i8IOotVtdX1TxEtVajom\ntaYy3dNKdQv/AMkBcSkoQ46l0LTtKso3JSZA+PHNf1c/mnXNUbQpXqLamxKyTkJhMAZ+McV9jJjg\n1HanSTXkzwYW3lnvt2f2/gvOmvFrU9C1NGpP6dbXSg0WoV/LIBAiFASkggEKGcZJk1qXnWdtqT+4\nW6m1qO/eQJSSIMkc9zMSZM189aJY59cX2PX4l7M6nUunulNO1dVnpXiZpGoshsi51HTbXUPJabU3\nClLC7dC9p3JbMA/q7g0kaZ0Iq/u48RNL2MFHkC6027bauAoJJICG1KQAMZzMQIMjOMs0n/8Az+6/\nPU1Ucdf5G5d6b0aHmdRset+nXQVspfbWLrDqkhQWpPkypCCVBW2SSg59SRXLaxb6Zot262z1rp+q\nNBa4csbNwocIlJjzEtrDahEAjg8AiK1g5t7xfzr/AGZyUVumRZudLvG7S6u+p9Pt3C6GylVtcTbA\nlW53alJT/pV6T3gDAisuG9OebfY/8U6eAClRcLT5LygFCQfLknP9X+r9tPeUv8H9v7OXTXJit9VZ\nsLa40+3vUqCl7g822ApRAIBkp3BJByARzkGAK6zR09E6nplnaOeIytEuEtqTci7tHXWgpO9Q2ONI\nK9p/lgJ2/qU5O0AFWvQ57s4c3BbKzntWf0bzlptdeTcpQ4RvbYWlCkAjaUIUBEjsrMjMd841rQH1\noYeU4gHc48/6tzqlHdCvTO4EASmEnaMZJrjw3WxopRO5v9N8IdGYQnT/ABSt9UZWkANp0l9hY/mq\n3eYFNq3DasEHeSNqwAfTNnonTHgV/DWLzW/HCxXdoX/Osf8Aw/dqQncqP5RKAIhKSVHaYMAGM+aP\n6hreNP4mrljbSstPEzSPwsNum98OPFC8YQu1DDlqjR7lwG4b2gup80ghLgBwVGCVYAICfJfJ6M/K\nXS3eprX82lklparB9SluJUCNpBAkj0ypIEAyATuq4JahK8kd9u6M59HCZz9laaFcOpRd65+X8x1K\nFKVaqUlCFGCs7TPpGYAPxmp6ojp6zvru2sLhN2xbwLe58paQ/tIG7aogpCh6sz9BOPZ77ddjPajo\nnOvehb+xtbHUfDe3tixtLjunXRaW9G4QVOpcMEK7HsPYVLWusvCu+aTbaV4f6tatKuvNeW5q7S3V\ntwQG0lNshKYJmdpPI9o8sNPng6WS1be/Pp5bL4G0ssJJVHfYodX17pjWNUedsek7PSbVxJS0hLzr\nnlHaoBRIMnKkk4/pGIkGsDVmx5xGp2T5ZIU3/LdPmwf0iUjn/wB0cdq9cYyS952YNq9kYbrVU3H6\nLFi3EJlLRWASkn1QVGDn/iM1iTeI2K3NesD0kLWZM8H1Yxj7D610kOTH+YeW8p8EJWoqMgADPOBj\nvV3p3XfWui2Lml6X1bq9paPILbluzeLQ2pJ/p2gxFcZMUMq6ZpNep1DJPG7g6GrqHXNdVY2F1qK1\nhnc2lTriUghSiTuUYnmPUTjHGK9E8WuktS07UANd1bpmyudi20jStQt30r8tLbexabZ1aUEwTuKQ\nVkrUoq5rDLlWKcYqNt+SLGDyXNy4PKrm4vdPvH7YXvnBsuMqUlze2rsVD3GAQfhJ7CncdRaxc2LO\nnv6vqDlvbkltty5WpCef0pJgfqP7n3r0dEZ02jhNx4NQ3d0ZJunjIhX8wzER/jFJd1cLCkquXlSO\nCsnvJ/vn6110pbBtvkyHVNRUhKHL65KELLiAXDCVEAEjPJAA+grEbp8hIFy5CRgbuBgwP2H7UpBt\nvkPzFySALhz0ggSo95x//kf3Nb7HUOrNae9p/wCfdDLh3bClKgTIPfIyBx7VJQUuQpNcGqu+UtwL\ncbaUQkIjykgGBHbvHfmc81uW2rNK2299bteS0HVpDVsjeXFIgEqOSncEmCYEmB2o42thF09yL19p\n6rb+QwUXCVpISphsoUNvqJVyMgQmCMkz74ndZvHrUWamrINhfmBSbNpK5j/WE7o+JipGD/8AYrdm\nn5i1KCoSCAAISBUVOLKCkrO3B/b4+9aKjkgCdp9IGOaaFFOcyBzPFABUkkKc3D3UM/2x/mtoq0zE\npuIJMw4MDcMfpzAn6kjiIqbg1yLeRt3qAEqmP1e1SQ3bltW55CSUyJB59hHvTdgG3kJQW3E8iZCA\nok9hJOOTxUfMSEKba3lO7cmQKoMUlRkqn2pqKiolazuJmTxQCTO4g5FHuPeqAlWSQM8TxSgCQcH3\nNQDkgyCPmg4IBORkUA0ZJ3SPaBxTSlJP64BnJxQEyypJJKk7JiZBFZmrJb6lNsOJWpICgBPqMgQJ\nHOe9ARetyNoeWUqXJJMQPUR2n2psstKQkquWAVGNqkmRzk4/39qj4BnCNORbrRLi3iUgEEBJ5kyR\njtj+9aa/JIHloWD8r/2iisAWv5ZJMKEekiJB4ioETkkmKoHPBjkc/FEJ3T7e9UC5j1cfFNfIAyfe\nIqA9QV1L0VbOuGz8ObZaQobBdXb6ymF7oMKAOITxwPcmsJ8Qm9OuUv6D0zpdkGkw15jCXXAfLSgq\n3QPV6SoKiUlSiCDXlWOb5m/kehZIx/xj9S+1b8Qfi1rNijSl9QWNhaoST5dla29tvkz61ISFKySc\nkwSTiqp/xk661TR16Jrmu2l/p6Njqbe9Y8wBSAUp2ECQYUe4EV58eg0+J9ShcvN7v6sstRkk9nSf\nZcHLv9RLvA+05+XtLd9Yc8thg7AoAxtBOOY+9aTmopWhtCitRQI3JSEmJJIxzk8n/Ar3K6owtXZb\nI6xUzoWo6Pa2qNt68wtD74S5cMpb3SlDm3ckK3ZCYmBM1zDr58nyZSQlRVO0bpwOYmMcVo5uaV9k\nZqKi3Xc1yB247049IIB9qiOjI1crYCg2TK0woAmY9sVbM9V37a0uXCTchLCLYIcdcCS2naQg7VAk\nelOJjH0rlxT5Le1FhZeIWsWU+SxYDzPPS5vtkO7kOghaZcCjyVEGZSVEiDmuwf8AGTpNxLaG/B7p\n5gflHmXPJfuUBTy2Q0HAA5gApSvbkFW6fSQkZzxdUJRjs33L1W05djmeouv9I16zatx0Npdm5bMi\n2tlWxUhLaPMS4SQDK1T5g3LKjDhEwlMc2dStiq3UrSrZJZdWtam5l5JIISQolICYMQO5mcRMeKUI\n9Lk2WUk3dHTaP4k2+nFa7voTpfUFK89QL1htKXHP6htIEJ5SiNg/0xiufXrVqt1p3+CWQCGS0tKQ\nqFmSd+T+qCB7Y4qrC421Jlc00lRlv9d0S51U3+ndMW9nbeW2j8n5rjjZUlKQpRUo7vUUkkTgqMQI\nAvbPxIsdM1qy1rTfDvpZn8mylo27ls5dMvkBQK3EXC3AVEKzAAlKTHMnic4dMpP9jm0pWkUDmv2i\ntQdu2enrBppbxdbZ9a0tiZCcqkgCBmZHNWjXV3TTNi7bK6FsF3Ljail9y5dlDxU2QsJBggBCxsMi\nHD3AivG2lUi9S7o27TrXpBN4m51Hwy0y5alwqYRdXDbY3NlIghe4bVELEqP6QOCZlqvVfhxe3DBt\nPDtdk22y404hrU3FFxRdWtDhKwfUlCktnsQgGEkk1HCbaakWMorlGPS+pfDdOq6vear0Dcv2bzDg\n062Z1NSPyz5A2qcVtlxAM+kbTkCe9Ydf6o6GunV/wLw9asrcsqQ2Hb951xKyuQsmQDA9Mbe5PsRj\n4Wd5Orr93yo66sfTVblINS0AafetOdPKN1cNoTbvC6WBbKCgSrb/AFSncmCcSDyM0xIOBj7160mu\nTJhgYk/HeKUqBjvXRBgpOADIpDCicEUBIJzzH1FRJGJJM844oCRWQoQeDmpLeUTBUVQeTUBEkAT2\n9qiJJPJn25qgZTKoJMUAEHBNQATA29/eaDmIPPf3oAIjgc/5oExkHjigHyP0n2FNIJEAQU0BGBng\nnig7jgn7VQKJIEUkqOSSJHzUAApAhQOaiQQeRHtVAKRJHqPyZp7QYBOZoBlKkmMyDEiBUVBJIhUg\nf2pQAjvMEdiakQdszMzz2+aAiP05A+9Ig5HvzQEgkJOAc0picRHxzVAEngjntRtKgOYnNQEjgZP2\n71BIEyB96AkTJzEDtUYJEknntQEmypCgpBUFjit271e/vVJXcujclCEAhCU+lIgDA9v371KV2CDo\ndYtrZ4OsLCwVJSkgrRCj+rEj6dxHxWJ15151Ty9u5Uk7UgCT8UQF5rsKJzvEEkZHHHtxSkQNoEVQ\nCpUr1Zgcz7UBKCFUA0oK1elJJH96SkExAj3oAKVExMg4mmQ0GzO/fICc4jM/7UBYF1yf1kT2moqK\ngNwXKqlFsxneDlR+napMuobdQt1HmISQVIJgKA7YzUCdO2SvXWH7p24YtU27S1qKGUrKg2knCQTJ\nIAxnOK19oGAR3AJFEtiyabbSoSlpmIn2onKiIyOKHJApPJjI5pECQdx9qtgCR34+KlIwcekUQAmP\nVHyaApQ5PPFAIkgSAYo5AkwRkUApk9h3xQAEkzPHvmgHMDAPPHNJJSDgf/dASmYM98UpElUTHvQE\ntwKRJkntUY2yUp7zkUApKYEc5NBBPqkRx9KAjCR6jkzimuIxiM81QRIVzxnNOIx/2KAREAcDHM09\np2CTnkVAIDdMkfen8wPvVAAhOEnB4oTnG0nM1ARhWU559qmnelW6fUIM+1AEHZunJpAcqCpnk0Aw\nFKIIIn2qQTMkDvk0AFCoKR75pgKjKR8k5oAxuESZ/wAVElSlRA70sCSmABHPzNTJj0pElIxEVUDG\nrjcRJPY0lBOQEgkdqAEAyeZ+lIgkxHbmgABOQYHxNCTjANAGFEQJ+lESZj7HNAMc5+tRO2YSk55o\nAgQCfalBzAoCSh8gg0o5yY5+KABKZKSBPb3oE/qgz2oCQTHIPq+aUmYHc5zQCgjIVjuKSdscTJoA\nmFbeJ7VIiDEx/egGFpVhQkTNIJzgH3oCYz6Nw2n3pqSlRmc8CKoFtO0zwOcUEcbJk44wKgHtj3k8\n0RtAKjInFAIDcMJn3+aCc5TwKAuFXKS2lAtmw4mUzHKe3/3W4/rwc8oN6LpbSm0bNyLed3pIJIUS\nCck8cwRkVxKLlTs6TrsTPVZJtCrQ9IKrQK9QtUpL07v1jhX6vb+ke1VtteWTD25y0JbK90SFbR9x\nn745xR8UiJ07M93qzN44m4/I29u80iAGG0pQolalEkfRUD4AocvtHXpztmLBCXitC0XG1RXAC5T+\nqACVJ7E+kfM3p25K5Ju6NZy40ktEM6UtLimygrcuNwCoHqACRGQcEkZpW91pjdk81c6Yp+63JU08\nHihKUzlKkx6v3BE96b+ZNr2NV19p1ltDdslpadwUoKUSuTiQTGOMVhg7sTPxVXBGMpmQTgUKAGMG\nKAWyAQkHimJUZGRFUEYjEwR+1P0kekf3qAMZ2895pkFPqJiB+9AEnhJJJ5pFMqkCAP3oAIEcHHBq\nSQNvYT3oBAHenEpHPxQZCgOQcge9ARORtWIHE0uVYBxinIEkbZAHNS2kwOKAQ2hfMA+9IhP6Qk/J\nBqgcBMgJn70J/SZTB9u9QCiJxE80D05IpQAAGSJAPOaZISkbSD9RVAyFTx+rinG0bSn3qAaUOOAh\nKTgTMZohTc8iccUA0pABk88Eiavek7PpS8unbTq7UNQsW1o/k3Fowh7YvJ9aFKTuBwMKBHOeK4yO\nai3DdnUUm9zodR8JNXGm3Gu9Mapp3UenWja3nXbB/wDnNNpJ3LXbr2uhIAkqCSkf6q4UoUPSDkcj\nvXOLKsi8n3R1kxvHXkxpSZE8cUBhUblDHY1pZmYikBQIURNRUIglPHaqBEJVkjnnM0lpXJ4ntFUD\nVuAE47fNLbOPvNAIpJMgCD7ChKSe/wBZ9qgCCFYFEZOYE1QBBkwT/wAUsE5V7CaAiEiCZP71Kc4z\n7ZoAUmTgYppQsyUjj2oBgAjHtSUkScRH+aAQMJjmeKDBM7ckd6AjITmDzimkQBgT3oAEdzxUkDEE\nA/270AEYwODnjin7DiKAAQlJAEk4qQE54E/SgGmMerMTNNWOBRAEQe5SB/igpAICRx2oAUhSTkSD\n3pBGZI5/xQHbJ8NOtLq6sLGy6Y1W4d1ZCl2CEWTpN2EglXlDbK42qBif0muZdtnWnAl23Wk/07hz\n8104Si6aOYzjLhnR6X4X9ba42LjSenL19JEnayqR/b6f2rHeeGvXOnLm56YvEKTzKOPtWUmociOS\nEnUXuU99pGsW6Rd32mvMJdUopUpralWcx+/atHyFkDbBJOPc0U1JWjq7Mam3P0rSoGfal5SwASDB\nBIgciqtwCUrUSNsRP2oKSYSEwOJoCRt3ERuSUk5EjmeKTjK2lqStCgoCSCIIoWmSDD6my75aggmC\nuMCagll11zYhtRXzAzOKWKb2ElC1cN5A7AzW1p2japqtymw07T7i5ulkhDLLSlrVGcJEk1UrdLkj\ndK2YHbZ23d8pxtSFtkhSSIIPcH2NYylQMbYBxRAQQZjtHEVNKFKkJEn2qWAUytPII+aCJAEiOxom\nALKhyDtVn3pFqAIQT3+lARLZAKRGe9RKYBCZGIroESlUDEmnEg7SRQDAJkf1R3ppSVGB78E1ARIS\nIkAUAkEknnNUAUqO08T3plKTKuTBmaAeIyD+9RA9zEcHsaUDqNH631HSdVsNVRb2zy7BsNttvtB1\nG0dtqpFVVxrV1cXLlyShClwVBCQkHM8fUT9a46UdOTZn0bqC70h11VqltsXTC7V4pElTaxtV37if\nit7qHXLK9TpI09opFhbuNkOISU7vzLziYGcbVowZyDzWLxPxFJHSn7tFC4tTrpdMFSzuJCQP7Crb\nSLLTntO1V67bdW5b2yFslOA2svNpnEzIKhBgZnkAHSbcVsSO73Lbo676Ys7i9utZ6bvNXbRZXAat\nvzfkoQ8pBS24tSYUoIJ37RG4pAOCar9O09q+aDyGmGgyseYt1avXuMJBjAGD/wA1nBT65W9tqOpO\nPSqR6B4b9EaT1L1SnUtZ0Ynpo3YTqCbRxO62YUrhresnf/SkKOe6h+qnrF7orGh2/h1do0+yYsNQ\ncfL6m2VPBagAQ482lTigBCSncEjZIBJM55MfV023tv8AQkMiV0ilu9O6X1PVUP3WqaE3c3BfS9sU\npu2Lh3KCyEBIQJUAkIhPoEgCSa/R+i9Cd1R221fqXSG2mkFTSk3AUh1yJQCdwhMwFGZAJMGIq+JK\nEG6fwo1jGGWSTdWTZ6Z6SWLzTLbVbQ3BSyGLm5uEstlRPrA9cAgwJUSCkE4xD1Pw905jRv4vpfUW\nmOL/AC6VO27uoW3mFZc2kNhKyo8E5AITnuJ1lkcd3fbsceGm6TOKtrEPvFhV4w36SrcpRiQJCZjk\nkQDxPJjNdtpWldFs6dquhXz1rf376mk2erN3Cm2bMJ9ThKF7VObk44mR6ZkVo59D3VmfTa2ZoK8N\ndRf0S216y1TSnmLp55ryzqlql5sNpBKltlzcgGcFQAPYnIG/a9A9O2Gk3txr2rXK9TZZbLVo0hlT\nRUtSSiXQ9O0t7iSlB2kgETXMpPpUkI1e5n6a07obS7N+71bR7nVL+HbZLSrhtNmlS23E+ZuSrcS2\nS2tOYUU5BBit/q7ofw30Irs27+9VcJadG9u7ZfZW4VuKacQpKRubLPlAhQSoLKuP0jzzz5U+lJPf\n7bGuOGN7yf8A2cDq/SmpaTpFlrbyWxbX5Wlr1er0x274IyJGc5xVEAFEQOK9iexgnYFMGFA59qaQ\nd+QIEVQTSOBGBXfdD9HdH690z1JquvdYt6Rf6VZoe060VbLc/PuqcSkthSRCISSqTzEVlllKMbgd\n44qUqkcS+yhsqSlSVAExHetZaVD1RgD2mtLOBBBgKmfiKWMAR9DVAECYmOwEUgDxiaAkIHqIP096\nChUgiJ5Ao0CSUED1QcUwIVgiRmZpwCQbIIITA5OKYTKt0GPbvQCSkzhPb71l2ykiPT70BFLZiBHO\nal5ZUZA+RigJBmMEYoU0N0AEHv8AFAfRjOq6FedLaNprmg65ePaYCy/qFzqryLLa7+haWfJC2W2l\nOp3ELIUsjBCk1Rap091T1g02/wCS3ZW2kqVb6dau3Plt26Ny3lBttaVLSmCVmTxkkyK8v/kptSlb\na28nuq9TeWnxpR92v9novQvjTcdLdaaTpnWHUOmIsbFDburX/mXF8NRX5LSW2wpkpW35TSW0bUKS\nnc36iqABoaX4teKXXusPX3T91otitAcSpLjyUhTGApyLxakFQHcGR6iYwa9Wvngz4kvO759Ph6ng\n0+n8LN4qia3XvT/hcz1RpWna7rGsO3ltsTrrLGqWKrcvuFwqNu8khtCCgNkbQ4gbpJExXH3HTHTI\nXqujWGlaI5q+orP5B5i+datLNhpR3vJU+PUle3ClOAbQ5iSgj5uLHnbWJNeXaq7cnuvFBKSjsbXQ\nPg2nxIvNK07UfEDRtOZ1e4NvZfmnVpLqk+WNhAKltg+YgBSkbSASCQhUUWqp8LNE6av+mr7R37/q\naw1BLTOo2l/ssnLNJUVny1I3LWo7QlUgbTwTFa4HljmyYMuNxikuidxab91tUna2fdc/AzyPqjGU\nPPdVWxz2qJ6O0XU3rfp97UH9Lukza3V3ZtlSpQUqTnHpUojcIykGAQK9Pd6a/Dh09bM2fVfW3Ues\nOjcm9RpOm2jSGbkNJ8sNr85RcQMhSgmCQCJJNevCsbT8Z79qvf8Ao4yddLw/nZz+qax4a+Iaen9F\nVptt03/A9OTZLcs9PP8A+4KSVKL7qgSrzFSkGZEAkbRArYuvA/p+0ub68b1Q6nZ6PaIurwsut2qF\nILoZ/luLKkuAuKbG5G7BUogATXzs+oyYW4wjzbXevzsevFjWTfI9lRdLHgLYdM340fpy6s7pDT7D\nydUvvzy1L9RbW2i3CU4TA3LlO9aSCAlQrzbTV9Lv2Nw2jpm4u7a3uVOvXqGlNONtmEtJUuHEoCjO\nNv6jG41nosWpUW88rk/LZfJf7LncE0sa2Mmo+H11aN6dfXTjWjaZqV65btXdyyvYhbW3eFbQVEJ8\nxMlKTJBjIIr0HwTuuqb2/OtdNabqWqahpDbvm3GmtLbcZC9qUuKdSFnarzHN25AG1MbjICfZPJm0\n76oqpR7nnhGGZdMuHycf4t2Nrb9W3xtOitN0byXiLhs3dw+XXQo7yVOFPJVlKUpiBAA5w3/hde6d\npmj3Tl/oz99qaw4m2tvzL1yw04lJaK0oBCQAklIHqwuZgVzDP4kVJ9/Kvz9zpRS2jwVI6M0VrW12\nN71DbIYS55f5sWlw20TEzK07kiZGUgyOIzXd6boX4e2W0aXqXUq23rgKC9QTZuO/lwCcpSHUhajC\nQJEQSTXzfaOb2gq/Rxtd919OP6+J69LHBTeZ78f7O06h8LPwtXVnp7HQ/ilfrvLhhxF23qzaWkpd\nRnc2pkOSkgHC45GSZjF0f4CeEeu6eNdY6utdQaZuWG27JS3m/wAwkGHPMWEEsyrYEGCkhZkpIisN\nFqtdPN4eqXTF8Ot9+2zkvPf596O9TiwKHVi3fx/6O+8QvAXwL07wkvbvpgW1z1J02+49f3FvdO7X\n7VVwltCtjkgSA4UCE+kZKlAiuNvPCHww6G0/UV3jGj6vq2qMm40vSL/Ui69aWy1rQA4LRSd1yDsI\nTKQEhSlJgiNYarV45uDXUm3T4pUvNb72edYlkVrb0+Z5zddD+HOuW+mu2IsbJ5p66Z1NLOq7WkqA\nR5ZHmg7W0lRlQWsqAXEbRu896t6W0zpu/ct7PXtPvlBYWhu2JeS3n/01LUEyRjgEGe1e3TarLOax\nzi36tfu9l9BkwKMXK1d+Zz6LJt9L1xcv+QpJ2JbQ2CSsRgiRAiTPumKvleHGvFTN0zY3T+n3QQtq\n7ZShxCUKUnDqwrY2oBSdyVKG0kAxM17Z5446UnyYRxuS2NQ9IuM3DSbq6S4kFJuDaAPllspKiqAo\nBRCQSQDAiCQcVm6Y0vp3UurdLseob1dho79401e3TLcllhSgFOQTyEyYntXWLIpy34/OxJwcI33J\ndZ9P9L2Wthno3qFOq2F2t1Vv5ramnWG/NWhCH9wCQ4UJSs7SUgLTmZA0NO6XuL5bduFIQ47tWnzD\ntSW5IUueSEkGQkE4Psa66q27nEU2rZl0Do/W+qPzD2i6S64xZJQq7eSkhm2QpYQlbi1HagFSkiVE\nDNdrdeF/Q+lWly1qXiZp93qLmlW93p9vptu4425dOqANq+655YZWhJ3KMKRggKrCWaprHHn9tr3+\nJqsdwc/I84f0h5lO9amwgkgHeM9+3/fFZXNBvba3Re3dqEWyykAqdSlTgO71IByR6SNwBAMTyJ28\nRHCi2ZXNFRuukh1lr8mjesLu0ku+sABshI3H1A47Aniuh1Pwl6p0bRP/ABHq2mnTtKcbZcbvH3Qt\nt7zUb2wgoSd5UkKOONqgSCIrjJmWOurudwxvJbjwjMxoPQ+v6K0iy1JjStR09gm4RcPOuqvjvJUt\nADYSlQQoAI3Dd5ajMkBWCzv+gmOn1aPddNvPaiX1rTqX5wohJSlIQWwIgEKIM/1ZGKinOTaqqEox\nSTTKtFnpa1rQ9bJSlC9pWi4SSVEEJgGMTkxXrOn+EvQug+FFx4h9SdUu/mb+5NhpmkItUrcuv5Sl\nedKblBDaFBvMKyRIIwfNqtU8TjCKtydcfM00+JZOqT4W5zmieHDmqWltqKPy9npl1/KXeIumi8U7\n1Bc25dKlKkDAiEpCuCTXoVl+HnovSrJmx618QFaNrD6be4RYCyQ884hYJKRtfAbKQQSHggzgRBB2\nyTcaUeX8e3yMJdST6Y386+p9T+EP4VrXovoG+e1jWdTvV6tcWtxoGkW1vsc1htRCm1PFtTqNn+hM\nn1CeAJ+SvE/wg0jS7y7u9U1JzTdTuEvXCbFxtJcS6X8NPeoeX/KJIKQrcQnA3en4eL2pknqZRiri\nuednva+lP5n1P0kPATfP8bfzZzVz4H6W9p2mXlp4h9PtvXml3F88zcuLaU2+0pX/AJdI2krUtIQU\nqwCVwYiar+hfAvVerep9H0Z/UrS3t9Tu2bdy5bdS4W0q2lRCSRKkpPEiSInvX09T7SxaTA80358J\nnkxaTJmyeHFeRY+IP4Y+vOitV1xl22YuLDRdQesnH03bIWvy9pJDe/ccLRxOSRMgxzeleBXiJrrf\n5vSenr24tFvC3bcSws717d0AbZ4iTEZHvXOH2vpsuNT6v+zTJoMsXSX/AEYEeC/XNwbRVvornl3z\nqmGHHT5aCtJAIUpUBMTkqgCCexqmuvDfrOxYVc3Gh3gbSCpRDKjCQJ3cfpjvxWq9qaVunNJ/FGb0\nOerUW0Z7rw91Ra13GiC6u7D/APhPvWi2S4ABPp9QmTwFHAmlo/hj1T1DqlnoehWDl/qF24GW2EpI\nK1mYCSoAEQOf+z6J6vFBNt7I88cbk0u7M914YeIenaXqV1ddOagzYaSpk3jq2lJbZLv/AKe4kQNw\n4rb17p7qPqRem3iX7V38zYBxJN4lRbbQpTUOnAaI2CEqIMFJ4UCeY5MWVRzwdrs/jR24yx9UJLcq\n+pOmOptNa07TdR1GyvEeSXWEW2pNXCWAVlJSrYohKvRO3mNp71uaz4P9YaH0tadXXTFm9ZXanBts\n71q4dZ2L2EuobUVNgqwCoCTxXrg/E3vt39DztqLSXcpbbovqC5s7C6tbVt7+JXDltbMpfQXlOI2y\nC3O4TuATIG4yEyQa2NS8OOstJfNtqGiutFLoYVKkkeaSobMH9UpUI5lKhyDUk+hJs7ScuCputH1L\nTbkW1/ZPWzpShwIcTtKkKAUlQB5BSQQe4INek+H9vq73Q3VnTum6RcXT+smyQA0UEpDTinCSid5G\nBlIIHeJE+XV4/Fgor/8AUfPtJPt+eZ1Caxvqfk/2OfvvDTrC2t7i9X01fli3UhLzv5dWxornYFKi\nBMGJOYMVrX3hh1fY2Vjfvac2Uak2t5ppFy2p5CULKD5rYVuaJKTAWASCCBBBPrmvDvq7cnGP/lrp\n78FRa9K9QX96dOsdGu7i6Slay0y0patqUlSjCZwEgknsAamvozqcOptk6BqBeOA1+WXuOP8ATE1z\n1qursVxabTNG+0TUrF9VrdWjiXUYUAk4gTB9j/1rWFjdKQpxFu4UAwopQTBM4P7H9q6bS2IZWdL1\nF9aWmLC4cUsgJShskk1m/hGpJYVcqsnUspX5RcKFBIVzE9j8UScuA3XJkt9Ev3mk3AZKWPM8suqw\ngKidsnEwJr1TWfw6arpXTWg6mnqXQ7rVdeV5jenW+o2yy3bqVtbWpwOFIUpSVygwUgJJ/UBXlz5/\nCa2Ztiw+Je5Ydf8A4Uuv/D7Tul7zUlae451OwHGmkXrRLai44lIwoykhE7x6ZMTIrF07+ErxS6ht\n7XUrZnSv4Rc3501OqI1NhxgXG0qDY2qKlLIHpSASoqSBkislrVKKai7fajeWilF7tUVf/wCnPryy\nRqVxrlmmwtdPFy1+YStDzS7hlwtrbUtCilvIJ3KMEAETuE3PRP4U/ETryy29MpsL3VnNrjGmt3bR\nW6wUslTm/dsBSbhlJQTunzJA8tUdLWQkrimyLRTb5N3R/wAIniXr+g2fUGi2iFWztq/c3Tt7/wCU\naYLbqmyhK3CPNmBCkykqJSCVCD0ulfgZ8TtX1m1t7MN/wu5W0EXTm1t8trQhQc/LKWHAj1gFSoCT\n+opOK4euguxVpG+5zKfwjeLy9bRov8AYQ4tldx5rl8yhkNoVtMulWyd0JiZkgc4q7e/Bt1pYdU6z\noGsOlq00e3vlJv2GhcN3NzbNBRtm/LUoKXuUkKCSdiSVn0pJGy1UHB5P/VdzNaaTn0Hlehda9Yar\nfXCtR6nvrxTbRLdo7fuNt3HYNJCCCc7SEiP0xjEWuidWWDydfbca1lSryzBtWRf+apu6SgFy4cBQ\ndyAlLkp2jalQ9Upk+ZaTDhTWKCXwSXqdrNkddUmzf6A8RV9POnV33bdCtJ0+5YtGWFJO69dbX5d0\nptSSCUkNlRSnPlJ3GSSZ+G/V/U3Tl9qut3LS1W+taNf6e0q38poXTjg2JEr/APUSHFtlaUyraCMA\nSM3p8fvUmrVf2bRzykoxu0jk9F6h6QvdS1C46zbdcecYuHLe5sglJRc+S4WRsKdu3zvK3H/SFACS\nCK97qRfVV7e611XrDHnrOyGrFAdcUUKhYCQhGChKVSZhcgEivStPFTjl3tKlu+HV/Hhcnm8ROPRd\nJ7v5F1094v3HTWhu9OWWmsLsb0fmbtNwyl//AM0hLyG1ISQAlIDiML3wQSCAoprRvvE9q903StMP\nS2m2Z095p9N201DzqgB5m9SYUpKlBJCQRtAjJgivSQcutNre9m93xvvxXbgzWRpv6Go/1XfM/wAI\n2Oade2unuOXNpbmxltK3FArbXuSN4lKTEkZwRJre6113Vuq+qka9r2m2ANy4ygmwtxZ2z6wlPmDc\nvCVcSeAZgAQK5WGPXHJbTV7Xtv5rz8jR5PdrbsZte69Vruuam/ZaFo+ltXzaHbi3WoKQotIEbVzO\n4mSAmASqIjFZf/FjusXhbXrumuOOo/Jht5ha2Sy2olB3uepHpShKY9RiDEyeI6NdKxtt7c3v9SeM\n4y6l9Dpx44dQ9OIau9P0DQkKt3G9MuEL022QtbVvG1DlsreCrCSXFJJ3AgElM1h1Lxk6YR0S9oej\n9DaP52r3Nuu7uXt63UBhuNqWx6W07nISpCwo+WZCQoprHTezlghKKnJt97W29+XyNZ6lzknS27Ua\nGseLeo9UvWHSL7NnqujsNN2Wlac6461a2SnQjzVNb1hLSypOVGQSSSTEmu6R8Rer/Da9sdf0jSv4\nZcaM4lxx63ccYef3/p8xQXJHpUBtAxNepQyqaySyy6tvLsq8vm/VHnqFNKCrf7uyPU3jj1j1f5yd\nRtdMuVXVwHW1KsULcajakNplO0AhCJgSdokmTM7K51B1TOr6h0Fcvi6cuEllAebSlFqynz/LVuML\nSCtavTDc4gekMmKMcfRGXT9P6NIT96+ks7bV9E6e6Cb6U1jpHQLbWLm7cumuok6o46sttt7vJWwj\nzG1oUVJSk7QN6CCfSrbS6hq3RzdqhLWs27iXA3doaas/OdSooO5hxxaEBJC0BOErTDm4ExB8uPT5\nVJtyck3a7UvL1S/k38THFdMlv9RXt54eP6whVnoF7bvPPLQzZuulu0Q2fK8hbiipbh3J81TkKGVJ\n2kARWDRvEROiWtu1p/SVgpDTqv8AzS7VD7ryslKVFYUmQFR6QmRG4GBWy0+WcejLK+PT69t/kZeL\nCErijMrrTRdSeZ1vWLNK9PZDNo/pKLkofvthUtTri0JEQVASYMHaknaSKPpu+1ld40nRUXSNT1Fz\n8paXouywlCVDa4kKJCcpVBJVACjPYjqGGWJO3sq7fXv349K7nM8viS25fr9Dp3P/AATqTenXGlpX\noirO2Fypy9vPzC7taXQlY/kolBAG8BQBgKyRsB0ndL6SutMuuoLJ/ULlLrULYaSFP2V5nYXFKgrb\nXtUqUcTB4TvnVqIxe6v1VLd/iL0429kzmtZbDOqWxuVhF8AfzqC0ppTTwWpJQsKAAUIBJGM+813P\nWPiBf61qzWu9Ratfl5Tyb9rT0uOlpJdUolaFFUowhk+mSoEHcCMd5sTm4tdrJiydKa4J3PVHRfR1\nxfI6BttQ1C9u2Et299fONLQm3eYIeQ42AZXCiAZSUmcSAanp3VrvT9jbavrjNu/d26f4clp5hlxZ\nZSNyHG0bQpsoB/Wo+oLCU+kKjzYsWVxU8qXW+29UayyY7qN9JxV31J0/Za8u76YsdQs7NF61cWy3\nLlP5thDZMALSAkqO6SrZykQAJBsLLXOjLi1urm+fvf4u5bqm4umPzCXHi5MoAUnZKYBKwv8Aqx6h\nHpliy7SVdXftt6fMyhkgrT47Gnq2odOs6k/Y6Dr2qr051guKeNmGllwoStTZaSvaEeYI5gQDBitO\n0t9GcsLt+/6ndZvbbY5YstsF0PKUBJUsH0QAPczAgZI66s6xp9Ccttr9d+3ZfU5axuW0tvgY16Mk\ns2WzUWX7i+Ura0hKlONbVACQAZ3EqERPp4ggnct9AuNX1d3RLXXrfYNxS4+TbtrxJhKojPwD8Unm\ncU5OD2v7enqSOPqaSfJbaL0LZ61rA6U03qrSV3j8EXTtwG2CoQPLSVAEqJUYzkDitXqPSHtK6juu\njl9V6VqFpplx5H55D6jbupTiUFQCikQYx3gc1FllJ28b8+30/NjueOOKTgpp9tuPj8DetbS9ZurN\njT9d6XcRp1yVpunSzsK1oCiVeYnc42lLcAEKAVMZXnn/AMipd41btO29tcNrQPMcdKEvFSipLoKg\nAE7SnJ7Qe+Liz9fMWtr3/b4/AxeFY26d/M9V07wWZbWjWNd1HQDZ/wAKRqlpbWmpo3aiF3IZQ3O5\nXlkLUUqB2naieTuOl4geG/V3STLWv9ROaLavPEpYsV6iw+6i32JDQSwVKVsCTAVkwAcESfl/+TjP\nLFOMleyVO/xfY+j+jlGDaa8+Tn7bRbvpe70K9uU6TqrT6W71VvbXyllSSvLLgQqUKITtIHZXM8fT\nXgr0vqPi31BoNn0TasdMdWK1C8untUuH3d/kHy0hCVLKQoNIUr0p3LUJxiT6M/tHow+JjW74vZ7f\nHn4dzxrRTnkVy2XNbnr/AOJX8QPiH4T9IaP0P0jq+jaJZWV2rTLa3SWri+uGWAlKL1Y4bUpSFgiA\nY/8Aln5G6vuOsertUIZv3brXb+3W1c2MpufLkN+pKjIZJTtG1JKkBJBImB8v2VqIS0/6nWLpck3v\n2S9O3O97n0NTjnGShh7bfU8rubHqBx/UOmr2/slK0xVwHNqm7hSy0glQQ4iSpMMwFJO0CMwc6PR+\nt6/091Hp2saBePNXlrcoWyptRCtxxAj3Ej7kV96ePFmwyhJXGS+zR8+M548iae6/g9H8c+u+u9V8\nU9c1a1uFNJ1W/eu7X8jcuOoWlxSglYVjeuOVlIWSnMGuB1y78RLG9ea1zVNRTdvOhl9tTpKlqQIg\njvACfrjmvLodPpcWKOycq71Ztmz55ylJbK+3B13SHiX4uM/wXU2ntQu9K6VfVcIQVLS2UKclaF7V\nJ3JUpUEbphUAiuo8Uur+petLHTdS1a71Kyudd0+Lq4eQQ9dXSWwC3Df6rdaUwiEAEqhRO1Shnk0+\nh8eLio9V0/33o1x5dQ4tNuqOBHU/XSei1aBc6dqaNP0138sw6HXW0W7srX5cZG4jzTGD8wmDzVvr\nfVFsm3Kbl0ofLdyncwVElvekZUPUP1SASkyAZIge7HDFFPe7fp33PI5S2pU0bOqa3rF9evWCdFbs\nHGEtMFgIdSUutpCVSlRPrWpJKgeFTAAxXoXgj47dQ+HD9y03ord/+bZSCzcMFTBSlSlqc2ISFJcE\nNlLqSFoLczGK5yYksaUJbqjXFl9+8i23RzPVfTukKQ91P0jrJ1OyuUqdctVpUzd2JKlAhaYIWnBh\nSFHBG7bxVBoHWtz05fIS3bNvW11bG3vrW9Cyw8lYwpQSZO07Vj2UkGDxWsZSzRab37/3/JlkjHHN\nSjx2O313xtttS0pnpTpvonSbPQLRxK2m3bBp+9U4oALP5kJDhlQKgncAngQK4wda2ytVN61pTDVu\nEJSsONeaVKCEgqKSdplSSqDj1EVtkUp1TqlXz8zOMox7d7PQtI6l8MOrNI0bStN0hjpzX9OSl1pa\nwXWL++3JA3LguoQUJT6CVJCwohSAoiui6A8c/FLwh6/X1Ki30n+IPuXC3nnLC2dNyh8KC1JWlMOp\nIUSCkkcdjnLRajNgm4Z9/eteq7XVDWabFqcfVjtOqfoLxV/GH4h+J7L1hrA0tiycumr1y2t7JLaX\n3Gmg0hLm2CpIQnjifrXl2r+II1Xabd670lX5YsPotVqfbeUlpISsBwyjctMq9RicARB+prtZPVzW\nRJKlVL0+O54tHpIaXH4Sdq739S28P+qeofDrq5GsdNjS9dNqLpFr+cskPthYalTqrd2CgJCpClp2\ngpODBr0TQPxI+J2o9UM63quiaX1C7d2CLA2WotWzdu4lpSRKYSnygA0kQCCohUqIJSfl5f8A7Gny\nYOOpLfuvge+CcJxnzX3PKdR69vNYTbWwu7fT3dOfdes0q022dTBWHf5lwlAW6dxXG8KwEpGDAxdK\n9Z3Oga1Y9Q2XS+ka89ptrdM3TN7ZJuLN5LoWjzlNgApKQ6kpJyFISr4DBjWGr+fO/wDQzf8ANHZ1\n8OxvdOeKOsdPsAXGouMKGoW907aoaCHHdijuV553FCkBCEgFJELVjndfdTeJ3WfUrV1daRrGuXtg\n9qLOpq8qzT+UZ1d7aUp27SAoBDiAQZX5YMASB6o5ciXTCkv+/wCzJ48b3fJQOaF1ZaXWq3l1ZPai\ny3c/lXG3Hw2+HHHFoCywr1pBWk/qSNqlIB5E21nrdg+z/E9Utbg37wetdq0IFvuDYQgpQhSYUncp\nRJTEpQTgqnyTlHK9ue52oShvZhu9X1HT7S2vrpKL3T7dg2rVtqbaNyFuIWZShKwvaF7iFwQDE5gV\n2PRfVHSmiDU9PsOtOq+nL1KlrQtu6QWVGEhCVtbErK0tKuUmMFRTkAknbD/x5ISh2fx+gyLxL8Tv\nRvWPhQNd6kfs9P8AFa1b0VzUm7NjUNUX+WurjeAoOBhxQOEqJUN+1JTkztJ9P6J6S8YPDbxSu3tJ\n6J07rMOrRpdv/GdN/wDLv2G1Fqy6HfM2soPnNJ/UCmU+1canRYs2CUsk+mTaqu/e/Lt+4w6nIptQ\n4XL+BfdUdT2l51Q8vUehOhtOXotxZ2t0m4ubsaewkLK1MtMMuKV5ZcQ7uDaFJXJWYUUivQeqtf0T\nxJ1rSL/pLrDTOmLXSdQY05STePuWb9xd3C3lXKLa4Hot5bZUoEjaQkEE5rOXsLPjhPFky3KF+W9d\nTf7Vx3Rvi9qQlJOKe9fel+zO91/xu8OvD+5ttK8U+jumtQv0t3rY162sZavHlFCkugIXtMg7idyc\nuJwncSPlPxd8fb/qPqhrr/w6sNH6RtUX/k21tYXpYcDyW0o85aUrB2wowuADuUMwa+j4uB+zf0ku\npNUlVVzzxfwv5nl8HNj1bzJpp/H+9vU+U7xOiaRc3dtrlkpajapXY/w+5SpClrSFIUpZ3SgAyRzI\n2+kyRm6Y6m6XGsC56sb1J6yCwXbWxDbarhHpQtG44bJb3jeEqMxgySPD0TlG0zRSi3uqLzXda8Pv\nJuha9K9TaPqDN6m2Xcm/ChbWwQpItlNlIKlkI/VuQML9MQBzevXfQ63mXemHNcty0lwFVx5aytQc\nJbUnZt2HZsCh6vUlSp9W1OeNZ696n8/9Gk3i7Wvz4lbplpZ3wcevrG8aZKHfy5s2CsOuoSCRKjEJ\nCkqVnA+orZv7LpW9s23dAd1FldrZJcvvzhZAU75hTLQSQophTePUqd6jgSNnKaexkop8lpYK6N1I\nM2WuX+oquUsqR59vbouFPEMkMgFSk7UpUltO2JAKju9KUCutU9JWFjbvfxrU2NVFy4l8MsNlpNqW\nwElKwuS4SVgoIAAA9WYrldduL4O2oPds2tQ1Poh3V73TtMF45oSEn8iq4bLLoX5YT5hQla0pKiAp\nSQo/pABAqfVOl9J2Tbdt0xrzF+HbZNy++5brY8pahuLDZUpW8JgDcQlRVIEpgnmcsikttvQJY+lu\n9zjW1NoK1JdJI/Soe881aaDYao7fWD1vatpF3ceRbu3aUJt1rG0EKU7DYCd6SSrACgTArd8bmKW+\nxs6+jpm2ubdfS713eh62Dly1cNbfyj+5XoSsE+akJCfWQmSojbiTWNazeW9ovTkqb/LOOh1TKkJV\n6x3k5Htg8fWuYJte+V0nsdb1EPD61Om3ugaqi+ur1zzr1gMqQzbJcbQSyEuJAlKy4AoLMCPbcaG/\n1HTNTvdR1BaW7UuXHntNILiiEKUf5SCZEAKH6uyOex4xeLKKc1T/AD85O2oR91O/Us9d6ga1vT72\n8sbyx0y1Rc2/laUyhba3FJb2fmAlI8sK9MrIIO5Z2iJiu0bS3+oWtWvn+pbG0csbb8yE3jqw5eLU\n4lBaaASdzh3lRmBtSok1F/xwdpuvvwWXvtJMVvo1ym+Ro1zasWV6XnmVvag55TaFBMFCt8JSpJnn\nIJHxUdI6cOo2p1Z3UbC2smLlpm6UXUl5pK9x8xLMhTiQEknaDHpBjcJ0eRRXV2OYwcnRu6fo2lt9\nOXPUetvpdDxdt9PYt7xoLLqQiS43laUAOJUCUgL2qSFSDFUzrVrp7u/TdNQj0NlC3HlFxtwNlJWh\nSSmJWd4HaEjMGZHqm35B1FLzNZ3UbjUHD5/lpJQE5EYSkBIkfAj7596uLXprV77ppfUGm6de3Flp\nywb+6DCgzbKWoJQndMEqweAc94rqUo417xEnN7FbcpZ07UVfw+5dUygJ2l1ISpaVJEpIQpQzJBE8\nc+1Xug3/AFFpWgamzo2rPWVvrbLlretLHltXTDSm3tgWTCiFpQdozITEzFcTUXH31yWFp7HPWtlq\nOr3ItbG0uLm4cUSlttsrWqASYAzgCrpl3pNre7c6bfuNiyLaCm5QhQvCgQogpMthYV6QASCBuBzV\nm23UHv8AlCFLeR2nQ/WHRVt1Lp9x1/YJv9EefQvULHSrRm3UbZbhcdbDu2UrBQjbAICSQCBINT1t\n1FbP3N70909p7aNMcvV31gVhDt0y04iEteejKgUFO5JwCDgHcD4o4JeP1N+7XF9/y738j0+Injar\nco76x6eubbTNJ6be1C4v7lA/O+fbIQj8zJCW2SJVtggSYlWYAApWLWlp0q/0q9dQ061DwK7dAdFw\nkhvYleVbIWpRSOdgMYmvU3k6eN7+1mCUb9CnfudOCW1RcXFy6Vm6WsBMndgJmcwJKu+6IxJy6XqT\nNsHLbUGLd5q4YFv5jjRUq3T5gXvbAIhQgjOIUR3rWStUjNNJkz1BdWF/du6E+9asvlaQUHary1IU\ngpJ5goWpKhwZNYtb1FrU7lty109i2Q2w00UW++FqQhIUs7iTuUQVHtJMAJgCxSXK3I22+djWYvXL\nK5Rd6c49butub2loXC2yMpIUI9QMGRFWFwzp5AcsLy5fbMJWt23CPLWSeYKpwntzn2qv0IjNao3/\nAMi7tJbXcNpW8pHl+WiSIUdpKZ55P6Tg13F9/wDk6u0tbjR9L1r815KTcWbl8khLgWZhwM+tJQM4\nTBI/VXnyudJYj0Y1B31mE3dneOs3mhaNcaUu1tiSti5WpAX+gqTuAWhKp4JVlXIGK9Z8O/wodY9d\n2TGva5bp0jp++UhbGuXqvLYXLgSpKSo+peT6UhSjtgDM183V67HoIrxHu9rr9z0Qwzz7Q4XY9G6Z\n8I/BrwovF3us9Z6Zrd5pF/fafqVpeKQtg+Vyq2ZG1x5SU7iPMLKSspSkq5rlfFP8X3iAm+Y0bRbO\nz09GlPODTnU6QmydQ2pYI8tAI8g7Q2JQAo7RJyZ+Zg0eb2jnc86qKXbv8Hv9qvZ+SXvllx6TFHpf\nvPt3+a/P78m638ceteuBu1Boli0tlouGGm1qabKnlqClLUtS1QVo9RVJIG6ck+aK1a00y7U8xcPX\nZUp5t5bbimkOpIISUmAoAzJBGeK/TYodFRTtLY+POW7lwVd3erffTc2DTrJU0ErhwqKlbf5ipjAJ\nkx2Biul07qC06P0Eu9P3pd127XC71LRSLJkAgoaUTJUrckle1JTsASck13ki5JRXz+Bzjl0PqKC4\nU3avpu2Bc3jbjAQt15tTWx5TfrA2qM7SVQSfUBJAkgZbW0t/4zZ3r+kX69LDzYeQqSpW3b5qQUgH\nvjuARnvVtRW+xyrbOm6Y6Q6k6vTZMNa+5abXSNl95yWbO2bTm4UuClLaZjHqkgAEkT1XWni4jSks\n9H9MB5/QNNtFWrD90hly9U7tV/NLjjSiiXDu2pghEI3SN1fL1enx6/LHFJbR3tefbdU99733Pdgy\nS0sXlT3ex5bpfVmv6Gu5XpfUV7aG9Qtm4LC1bnELQpCgriQUOLSROQSDg1b9Aafr3WfVGhdH2+vu\nMC7uW7VnzrtbTTIUvdG6FBsSVGYIBJJ719PJHGoe9FNLft5V+2x4oSk5JJ0dp4jeILekdba/b9ML\nWxp7TI0yxXbIQj840gpQX7kKBK3XEBSlL/VvUTiSK0ujfGC83iw6i6p17TkKWzY29/ZeW67ZaepS\nk3DYBCVrBbUQEBaEmVA4Vj5n/jsWbHHL0+9s9/rXw7HslqZQyON7LYtutOr7FnXtP1vpDrTUX3r6\n5P55m3sbbTWVJSEyEt2q4SmXHUQYBCdwMLKUVniZrfT6epdZsre0btrnTtcXZ2yru3BUmyQ4vbvC\nEj1JgBW4LKgoBO0IhXpUHPJG1T70cScYxaTtdjkNQ67Qp7VLrQtJsdJGoPJQba3bDjIYBCtiQ6lS\nh60JJ9eZjbE1m0/ru7GhXXSul9Naa21qGx2/uAyp15xLQ3Agk7UJT6lQlImTuKoEb5NNGa5aVp8+\nXx/0ZLO72S/7Kx3X7bUbNFu7piFXyFIat1NgNobaCidgQkepRUo+pRJ49q6a+8SLe3uH22+kGLG8\nubcW96pm5KUrcKoWpKEgIRubJBTBCVKUU7RCE9SxOS6bJHJT6mifWz/T9zco1PQuhRpVjpxRp1xZ\nu3brzv5hAClKfXjKzvA2hAIQYAKVVZ6Z4leGmjX1xqV34U2OspfaYXZWtzdvNNWi0+h5KkoMOBSR\nAVO4BKFEle4nJY8mTGk5+93a/hO/5NMuTH1uUY0uyFZdfdFaBot1Zu9A6Fd3+quhSvNW48bO1UEr\nSGn0vHa5JhQKJABSSSSK6xd4/pum2et3Wi9H9T6JaMll42BWVlu4LoS9cKCUvpKXnFCHOSlAKVJ2\nT55aeeO8jyPd7cUvol9zWGWLioKK259Tj+seofDZ8ITb6CTd2qVM3ItFpRaXDqFJS3sCUoUlPlhe\n5ZSVKWrI5NUOi6QhN4nVVdE37unr8pjb5rkJdfbKmzvbTM7ZWBBkJ4Ir0Y4TxxTlLnzMssoZJe5E\nydRdT6WlzUdIHSbDLV4+XGb64W49dJaUoLSvetKVKKk7TuKUyCcCavr7rDoJXR+kaHd9LXTOqaba\nsli8s3/Javtzri3S8hSZKxvCA4kwPLIIV+oPCyKumfrv8CKcLblE53TupOn9E6htdT1zp7TuprZb\nO563Fy+0glaMJJEKCm5iRiU8qGTgsOt7exF8bS2uLNx2Py7rF2sKbSD+gzyNpiY7CuHp885ubye6\n0vdaW1Pd36rYiy44pLp3879D0zT/ABz6bvdCsbPqvw4ZdZ05parV7SnmbN9SngGnnHnEoJXATLaC\nAlJ53A5886b1rQrC7u9Udtbt9pLTzCW1XxaWkPIU3vSUxO3dkHCuCCJFaL9RG+mS2VLbh+fO/wDo\nOWKSScd/jyvI66/1nXNP6faVd2esaxo2oJub/p4u6glT9klt2VvqCAqCQFBSFQMlREFKqw9NeIzv\nSPTSHV2/UVs/r7Ttsq9TdOMtm0TDcMwQlwGHG17gQIxmaq8V5OtyXalXCXz7vfg5ksag4qPN9+bH\n051r0k2XG+qUOuapbutqYuFtpetHCkhCUvwZLIBKyUpUVcEHBHo/gx4m+D3Ttt1Sjr/oK81dDlk8\nxbarpj7hbsrlRR5C0oWQEiUOCVZO/AG2us3Vkh0yfe/9eZcPSsik/wA9S4648bvCbrjQek9Osuib\nuwXoenqttWNvfLSq7eWpUXC3FJXsbSpSCoc+ogRyPIOvF9KpvVWvTa7htqxskKL5u0vi+eUUhKkB\nAIaJSSrYpRKdqhg+mvLpoS09Y3uqr57fZ7nozyhmfUn+f6PJNxW2dy5Uk/6e0e//AHzUUqMlQBkC\nK+kfPGsrCFbCJUIUVEHvyD/2a2n9Wcf0210s21oym2dW4H0MgOq3hIIUsZUBtkA8SY5NTbktljrh\nuNQZ3M3em3LGlhNk1cWqG7fz05IV5ZSlxxRkytQKuAeBVXrFj/CtUudOS9cq8lWwl9hTKpxyg5H3\n7e3FOpye4qjVbKylSUBKVI9XmFW0gDsM/P1xTTe3Is12guVpYccStxkKIClJBCVEcSApQB+TSr5F\nm7daQ4jRWtYtLZ5LLZQxcPOOJKS+srUkIGDGxInmCDJEgVjtLq/ubRzQbK181V1cNOBKEFTilpC0\npCQPfee08fM8xqS3LTTNDcUpIQNwUmM8+/24q807UNZ6ctFXSNLCU6navW9vcPsE/wAtQLbhbn0k\nwVpmDBMiFAEdWo0QoVqUYAMYnBrZv32X0MeRp6LXY2ApaVqPmq4KjJMZB4gUadohrbyDtj/cVvC9\ns7lTz1/arccUyUoFuEMJbcAASogJgiBnAJJme5rVlXqbNs5bN9PuIZsQ5ev3GxTylpUG20hJhKIl\nBJ/q3ZEiOZwDWdQRbuWRWEWq3g/+XClbA6ElIWBPICj+9cdKb3K/Q0nrm4uXlXD7i3VuEqUpRlRU\ne5n5pJdWgrCVwHE7VY+f+grujkm4zcWq0h0AEoS4ACDhQBB/YiukuekHhoDvUepahbsvrvGEJt20\npKNrzZdC5R6UwAPRyJiBEVxObitlZ3GLka6laLZa2zp2r3q9S0uweLJesP5anmQsk+WVplO6VEFQ\nMSJGIqCn7W6fb0XRdQuGbZ4oKnLxflpDkHcYSSAmY5k4GRMVzVpNrbn5lcl25Ks3RDyFrCPRCY2j\ngY/7/erDUuoXNZ1l3Urq0ZaS/cecq3s0hhpIJyltCRtQPaBj5rpwTdnPVtRn07qy+0pN6LBjynHU\n+W3cea4HrcbwolKkqAKiPSZBwpWATNUzrqQltaXCtQyRtwkz88/tRQUXa7hzbSRYJ1HV9TLbKVFZ\nZac8tKGwNjYBUoCBwBuPxmr/AKN6rvumdStdZsNbuLG90p1N3Yu2dukvfmEmU+rEJGcyeRg9sp4Y\nuPQka48jjJSZv9XeJbutua2NF0K30rStXuEPLtW2wUtLClLCQqAeSqCcwAOE1yOmdRX+k3Iu2GbQ\nnOHrdDiTiOFAg/8AOe1cYdIsWLw5Nvzfyo7zap5MnWklXp62bT/VnUOodTHq4FhWpm8N8XkWre3z\nt+/ds27I3f0xHaIrCNYRp2oWV5Y6Y2l6yUhxSLttD6XXUwVb0KTtKSoH0kHBgzydViUUku2xl4rb\nbZoB7e6p3yWUkq3BATgZ4+lb2ravda1qd1rD2nWlsu5cUtxFpbJZZBJJIShMJQPhIAHaK66afJym\n3sYlWa73UE2tiwgF1SA2kOAzIESZiff2M8cVZdPh2zunX1aJb6iyGXNyHCQEykgKBSRkEhWD/SO0\nzzO3GrplhtJOrR3fhDo9jf8AV9qevhq69Cv9lre/lNzi3GpTAKUqClJG0GAf6E19GeCn4JW+t9dT\nqHVVy703oVy24tkPrB1ByNwAatRLiiSNsEAZ/f4ms9oLDmjGM1TpV3W/P+u74Po4dL1QuUXfJueM\nLX4cvBxLLnh50a/e6tZJZZuH9cCnii7bfTvhgQ3BCVKhRUCBtEZJ8t66/GT4n610onpRd1bo8osr\nsL5CFsXdgWlKhbBQQGSsGVBMg4zIkeL2fp4+1Lz5G3G9k64Vc/PdV6Hp1Ob9Iljju65+Jwnh/wCL\nn8K6uX1deXVjp7rNupG1bTyk3C1MKbUo7SVFZ3KOcSvMACNDrXTunv4zcdQW2rXOo6e84y7bK1A+\nSu4Sqd4Ugr8zYChYBHYDIJFfbUs+nksMd4fLn9+Pkj5yhiy3lf8Al/B57faiXLVywttReNq075qL\ncyGytQAUoJkgHAE8kAfY02w0a4tbxV7rS7Z5LaPy7YY3JeUVDcFK3DaAJMwciMc17fejHZbnn2nL\ndl5f2Oh6Z07a3uhas2p3Ukqsb1i4QhS2iNqvMSsiUpUpJHpAIT6So7jXLXriLJLNpbamLtpBS9CU\nHYhxSUlQAVg5EExnYORXOGU5bzVMuSMY/wCLNRLN1cIUplpxaEn1FKSQME/bAP7V6L4UeF934h6/\nfaQu/TbPafpF7qC21KIcBZZWpLQTtUSorCBAH9USJkTVZ/0+NzStoYMXizUfM9R6e6b0qw6Q1zpX\npLrizZtml21/fr1BlTL2rLCFAJaQoQENKWoJSpSVK37yE4Sji+uPDronTV3WuNdV2xZTcWyHbVtS\nQQXEbnC2UlcoCgpMZUJRuJO6vh4ddl/UqMcd9XNcLivT7n082mh4STlSSOLToOidQeWenrhpl2zt\ngLlCt+19Qj1jccE7oIwBGOa+g/CHwY601LoR/rjSG9FvtReuLrTdOuHdRSzcWv8A5JG4g4AAaUlC\nCtcNrP6Rkj6cpzzt4Gqkv2/3weCLhgrJyjHof4C/HvVdadHUHS7abW3U2HgdVtkLJdXsbO4qVtzK\n/WAChCoPBrwW+6Bu9O6ittH1bW9L0/8AO71i6U6VstbSoQvyQopMoICQmcjsZr6KxZIYuuSpeXc8\nviRnPp7+Zd6n0Xq7Gh6T1JplghWmtPIsHr1xweY7eLT5i0bTCiAkQPSQB3MisXjHoNxZ9Tualqdr\nqD1xq5RqJuwSGX0PsNO7UlQKtyStW4lRyQIBBJ8WKdzjLzT/AHPY4XjbrijzRTahJ8tYSBMkVm2M\nG3O1D6XQRtONp5n/AG/vXtuzyE39Lu7VLC3ktq/MtecjYsKO3cUwocpMpODBiDwQa1CCkrBQQsHB\nnHeRH/fFWLUlsGqLzpnXf4ZcGyv7go0+8WlF4lTXnDbP6giU+pMkiCD2mCa3tN0bRta0Rdhp9s45\nriLnzWFNuj+eztgtFCiPUFAFO2SrcRGBWM7hLqXzNIe/7rKq6ubJvR2dNRp5bu0uqcuLhZCiYwlK\nIHpTBMiTJg44p2t4nTdTtn9CvbhYQhtxanbZMh3YCtGzcpK0btyc/qTkgTtrtJ1Ujm6exY2+lsK1\njVT1WGtKftGXFizdt1t+Y/IAZCUiW1ZJ9WBtg81buWeg3D0dLs6mm/8AIsxat2DxeZF05G/epaUK\nSRIRtE+smFFMVn717cGiqrfJT9Q3mj6iG3tPeuLV2ztbe2cbvHS68+8EBLqkqCQlKARCUk4TtEkg\n1ouWag5eIRd2F6GmEvF1t3ywkEokISraVqBVtKQDwojA3V3FuKVnEkm9jdv7jS9QTaXGk9OKRb6d\naMsv79yvOeMlbji0bclZISIHpSkEqIJVX3tlcaZetOKVbOq8tu42oQFoG5IVsUkiARwRxSO2zJV7\nmxpLibWyvbm96e8+3vGFWtu9vcbSy8lTayoEGFKCRBSqRDkwDtIrFh5srZS9AWdpEwkgZE9jkCu0\n1fJHwjE05cMuIWhawpKpG1UEfI/aul6kFkxZIRa6bqSmby5curC/vkFpx+1kowgKKDK0rkiYUkiT\nmpJboLh2c9+cUVgvblmACSo7oHYH6Yq/u9Z0e/sm2bG0/hTlvbwva6pf51QdJSVY2hSUKSMAA+WS\nfUrMlFvgsZJbM1LZ3VW7W5u7JL35aUMPOJwPVKkpP12KMf8AtntW6226+44mwccsxaFNykvFDbiF\nFSU/+pgmCUxx74ya5dJsqtovvD/orozXdI1+/wCr+vWenH9NtS5YWqrJ24cv38w2nZhAxlSjjGDm\ntfqnpLpDR9Dt7rQfEFvUtRUFfxHT/wAi9b+TlGzatYAdkqMiEkFBiRBOeTLkjkUVC157bfI1jjxy\nx9XVv5HL3TenvXVqmwQtSEtNpeClAhbn9RTAEA9pk/NXnUnTV7a6nqrlp063Yacblttve8pbdr5q\nlKbQHVRP6Fp3H/SriK0baScn8jGrdJHP3+lvWepnSn9QsC4wstF1l9LjWCfUHEyFCZyCau9A6P1r\nr/UmtM0JrztVcDirp++1BllhagCoQ66UpBKRwVEkjHtSU1GPW+F+wUG30ooda0C80DV7vRNUNs3d\n2Ly7d8NPpeTvRIMLbJSoSOQSPbFaSfMacbfCkAnIKSCRB9v+a7jJSVo54e5vamq6Nk0hm+de0pNy\n/wDlA6pIUD6CpRbCjsJBRPYkQCdpiDOmJds2r1OpWwcX5ss+rekICSCfTHqkgAGZSZgQTFUVshuz\nGiwuFWdxdGzeU20pKS8lB8tJVPpJ7EwY/wDice2fR9Yu9Lu0XLLFu+UNuNBu5ZS+3tWkpV6VggGF\nGCMgwQQQDVdSCtGPVXHby/WV6U1ZuuKO5plKkJ3Ek4SSY5iBiAMVlY6c1G4cvLZ1tNq/p7Ti7hu6\ndSysbOUhK4JX22CVEzirGnsmR7bmrZaW/dvKYS6yna2tyXXQhMJSVESTlRAwOSYAyahcW6W3y1br\ncdED1FEE4ziT3q2De0u41du1udHa1RdlZXP899ClLDbym0LKAQkGVepQTI5X2EmtJJabaSoAblgp\nc3EKHPYRjFc13Rbb2Z02ovs32mBrQ+nNlvp9sFm5aaBdUkuI/mXJEpIB9Awn9SZkkzzF3e3Fzdu3\nbiW0uvuKdUGm0tpCiSfSlIASJOAAAO1E1JhqibVlfrD1zbMPQwgLcWhJKW0qIAUT2BJA+pHvWvve\nAUA8pSVRuAPNdckM1hdCzvre9DCH1MrS4WnUSlRCp2nOQYE8d6sGdY1ND95fWCWbJTpD58qG1Njz\nAQlon1CFEYTmBPYmuXFN2W9qKraqCsjBM1YsWbaNJevrq28wOrDbLgfSNi0wVSiJMpPwPrEVW6QS\nNZ11NuXGdPu3lMOJQXCU7AqACQUgmQFTH0BxxSDi0pWtFukIdG31ICiIIOCRg47e/wAxVXqQ2LnT\nlm1Zvmrk3LjoJfQltY/LrKlhKFEiCSlO4bZEH3BAwMWF882t9Fo64hsBaiOEp949vmo2lyDKdQDX\nms+Wlxh1JQEOSQjPI49Q9/k+9a7rCkb3E7jblZQhZBAURmPrBGPmoubBcuXVv/DdN0Vi4t9m5T77\n7TCkvJU5tSWlkxvCQgFPaVq9zU7/AEJek3jrzbX52yccfYt3Xh5alBGN6mwrcg5Bg9/eDXDl0uvM\n1rq97yNZ1uytn7xi1bFy2uW7d12ULT6wQ5tCiASkRBKh6j3gib7us3SG9NunHdje3Y0pW1Ixgxxw\nefY0tf8AtyTdL3Tq+jvCDq3rK9GnaBpxvrnaVlu1V5uxIElSigEAAAySQB3ivqLp78LHh90P0/pW\nteNPXOlaV516izOnaXqbL9+46pKVeoKIQhKfMSFSfSUqkpgT+c9pe1JyyLS6VNz77Ljvy+a+B9PR\n6VKsmTg9V8Q+rdL8POn2NM/Db0podnpxR+Yv9TW6nUL1hhKEO/zHgdueSEHaAmASCSflbxb8XvE6\n3GlaZq+tr0xVnYF20Fvbm2eeQ4dpUpaYWvckH9ZIEKAiYPn9leyVkl+qy4pK7dyW3Lp7rlrl/TY1\n1WseNeHCSfw+B4k7rb2rXrTWo6l5CXnAh19YUpKAT+oxKiOSYBP1ms+kMPXd3+Yt9QQ3b2zqd19d\np3MpQlxsBXlkErgqBKAFEpP6cGv0/SsK2Wx8lvxHuzT1LWjdXC32dO09KW7Ji3IS3sCS2ltHmJG7\nK1FJKjmd6jA7U97qF/fOebeXTj7m1KZdWVGAIGT7AQK1jH/2Zw5diLTTakJ2qJWV7SI7V6d4eeD2\nu9Y6RfdTaqsWGhaEypZeukFtt9aCVqtkL4DikB1SZwSjbIJFeXX6yGiwvLP5GunwvNLpiVXiR1T0\nneWdj0p0dpzTWlaU84tm7WygXVyVobStbiwN20qb3pbJPl+YoAnk+duEJMpUTWukjkhiXicvdnGa\nUZS93gyW9zdNNqtm3Vhla0qW3u9KlJnaSO5Eqj6mu1Z1t/pCzt7y0fcRrbzDts8hbQT+Xt1JTtKV\npIJK0LcCpn0kA8mus+NZV0Ph8/AYpdPveRyepam7cvFxrzGgUJK0lwncuBuV9yJrSTcrylZWUEyo\nBRANbqKSpGbk3uzZsG1uqdSw2VqKJG0nGRJxjiecRXoPVPW2t9PWFp0dpGtrTb2DQbdASiVuKTDh\nJ2AkSSEkqVAAhUAGvNnxRzSjGS4dmuOXQmzln+vurHll1HUOphwj1bLhYTGewOAAo/vVEq9u1LDh\nfcKgZkq4P+1epty/yZj8Dat9XuUuWp895QYcS4ELO9MiIwTB4rsvErq7WbzU2QdSum7d6xsblpDS\nFtISs26QogKzAJcTiR7EiK8mXTwnljOSur+HbsejHmnCElF+Rwf8UvS06yu4Km3glCtxmUpyBWa2\n1nUmW/LRcEN7doSQNsfT716PDjVUY9cj3XozqDw2f8NLOdTvrDxCRqKGLUt2zSrV1lO1bTiysZWH\nABtO1ISkEk5B8V1PUAfzdtdWFsXlOCHhIU2U4ISAdpBOeOeIrHHp/D2Um3z9+P4N8mXrinX55le5\nduOpb81tmGkhsKS2lCiBJzAEnPJzXU6L1jbadot/pmnaSwxcXamXEXTh8x9otqOGlQCid0kz/QK6\nzYnOqexxiyRg25Kzt+q9Q6E6i0HT9dsdO0i2c05gs3VtbWZt3lvKUfLDm55QWFArJcQDt2JBSJBP\nlllqX8KdOo2inGblRcS2WnNpQkpI5mQMxEZEiaw00Mij05H/ACa6meOUlKCo29GvtP1K+CtbdaSU\noeedfunnD5ywlSkp9CVHcogJEiJUJIEkZdG6rt9FS4t3SLTUEuh5vyrnftSVo2pcQEkQpBkpJkSe\nK3nilLZOv4MlkSptblXY3Fldao2rVFKYtluJDi207lNpJyoJJ9UZMSJiJFWib7phF3dJuLBd4hQU\nGXwC3KpO0lAMBJBBiZBHMYLJDI1WN0/MkJQTuaNS3Vp5F8pvUHmAlCSwyWifOXuAIJBhMAqMmePm\nrV7qXT3um7jTNSsLpzVnrhtxV2p3cFtttqSgEKBUCN3ZQTESkkA1XByavb+RGUV6o6Tw/wDFrQ+l\nbPqCy1fw60PVUa3ow0xpTiVBdk+kJi6ZUSdrhKBv99yo2yI57qnq3R9fbtGbPRzp7No03bt26XVO\nNtjaPMcTuMgrc3LKZIlRAgQKz/TyU1K7XPz45+Bs88Xi6K3/AOjmVhktLW3dpUUuFtKFAhW2P1e0\ndomfitu6XrSLVoO3b79lbLctLV7cpTIg71pbJwMrCoEfqB716L80eVehdXXQmtPdMN9bWHT9/b6C\ntTNmLq4UlQduij1hJG07SoLIwYGCSQTWhqegs6S8qwutSadu2wtDqLfa40h1LpQU+YFbVDaN29JK\nTIHuRzGb2XL+2x049zDZaojTrO4TbtvN37iglq7auCjYyULS62UjneFgc4AUIO7Gm8p+5Sq/uLzz\nHFEfrXKlc5P7f4rpRp2Rvajp2kWRfvbx6ydu2C26i3t3bkpdbUoENrJQmFbCUkiBu4x2rW3f4Yyi\n5ZbRdLvLR1tSbi3Q4lvcVoJTJPqAAIUQCDwMAnhy3o62XBm6bTca3f6Z01f6i/b2H5lRYgoSlp53\nakqlZCUyUIBUSAAmZxXa6f070F1FqupHrrxOvLdWnuraL9wpV0q4CZP8opCiqTuAP6ZUCcGa8HtD\nNqsEHLS41N9l6t/jPRghimv+aTSKPWNE8LA3c2/TWu6vdXn5sC1L7KW2vywSorW4SAdxOzaAIACp\n7VVu27ltZq061uVIbccQtzY96XiAdsgKKfT6iJz6jW2DLneOPjqpNK0uE/KzLJHHFvw3aNV1pV0x\nZ2L9s2G29/lLSyhtStyhJUsCV8Y3ExmIqOsdLtaXaabqA1G0dZ1IOehDgW4yUK2kOAcTgj398Gt4\ny3pGbjas9hs/DLwMv9C0rWLLxAu9Pd8tQ1D+J2hQ276W0+ZapS0sLQl1ZSobi5Cd2wCYw2XQPhJb\nM3lzpfjNZs3FrboUhNxp6gh1xbSFKQgqQMpIdSSQM+VE7lFHNOSal+fcdXTwjldf0fQ9EstV0m28\nQby6DV95CrZu2SWXrdE7HStDikbgSobcgSYUqTXD/wDkrfcu1urh1lKwCv8AKgCewnd8f5qQt3sV\nqt2yzddbvQdR1a7ur25c9StiUrX+qPUveTOPbuPeoM3Op6hd3KbG1ccVqH/quuqWtTqt27K453cn\n35q9NK3wiKTsvOmdd6x6OvHNP6adTbuaqyqyuR6HErQ4naUKKpAG0xJ4mcGDXQ2Gg9XWj2p6lrfS\nl/qa7q1TaNXC7dhbbC1qTEBe8QEBYRt2mY7SD5c+r0+GS8SVNp1dm8MWTIvdRh6W0Hpp3UHU9Y6h\nqNotCihKG7RDW5UYbATuJUVYgD9u2/1NpHQNvNtZ9NXNo0HUI/PXrDzaUQJUFpidxBERODXx5Zdf\nk1qjFqOOrVO3L6/vR9Dp0sdPcrc78tkS1TqrpNywGlNKbTZoaFuhCUFtp1ICCQBAnKEkmPUobjkz\nXHLsNOu3nv4Z0u7dhgBbymbdSg2DMEwMA19fDGWnxKWaVPl792fPyNZcj8Nbdiitbly1sryxtbi9\ntW71hLVy0wrai4CXQsJcE5SClKo43JSYxIrmGbUuxcId8kyCGxKiYxE/Mf8AeK+jbaPKqOpXpHST\ndp+fafQy6ox+UW44X25UoQr0bSQEyYP9SfkDDrdhol7pVlcaQhw3X8xu6bWokYV6ChO1ISIJn1Kk\ngn08HCEpp+8d0uxzRtHmlFpyzcUViUGYAM98Qe/euhsrJsWduwtr8u6Eq3OEhck+4I+v9q7nLyZE\nrZ6F4cfh3R11aq1N3qzTLZkNvOt2wuGVXDobQ4tct+YFogIGdpwoKiBVVqPR3T/RGqXNtf3dq42y\nt5pK1tquN6FBSVbT5WwqSIIUYIJBEEY41PiQxKUFbfZP/aLicfEqRyuq6bo93rKrSwuwzZtjeh24\nBCClKSSDCZ3EgR9R9oNdPXl47b6PpDL+qapeOhtDLTKluJAHoQ3CiVhQUP6f6RBOaQydEOrL2Vv+\nTrp6nUS2Z6A013Y51Zrlp0+4vSXb+3QGnHjcrQFJQgwTtW44kj1QBkwBE19zpnThtLS5unG1fk3k\nMPWlsotu3LMqUp0uqK0oXwgAJjAMGCTlizzyLZbdmazwKD9579/6NNHSV8LRzVFL/KtpQldslSFk\nukrA2hQG2QCVSYEA98Vq6gvXLm+dur6/cdurknevcSp2f1Ex+qe571rHJDI77rb+zOUZR4NvSenb\n1N7Zfnby301m9cDari4UpLbQkSpwpSSAAZwCfivR+hurfCe31Wz1XxT03X+ofJKGXiw6lPmMNhKW\nwHHCSAEjaAEjCEiYMDy51k1KrA6839tvXyNsXThvxPodbr34j/IN9aeGlmx01oV/b+UuysbZTSWU\nqd8xbCnQrzHh2lZVCFkCK5xWudW+K+raQrWNct02qrpNoHW7dm0YQFESFqSEpHBMq7k9yZ+RH2dj\n0lZc0eqa7/nmfQepeoXh43SOP1CyurzXbawu+qGLVN0Ap10ONpS0iShRUncAkwknaSCQQRyK5XWL\nN3TNqNRKnFvshy3UFxCTwo8yK+7hz2owqrR8zJj3ck7MtmNJ0+0sn3W2769cL6XbO4aKW0IU2kNO\nBxKwpSpUpUEAAoT+oKIGvqml67oiLVzUNJ/LtXTKbljc2drjSkhSVA9wQQfvW8U23JmMmo0kaV1d\njUrlLiLFpg+WApLLcJ9P9QHbAEz3k12OleDHXmtdC6h4kafoFw707pbqLe71BKR5TTi/0oJ/1GRj\n5rqUlijbKl4ktjpOgOhdB6X1Z608WuldeZF/pJ1DSH22nEBIIOx8p2ytuRO7ghKh33Jo+vPFLqrr\na91TWbu6sWmFlFuqyaCUNQpG0KbanJ2tjcuCZgqO4yfk9EdbqW57xSVfFv69uf6PdJvTYVFKpN7n\nm92+h18LbtUMAISkpRugkJAKvUSZJEntJwAIFZEOaZ/C3m3LW5N+XkKadDoDSWtqt6SjbJUTsIO4\nAAEQZBH2HdbM+dabOstEWnh/Y2WvKukOdSuO72LbalxNkztUkqdSpJh4qIUiCCjZu5UkjkLi5/MS\nSVJWpRkwAIxH35/tWeOLlJ5H+I7muioGtK1KBUsgERJ4irSw0mxvQoN3zMl1llBfeSwAXEqlRmfS\nlQEqkY+sjZ2uDhFhodtc6Qh/qBPlPM2kNKS6wh5tRdSuNyFGDhKiDBgpnGJWg2ej6um7d1IL8zb5\nbJF6xbDzFDa0T5nKAsgqjhIJkc1nTcrXoddkmU12jTUXT3kF9Nvs3MytK1kkSAoiB3zGR7VppV6s\nd/jitTgypC/1qWAqcSDP1q8f0640fV7Fer2drftKaYuPJD5dbdbcSFJSpTa5SSDlO5KgcGCCK4b3\no6inyYbPT+lHrx9q76gubZgWj7jTgs/MJuE7vLaI3iErhI3iY3cYNU8swsbFLVHogwAZ7jvirFyf\nKI6NjTw6t4KCXVNs/wAxzYJISCJPx2q56i1yz143F9d2rzmpqdQFXKVIQ2tpLe31NpT/AOoSAVL3\nZO4kEma5km5Jo6TXTRzYBMpE44qZQtKACDH3itDgt7RWjW+jKuhqNydTccW0m1S0EtoRCIWpc+rc\nC6naAIgGTMVk1K20rULJrUdNSwxeXF2+lWn27bqkstekoIWtSirlQA5ASCSSaytpp1+eZ2kmqKZT\naxACSAcTFRIQEhO47wqNsYj6+9aHBt6Pp7GqXRtn9TtdPSGnHPOuN+w7EKUEehKjuUQEjESoSQJI\n11o2r270mPbNL3otbWbr7mnuMMIsrZ5laUw846+FJW5/qACRtHxntms1zrTd7bXTdzprDt0+tpz8\n4p11TqAhJCkiV7SFkgmQSNo2lIkGz6XK47IkW0qZrWblr5Fwy7YOP3DiU+S4lwjyYMqO0fq9M+0c\n1m0+wvdeurbTdOt3r7Ubl5FuzbttlSlgABKUwZJ7RHYVy9t2XnZGk8tKS4j8sltSlyCCfSM4E9sj\nnOKglCyjd2MgSOff/auiF+7q7GiXWmah0nql9a3dqhq4K23jLNyMyhUJOD8YMgFQ9Rw6lp17Zafp\nt/d3dq8jU2l3LKGrlDq0AOKbIcSkktqJbJ2qg7dqoggniKezktzt+SextdPXI1jWUMaja6a4w21d\nOlt1SLRs/wApSiUqTt9YgFCTIKglMEHaae+/Im5f/KIeQxvV5AWsFQTJjdAgmI4gVI2p9Pavzcj3\nVnR+HvUPSujX11cdYaPcaiyLdX5ZLNz5Km3zGxZIB3BJztOD7jmsF91E9aKdFpc2bgeUHUuLbS64\nUmfSZEAjuB/evLk08smZuf8AjSqv7N45lDHUeSmveoNQvg24+40dgIAbZSjv3gCa3umep16RrFlr\nD+nWN/8AkHUOi0vGd9u8EkHY4n+pJiCPavVHHGCSXYxc25dTHeawm+fuLoWmnsee4XChDKShBJmE\nAiQnsB2r0jwp1Dw013qHStB6l0i20dh5aGr7Ul37jTW0ASspSkxJE9+fvXg1WnzOKlgydLXO12vL\n0+R6tNkx9dZY2n8qLTxct/w/aF1pq1h0lfX+u6HbE/kbu2ccSHB5kBsBZmAM7icxxJrzNy701q3L\n1v07eNNvEC23ajGJGVIgkg59vqYrz+z/ANdOPXqWknwq3+Z1nlpo7Qi2/O9jX17VbR+zt7a2sFWd\n00lKHUhxTiVj1ErJVkH9IgYxXZ33hmi6sOn3F9fdKovuoGkOptlXIbVbFZIAuFGENZ9yAAZMDNer\nUZpaaClGDlv25MsWOOVtWl8Tnr7pdjRernej3etrV/TWndtxf6e6XbYK2EkgpJSrumQTwa7K/wDC\nLo/Tktqs/GnQrkFQU2yl5tYJ5ynfHbMj4rP9Vm6I5I4X7yTa7p+T+BnKCU+jquu/Y6bxY8P+lvA7\nUNE0B+5s+oDr1ra68vqCyeaWEMub0qaaZbVsEEEwpXISIAkGw8Lr/wADOpvF/p3StY0jqS/6Nt1F\nVxpdzdsKcec8sKcUhyGktpKkbtoKTtSEzPPog3nipyhT4ruq2+pFBQdM9e/FX+G/wm029s9V8Ger\n9P6et9RbSw302LtGo3ztybhSf5ZadcUBAGJA9OCSYHi2t+AHiv0tpjy9T6u1FhrT3i/dNP8AntpY\ncbBgkTIKQT9JxXwNd7Uw+zcuPT6rFcpfB78Vv8vie3DgyZIucZVRxlpoPTZ05nWuq/FNGqWjKXXR\nYtvuFxSgVKAQCoHcXHJyBlSj7muTf610C/vCNSsry7SWkMJuLpYddQB/Vk5/+MgcV9HDHPqm5xh4\nfTsrW/rx24PO5LHOpPqTPVvETxR/D9o/QGmdJ+E/Sx1K+eUo6xqOqaZ+XdUEqbW35YQ6qJIUCCTg\ndpri7Xxb0u7TZ272lsaallpxlTunW6G1raWFbkLSAlC/1HKwqBgVfZGgz4ISnr5dU3KT5tJX7tL4\nJc8b0Y66bye7p3SpfPz3/opdJtb5u1c1ZtKi0w5C0pWpKylUiCocJIURg8qGO42elNBvkXp1p/Rl\nXtqw2tS2Uvhta5G1KkyCVQtQPpBPpVxBI988sMdylscKEpqo8mtqVqL+3RfWtgpl1qRfLVcpV5zy\n3FqCkIgKCQjakj1QQSSNwAxLUm30u2SoNSFlUyDkxzPcT+9RO6o7px5O68J1dBazeX9p1fqVlpy2\nbcOsLecS2lwj9SSTzgcTXsbPgp+EjW7WyttO/EVbM6q5bW7jrN7ZFq3QtSUl1PnB4AbfVGDJgfNb\nwwSy30tJ+p5nKSnxseWg6F4e9VXeo9JOJfVplw9bW13+bK27lrepCllvI2uNKiATySDxHRNdKP8A\njEnqzr6z1LR7DQ27lDV60u5bZIDjocDdqy5udBlIggcSJiRWUE3fX2NJNqpUcLa3Hgb0tfafcazp\nGuasuzg3dl5Ytk3MOfpU8VkgFPO1IUJwcVx+reISrLrZ/qnoBu56babuzcae21cb37RIJ2JD8BRI\nBiZ/xXk02LVTn155Jx3pL1e322PXLJHHHpitzT0vX25vr1y8H5p+3lALAdBXvSSCSQE+nfmFe0Z3\nC96e0Swv9Kv9QuUh11m2W4hCWEqJc2koA+CrB+OK2y//AF49UV5IkbyvzPRPDzwD8RfEyzULbp24\ns7PTgyxcO3WGkrcc2pWUkAo78AyU4zg+g+Jf4RNH8L9DtNfT4g2moNtF20vH/NQm2F82la1MtLKi\nVekNjKQSpZEYmvi5faWWWfwtNByjvuk3a247ctJv8XsjgioqWR02eR9Sr0G0vre+0J9m6Km/KKHr\ndClNqLaQ4tSVEpIJUoDaf6ZhOBXF65o4eLa7xFvZrBSssJtgypYVBCRAiSkyJxH2n6Gkk8UUpvcy\n1CUpbC1Tpy80J0abf6b5bb4t30gPI3FpxIcQN2QCUKB++R2rd6Tc0VrT9Qt7nTrp555v8zZsfxAM\n2nnMKKlC6SuPM/lpcASkpUSsQc7T6HJzg2n9jJQ6JU0VOvap02xo6LXQPOdvLkD888/bpKFSlC1e\nWVEqQUr3JJH6gJkBW0crdvNvKDjNq2wkJSgJSVGSAAVEknJ5PaTgAQB6NPCUY++9zHLJOVR4Nvyr\nBkWN4tpq4Q4Fedb71SmDGSMieRn+1WWjdP6p1bqdvpGnKdcCypLKXFKUG0gSe2BAplzxwYpZZ8JN\n/QmLG8s1Fcs9Q6o/DHr3RhavLjqrQH7Ndgm8dvLV9xxq3K2ypDDsI3IcWUlCSobVEghW07qs7zxk\n0rw08P2PDfo69R1Lp2qp/Pa1barbhLKboKIaLIadMKDcbjumVFMenPyMWuy+014eG4Jrd96a2qz6\nU9OvZ87ypNrseV9X+InUvW1xp7VwUKTY2ibK1bQ2JbZBUUo3n1LACoG4kgADgADjrpxsMt+Xv80y\nHJEAZwB+3PzEYk/W0+GOCCxp3R4tTnlqZvJIx2yXbi5ACVuLUoCMkk/712us9KXfhu/a3er3FqrV\nFJcK9OWHEvWCigeWtcbYcBUSEyYKPUIIB6yZEpLH3Znjg2nPyOGunQ68VBRM4k1uaIjSnLlSNbuH\nmLYW1wpCmUBS/ODSyymD/SXAgE9gSa3XBny9ybOvO2+h3GgotLR1i6ebuHHHLVBfQpAWAEOxvSkh\nZlIIBIEgwDWGzsbm8v2tIdi0WVkQ62oFKyMJIAJyQAMcn61KUd7Fto6Prq4t2EW2gNafa2lxpW9i\n78lxDyrm6k+a6XUehSSrCQn0hKU8mVK49t9bJJSlJJSU+pIVgiO/B+azwp9G53krq2RAiTITmJM1\nIqwkBtPpwSO/ya2MwCjtydxJzVzqzVtZ2+lXWm3j5uHLbzXgVJhp3zFgBBSSR6Qk+qDJMCIJ5lyk\ndJbMpvLUQHSFAKJAxgkc5+9TacbDRa8glav693A9oiujkiG1qdQ23kqUAJ+tWB1nU7XTbzp9NyU2\n10+26+ymNq3GwsJUT3jzFd+9RpPYqbXBoslkpX5pcC9v8vaBEz3+1SfuXbpafNUglCEtpCUBOEiB\nxGfnk8nNO+5CVhduaddN3aWGFqRPofaS4kiIykgg4NdX4ZXPTFt1NbXnVfUmqaHZMkrXc6Wz5lyJ\nBBDcqSATxJUBB78VlqHkWKTxK5VsuDTHTklJ0jrdN0Hofrjp/Vl6Xd3v/iLTn7JrS9MatgLe8YUQ\n04s+sq84rLRIAg7lnERXn3VBtLnWr29tbJixbeeU4i1t0KS0xJktp3qUqE/pEknGSax00pN9E+Vz\n9j0ajHCMIzg9n/DoqLe1evHxb2jS1uLO1KUglRPwBUijy1hp307J3GOTXrtcHjLS7trHUUNq6dsb\nhlFvbNm6FxcoWVPYC1IASk7SchOSByTzVc03Y/l7lFw2/wDmYT5BbUAgGfVvkSccQeakX2fJWu5l\nbGpaQ23qFtcO2yrpp1ttTL21Sm1AtuJVtO4BQKgQeQTyDWK1QpSlABzzlx5JCwkBUjJn4nuM1btW\nKpmS90jUdMbs7zUbF1tm+QH7cuJKfOa3FO5J7iUqE/BrK3pZesfzaGbhC37gM2bSWysPf6wFe6Zb\nxBnd279ZlLC0pKm6++/7bnMJRmri/wAX+zQbt7i5dDbDTjq4J2oSSYH0+KakuMny323ErBkpOD+1\nS+xa7mxpyrdl0m6sy8lafT6inP8AvWxroBvFBrSDp4ASSyVKMHaJI3ZgnIn35PNcpPqu9i7UVB2k\n7UGUzMnGKz2X5JZcRePLZQEEpKUb5X2HIj610/QhrOKiSDIV34qIUoeqeRmaoDzNxkn5jtW1+ZQt\npCUNJQpCSFKEyozgx2rlqwZ2Lu2Fo9b3FmHVuwW3fMILcdgOCD3kVktNU/KNnap5LmUBaXCPQUlK\nkx8gx9Md6nSwdFpDY/gV5qDVgHVstBTKwqQlQUCreNpJG3dABGYM4g1Or6szcs29ym+fubt5BN0h\n1gIQyrcYS2QolSdu3JCYJIgxJzUblZ0pbUY9Lu7c2V9av2TTvmoSUqUpSQ0oKwsAGCqCRmRBOK3L\nPQG37RNw2TvLgSBJIOYxUnLoOoxUjO9p2r3qQtT4CAsMoTCiocwOOMGtpzp57p9wP6w65ZvBAWlL\nsoWoHghPJkVi862jHlnaxu7ZkX4l6tpL+n3nTzv5O60x8XDNyUy6FzMwqRAI4iuotvxaeNKNO1bR\nNY6l/jGm62q7dvre8bA8559tTZcLje1yU7tyUhW3cASk8V58/sfSayUZ6mHVKPD8vgdrV5IJxg9m\neO/mXPMS6mPSZA7VO8u13l49eLbbbU64XChtO1KZMwB2FfU6d7PLZFawsnaPT7DtWxYG2F01+cCw\n0FDd5YBVHxODVB+hXhP+KP8ACPovhrb2/VHgHZalf6ayi3fv3Glee8t131pUtGJ2Kd25STsmEyYq\nOtep/Cvw80e8Y8Oeuel7ZrVW9z1s3at3Lyrd5G5KF7N43QRPrKkmQdvf4ntfSvVab/jj73Uk1fMe\nP5vjbdns07jiy9V7V9zxHpzqPpd7TNff6v6a6dRdWds1e6e1ZqVNzvLRLKnG3/5f8pxSj6FQsFBA\nMgcVo2h9Oa71Rdaq8tqy09i6LlvY7vNISFbkpUpW3cIMEwCR2rpyyaZzik30pJerrm+51GEcrj5s\npeodWvdSvnVtW7Fk2Fq2tstYA9pUSY+9VFtZXLCVXltfFC0kJO3cFQocyDEdua9+JxhFI8uRNs2D\nd9QK8kO6xcLDQV5PmOKIQkqkgSYEnJitvTNLdu3FNsn8qhPlrcS0+4rzFAHMTE8/ScVJzjC5IsYt\n7M6tHTvSL+l2pt7fU13qhLyLlwKYnO4pETMjEnj3paz0d0vp/SWt63eH8zeoebYtv5/lqTBQSlCY\ngkAmRHAxHfz+LNSST5r9ztQtNyON0O20W7uLVpWnoSpwhKwtLytgnKiEpz3Mewr6H8LPEHwQ8K+o\nbb/xd0m9qOnjTUqacRbFfmXiltr3qStYEISkelSVJO9QjIVWGs0ubV5Fic6ju3x8kb6bLjwrrrf8\ns9utfx1eGnQjLK+mtAtOsHdQY/MXFs/pv5G1trlbilONqSJLyBuG2SYKZEcV82a/a6L4qdUaYzpG\ntaPaX3WGqXDrumIfuwzpBWsEFwrRGwgn9ClkBBkzArrDifszSuFr3U91t7tLb6rft3GSUNVlXSuf\n3vscunRtM6Wau7UWwcvXmbhgtPaeVhJKSgLSXRHCllKhkKAIyBGa/wCkNY0TRtP63uL15I8xDK21\nvFy4GxKFturQR/LRtU2lMk5QR8V43r4tRcmn1vbf6fiPV+ma92n7puJHWXi9quoW62i2/dTqCLGx\naYtLQvNNgLecTKEI/lIWTtAJVwPUa5LW73qx0u6Y3ooU1fOuXLDYY9KSopKlMg4H6AkqGYSQTE1v\ngeGWbwLprf8APp9DPN4kIeLWzNnpTpFrUX1jUdOuXHngQ2jzQEpUCCshIyoBMjJAH6jIBBsutfDP\nRkdY32k9M6XqDDDD3ksWF0v/AMyCd0lS/LAVtISFSEGVpAEAkezNqIYXfVWzf0PFjxSy20jptL/D\nz1Dq2vPaw5oWn6SyHPzKLEPEW5bQVFTaVOFQWf5avQFqUewzXZP2/SXh3o+i3nSui9RaV1QnQLtm\n/wDy1s67+euHC6lQQUmEMltQQqT+kKO0yJ/H6v25/wCT1ENJpZUm6dtK1W7re68tmfe0+h/S43my\nrdfFnkPWvU/ix1JpqVa5pf8AC9Mcbbt0hvR02zS0NlYSd6GwVEFpySSSfLVMwa82vLVtttTYvEHa\nf1pBhQzkSAY+1frtFpsOjh4eBbd97PjanNk1EuvIzUttPeurhphm6bKnFBtAJIzV7a+GXU171uvw\n+sWWbrVk3arJQtn0PNFaVbVKDqSUFsQTvB27czGa90sijbZ5VBvg6XpQaR0FY6hrGpMqf6k0m8SL\nFkwG7cpwp1ZiVn/RsUChSQozIrida1/Ueqbtx7ULsh15e9aniohxefUT3PyeTNeTFCU8sss+Oy/O\n9m85KGNQj35K/UdA1XSlMJ1K1XbKumEXDQdQUFba/wBCxIEpUMhQkEd61FNOtbVrblJ7xgn/AJr3\nXZ5S5udXtb63v0WfTdtbuXVwy+241JNulCFhTaR7KKgT/wDEVu9H6jZaZqL2s6kb/wDiDDJc01y1\nuPJcavUqSWnSraokJMmBBMYUKznF9LSe5qpJyTapFWxe3bmsDUHLNu6dL28NKbBC1bpgpjIPtW5q\n1wxrhLqenGbG8duXHnV26whsIUBCEtYSgJUFHH+qOwrrqUFRxvLcprmxcYeWhBlIEgBW6AexMc1Z\nO9OdRt9NsdROaNdo0h65ctmLxVsQy4+EoLiEuHBUlJbJAmNw4nKWWMUup1YUW9kaFvp1w66EbEhR\nBIkjgDNdxbaQ91J09pmltazp5btGrh55ly0Qy/bpSoqP8wpHmFW9SgAomEZ/SIyzzqpJXW/55mmO\nN2m6s5+50DSQkbNaCcwR5Y9vlVNrpe1duPKRqiCQAf0pG4GOPV81x+pmo3KH59CvFG6Uj0rQvw9M\n630i9rzOvOm/acUfIFvDTduAJdU4CTO47Y2gZB3dq5y86b0Do03Jfv8ATtWdtrlgodtXnG3Fs70q\nU4yFISoGBG5QwDxXydF7bj7RzT08INdLps3yaTwYeI2ir8Rem9B03qBi56aefZ0bWWxf2JvEje1b\nrURtXtkqKFBaCqJVsJAyK5K1Vp9pqIRfJN3apUUqLRKSpPumRg+0j7V92LlKG2zPLNKMjFeO2arh\nStPaeQzPpS4sKVHyQBNRRuUggIUpSuABWiutzh87GeyubyyfS7ardZe/pLRIP9qvXdURr2nPN9Qa\npeNPabbhOmNJa8xtUugqbUoqBbSApxYICpUIgTuHOy3XJU3VPgpEldu4h6zu3A4kTvRKSCfYzPFZ\n16PqIa89TKtkBW9RA5+uaXFPfkJN8GFK7hhotNKhDikrPY4BAzzwo/FZ29Hvltfmrm3WhpaZbUQo\nBzJHpMZyCPsaSko7vuEm9kRFmhbbq3QohqG0p80BYJmPScqGDMDEj3Eq00m8vrlliztnHFOrDaEo\nSVFSzwkAZJJ7VVJUSjBcC52BD7q1BglsJUT6MnAB471iRCVJJBMD/V3rrqct2Sq2Mjd08gjydyVg\nGFJkGIyMVt6jcaVchhen2b7S0sJS+HXw4Vvf1LHpEJJ4TmPc81Gndot7UZNOec0nVtNuta0t25tG\nFNXBtXVKbD7G7cUpPISoTkDvNWPiB1teda9Zan1bcuXPm39yu4SX7hbziQT6QXFGVbRAkntW0Zw8\nJxrdtb+m9r88jipKV3tXByZ9uATNJaVpiZTiQCO3vWZ0Q5yTNIkkADmgATkAfWpFWwQDk80BLcqQ\nqME0bjOYxmpQOwtOtVt6OrRLa3bbbFopCz3cUcT+1cfu3KISOa5jFR4IlRJKXCpKUzJ7V2PRXXg6\nTUhq/wBM/NNMu/mWdrpQtt4AQoYIMEA8TIGay1OGWbH0xdPs+aNcU1CVtWj0S48dfDRcoa8JylKm\nlBO6/AWw6XQrzEKSgSdsphYUM8GvPvEzxEX4gata3yrG2sW7awt7MtsIjzFNoALiyANy1GSSc9u1\nfK9ney8+lyLJny9dX28/i39D16jVY8kXHHGjiQ77gVHkQe1fdPAMSJIBE8VJwtmC2lQAA5M57nig\nFMSR3qSVEH1GKgMiXNqYnk4r1HRepbS20HTNFsNYYsXlNrXc6gorKrUq9QAKZyf04Eg981nkuk0K\ntpF9p2g9IaNr+ha30b1AjqFD+mqudUTe2zbCLW42q8xBSrzN6EQDu2gqPA4re8GvHXpjwt1rqbrD\nUenbHV9RuWnWLDTLqyZdYlxC0FZWAAkIlJhABMggiM/Fy4suvwTxtJTezvdV1fyj3Q6dNlU7uPp8\nDyS76vNxceamwZCsmUEjJOSf3+KsLbVrZLVvdakEMrf9YUrIMGCSOea+i9P0QUYuzDxFOVs1L3qX\nSf5TdrbOqcS6pTz0jatBgAJSRg85+RxGbvozqzRBe3bN4VsG5QlDG4eneAf1EfJ9q5yaebxOuSxy\nRUvQ1r646z0t3dvct21NFKFIQS24kK/WknCskwfmq680bqx+7avLy0vHHb8B9oLbA89KjAKADkY7\nDtFeiEccfeXLMZzf+LO70/wU8R9RZsra06U1N25vARcIVpVykWYJASVq2ZGTkAxsPOK5i96L6o0l\nou6xot7YstLLbjlxaLQlCwY2mUYNcxyQltf3OV6EdKs1pLrjyTapbZcKi6koGEkwRjuBVtZ9M9R6\n/ouq67a6O4rT9AaZVc3ikqAt2Vr2IVMgEKWpIBzWGacYvqb/AD85N8SlP3UcxZXdmdVS3dagtpoK\nAL5ecABznBJj+9bd51JqujfmrLTNcsdTZvWAlbiULIbG79O1YA3ekGYOFczIrrLpoZvcnHb0OoZp\nY/eT3Oab1LWW7g3lvfuNvTJUhzbHuMcVfaNrnUeqakzc32s3ZXZI2tOJnc2CchJGRyf71pkxYk/E\n6Va4ZlHJOui9mek9Naje3j1vpzeq3QesCbphveoi33K5SCYTJjjOQa9G6p6b8TNJ1hvT9R0u18/q\nS0Y1R3U79AL5aU7uC0uElSd2wSZ3ESO5n8xrtTjx5bzLam/lyfc0mNvHUOWes+OH4gbXQvDXTunV\nWKv/ABQblp1WmtWfl6ZbpSyhAudiVjete0CDwdyjzB+JerevPEjq7WL/AF3qDX9Quru/eL9ysuKG\n5cRMDAwAI4gVn/8AF9DGWN6zUU+r/BJUowXCrzu7fce1dTOElgxvjnzbfqZen+uutdNsVqOvPPWP\nku2xtbpIuUJQ4laFlKHAUpMOrIUIIKiQQc1z2tWGo6Si2vNQZ/8A5zzFNpUMQlZSTI5ykj7Gv1qc\nFKkuT40pTyR958Fs10c45ruiaY3fBs62xbPNF91pAT5oG4zuCUgK3RuIwBMTXsvhT0bbeElxceLH\nWvXLOkXGnXl7pVrp+nravbh24bQkOJdRu8s25Q4pBBWd+QAUyawz5JuDhGNtrvx9fxmmPGk1NvZM\n8u8VOqehNT1J1zoxnUVouDuW5dpbaCTOEhtuREd5GTxXIpS3Ya0qz1cWZaYbUlYbdS6nKJBSptUK\nUCQRmN2DiRXPs/HqceljHVV11v03X35OdRLHLI3ivp9R6xrtunW7w6JcP32npWpuxVqDKQ8GEq/l\nyASEmAMAkCSK6Xpu61LxHtNM8PtV16y0fSrC4vdRaU4nagPutJ3kkCVFQYbQmcDHGTXpzS8GDyVb\nSMUuuVI3+k9dvOgLC7a0u10vVGdZafs71m7tkPJBLTraVoVG5CkJd3ApI9UEzArqvFzw50bo/pPR\nlXPWdnqfUWtoZv0MJW28tvT/AMqgtFbqFKCDO5AaMKhAJCZArzLrnNSguXbfoq2+Ztsk4+R5h1p0\nT1D4daynReqrE2N25ZW9+lqZ/lPsJeaUCCeULT+9VCdR05xNubu0fJbCt7nnql07pHMxiBivZTmk\n1sYf4umev+Clux1yzqfTOidIaffai2yX2bRNil65dtkfzbhwPKBKS2lAUCoxAUDKSpJ5zxG8Q9UL\nt70m5b9Ovo822Nw7a6LasFDtshTQS2tpIBQU5UUwHCApQkTXzNLjb1mXHlbdU1d9127c9vRHqlKs\nKcTlL3qxOsam/duaZaWDdy4pwtWLCGW21qA/SEjCZAgcAFXE12+o3un+HunW2qpvNC6rc1/S3rVd\nvcteYdPWo5UkTKXEiNqj3UrGJrfUvpy48XS31bWu1K7fldfUmB+7Kd8b15nDNu2b9s9qA0O3H5Z1\noKT+bCcq3EQhWSn0mYwJExIrq9M6v8PdH1YXQ026v3rS83sONwy262kYx+pIJHaDCjwaajTZssHG\nM92q3Wxni1GNT3jx+fyet+L/AIs6fpim+lrfrBu+0HU0o1Vu20JzcxY+clLgtyp1AdV5ZOwpUpUE\ncmM/M2udQX2u3rt7qF4t9x0iVrQndAEJyPiK50PsSPsXLkxQUadPbfdq3vbvsthPXfrcUZ00/Jmk\nwtaXUF1Sij2+Ks+obnp29ct16HpjtgG7Rpt5tx7zPMfSkBbgMCApUq29pjPNfQ3u+xkmqdmPprTb\nLVL9FrePKQ15bjjqwpKfLCRIPqPq+gz7TXd+f0N4datd2VwpWu37L6Qi7sX2nbFy3KQSjatsK3TH\nqBHcR3rPPhyajFkjBpVXPrf9dnsaYpwxTjKSff7V/ZxY6lurTUzqtldraL7ocdZQhIASFSAJkH9q\n6DpHWeitZKLPxMv9VZtW7svhem2jCnVBwjzJWYUTAwDIBniTXl1GnyKHXp0utVVt15b16dvM0hlj\nKXTkfussOneidE6w6y/h3TNw+3oy7soTd36D/IaKvSt3ywY9IkwD3gYr3Hxm1j8KltoWkaF0z051\nKb6xddF/eNuMN/mVEJgJSkFLYBCsernvmvDrMubJnWLTy99L5b//AK7/AA9T26bFihCWTJ/i/r8v\n5OJ8Sz+HC36b0K+8M+les7R64t1qvnNcu2nELWMJDJaQmRuSoFRHxAg1yPhhovhv1jdX7PX/AFkO\nm0W9i7eNXSwp7846laUpYSlKSULO6ZONqVHmAfoQx5Zf4Tv4r68GE5YIuNx7dnX72bl5c+BOk9NW\nytMf1TUdfduXk3yLplAYbYSElvyliVFalBQOABjME1s9V9V+EFx4R9OaN0rpWp23UwuLl/XC49uZ\neVui3LSZxCDB+T3rPFp9V4nXln8lx+fyazy6SMXHGvPc4q+6c6Zs7VvVH79829wwVoabdbU+l4oO\n1K2yQQkLgKMcZE4nl7izWhKlMq/MJCoKmwogH2yBXq02aWSNzVdvLj4/Y8WfHGD9x33MNnZOXilI\nQ802oCf5roRP0JxXUad4bajqXTKuprbWNFLab78h+UVqLQuVL2FW5LRVuKIEboiSkAkmrn1McCuS\nfyVnGPE8rpHLvh1pZaDqVwNkggwPioutokONJWGzAyZO4ATx8n9q9CM2ajTbj7qWWUFbi1BKQDyT\nUVp2Sk4g595qkIkBIg0iCT9PagFMmTFGeYB+ooCXbBxTmcrkA1AZGipO1SI3A4JFSt1oS6FuNpWO\n4VOaoOqserdL6e1vSte6Q0EN3NghClp1BSbltx8BMrCdqdo3AkCSRIzjPN3t1dag6p+6QC4tW5Sy\nDKldySe5OTSSi59UTiEWt5Pcd+9av+ULTTfyykJhwpWVBZ9xPFYmHLRLTn5hlTjhTDcHaEnGTjPf\nGK4SaVWdmJISZT5ck/3qzYttLQ2kXjaw5Ki4UuwFJ2jakDaYMg5mMjiJNldbAz6v0zc6faG+DK27\naGVJUvdkOthxIBKRMA5+o7ZrDo2hXuuXQtLGyuLpwtuO7GGy6oJbQVrUQMhISFKJ7AE9jXPiLptl\nSb2NfVbL8lcBiBhIiB/etTfEggcV0nashmtWXn3AGmfM8tJcWB2SkSo/SBXV6/c2Fpqb2oadY2zD\nDyi8y2LRQZDav0hAdUpRERG4k/JpJKUaJdNFRqXU2odQau7qVyLS2euG0NRa26LdsBCAlIShsJSJ\nCRJAyZJkkmqcq2KU24gSJGTxUjFR2R03ZnNsw4yHUPAcyknKfb6jjOK1iFBsq9RQTAJ4+RNdENm0\nsdQuWH7i1srh5u2CC8ptoqS2FKCUlRA9IKiAPckCt231XUNEdT5KHLZ8tAArRBDawFAgHsQZB4IV\nNTnYFl1X4jdYda2+nW3UfUV3fM6RbC0smlq/l27M7tiEiAkEkkxySSc1h6Wd0vUOqdMZ6k1650zT\nXbhpu8vbdjznLW3KocWhvckKKUyQncJOJE11zVnU5OcnJ8s9U6Z/F94/eHFkxo/QnjP1CjT7YktN\nOLPoO8wIWVYgAxMZiqzr78Wnj54n9Pv9LdceJWrappV1dC+etHnQG3HgZBUlIAIBEgcAiYqub7nP\nJw/WniR1h1/qDmr9Vam5d3tzsD1wUBKnQhISkGABhIAqnc6m1921Ni7rN65b+WlrylvqKNif0pgm\nIECB2rHwoc13s6UnHhlf5izlZVzWZDjJGHFpjuRNaUclvoum6A9cNr1zULtm0dbuAn8s2lTheS3L\nQO4gBJcKQo8hMkAmK7Twouel/wDxEzZ9cO3g0NtN3CLYpSoXBZPlFaiMJLiWweTExXi1jn4M3Dmn\nXxNcCTyR6uLO16B1q2Hi1f22l2Fhotlf2YeYd1V9Pl2yG2ifNQ8psqyZUlSQJgSDGKPqbxm61Fxf\nanpz7bekarauaQy3crRcrS2kI3FJVJSsSmFpggGEnmviYtBjz6vrze9UIp7bN29/Ltuj6ktTPFg/\n49vedfDb+zh+oOqtcdsWdM1Jz/zNqfLedfcUt9Z3Eg7j/SkBKeTx+3KOalcAONfmFFLhyZz9K+/p\n9PjwxqC2/OD5mXNLI7Z0nSHW2ndNaRrNledN2OrXGpWi7W3cugVCz3xLrYmN/pABIMSYg5rXR1Ro\n19ojGj67oe9Vom4Wxd2joafcdXs2+aVJUFoRtMJASfUfVWksdu1scqaqqKdrXdQQtLrrwuShHloD\n6fM2JBmBPGT29zWJd9dvIDblwpSRyAa6UEnZz1OqMbKWXFKLihgSBmVfAIH+ajC3F+SyzuKjgbZV\nXRyZfyqE2f5pFyA6lYQpgyFSZO4fGAPqai+15bbCvziHCtBUUgKBbO4iDIGYAOJEEd5Aid8orSRd\ndPaew49blTjbrrj5QbcE7ggbSFfQyR9qhddQMtvXDatOQpRVtS4FqG1IwIB496jVvk5vejQu9SvN\nbuFuXtw484oIQHHVlRQhICUifYAAfQCKrlelUJVIHtXaK3ZY6DrV1oV07dMXF4z5rDrClWj/AJSy\nFoIAKoMpkjcnuJEiZGmu584qdf3LcV3+Z5rnpSbaLbqhNXDjLgdaJ9HqE5EzXVaZc/x63dRd2TF9\nduXLFtaJ81KHQ4vdEJn1plIBxyU+ocKzyQX+Xc6g62LTWOoOkx0i/wBIXXh9ZWPUlveNpVqrT7oX\ntQp4ONKbKiiVFxsFQAgMpjlRPBwu3cVtKZBIwZ+K7xqopXZJcidecfMLMnj6VAkARlJGZrQ5JpVb\nqbErWHBJJUfSRiI+ea6bVWOiU6aLnQ7m6dc/L2vmouwEuJfKP5wSEmCjfO0nO2JgzWUutNUdLpp3\nycwstqSlTTYSUiFKk+oyTP8Agfap3V49evqeuA2FKMnY2lCfsEgAftWhyYEgCd2BWRpSAoHmIMe9\nUHT9M9Z6x0lffxrp/UVWNyU+SvyCAdh+O/8A9V3HRlneeKl/dadrXXatLsrlxzUbt3UCssuvstLU\nICAQXVJKkpmJKoJE18vPpsWLK9ZGK62km/RPb7nswZJ5EtPe12bviX0R05ozbo0Pr13XNItkpVpS\nLp8W7zloSfUGZWGz5hWSjdOZg5NeQOKtFJBQlbUSJ3bgf+K20eV5VKlST8qv1X5yNZhWCajdjtbi\n3b81bqFrHlqQkhOErPBP7Gtdp3e8gblIb3ZIMkfNetJ3Z5DKlS3XF7VqWkKISpRgkdqyFTqWi2ha\ngk52zya6rzIYfy5cKUNyVqgJSOT7UPMuWpcadQttbatq0nBSocgjmRxFPQGDcpQOM8U07txPMCgM\nTCZcT/MSmSBuPA+agslRJLkk5k1QKFASCKQwCAJJoACQQTkYpAEkZqAzIaK9sAGe0wTUrm3ctHVM\nKKd6VFJ2qChg+4wfrVBkYaUtshStqDBweSK6XSNQ6UYuP/33pZm5YNs60Sy+42tLikObHY3QVJWp\nB2/pIbAIyTWORSkvcdM6g4p+8rRSXGnLtkB9DDrba8oU4RkSQP8AFbukalpdpaXFvqWitXzj23yn\nfzCm1sQSVbQMHdgZBjtnNdK2tzkeoXelXdmyxYaMiydbdWpx4vqdU6hQTtSRASAnaoyAJ354FUy2\nQYlyeOK7QNlPksNg7VKUY45/eo3RbdLZQuFHIgiB7z+1T1BaudRP3miv6VqTjru5xhba/MWogNNL\nQlMFe2AFJH6SQBggYO50n1zc9LWz9nsYfs70PNusLRuKQtsJJBOROASIMAic1lmwxzx6ZGuLK8Uu\npFfrWraZqF8xeFsuhNr5TraR5SfMEhJSZJgDafrI4zXPSZkT71pGPTFIyu9wJMSCcd/imHFqwSVA\nD612Bgz6T34PAFKY470Blau1NoLCkJcbVkpI/bPNJLjikeUt0htJKwicSfYfYVKBlduFeSEIegKj\nckGMj3rZ/ONXjDj18+fzDTaENJKNxc4Tkn9ICR89gBEkKBoKenG0AewEUlKSVEoTA9uaoEFEHCiM\nRUkqkjbHtmoC3sdHv9Vsbi6tUspRYNF93z7hDaQjA9O4jconG0So9gYNVSmXElJJSd4kbVAxmMxw\nccHNOCJ3sNJIUElPHJq8temNTUwxqN1p9zb6fcSW7txhQaIBgkKiFQcYPNcykoq2dJN8Gvr2iv8A\nTmqLsLi4trhaEtuJUw8h1BStAWk7kEgGFCUzKTIMEEVsWWrJ2uENqS4twrCECUnHvMj9qzdZYWdL\n3Jblj1lZ9U3tvY9Wa1oz9naasXfyD2xaWFobISW2gcbUHEDiYrlCVYClqI+BxTC49CUeBk6uq5ES\n4oYVkRA+BWZmzQ9bu3C32mko/SlW6XDIkJgHgGcwMGtW6OC9sOhX9S6Ud6tY1jSm2Wbs2irVy5Cb\nknZv3hHOzhO7uogVpK0ezTYm5TqDZU0wHlpAUqJUEwYGDJ7kDPORNmnCrXJmp9TpJlUnyVrCG0gy\nYkiCa7EdG9Pf/l2erf8AxVa/xUah+SOkFtYe8rYSH90bSmQRAzWGbJLHXSrtpHpxQU7t1SKHRrLR\n7hwtag9cpWSYDLRWdoEzA9s/tWDXNJvdA1e40u7sL2zftlbHGbthTT7Z/wDcg5Sc8Gu1NufSzPYv\ndDurjUWTpugaFaNXUhSrsJUt9OGxhSiQgbkFW4AEbyJjFR6+6A1LofUWrO71LTr9TtqxdebY3AeQ\nkOthexRHC0zCh2IIrJ54wyrE+WbdDnBzSpI5bc+0sLQ4W1RjaYIqBSuD6snNenYwLfpS60Oz1lNx\n1Czeu2Pkuhbdo+GXCstqDcKIMAL2kiMgEYmRUrQlSz5YwM/auVfU32LtXqbyEWidHU2m0Uu7ceCg\n8HsIbCSCnYO5JBknsI71XqScAGf810iGwy1auMOKeU8lwfoShuU/cyI/vWPatpW/7gg1L8wXGhdO\nXXUn8Su7a8sLZOn2yrxxNzcpa8xIUkbWwoytUqHpEmAT2rU1RjRrf8qjSbu5fc8gG8LzSUJS/JlL\ncKO5EbYUYJk4FcLJ1TcEuOTtwqPU+5XAQSR35qbyGAy2pt1SnSDvSUQE5xBnNaHBiMRnvWRJ3+gQ\nmI+lUFxY6R1DqGg397Y6W5cabZ3DJu7hu3Cg04oLDYK4lO4BcJmDtJ7VSlKkqgp2yeIrhNNtIrTS\nTYJB3FKU9oxTBIPH/NdkGCQSoDHv7Vc9La9rHTurM6no+5bzIV/L2lSVpKSFbh3EEzWWbHDLjeOf\nDVHeOUoSUo8oy9S63ddRao/rD1uxbKdcKiy0RsbmTCU9k+wrQYtbjU2bt9LlsgWyPPWFKQ2VAqCY\nQnG4yoHansCYgGucWNYMcYLhKizm8s3LzMa3lPMM21wEpbYbWlBbYSFKMlQ3EQVZMSokgccAUrRm\nDBEE8bj2rUzNkMlKCqOMyPatR64Sp1IAgJ5jvVBsHyUtpKfSv2n9q1XVqcWSolROSSTk0AkjgjHu\nYqRVAxkf5qg1jITHIBqPb4nmgHPoKSMEzPtUR/7jigETkROO1NK9pEgY+KAFq3KJEwO3xWRt8JUN\n6YAPY5qAyO3SlqWhtZ2TgkQSPkdqkVLKACsCeRHFOAIJddWGGN7ilYAGZNdEnw06+S2H1dI6psUM\nKNuqOSP9j+xp6HMpxjs2U+o297p9w5Y3dou0eQAlTbgIUPSOZ9+fvU9J1RjSjc/mbNm5D9q5bpC0\nBWxSkwFpnhQMQaIvKMe+1KG1N3boWpxSVpKfShECDPvk4+PmtnqG5sLR1WiaTc2l7bWNw8W9Rat1\nNLuknaASFerbCAUggEble9VcblKMuLP6pIFKTEzxQBumMR/vS3GcmaAJ9qmFA+3zQEgdpmCZ5mtx\n/TFMaPa6qq8tVJuXXWgwh0F5vYEnctPZJ3+k99qvalWDDp7lk3f27up27txZodQp9pl0NrW3PqSl\nRCgkkSAYMex4p3bli5cvrsm1tsqcUWULVuUlEnaCe5AioDXSAc+w/vQomQFRFUCTtB5GO1BUFZ2x\n2oBzBOTSSoSBIFQG5ZuMLcQxe3S0W4XKilO4gfAnJra1VjQ2Lu9b0i+urphFzts3XbdLRdY9XrWk\nKVsUfR6QSMnOMy3ZdqJI0DWRp7esuadcpsXHCyi4LSvLWtIBKQriQCCRM5FehdF6P1P1BqjHRuha\ndrL2j6w8w7c6ZaXcuOtt+okkp2giVKClJhMyRArBtZXUGn2+YlkWGLnPZLdv0PWbr8KWjdI2ur2H\nWnVVmb5hm2uEtWoDj6itUBDRCwFJIWglRSDjGMnq+gfwu+HGm9HXXiP1Fcag2iwT+YtGl3bSvzRC\nSoNoQWiFqIAHMCZIivsx9lqacM0623o/Kaj2/milk00eWqvufO3ir1vpHXXV911I2ytm0urpy4Gm\nMtJYZtytaiUNJbSlCUwE/pA/VwYri7+xtLpbbOjMlXktJQ6pO4qeWSTuz7SEwI/TxyT8fDiWCHRF\n7LZH6yU5ZHc92yrNjcpC1uMrQ02vy1qjCVmYB+cGj8suCncEpGCSY/74rW01aOSLbSispkhIHNLe\n4UFsEgqORMSB71bsG/YdN3V5p9xqjFzbBNqEqWgvJDkEgYTyea6+y8HOtL3oFXiIEWydGbuU2hdN\n0jcHVpUpKdk7pISTxXz9R7RxadpSTvq6eHzV/T1PXh0c83DXF8mt4d9Far1b1ejpC18ta3ApboL6\nWQEpEk71kAQM54EnGaoeprHVbHXbxGqG4dukvHc447vUrJkqVJmfeaQ1kJ6uWmXKipceba5+Qlpp\nRwLN2toVrrNxpuov32lo8tLifL2OJSv0YhJMZ4GYzRZavbJvvzmpNm4cQsKCFpSts4Mgp9pI+leh\n4buUX7zRj1/+r4MF7aeZ5j1rarDbSfMWoSoITIAKj2EkDPc1VKCisEd62g9qM5cimDCgoH5pk7Z2\nrgkRFdkL7o+90i21I2uthtFvcNuNm4LSnC0SkgHaDnP3EzmINI4Qp0q/QlSsAcAGr2OVfU/IslsW\nKbNp6x1B0PqcUly32GEpAEKCu8ycR2rCblm3sHbdTbTq31pIX6gtoJnGMEK3d5PpHHfNW+UabLg1\nEXSktlCCUg9+awlSiok574Fd8HJNOADtqBUR6cUBINlSDE/vxUQhWT3FAXvSfWvUfQ+qDV+mNTes\nbxKVth1uJAWlSFYOMpUR96qbq5evrly7eO9xxRUoxFZrFBZHlXL2O3kk4qD4RiZecaVuQEE5HqSF\nc/BoQFhZMSR8TWlb2cGZDQWsBIj3ntW/petav05duXehanc2TjrDtqtxlwoK2XUFtxBjlKkqUkjg\ngkVJRUk4y4Km4u0aDhK0laj65JINQQvb6kHM+9UhuX2s3V68m4d8lKkstsAMMpaG1CQkYQAN0JBK\nuSZJJJJMLbUHWVLbLyihUSCTBjIn3qKKSpFbsxOXSitW1ZgiPrWKQOYIHcV0QcHBCueKEk/6ZJNA\nZE5JEjkd8U14V/SCAIoDUkEbe9CuOJ96AU/sKQEQAM8UAHGDSORwMUACSJ4jmj0wSRH3oAgiQOKY\ncUFSpI/agJtOFDgUhSkxwQc12Om+JPiDpjDbGm9da5ZMNJCUNsai8kISN2AAoAf+ov8A/vV7mqpO\nL2ZGk+Tnde1vVde1J3V9d1O41G+udvnXFy8p1xe1ISmVKJJhIAGeABVYVqUDPv71Lvdl4FvPBJ+l\nBzlI+1AHJj/PNBgH0jAoBDnjFPB4j6UAhM8UxzyDQElKEiE/OKFLO0ST7UAt3uRUftFAOY70Ezz7\n0A/SIz9IpYgj9qAME4j/AIpgwYgZoA3EcTxFZmVpCpPaoD2Porqa+626csvDrVdfZsNK0ZT1202s\npSlW9Ki4slRgFKQrgFRkBIJMV9NWWpeFngMzeaF4W9faD1FrDrQYOpM7Up85DiZUlS8pbKVODaCQ\nqAok4AexPZ+DT5MjeytyW/MpO2/v9j43/wAgyanPihgwq06U/SO/H03OM8Q+muqum/DPWPF7qTqz\nR9TubxDWnWyG7oPOeYsbACkAFO1sE7pwQn3rh/CT8RGn6boVl034gXX5jS9DZU0wxucSt1sknYhS\nTAVBj1ECAn2r6eoaWXpm9mtzx6fT/qdO3jj0uLXT8l6/FnhNu2rVdT/I6PZP3jry1eShCCpxYGf0\niewn9663WuhrnQumk65qFhcsu2jrdtfpfUhpbLznmKQjyyorVuQgK3bUgQQQcE/FlNRl03uz9Mt0\ncQ9faetktBD4M7pkEH7H/vmumauuibbpzVba3t9Qury6u2Pya7hpDaRbI3lSjtUYWZQIyI3ZqyU1\nVF2ZpW2n9OI0S+/OnUG9XW60bJCUpLHkwvzFOEiZny9sf+6e1Z2OiFvMsOXqrpvzlRPklIP0MGcV\n482senTlKt3tvzsenHp1laSv1Oo0vwXutRuFadpRffdDYdWkrZBSjalSlEKhQCRJOOBUbbpbQOjr\nl6+1vUX9Rs7VtwflGX0tlbqkKS2oKE/pWUq4zEYr5mP23+oyLDGNt87Pb5tU/ke1+zlii8nVVfDc\nnothofQOkXWuavqFpc3+s6Sv+FNW9wh5TJdK2lqdSk/y1BIXCVZEgxkGuVVqN1rNv+Vt7dN0ttsJ\n8zJVBgCZr1YYZMmbJqM3uq0l8Ev5bf2PPkqEI4oO3y/z4Ft09ob1pY6hqOqdLWl6GbdQSLlt7alS\nvSlUtrABCiCJxP7VxVzpN1bvoReOgGcSSYE5r16bURyZJ9Mr8uPL85Ms2JwhG1RvO6e+1YOXnnOt\nNPqCUogjzkyfUJwUgpI+v0MUkJaXKkghJwCa9eOXVZ5pKjbvEF21aDLDm4qJMpx9jWJsNW90Hkqa\n2nltRVgx7xXaZyRv7/z3UeS2lsNDb6DM/eBWBVwtxaNxgIAAhPt/muuSJUXGndSa3p98/q2nXSLa\n4fLhWtppDZAcSpK0pgDakpWoFKYEGIxVS49vHqAnOZqJVsdN2YVHEYiOajtnIxmeK6IZQAo88Z4o\n8vO7k+1QE9pCCBIMcE81j/mFJ24jmPaiAIkqCgkGCDmCK27bTr2/Sp63t1FtKglSkjAJmJ9uD+1B\nweg6F4OeLD9lb37fReqLsrpWy2dDCgi4JBgNqiFTBgd4rrm/ADrwMJuP4fdsOpbDq2FK2vNAgH1p\nmR+oc+9VcWzPxIvg2umvDjp/SrHXNT68s/ztvYWyUpbNyplxpbiVeW4kyN0KSkFJn0rUeQK8O1W8\ntHdReNh535RK1flw6sFYR/SFEYMD2rzxWXx5Nv3KVLun3+XBqq6V5hbXoabSogBQMkKQMgGRzzkC\nsN7eechtDSUBWSYSP+K3IaJBJ3buTUoP9RJByaoGNoSQRzxRIAAPB5oBkASR9p7VIHBIMyewoCQT\nBkfWKHCSUwfgGKA1fUQSCKU4FAImeO4zSPxmgDvEUQRMnJ5BoCImTFM9sQTQBJ5/tSwZJ70AxiKz\nou3EoLazuB/egMCzKjQSPYTxQCgn3pgDMjigAAnI7cUsHIPNAPiRH1+KWAZBNAHfOKBgcUAoMxUg\neIzjFABM8kUoE4JPagHieDx/ejcYjtQCPuKZiRgn3+tABAxBxQJIgCfvQDgAYGf7UTjmIoCaHFIM\ngzOIrN5zjipcKue1Adv4e+Fet+JNh1DeaVr+i2DfT1g5qD7ep36bdVwlDa1lDIP/AKiyGyAn3KR3\nrh1JU3KSoHE5HFKdWyJ26MjLrls6h5tz1IO5MV0HWvXfUfXnUD3UHVepu3l++lpDrzhJUoIQEJk/\nCUgD4FL2oVvZk62uOj7y8sP/AAeHW7dGnsIuVP24ZUq6gl0wFrlIUYCpEpSPSKrP4iwkIt0voWht\nI9QSUjj55jiaw6JUk9zVyXVaM3U3VlxrzWn2X5ezba0u3Nu241bIacdSVqXLigJWoFZAKiTAAmAA\nJaXrG5pKL/qPUrcoUNgQSpCRCs8yDwMDucjvmtPGONRa6q8/UryycupOvgeisfiN8VumNNXoHTvi\n1rR0u6tDbPW4QlSdixCk+pPcYJGSCRMGvKtX1i/v7gm41S5uUpjap1R/aJrx+z/ZGj9nuU8GJRct\n3Xn/AB8jXPqsuZKMpXX58zQ/MvQFBwmDICsgGtjTtVvtMeNxZvONqPJSoiQDxivqyhGSqStHmTa3\nR1HUnin1T1HcXrqTb2DGovF962smg0zMztSgYSgESEjArTc6x1HXddVrPVFo3rK12v5UIWS2EBLP\nltKT5cZbASQMglIkESDh+lwwnLJij0t29uFf9drNfHyOKhN2lS352NlvqzU7DRFaZ+atXbbASh1k\nLWggqP8ALUcpHqJIEZVXHukqWXCf1GaafDHHKUo93+UczyOaSfYtNM112xurW4Q035ls4lxKljcC\nQZ9STII9xGRT6m6juuptcvdcumLW3fvn3LhaLZhLLSVLJJCUIASkZwkAADAFaLGlLqOer3ekqiRt\nxHz8mmkQpKomtTk2rvULi6YbYcX6GydoHGeTWoYgEd+aiVAiBMCYipSQc4kZIoDIgJwTwOZqSEk4\nJkHtQGS6VDaUAfGOwrEG1rAInOPeT7UQM6LN4Ml5KJRO0/Bz/wAGu30/Tbrw7btNS6idvrK51Kza\n1PSvyVy2fSV+hxZBJQfScEbscZrPIpyi/D5LFRbqXB9Rs/8A4mHj11D0fpnQFtpdhd32nMKbavEs\nF24eSlCkha55UEnKu5EnNfPd7459Ti4tdY6d0220S+tmyhV7piSy64N24+YR+vMTPI5mulN30t7l\ncItbIoPEHxY6i8RFHUNcQlTzjYaW6gbAraQRIGD3rgU5hJhPvXSJ6ETuTEKx9KRThQ4PPFUgRIGC\nZqSJ4MER7UAlwREx81sWRtU3TRvQ4pgLBdDcbymcxMiYnmowReeD7yndqWx2CUgAfbiolUqnuaAn\ntUVESQPenBUQlJJAMiKoNQmIOcYikP07QP8ApQETGR8RTP6sE5FAIzM0jI+9AEEEHj5+KPqZigAE\n574peqeaAYwdsH70jINAAzTEftQCIzIOKP7g8mgDsT+0UgTwO9ANPJBOO1B5jH/FAZnGFtNtuOFE\nOpKkgKBIgxkAyn71hIJIEUAHmTxQBmY+1APJEYg0AJCiIIzxQBJPf6UTOOKADBGBzmlicn7UA4JM\nTIoGMDH0oBEjvmKcexoBgn+0VkbE5UTEdqgNhNyAgJSozOYOKwrWVHdHxQEFOLJ5omTJgmgAqgwB\n+1ZHXGChpLDa0rCClxSlghatxykQNo27RBnIJnMACCVpAKSgGRg+1MQrBjnkcVQSYcZQtKnWw4B/\nSSYP7EGsbhSVkpJ+9TuBFYPCAIEGsjbyPLCVMpMGZJzFALc2EiEEqJPJx8f71e9NdT6r0f1Fb9Qd\nPKYZurRW5kuMoeRO3aSUOApPJ5FcZILJFxlwzqEnCSkuUVWrXV1d3q3bx0LcUSokREnOAMd+1aZJ\nOJn2rqEVGKUeCSbk7YpPCqI4J+9dEJY/1AxUioCFJwY/vUAgqFblc+0045MYOQJqgFRHApAQQTg+\n/vUBMTM9prKJ2lUSB7CajA0tuXJI3BKECSSeKi88s7AkJHlpgbf80BsK1N91xC3DO1IBE4MYk/NX\nWp9R2Ov29zedRG+u9XPkt2z/AOYBbQwhO0NlG2TCQkAyIjg1z0LqUu4NCz1Viz01bVtZXH5lx0Fb\nwehBbggo2xOcZngH3xs6zr+lXllbW2k6IvTXkpIuSHypLpJnAgQIMRWMsWSWSMlKknuq5VbfQ2jk\ngotNb9vQo1KKwIASn2mRUdqh6sZxXp4MRpSVEITJUSAAO9Laudo/eKAkFqbQlopQQkyT7zGKjG5c\nxHx2HxQDbIK07wdvcAwTW2NOvFtpKbdewgkQCZHNRtLkqTfBr+T5ZUlSVKSJGBUggKADalbhzPtV\nsgbiPQVDtAOae71gACqDUCSJPNLBBzB96AX9MhIxUQBHMEUAbtxJ980t0cCaAfMjMClx89yaABGe\n3eg8wMZ+1AKZIAOPmiJxHNAMfpOKJHEn96AM9+KMQCQPmgCDAEUZIGI+lAG0xBOKYEHOKAyPhr0B\nDqlqj1yMAzwM5/tWKMEkZ+KAifkk1IZMCf2oAEjO74zQe5/waAcmeIMe9RMGIwKAZE/amU++B8UB\nEfX+1M7hjifagBJEwTiO9HBkEGBFAERn35qSVYJ+1AMkDIEj3NAURkfsKAUp7Hn4oJAwAKACqYHH\nviknB7wKAZxPeKX0oCQkYxj3pEwYk49qAODtGTTBAEGgAEe1WF5qFo/ZWVra2CLdy2QoPvpWoquF\nFRVJBJAgEJ9MSEgnJNRoFcSd0kx7UHaRB96oAE+/1oBjtNAPg4NOACJz2xQCEkg1lTJTgCfrzUBs\ntWO+1XceYz6VBOwqIUZBMj4wP3Fai0kE+nAPaonZWqIBU4Eic/Wp+e6lMFRIPuK6IZCsbQGwIPv7\n1Ax+kj781APsBOSM4rJZJt1XLSbpxbbJUN60ICylPeEkgE/Eio7rYq5M77iGQlDao9JCVJx3ifmt\nMrWoyc0iGS9ODuGe3tU0JC4SVwU8H3FUghKTuBiDj3qKlnjb/agNiw9F0287at3KGVBbjbm7YpIO\nQopIUAeMEUBtx242qVlxUTNS97LVmZgIt73YEJeDayIUTC4J7j3r0voTTm9Q1+xK0PKbUha1W26f\nSEmRBx35r5ntTI8enlNeT+W3J7NFFPMk/Nfueg+N/QHh3oOqs33hygu6LeJebcXqrzSbkPBACill\nB3ISFrVBjICcnNfO76WDdFKGy2sqIIJ9I+Kx9iaiepw9c22/VVdNrb5c9jT2jiWLJSSRpr2hwFKu\n/PzNMJBUoFEJE5/77V9s+cakn9MzBqJk8igEqRyk/WiOTFAICRP7fSg8zuPFAKfTE0cZ4oAIIE49\noml3jv7zxQDBlQjMUEyJwDQAO6QeaEmDkcCgCDOc0EZgmgAnETRtPYUAD3JjtQeYAigARz2pnsQY\nIoAAT3JppbK5jsCSPpQEcZ/2oPxgcUAuDk80ETwmfc0AxkZMRxQT2Ij/AHoAHPfPFMnckSAI+M0A\nCD9BQREiRFAJIRMyYpgRjmc0AzJEdvpSM4IMj6UA8nIj5pYMx2oBRMkUYnOPmgCI7TTMDJ+xoABJ\n70E/80AAgZ7mgTEniaAe4xAMTimNuU5oBTPBjvQRnJ5oAORAHOINA+tAAPtgT7U5I5P2oBznvU0k\n7gR9agLGwvjZpJU0041IUptaQQSOPp3rDrF5b6herubK1btW1gfy0D0gxn7TNZqDU+pP5HfUumqN\nEJG31AzTATtIUea1OCQgduBQlBncR8/WoA3GCSYk0inO2YFUEgmREnGK2bxdg88g2Fqu3QGkBaVu\n+ZKwIUoGBAJkgdpiTXNO7XBU1W5rhKZmZ7cVIBO8EgpA5zVIWTlpbKtR5LaVOb1bXN+Vgeye3Iyf\napCxfZSzdPacplsw0hwAlBWkZkKnJ9v7Vk5Ncs0UXJ+6jp9E0FzVdLv9P0w27F8E3Fy5+Zfbt2yw\ny0XFBKnFjcopBhsDcTAEkgDkWfPaufM8lJ2iYIkRtrjHLquzvJHpSaNZvd5kKO31TIwImvROgNR6\neXeNq1zVBaptmSkvf1RPb5gn/itJwUqsx6pRT6eTW6p6p0R7Vby10DzrizdcDjT7qQlxCtoKxIIm\nTuH7VyV5pi22l3jd00sBUEeYN2eBHJrqMVDZHKcmve5K9KCpJx6v7Vk2zzJkAccV2U045kZFAI2k\nSR2iKAiJCimf2FIkk4HzNAIkDjk0pBHIoBHI5pkQOTNAIyBMZFB5Gee9AORMAmkfYUAAyOKf1Jk0\nAoyMU+ACZmgCRMmgSe+KACSBnvUTPsJFASEEZGOKR45FAMicbhB70cHAM+00AAzjII9qO8zJNALl\nXJondCcUAu5jNPB4HHzQAAc9ozUoESOxoBAg4pmM5P7UAfpzH0NIHtQDOCAc/FGBkY70AgCRMCiZ\nIBx2oAGP9qQHByT9KAZMyAIpj3zQCxwKZE5FAL9IH+Kcgd5FAAnlJ/6U+e5oA+BEUpPuaANwH1p7\niAAPeaARyP8AimKAMg4+0mpg7YAzQDV6jzSITACTn5qAmlJWNoBNZF2vkPqZuHAkIkEj1Z+KX2BA\nACSMzQSj6n4oCPpUncOeKU8CY+tATICQFSM81EbZgYPagGBJkYUKZB3ert3oDMglbwU24pKwUkbc\nZ+KtlXOrWdnc6XqKVpbc8q68tyNyiZ2qE5MhZ/c1nNRlSZpjco20T0N+0VfNqvAWrUKlZmTtPIE9\n/mtjqzXNCutUvnNF0hNq2+UeWCskohABPYEkgnjk1g8eV51JOopcebtftX3O1OCxtNb2cwvMAgie\naAoAA/717DAmCtY4EDE++ayAOI/lr3QeIFQG3Z2lk8Hw9d+WR+gkYP1mtmw6f1DUdrto15jYuW7Y\nuE7UBxZO0bjwMc1nPKsabnwdRj1cFAUqACTzwaW0CZitTkXIhMEz3zSPOcjiBQEcTjHagkdqAQz7\nUyqRjmgA44OMcUsTH/c0AZIiMUjM5NAOCIz9qBFABp8nt9aAXfOaBGJNABxEEx80/Tx3oAMfFB78\niKACIwDJ4oxHf39qAM/qgx70GD/zQAPc8UiAaAPmMe/tRn7c0ARmP2p+xkUAE9/fgUSBk/eKAWd3\nc0+e8AUAGZwJ+3FLkxFASO2OeKUnCu9AEz/vROKAIx8UADhJ/tQBmZg++KYwO1AKMU4PfM96AXGT\n+1MwTO0UAET27e1MDBIoBkGRI4GZoIzJiOKAQJKp+1CjzA4oATlWalIScpJoAztgwe9SCxzAxQHT\n9Ko6VuWLqz11dzbXDiN9pdIcAbQtMn1Agkg7Qkf/ACPxVC8lpTq0he/JyDz8154PJ4klLjav6NJK\nPSmue5FDUqCUEq3HAisTiFNuLbWCFIJSUxkH/mtk96MxIHpA7VIglcJBJGMCaoI7Z5TGa2F2N4xb\nNXbto6lh8q8p1SCEr24O094kT9qWkDCFKzHvTVs2gboOPp9KAFBTTiYwYBEGn5sKKlEqPAJpyCZu\nCEbQfn96xOObyg5JGCYogNcFIJJArGNpVkk5H0qg27S4ZTKVpkgzJPArcTqdt+hbO8EEEwK4km2d\nJ0ZbD+HOb03balYTB47Ca1ytLLRVbvLQsLCk7VREHHH2rndtp8DatiqM9u54owRnFanIsZgSKiRI\n9poCJKQTgGBTmaAioZk96aRjM/FAET2ge9KAPmgD2nFAPsKAODPzRIAwBQBiZ96cZkUAhjA5okfv\nQDBPtNBwPrQCIEf7UbiPegAcE0Z+nxQBBJOPk0SY5oB8mIikcg9qABgHNEgY5xmgGZHqH7mkfc8U\nA5JHejjnBoAMz70hPtQDzn3og7ZmgAcAEH2oyDOD3+lAAgnmiBHegADBmf3p7oOOJoBTzijgbo+K\nAP6aP6dpzQEkJK1hKR6jgVuPac81ZquR6kpX5ayMgHt++a5cqBpyO9TEKkTAroEnWFISmOV5Aq+6\nH8O+uPEjUbnR+g+mb7W7yytV3r7FojetthJAU4R7AqSPqoDvUTsFjrPgz4p6Ho+hdQX3ReoK03qS\n1Xe6Xc2gTdIuWUbd6gWSrbt3pkKggmCJmuOdtL1i3ZunrR5ti5Ciy4pshLm0wraeDBwY4qgxk8Ad\nqFGgATEbvijI4FAZUOhLexSEkyDM5+lWty5aG2t2re1baBQCtQWVKWZOT7fQewrOSdqmVV3PSL6z\n6J6N8O9M1e00xd91FcuOt3D7r6VsJSYLexsAKSoIJJkqyUnFeTtKDj25RkqJJ+a8OglPKp5Zt7tp\nJ9kj2ayEcXTjiu1v1bMSFq3DHJip29q7cOlsFKSBMqUEgD719HhWeI6S81PSL3pnTtPcSWb+yu3E\nO+W2CnyChoBX/wAtyVkiYJM4qm1LW7/UmrS1u7tTzVg1+Xt07QlKG5JgAe5JJ7mvPp8coJqfm6+D\nexrkkm/d8kaBSTE5n3FM5POeMV6TIzXghaJmdiR/asGCI/eouANYAKT3IH+KEmJkcjueaoG6UkJA\nMADj2qJJEE8/egBJ5mCKeSZAGPY96AyIWpBwpQxkTQHVckkn60oECFHBiKiMHgAUBGMmRiowCTB4\n/agAkmQeZoHH09qAXfj96UHiBPzQAqYzRkYOfagCcdopT2/zQEhjtmkefrQBJn6Ubu4oAkH/ACaD\nB7xQDJkYJM0ADOMigEckBM/AoiRigHE9oj3pEiIOfoKAIJHf6U5B95jigF8zk0x9TQCOefuafeR2\noCI4px3GMdzQDGccn2pGaAZBB4iiO0igCTzzNEwcHE0As/q/enIiJ5oAmc+9MicAAJ9zQC+nb3ow\nBBPzQBJ5+KATPM9qABjKoo3AgCPoaAEqKVBSTBGayKfeUCnzCQSMSYmKgID+/IFOSE89qoPrb8Lv\n4e9L6m6MV4q22gdLeLV02h9jUOhP4u5Y6jYMTtTcIUDCnCNxShSQIIKVFeE/TvhL+Kb8HXhj0890\nzbdNX/h7qvSts8hzSta0VSNSKkypbYdAUVuKJwFrSoyJA7QHzl4G/js0nwG6o6z0HSundW1vw41T\nVbnUenLB1aLe50vzHSrywJWkNlKspB/UkKEFSp9J6F8bOjfxi/ib6f6HuemtO07wx6f0/UNTtunt\nVZYR/E9ReaU2t1xoEoW6F3K1ICSSNq3JkmKD59/Eb+CzxY8I+sFo6f6cvOqtF1Ft/ULd/QNNuX0W\nLKF+pt5ICy0EBSYUpRBTmZBA+cPjj2oBgEjFfV/4O+qehtfsOoOheqvA/oPXV9M9K6x1G1quoacX\nby5dYhxDTqiYLY37cAGAM0AvDXpDp/8AEz0H4z65p/SPh50Lqtu70wnS1uKFhp+mpLlwH/LdXuLZ\ndDQ3f6lQK9C6d8AOkOjXPw5dOdSad0d1Fea71PrDGtX2lOt3ttqLIKVNNrdAAcCAYg8EEUBxn4nm\ntd0fw9vbe86Z/DnbWb+otW7bvRTq3NYZIUVAx5pCUkNhKzt4Md6858Nul+nL78K/i11de6JZXGta\nRqugtWF8toF+2Q68sOJQvlIUAJjmuYxjBVFFlJydsr/wo+FNt4s+MmnWGtWLt109oTLuv66htsul\ndlbAKU1sTlRcX5bcDP8AMxxXv2q+GXhno34lfD/qDVPDRnSPD3xr0dVgjR9RsPLXomqLbDK2kIWB\n5bjdx5CguBh5UYqkNbS/wv8AT2j/AIbuqujOpdLZX4uXJ1nX9HIZl9Nho921bvMonMO/z1ISP1hQ\nInbV90b4V+H2m+O9r4LWfhp0xrmr9EeFb1zqTOoWrSmtQ6kWhl7c8pRSClPmNoBKhtCljcOaoNHr\nfww0JrproS98Y/BboTw/651HrzS7HT9M6cuW1s6xpC3UB9Ttu288jYJjeVkkwMBUKl+J3pRPRmld\nesaH0D+Gm00ayW9aWgsiodSMNKcDaFJbDsJuE7gT6YEExigLDxn/AA1+HHVt90rfeE+jWlt1N0pp\n2hXnVXTjDASNQ0u4DajfNIH6ygqUl3H6cmITv5frTonwr8FNN8V/Gu48MND6nubfxIuuiunNEvkk\n6XpiUsqfLrrDak7xt9IQSIhJEbpqLcFV+HnWfDPx68d9Lae8Cuh9CXZ9K6m5fWqUrOk3l4hG5p5T\nDiiGEIwDCif1EqOI5P8AFExf6P01o2m3/SXgDZfnL5T6bvw5Wty8T5TZSW31F1QDSvNBiMqbGcZo\nPm0+xogcGM8YoAGSYjFTYb3FRPA/zQExEknOeP8ArQlQC0rUgwDkc0BBSffM1FXpMbQPoaADJGDG\nZikqYz96AiUxHfvSAOcfeKARgyT2FBgRBP7UAQYntRyc9uKAX17UHk+1AA+PpSA7CgJDEE5FH9UA\njNAKRgTFKTxQDkDn3oPJIOBQDkgmIBmkME4maAcZGKODB5H9qAABEgmaSTB7UAyAZpQPmKAOOBNA\ng8xQB8xNAEz7e1ABMGcUzgY4+tAInPppwYzQD4Gc+xpYAknvQBPeOKIIwDNAHbbye1APtQDHwZNR\nnuKAkFROPj6Uv0jjg0ACTmMij4oAyBPbinJIA7/5oBERzzwa3NG0q813V7LRLBKDc6hctWrO9QSn\nzHFBKZUcASRmgP1m/Cp0Gj8IHhJf2Pjrq/QnTj97frvU6ijUwHn0FCQGXS4hG5SCn0htSwd+ADM/\nJH/4hPjn4ReNPUvTLnhZqlvqq9JZuWtRv0aWphThUW/KSHnEpcdSIchMbQZIJ3UB8ixke/xWaxvr\nzTL631LT7p22u7R1D7D7SilbTiVApUkjIIIBB+KA/R78HXTXi7+JDpNfiV1v+KPr9qzsdQd0x3SN\nJeNorzG0oX6rggpUClxBhKJAMbgePjP8U/S3THRfjr1L0v0n0rrPTlnpzzbarDVroXLwcLaVF0Ob\n1lSHQpLolaj/ADOYgADycggERBruvCvxO6h8Ib3Wde0fR7a6T1FoN908pV2hflhq4SlLi0FJErTt\nEcj3FAYtC8Qde6S8O+r/AAxb0dn8n1wvS7i5efQsPtizdccaLQkAhRdIMg8CIrsekPxF9b9EWnht\n0/a9L6e654Z6te6npyH23Q7cvXagVIdSFDAxASAc96AweIHjZ031poWp9O234e+g+m9TvnUTqWms\n3Sb1hxLqVq2+Y6pMq2lBBTwpXfNQ8JvHq+8IumOp+gNS8Oenup9K6kuLS4vrPXG34Qu3Ki3AbWgj\nKpz7CgOmH4m9VstB6i03wm6T6b8NL/qC1smrm56cVesXixb3ClpbYc8xRQtZdO4gjchsJnseZ1/8\nQvix1B0A34ZdeXmpa7eWuuNa7per6vdXL+qWD4QEeW04tRPlqGdpBAUZGagOt178Vvjdq3jton4h\n9Q6caY1bp2xTYs2ibR9FkbcIcS4lYKt0LLzij6sEiOBXG9L+PnXGn+JXWviEzpVrqmtdfWGq6fet\nLQ4pLaL4y4poJUCNgEJBkADjFUEtM/EH1bp3RfSnQOtaBp2rK6C6gb1nQb29Q6LywKXErXZhQUJY\nUpElBEgxBG1IHT+JX4hbfxAc1tOufht6HseoepA6tzVWra8F6HnZ/nthTpBXukj0kT2oDA/+JDxX\nvPGTQ/GbpzRxYaz05p9npBZtGHV277LDQbU08kkkhaZChIjkQQCN3S/xRdd6X1T1xqHUvQGh6/0/\n1xfnVtd6Z1exccs0PKVKXmiTvaWDgLk8CZISRKorM1n+LDXNF6z0zrvp3wg6I0nSNE0q70G20iy0\n5xq1LN1l3znUqDjqzk+pUZUQAVKJ4bxM8TNF656ZtbbR/AfpLo1IvEvjVNFYuUuPBKHEFkqccUkp\nJVuIAmUDPNUh56jQdcebS61o1+6hxIUlSLZZSQRggxkVoqQ42tSVpKVAwUnkR2NABEGBxNZ1Etth\nHBMg0BjbEmJ71MoUZhMDNAQMA8nPPtSJ/wBMgxwaASTzMxQQPaPvQCmBE4iozBiM0BEgjPf+1IT/\nAFAZoAJTxQIIxkUAuMyTig8THHvQDMkGCY5NERkigAEE/emZ7g0Auf8AenAiMx/igFAHbmhMntMd\n6AYIGI70CQZHIzFAKZ4ETQTIigAcY5owTzHYUA8kRxHtSVJ4oAmM4+9AMcCaABI5xijP2oAwBQeM\npj2xQDAAmTS3EnOfaaAZM5maIE+4JoA5zzPejKlRzJigEcY+c08R896ARMCAARTwMzjjmgA/SKJJ\nEAwKAACQfbmgHHHH96AQmQR9KMHGBQDn3+1Zba5ftHm7q2fcZfZWHG3G1FKkKBkKSRkEGIIoD7q6\nI6o/AB13rPR9j1H0R1l1Z1z1Y9p2n3buo6nfPpt7+4KG1B15y4bC0JcWZUEqwJA7V9Y9Vfgg/Dlr\n3RWqdJaN4caRoNxf23ksara2/mXdo4I2OIWslRIIEifUJB5oD8jNf8PdSt/EXXfD7olN51c7o99e\nWrL+m2K1rumrdSgt9LSNygjagqOSAnMxVKjp7XF3un2D2mPWruqKQm0N0nyG3tytgUFuQnbuwVTA\ngycUB+jXhB+EH8U/4f8AQdO6m8KfFfSBq1y0l/W+j9WQtWmuvd0pdQVAr2hI3hKDIjftNeE/jn6Z\n09xdn4j9VeGnVfQ3iPruoBnV7S8vP4hpV+2hmPPtLpO5Mp2tJ8vcnalQARAmgPkj2j3r69V0t4X9\nT/g58IUeJnitcdEN2+r9QKtHGenndV/NKNynekhtxHl7QE5Mzu+KA9T1Pwn0nrb8Vfh9qKrhOqdJ\n9BeGuh669d3CU2jd6lgLFmhXmna0XXfLJStX6QsE4Jqp8XuhNd1Px68AfxA6rpuk22p9S9VaJpHV\nTOkXjV3asavb3bIQoONKUn+awEqCdxIDcHNAfNXiKQPxi9UDmfEy9/8A+qun+Mcj/wDU/wCI2P8A\n+sr/AP8ARNAd5+Fd2+6Q8FPGDxc8P9NYvvEPptrTrfTXl2qbl7S7J9xSbi6ZbIPq2gyqDtCJPpKg\nfRvC7rDqzxt8GbTrnxtSNS1TpTxC6Zt+j+orq3Si6u1P37abuzDiUjzEIblzM5OT6RAE/wAXvjTf\n21z4j9Iab+LDVr143r+nK6IPRoaYS0t4Nu2358kyENqWd8SrZAgmR5N+EPxQ0Hw30jxCTrj3UnTf\n8as7Czt+uNE0lN8vp9aXVqKHNwO1D+EmPUfLxkBSQPoix0vxB6X1nxC8aD1do/iX1rb+HOm6t0Nq\n7ehoZdf09x9xDt6u0UkEXLSUBUncYWkEn9I8S8IPHDx18W/FTwlZ8Sb261vQrLru0VaatdaW2FJu\nSpJVbpuktjASd3lBXcEiEpiUD0/pjqlvpDwx8VtTf8a9T8L0u+NN8wNX0/R16k4/Nu8fyxaQpJSl\nW3funBaAjNU/gx4s6TY9ReOXXnVfVl14v6BZdNaVaXV7qOnmxc1KxcuWm3m/IWpRQUB51KZOSgGQ\nDig73pzwL6B6e8NOnunkazbdQeG/XHizo2q6NcrcB/NWDtqtKbZ7uFh1BZWME/BMDwvxX/EV+KS6\n6/8AEXwxTZXH8Faa1DTH+l0aE2/a6dpbe5KXEths7UobCVh7iIVMRQHsPiH4ko6N6D8IbAfit1/w\n1eX4WaBcI0Sw6Zd1Bq6JZWA+XkuJCFKKdm0gwGwe9fn1e3l3qN6/qF68p65uXVPPOKypa1GVKPyS\nSaAxkifRyPjNImTyc0BIKwcYPagLIxmgJLO4BRB98VEwBxkZoASBtiM1GSkcc0AxgniKjjbuzB+K\nAhnucUjkSYoABJHHAoHvANAGIPvRPqEfXNAAz2/an7Y/Y0Ah7YgZoweTQASJPagiZxQB8ZgdqYB5\nP2FALHfmjt9aADj9WKJIGftQADn45oVGcSZ70ARIniPmjJxPHagGQDwP70iIUJIPzQCMz9KIMExx\nQDBEiAaZjgEwfegAwcRSgAQZoB9p7DvR7jmgETIgJ+kUDjk4+aAcE896WAfmgHE/f/FIR3OaAZAi\nRP7UxJAyPrQEUg8x2/tQBMzgUAD/ALxTPHHzFABMHIkfFPIH+1AZGLh63ebuLZ5bTrSgttaFFKkK\nBkEEZBBGDX6g+Avjb1709+Cvq3xx8Q/E4dTauyxcp0xt59pxdgtP/l7Vp4oG7zVvKSs7yVFKkd5k\nDL+AXwP0fwW6Hs/FXxGuLex6q8RXGrPSk3awhbVs4kuMsJn/APivbC4RzCWxAIIPp/4x/wAPujfi\nH8PD07ZXFoz1vpLL+qdO73EpdeCNgeZIJnyllTSSrhK1NEnsQOL6N/FP1ho34PrfxUa6GX1N1F0S\n5/AOq9OuL1VncWjtufKVcLltalKgsrWiEwHFmRsNfmH1l4o+IPiDY6bpXWPVmpatZaOt9WnMXVwp\n1Np5xSVpbKySE+hAAJIASAIoDljujBwMV2C9S8UOqel+nvD5Nvq+paNppfvtEsGbEr2i4f8AKccb\nKUblhb6fLmSN42iDigOl1XxB/ET1V0zedLX7vUV7o+oWVpp92wjSgEvWunKX5DSlIbCillQcxOCF\nTkGtbonV/wAQHTfTK2ehrDqZGgW+oWnU5UxpCn7dm6tjvZvAstqCNvln1AgEIIMgEUB33VHjB+OH\nra0e6J6oX1zftuIa1NzT19N7Vlu3eQ6h4pSwFbEOttnd+mQAfasWt+NX41/FDpO+6f1W76z13QNV\nZQxdNtdPBTTzbiUOIG9tifUlbahBylaSMESB5l4c634w+G3Vumaz4anqHSdf1ELYsDZ2yy5ep3lC\n20tlJD6d6IKYUNyYiRjtvEDr/wDFz4h6+1q3XiOtb2/6GuW7ryVaIq3Z0h9tIcS4u3baS00oJAVK\n0AlPOKA891+w8SutmNW8XNe0PXNSs769U5qWv/w5YtFXS1SoKeQgNJUSf0yOeKvehvEfx38AbzU1\n9H6nr/Sy0us22qWz9nLAccQpTSH2H0Kb3qQlZSFpkpCoxNAXt/15+KzUutmvGm8ueuRr1otOnN6y\njTnWm2Zc8sWyQlsNJSXF7PKAgqVG0k1c9XeKn4zuteq7BfVSutbjW+jH2tWt7JHT35f+Hu5Ldwu1\naZSgHCoWtGRuzE0BT9FeOP4n/D1OsHojXuoNNGu3X8e1Hy9KQvz3bhsui4O5owFtoUsEQkpSVDAJ\nqm648afHfqQ3mq9edRao6nrLSGbN5+6sW2U6lpzNwpTewhtIUhLyF+tH9SVAnBFAQtF/iAuPDzTP\nDuy0nq5/pLU9QGqaVZI0x5bNxdhpS/Mt1bJJ8sLXCDEBSo5Nd31B41/jc1boq56M6h1XrxehjZpl\n0peiqbeWVEJSw7dBkPKKvMCdq3CVbwCDOQMvSHj/APjZ0/pvT9D6M1nrFWj6Np7FvaN2nT6Hm2LR\nsKab9XkE7R5K0BROS2rMg141b9JeIXWWvagiz6T13VNWCzd37dtpzrryFOHdvWhCZSFFU8AZxQFb\nqHTXUuktPv6noGpWjdsplD6n7RxsNKeQXGQokDaVoBUmf1JBIkVWjI+vvQDHaASKmnPAgfFAMk8E\ng/WkruBwaAUhXJk8RSKjO0GgIkH6TmCKUhMnmgESSYAMVEhIyTNAAJFGMermgFJjjHtTmcx8UATH\nJoHHMUA8jvSH/tOfrQARmc0Az/0oAB7e9PgwB8CgEQJgmKMcA4oAMGZp5JEAAUAsn5AoOMjP1oBi\nDmCfcUs+85oA4PzR9fY0AAwaWc0A4BEg0do70AERgmaDJMn3zQASDgcUSZmaAOfrRMjIyTigCRji\nnyMj7UAjBHpEUEGJFABxHJimJPA/agCMH1ZoNANPBFKQTzQBGZJ4+KOOSZ96AlsE/TkxW3YatqWm\nJcasrx1tp5TanmQqWntityA4gylYChICgRQHqPjF+Kfxi8ddF6f0LxB1q1fa6eecuWHbO2TbLeeU\nEgOuBEI3JAISUpTG9XvVP0B+IDxT8PPEfSfFKz6ovNX1nR0KYbGsXL1227brSUrZXK9xbIUTAUIM\nEQQDQGDxE8cfEPxL1jqHU9Y1b8hb9VXbV/qumaYFW1jcPtoCULUyFEKUAJlUknJJOa4EgRgyZ4FA\nKAeTntXuPhl+JDSvDqz6VuleHz2pa50s1b6ezefxkM272nt62NWU2WPIUQ8XfMbDvmFIQsfy1FIN\nAXmsfjN6h1ZjR7xPRlja61pjzNy9fNPgNXrrd8q5Wt1gNhJLoUUOQYWVLVHqKar7z8T2i6pp/Umk\n3/hilNpqF0y7oTDF3ZOI0a2t7VNtbW4N1YvLIQhCCpxldu4o7juSVSAOpu/xuWmr9R3Gtaz4VlVh\nc3F+/caRa6uwm0uxcXwuk+eHrN1SnE7G0KcbLaj5aVNllW7d5jrXj9qOpdMa109p2kXOmK1VHSiW\nn2NSX/5U6LpqrKUDaCfOlLn6gUbAmV/qoDd1D8SGpax40ueLGq6Ap1i40p7RnNNbvQytq2fsl2z6\nmH0NgMuqU688Fhsw44SQvO7f6r/FA/qnh674a9N9GJsdN8q2s2bnVbxGqXaLVq3eaILi2EfziX1K\nDqA3sSlKEpAE0BV6L429KtdP9JaX1b0Dqus3HSDLdky2z1F+W028tE6gb3y7i0NusrUpalIUoOBJ\nSEnZuSFVc9efiS6a8VtK1hnr/wAL7pGqa0vTLq7vNC6iVbIcu7Bu/aYdWm7YunFDyb5Lakl2T+XR\ntUkHaAN27/GJrbnUmja1YdD6Y1aaZf3V69bvLQ7cPB+5deKW7oNpcYKUu7QpMwpIXH9NbfS34vbP\nodOkaZ074ZuPaTof5MWY1XWk3l835Nzd3Cl/mPy6EeZ5l3LR8rY35eUOblSBge/GFqF50610/qvQ\nbF0bPTbDSrK9N/Fy1b2+jO6eptaw1/MQp55y6SkgFCnHUgq37hT+Inj30T4q9Kt9N9Q+GX8F/wDD\nNmq16Sf0rUFuKYbDbLSGLsPSHEhLKVlTQaBcLivL3OrUAOn6a/GHo+gdN6H0894Ti8GnWDFheum+\nsUi6S3pN3pwWAdPUVkovFK2XZumwE7EoSlRrW0L8Xlh002mw0bwwaasmn1XLKhe2rNy2VXtvcqbS\nbeyat0Nq8hSFJbYQYckFJB3AFx+LTQ9a03qRjqbwmbeu+qLbTGLtdleWQtmjYJu27csW15YXTbH8\nm5Qg+XtIU0VIKN6hWDS/xM9AaZqHUWpjwl1R9/q2ytLbVkXWuadesBy3U0W1ss3elPNIH8tUhxLp\n9QKVJKZIHmfWXi3r3WHQPSfh9eKfGn9J/mUslx8LL6XFjyguEJJLTf8ALSSTCcJ2jFcKYkyQIoAE\niYiptPLYVKVkH3oCRA5T/ftUVQTIAOaAiqTUcR80AGTnOKMDjMcUBEknjsaRyZoAUDEYijA/SDmg\nCAPej5M4oBRz2p5+kUAf1Z7UcEiDigAzMzxSg4PHagHIHNM94kUAuCIok5P35oBgT6hiog+/2FAP\nng8dqJj24oA5/wB6QEZigGQPfFHGCM0ARjHfNMgA5oBJGAZNKBEgmaAZ57H70Z+vvQDED6x2pgA8\nA80BE+0HFA5igHGMkUEAExQCGMA0Ce/egHnJHtmgYke/zQEeMTUhzgkUAEjAHvP1oEfT/mgHtmAA\nZJigBU88+9APkYP96cEEAyaAIIxAV9KiAIMCScUAtvIn/rTTCjGfaaACkDO44zSwCIoBx7j+1Ke4\n+lABkED5oPsfegHGe32oSeP+aAiIn6d6kDMkf/dAAymDB7cUgSMnHzQEonMz3o24/wAUAoj4HfNM\nFUCD9KAYM5GDRMmD9OKAiSQOCJ9qkM5OB7UAhHPtUlBQIAOOeaAyQQMyJM0oBVHzmgIKgCJ+DUYA\nMzP+9AJZ9X1E0p7zQCJnAoJI4EzigCe5GDRnmgDcEn27YoySQKAM8EfFLHegBJn60TNAMiTHFAPa\nKAX0ozk5+aAlO4cwIxSHIzigAATMz96JBoBGIkU+eKAMqEhMRijcR3/vQCxyKcn270ACe4pEgniJ\noB4gZoOeeaAJAP1+aZUfkfSgEdscGaAOwI+9APjvPao5AmYoBjGMz80R7/egDjGccUAk59+RQDJ7\nzzQZIBkQaAJGccZ+lBBHBxQBj2inMe2KAMdgJ+KkIiD3oCSErJ3ESB3pqSCYAg/71AR2wcg0oKRI\nxNAJRJk9hSCucCqAJjmRNIEDBoBztnk/WicQRP3oAJE98e1IkGgAQDFOPbPaaAIMQRA5mlJ45+BQ\nDkc5xT3Ddxj2oBSQCB3oSQDPb6UACPfHNMDkESD84oAJG2Rj2oBPtQATtIzJ7UwRnJn60AJyCT8U\nBXZNAZVLk5Pt9airJg+/vQESTEHBNQJMUAjnAEmlweMUAEwc8D4omDQCIwMcUAx/1NAAE96MjvQD\nBB5HxNA28c0Ao5+KBOaAYoj70ATjiPqKBnn6CgAgfftQYH6s/SgBUftSH6TKf2oBke4pA0ATFOMm\nDwKARmKY7cfBoBboPv8AWnuEZH0oBTGYpnsKAAeQBz70QY45oB8fM0k/NAA4xxQdvE8UASaQBHE/\nFAPnMc5oIzxFAGI+tEE0AAEAzFAwmSKACR7UwBMTOaAkBkSOfapAEnjn9qgN9q0ccT6USMSJrYTp\nNyqCGTP0rKWRR5O4wb4NZ+wcYXC0RAnIrSUgp/prSMupWctVsyOYzUSDxFdEIgExj6UzA7GIyKAJ\nBEUSeeKAkfYDjNQGcj2mgJEgg0oyFESBigAnsDj3oMnBJ/egA5/+qBFAAJ4AHFMAH6UAo7ZimEki\nAI/3oAgjjIoAgcxNAHbj6RQDHOaAfaJinHMjg0B//9k=\n",
775 779 "output_type": "pyout",
776 780 "prompt_number": 15,
777 781 "text": [
778 782 "<IPython.core.display.Image at 0xa81892c>"
779 783 ]
780 784 }
781 785 ],
782 786 "prompt_number": 15
783 787 },
784 788 {
785 789 "cell_type": "markdown",
786 790 "metadata": {
787 791 "slideshow": {
788 792 "slide_type": "skip"
789 793 }
790 794 },
791 795 "source": [
792 796 "Today's image from same webcam at Berkeley, (refreshed every minutes, if you reload the notebook), visible only with an active internet connexion, that should be different from the previous one. This will not work on Qtconsole.\n",
793 797 "Notebook saved with this kind of image will be lighter and always reflect the current version of the source, but the image won't display offline."
794 798 ]
795 799 },
796 800 {
797 801 "cell_type": "code",
798 802 "collapsed": false,
799 803 "input": [
800 804 "SoftLinked"
801 805 ],
802 806 "language": "python",
803 807 "metadata": {
804 808 "slideshow": {
805 809 "slide_type": "slide"
806 810 }
807 811 },
808 812 "outputs": [
809 813 {
810 814 "html": [
811 815 "<img src=\"http://scienceview.berkeley.edu/view/images/newview.jpg\"/>"
812 816 ],
813 817 "output_type": "pyout",
814 818 "prompt_number": 16,
815 819 "text": [
816 820 "<IPython.core.display.Image at 0xa818b4c>"
817 821 ]
818 822 }
819 823 ],
820 824 "prompt_number": 16
821 825 },
822 826 {
823 827 "cell_type": "markdown",
824 828 "metadata": {
825 829 "slideshow": {
826 830 "slide_type": "skip"
827 831 }
828 832 },
829 833 "source": [
830 834 "Of course, if you re-run the all notebook, the two images will be the same again."
831 835 ]
832 836 },
833 837 {
834 838 "cell_type": "markdown",
835 839 "metadata": {
836 840 "slideshow": {
837 841 "slide_type": "header_slide"
838 842 }
839 843 },
840 844 "source": [
841 845 "### Video"
842 846 ]
843 847 },
844 848 {
845 849 "cell_type": "markdown",
846 850 "metadata": {
847 851 "slideshow": {
848 852 "slide_type": "-"
849 853 }
850 854 },
851 855 "source": [
852 856 "And more exotic objects can also be displayed, as long as their representation supports \n",
853 857 "the IPython display protocol.\n",
854 858 "\n",
855 859 "For example, videos hosted externally on YouTube are easy to load (and writing a similar wrapper for other\n",
856 860 "hosted content is trivial):"
857 861 ]
858 862 },
859 863 {
860 864 "cell_type": "code",
861 865 "collapsed": false,
862 866 "input": [
863 867 "from IPython.display import YouTubeVideo\n",
864 868 "# a talk about IPython at Sage Days at U. Washington, Seattle.\n",
865 869 "# Video credit: William Stein.\n",
866 870 "YouTubeVideo('1j_HxD4iLn8')"
867 871 ],
868 872 "language": "python",
869 873 "metadata": {
870 874 "slideshow": {
871 875 "slide_type": "slide"
872 876 }
873 877 },
874 878 "outputs": [
875 879 {
876 880 "html": [
877 881 "\n",
878 882 " <iframe\n",
879 883 " width=\"400\"\n",
880 884 " height=\"300\"\n",
881 885 " src=\"http://www.youtube.com/embed/1j_HxD4iLn8\"\n",
882 886 " frameborder=\"0\"\n",
883 887 " allowfullscreen\n",
884 888 " ></iframe>\n",
885 889 " "
886 890 ],
887 891 "output_type": "pyout",
888 892 "prompt_number": 17,
889 893 "text": [
890 894 "<IPython.lib.display.YouTubeVideo at 0xa81856c>"
891 895 ]
892 896 }
893 897 ],
894 898 "prompt_number": 17
895 899 },
896 900 {
897 901 "cell_type": "markdown",
898 902 "metadata": {
899 903 "slideshow": {
900 904 "slide_type": "skip"
901 905 }
902 906 },
903 907 "source": [
904 908 "Using the nascent video capabilities of modern browsers, you may also be able to display local\n",
905 909 "videos. At the moment this doesn't work very well in all browsers, so it may or may not work for you;\n",
906 910 "we will continue testing this and looking for ways to make it more robust. \n",
907 911 "\n",
908 912 "The following cell loads a local file called `animation.m4v`, encodes the raw video as base64 for http\n",
909 913 "transport, and uses the HTML5 video tag to load it. On Chrome 15 it works correctly, displaying a control\n",
910 914 "bar at the bottom with a play/pause button and a location slider."
911 915 ]
912 916 },
913 917 {
914 918 "cell_type": "code",
915 919 "collapsed": false,
916 920 "input": [
917 921 "from IPython.display import HTML\n",
918 922 "video = open(\"animation.m4v\", \"rb\").read()\n",
919 923 "video_encoded = video.encode(\"base64\")\n",
920 924 "video_tag = '<video controls alt=\"test\" src=\"data:video/x-m4v;base64,{0}\">'.format(video_encoded)\n",
921 925 "HTML(data=video_tag)"
922 926 ],
923 927 "language": "python",
924 928 "metadata": {
925 929 "slideshow": {
926 930 "slide_type": "skip"
927 931 }
928 932 },
929 933 "outputs": [
930 934 {
931 935 "ename": "IOError",
932 936 "evalue": "[Errno 2] No such file or directory: 'animation.m4v'",
933 937 "output_type": "pyerr",
934 938 "traceback": [
935 939 "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mIOError\u001b[0m Traceback (most recent call last)",
936 940 "\u001b[1;32m<ipython-input-18-8b8f5414a141>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mIPython\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdisplay\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mHTML\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mvideo\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"animation.m4v\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"rb\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mvideo_encoded\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mvideo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mencode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"base64\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mvideo_tag\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'<video controls alt=\"test\" src=\"data:video/x-m4v;base64,{0}\">'\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvideo_encoded\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mHTML\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mvideo_tag\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
937 941 "\u001b[1;31mIOError\u001b[0m: [Errno 2] No such file or directory: 'animation.m4v'"
938 942 ]
939 943 }
940 944 ],
941 945 "prompt_number": 18
942 946 },
943 947 {
944 948 "cell_type": "markdown",
945 949 "metadata": {
946 950 "slideshow": {
947 951 "slide_type": "header_slide"
948 952 }
949 953 },
950 954 "source": [
951 955 "## Local Files\n",
952 956 "\n",
953 957 "The above examples embed images and video from the notebook filesystem in the output\n",
954 958 "areas of code cells. It is also possible to request these files directly in markdown cells\n",
955 959 "if they reside in the notebook directory via relative urls prefixed with `files/`:\n",
956 960 "\n",
957 961 " files/[subdirectory/]<filename>"
958 962 ]
959 963 },
960 964 {
961 965 "cell_type": "markdown",
962 966 "metadata": {
963 967 "slideshow": {
964 968 "slide_type": "slide"
965 969 }
966 970 },
967 971 "source": [
968 972 "For example, in the example notebook folder, we have the Python logo, addressed as:\n",
969 973 "\n",
970 974 " <img src=\"files/python-logo.svg\" />\n",
971 975 "\n",
972 976 "<img src=\"/files/python-logo.svg\" />"
973 977 ]
974 978 },
975 979 {
976 980 "cell_type": "markdown",
977 981 "metadata": {
978 982 "slideshow": {
979 983 "slide_type": "skip"
980 984 }
981 985 },
982 986 "source": [
983 987 "and a video with the HTML5 video tag:\n",
984 988 "\n",
985 989 " <video controls src=\"files/animation.m4v\" />\n",
986 990 "\n",
987 991 "<video controls src=\"/files/animation.m4v\" />\n",
988 992 "\n",
989 993 "These do not embed the data into the notebook file,\n",
990 994 "and require that the files exist when you are viewing the notebook.\n",
991 995 "\n",
992 996 "### Security of local files\n",
993 997 "\n",
994 998 "Note that this means that the IPython notebook server also acts as a generic file server\n",
995 999 "for files inside the same tree as your notebooks. Access is not granted outside the\n",
996 1000 "notebook folder so you have strict control over what files are visible, but for this\n",
997 1001 "reason it is highly recommended that you do not run the notebook server with a notebook\n",
998 1002 "directory at a high level in your filesystem (e.g. your home directory).\n",
999 1003 "\n",
1000 1004 "When you run the notebook in a password-protected manner, local file access is restricted\n",
1001 1005 "to authenticated users unless read-only views are active."
1002 1006 ]
1003 1007 },
1004 1008 {
1005 1009 "cell_type": "markdown",
1006 1010 "metadata": {
1007 1011 "slideshow": {
1008 1012 "slide_type": "header_slide"
1009 1013 }
1010 1014 },
1011 1015 "source": [
1012 1016 "### External sites\n",
1013 1017 "\n",
1014 1018 "You can even embed an entire page from another site in an iframe; for example this is today's Wikipedia\n",
1015 1019 "page for mobile users:"
1016 1020 ]
1017 1021 },
1018 1022 {
1019 1023 "cell_type": "code",
1020 1024 "collapsed": false,
1021 1025 "input": [
1022 1026 "HTML('<iframe src=http://en.mobile.wikipedia.org/?useformat=mobile width=700 height=350></iframe>')"
1023 1027 ],
1024 1028 "language": "python",
1025 1029 "metadata": {
1026 1030 "slideshow": {
1027 1031 "slide_type": "slide"
1028 1032 }
1029 1033 },
1030 1034 "outputs": [
1031 1035 {
1032 1036 "html": [
1033 1037 "<iframe src=http://en.mobile.wikipedia.org/?useformat=mobile width=700 height=350></iframe>"
1034 1038 ],
1035 1039 "output_type": "pyout",
1036 1040 "prompt_number": 19,
1037 1041 "text": [
1038 1042 "<IPython.core.display.HTML at 0xa71412c>"
1039 1043 ]
1040 1044 }
1041 1045 ],
1042 1046 "prompt_number": 19
1043 1047 },
1044 1048 {
1045 1049 "cell_type": "markdown",
1046 1050 "metadata": {
1047 1051 "slideshow": {
1048 1052 "slide_type": "header_slide"
1049 1053 }
1050 1054 },
1051 1055 "source": [
1052 1056 "### Mathematics\n",
1053 1057 "\n",
1054 1058 "And we also support the display of mathematical expressions typeset in LaTeX, which is rendered\n",
1055 1059 "in the browser thanks to the [MathJax library](http://mathjax.org). \n",
1056 1060 "\n",
1057 1061 "Note that this is *different* from the above examples. Above we were typing mathematical expressions\n",
1058 1062 "in Markdown cells (along with normal text) and letting the browser render them; now we are displaying\n",
1059 1063 "the output of a Python computation as a LaTeX expression wrapped by the `Math()` object so the browser\n",
1060 1064 "renders it. The `Math` object will add the needed LaTeX delimiters (`$$`) if they are not provided:"
1061 1065 ]
1062 1066 },
1063 1067 {
1064 1068 "cell_type": "code",
1065 1069 "collapsed": false,
1066 1070 "input": [
1067 1071 "from IPython.display import Math\n",
1068 1072 "Math(r'F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx')"
1069 1073 ],
1070 1074 "language": "python",
1071 1075 "metadata": {
1072 1076 "slideshow": {
1073 1077 "slide_type": "slide"
1074 1078 }
1075 1079 },
1076 1080 "outputs": [
1077 1081 {
1078 1082 "latex": [
1079 1083 "$$F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx$$"
1080 1084 ],
1081 1085 "output_type": "pyout",
1082 1086 "prompt_number": 20,
1083 1087 "text": [
1084 1088 "<IPython.core.display.Math at 0xa71406c>"
1085 1089 ]
1086 1090 }
1087 1091 ],
1088 1092 "prompt_number": 20
1089 1093 },
1090 1094 {
1091 1095 "cell_type": "markdown",
1092 1096 "metadata": {
1093 1097 "slideshow": {
1094 1098 "slide_type": "slide"
1095 1099 }
1096 1100 },
1097 1101 "source": [
1098 1102 "With the `Latex` class, you have to include the delimiters yourself. This allows you to use other LaTeX modes such as `eqnarray`:"
1099 1103 ]
1100 1104 },
1101 1105 {
1102 1106 "cell_type": "code",
1103 1107 "collapsed": false,
1104 1108 "input": [
1105 1109 "from IPython.display import Latex\n",
1106 1110 "Latex(r\"\"\"\\begin{eqnarray}\n",
1107 1111 "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
1108 1112 "\\end{eqnarray}\"\"\")"
1109 1113 ],
1110 1114 "language": "python",
1111 1115 "metadata": {},
1112 1116 "outputs": [
1113 1117 {
1114 1118 "latex": [
1115 1119 "\\begin{eqnarray}\n",
1116 1120 "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
1117 1121 "\\end{eqnarray}"
1118 1122 ],
1119 1123 "output_type": "pyout",
1120 1124 "prompt_number": 21,
1121 1125 "text": [
1122 1126 "<IPython.core.display.Latex at 0xa71404c>"
1123 1127 ]
1124 1128 }
1125 1129 ],
1126 1130 "prompt_number": 21
1127 1131 },
1128 1132 {
1129 1133 "cell_type": "markdown",
1130 1134 "metadata": {
1131 1135 "slideshow": {
1132 1136 "slide_type": "slide"
1133 1137 }
1134 1138 },
1135 1139 "source": [
1136 1140 "Or you can enter latex directly with the `%%latex` cell magic:"
1137 1141 ]
1138 1142 },
1139 1143 {
1140 1144 "cell_type": "code",
1141 1145 "collapsed": false,
1142 1146 "input": [
1143 1147 "%%latex\n",
1144 1148 "\\begin{aligned}\n",
1145 1149 "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
1146 1150 "\\end{aligned}"
1147 1151 ],
1148 1152 "language": "python",
1149 1153 "metadata": {},
1150 1154 "outputs": [
1151 1155 {
1152 1156 "latex": [
1153 1157 "\\begin{aligned}\n",
1154 1158 "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
1155 1159 "\\end{aligned}"
1156 1160 ],
1157 1161 "output_type": "display_data",
1158 1162 "text": [
1159 1163 "<IPython.core.display.Latex at 0xa71472c>"
1160 1164 ]
1161 1165 }
1162 1166 ],
1163 1167 "prompt_number": 22
1164 1168 },
1165 1169 {
1166 1170 "cell_type": "markdown",
1167 1171 "metadata": {
1168 1172 "slideshow": {
1169 1173 "slide_type": "skip"
1170 1174 }
1171 1175 },
1172 1176 "source": [
1173 1177 "There is also a `%%javascript` cell magic for running javascript directly,\n",
1174 1178 "and `%%svg` for manually entering SVG content."
1175 1179 ]
1176 1180 },
1177 1181 {
1178 1182 "cell_type": "markdown",
1179 1183 "metadata": {
1180 1184 "slideshow": {
1181 1185 "slide_type": "header_slide"
1182 1186 }
1183 1187 },
1184 1188 "source": [
1185 1189 "# Loading external codes\n",
1186 1190 "* Drag and drop a ``.py`` in the dashboard\n",
1187 1191 "* Use ``%load`` with any local or remote url: [the Matplotlib Gallery!](http://matplotlib.sourceforge.net/gallery.html)\n",
1188 1192 "\n",
1189 1193 "In this notebook we've kept the output saved so you can see the result, but you should run the next\n",
1190 1194 "cell yourself (with an active internet connection)."
1191 1195 ]
1192 1196 },
1193 1197 {
1194 1198 "cell_type": "markdown",
1195 1199 "metadata": {
1196 1200 "slideshow": {
1197 1201 "slide_type": "slide"
1198 1202 }
1199 1203 },
1200 1204 "source": [
1201 1205 "Let's make sure we have pylab again, in case we have restarted the kernel due to the crash demo above"
1202 1206 ]
1203 1207 },
1204 1208 {
1205 1209 "cell_type": "code",
1206 1210 "collapsed": false,
1207 1211 "input": [
1208 1212 "%pylab inline"
1209 1213 ],
1210 1214 "language": "python",
1211 1215 "metadata": {},
1212 1216 "outputs": [
1213 1217 {
1214 1218 "output_type": "stream",
1215 1219 "stream": "stdout",
1216 1220 "text": [
1217 1221 "\n",
1218 1222 "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
1219 1223 "For more information, type 'help(pylab)'.\n"
1220 1224 ]
1221 1225 }
1222 1226 ],
1223 1227 "prompt_number": 23
1224 1228 },
1225 1229 {
1226 1230 "cell_type": "code",
1227 1231 "collapsed": false,
1228 1232 "input": [
1229 1233 "%load http://matplotlib.sourceforge.net/mpl_examples/pylab_examples/integral_demo.py"
1230 1234 ],
1231 1235 "language": "python",
1232 1236 "metadata": {},
1233 1237 "outputs": [],
1234 1238 "prompt_number": 24
1235 1239 },
1236 1240 {
1237 1241 "cell_type": "code",
1238 1242 "collapsed": false,
1239 1243 "input": [
1240 1244 "#!/usr/bin/env python\n",
1241 1245 "\n",
1242 1246 "# implement the example graphs/integral from pyx\n",
1243 1247 "from pylab import *\n",
1244 1248 "from matplotlib.patches import Polygon\n",
1245 1249 "\n",
1246 1250 "def func(x):\n",
1247 1251 " return (x-3)*(x-5)*(x-7)+85\n",
1248 1252 "\n",
1249 1253 "ax = subplot(111)\n",
1250 1254 "\n",
1251 1255 "a, b = 2, 9 # integral area\n",
1252 1256 "x = arange(0, 10, 0.01)\n",
1253 1257 "y = func(x)\n",
1254 1258 "plot(x, y, linewidth=1)\n",
1255 1259 "\n",
1256 1260 "# make the shaded region\n",
1257 1261 "ix = arange(a, b, 0.01)\n",
1258 1262 "iy = func(ix)\n",
1259 1263 "verts = [(a,0)] + list(zip(ix,iy)) + [(b,0)]\n",
1260 1264 "poly = Polygon(verts, facecolor='0.8', edgecolor='k')\n",
1261 1265 "ax.add_patch(poly)\n",
1262 1266 "\n",
1263 1267 "text(0.5 * (a + b), 30,\n",
1264 1268 " r\"$\\int_a^b f(x)\\mathrm{d}x$\", horizontalalignment='center',\n",
1265 1269 " fontsize=20)\n",
1266 1270 "\n",
1267 1271 "axis([0,10, 0, 180])\n",
1268 1272 "figtext(0.9, 0.05, 'x')\n",
1269 1273 "figtext(0.1, 0.9, 'y')\n",
1270 1274 "ax.set_xticks((a,b))\n",
1271 1275 "ax.set_xticklabels(('a','b'))\n",
1272 1276 "ax.set_yticks([])\n",
1273 1277 "show()\n"
1274 1278 ],
1275 1279 "language": "python",
1276 1280 "metadata": {
1277 1281 "slideshow": {
1278 1282 "slide_type": "skip"
1279 1283 }
1280 1284 },
1281 1285 "outputs": [
1282 1286 {
1283 1287 "output_type": "display_data",
1284 1288 "png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAEJCAYAAABfZHZuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0VPX5x/H3ZJssJCbIEjbZwlICyhYWN1BUlmJFUbQS\n2+JWCwjaWij+RFERRHtoDYK1Kggqim1Ri1K3AlWEsAkBQoAQSEgQQhBCyD7b748BFAkhy8zcuZPP\n6xxOD8nMfJ9jycOH537v91pcLpcLERExhSCjCxARkZpT0xYRMRE1bRERE1HTFhExETVtERETUdMW\nETGRapv2U089xUsvvXT29//3f/9HSkqK14sSEZGqWarbp52Tk8Ntt93Gli1bcDqddO7cmU2bNhEX\nF+fLGkVE5LSQ6r7Ztm1bLr30UrZt28aRI0fo3bu3GraIiIGqbdoA999/P4sWLSI/P597773XFzWJ\niMgFVDseAbDZbHTv3h2Hw0FmZiYWi8VXtYmIyE9cNGmHhoZy/fXXExcXd8GGrUYuIlI3tT3+6aJN\n2+l0kpqayj//+U+PLhyoZsyYwYwZM4wuQ0Sq4eufU5cLevaEuXNhyJAfvl6XwFvtlr9du3bRqVMn\nbrjhBjp27FjrDxcREUhNhZISuO66+n9WtUm7W7duZGVl1X8VEZEGbP58GD8egjxwO6PuiPSwwYMH\nG12CiFyEL39O8/Phk09g3DjPfN5Fd4/U6EMsFs20RUSq8NxzcOAAvP76+d+rS+9U0xYR8RK7HTp0\ngI8+gl69zv9+XXqnxiMiIl6yYgW0aVN1w64rNW0RES+ZPx8mTPDsZ2o8IiLiBRkZ7i1+OTlgtVb9\nGo1HRET8xIIF8MADF27YdaWkLSLiYadOQdu2sH07tG594dcpaYuI+IElS9yjkeoadl0paYuIeJDT\nCV27whtvwDXXVP9aJW0REYN98glccglcfbV3Pl9NW0TEg+bOhUcfBW+dWK2mLSLiIVu3wr59cMcd\n3ltDTVtExEP+8hd4+GEIDfXeGroQKSLiAd99B4mJsH8/1PT557oQKSJikPnzITm55g27rpS0RUTq\nqbTUfTPN+vWQkFDz9ylpi4gYYPFiuPLK2jXsulLSFhGpB7sdOneGt992N+7aUNIWEfGxf/zDfbt6\nbRt2Xalpi4jUkcsFzz8Pf/qT79ZU0xYRqaNPP3U37uHDfbemmraISB2dSdneumW9KmraIiJ1sG4d\nHDwIY8b4dl01bRGROpgzB/74RwgJ8e262vInIlJL6ekwZAgcOAAREXX/HG35ExHxgVmzYNKk+jXs\nulLSFhGphT173A84yMqCmJj6fZaStoiIl82cCZMn179h15WStohIDe3dC1dd5X7QwSWX1P/zlLRF\nRLxo5kz3LNsTDbuulLRFRGogM9N9voinUjYoaYuIeM1zz8HEicambAAfbwsXETGfrCz4+GN3yjaa\nkraIyEU884w7ZcfGGl2JkraISLXS092n+WVmGl2Jm5K2iEg1nngCpkwxbl/2T2n3iIjIBWzYALff\n7t6f7Y1b1rV7RETEgx5/HJ580pgzRi5ETVtEpApffgm5uTBunNGVnEtNW0TkJ1wud8p+9lnfn5d9\nMWraIiI/8cEHYLPBHXcYXcn5dCFSRORHKishMRHmz4ebbvLuWroQKSJST6+8AgkJ3m/YdaWkLSJy\n2vHj0LUrrF7tTtveVpfeqaYtInLa738PpaXwt7/5Zj01bRGROtq3DwYMcN+23ry5b9bUTFtEpI6m\nToU//MF3Dbuu/GwHooiI7331FWzeDG+/bXQlF6ekLSINmt3ufoTYnDn+dbv6hahpi0iD9re/uc/J\nvvNOoyupGV2IFJEG6+hR99a+1auhe3ffr6/dIyIitXDvve6UPXeuMevXpXfqQqSINEjr17ufSLN7\nt9GV1I5m2iLS4Dgc7mc+vvCC/zyRpqbUtEWkwbn33vXY7YWMHWt0JbWnpi0iDcq2bQUsWZJA69az\nsViMrqb2NNMWkQZl5Mj9wGcMGNDI6FLqRElbRBqMJ57YQn7+pdx11wGjS6kzNW0RaRDy8op5/vmW\nTJy4naioYNNuU1bTFpEGYdiwrbRunUZyclssZhxmn6aZtogEvPnzt5ORkcAHH2Se/ZqStoiIHzp2\nrIxHH40hOXkDrVpFAShpi4j4qyFDttC0aTmTJrU55+tmTdpq2iISsObO3cHOne1ZvnzfOV83c9LW\neEREAlJu7immTGnM/fen0rr1+XuylbRFRPzI9ddvp02bIh58sJ3RpXiUmraIBJzHH99AdnYrVqxw\nXvA1Zk3aGo+ISEDZsiWf559vz2OP7aBp08gqX2PmmbaStogEDJvNyQ03HKFPn/3cfvtl1b7WrElb\nTVtEAsaIEeuw28N46aWW1b7OzElb4xERCQivvJLOf//biZdfPonVevE8atakraYtIqa3b98JHn44\njvvu+4bu3Rtf9PVmTtoaj4iIqdntTq68MpNOnQp46KG2NX6fWZO2mraImNrQod9QWhrJ8uVNjC7F\nJzQeERHTevbZraxZ04FXXz1BRETtMqjTeeE93P5MTVtETGn16jyeeqo1jz22ia5d42r1XovFovGI\niIivHD1ayogRZVx/fSpjxrSv9ft1IVJExEccDhe9e6fRtGkxs2e3q/PnKGmLiPjAddd9zYkT0Xzy\nCQQF1S0xmzlpa6YtIqYxfnwq69ZdxsKFJ4iODqvXZ5k1aatpi4gpLFiQzt/+1pE5c3aRkHBJvT5L\nSVtExIu++CKbhx9uyu9+t5bBg5t75DOVtEVEvCAtrYARI4IZPvwb7r23+pP7GgJdiBQRv3Xw4CkG\nDCikd+8dPP10zW9RrwmzJm01bRHxSydOlHP55Qdo0yaHl1/2bMI280xbTVtE/E5pqY2f/SyNyMhi\nlixpXuetfdVR0hYR8YDycgddumzBZnPw0UeNCA0N9vgaStoiIh5QUeGga9dNFBc7+OCDoFofAlUb\nStoiIvXgbtgbOXECPvjAUu+bZ6pj5qStLX8iYriyMjtduqRy/HgQy5e7uOQSq9fXVNIWEamDoqJK\nunTZRkUFfPCB0ycN28xHsyppi4hhjhwpoX37XTidxXz0UTCXXOK9kchPqWmLiNRCZuZxEhKyiY4+\nwgcfRBEZGWp0Saagpi0iPrdqVS6JiUW0b7+ff/yjCVar7ye1etyYiEgN/P3vu7jxRivXXbeZN99s\n6ZUbZy7GzLtHdCFSRHxm8uT1zJuXwP33f8Vvf1v7x4R5klln2mraIuJ1NpuTwYPXsmFDe2bN2sSN\nN7YztB4lbRGRC8jKOsmAAVlUVFhZunQfHTt65jzs+jJr0tZMW0S8ZunS3XTtWkSTJnmsXOmiY8cY\no0sCtE9bROQcDoeL0aPXkpzchNtv38Tbb7ciIsJ/tvRpPCIiclp6+vdcd102p05FM3/+Fvr18+zD\nCzxFSVtEGrzp0zdx+eV24uMP8fnnZfTr18TokgKOkraI1FtmZiE33bSb3Nx4Hn10A7/8ZSujS7oo\nJW0RaXCcTheTJ6+ja9dKrNYC/vOfQ6Zo2Jppi0iDs3JlDvfcc5zi4sZMm7aeW29tbXRJtaKkLSIN\nQk5OEX36rGXkyEiuuCKLVatOmq5hK2mLSMArKqrkN7/ZwIcfdqFt22Lee28HHTsaeyt6fZg1aatp\ni0i1ysrsPPTQRt55px2XXOI6fRt6vNFl1YuStogEnMLCCiZO3MSyZW2IjAxiypSNjB7dBogyujSP\nUNKWgONwOMnK+p7du0+Sm1tMfn4Zx4/bKCx0UlQEFRUubDYnTqcLpxNcrmCCgiAszInV6iIiwkJU\nVDBRUSE0bhxKs2ahtGoVQdu20bRvH0tcXJSpE0+g2rPnOOPHp7NmTVdiY108+mgad97ZCmhjdGke\nY+Y/d2raDdyhQ0V8+WU2qaknSE+3kZMTxvHjl1BWFovD0QywEhpqISwMrNZgrFY7VqsDq9VGWJiD\n4GALFgsEBYHF4sDptGC3B2GzhWCzWbDZLFRWOqioCKGiIhSbzYrdHo7TaQVKCA4uxGo9TnR0EZde\nWkF8vIu2bUNJSIike/c4+vVrTnx8tNH/mQKe0+ni9dd388ILx8nKSqRt21JeeGEDgwe3ACKNLs8r\nlLTF7+XlneSddzJZtaqQHTusFBS0xm5vRni4ldjYYFq0KKFPn2I6dSqiY8fv6dQpn5iY4B99QjDu\nH+C6/hBXnv51ApcLjh+v5ODBErKzK8nNdXD4MOTnB5OZGczy5VBaasFmC8FiOUpExBHi4gpp1aqS\nhIRgevRoRL9+TRkwoJUeU1UPaWkFPPnkLj77rA0ORwj9+x/h+edttG+vOxn9lZp2ADt8+BSvvprO\nihXFZGQ0o6ysPY0aBdOmjZ2rry7jqqvK6d//GKGhQUDE6V++YbHApZeGcemlYfTqdaFXFeJwnODA\ngVJ27CghM9NOTk4Q33wTwccfB1FSEozD4SQkJJeYmALi40tJSIAePaLo378JV1/dgrg4/RH/qZ07\njzFr1m5Wrozm5MnLaNPGxsSJ2xkzphXBwe2MLs9nlLTFL3zzzUHmzs1k9epGnDjRjZiYMLp0qWDS\npDyGDy+jUaMQoKnRZdZYcLCFhIQoEhKquvh1lNLS70hLO8GOHWVkZjrZvTuMr792MmdOOHZ7BcHB\nJ4mOPkqLFqV06AA9ekTSv39T+vW7lBYt3KOdQGezOVm6NJMlS46ycWMcxcWtaNGiglGjjvDrX5cQ\nExMHxBldpk9ppi2G2rLlEE8/vZsvv4ynvDye1q2Dufnmo9x9t5MmTcIAc2/Pqk5kZAgDBzZl4MCf\nfqeUsrJt7Nx5jO3bS9i7186+fVbWrYvhz38uwW53YrE0Ijq6gObNi2nf3km3buH07RtHUlJj2rcP\nItSkU5dTp2y8/34W//53AZs2hXLkSGdCQ5106HCC3/ymgNGjTxEdHQvEGl2qoZS0xaeKisqZNm0z\n770XyokTXWnTJogHHjjAmDHFhIdHA7p4FxERTlJSa5KSzv9ecXEGe/YcZseOYvbudZCba+Xbb6OZ\nP78JdntboCXh4d/TuHEhrVtX0LGjhcREd1Pv1+9SYmODz/9QH3O5YO/e43z66SHWrSti+3YXubmx\nlJS0x2q10bp1EVddVc7NNxeTmBgH+P+ZIL6ipC0+s25dLr///R42buxBTEw4Q4ce4sEHXcTGxgD+\n8VQQM2jUqBF9+nSiT5/zv1dWlkdOzibS090N/eDBENaubcTHHzempMSBwxFFUFAZ4eH5REWVEhtb\nSdOmTpo2tdCyZTCtWoXRokUEzZtHEh8fRfPmUTRrFkFY2MUbhcsFFRVOCgqKOXiwmJycEg4eLCUv\nr4y8vApycy0cPhxOYWEsZWXxQBCRkXaaNTtFhw4ljBx5nBtuKKRJkwgC+V9YnqCkLV61ZMlOpk0r\n4vDhn9G5s4uUlJ0MHBgLmOvMBzOIiIiga9cOdO1a1XfLqKzcQWbmKTIzKzh0qIL8fBfHjgWRkRHG\nxo0RlJYGUVlpx2634XBU4nSGAmGAHajAYnEBjrP/Cy5crjBcLisQDjgBC0FBDkJDy7FaS4mKKiU6\nuoJmzSoYPNhBp06H6dEjj7ZtYwgKsuC+TmGeaxVGU9IWr5k371tmzKiksLAt1167n4ULM2jSpLHR\nZTVoYWGhJCY2JjGxulfZTv8qAsBud1BcbKe4uBKbzYHN5sThAJfLgssF4eFBREYGER0dSmRkGEFB\nPz7LLez0L/EkJW3xqDfe2M5jj9k4daoZw4ZtZerUICIjNZM0q5CQYGJjg4mNtRpdiqCkLR70+edZ\njBt3iCNHOjF8+EamTXMQHq5mLeJpStpSLzk5Jxg1aitpaT3p3z+DJUtyiI3VvFpEzqWHIBjM6XQx\nfvwaOnQo58QJF8uW7eDll1sQG2vSTcIiJuF0Oo0uoU6UtA305ZfZjBlzlNLSljz+eBqjRunqv4gv\nmHmmraRtAJvNwS23/Jebboqme/cjrFp1Ug1bxIfM3LSVtH3s669zGDmyAIejGfPnb6VfP11kFDGC\nWS9EKmn7iMvl4sEHv2LQoCh69Mjniy/K6devYR3SI+IvlLSlWvn5pxg48Fvy8loxe/YWbrhBtxeL\nGE1JW6q0YsVeLrvsEHY7fPJJATfcoMPlRYxm5qStpu1Fkyev5ZZb4hg6dB/LlzeicWPdiiziL8ya\ntDUe8QKbzcG1165m06bOzJy5maFDWxhdkogECDVtD8vPP0XPntsoLm7Ce+9l0759M6NLEpEq6OYa\n4dAhSEoqwuUqYeVKK5GRVT0iS0SMppm2kJ4OAwdCQkIad9yxkshI459sIiIXZtaZtpq2B6xfD9df\nD7NnQ//+qxvEw2JFzExJuwH77DO45RZ4800YO9boakSkppS0G6Bly+BXv4IPP4Thw42uRkRqysxJ\nWxci6+jtt2HqVPjyS+jRw+hqRKS2zJq01bTr4McN+2c/M7oaEaktJe0G5J13YMoUNWwRszNr0tZM\nuxaWLoU//tHdsLt1M7oaEWmIlLRr6KOP4A9/UMMWCRRmTdpq2jXw1VfwwAOwciUkJhpdjYjUl5ln\n2hqPXERaGtxxB7z7LvTta3Q1IuIpZk3aatrVyMqCESNg/nwYMsToakTEU5S0A1BBAQwdCk8+Cbff\nbnQ1IuJpStoBpKICbr0VxoyB3/7W6GpExNMsFouadqBwueD++6FFC5g50+hqRMQbNB4JILNmwe7d\nsHgxBOm/jim8//77DBo0iJ07dxpdipiIknYAeP99ePVV+Pe/ITLS6Gqkpn7+859jtVpJ1H5MaQC0\nT/u0bdtgwgT44gv3aETMY/PmzfTq1cvU/+QV31PSNrHjx2H0aJg3D3r2NLoaqa0NGzZgsVj49NNP\nmTVrFvv27TO6JPFzZv4LvsE3bacTkpPhF7+Au+4yuhq5mPfee48hQ4aQnJxMTk4O4G7aY8eOZdiw\nYVx77bUsWLDA4CrFDJS0TeqZZ6C4GF54wehK5GI2b97MX/7yF/76179SUlLCs88+y5EjR3C5XPQ4\nfaj5999/T2FhocGVir8zc9Ju0DPtTz6B11+HzZshNNToauRi5s2bx8CBA+ncuTMul4vmzZuTkZFB\nzx/NtFJTU7nyyisNrFLMQknbZHJyYNw49yPD4uONrkYuZufOnezatYsbb7wRq9XKhx9+yHPPPUdU\nVBTR0dEAHDx4kH379pGcnGxwteLvzJy0G2TTttvh7rvhscfgqquMrkZqYuXKlQDnpeikpCSCgoL4\n+OOPeffdd3nllVcIDw83okQxGbMm7QY5Hnn6aYiKcjdtMYf//e9/dOjQgbi4uHO+brFYmDx5MgAj\nR440ojQxITMn7QbXtNesgTfegG+/1R2PZnHw4EGOHj3K1VdfbXQpEkDMmrQbVNs6dgzuuQcWLtQc\n20w2bdoEQPfu3Q2uRMR4DaZpu1xw331w550wbJjR1UhtbNmyBYCf6UnK4kFmTdoNZjyycCEcPAj/\n+IfRlUhtbdmyhbCwMNq3b290KRIgNNP2c9nZ8Kc/wapVEBZmdDVSGzk5ORw/fpxu3boRHBxsdDkS\nQMyatAN+POJ0wr33uneKnL5pTkxk69atAHTu3NngSiSQmDlpB3zTXrAAysq0vc+svv32WwASEhIM\nrkQCjVmTdkCPRzIz3Xuyv/kG9C9rc9qxYwfgH03b4XDUeURjt9sJCQnoHzdTUdL2Qw4H/OY37gfz\n6l/W5nTixAny8vKwWCx07NjR0FpWrVp19q7Muli0aBFpaWkerEjqy6xJO2Cb9oIF7nQ9YYLRlUhd\nbd++HYC4uDhiY2O9vl5ubi6PPPIIKSkpzJ49++wP9ZYtW9i6dSs333xznT973LhxLFy4kAMHDtTo\n9Y899hhjx47VXZ5eoqTtZ3Jz3WORv/9ddz2a2Zmm7YvRiM1mY+LEiQwZMoTvv/+ejz76iJKSEoqL\ni0lJSWHixIn1+vyQkBCmTZvGU089hd1uv+jr58yZQ+/evcnPz6/XunJhStp+wuVyp+tJk6BrV6Or\nkfo486DeTp06eX2t9evX891339G7d2/GjBlDSkoKjRo1YtGiRQwfPhyr1VrvNeLj4+nYsSMff/zx\nRV8bHBysHTNSpYBr2suXw759MHWq0ZVIfTgcDnbt2gX4pmlv2bKFuLg4WrVqRWJiIv369aOsrIwP\nP/yQESNGeGydO++8k8WLF3vs86TulLT9QGGhO2G/9hp4IBiJgbKzsykvL8disfikaaenp9OtW7dz\nvrZ27VpatmxJTEyMx9bp3LkzJ0+eZPfu3R77TKk9i8Vi2qYdUHuQ/vQn97MedUa2+Z1J2cHBwXTo\n0MFr68yYMYPjx4+TlpZGu3btmDRpEq1atWLq1Kls2LCByy+//ILvzcjIYOXKlQQFBXH48GGeeOIJ\nli9fzqlTpygoKODBBx+kdevW57wnKCiInj17kpqaStcfze+ysrJYtGgRMTExhIeHExoaet4xtPVd\nW35g5guRAdO0U1Ph3/+G0z/rYnJnmnaHDh28ur95xowZHDp0iFGjRjFhwgQGDx589nt79+7l1ltv\nrfJ9eXl5rFixgilTppz9nHHjxjFjxgycTicPPPAAXbp0YezYsee997LLLmPv3r1nf5+WlsbkyZOZ\nO3cuvXv3BqC0tJTx48dX2Vzqs7b8wKxJOyDGIw4HTJzofjivD3aGiQ+cadpdunTx+lp79uwBzr9V\n/rvvvjv7KLOfeuedd3j44YfP/r6srIyYmBh69OhBfHw8ycnJF9wiGB0dzXfffQeA0+lkxowZJCUl\nnW3YAJGRkdx0001VNpb6rC1uZk7aAdG033gDIiJAwSIwOBwO9u3bB/jmONa9e/fSqFEjWrZsec7X\ni4uLL9i077nnHiIiIs7+fseOHfTr1w+A5s2bM2nSpAvOwmNjYykuLgbc2xrz8vK44ooralxvfdaW\nH5g1aZt+PPL99zB9Onz+OZj4L0/5kezsbCorK7FYLD5r2lVtr7NYLDidzirf8+MGn52dTUFBAX37\n9q3Rek6n82zDOLMPuzZNtj5ri5uStoGmT4cxY6AWQUX83Jl5b0hIiE/GI3v37q1ynejoaIqKii76\n/s2bNxMaGnrORcu8vLwLvr6oqOhsgm/evDkA5eXltS27TmvLD8yatE3dtL/91r0v+5lnjK5EPCkz\nMxNw3wkZGhrq1bVOnjxJfn5+ldsKW7ZsSWFh4XlfLy8vJyUl5ewIZ8OGDXTq1OnsDThOp5O33nqr\n2jVbtWoFcHYOfeZGoh9zOBweX1vMz7RN2+WChx+G556DanZGiQmdaUi+eCbkmYuQVTXtnj17VnlW\nyDfffMNbb73F/v37yc7OJjc3l7AfPV1j4cKF1V4IPHDgwNmxT3BwME8++SRr1649+5cVwLFjx1ix\nYgUAhw4d8tja8gOzJm3TzrTfew8qKmDcOKMrEU8707QTExO9vtbu3buJjo6ucqY9cOBA5s6de97X\n+/Tpw80338zu3bvZs2cPb775Js8//zyzZs0iNDSUQYMGXfAvHLvdzvbt25k0adLZryUlJZGSksJr\nr71GixYtiIyMJCQkhJ///OcsXryYRx55hLFjxzJq1Kh6rS0/MPNM25RNu7wcpk2DJUt0IFSgOXNz\niMVi8VnTTkpKIqiKP0i9evXi2LFjFBQU0LRp07Nfj42N5cknnzzntTNmzKjReunp6cTHx5+X7Lt3\n784LL7xw3ut//etfn/P7+qwt5zJr0jZly0tJgV694Nprja5EPC0rKwtw76Zo166dV9ZYvHgxE06f\n2btr1y6GDBlS5evCwsK48847effddz229tKlS3XTix8wc9I2XdMuKHDfRDNnjtGViDfs378fcM+T\nvWXlypWEhYWRmZlJaGjoBZs2wK9+9SvWrVtXo10kF5Odnc2RI0c0c/YTSto+8vTTcPfdehpNoDrT\ntHv16uW1Ne655x6aNm3KokWLePHFF6t9hFh4eDjTp09n5syZ9fohr6io4MUXX+S5554zdcoLFGb+\n/8BUM+09e2DZMsjIMLoS8ZYzOyi8mbRHjhxZqyfCJCYmMnr0aJYtW8Zdd91VpzUXLVrEhAkTdIiT\nHzFr0jZV054yxf2rSROjKxFvyczMJCIi4pwT8PxB//796d+/f53f/9BDD3mwGqkvJW0f+PprSEtz\nJ20JTIcPH+bUqVMkJSXV+annIjVl1qRtipm2ywWPP+6eZ4eHG12NeEvG6blXnz59DK5ExH+Zoml/\n9pn7YKjkZKMrEW9KT08HOHtinYg3KWl7idPpTtkzZ4L+xRzYdu7cSVRUlE9uqpGGzcwzbb9v2v/6\nl/uuxws8QEQCRHl5OTt37qR///5V3p0o4mlmTdp+fSHSbncfvZqSorOyA93mzZuprKxk0KBBRpci\nDYCStpe89RbEx8ONNxpdiXjan//8Z375y19it9sB+PTTT4mJian27kQRT1LS9rCKCpgxA959Vyk7\nEG3cuBGbzYbT6eTIkSOsWrWK++677+y50CLeZLFY1LQ9bdEiSEyEK680uhLxhiuuuILGjRtTVFTE\nM888w2WXXXbeiXYicj6/HI9UVsLs2fCTEyglgEyYMIH09HRGjRpFWFgY8+bNIySk6gxht9t55ZVX\n+Ne//sWyZct49NFH9UgtqTclbQ9avBi6doUBA4yuRLwlNjaWl19+uUavnT17Np06dWL06NEUFhby\n6quv6gwPqRddiPQgmw1mzYKnnjK6EvEHmZmZfPHFF9x2222A+6k2vXv3NrgqCQRmTdp+17SXLIGE\nBM2yxW3jxo307Nnz7HMQN27cSFJSEqdOnTK4MjEzJW0PsdncD+rVLFvOiImJocnpYx1LS0tZvXo1\nl19+Of/5z38MrkzMzqxJ269m2u+8A+3awTXXGF2J+IuhQ4eybds2PvvsMyorKxk2bBjr1q3zu6Nb\nxVzMnLT9pmnb7e6U/dprRlci/iQsLIzp06cbXYYEILMmbb8Zj/zzn+67HwcPNroSEQl0Zk7aftG0\nXS73g3qnTjW6EhFpKJS06+Hzz93jkREjjK5ERMS/+UXTnjPH/exHncgpIr6ipF1HmzZBVhbU8SHX\nIiK1ppkp2rWWAAAC/UlEQVR2PcyZA7//PYSGGl2JiDQkZk3ahm7527sXvvrKfdaIiIivKGnX0Ysv\nwvjxEBVlZBUi0hApadfS4cPu5z/u3WtUBSLSUClp10FKCowdC6ePlRAR8Skl7VooLYXXX4fUVCNW\nF5GGTkm7lt56C666Cjp2NGJ178rNzTW6BBG5iIyMDNMmbZ83bacT/vpXeOQRX6/sG2raIv4vIyPD\n6BLqzOdN+/PPwWqFQYN8vbKIyA+UtGvoTMo28UhJRAKAWZu2xeWBys081BcRMVJtW7BHdo+Y9W8s\nERGzMfzsERERqTk1bRERE1HTFhExETVtD7r11lvp27cv3bt35zU9oVjE72RnZ9OjRw+jy6gXv3ka\neyBYuHAhcXFxlJWV0a9fP0aPHk3jxo2NLktEAoiStge99NJL9OzZk4EDB5KXl0dmZqbRJYnIT9jt\ndpKTk+nWrRt33HEHZWVlRpdUK2raHrJmzRr++9//kpqayrZt2+jZsycVFRVGlyUiP7Fnzx4mTJjA\nrl27iImJYcGCBUaXVCtq2h5SVFREXFwc4eHh7N69m1QdYSjil9q0acPAgQMBSE5OZu3atQZXVDtq\n2h4ybNgw7HY73bp1Y9q0aWf/UIiIf/nxHdwul8t0d3TrQqSHhIWFsXLlSqPLEJGLOHjwIKmpqQwY\nMIClS5dyzTXXGF1SrShpi0iDYbFY6NKlC/Pnz6dbt26cPHmS3/3ud0aXVSseOTBKRER8Q0lbRMRE\n1LRFRExETVtExETUtEVEDLJp0yauuOIKKioqKCkpoXv37uzatava9+hCpIiIgaZPn055eTllZWW0\nadOGqVOnVvt6NW0REQPZbDb69u1LREQE69evv+jNPhqPiIgY6NixY5SUlFBcXFyjw6uUtEVEDPSL\nX/yCu+++m/3793P48GHmzZtX7et1G7uIiEGWLFmC1Wrlrrvuwul0cuWVV7JmzRoGDx58wfcoaYuI\nmIhm2iIiJqKmLSJiImraIiImoqYtImIiatoiIiaipi0iYiL/DycIU5TELLbPAAAAAElFTkSuQmCC\n",
1285 1289 "text": [
1286 1290 "<matplotlib.figure.Figure at 0xa705fec>"
1287 1291 ]
1288 1292 }
1289 1293 ],
1290 1294 "prompt_number": 25
1291 1295 },
1292 1296 {
1293 1297 "cell_type": "heading",
1294 1298 "level": 1,
1295 1299 "metadata": {
1296 1300 "slideshow": {
1297 1301 "slide_type": "header_slide"
1298 1302 }
1299 1303 },
1300 1304 "source": [
1301 1305 "IPython rocks!"
1302 1306 ]
1303 1307 },
1304 1308 {
1305 1309 "cell_type": "markdown",
1306 1310 "metadata": {},
1307 1311 "source": [
1308 1312 "Just my little contribution... I have a lot of work to do but this is an exciting beginning!\n",
1309 1313 "\n",
1310 1314 "You can check [here](https://github.com/ipython/nbconvert/pull/69) for more information about this PR."
1311 1315 ]
1312 1316 },
1313 1317 {
1314 1318 "cell_type": "markdown",
1315 1319 "metadata": {},
1316 1320 "source": [
1317 1321 "And you can find me at:\n",
1318 1322 "\n",
1319 1323 "* [@damian_avila](https://twitter.com/damian_avila)\n",
1320 1324 "* [OQUANTA](http://www.oquanta.info)\n",
1321 1325 "* [BLOG](http://www.damian.oquanta.info)"
1322 1326 ]
1323 1327 }
1324 1328 ],
1325 1329 "metadata": {}
1326 1330 }
1327 1331 ]
1328 1332 } No newline at end of file
1 NO CONTENT: file was removed
General Comments 0
You need to be logged in to leave comments. Login now