##// END OF EJS Templates
trial newline
Arya -
Show More
@@ -1,1614 +1,1614
1 1 # -*- coding: utf-8 -*-
2 2 """Implementation of execution-related magic functions."""
3 3
4 4 # Copyright (c) IPython Development Team.
5 5 # Distributed under the terms of the Modified BSD License.
6 6
7 7
8 8 import ast
9 9 import bdb
10 10 import builtins as builtin_mod
11 11 import copy
12 12 import cProfile as profile
13 13 import gc
14 14 import itertools
15 15 import math
16 16 import os
17 17 import pstats
18 18 import re
19 19 import shlex
20 20 import sys
21 21 import time
22 22 import timeit
23 23 from typing import Dict, Any
24 24 from ast import (
25 25 Assign,
26 26 Call,
27 27 Expr,
28 28 Load,
29 29 Module,
30 30 Name,
31 31 NodeTransformer,
32 32 Store,
33 33 parse,
34 34 unparse,
35 35 )
36 36 from io import StringIO
37 37 from logging import error
38 38 from pathlib import Path
39 39 from pdb import Restart
40 40 from textwrap import dedent, indent
41 41 from warnings import warn
42 42
43 43 from IPython.core import magic_arguments, oinspect, page
44 44 from IPython.core.displayhook import DisplayHook
45 45 from IPython.core.error import UsageError
46 46 from IPython.core.macro import Macro
47 47 from IPython.core.magic import (
48 48 Magics,
49 49 cell_magic,
50 50 line_cell_magic,
51 51 line_magic,
52 52 magics_class,
53 53 needs_local_scope,
54 54 no_var_expand,
55 55 on_off,
56 56 output_can_be_silenced,
57 57 )
58 58 from IPython.testing.skipdoctest import skip_doctest
59 59 from IPython.utils.capture import capture_output
60 60 from IPython.utils.contexts import preserve_keys
61 61 from IPython.utils.ipstruct import Struct
62 62 from IPython.utils.module_paths import find_mod
63 63 from IPython.utils.path import get_py_filename, shellglob
64 64 from IPython.utils.timing import clock, clock2
65 65 from IPython.core.magics.ast_mod import ReplaceCodeTransformer
66 66
67 67 #-----------------------------------------------------------------------------
68 68 # Magic implementation classes
69 69 #-----------------------------------------------------------------------------
70 70
71 71
72 72 class TimeitResult(object):
73 73 """
74 74 Object returned by the timeit magic with info about the run.
75 75
76 76 Contains the following attributes :
77 77
78 78 loops: (int) number of loops done per measurement
79 79 repeat: (int) number of times the measurement has been repeated
80 80 best: (float) best execution time / number
81 81 all_runs: (list of float) execution time of each run (in s)
82 82 compile_time: (float) time of statement compilation (s)
83 83
84 84 """
85 85 def __init__(self, loops, repeat, best, worst, all_runs, compile_time, precision):
86 86 self.loops = loops
87 87 self.repeat = repeat
88 88 self.best = best
89 89 self.worst = worst
90 90 self.all_runs = all_runs
91 91 self.compile_time = compile_time
92 92 self._precision = precision
93 93 self.timings = [ dt / self.loops for dt in all_runs]
94 94
95 95 @property
96 96 def average(self):
97 97 return math.fsum(self.timings) / len(self.timings)
98 98
99 99 @property
100 100 def stdev(self):
101 101 mean = self.average
102 102 return (math.fsum([(x - mean) ** 2 for x in self.timings]) / len(self.timings)) ** 0.5
103 103
104 104 def __str__(self):
105 105 pm = '+-'
106 106 if hasattr(sys.stdout, 'encoding') and sys.stdout.encoding:
107 107 try:
108 108 u'\xb1'.encode(sys.stdout.encoding)
109 109 pm = u'\xb1'
110 110 except:
111 111 pass
112 112 return "{mean} {pm} {std} per loop (mean {pm} std. dev. of {runs} run{run_plural}, {loops:,} loop{loop_plural} each)".format(
113 113 pm=pm,
114 114 runs=self.repeat,
115 115 loops=self.loops,
116 116 loop_plural="" if self.loops == 1 else "s",
117 117 run_plural="" if self.repeat == 1 else "s",
118 118 mean=_format_time(self.average, self._precision),
119 119 std=_format_time(self.stdev, self._precision),
120 120 )
121 121
122 122 def _repr_pretty_(self, p , cycle):
123 123 unic = self.__str__()
124 124 p.text(u'<TimeitResult : '+unic+u'>')
125 125
126 126
127 127 class TimeitTemplateFiller(ast.NodeTransformer):
128 128 """Fill in the AST template for timing execution.
129 129
130 130 This is quite closely tied to the template definition, which is in
131 131 :meth:`ExecutionMagics.timeit`.
132 132 """
133 133 def __init__(self, ast_setup, ast_stmt):
134 134 self.ast_setup = ast_setup
135 135 self.ast_stmt = ast_stmt
136 136
137 137 def visit_FunctionDef(self, node):
138 138 "Fill in the setup statement"
139 139 self.generic_visit(node)
140 140 if node.name == "inner":
141 141 node.body[:1] = self.ast_setup.body
142 142
143 143 return node
144 144
145 145 def visit_For(self, node):
146 146 "Fill in the statement to be timed"
147 147 if getattr(getattr(node.body[0], 'value', None), 'id', None) == 'stmt':
148 148 node.body = self.ast_stmt.body
149 149 return node
150 150
151 151
152 152 class Timer(timeit.Timer):
153 153 """Timer class that explicitly uses self.inner
154 154
155 155 which is an undocumented implementation detail of CPython,
156 156 not shared by PyPy.
157 157 """
158 158 # Timer.timeit copied from CPython 3.4.2
159 159 def timeit(self, number=timeit.default_number):
160 160 """Time 'number' executions of the main statement.
161 161
162 162 To be precise, this executes the setup statement once, and
163 163 then returns the time it takes to execute the main statement
164 164 a number of times, as a float measured in seconds. The
165 165 argument is the number of times through the loop, defaulting
166 166 to one million. The main statement, the setup statement and
167 167 the timer function to be used are passed to the constructor.
168 168 """
169 169 it = itertools.repeat(None, number)
170 170 gcold = gc.isenabled()
171 171 gc.disable()
172 172 try:
173 173 timing = self.inner(it, self.timer)
174 174 finally:
175 175 if gcold:
176 176 gc.enable()
177 177 return timing
178 178
179 179
180 180 @magics_class
181 181 class ExecutionMagics(Magics):
182 182 """Magics related to code execution, debugging, profiling, etc."""
183 183
184 184 _transformers: Dict[str, Any] = {}
185 185
186 186 def __init__(self, shell):
187 187 super(ExecutionMagics, self).__init__(shell)
188 188 # Default execution function used to actually run user code.
189 189 self.default_runner = None
190 190
191 191 @skip_doctest
192 192 @no_var_expand
193 193 @line_cell_magic
194 194 def prun(self, parameter_s='', cell=None):
195 195
196 196 """Run a statement through the python code profiler.
197 197
198 198 Usage, in line mode:
199 199 %prun [options] statement
200 200
201 201 Usage, in cell mode:
202 202 %%prun [options] [statement]
203 203 code...
204 204 code...
205 205
206 206 In cell mode, the additional code lines are appended to the (possibly
207 207 empty) statement in the first line. Cell mode allows you to easily
208 208 profile multiline blocks without having to put them in a separate
209 209 function.
210 210
211 211 The given statement (which doesn't require quote marks) is run via the
212 212 python profiler in a manner similar to the profile.run() function.
213 213 Namespaces are internally managed to work correctly; profile.run
214 214 cannot be used in IPython because it makes certain assumptions about
215 215 namespaces which do not hold under IPython.
216 216
217 217 Options:
218 218
219 219 -l <limit>
220 220 you can place restrictions on what or how much of the
221 221 profile gets printed. The limit value can be:
222 222
223 223 * A string: only information for function names containing this string
224 224 is printed.
225 225
226 226 * An integer: only these many lines are printed.
227 227
228 228 * A float (between 0 and 1): this fraction of the report is printed
229 229 (for example, use a limit of 0.4 to see the topmost 40% only).
230 230
231 231 You can combine several limits with repeated use of the option. For
232 232 example, ``-l __init__ -l 5`` will print only the topmost 5 lines of
233 233 information about class constructors.
234 234
235 235 -r
236 236 return the pstats.Stats object generated by the profiling. This
237 237 object has all the information about the profile in it, and you can
238 238 later use it for further analysis or in other functions.
239 239
240 240 -s <key>
241 241 sort profile by given key. You can provide more than one key
242 242 by using the option several times: '-s key1 -s key2 -s key3...'. The
243 243 default sorting key is 'time'.
244 244
245 245 The following is copied verbatim from the profile documentation
246 246 referenced below:
247 247
248 248 When more than one key is provided, additional keys are used as
249 249 secondary criteria when the there is equality in all keys selected
250 250 before them.
251 251
252 252 Abbreviations can be used for any key names, as long as the
253 253 abbreviation is unambiguous. The following are the keys currently
254 254 defined:
255 255
256 256 ============ =====================
257 257 Valid Arg Meaning
258 258 ============ =====================
259 259 "calls" call count
260 260 "cumulative" cumulative time
261 261 "file" file name
262 262 "module" file name
263 263 "pcalls" primitive call count
264 264 "line" line number
265 265 "name" function name
266 266 "nfl" name/file/line
267 267 "stdname" standard name
268 268 "time" internal time
269 269 ============ =====================
270 270
271 271 Note that all sorts on statistics are in descending order (placing
272 272 most time consuming items first), where as name, file, and line number
273 273 searches are in ascending order (i.e., alphabetical). The subtle
274 274 distinction between "nfl" and "stdname" is that the standard name is a
275 275 sort of the name as printed, which means that the embedded line
276 276 numbers get compared in an odd way. For example, lines 3, 20, and 40
277 277 would (if the file names were the same) appear in the string order
278 278 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
279 279 line numbers. In fact, sort_stats("nfl") is the same as
280 280 sort_stats("name", "file", "line").
281 281
282 282 -T <filename>
283 283 save profile results as shown on screen to a text
284 284 file. The profile is still shown on screen.
285 285
286 286 -D <filename>
287 287 save (via dump_stats) profile statistics to given
288 288 filename. This data is in a format understood by the pstats module, and
289 289 is generated by a call to the dump_stats() method of profile
290 290 objects. The profile is still shown on screen.
291 291
292 292 -q
293 293 suppress output to the pager. Best used with -T and/or -D above.
294 294
295 295 If you want to run complete programs under the profiler's control, use
296 296 ``%run -p [prof_opts] filename.py [args to program]`` where prof_opts
297 297 contains profiler specific options as described here.
298 298
299 299 You can read the complete documentation for the profile module with::
300 300
301 301 In [1]: import profile; profile.help()
302 302
303 303 .. versionchanged:: 7.3
304 304 User variables are no longer expanded,
305 305 the magic line is always left unmodified.
306 306
307 307 """
308 308 opts, arg_str = self.parse_options(parameter_s, 'D:l:rs:T:q',
309 309 list_all=True, posix=False)
310 310 if cell is not None:
311 311 arg_str += '\n' + cell
312 312 arg_str = self.shell.transform_cell(arg_str)
313 313 return self._run_with_profiler(arg_str, opts, self.shell.user_ns)
314 314
315 315 def _run_with_profiler(self, code, opts, namespace):
316 316 """
317 317 Run `code` with profiler. Used by ``%prun`` and ``%run -p``.
318 318
319 319 Parameters
320 320 ----------
321 321 code : str
322 322 Code to be executed.
323 323 opts : Struct
324 324 Options parsed by `self.parse_options`.
325 325 namespace : dict
326 326 A dictionary for Python namespace (e.g., `self.shell.user_ns`).
327 327
328 328 """
329 329
330 330 # Fill default values for unspecified options:
331 331 opts.merge(Struct(D=[''], l=[], s=['time'], T=['']))
332 332
333 333 prof = profile.Profile()
334 334 try:
335 335 prof = prof.runctx(code, namespace, namespace)
336 336 sys_exit = ''
337 337 except SystemExit:
338 338 sys_exit = """*** SystemExit exception caught in code being profiled."""
339 339
340 340 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
341 341
342 342 lims = opts.l
343 343 if lims:
344 344 lims = [] # rebuild lims with ints/floats/strings
345 345 for lim in opts.l:
346 346 try:
347 347 lims.append(int(lim))
348 348 except ValueError:
349 349 try:
350 350 lims.append(float(lim))
351 351 except ValueError:
352 352 lims.append(lim)
353 353
354 354 # Trap output.
355 355 stdout_trap = StringIO()
356 356 stats_stream = stats.stream
357 357 try:
358 358 stats.stream = stdout_trap
359 359 stats.print_stats(*lims)
360 360 finally:
361 361 stats.stream = stats_stream
362 362
363 363 output = stdout_trap.getvalue()
364 364 output = output.rstrip()
365 365
366 366 if 'q' not in opts:
367 367 page.page(output)
368 368 print(sys_exit, end=' ')
369 369
370 370 dump_file = opts.D[0]
371 371 text_file = opts.T[0]
372 372 if dump_file:
373 373 prof.dump_stats(dump_file)
374 374 print(
375 375 f"\n*** Profile stats marshalled to file {repr(dump_file)}.{sys_exit}"
376 376 )
377 377 if text_file:
378 378 pfile = Path(text_file)
379 379 pfile.touch(exist_ok=True)
380 380 pfile.write_text(output, encoding="utf-8")
381 381
382 382 print(
383 383 f"\n*** Profile printout saved to text file {repr(text_file)}.{sys_exit}"
384 384 )
385 385
386 386 if 'r' in opts:
387 387 return stats
388 388
389 389 return None
390 390
391 391 @line_magic
392 392 def pdb(self, parameter_s=''):
393 393 """Control the automatic calling of the pdb interactive debugger.
394 394
395 395 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
396 396 argument it works as a toggle.
397 397
398 398 When an exception is triggered, IPython can optionally call the
399 399 interactive pdb debugger after the traceback printout. %pdb toggles
400 400 this feature on and off.
401 401
402 402 The initial state of this feature is set in your configuration
403 403 file (the option is ``InteractiveShell.pdb``).
404 404
405 405 If you want to just activate the debugger AFTER an exception has fired,
406 406 without having to type '%pdb on' and rerunning your code, you can use
407 407 the %debug magic."""
408 408
409 409 par = parameter_s.strip().lower()
410 410
411 411 if par:
412 412 try:
413 413 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
414 414 except KeyError:
415 415 print ('Incorrect argument. Use on/1, off/0, '
416 416 'or nothing for a toggle.')
417 417 return
418 418 else:
419 419 # toggle
420 420 new_pdb = not self.shell.call_pdb
421 421
422 422 # set on the shell
423 423 self.shell.call_pdb = new_pdb
424 424 print('Automatic pdb calling has been turned',on_off(new_pdb))
425 425
426 426 @magic_arguments.magic_arguments()
427 427 @magic_arguments.argument('--breakpoint', '-b', metavar='FILE:LINE',
428 428 help="""
429 429 Set break point at LINE in FILE.
430 430 """
431 431 )
432 432 @magic_arguments.argument('statement', nargs='*',
433 433 help="""
434 434 Code to run in debugger.
435 435 You can omit this in cell magic mode.
436 436 """
437 437 )
438 438 @no_var_expand
439 439 @line_cell_magic
440 440 @needs_local_scope
441 441 def debug(self, line="", cell=None, local_ns=None):
442 442 """Activate the interactive debugger.
443 443
444 444 This magic command support two ways of activating debugger.
445 445 One is to activate debugger before executing code. This way, you
446 446 can set a break point, to step through the code from the point.
447 447 You can use this mode by giving statements to execute and optionally
448 448 a breakpoint.
449 449
450 450 The other one is to activate debugger in post-mortem mode. You can
451 451 activate this mode simply running %debug without any argument.
452 452 If an exception has just occurred, this lets you inspect its stack
453 453 frames interactively. Note that this will always work only on the last
454 454 traceback that occurred, so you must call this quickly after an
455 455 exception that you wish to inspect has fired, because if another one
456 456 occurs, it clobbers the previous one.
457 457
458 458 If you want IPython to automatically do this on every exception, see
459 459 the %pdb magic for more details.
460 460
461 461 .. versionchanged:: 7.3
462 462 When running code, user variables are no longer expanded,
463 463 the magic line is always left unmodified.
464 464
465 465 """
466 466 args = magic_arguments.parse_argstring(self.debug, line)
467 467
468 468 if not (args.breakpoint or args.statement or cell):
469 469 self._debug_post_mortem()
470 470 elif not (args.breakpoint or cell):
471 471 # If there is no breakpoints, the line is just code to execute
472 472 self._debug_exec(line, None, local_ns)
473 473 else:
474 474 # Here we try to reconstruct the code from the output of
475 475 # parse_argstring. This might not work if the code has spaces
476 476 # For example this fails for `print("a b")`
477 477 code = "\n".join(args.statement)
478 478 if cell:
479 479 code += "\n" + cell
480 480 self._debug_exec(code, args.breakpoint, local_ns)
481 481
482 482 def _debug_post_mortem(self):
483 483 self.shell.debugger(force=True)
484 484
485 485 def _debug_exec(self, code, breakpoint, local_ns=None):
486 486 if breakpoint:
487 487 (filename, bp_line) = breakpoint.rsplit(':', 1)
488 488 bp_line = int(bp_line)
489 489 else:
490 490 (filename, bp_line) = (None, None)
491 491 self._run_with_debugger(
492 492 code, self.shell.user_ns, filename, bp_line, local_ns=local_ns
493 493 )
494 494
495 495 @line_magic
496 496 def tb(self, s):
497 497 """Print the last traceback.
498 498
499 499 Optionally, specify an exception reporting mode, tuning the
500 500 verbosity of the traceback. By default the currently-active exception
501 501 mode is used. See %xmode for changing exception reporting modes.
502 502
503 503 Valid modes: Plain, Context, Verbose, and Minimal.
504 504 """
505 505 interactive_tb = self.shell.InteractiveTB
506 506 if s:
507 507 # Switch exception reporting mode for this one call.
508 508 # Ensure it is switched back.
509 509 def xmode_switch_err(name):
510 510 warn('Error changing %s exception modes.\n%s' %
511 511 (name,sys.exc_info()[1]))
512 512
513 513 new_mode = s.strip().capitalize()
514 514 original_mode = interactive_tb.mode
515 515 try:
516 516 try:
517 517 interactive_tb.set_mode(mode=new_mode)
518 518 except Exception:
519 519 xmode_switch_err('user')
520 520 else:
521 521 self.shell.showtraceback()
522 522 finally:
523 523 interactive_tb.set_mode(mode=original_mode)
524 524 else:
525 525 self.shell.showtraceback()
526 526
527 527 @skip_doctest
528 528 @line_magic
529 529 def run(self, parameter_s='', runner=None,
530 530 file_finder=get_py_filename):
531 531 """Run the named file inside IPython as a program.
532 532
533 533 Usage::
534 534
535 535 %run [-n -i -e -G]
536 536 [( -t [-N<N>] | -d [-b<N>] | -p [profile options] )]
537 537 ( -m mod | filename ) [args]
538 538
539 539 The filename argument should be either a pure Python script (with
540 540 extension ``.py``), or a file with custom IPython syntax (such as
541 541 magics). If the latter, the file can be either a script with ``.ipy``
542 542 extension, or a Jupyter notebook with ``.ipynb`` extension. When running
543 543 a Jupyter notebook, the output from print statements and other
544 544 displayed objects will appear in the terminal (even matplotlib figures
545 545 will open, if a terminal-compliant backend is being used). Note that,
546 546 at the system command line, the ``jupyter run`` command offers similar
547 547 functionality for executing notebooks (albeit currently with some
548 548 differences in supported options).
549 549
550 550 Parameters after the filename are passed as command-line arguments to
551 551 the program (put in sys.argv). Then, control returns to IPython's
552 552 prompt.
553 553
554 554 This is similar to running at a system prompt ``python file args``,
555 555 but with the advantage of giving you IPython's tracebacks, and of
556 556 loading all variables into your interactive namespace for further use
557 557 (unless -p is used, see below).
558 558
559 559 The file is executed in a namespace initially consisting only of
560 560 ``__name__=='__main__'`` and sys.argv constructed as indicated. It thus
561 561 sees its environment as if it were being run as a stand-alone program
562 562 (except for sharing global objects such as previously imported
563 563 modules). But after execution, the IPython interactive namespace gets
564 564 updated with all variables defined in the program (except for __name__
565 565 and sys.argv). This allows for very convenient loading of code for
566 566 interactive work, while giving each program a 'clean sheet' to run in.
567 567
568 568 Arguments are expanded using shell-like glob match. Patterns
569 569 '*', '?', '[seq]' and '[!seq]' can be used. Additionally,
570 570 tilde '~' will be expanded into user's home directory. Unlike
571 571 real shells, quotation does not suppress expansions. Use
572 572 *two* back slashes (e.g. ``\\\\*``) to suppress expansions.
573 573 To completely disable these expansions, you can use -G flag.
574 574
575 575 On Windows systems, the use of single quotes `'` when specifying
576 576 a file is not supported. Use double quotes `"`.
577 577
578 578 Options:
579 579
580 580 -n
581 581 __name__ is NOT set to '__main__', but to the running file's name
582 582 without extension (as python does under import). This allows running
583 583 scripts and reloading the definitions in them without calling code
584 584 protected by an ``if __name__ == "__main__"`` clause.
585 585
586 586 -i
587 587 run the file in IPython's namespace instead of an empty one. This
588 588 is useful if you are experimenting with code written in a text editor
589 589 which depends on variables defined interactively.
590 590
591 591 -e
592 592 ignore sys.exit() calls or SystemExit exceptions in the script
593 593 being run. This is particularly useful if IPython is being used to
594 594 run unittests, which always exit with a sys.exit() call. In such
595 595 cases you are interested in the output of the test results, not in
596 596 seeing a traceback of the unittest module.
597 597
598 598 -t
599 599 print timing information at the end of the run. IPython will give
600 600 you an estimated CPU time consumption for your script, which under
601 601 Unix uses the resource module to avoid the wraparound problems of
602 602 time.clock(). Under Unix, an estimate of time spent on system tasks
603 603 is also given (for Windows platforms this is reported as 0.0).
604 604
605 605 If -t is given, an additional ``-N<N>`` option can be given, where <N>
606 606 must be an integer indicating how many times you want the script to
607 607 run. The final timing report will include total and per run results.
608 608
609 609 For example (testing the script uniq_stable.py)::
610 610
611 611 In [1]: run -t uniq_stable
612 612
613 613 IPython CPU timings (estimated):
614 614 User : 0.19597 s.
615 615 System: 0.0 s.
616 616
617 617 In [2]: run -t -N5 uniq_stable
618 618
619 619 IPython CPU timings (estimated):
620 620 Total runs performed: 5
621 621 Times : Total Per run
622 622 User : 0.910862 s, 0.1821724 s.
623 623 System: 0.0 s, 0.0 s.
624 624
625 625 -d
626 626 run your program under the control of pdb, the Python debugger.
627 627 This allows you to execute your program step by step, watch variables,
628 628 etc. Internally, what IPython does is similar to calling::
629 629
630 630 pdb.run('execfile("YOURFILENAME")')
631 631
632 632 with a breakpoint set on line 1 of your file. You can change the line
633 633 number for this automatic breakpoint to be <N> by using the -bN option
634 634 (where N must be an integer). For example::
635 635
636 636 %run -d -b40 myscript
637 637
638 638 will set the first breakpoint at line 40 in myscript.py. Note that
639 639 the first breakpoint must be set on a line which actually does
640 640 something (not a comment or docstring) for it to stop execution.
641 641
642 642 Or you can specify a breakpoint in a different file::
643 643
644 644 %run -d -b myotherfile.py:20 myscript
645 645
646 646 When the pdb debugger starts, you will see a (Pdb) prompt. You must
647 647 first enter 'c' (without quotes) to start execution up to the first
648 648 breakpoint.
649 649
650 650 Entering 'help' gives information about the use of the debugger. You
651 651 can easily see pdb's full documentation with "import pdb;pdb.help()"
652 652 at a prompt.
653 653
654 654 -p
655 655 run program under the control of the Python profiler module (which
656 656 prints a detailed report of execution times, function calls, etc).
657 657
658 658 You can pass other options after -p which affect the behavior of the
659 659 profiler itself. See the docs for %prun for details.
660 660
661 661 In this mode, the program's variables do NOT propagate back to the
662 662 IPython interactive namespace (because they remain in the namespace
663 663 where the profiler executes them).
664 664
665 665 Internally this triggers a call to %prun, see its documentation for
666 666 details on the options available specifically for profiling.
667 667
668 668 There is one special usage for which the text above doesn't apply:
669 669 if the filename ends with .ipy[nb], the file is run as ipython script,
670 670 just as if the commands were written on IPython prompt.
671 671
672 672 -m
673 673 specify module name to load instead of script path. Similar to
674 674 the -m option for the python interpreter. Use this option last if you
675 675 want to combine with other %run options. Unlike the python interpreter
676 676 only source modules are allowed no .pyc or .pyo files.
677 677 For example::
678 678
679 679 %run -m example
680 680
681 681 will run the example module.
682 682
683 683 -G
684 684 disable shell-like glob expansion of arguments.
685 685
686 686 """
687 687
688 688 # Logic to handle issue #3664
689 689 # Add '--' after '-m <module_name>' to ignore additional args passed to a module.
690 690 if '-m' in parameter_s and '--' not in parameter_s:
691 691 argv = shlex.split(parameter_s, posix=(os.name == 'posix'))
692 692 for idx, arg in enumerate(argv):
693 693 if arg and arg.startswith('-') and arg != '-':
694 694 if arg == '-m':
695 695 argv.insert(idx + 2, '--')
696 696 break
697 697 else:
698 698 # Positional arg, break
699 699 break
700 700 parameter_s = ' '.join(shlex.quote(arg) for arg in argv)
701 701
702 702 # get arguments and set sys.argv for program to be run.
703 703 opts, arg_lst = self.parse_options(parameter_s,
704 704 'nidtN:b:pD:l:rs:T:em:G',
705 705 mode='list', list_all=1)
706 706 if "m" in opts:
707 707 modulename = opts["m"][0]
708 708 modpath = find_mod(modulename)
709 709 if modpath is None:
710 710 msg = '%r is not a valid modulename on sys.path'%modulename
711 711 raise Exception(msg)
712 712 arg_lst = [modpath] + arg_lst
713 713 try:
714 714 fpath = None # initialize to make sure fpath is in scope later
715 715 fpath = arg_lst[0]
716 716 filename = file_finder(fpath)
717 717 except IndexError as e:
718 718 msg = 'you must provide at least a filename.'
719 719 raise Exception(msg) from e
720 720 except IOError as e:
721 721 try:
722 722 msg = str(e)
723 723 except UnicodeError:
724 724 msg = e.message
725 725 if os.name == 'nt' and re.match(r"^'.*'$",fpath):
726 726 warn('For Windows, use double quotes to wrap a filename: %run "mypath\\myfile.py"')
727 727 raise Exception(msg) from e
728 728 except TypeError:
729 729 if fpath in sys.meta_path:
730 730 filename = ""
731 731 else:
732 732 raise
733 733
734 734 if filename.lower().endswith(('.ipy', '.ipynb')):
735 735 with preserve_keys(self.shell.user_ns, '__file__'):
736 736 self.shell.user_ns['__file__'] = filename
737 737 self.shell.safe_execfile_ipy(filename, raise_exceptions=True)
738 738 return
739 739
740 740 # Control the response to exit() calls made by the script being run
741 741 exit_ignore = 'e' in opts
742 742
743 743 # Make sure that the running script gets a proper sys.argv as if it
744 744 # were run from a system shell.
745 745 save_argv = sys.argv # save it for later restoring
746 746
747 747 if 'G' in opts:
748 748 args = arg_lst[1:]
749 749 else:
750 750 # tilde and glob expansion
751 751 args = shellglob(map(os.path.expanduser, arg_lst[1:]))
752 752
753 753 sys.argv = [filename] + args # put in the proper filename
754 754
755 755 if 'n' in opts:
756 756 name = Path(filename).stem
757 757 else:
758 758 name = '__main__'
759 759
760 760 if 'i' in opts:
761 761 # Run in user's interactive namespace
762 762 prog_ns = self.shell.user_ns
763 763 __name__save = self.shell.user_ns['__name__']
764 764 prog_ns['__name__'] = name
765 765 main_mod = self.shell.user_module
766 766
767 767 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
768 768 # set the __file__ global in the script's namespace
769 769 # TK: Is this necessary in interactive mode?
770 770 prog_ns['__file__'] = filename
771 771 else:
772 772 # Run in a fresh, empty namespace
773 773
774 774 # The shell MUST hold a reference to prog_ns so after %run
775 775 # exits, the python deletion mechanism doesn't zero it out
776 776 # (leaving dangling references). See interactiveshell for details
777 777 main_mod = self.shell.new_main_mod(filename, name)
778 778 prog_ns = main_mod.__dict__
779 779
780 780 # pickle fix. See interactiveshell for an explanation. But we need to
781 781 # make sure that, if we overwrite __main__, we replace it at the end
782 782 main_mod_name = prog_ns['__name__']
783 783
784 784 if main_mod_name == '__main__':
785 785 restore_main = sys.modules['__main__']
786 786 else:
787 787 restore_main = False
788 788
789 789 # This needs to be undone at the end to prevent holding references to
790 790 # every single object ever created.
791 791 sys.modules[main_mod_name] = main_mod
792 792
793 793 if 'p' in opts or 'd' in opts:
794 794 if 'm' in opts:
795 795 code = 'run_module(modulename, prog_ns)'
796 796 code_ns = {
797 797 'run_module': self.shell.safe_run_module,
798 798 'prog_ns': prog_ns,
799 799 'modulename': modulename,
800 800 }
801 801 else:
802 802 if 'd' in opts:
803 803 # allow exceptions to raise in debug mode
804 804 code = 'execfile(filename, prog_ns, raise_exceptions=True)'
805 805 else:
806 806 code = 'execfile(filename, prog_ns)'
807 807 code_ns = {
808 808 'execfile': self.shell.safe_execfile,
809 809 'prog_ns': prog_ns,
810 810 'filename': get_py_filename(filename),
811 811 }
812 812
813 813 try:
814 814 stats = None
815 815 if 'p' in opts:
816 816 stats = self._run_with_profiler(code, opts, code_ns)
817 817 else:
818 818 if 'd' in opts:
819 819 bp_file, bp_line = parse_breakpoint(
820 820 opts.get('b', ['1'])[0], filename)
821 821 self._run_with_debugger(
822 822 code, code_ns, filename, bp_line, bp_file)
823 823 else:
824 824 if 'm' in opts:
825 825 def run():
826 826 self.shell.safe_run_module(modulename, prog_ns)
827 827 else:
828 828 if runner is None:
829 829 runner = self.default_runner
830 830 if runner is None:
831 831 runner = self.shell.safe_execfile
832 832
833 833 def run():
834 834 runner(filename, prog_ns, prog_ns,
835 835 exit_ignore=exit_ignore)
836 836
837 837 if 't' in opts:
838 838 # timed execution
839 839 try:
840 840 nruns = int(opts['N'][0])
841 841 if nruns < 1:
842 842 error('Number of runs must be >=1')
843 843 return
844 844 except (KeyError):
845 845 nruns = 1
846 846 self._run_with_timing(run, nruns)
847 847 else:
848 848 # regular execution
849 849 run()
850 850
851 851 if 'i' in opts:
852 852 self.shell.user_ns['__name__'] = __name__save
853 853 else:
854 854 # update IPython interactive namespace
855 855
856 856 # Some forms of read errors on the file may mean the
857 857 # __name__ key was never set; using pop we don't have to
858 858 # worry about a possible KeyError.
859 859 prog_ns.pop('__name__', None)
860 860
861 861 with preserve_keys(self.shell.user_ns, '__file__'):
862 862 self.shell.user_ns.update(prog_ns)
863 863 finally:
864 864 # It's a bit of a mystery why, but __builtins__ can change from
865 865 # being a module to becoming a dict missing some key data after
866 866 # %run. As best I can see, this is NOT something IPython is doing
867 867 # at all, and similar problems have been reported before:
868 868 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
869 869 # Since this seems to be done by the interpreter itself, the best
870 870 # we can do is to at least restore __builtins__ for the user on
871 871 # exit.
872 872 self.shell.user_ns['__builtins__'] = builtin_mod
873 873
874 874 # Ensure key global structures are restored
875 875 sys.argv = save_argv
876 876 if restore_main:
877 877 sys.modules['__main__'] = restore_main
878 878 if '__mp_main__' in sys.modules:
879 879 sys.modules['__mp_main__'] = restore_main
880 880 else:
881 881 # Remove from sys.modules the reference to main_mod we'd
882 882 # added. Otherwise it will trap references to objects
883 883 # contained therein.
884 884 del sys.modules[main_mod_name]
885 885
886 886 return stats
887 887
888 888 def _run_with_debugger(
889 889 self, code, code_ns, filename=None, bp_line=None, bp_file=None, local_ns=None
890 890 ):
891 891 """
892 892 Run `code` in debugger with a break point.
893 893
894 894 Parameters
895 895 ----------
896 896 code : str
897 897 Code to execute.
898 898 code_ns : dict
899 899 A namespace in which `code` is executed.
900 900 filename : str
901 901 `code` is ran as if it is in `filename`.
902 902 bp_line : int, optional
903 903 Line number of the break point.
904 904 bp_file : str, optional
905 905 Path to the file in which break point is specified.
906 906 `filename` is used if not given.
907 907 local_ns : dict, optional
908 908 A local namespace in which `code` is executed.
909 909
910 910 Raises
911 911 ------
912 912 UsageError
913 913 If the break point given by `bp_line` is not valid.
914 914
915 915 """
916 916 deb = self.shell.InteractiveTB.pdb
917 917 if not deb:
918 918 self.shell.InteractiveTB.pdb = self.shell.InteractiveTB.debugger_cls()
919 919 deb = self.shell.InteractiveTB.pdb
920 920
921 921 # deb.checkline() fails if deb.curframe exists but is None; it can
922 922 # handle it not existing. https://github.com/ipython/ipython/issues/10028
923 923 if hasattr(deb, 'curframe'):
924 924 del deb.curframe
925 925
926 926 # reset Breakpoint state, which is moronically kept
927 927 # in a class
928 928 bdb.Breakpoint.next = 1
929 929 bdb.Breakpoint.bplist = {}
930 930 bdb.Breakpoint.bpbynumber = [None]
931 931 deb.clear_all_breaks()
932 932 if bp_line is not None:
933 933 # Set an initial breakpoint to stop execution
934 934 maxtries = 10
935 935 bp_file = bp_file or filename
936 936 checkline = deb.checkline(bp_file, bp_line)
937 937 if not checkline:
938 938 for bp in range(bp_line + 1, bp_line + maxtries + 1):
939 939 if deb.checkline(bp_file, bp):
940 940 break
941 941 else:
942 942 msg = ("\nI failed to find a valid line to set "
943 943 "a breakpoint\n"
944 944 "after trying up to line: %s.\n"
945 945 "Please set a valid breakpoint manually "
946 946 "with the -b option." % bp)
947 947 raise UsageError(msg)
948 948 # if we find a good linenumber, set the breakpoint
949 949 deb.do_break('%s:%s' % (bp_file, bp_line))
950 950
951 951 if filename:
952 952 # Mimic Pdb._runscript(...)
953 953 deb._wait_for_mainpyfile = True
954 954 deb.mainpyfile = deb.canonic(filename)
955 955
956 956 # Start file run
957 957 print("NOTE: Enter 'c' at the %s prompt to continue execution." % deb.prompt)
958 958 try:
959 959 if filename:
960 960 # save filename so it can be used by methods on the deb object
961 961 deb._exec_filename = filename
962 962 while True:
963 963 try:
964 964 trace = sys.gettrace()
965 965 deb.run(code, code_ns, local_ns)
966 966 except Restart:
967 967 print("Restarting")
968 968 if filename:
969 969 deb._wait_for_mainpyfile = True
970 970 deb.mainpyfile = deb.canonic(filename)
971 971 continue
972 972 else:
973 973 break
974 974 finally:
975 975 sys.settrace(trace)
976 976
977 977
978 978 except:
979 979 etype, value, tb = sys.exc_info()
980 980 # Skip three frames in the traceback: the %run one,
981 981 # one inside bdb.py, and the command-line typed by the
982 982 # user (run by exec in pdb itself).
983 983 self.shell.InteractiveTB(etype, value, tb, tb_offset=3)
984 984
985 985 @staticmethod
986 986 def _run_with_timing(run, nruns):
987 987 """
988 988 Run function `run` and print timing information.
989 989
990 990 Parameters
991 991 ----------
992 992 run : callable
993 993 Any callable object which takes no argument.
994 994 nruns : int
995 995 Number of times to execute `run`.
996 996
997 997 """
998 998 twall0 = time.perf_counter()
999 999 if nruns == 1:
1000 1000 t0 = clock2()
1001 1001 run()
1002 1002 t1 = clock2()
1003 1003 t_usr = t1[0] - t0[0]
1004 1004 t_sys = t1[1] - t0[1]
1005 1005 print("\nIPython CPU timings (estimated):")
1006 1006 print(" User : %10.2f s." % t_usr)
1007 1007 print(" System : %10.2f s." % t_sys)
1008 1008 else:
1009 1009 runs = range(nruns)
1010 1010 t0 = clock2()
1011 1011 for nr in runs:
1012 1012 run()
1013 1013 t1 = clock2()
1014 1014 t_usr = t1[0] - t0[0]
1015 1015 t_sys = t1[1] - t0[1]
1016 1016 print("\nIPython CPU timings (estimated):")
1017 1017 print("Total runs performed:", nruns)
1018 1018 print(" Times : %10s %10s" % ('Total', 'Per run'))
1019 1019 print(" User : %10.2f s, %10.2f s." % (t_usr, t_usr / nruns))
1020 1020 print(" System : %10.2f s, %10.2f s." % (t_sys, t_sys / nruns))
1021 1021 twall1 = time.perf_counter()
1022 1022 print("Wall time: %10.2f s." % (twall1 - twall0))
1023 1023
1024 1024 @skip_doctest
1025 1025 @no_var_expand
1026 1026 @line_cell_magic
1027 1027 @needs_local_scope
1028 1028 def timeit(self, line='', cell=None, local_ns=None):
1029 1029 """Time execution of a Python statement or expression
1030 1030
1031 1031 Usage, in line mode:
1032 1032 %timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] statement
1033 1033 or in cell mode:
1034 1034 %%timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] setup_code
1035 code
1036 code...
1035 code
1036 code...
1037 1037
1038 1038 Time execution of a Python statement or expression using the timeit
1039 1039 module. This function can be used both as a line and cell magic:
1040 1040
1041 1041 - In line mode you can time a single-line statement (though multiple
1042 1042 ones can be chained with using semicolons).
1043 1043
1044 1044 - In cell mode, the statement in the first line is used as setup code
1045 1045 (executed but not timed) and the body of the cell is timed. The cell
1046 1046 body has access to any variables created in the setup code.
1047 1047
1048 1048 Options:
1049 1049 -n<N>: execute the given statement <N> times in a loop. If <N> is not
1050 1050 provided, <N> is determined so as to get sufficient accuracy.
1051 1051
1052 1052 -r<R>: number of repeats <R>, each consisting of <N> loops, and take the
1053 1053 average result.
1054 1054 Default: 7
1055 1055
1056 1056 -t: use time.time to measure the time, which is the default on Unix.
1057 1057 This function measures wall time.
1058 1058
1059 1059 -c: use time.clock to measure the time, which is the default on
1060 1060 Windows and measures wall time. On Unix, resource.getrusage is used
1061 1061 instead and returns the CPU user time.
1062 1062
1063 1063 -p<P>: use a precision of <P> digits to display the timing result.
1064 1064 Default: 3
1065 1065
1066 1066 -q: Quiet, do not print result.
1067 1067
1068 1068 -o: return a TimeitResult that can be stored in a variable to inspect
1069 1069 the result in more details.
1070 1070
1071 1071 .. versionchanged:: 7.3
1072 1072 User variables are no longer expanded,
1073 1073 the magic line is always left unmodified.
1074 1074
1075 1075 Examples
1076 1076 --------
1077 1077 ::
1078 1078
1079 1079 In [1]: %timeit pass
1080 1080 8.26 ns ± 0.12 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each)
1081 1081
1082 1082 In [2]: u = None
1083 1083
1084 1084 In [3]: %timeit u is None
1085 1085 29.9 ns ± 0.643 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
1086 1086
1087 1087 In [4]: %timeit -r 4 u == None
1088 1088
1089 1089 In [5]: import time
1090 1090
1091 1091 In [6]: %timeit -n1 time.sleep(2)
1092 1092
1093 1093 The times reported by %timeit will be slightly higher than those
1094 1094 reported by the timeit.py script when variables are accessed. This is
1095 1095 due to the fact that %timeit executes the statement in the namespace
1096 1096 of the shell, compared with timeit.py, which uses a single setup
1097 1097 statement to import function or create variables. Generally, the bias
1098 1098 does not matter as long as results from timeit.py are not mixed with
1099 1099 those from %timeit."""
1100 1100
1101 1101 opts, stmt = self.parse_options(
1102 1102 line, "n:r:tcp:qo", posix=False, strict=False, preserve_non_opts=True
1103 1103 )
1104 1104 if stmt == "" and cell is None:
1105 1105 return
1106 1106
1107 1107 timefunc = timeit.default_timer
1108 1108 number = int(getattr(opts, "n", 0))
1109 1109 default_repeat = 7 if timeit.default_repeat < 7 else timeit.default_repeat
1110 1110 repeat = int(getattr(opts, "r", default_repeat))
1111 1111 precision = int(getattr(opts, "p", 3))
1112 1112 quiet = 'q' in opts
1113 1113 return_result = 'o' in opts
1114 1114 if hasattr(opts, "t"):
1115 1115 timefunc = time.time
1116 1116 if hasattr(opts, "c"):
1117 1117 timefunc = clock
1118 1118
1119 1119 timer = Timer(timer=timefunc)
1120 1120 # this code has tight coupling to the inner workings of timeit.Timer,
1121 1121 # but is there a better way to achieve that the code stmt has access
1122 1122 # to the shell namespace?
1123 1123 transform = self.shell.transform_cell
1124 1124
1125 1125 if cell is None:
1126 1126 # called as line magic
1127 1127 ast_setup = self.shell.compile.ast_parse("pass")
1128 1128 ast_stmt = self.shell.compile.ast_parse(transform(stmt))
1129 1129 else:
1130 1130 ast_setup = self.shell.compile.ast_parse(transform(stmt))
1131 1131 ast_stmt = self.shell.compile.ast_parse(transform(cell))
1132 1132
1133 1133 ast_setup = self.shell.transform_ast(ast_setup)
1134 1134 ast_stmt = self.shell.transform_ast(ast_stmt)
1135 1135
1136 1136 # Check that these compile to valid Python code *outside* the timer func
1137 1137 # Invalid code may become valid when put inside the function & loop,
1138 1138 # which messes up error messages.
1139 1139 # https://github.com/ipython/ipython/issues/10636
1140 1140 self.shell.compile(ast_setup, "<magic-timeit-setup>", "exec")
1141 1141 self.shell.compile(ast_stmt, "<magic-timeit-stmt>", "exec")
1142 1142
1143 1143 # This codestring is taken from timeit.template - we fill it in as an
1144 1144 # AST, so that we can apply our AST transformations to the user code
1145 1145 # without affecting the timing code.
1146 1146 timeit_ast_template = ast.parse('def inner(_it, _timer):\n'
1147 1147 ' setup\n'
1148 1148 ' _t0 = _timer()\n'
1149 1149 ' for _i in _it:\n'
1150 1150 ' stmt\n'
1151 1151 ' _t1 = _timer()\n'
1152 1152 ' return _t1 - _t0\n')
1153 1153
1154 1154 timeit_ast = TimeitTemplateFiller(ast_setup, ast_stmt).visit(timeit_ast_template)
1155 1155 timeit_ast = ast.fix_missing_locations(timeit_ast)
1156 1156
1157 1157 # Track compilation time so it can be reported if too long
1158 1158 # Minimum time above which compilation time will be reported
1159 1159 tc_min = 0.1
1160 1160
1161 1161 t0 = clock()
1162 1162 code = self.shell.compile(timeit_ast, "<magic-timeit>", "exec")
1163 1163 tc = clock()-t0
1164 1164
1165 1165 ns = {}
1166 1166 glob = self.shell.user_ns
1167 1167 # handles global vars with same name as local vars. We store them in conflict_globs.
1168 1168 conflict_globs = {}
1169 1169 if local_ns and cell is None:
1170 1170 for var_name, var_val in glob.items():
1171 1171 if var_name in local_ns:
1172 1172 conflict_globs[var_name] = var_val
1173 1173 glob.update(local_ns)
1174 1174
1175 1175 exec(code, glob, ns)
1176 1176 timer.inner = ns["inner"]
1177 1177
1178 1178 # This is used to check if there is a huge difference between the
1179 1179 # best and worst timings.
1180 1180 # Issue: https://github.com/ipython/ipython/issues/6471
1181 1181 if number == 0:
1182 1182 # determine number so that 0.2 <= total time < 2.0
1183 1183 for index in range(0, 10):
1184 1184 number = 10 ** index
1185 1185 time_number = timer.timeit(number)
1186 1186 if time_number >= 0.2:
1187 1187 break
1188 1188
1189 1189 all_runs = timer.repeat(repeat, number)
1190 1190 best = min(all_runs) / number
1191 1191 worst = max(all_runs) / number
1192 1192 timeit_result = TimeitResult(number, repeat, best, worst, all_runs, tc, precision)
1193 1193
1194 1194 # Restore global vars from conflict_globs
1195 1195 if conflict_globs:
1196 1196 glob.update(conflict_globs)
1197 1197
1198 1198 if not quiet :
1199 1199 # Check best timing is greater than zero to avoid a
1200 1200 # ZeroDivisionError.
1201 1201 # In cases where the slowest timing is lesser than a microsecond
1202 1202 # we assume that it does not really matter if the fastest
1203 1203 # timing is 4 times faster than the slowest timing or not.
1204 1204 if worst > 4 * best and best > 0 and worst > 1e-6:
1205 1205 print("The slowest run took %0.2f times longer than the "
1206 1206 "fastest. This could mean that an intermediate result "
1207 1207 "is being cached." % (worst / best))
1208 1208
1209 1209 print( timeit_result )
1210 1210
1211 1211 if tc > tc_min:
1212 1212 print("Compiler time: %.2f s" % tc)
1213 1213 if return_result:
1214 1214 return timeit_result
1215 1215
1216 1216 @skip_doctest
1217 1217 @no_var_expand
1218 1218 @needs_local_scope
1219 1219 @line_cell_magic
1220 1220 @output_can_be_silenced
1221 1221 def time(self,line='', cell=None, local_ns=None):
1222 1222 """Time execution of a Python statement or expression.
1223 1223
1224 1224 The CPU and wall clock times are printed, and the value of the
1225 1225 expression (if any) is returned. Note that under Win32, system time
1226 1226 is always reported as 0, since it can not be measured.
1227 1227
1228 1228 This function can be used both as a line and cell magic:
1229 1229
1230 1230 - In line mode you can time a single-line statement (though multiple
1231 1231 ones can be chained with using semicolons).
1232 1232
1233 1233 - In cell mode, you can time the cell body (a directly
1234 1234 following statement raises an error).
1235 1235
1236 1236 This function provides very basic timing functionality. Use the timeit
1237 1237 magic for more control over the measurement.
1238 1238
1239 1239 .. versionchanged:: 7.3
1240 1240 User variables are no longer expanded,
1241 1241 the magic line is always left unmodified.
1242 1242
1243 1243 Examples
1244 1244 --------
1245 1245 ::
1246 1246
1247 1247 In [1]: %time 2**128
1248 1248 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1249 1249 Wall time: 0.00
1250 1250 Out[1]: 340282366920938463463374607431768211456L
1251 1251
1252 1252 In [2]: n = 1000000
1253 1253
1254 1254 In [3]: %time sum(range(n))
1255 1255 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1256 1256 Wall time: 1.37
1257 1257 Out[3]: 499999500000L
1258 1258
1259 1259 In [4]: %time print('hello world')
1260 1260 hello world
1261 1261 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1262 1262 Wall time: 0.00
1263 1263
1264 1264 .. note::
1265 1265 The time needed by Python to compile the given expression will be
1266 1266 reported if it is more than 0.1s.
1267 1267
1268 1268 In the example below, the actual exponentiation is done by Python
1269 1269 at compilation time, so while the expression can take a noticeable
1270 1270 amount of time to compute, that time is purely due to the
1271 1271 compilation::
1272 1272
1273 1273 In [5]: %time 3**9999;
1274 1274 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1275 1275 Wall time: 0.00 s
1276 1276
1277 1277 In [6]: %time 3**999999;
1278 1278 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1279 1279 Wall time: 0.00 s
1280 1280 Compiler : 0.78 s
1281 1281 """
1282 1282 # fail immediately if the given expression can't be compiled
1283 1283
1284 1284 if line and cell:
1285 1285 raise UsageError("Can't use statement directly after '%%time'!")
1286 1286
1287 1287 if cell:
1288 1288 expr = self.shell.transform_cell(cell)
1289 1289 else:
1290 1290 expr = self.shell.transform_cell(line)
1291 1291
1292 1292 # Minimum time above which parse time will be reported
1293 1293 tp_min = 0.1
1294 1294
1295 1295 t0 = clock()
1296 1296 expr_ast = self.shell.compile.ast_parse(expr)
1297 1297 tp = clock()-t0
1298 1298
1299 1299 # Apply AST transformations
1300 1300 expr_ast = self.shell.transform_ast(expr_ast)
1301 1301
1302 1302 # Minimum time above which compilation time will be reported
1303 1303 tc_min = 0.1
1304 1304
1305 1305 expr_val=None
1306 1306 if len(expr_ast.body)==1 and isinstance(expr_ast.body[0], ast.Expr):
1307 1307 mode = 'eval'
1308 1308 source = '<timed eval>'
1309 1309 expr_ast = ast.Expression(expr_ast.body[0].value)
1310 1310 else:
1311 1311 mode = 'exec'
1312 1312 source = '<timed exec>'
1313 1313 # multi-line %%time case
1314 1314 if len(expr_ast.body) > 1 and isinstance(expr_ast.body[-1], ast.Expr):
1315 1315 expr_val= expr_ast.body[-1]
1316 1316 expr_ast = expr_ast.body[:-1]
1317 1317 expr_ast = Module(expr_ast, [])
1318 1318 expr_val = ast.Expression(expr_val.value)
1319 1319
1320 1320 t0 = clock()
1321 1321 code = self.shell.compile(expr_ast, source, mode)
1322 1322 tc = clock()-t0
1323 1323
1324 1324 # skew measurement as little as possible
1325 1325 glob = self.shell.user_ns
1326 1326 wtime = time.time
1327 1327 # time execution
1328 1328 wall_st = wtime()
1329 1329 if mode=='eval':
1330 1330 st = clock2()
1331 1331 try:
1332 1332 out = eval(code, glob, local_ns)
1333 1333 except:
1334 1334 self.shell.showtraceback()
1335 1335 return
1336 1336 end = clock2()
1337 1337 else:
1338 1338 st = clock2()
1339 1339 try:
1340 1340 exec(code, glob, local_ns)
1341 1341 out=None
1342 1342 # multi-line %%time case
1343 1343 if expr_val is not None:
1344 1344 code_2 = self.shell.compile(expr_val, source, 'eval')
1345 1345 out = eval(code_2, glob, local_ns)
1346 1346 except:
1347 1347 self.shell.showtraceback()
1348 1348 return
1349 1349 end = clock2()
1350 1350
1351 1351 wall_end = wtime()
1352 1352 # Compute actual times and report
1353 1353 wall_time = wall_end - wall_st
1354 1354 cpu_user = end[0] - st[0]
1355 1355 cpu_sys = end[1] - st[1]
1356 1356 cpu_tot = cpu_user + cpu_sys
1357 1357 # On windows cpu_sys is always zero, so only total is displayed
1358 1358 if sys.platform != "win32":
1359 1359 print(
1360 1360 f"CPU times: user {_format_time(cpu_user)}, sys: {_format_time(cpu_sys)}, total: {_format_time(cpu_tot)}"
1361 1361 )
1362 1362 else:
1363 1363 print(f"CPU times: total: {_format_time(cpu_tot)}")
1364 1364 print(f"Wall time: {_format_time(wall_time)}")
1365 1365 if tc > tc_min:
1366 1366 print(f"Compiler : {_format_time(tc)}")
1367 1367 if tp > tp_min:
1368 1368 print(f"Parser : {_format_time(tp)}")
1369 1369 return out
1370 1370
1371 1371 @skip_doctest
1372 1372 @line_magic
1373 1373 def macro(self, parameter_s=''):
1374 1374 """Define a macro for future re-execution. It accepts ranges of history,
1375 1375 filenames or string objects.
1376 1376
1377 1377 Usage:\\
1378 1378 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1379 1379
1380 1380 Options:
1381 1381
1382 1382 -r: use 'raw' input. By default, the 'processed' history is used,
1383 1383 so that magics are loaded in their transformed version to valid
1384 1384 Python. If this option is given, the raw input as typed at the
1385 1385 command line is used instead.
1386 1386
1387 1387 -q: quiet macro definition. By default, a tag line is printed
1388 1388 to indicate the macro has been created, and then the contents of
1389 1389 the macro are printed. If this option is given, then no printout
1390 1390 is produced once the macro is created.
1391 1391
1392 1392 This will define a global variable called `name` which is a string
1393 1393 made of joining the slices and lines you specify (n1,n2,... numbers
1394 1394 above) from your input history into a single string. This variable
1395 1395 acts like an automatic function which re-executes those lines as if
1396 1396 you had typed them. You just type 'name' at the prompt and the code
1397 1397 executes.
1398 1398
1399 1399 The syntax for indicating input ranges is described in %history.
1400 1400
1401 1401 Note: as a 'hidden' feature, you can also use traditional python slice
1402 1402 notation, where N:M means numbers N through M-1.
1403 1403
1404 1404 For example, if your history contains (print using %hist -n )::
1405 1405
1406 1406 44: x=1
1407 1407 45: y=3
1408 1408 46: z=x+y
1409 1409 47: print(x)
1410 1410 48: a=5
1411 1411 49: print('x',x,'y',y)
1412 1412
1413 1413 you can create a macro with lines 44 through 47 (included) and line 49
1414 1414 called my_macro with::
1415 1415
1416 1416 In [55]: %macro my_macro 44-47 49
1417 1417
1418 1418 Now, typing `my_macro` (without quotes) will re-execute all this code
1419 1419 in one pass.
1420 1420
1421 1421 You don't need to give the line-numbers in order, and any given line
1422 1422 number can appear multiple times. You can assemble macros with any
1423 1423 lines from your input history in any order.
1424 1424
1425 1425 The macro is a simple object which holds its value in an attribute,
1426 1426 but IPython's display system checks for macros and executes them as
1427 1427 code instead of printing them when you type their name.
1428 1428
1429 1429 You can view a macro's contents by explicitly printing it with::
1430 1430
1431 1431 print(macro_name)
1432 1432
1433 1433 """
1434 1434 opts,args = self.parse_options(parameter_s,'rq',mode='list')
1435 1435 if not args: # List existing macros
1436 1436 return sorted(k for k,v in self.shell.user_ns.items() if isinstance(v, Macro))
1437 1437 if len(args) == 1:
1438 1438 raise UsageError(
1439 1439 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
1440 1440 name, codefrom = args[0], " ".join(args[1:])
1441 1441
1442 1442 # print('rng',ranges) # dbg
1443 1443 try:
1444 1444 lines = self.shell.find_user_code(codefrom, 'r' in opts)
1445 1445 except (ValueError, TypeError) as e:
1446 1446 print(e.args[0])
1447 1447 return
1448 1448 macro = Macro(lines)
1449 1449 self.shell.define_macro(name, macro)
1450 1450 if not ( 'q' in opts) :
1451 1451 print('Macro `%s` created. To execute, type its name (without quotes).' % name)
1452 1452 print('=== Macro contents: ===')
1453 1453 print(macro, end=' ')
1454 1454
1455 1455 @magic_arguments.magic_arguments()
1456 1456 @magic_arguments.argument('output', type=str, default='', nargs='?',
1457 1457 help="""The name of the variable in which to store output.
1458 1458 This is a utils.io.CapturedIO object with stdout/err attributes
1459 1459 for the text of the captured output.
1460 1460
1461 1461 CapturedOutput also has a show() method for displaying the output,
1462 1462 and __call__ as well, so you can use that to quickly display the
1463 1463 output.
1464 1464
1465 1465 If unspecified, captured output is discarded.
1466 1466 """
1467 1467 )
1468 1468 @magic_arguments.argument('--no-stderr', action="store_true",
1469 1469 help="""Don't capture stderr."""
1470 1470 )
1471 1471 @magic_arguments.argument('--no-stdout', action="store_true",
1472 1472 help="""Don't capture stdout."""
1473 1473 )
1474 1474 @magic_arguments.argument('--no-display', action="store_true",
1475 1475 help="""Don't capture IPython's rich display."""
1476 1476 )
1477 1477 @cell_magic
1478 1478 def capture(self, line, cell):
1479 1479 """run the cell, capturing stdout, stderr, and IPython's rich display() calls."""
1480 1480 args = magic_arguments.parse_argstring(self.capture, line)
1481 1481 out = not args.no_stdout
1482 1482 err = not args.no_stderr
1483 1483 disp = not args.no_display
1484 1484 with capture_output(out, err, disp) as io:
1485 1485 self.shell.run_cell(cell)
1486 1486 if DisplayHook.semicolon_at_end_of_expression(cell):
1487 1487 if args.output in self.shell.user_ns:
1488 1488 del self.shell.user_ns[args.output]
1489 1489 elif args.output:
1490 1490 self.shell.user_ns[args.output] = io
1491 1491
1492 1492 @skip_doctest
1493 1493 @magic_arguments.magic_arguments()
1494 1494 @magic_arguments.argument("name", type=str, default="default", nargs="?")
1495 1495 @magic_arguments.argument(
1496 1496 "--remove", action="store_true", help="remove the current transformer"
1497 1497 )
1498 1498 @magic_arguments.argument(
1499 1499 "--list", action="store_true", help="list existing transformers name"
1500 1500 )
1501 1501 @magic_arguments.argument(
1502 1502 "--list-all",
1503 1503 action="store_true",
1504 1504 help="list existing transformers name and code template",
1505 1505 )
1506 1506 @line_cell_magic
1507 1507 def code_wrap(self, line, cell=None):
1508 1508 """
1509 1509 Simple magic to quickly define a code transformer for all IPython's future input.
1510 1510
1511 1511 ``__code__`` and ``__ret__`` are special variable that represent the code to run
1512 1512 and the value of the last expression of ``__code__`` respectively.
1513 1513
1514 1514 Examples
1515 1515 --------
1516 1516
1517 1517 .. ipython::
1518 1518
1519 1519 In [1]: %%code_wrap before_after
1520 1520 ...: print('before')
1521 1521 ...: __code__
1522 1522 ...: print('after')
1523 1523 ...: __ret__
1524 1524
1525 1525
1526 1526 In [2]: 1
1527 1527 before
1528 1528 after
1529 1529 Out[2]: 1
1530 1530
1531 1531 In [3]: %code_wrap --list
1532 1532 before_after
1533 1533
1534 1534 In [4]: %code_wrap --list-all
1535 1535 before_after :
1536 1536 print('before')
1537 1537 __code__
1538 1538 print('after')
1539 1539 __ret__
1540 1540
1541 1541 In [5]: %code_wrap --remove before_after
1542 1542
1543 1543 """
1544 1544 args = magic_arguments.parse_argstring(self.code_wrap, line)
1545 1545
1546 1546 if args.list:
1547 1547 for name in self._transformers.keys():
1548 1548 print(name)
1549 1549 return
1550 1550 if args.list_all:
1551 1551 for name, _t in self._transformers.items():
1552 1552 print(name, ":")
1553 1553 print(indent(ast.unparse(_t.template), " "))
1554 1554 print()
1555 1555 return
1556 1556
1557 1557 to_remove = self._transformers.pop(args.name, None)
1558 1558 if to_remove in self.shell.ast_transformers:
1559 1559 self.shell.ast_transformers.remove(to_remove)
1560 1560 if cell is None or args.remove:
1561 1561 return
1562 1562
1563 1563 _trs = ReplaceCodeTransformer(ast.parse(cell))
1564 1564
1565 1565 self._transformers[args.name] = _trs
1566 1566 self.shell.ast_transformers.append(_trs)
1567 1567
1568 1568
1569 1569 def parse_breakpoint(text, current_file):
1570 1570 '''Returns (file, line) for file:line and (current_file, line) for line'''
1571 1571 colon = text.find(':')
1572 1572 if colon == -1:
1573 1573 return current_file, int(text)
1574 1574 else:
1575 1575 return text[:colon], int(text[colon+1:])
1576 1576
1577 1577 def _format_time(timespan, precision=3):
1578 1578 """Formats the timespan in a human readable form"""
1579 1579
1580 1580 if timespan >= 60.0:
1581 1581 # we have more than a minute, format that in a human readable form
1582 1582 # Idea from http://snipplr.com/view/5713/
1583 1583 parts = [("d", 60*60*24),("h", 60*60),("min", 60), ("s", 1)]
1584 1584 time = []
1585 1585 leftover = timespan
1586 1586 for suffix, length in parts:
1587 1587 value = int(leftover / length)
1588 1588 if value > 0:
1589 1589 leftover = leftover % length
1590 1590 time.append(u'%s%s' % (str(value), suffix))
1591 1591 if leftover < 1:
1592 1592 break
1593 1593 return " ".join(time)
1594 1594
1595 1595
1596 1596 # Unfortunately characters outside of range(128) can cause problems in
1597 1597 # certain terminals.
1598 1598 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1599 1599 # Try to prevent crashes by being more secure than it needs to
1600 1600 # E.g. eclipse is able to print a µ, but has no sys.stdout.encoding set.
1601 1601 units = ["s", "ms", "us", "ns"] # the safe value
1602 1602 if hasattr(sys.stdout, "encoding") and sys.stdout.encoding:
1603 1603 try:
1604 1604 "μ".encode(sys.stdout.encoding)
1605 1605 units = ["s", "ms", "μs", "ns"]
1606 1606 except:
1607 1607 pass
1608 1608 scaling = [1, 1e3, 1e6, 1e9]
1609 1609
1610 1610 if timespan > 0.0:
1611 1611 order = min(-int(math.floor(math.log10(timespan)) // 3), 3)
1612 1612 else:
1613 1613 order = 3
1614 1614 return "%.*g %s" % (precision, timespan * scaling[order], units[order])
General Comments 0
You need to be logged in to leave comments. Login now