##// END OF EJS Templates
add 'osx' to known pylab backends, fix pylab mode with MacOSX backend...
MinRK -
Show More
@@ -1,3450 +1,3450 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 from cStringIO import StringIO
29 29 from getopt import getopt,GetoptError
30 30 from pprint import pformat
31 31
32 32 # cProfile was added in Python2.5
33 33 try:
34 34 import cProfile as profile
35 35 import pstats
36 36 except ImportError:
37 37 # profile isn't bundled by default in Debian for license reasons
38 38 try:
39 39 import profile,pstats
40 40 except ImportError:
41 41 profile = pstats = None
42 42
43 43 import IPython
44 44 from IPython.core import debugger, oinspect
45 45 from IPython.core.error import TryNext
46 46 from IPython.core.error import UsageError
47 47 from IPython.core.fakemodule import FakeModule
48 48 from IPython.core.macro import Macro
49 49 from IPython.core import page
50 50 from IPython.core.prefilter import ESC_MAGIC
51 51 from IPython.lib.pylabtools import mpl_runner
52 52 from IPython.external.Itpl import itpl, printpl
53 53 from IPython.testing import decorators as testdec
54 54 from IPython.utils.io import file_read, nlprint
55 55 import IPython.utils.io
56 56 from IPython.utils.path import get_py_filename
57 57 from IPython.utils.process import arg_split, abbrev_cwd
58 58 from IPython.utils.terminal import set_term_title
59 59 from IPython.utils.text import LSString, SList, format_screen
60 60 from IPython.utils.timing import clock, clock2
61 61 from IPython.utils.warn import warn, error
62 62 from IPython.utils.ipstruct import Struct
63 63 import IPython.utils.generics
64 64
65 65 #-----------------------------------------------------------------------------
66 66 # Utility functions
67 67 #-----------------------------------------------------------------------------
68 68
69 69 def on_off(tag):
70 70 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
71 71 return ['OFF','ON'][tag]
72 72
73 73 class Bunch: pass
74 74
75 75 def compress_dhist(dh):
76 76 head, tail = dh[:-10], dh[-10:]
77 77
78 78 newhead = []
79 79 done = set()
80 80 for h in head:
81 81 if h in done:
82 82 continue
83 83 newhead.append(h)
84 84 done.add(h)
85 85
86 86 return newhead + tail
87 87
88 88
89 89 #***************************************************************************
90 90 # Main class implementing Magic functionality
91 91
92 92 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
93 93 # on construction of the main InteractiveShell object. Something odd is going
94 94 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
95 95 # eventually this needs to be clarified.
96 96 # BG: This is because InteractiveShell inherits from this, but is itself a
97 97 # Configurable. This messes up the MRO in some way. The fix is that we need to
98 98 # make Magic a configurable that InteractiveShell does not subclass.
99 99
100 100 class Magic:
101 101 """Magic functions for InteractiveShell.
102 102
103 103 Shell functions which can be reached as %function_name. All magic
104 104 functions should accept a string, which they can parse for their own
105 105 needs. This can make some functions easier to type, eg `%cd ../`
106 106 vs. `%cd("../")`
107 107
108 108 ALL definitions MUST begin with the prefix magic_. The user won't need it
109 109 at the command line, but it is is needed in the definition. """
110 110
111 111 # class globals
112 112 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
113 113 'Automagic is ON, % prefix NOT needed for magic functions.']
114 114
115 115 #......................................................................
116 116 # some utility functions
117 117
118 118 def __init__(self,shell):
119 119
120 120 self.options_table = {}
121 121 if profile is None:
122 122 self.magic_prun = self.profile_missing_notice
123 123 self.shell = shell
124 124
125 125 # namespace for holding state we may need
126 126 self._magic_state = Bunch()
127 127
128 128 def profile_missing_notice(self, *args, **kwargs):
129 129 error("""\
130 130 The profile module could not be found. It has been removed from the standard
131 131 python packages because of its non-free license. To use profiling, install the
132 132 python-profiler package from non-free.""")
133 133
134 134 def default_option(self,fn,optstr):
135 135 """Make an entry in the options_table for fn, with value optstr"""
136 136
137 137 if fn not in self.lsmagic():
138 138 error("%s is not a magic function" % fn)
139 139 self.options_table[fn] = optstr
140 140
141 141 def lsmagic(self):
142 142 """Return a list of currently available magic functions.
143 143
144 144 Gives a list of the bare names after mangling (['ls','cd', ...], not
145 145 ['magic_ls','magic_cd',...]"""
146 146
147 147 # FIXME. This needs a cleanup, in the way the magics list is built.
148 148
149 149 # magics in class definition
150 150 class_magic = lambda fn: fn.startswith('magic_') and \
151 151 callable(Magic.__dict__[fn])
152 152 # in instance namespace (run-time user additions)
153 153 inst_magic = lambda fn: fn.startswith('magic_') and \
154 154 callable(self.__dict__[fn])
155 155 # and bound magics by user (so they can access self):
156 156 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
157 157 callable(self.__class__.__dict__[fn])
158 158 magics = filter(class_magic,Magic.__dict__.keys()) + \
159 159 filter(inst_magic,self.__dict__.keys()) + \
160 160 filter(inst_bound_magic,self.__class__.__dict__.keys())
161 161 out = []
162 162 for fn in set(magics):
163 163 out.append(fn.replace('magic_','',1))
164 164 out.sort()
165 165 return out
166 166
167 167 def extract_input_lines(self, range_str, raw=False):
168 168 """Return as a string a set of input history slices.
169 169
170 170 Inputs:
171 171
172 172 - range_str: the set of slices is given as a string, like
173 173 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
174 174 which get their arguments as strings. The number before the / is the
175 175 session number: ~n goes n back from the current session.
176 176
177 177 Optional inputs:
178 178
179 179 - raw(False): by default, the processed input is used. If this is
180 180 true, the raw input history is used instead.
181 181
182 182 Note that slices can be called with two notations:
183 183
184 184 N:M -> standard python form, means including items N...(M-1).
185 185
186 186 N-M -> include items N..M (closed endpoint)."""
187 187 lines = self.shell.history_manager.\
188 188 get_range_by_str(range_str, raw=raw)
189 189 return "\n".join(x for _, _, x in lines)
190 190
191 191 def arg_err(self,func):
192 192 """Print docstring if incorrect arguments were passed"""
193 193 print 'Error in arguments:'
194 194 print oinspect.getdoc(func)
195 195
196 196 def format_latex(self,strng):
197 197 """Format a string for latex inclusion."""
198 198
199 199 # Characters that need to be escaped for latex:
200 200 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
201 201 # Magic command names as headers:
202 202 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
203 203 re.MULTILINE)
204 204 # Magic commands
205 205 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
206 206 re.MULTILINE)
207 207 # Paragraph continue
208 208 par_re = re.compile(r'\\$',re.MULTILINE)
209 209
210 210 # The "\n" symbol
211 211 newline_re = re.compile(r'\\n')
212 212
213 213 # Now build the string for output:
214 214 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
215 215 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
216 216 strng)
217 217 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
218 218 strng = par_re.sub(r'\\\\',strng)
219 219 strng = escape_re.sub(r'\\\1',strng)
220 220 strng = newline_re.sub(r'\\textbackslash{}n',strng)
221 221 return strng
222 222
223 223 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
224 224 """Parse options passed to an argument string.
225 225
226 226 The interface is similar to that of getopt(), but it returns back a
227 227 Struct with the options as keys and the stripped argument string still
228 228 as a string.
229 229
230 230 arg_str is quoted as a true sys.argv vector by using shlex.split.
231 231 This allows us to easily expand variables, glob files, quote
232 232 arguments, etc.
233 233
234 234 Options:
235 235 -mode: default 'string'. If given as 'list', the argument string is
236 236 returned as a list (split on whitespace) instead of a string.
237 237
238 238 -list_all: put all option values in lists. Normally only options
239 239 appearing more than once are put in a list.
240 240
241 241 -posix (True): whether to split the input line in POSIX mode or not,
242 242 as per the conventions outlined in the shlex module from the
243 243 standard library."""
244 244
245 245 # inject default options at the beginning of the input line
246 246 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
247 247 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
248 248
249 249 mode = kw.get('mode','string')
250 250 if mode not in ['string','list']:
251 251 raise ValueError,'incorrect mode given: %s' % mode
252 252 # Get options
253 253 list_all = kw.get('list_all',0)
254 254 posix = kw.get('posix', os.name == 'posix')
255 255
256 256 # Check if we have more than one argument to warrant extra processing:
257 257 odict = {} # Dictionary with options
258 258 args = arg_str.split()
259 259 if len(args) >= 1:
260 260 # If the list of inputs only has 0 or 1 thing in it, there's no
261 261 # need to look for options
262 262 argv = arg_split(arg_str,posix)
263 263 # Do regular option processing
264 264 try:
265 265 opts,args = getopt(argv,opt_str,*long_opts)
266 266 except GetoptError,e:
267 267 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
268 268 " ".join(long_opts)))
269 269 for o,a in opts:
270 270 if o.startswith('--'):
271 271 o = o[2:]
272 272 else:
273 273 o = o[1:]
274 274 try:
275 275 odict[o].append(a)
276 276 except AttributeError:
277 277 odict[o] = [odict[o],a]
278 278 except KeyError:
279 279 if list_all:
280 280 odict[o] = [a]
281 281 else:
282 282 odict[o] = a
283 283
284 284 # Prepare opts,args for return
285 285 opts = Struct(odict)
286 286 if mode == 'string':
287 287 args = ' '.join(args)
288 288
289 289 return opts,args
290 290
291 291 #......................................................................
292 292 # And now the actual magic functions
293 293
294 294 # Functions for IPython shell work (vars,funcs, config, etc)
295 295 def magic_lsmagic(self, parameter_s = ''):
296 296 """List currently available magic functions."""
297 297 mesc = ESC_MAGIC
298 298 print 'Available magic functions:\n'+mesc+\
299 299 (' '+mesc).join(self.lsmagic())
300 300 print '\n' + Magic.auto_status[self.shell.automagic]
301 301 return None
302 302
303 303 def magic_magic(self, parameter_s = ''):
304 304 """Print information about the magic function system.
305 305
306 306 Supported formats: -latex, -brief, -rest
307 307 """
308 308
309 309 mode = ''
310 310 try:
311 311 if parameter_s.split()[0] == '-latex':
312 312 mode = 'latex'
313 313 if parameter_s.split()[0] == '-brief':
314 314 mode = 'brief'
315 315 if parameter_s.split()[0] == '-rest':
316 316 mode = 'rest'
317 317 rest_docs = []
318 318 except:
319 319 pass
320 320
321 321 magic_docs = []
322 322 for fname in self.lsmagic():
323 323 mname = 'magic_' + fname
324 324 for space in (Magic,self,self.__class__):
325 325 try:
326 326 fn = space.__dict__[mname]
327 327 except KeyError:
328 328 pass
329 329 else:
330 330 break
331 331 if mode == 'brief':
332 332 # only first line
333 333 if fn.__doc__:
334 334 fndoc = fn.__doc__.split('\n',1)[0]
335 335 else:
336 336 fndoc = 'No documentation'
337 337 else:
338 338 if fn.__doc__:
339 339 fndoc = fn.__doc__.rstrip()
340 340 else:
341 341 fndoc = 'No documentation'
342 342
343 343
344 344 if mode == 'rest':
345 345 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
346 346 fname,fndoc))
347 347
348 348 else:
349 349 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
350 350 fname,fndoc))
351 351
352 352 magic_docs = ''.join(magic_docs)
353 353
354 354 if mode == 'rest':
355 355 return "".join(rest_docs)
356 356
357 357 if mode == 'latex':
358 358 print self.format_latex(magic_docs)
359 359 return
360 360 else:
361 361 magic_docs = format_screen(magic_docs)
362 362 if mode == 'brief':
363 363 return magic_docs
364 364
365 365 outmsg = """
366 366 IPython's 'magic' functions
367 367 ===========================
368 368
369 369 The magic function system provides a series of functions which allow you to
370 370 control the behavior of IPython itself, plus a lot of system-type
371 371 features. All these functions are prefixed with a % character, but parameters
372 372 are given without parentheses or quotes.
373 373
374 374 NOTE: If you have 'automagic' enabled (via the command line option or with the
375 375 %automagic function), you don't need to type in the % explicitly. By default,
376 376 IPython ships with automagic on, so you should only rarely need the % escape.
377 377
378 378 Example: typing '%cd mydir' (without the quotes) changes you working directory
379 379 to 'mydir', if it exists.
380 380
381 381 You can define your own magic functions to extend the system. See the supplied
382 382 ipythonrc and example-magic.py files for details (in your ipython
383 383 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
384 384
385 385 You can also define your own aliased names for magic functions. In your
386 386 ipythonrc file, placing a line like:
387 387
388 388 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
389 389
390 390 will define %pf as a new name for %profile.
391 391
392 392 You can also call magics in code using the magic() function, which IPython
393 393 automatically adds to the builtin namespace. Type 'magic?' for details.
394 394
395 395 For a list of the available magic functions, use %lsmagic. For a description
396 396 of any of them, type %magic_name?, e.g. '%cd?'.
397 397
398 398 Currently the magic system has the following functions:\n"""
399 399
400 400 mesc = ESC_MAGIC
401 401 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
402 402 "\n\n%s%s\n\n%s" % (outmsg,
403 403 magic_docs,mesc,mesc,
404 404 (' '+mesc).join(self.lsmagic()),
405 405 Magic.auto_status[self.shell.automagic] ) )
406 406 page.page(outmsg)
407 407
408 408 def magic_automagic(self, parameter_s = ''):
409 409 """Make magic functions callable without having to type the initial %.
410 410
411 411 Without argumentsl toggles on/off (when off, you must call it as
412 412 %automagic, of course). With arguments it sets the value, and you can
413 413 use any of (case insensitive):
414 414
415 415 - on,1,True: to activate
416 416
417 417 - off,0,False: to deactivate.
418 418
419 419 Note that magic functions have lowest priority, so if there's a
420 420 variable whose name collides with that of a magic fn, automagic won't
421 421 work for that function (you get the variable instead). However, if you
422 422 delete the variable (del var), the previously shadowed magic function
423 423 becomes visible to automagic again."""
424 424
425 425 arg = parameter_s.lower()
426 426 if parameter_s in ('on','1','true'):
427 427 self.shell.automagic = True
428 428 elif parameter_s in ('off','0','false'):
429 429 self.shell.automagic = False
430 430 else:
431 431 self.shell.automagic = not self.shell.automagic
432 432 print '\n' + Magic.auto_status[self.shell.automagic]
433 433
434 434 @testdec.skip_doctest
435 435 def magic_autocall(self, parameter_s = ''):
436 436 """Make functions callable without having to type parentheses.
437 437
438 438 Usage:
439 439
440 440 %autocall [mode]
441 441
442 442 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
443 443 value is toggled on and off (remembering the previous state).
444 444
445 445 In more detail, these values mean:
446 446
447 447 0 -> fully disabled
448 448
449 449 1 -> active, but do not apply if there are no arguments on the line.
450 450
451 451 In this mode, you get:
452 452
453 453 In [1]: callable
454 454 Out[1]: <built-in function callable>
455 455
456 456 In [2]: callable 'hello'
457 457 ------> callable('hello')
458 458 Out[2]: False
459 459
460 460 2 -> Active always. Even if no arguments are present, the callable
461 461 object is called:
462 462
463 463 In [2]: float
464 464 ------> float()
465 465 Out[2]: 0.0
466 466
467 467 Note that even with autocall off, you can still use '/' at the start of
468 468 a line to treat the first argument on the command line as a function
469 469 and add parentheses to it:
470 470
471 471 In [8]: /str 43
472 472 ------> str(43)
473 473 Out[8]: '43'
474 474
475 475 # all-random (note for auto-testing)
476 476 """
477 477
478 478 if parameter_s:
479 479 arg = int(parameter_s)
480 480 else:
481 481 arg = 'toggle'
482 482
483 483 if not arg in (0,1,2,'toggle'):
484 484 error('Valid modes: (0->Off, 1->Smart, 2->Full')
485 485 return
486 486
487 487 if arg in (0,1,2):
488 488 self.shell.autocall = arg
489 489 else: # toggle
490 490 if self.shell.autocall:
491 491 self._magic_state.autocall_save = self.shell.autocall
492 492 self.shell.autocall = 0
493 493 else:
494 494 try:
495 495 self.shell.autocall = self._magic_state.autocall_save
496 496 except AttributeError:
497 497 self.shell.autocall = self._magic_state.autocall_save = 1
498 498
499 499 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
500 500
501 501
502 502 def magic_page(self, parameter_s=''):
503 503 """Pretty print the object and display it through a pager.
504 504
505 505 %page [options] OBJECT
506 506
507 507 If no object is given, use _ (last output).
508 508
509 509 Options:
510 510
511 511 -r: page str(object), don't pretty-print it."""
512 512
513 513 # After a function contributed by Olivier Aubert, slightly modified.
514 514
515 515 # Process options/args
516 516 opts,args = self.parse_options(parameter_s,'r')
517 517 raw = 'r' in opts
518 518
519 519 oname = args and args or '_'
520 520 info = self._ofind(oname)
521 521 if info['found']:
522 522 txt = (raw and str or pformat)( info['obj'] )
523 523 page.page(txt)
524 524 else:
525 525 print 'Object `%s` not found' % oname
526 526
527 527 def magic_profile(self, parameter_s=''):
528 528 """Print your currently active IPython profile."""
529 529 if self.shell.profile:
530 530 printpl('Current IPython profile: $self.shell.profile.')
531 531 else:
532 532 print 'No profile active.'
533 533
534 534 def magic_pinfo(self, parameter_s='', namespaces=None):
535 535 """Provide detailed information about an object.
536 536
537 537 '%pinfo object' is just a synonym for object? or ?object."""
538 538
539 539 #print 'pinfo par: <%s>' % parameter_s # dbg
540 540
541 541
542 542 # detail_level: 0 -> obj? , 1 -> obj??
543 543 detail_level = 0
544 544 # We need to detect if we got called as 'pinfo pinfo foo', which can
545 545 # happen if the user types 'pinfo foo?' at the cmd line.
546 546 pinfo,qmark1,oname,qmark2 = \
547 547 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
548 548 if pinfo or qmark1 or qmark2:
549 549 detail_level = 1
550 550 if "*" in oname:
551 551 self.magic_psearch(oname)
552 552 else:
553 553 self.shell._inspect('pinfo', oname, detail_level=detail_level,
554 554 namespaces=namespaces)
555 555
556 556 def magic_pinfo2(self, parameter_s='', namespaces=None):
557 557 """Provide extra detailed information about an object.
558 558
559 559 '%pinfo2 object' is just a synonym for object?? or ??object."""
560 560 self.shell._inspect('pinfo', parameter_s, detail_level=1,
561 561 namespaces=namespaces)
562 562
563 563 @testdec.skip_doctest
564 564 def magic_pdef(self, parameter_s='', namespaces=None):
565 565 """Print the definition header for any callable object.
566 566
567 567 If the object is a class, print the constructor information.
568 568
569 569 Examples
570 570 --------
571 571 ::
572 572
573 573 In [3]: %pdef urllib.urlopen
574 574 urllib.urlopen(url, data=None, proxies=None)
575 575 """
576 576 self._inspect('pdef',parameter_s, namespaces)
577 577
578 578 def magic_pdoc(self, parameter_s='', namespaces=None):
579 579 """Print the docstring for an object.
580 580
581 581 If the given object is a class, it will print both the class and the
582 582 constructor docstrings."""
583 583 self._inspect('pdoc',parameter_s, namespaces)
584 584
585 585 def magic_psource(self, parameter_s='', namespaces=None):
586 586 """Print (or run through pager) the source code for an object."""
587 587 self._inspect('psource',parameter_s, namespaces)
588 588
589 589 def magic_pfile(self, parameter_s=''):
590 590 """Print (or run through pager) the file where an object is defined.
591 591
592 592 The file opens at the line where the object definition begins. IPython
593 593 will honor the environment variable PAGER if set, and otherwise will
594 594 do its best to print the file in a convenient form.
595 595
596 596 If the given argument is not an object currently defined, IPython will
597 597 try to interpret it as a filename (automatically adding a .py extension
598 598 if needed). You can thus use %pfile as a syntax highlighting code
599 599 viewer."""
600 600
601 601 # first interpret argument as an object name
602 602 out = self._inspect('pfile',parameter_s)
603 603 # if not, try the input as a filename
604 604 if out == 'not found':
605 605 try:
606 606 filename = get_py_filename(parameter_s)
607 607 except IOError,msg:
608 608 print msg
609 609 return
610 610 page.page(self.shell.inspector.format(file(filename).read()))
611 611
612 612 def magic_psearch(self, parameter_s=''):
613 613 """Search for object in namespaces by wildcard.
614 614
615 615 %psearch [options] PATTERN [OBJECT TYPE]
616 616
617 617 Note: ? can be used as a synonym for %psearch, at the beginning or at
618 618 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
619 619 rest of the command line must be unchanged (options come first), so
620 620 for example the following forms are equivalent
621 621
622 622 %psearch -i a* function
623 623 -i a* function?
624 624 ?-i a* function
625 625
626 626 Arguments:
627 627
628 628 PATTERN
629 629
630 630 where PATTERN is a string containing * as a wildcard similar to its
631 631 use in a shell. The pattern is matched in all namespaces on the
632 632 search path. By default objects starting with a single _ are not
633 633 matched, many IPython generated objects have a single
634 634 underscore. The default is case insensitive matching. Matching is
635 635 also done on the attributes of objects and not only on the objects
636 636 in a module.
637 637
638 638 [OBJECT TYPE]
639 639
640 640 Is the name of a python type from the types module. The name is
641 641 given in lowercase without the ending type, ex. StringType is
642 642 written string. By adding a type here only objects matching the
643 643 given type are matched. Using all here makes the pattern match all
644 644 types (this is the default).
645 645
646 646 Options:
647 647
648 648 -a: makes the pattern match even objects whose names start with a
649 649 single underscore. These names are normally ommitted from the
650 650 search.
651 651
652 652 -i/-c: make the pattern case insensitive/sensitive. If neither of
653 653 these options is given, the default is read from your ipythonrc
654 654 file. The option name which sets this value is
655 655 'wildcards_case_sensitive'. If this option is not specified in your
656 656 ipythonrc file, IPython's internal default is to do a case sensitive
657 657 search.
658 658
659 659 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
660 660 specifiy can be searched in any of the following namespaces:
661 661 'builtin', 'user', 'user_global','internal', 'alias', where
662 662 'builtin' and 'user' are the search defaults. Note that you should
663 663 not use quotes when specifying namespaces.
664 664
665 665 'Builtin' contains the python module builtin, 'user' contains all
666 666 user data, 'alias' only contain the shell aliases and no python
667 667 objects, 'internal' contains objects used by IPython. The
668 668 'user_global' namespace is only used by embedded IPython instances,
669 669 and it contains module-level globals. You can add namespaces to the
670 670 search with -s or exclude them with -e (these options can be given
671 671 more than once).
672 672
673 673 Examples:
674 674
675 675 %psearch a* -> objects beginning with an a
676 676 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
677 677 %psearch a* function -> all functions beginning with an a
678 678 %psearch re.e* -> objects beginning with an e in module re
679 679 %psearch r*.e* -> objects that start with e in modules starting in r
680 680 %psearch r*.* string -> all strings in modules beginning with r
681 681
682 682 Case sensitve search:
683 683
684 684 %psearch -c a* list all object beginning with lower case a
685 685
686 686 Show objects beginning with a single _:
687 687
688 688 %psearch -a _* list objects beginning with a single underscore"""
689 689 try:
690 690 parameter_s = parameter_s.encode('ascii')
691 691 except UnicodeEncodeError:
692 692 print 'Python identifiers can only contain ascii characters.'
693 693 return
694 694
695 695 # default namespaces to be searched
696 696 def_search = ['user','builtin']
697 697
698 698 # Process options/args
699 699 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
700 700 opt = opts.get
701 701 shell = self.shell
702 702 psearch = shell.inspector.psearch
703 703
704 704 # select case options
705 705 if opts.has_key('i'):
706 706 ignore_case = True
707 707 elif opts.has_key('c'):
708 708 ignore_case = False
709 709 else:
710 710 ignore_case = not shell.wildcards_case_sensitive
711 711
712 712 # Build list of namespaces to search from user options
713 713 def_search.extend(opt('s',[]))
714 714 ns_exclude = ns_exclude=opt('e',[])
715 715 ns_search = [nm for nm in def_search if nm not in ns_exclude]
716 716
717 717 # Call the actual search
718 718 try:
719 719 psearch(args,shell.ns_table,ns_search,
720 720 show_all=opt('a'),ignore_case=ignore_case)
721 721 except:
722 722 shell.showtraceback()
723 723
724 724 @testdec.skip_doctest
725 725 def magic_who_ls(self, parameter_s=''):
726 726 """Return a sorted list of all interactive variables.
727 727
728 728 If arguments are given, only variables of types matching these
729 729 arguments are returned.
730 730
731 731 Examples
732 732 --------
733 733
734 734 Define two variables and list them with who_ls::
735 735
736 736 In [1]: alpha = 123
737 737
738 738 In [2]: beta = 'test'
739 739
740 740 In [3]: %who_ls
741 741 Out[3]: ['alpha', 'beta']
742 742
743 743 In [4]: %who_ls int
744 744 Out[4]: ['alpha']
745 745
746 746 In [5]: %who_ls str
747 747 Out[5]: ['beta']
748 748 """
749 749
750 750 user_ns = self.shell.user_ns
751 751 internal_ns = self.shell.internal_ns
752 752 user_ns_hidden = self.shell.user_ns_hidden
753 753 out = [ i for i in user_ns
754 754 if not i.startswith('_') \
755 755 and not (i in internal_ns or i in user_ns_hidden) ]
756 756
757 757 typelist = parameter_s.split()
758 758 if typelist:
759 759 typeset = set(typelist)
760 760 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
761 761
762 762 out.sort()
763 763 return out
764 764
765 765 @testdec.skip_doctest
766 766 def magic_who(self, parameter_s=''):
767 767 """Print all interactive variables, with some minimal formatting.
768 768
769 769 If any arguments are given, only variables whose type matches one of
770 770 these are printed. For example:
771 771
772 772 %who function str
773 773
774 774 will only list functions and strings, excluding all other types of
775 775 variables. To find the proper type names, simply use type(var) at a
776 776 command line to see how python prints type names. For example:
777 777
778 778 In [1]: type('hello')\\
779 779 Out[1]: <type 'str'>
780 780
781 781 indicates that the type name for strings is 'str'.
782 782
783 783 %who always excludes executed names loaded through your configuration
784 784 file and things which are internal to IPython.
785 785
786 786 This is deliberate, as typically you may load many modules and the
787 787 purpose of %who is to show you only what you've manually defined.
788 788
789 789 Examples
790 790 --------
791 791
792 792 Define two variables and list them with who::
793 793
794 794 In [1]: alpha = 123
795 795
796 796 In [2]: beta = 'test'
797 797
798 798 In [3]: %who
799 799 alpha beta
800 800
801 801 In [4]: %who int
802 802 alpha
803 803
804 804 In [5]: %who str
805 805 beta
806 806 """
807 807
808 808 varlist = self.magic_who_ls(parameter_s)
809 809 if not varlist:
810 810 if parameter_s:
811 811 print 'No variables match your requested type.'
812 812 else:
813 813 print 'Interactive namespace is empty.'
814 814 return
815 815
816 816 # if we have variables, move on...
817 817 count = 0
818 818 for i in varlist:
819 819 print i+'\t',
820 820 count += 1
821 821 if count > 8:
822 822 count = 0
823 823 print
824 824 print
825 825
826 826 @testdec.skip_doctest
827 827 def magic_whos(self, parameter_s=''):
828 828 """Like %who, but gives some extra information about each variable.
829 829
830 830 The same type filtering of %who can be applied here.
831 831
832 832 For all variables, the type is printed. Additionally it prints:
833 833
834 834 - For {},[],(): their length.
835 835
836 836 - For numpy arrays, a summary with shape, number of
837 837 elements, typecode and size in memory.
838 838
839 839 - Everything else: a string representation, snipping their middle if
840 840 too long.
841 841
842 842 Examples
843 843 --------
844 844
845 845 Define two variables and list them with whos::
846 846
847 847 In [1]: alpha = 123
848 848
849 849 In [2]: beta = 'test'
850 850
851 851 In [3]: %whos
852 852 Variable Type Data/Info
853 853 --------------------------------
854 854 alpha int 123
855 855 beta str test
856 856 """
857 857
858 858 varnames = self.magic_who_ls(parameter_s)
859 859 if not varnames:
860 860 if parameter_s:
861 861 print 'No variables match your requested type.'
862 862 else:
863 863 print 'Interactive namespace is empty.'
864 864 return
865 865
866 866 # if we have variables, move on...
867 867
868 868 # for these types, show len() instead of data:
869 869 seq_types = ['dict', 'list', 'tuple']
870 870
871 871 # for numpy/Numeric arrays, display summary info
872 872 try:
873 873 import numpy
874 874 except ImportError:
875 875 ndarray_type = None
876 876 else:
877 877 ndarray_type = numpy.ndarray.__name__
878 878 try:
879 879 import Numeric
880 880 except ImportError:
881 881 array_type = None
882 882 else:
883 883 array_type = Numeric.ArrayType.__name__
884 884
885 885 # Find all variable names and types so we can figure out column sizes
886 886 def get_vars(i):
887 887 return self.shell.user_ns[i]
888 888
889 889 # some types are well known and can be shorter
890 890 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
891 891 def type_name(v):
892 892 tn = type(v).__name__
893 893 return abbrevs.get(tn,tn)
894 894
895 895 varlist = map(get_vars,varnames)
896 896
897 897 typelist = []
898 898 for vv in varlist:
899 899 tt = type_name(vv)
900 900
901 901 if tt=='instance':
902 902 typelist.append( abbrevs.get(str(vv.__class__),
903 903 str(vv.__class__)))
904 904 else:
905 905 typelist.append(tt)
906 906
907 907 # column labels and # of spaces as separator
908 908 varlabel = 'Variable'
909 909 typelabel = 'Type'
910 910 datalabel = 'Data/Info'
911 911 colsep = 3
912 912 # variable format strings
913 913 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
914 914 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
915 915 aformat = "%s: %s elems, type `%s`, %s bytes"
916 916 # find the size of the columns to format the output nicely
917 917 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
918 918 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
919 919 # table header
920 920 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
921 921 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
922 922 # and the table itself
923 923 kb = 1024
924 924 Mb = 1048576 # kb**2
925 925 for vname,var,vtype in zip(varnames,varlist,typelist):
926 926 print itpl(vformat),
927 927 if vtype in seq_types:
928 928 print "n="+str(len(var))
929 929 elif vtype in [array_type,ndarray_type]:
930 930 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
931 931 if vtype==ndarray_type:
932 932 # numpy
933 933 vsize = var.size
934 934 vbytes = vsize*var.itemsize
935 935 vdtype = var.dtype
936 936 else:
937 937 # Numeric
938 938 vsize = Numeric.size(var)
939 939 vbytes = vsize*var.itemsize()
940 940 vdtype = var.typecode()
941 941
942 942 if vbytes < 100000:
943 943 print aformat % (vshape,vsize,vdtype,vbytes)
944 944 else:
945 945 print aformat % (vshape,vsize,vdtype,vbytes),
946 946 if vbytes < Mb:
947 947 print '(%s kb)' % (vbytes/kb,)
948 948 else:
949 949 print '(%s Mb)' % (vbytes/Mb,)
950 950 else:
951 951 try:
952 952 vstr = str(var)
953 953 except UnicodeEncodeError:
954 954 vstr = unicode(var).encode(sys.getdefaultencoding(),
955 955 'backslashreplace')
956 956 vstr = vstr.replace('\n','\\n')
957 957 if len(vstr) < 50:
958 958 print vstr
959 959 else:
960 960 printpl(vfmt_short)
961 961
962 962 def magic_reset(self, parameter_s=''):
963 963 """Resets the namespace by removing all names defined by the user.
964 964
965 965 Input/Output history are left around in case you need them.
966 966
967 967 Parameters
968 968 ----------
969 969 -f : force reset without asking for confirmation.
970 970
971 971 Examples
972 972 --------
973 973 In [6]: a = 1
974 974
975 975 In [7]: a
976 976 Out[7]: 1
977 977
978 978 In [8]: 'a' in _ip.user_ns
979 979 Out[8]: True
980 980
981 981 In [9]: %reset -f
982 982
983 983 In [10]: 'a' in _ip.user_ns
984 984 Out[10]: False
985 985 """
986 986
987 987 if parameter_s == '-f':
988 988 ans = True
989 989 else:
990 990 ans = self.shell.ask_yes_no(
991 991 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
992 992 if not ans:
993 993 print 'Nothing done.'
994 994 return
995 995 user_ns = self.shell.user_ns
996 996 for i in self.magic_who_ls():
997 997 del(user_ns[i])
998 998
999 999 # Also flush the private list of module references kept for script
1000 1000 # execution protection
1001 1001 self.shell.clear_main_mod_cache()
1002 1002
1003 1003 def magic_reset_selective(self, parameter_s=''):
1004 1004 """Resets the namespace by removing names defined by the user.
1005 1005
1006 1006 Input/Output history are left around in case you need them.
1007 1007
1008 1008 %reset_selective [-f] regex
1009 1009
1010 1010 No action is taken if regex is not included
1011 1011
1012 1012 Options
1013 1013 -f : force reset without asking for confirmation.
1014 1014
1015 1015 Examples
1016 1016 --------
1017 1017
1018 1018 We first fully reset the namespace so your output looks identical to
1019 1019 this example for pedagogical reasons; in practice you do not need a
1020 1020 full reset.
1021 1021
1022 1022 In [1]: %reset -f
1023 1023
1024 1024 Now, with a clean namespace we can make a few variables and use
1025 1025 %reset_selective to only delete names that match our regexp:
1026 1026
1027 1027 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1028 1028
1029 1029 In [3]: who_ls
1030 1030 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1031 1031
1032 1032 In [4]: %reset_selective -f b[2-3]m
1033 1033
1034 1034 In [5]: who_ls
1035 1035 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1036 1036
1037 1037 In [6]: %reset_selective -f d
1038 1038
1039 1039 In [7]: who_ls
1040 1040 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1041 1041
1042 1042 In [8]: %reset_selective -f c
1043 1043
1044 1044 In [9]: who_ls
1045 1045 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1046 1046
1047 1047 In [10]: %reset_selective -f b
1048 1048
1049 1049 In [11]: who_ls
1050 1050 Out[11]: ['a']
1051 1051 """
1052 1052
1053 1053 opts, regex = self.parse_options(parameter_s,'f')
1054 1054
1055 1055 if opts.has_key('f'):
1056 1056 ans = True
1057 1057 else:
1058 1058 ans = self.shell.ask_yes_no(
1059 1059 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1060 1060 if not ans:
1061 1061 print 'Nothing done.'
1062 1062 return
1063 1063 user_ns = self.shell.user_ns
1064 1064 if not regex:
1065 1065 print 'No regex pattern specified. Nothing done.'
1066 1066 return
1067 1067 else:
1068 1068 try:
1069 1069 m = re.compile(regex)
1070 1070 except TypeError:
1071 1071 raise TypeError('regex must be a string or compiled pattern')
1072 1072 for i in self.magic_who_ls():
1073 1073 if m.search(i):
1074 1074 del(user_ns[i])
1075 1075
1076 1076 def magic_logstart(self,parameter_s=''):
1077 1077 """Start logging anywhere in a session.
1078 1078
1079 1079 %logstart [-o|-r|-t] [log_name [log_mode]]
1080 1080
1081 1081 If no name is given, it defaults to a file named 'ipython_log.py' in your
1082 1082 current directory, in 'rotate' mode (see below).
1083 1083
1084 1084 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1085 1085 history up to that point and then continues logging.
1086 1086
1087 1087 %logstart takes a second optional parameter: logging mode. This can be one
1088 1088 of (note that the modes are given unquoted):\\
1089 1089 append: well, that says it.\\
1090 1090 backup: rename (if exists) to name~ and start name.\\
1091 1091 global: single logfile in your home dir, appended to.\\
1092 1092 over : overwrite existing log.\\
1093 1093 rotate: create rotating logs name.1~, name.2~, etc.
1094 1094
1095 1095 Options:
1096 1096
1097 1097 -o: log also IPython's output. In this mode, all commands which
1098 1098 generate an Out[NN] prompt are recorded to the logfile, right after
1099 1099 their corresponding input line. The output lines are always
1100 1100 prepended with a '#[Out]# ' marker, so that the log remains valid
1101 1101 Python code.
1102 1102
1103 1103 Since this marker is always the same, filtering only the output from
1104 1104 a log is very easy, using for example a simple awk call:
1105 1105
1106 1106 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1107 1107
1108 1108 -r: log 'raw' input. Normally, IPython's logs contain the processed
1109 1109 input, so that user lines are logged in their final form, converted
1110 1110 into valid Python. For example, %Exit is logged as
1111 1111 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1112 1112 exactly as typed, with no transformations applied.
1113 1113
1114 1114 -t: put timestamps before each input line logged (these are put in
1115 1115 comments)."""
1116 1116
1117 1117 opts,par = self.parse_options(parameter_s,'ort')
1118 1118 log_output = 'o' in opts
1119 1119 log_raw_input = 'r' in opts
1120 1120 timestamp = 't' in opts
1121 1121
1122 1122 logger = self.shell.logger
1123 1123
1124 1124 # if no args are given, the defaults set in the logger constructor by
1125 1125 # ipytohn remain valid
1126 1126 if par:
1127 1127 try:
1128 1128 logfname,logmode = par.split()
1129 1129 except:
1130 1130 logfname = par
1131 1131 logmode = 'backup'
1132 1132 else:
1133 1133 logfname = logger.logfname
1134 1134 logmode = logger.logmode
1135 1135 # put logfname into rc struct as if it had been called on the command
1136 1136 # line, so it ends up saved in the log header Save it in case we need
1137 1137 # to restore it...
1138 1138 old_logfile = self.shell.logfile
1139 1139 if logfname:
1140 1140 logfname = os.path.expanduser(logfname)
1141 1141 self.shell.logfile = logfname
1142 1142
1143 1143 loghead = '# IPython log file\n\n'
1144 1144 try:
1145 1145 started = logger.logstart(logfname,loghead,logmode,
1146 1146 log_output,timestamp,log_raw_input)
1147 1147 except:
1148 1148 self.shell.logfile = old_logfile
1149 1149 warn("Couldn't start log: %s" % sys.exc_info()[1])
1150 1150 else:
1151 1151 # log input history up to this point, optionally interleaving
1152 1152 # output if requested
1153 1153
1154 1154 if timestamp:
1155 1155 # disable timestamping for the previous history, since we've
1156 1156 # lost those already (no time machine here).
1157 1157 logger.timestamp = False
1158 1158
1159 1159 if log_raw_input:
1160 1160 input_hist = self.shell.history_manager.input_hist_raw
1161 1161 else:
1162 1162 input_hist = self.shell.history_manager.input_hist_parsed
1163 1163
1164 1164 if log_output:
1165 1165 log_write = logger.log_write
1166 1166 output_hist = self.shell.history_manager.output_hist
1167 1167 for n in range(1,len(input_hist)-1):
1168 1168 log_write(input_hist[n].rstrip())
1169 1169 if n in output_hist:
1170 1170 log_write(repr(output_hist[n]),'output')
1171 1171 else:
1172 1172 logger.log_write(''.join(input_hist[1:]))
1173 1173 if timestamp:
1174 1174 # re-enable timestamping
1175 1175 logger.timestamp = True
1176 1176
1177 1177 print ('Activating auto-logging. '
1178 1178 'Current session state plus future input saved.')
1179 1179 logger.logstate()
1180 1180
1181 1181 def magic_logstop(self,parameter_s=''):
1182 1182 """Fully stop logging and close log file.
1183 1183
1184 1184 In order to start logging again, a new %logstart call needs to be made,
1185 1185 possibly (though not necessarily) with a new filename, mode and other
1186 1186 options."""
1187 1187 self.logger.logstop()
1188 1188
1189 1189 def magic_logoff(self,parameter_s=''):
1190 1190 """Temporarily stop logging.
1191 1191
1192 1192 You must have previously started logging."""
1193 1193 self.shell.logger.switch_log(0)
1194 1194
1195 1195 def magic_logon(self,parameter_s=''):
1196 1196 """Restart logging.
1197 1197
1198 1198 This function is for restarting logging which you've temporarily
1199 1199 stopped with %logoff. For starting logging for the first time, you
1200 1200 must use the %logstart function, which allows you to specify an
1201 1201 optional log filename."""
1202 1202
1203 1203 self.shell.logger.switch_log(1)
1204 1204
1205 1205 def magic_logstate(self,parameter_s=''):
1206 1206 """Print the status of the logging system."""
1207 1207
1208 1208 self.shell.logger.logstate()
1209 1209
1210 1210 def magic_pdb(self, parameter_s=''):
1211 1211 """Control the automatic calling of the pdb interactive debugger.
1212 1212
1213 1213 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1214 1214 argument it works as a toggle.
1215 1215
1216 1216 When an exception is triggered, IPython can optionally call the
1217 1217 interactive pdb debugger after the traceback printout. %pdb toggles
1218 1218 this feature on and off.
1219 1219
1220 1220 The initial state of this feature is set in your ipythonrc
1221 1221 configuration file (the variable is called 'pdb').
1222 1222
1223 1223 If you want to just activate the debugger AFTER an exception has fired,
1224 1224 without having to type '%pdb on' and rerunning your code, you can use
1225 1225 the %debug magic."""
1226 1226
1227 1227 par = parameter_s.strip().lower()
1228 1228
1229 1229 if par:
1230 1230 try:
1231 1231 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1232 1232 except KeyError:
1233 1233 print ('Incorrect argument. Use on/1, off/0, '
1234 1234 'or nothing for a toggle.')
1235 1235 return
1236 1236 else:
1237 1237 # toggle
1238 1238 new_pdb = not self.shell.call_pdb
1239 1239
1240 1240 # set on the shell
1241 1241 self.shell.call_pdb = new_pdb
1242 1242 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1243 1243
1244 1244 def magic_debug(self, parameter_s=''):
1245 1245 """Activate the interactive debugger in post-mortem mode.
1246 1246
1247 1247 If an exception has just occurred, this lets you inspect its stack
1248 1248 frames interactively. Note that this will always work only on the last
1249 1249 traceback that occurred, so you must call this quickly after an
1250 1250 exception that you wish to inspect has fired, because if another one
1251 1251 occurs, it clobbers the previous one.
1252 1252
1253 1253 If you want IPython to automatically do this on every exception, see
1254 1254 the %pdb magic for more details.
1255 1255 """
1256 1256 self.shell.debugger(force=True)
1257 1257
1258 1258 @testdec.skip_doctest
1259 1259 def magic_prun(self, parameter_s ='',user_mode=1,
1260 1260 opts=None,arg_lst=None,prog_ns=None):
1261 1261
1262 1262 """Run a statement through the python code profiler.
1263 1263
1264 1264 Usage:
1265 1265 %prun [options] statement
1266 1266
1267 1267 The given statement (which doesn't require quote marks) is run via the
1268 1268 python profiler in a manner similar to the profile.run() function.
1269 1269 Namespaces are internally managed to work correctly; profile.run
1270 1270 cannot be used in IPython because it makes certain assumptions about
1271 1271 namespaces which do not hold under IPython.
1272 1272
1273 1273 Options:
1274 1274
1275 1275 -l <limit>: you can place restrictions on what or how much of the
1276 1276 profile gets printed. The limit value can be:
1277 1277
1278 1278 * A string: only information for function names containing this string
1279 1279 is printed.
1280 1280
1281 1281 * An integer: only these many lines are printed.
1282 1282
1283 1283 * A float (between 0 and 1): this fraction of the report is printed
1284 1284 (for example, use a limit of 0.4 to see the topmost 40% only).
1285 1285
1286 1286 You can combine several limits with repeated use of the option. For
1287 1287 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1288 1288 information about class constructors.
1289 1289
1290 1290 -r: return the pstats.Stats object generated by the profiling. This
1291 1291 object has all the information about the profile in it, and you can
1292 1292 later use it for further analysis or in other functions.
1293 1293
1294 1294 -s <key>: sort profile by given key. You can provide more than one key
1295 1295 by using the option several times: '-s key1 -s key2 -s key3...'. The
1296 1296 default sorting key is 'time'.
1297 1297
1298 1298 The following is copied verbatim from the profile documentation
1299 1299 referenced below:
1300 1300
1301 1301 When more than one key is provided, additional keys are used as
1302 1302 secondary criteria when the there is equality in all keys selected
1303 1303 before them.
1304 1304
1305 1305 Abbreviations can be used for any key names, as long as the
1306 1306 abbreviation is unambiguous. The following are the keys currently
1307 1307 defined:
1308 1308
1309 1309 Valid Arg Meaning
1310 1310 "calls" call count
1311 1311 "cumulative" cumulative time
1312 1312 "file" file name
1313 1313 "module" file name
1314 1314 "pcalls" primitive call count
1315 1315 "line" line number
1316 1316 "name" function name
1317 1317 "nfl" name/file/line
1318 1318 "stdname" standard name
1319 1319 "time" internal time
1320 1320
1321 1321 Note that all sorts on statistics are in descending order (placing
1322 1322 most time consuming items first), where as name, file, and line number
1323 1323 searches are in ascending order (i.e., alphabetical). The subtle
1324 1324 distinction between "nfl" and "stdname" is that the standard name is a
1325 1325 sort of the name as printed, which means that the embedded line
1326 1326 numbers get compared in an odd way. For example, lines 3, 20, and 40
1327 1327 would (if the file names were the same) appear in the string order
1328 1328 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1329 1329 line numbers. In fact, sort_stats("nfl") is the same as
1330 1330 sort_stats("name", "file", "line").
1331 1331
1332 1332 -T <filename>: save profile results as shown on screen to a text
1333 1333 file. The profile is still shown on screen.
1334 1334
1335 1335 -D <filename>: save (via dump_stats) profile statistics to given
1336 1336 filename. This data is in a format understod by the pstats module, and
1337 1337 is generated by a call to the dump_stats() method of profile
1338 1338 objects. The profile is still shown on screen.
1339 1339
1340 1340 If you want to run complete programs under the profiler's control, use
1341 1341 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1342 1342 contains profiler specific options as described here.
1343 1343
1344 1344 You can read the complete documentation for the profile module with::
1345 1345
1346 1346 In [1]: import profile; profile.help()
1347 1347 """
1348 1348
1349 1349 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1350 1350 # protect user quote marks
1351 1351 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1352 1352
1353 1353 if user_mode: # regular user call
1354 1354 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1355 1355 list_all=1)
1356 1356 namespace = self.shell.user_ns
1357 1357 else: # called to run a program by %run -p
1358 1358 try:
1359 1359 filename = get_py_filename(arg_lst[0])
1360 1360 except IOError,msg:
1361 1361 error(msg)
1362 1362 return
1363 1363
1364 1364 arg_str = 'execfile(filename,prog_ns)'
1365 1365 namespace = locals()
1366 1366
1367 1367 opts.merge(opts_def)
1368 1368
1369 1369 prof = profile.Profile()
1370 1370 try:
1371 1371 prof = prof.runctx(arg_str,namespace,namespace)
1372 1372 sys_exit = ''
1373 1373 except SystemExit:
1374 1374 sys_exit = """*** SystemExit exception caught in code being profiled."""
1375 1375
1376 1376 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1377 1377
1378 1378 lims = opts.l
1379 1379 if lims:
1380 1380 lims = [] # rebuild lims with ints/floats/strings
1381 1381 for lim in opts.l:
1382 1382 try:
1383 1383 lims.append(int(lim))
1384 1384 except ValueError:
1385 1385 try:
1386 1386 lims.append(float(lim))
1387 1387 except ValueError:
1388 1388 lims.append(lim)
1389 1389
1390 1390 # Trap output.
1391 1391 stdout_trap = StringIO()
1392 1392
1393 1393 if hasattr(stats,'stream'):
1394 1394 # In newer versions of python, the stats object has a 'stream'
1395 1395 # attribute to write into.
1396 1396 stats.stream = stdout_trap
1397 1397 stats.print_stats(*lims)
1398 1398 else:
1399 1399 # For older versions, we manually redirect stdout during printing
1400 1400 sys_stdout = sys.stdout
1401 1401 try:
1402 1402 sys.stdout = stdout_trap
1403 1403 stats.print_stats(*lims)
1404 1404 finally:
1405 1405 sys.stdout = sys_stdout
1406 1406
1407 1407 output = stdout_trap.getvalue()
1408 1408 output = output.rstrip()
1409 1409
1410 1410 page.page(output)
1411 1411 print sys_exit,
1412 1412
1413 1413 dump_file = opts.D[0]
1414 1414 text_file = opts.T[0]
1415 1415 if dump_file:
1416 1416 prof.dump_stats(dump_file)
1417 1417 print '\n*** Profile stats marshalled to file',\
1418 1418 `dump_file`+'.',sys_exit
1419 1419 if text_file:
1420 1420 pfile = file(text_file,'w')
1421 1421 pfile.write(output)
1422 1422 pfile.close()
1423 1423 print '\n*** Profile printout saved to text file',\
1424 1424 `text_file`+'.',sys_exit
1425 1425
1426 1426 if opts.has_key('r'):
1427 1427 return stats
1428 1428 else:
1429 1429 return None
1430 1430
1431 1431 @testdec.skip_doctest
1432 1432 def magic_run(self, parameter_s ='',runner=None,
1433 1433 file_finder=get_py_filename):
1434 1434 """Run the named file inside IPython as a program.
1435 1435
1436 1436 Usage:\\
1437 1437 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1438 1438
1439 1439 Parameters after the filename are passed as command-line arguments to
1440 1440 the program (put in sys.argv). Then, control returns to IPython's
1441 1441 prompt.
1442 1442
1443 1443 This is similar to running at a system prompt:\\
1444 1444 $ python file args\\
1445 1445 but with the advantage of giving you IPython's tracebacks, and of
1446 1446 loading all variables into your interactive namespace for further use
1447 1447 (unless -p is used, see below).
1448 1448
1449 1449 The file is executed in a namespace initially consisting only of
1450 1450 __name__=='__main__' and sys.argv constructed as indicated. It thus
1451 1451 sees its environment as if it were being run as a stand-alone program
1452 1452 (except for sharing global objects such as previously imported
1453 1453 modules). But after execution, the IPython interactive namespace gets
1454 1454 updated with all variables defined in the program (except for __name__
1455 1455 and sys.argv). This allows for very convenient loading of code for
1456 1456 interactive work, while giving each program a 'clean sheet' to run in.
1457 1457
1458 1458 Options:
1459 1459
1460 1460 -n: __name__ is NOT set to '__main__', but to the running file's name
1461 1461 without extension (as python does under import). This allows running
1462 1462 scripts and reloading the definitions in them without calling code
1463 1463 protected by an ' if __name__ == "__main__" ' clause.
1464 1464
1465 1465 -i: run the file in IPython's namespace instead of an empty one. This
1466 1466 is useful if you are experimenting with code written in a text editor
1467 1467 which depends on variables defined interactively.
1468 1468
1469 1469 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1470 1470 being run. This is particularly useful if IPython is being used to
1471 1471 run unittests, which always exit with a sys.exit() call. In such
1472 1472 cases you are interested in the output of the test results, not in
1473 1473 seeing a traceback of the unittest module.
1474 1474
1475 1475 -t: print timing information at the end of the run. IPython will give
1476 1476 you an estimated CPU time consumption for your script, which under
1477 1477 Unix uses the resource module to avoid the wraparound problems of
1478 1478 time.clock(). Under Unix, an estimate of time spent on system tasks
1479 1479 is also given (for Windows platforms this is reported as 0.0).
1480 1480
1481 1481 If -t is given, an additional -N<N> option can be given, where <N>
1482 1482 must be an integer indicating how many times you want the script to
1483 1483 run. The final timing report will include total and per run results.
1484 1484
1485 1485 For example (testing the script uniq_stable.py):
1486 1486
1487 1487 In [1]: run -t uniq_stable
1488 1488
1489 1489 IPython CPU timings (estimated):\\
1490 1490 User : 0.19597 s.\\
1491 1491 System: 0.0 s.\\
1492 1492
1493 1493 In [2]: run -t -N5 uniq_stable
1494 1494
1495 1495 IPython CPU timings (estimated):\\
1496 1496 Total runs performed: 5\\
1497 1497 Times : Total Per run\\
1498 1498 User : 0.910862 s, 0.1821724 s.\\
1499 1499 System: 0.0 s, 0.0 s.
1500 1500
1501 1501 -d: run your program under the control of pdb, the Python debugger.
1502 1502 This allows you to execute your program step by step, watch variables,
1503 1503 etc. Internally, what IPython does is similar to calling:
1504 1504
1505 1505 pdb.run('execfile("YOURFILENAME")')
1506 1506
1507 1507 with a breakpoint set on line 1 of your file. You can change the line
1508 1508 number for this automatic breakpoint to be <N> by using the -bN option
1509 1509 (where N must be an integer). For example:
1510 1510
1511 1511 %run -d -b40 myscript
1512 1512
1513 1513 will set the first breakpoint at line 40 in myscript.py. Note that
1514 1514 the first breakpoint must be set on a line which actually does
1515 1515 something (not a comment or docstring) for it to stop execution.
1516 1516
1517 1517 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1518 1518 first enter 'c' (without qoutes) to start execution up to the first
1519 1519 breakpoint.
1520 1520
1521 1521 Entering 'help' gives information about the use of the debugger. You
1522 1522 can easily see pdb's full documentation with "import pdb;pdb.help()"
1523 1523 at a prompt.
1524 1524
1525 1525 -p: run program under the control of the Python profiler module (which
1526 1526 prints a detailed report of execution times, function calls, etc).
1527 1527
1528 1528 You can pass other options after -p which affect the behavior of the
1529 1529 profiler itself. See the docs for %prun for details.
1530 1530
1531 1531 In this mode, the program's variables do NOT propagate back to the
1532 1532 IPython interactive namespace (because they remain in the namespace
1533 1533 where the profiler executes them).
1534 1534
1535 1535 Internally this triggers a call to %prun, see its documentation for
1536 1536 details on the options available specifically for profiling.
1537 1537
1538 1538 There is one special usage for which the text above doesn't apply:
1539 1539 if the filename ends with .ipy, the file is run as ipython script,
1540 1540 just as if the commands were written on IPython prompt.
1541 1541 """
1542 1542
1543 1543 # get arguments and set sys.argv for program to be run.
1544 1544 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1545 1545 mode='list',list_all=1)
1546 1546
1547 1547 try:
1548 1548 filename = file_finder(arg_lst[0])
1549 1549 except IndexError:
1550 1550 warn('you must provide at least a filename.')
1551 1551 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1552 1552 return
1553 1553 except IOError,msg:
1554 1554 error(msg)
1555 1555 return
1556 1556
1557 1557 if filename.lower().endswith('.ipy'):
1558 1558 self.shell.safe_execfile_ipy(filename)
1559 1559 return
1560 1560
1561 1561 # Control the response to exit() calls made by the script being run
1562 1562 exit_ignore = opts.has_key('e')
1563 1563
1564 1564 # Make sure that the running script gets a proper sys.argv as if it
1565 1565 # were run from a system shell.
1566 1566 save_argv = sys.argv # save it for later restoring
1567 1567 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1568 1568
1569 1569 if opts.has_key('i'):
1570 1570 # Run in user's interactive namespace
1571 1571 prog_ns = self.shell.user_ns
1572 1572 __name__save = self.shell.user_ns['__name__']
1573 1573 prog_ns['__name__'] = '__main__'
1574 1574 main_mod = self.shell.new_main_mod(prog_ns)
1575 1575 else:
1576 1576 # Run in a fresh, empty namespace
1577 1577 if opts.has_key('n'):
1578 1578 name = os.path.splitext(os.path.basename(filename))[0]
1579 1579 else:
1580 1580 name = '__main__'
1581 1581
1582 1582 main_mod = self.shell.new_main_mod()
1583 1583 prog_ns = main_mod.__dict__
1584 1584 prog_ns['__name__'] = name
1585 1585
1586 1586 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1587 1587 # set the __file__ global in the script's namespace
1588 1588 prog_ns['__file__'] = filename
1589 1589
1590 1590 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1591 1591 # that, if we overwrite __main__, we replace it at the end
1592 1592 main_mod_name = prog_ns['__name__']
1593 1593
1594 1594 if main_mod_name == '__main__':
1595 1595 restore_main = sys.modules['__main__']
1596 1596 else:
1597 1597 restore_main = False
1598 1598
1599 1599 # This needs to be undone at the end to prevent holding references to
1600 1600 # every single object ever created.
1601 1601 sys.modules[main_mod_name] = main_mod
1602 1602
1603 1603 stats = None
1604 1604 try:
1605 1605 #self.shell.save_history()
1606 1606
1607 1607 if opts.has_key('p'):
1608 1608 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1609 1609 else:
1610 1610 if opts.has_key('d'):
1611 1611 deb = debugger.Pdb(self.shell.colors)
1612 1612 # reset Breakpoint state, which is moronically kept
1613 1613 # in a class
1614 1614 bdb.Breakpoint.next = 1
1615 1615 bdb.Breakpoint.bplist = {}
1616 1616 bdb.Breakpoint.bpbynumber = [None]
1617 1617 # Set an initial breakpoint to stop execution
1618 1618 maxtries = 10
1619 1619 bp = int(opts.get('b',[1])[0])
1620 1620 checkline = deb.checkline(filename,bp)
1621 1621 if not checkline:
1622 1622 for bp in range(bp+1,bp+maxtries+1):
1623 1623 if deb.checkline(filename,bp):
1624 1624 break
1625 1625 else:
1626 1626 msg = ("\nI failed to find a valid line to set "
1627 1627 "a breakpoint\n"
1628 1628 "after trying up to line: %s.\n"
1629 1629 "Please set a valid breakpoint manually "
1630 1630 "with the -b option." % bp)
1631 1631 error(msg)
1632 1632 return
1633 1633 # if we find a good linenumber, set the breakpoint
1634 1634 deb.do_break('%s:%s' % (filename,bp))
1635 1635 # Start file run
1636 1636 print "NOTE: Enter 'c' at the",
1637 1637 print "%s prompt to start your script." % deb.prompt
1638 1638 try:
1639 1639 deb.run('execfile("%s")' % filename,prog_ns)
1640 1640
1641 1641 except:
1642 1642 etype, value, tb = sys.exc_info()
1643 1643 # Skip three frames in the traceback: the %run one,
1644 1644 # one inside bdb.py, and the command-line typed by the
1645 1645 # user (run by exec in pdb itself).
1646 1646 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1647 1647 else:
1648 1648 if runner is None:
1649 1649 runner = self.shell.safe_execfile
1650 1650 if opts.has_key('t'):
1651 1651 # timed execution
1652 1652 try:
1653 1653 nruns = int(opts['N'][0])
1654 1654 if nruns < 1:
1655 1655 error('Number of runs must be >=1')
1656 1656 return
1657 1657 except (KeyError):
1658 1658 nruns = 1
1659 1659 if nruns == 1:
1660 1660 t0 = clock2()
1661 1661 runner(filename,prog_ns,prog_ns,
1662 1662 exit_ignore=exit_ignore)
1663 1663 t1 = clock2()
1664 1664 t_usr = t1[0]-t0[0]
1665 1665 t_sys = t1[1]-t0[1]
1666 1666 print "\nIPython CPU timings (estimated):"
1667 1667 print " User : %10s s." % t_usr
1668 1668 print " System: %10s s." % t_sys
1669 1669 else:
1670 1670 runs = range(nruns)
1671 1671 t0 = clock2()
1672 1672 for nr in runs:
1673 1673 runner(filename,prog_ns,prog_ns,
1674 1674 exit_ignore=exit_ignore)
1675 1675 t1 = clock2()
1676 1676 t_usr = t1[0]-t0[0]
1677 1677 t_sys = t1[1]-t0[1]
1678 1678 print "\nIPython CPU timings (estimated):"
1679 1679 print "Total runs performed:",nruns
1680 1680 print " Times : %10s %10s" % ('Total','Per run')
1681 1681 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1682 1682 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1683 1683
1684 1684 else:
1685 1685 # regular execution
1686 1686 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1687 1687
1688 1688 if opts.has_key('i'):
1689 1689 self.shell.user_ns['__name__'] = __name__save
1690 1690 else:
1691 1691 # The shell MUST hold a reference to prog_ns so after %run
1692 1692 # exits, the python deletion mechanism doesn't zero it out
1693 1693 # (leaving dangling references).
1694 1694 self.shell.cache_main_mod(prog_ns,filename)
1695 1695 # update IPython interactive namespace
1696 1696
1697 1697 # Some forms of read errors on the file may mean the
1698 1698 # __name__ key was never set; using pop we don't have to
1699 1699 # worry about a possible KeyError.
1700 1700 prog_ns.pop('__name__', None)
1701 1701
1702 1702 self.shell.user_ns.update(prog_ns)
1703 1703 finally:
1704 1704 # It's a bit of a mystery why, but __builtins__ can change from
1705 1705 # being a module to becoming a dict missing some key data after
1706 1706 # %run. As best I can see, this is NOT something IPython is doing
1707 1707 # at all, and similar problems have been reported before:
1708 1708 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1709 1709 # Since this seems to be done by the interpreter itself, the best
1710 1710 # we can do is to at least restore __builtins__ for the user on
1711 1711 # exit.
1712 1712 self.shell.user_ns['__builtins__'] = __builtin__
1713 1713
1714 1714 # Ensure key global structures are restored
1715 1715 sys.argv = save_argv
1716 1716 if restore_main:
1717 1717 sys.modules['__main__'] = restore_main
1718 1718 else:
1719 1719 # Remove from sys.modules the reference to main_mod we'd
1720 1720 # added. Otherwise it will trap references to objects
1721 1721 # contained therein.
1722 1722 del sys.modules[main_mod_name]
1723 1723
1724 1724 #self.shell.reload_history()
1725 1725
1726 1726 return stats
1727 1727
1728 1728 @testdec.skip_doctest
1729 1729 def magic_timeit(self, parameter_s =''):
1730 1730 """Time execution of a Python statement or expression
1731 1731
1732 1732 Usage:\\
1733 1733 %timeit [-n<N> -r<R> [-t|-c]] statement
1734 1734
1735 1735 Time execution of a Python statement or expression using the timeit
1736 1736 module.
1737 1737
1738 1738 Options:
1739 1739 -n<N>: execute the given statement <N> times in a loop. If this value
1740 1740 is not given, a fitting value is chosen.
1741 1741
1742 1742 -r<R>: repeat the loop iteration <R> times and take the best result.
1743 1743 Default: 3
1744 1744
1745 1745 -t: use time.time to measure the time, which is the default on Unix.
1746 1746 This function measures wall time.
1747 1747
1748 1748 -c: use time.clock to measure the time, which is the default on
1749 1749 Windows and measures wall time. On Unix, resource.getrusage is used
1750 1750 instead and returns the CPU user time.
1751 1751
1752 1752 -p<P>: use a precision of <P> digits to display the timing result.
1753 1753 Default: 3
1754 1754
1755 1755
1756 1756 Examples:
1757 1757
1758 1758 In [1]: %timeit pass
1759 1759 10000000 loops, best of 3: 53.3 ns per loop
1760 1760
1761 1761 In [2]: u = None
1762 1762
1763 1763 In [3]: %timeit u is None
1764 1764 10000000 loops, best of 3: 184 ns per loop
1765 1765
1766 1766 In [4]: %timeit -r 4 u == None
1767 1767 1000000 loops, best of 4: 242 ns per loop
1768 1768
1769 1769 In [5]: import time
1770 1770
1771 1771 In [6]: %timeit -n1 time.sleep(2)
1772 1772 1 loops, best of 3: 2 s per loop
1773 1773
1774 1774
1775 1775 The times reported by %timeit will be slightly higher than those
1776 1776 reported by the timeit.py script when variables are accessed. This is
1777 1777 due to the fact that %timeit executes the statement in the namespace
1778 1778 of the shell, compared with timeit.py, which uses a single setup
1779 1779 statement to import function or create variables. Generally, the bias
1780 1780 does not matter as long as results from timeit.py are not mixed with
1781 1781 those from %timeit."""
1782 1782
1783 1783 import timeit
1784 1784 import math
1785 1785
1786 1786 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1787 1787 # certain terminals. Until we figure out a robust way of
1788 1788 # auto-detecting if the terminal can deal with it, use plain 'us' for
1789 1789 # microseconds. I am really NOT happy about disabling the proper
1790 1790 # 'micro' prefix, but crashing is worse... If anyone knows what the
1791 1791 # right solution for this is, I'm all ears...
1792 1792 #
1793 1793 # Note: using
1794 1794 #
1795 1795 # s = u'\xb5'
1796 1796 # s.encode(sys.getdefaultencoding())
1797 1797 #
1798 1798 # is not sufficient, as I've seen terminals where that fails but
1799 1799 # print s
1800 1800 #
1801 1801 # succeeds
1802 1802 #
1803 1803 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1804 1804
1805 1805 #units = [u"s", u"ms",u'\xb5',"ns"]
1806 1806 units = [u"s", u"ms",u'us',"ns"]
1807 1807
1808 1808 scaling = [1, 1e3, 1e6, 1e9]
1809 1809
1810 1810 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1811 1811 posix=False)
1812 1812 if stmt == "":
1813 1813 return
1814 1814 timefunc = timeit.default_timer
1815 1815 number = int(getattr(opts, "n", 0))
1816 1816 repeat = int(getattr(opts, "r", timeit.default_repeat))
1817 1817 precision = int(getattr(opts, "p", 3))
1818 1818 if hasattr(opts, "t"):
1819 1819 timefunc = time.time
1820 1820 if hasattr(opts, "c"):
1821 1821 timefunc = clock
1822 1822
1823 1823 timer = timeit.Timer(timer=timefunc)
1824 1824 # this code has tight coupling to the inner workings of timeit.Timer,
1825 1825 # but is there a better way to achieve that the code stmt has access
1826 1826 # to the shell namespace?
1827 1827
1828 1828 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1829 1829 'setup': "pass"}
1830 1830 # Track compilation time so it can be reported if too long
1831 1831 # Minimum time above which compilation time will be reported
1832 1832 tc_min = 0.1
1833 1833
1834 1834 t0 = clock()
1835 1835 code = compile(src, "<magic-timeit>", "exec")
1836 1836 tc = clock()-t0
1837 1837
1838 1838 ns = {}
1839 1839 exec code in self.shell.user_ns, ns
1840 1840 timer.inner = ns["inner"]
1841 1841
1842 1842 if number == 0:
1843 1843 # determine number so that 0.2 <= total time < 2.0
1844 1844 number = 1
1845 1845 for i in range(1, 10):
1846 1846 if timer.timeit(number) >= 0.2:
1847 1847 break
1848 1848 number *= 10
1849 1849
1850 1850 best = min(timer.repeat(repeat, number)) / number
1851 1851
1852 1852 if best > 0.0 and best < 1000.0:
1853 1853 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1854 1854 elif best >= 1000.0:
1855 1855 order = 0
1856 1856 else:
1857 1857 order = 3
1858 1858 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1859 1859 precision,
1860 1860 best * scaling[order],
1861 1861 units[order])
1862 1862 if tc > tc_min:
1863 1863 print "Compiler time: %.2f s" % tc
1864 1864
1865 1865 @testdec.skip_doctest
1866 1866 def magic_time(self,parameter_s = ''):
1867 1867 """Time execution of a Python statement or expression.
1868 1868
1869 1869 The CPU and wall clock times are printed, and the value of the
1870 1870 expression (if any) is returned. Note that under Win32, system time
1871 1871 is always reported as 0, since it can not be measured.
1872 1872
1873 1873 This function provides very basic timing functionality. In Python
1874 1874 2.3, the timeit module offers more control and sophistication, so this
1875 1875 could be rewritten to use it (patches welcome).
1876 1876
1877 1877 Some examples:
1878 1878
1879 1879 In [1]: time 2**128
1880 1880 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1881 1881 Wall time: 0.00
1882 1882 Out[1]: 340282366920938463463374607431768211456L
1883 1883
1884 1884 In [2]: n = 1000000
1885 1885
1886 1886 In [3]: time sum(range(n))
1887 1887 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1888 1888 Wall time: 1.37
1889 1889 Out[3]: 499999500000L
1890 1890
1891 1891 In [4]: time print 'hello world'
1892 1892 hello world
1893 1893 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1894 1894 Wall time: 0.00
1895 1895
1896 1896 Note that the time needed by Python to compile the given expression
1897 1897 will be reported if it is more than 0.1s. In this example, the
1898 1898 actual exponentiation is done by Python at compilation time, so while
1899 1899 the expression can take a noticeable amount of time to compute, that
1900 1900 time is purely due to the compilation:
1901 1901
1902 1902 In [5]: time 3**9999;
1903 1903 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1904 1904 Wall time: 0.00 s
1905 1905
1906 1906 In [6]: time 3**999999;
1907 1907 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1908 1908 Wall time: 0.00 s
1909 1909 Compiler : 0.78 s
1910 1910 """
1911 1911
1912 1912 # fail immediately if the given expression can't be compiled
1913 1913
1914 1914 expr = self.shell.prefilter(parameter_s,False)
1915 1915
1916 1916 # Minimum time above which compilation time will be reported
1917 1917 tc_min = 0.1
1918 1918
1919 1919 try:
1920 1920 mode = 'eval'
1921 1921 t0 = clock()
1922 1922 code = compile(expr,'<timed eval>',mode)
1923 1923 tc = clock()-t0
1924 1924 except SyntaxError:
1925 1925 mode = 'exec'
1926 1926 t0 = clock()
1927 1927 code = compile(expr,'<timed exec>',mode)
1928 1928 tc = clock()-t0
1929 1929 # skew measurement as little as possible
1930 1930 glob = self.shell.user_ns
1931 1931 clk = clock2
1932 1932 wtime = time.time
1933 1933 # time execution
1934 1934 wall_st = wtime()
1935 1935 if mode=='eval':
1936 1936 st = clk()
1937 1937 out = eval(code,glob)
1938 1938 end = clk()
1939 1939 else:
1940 1940 st = clk()
1941 1941 exec code in glob
1942 1942 end = clk()
1943 1943 out = None
1944 1944 wall_end = wtime()
1945 1945 # Compute actual times and report
1946 1946 wall_time = wall_end-wall_st
1947 1947 cpu_user = end[0]-st[0]
1948 1948 cpu_sys = end[1]-st[1]
1949 1949 cpu_tot = cpu_user+cpu_sys
1950 1950 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1951 1951 (cpu_user,cpu_sys,cpu_tot)
1952 1952 print "Wall time: %.2f s" % wall_time
1953 1953 if tc > tc_min:
1954 1954 print "Compiler : %.2f s" % tc
1955 1955 return out
1956 1956
1957 1957 @testdec.skip_doctest
1958 1958 def magic_macro(self,parameter_s = ''):
1959 1959 """Define a set of input lines as a macro for future re-execution.
1960 1960
1961 1961 Usage:\\
1962 1962 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1963 1963
1964 1964 Options:
1965 1965
1966 1966 -r: use 'raw' input. By default, the 'processed' history is used,
1967 1967 so that magics are loaded in their transformed version to valid
1968 1968 Python. If this option is given, the raw input as typed as the
1969 1969 command line is used instead.
1970 1970
1971 1971 This will define a global variable called `name` which is a string
1972 1972 made of joining the slices and lines you specify (n1,n2,... numbers
1973 1973 above) from your input history into a single string. This variable
1974 1974 acts like an automatic function which re-executes those lines as if
1975 1975 you had typed them. You just type 'name' at the prompt and the code
1976 1976 executes.
1977 1977
1978 1978 The syntax for indicating input ranges is described in %history.
1979 1979
1980 1980 Note: as a 'hidden' feature, you can also use traditional python slice
1981 1981 notation, where N:M means numbers N through M-1.
1982 1982
1983 1983 For example, if your history contains (%hist prints it):
1984 1984
1985 1985 44: x=1
1986 1986 45: y=3
1987 1987 46: z=x+y
1988 1988 47: print x
1989 1989 48: a=5
1990 1990 49: print 'x',x,'y',y
1991 1991
1992 1992 you can create a macro with lines 44 through 47 (included) and line 49
1993 1993 called my_macro with:
1994 1994
1995 1995 In [55]: %macro my_macro 44-47 49
1996 1996
1997 1997 Now, typing `my_macro` (without quotes) will re-execute all this code
1998 1998 in one pass.
1999 1999
2000 2000 You don't need to give the line-numbers in order, and any given line
2001 2001 number can appear multiple times. You can assemble macros with any
2002 2002 lines from your input history in any order.
2003 2003
2004 2004 The macro is a simple object which holds its value in an attribute,
2005 2005 but IPython's display system checks for macros and executes them as
2006 2006 code instead of printing them when you type their name.
2007 2007
2008 2008 You can view a macro's contents by explicitly printing it with:
2009 2009
2010 2010 'print macro_name'.
2011 2011
2012 2012 For one-off cases which DON'T contain magic function calls in them you
2013 2013 can obtain similar results by explicitly executing slices from your
2014 2014 input history with:
2015 2015
2016 2016 In [60]: exec In[44:48]+In[49]"""
2017 2017
2018 2018 opts,args = self.parse_options(parameter_s,'r',mode='list')
2019 2019 if not args: # List existing macros
2020 2020 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2021 2021 isinstance(v, Macro))
2022 2022 if len(args) == 1:
2023 2023 raise UsageError(
2024 2024 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2025 2025 name, ranges = args[0], " ".join(args[1:])
2026 2026
2027 2027 #print 'rng',ranges # dbg
2028 2028 lines = self.extract_input_lines(ranges,'r' in opts)
2029 2029 macro = Macro(lines)
2030 2030 self.shell.define_macro(name, macro)
2031 2031 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2032 2032 print 'Macro contents:'
2033 2033 print macro,
2034 2034
2035 2035 def magic_save(self,parameter_s = ''):
2036 2036 """Save a set of lines to a given filename.
2037 2037
2038 2038 Usage:\\
2039 2039 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2040 2040
2041 2041 Options:
2042 2042
2043 2043 -r: use 'raw' input. By default, the 'processed' history is used,
2044 2044 so that magics are loaded in their transformed version to valid
2045 2045 Python. If this option is given, the raw input as typed as the
2046 2046 command line is used instead.
2047 2047
2048 2048 This function uses the same syntax as %history for input ranges,
2049 2049 then saves the lines to the filename you specify.
2050 2050
2051 2051 It adds a '.py' extension to the file if you don't do so yourself, and
2052 2052 it asks for confirmation before overwriting existing files."""
2053 2053
2054 2054 opts,args = self.parse_options(parameter_s,'r',mode='list')
2055 2055 fname,ranges = args[0], " ".join(args[1:])
2056 2056 if not fname.endswith('.py'):
2057 2057 fname += '.py'
2058 2058 if os.path.isfile(fname):
2059 2059 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2060 2060 if ans.lower() not in ['y','yes']:
2061 2061 print 'Operation cancelled.'
2062 2062 return
2063 2063 cmds = self.extract_input_lines(ranges, 'r' in opts)
2064 2064 with open(fname,'w') as f:
2065 2065 f.write("# coding: utf-8\n")
2066 2066 f.write(cmds.encode("utf-8"))
2067 2067 print 'The following commands were written to file `%s`:' % fname
2068 2068 print cmds
2069 2069
2070 2070 def _edit_macro(self,mname,macro):
2071 2071 """open an editor with the macro data in a file"""
2072 2072 filename = self.shell.mktempfile(macro.value)
2073 2073 self.shell.hooks.editor(filename)
2074 2074
2075 2075 # and make a new macro object, to replace the old one
2076 2076 mfile = open(filename)
2077 2077 mvalue = mfile.read()
2078 2078 mfile.close()
2079 2079 self.shell.user_ns[mname] = Macro(mvalue)
2080 2080
2081 2081 def magic_ed(self,parameter_s=''):
2082 2082 """Alias to %edit."""
2083 2083 return self.magic_edit(parameter_s)
2084 2084
2085 2085 @testdec.skip_doctest
2086 2086 def magic_edit(self,parameter_s='',last_call=['','']):
2087 2087 """Bring up an editor and execute the resulting code.
2088 2088
2089 2089 Usage:
2090 2090 %edit [options] [args]
2091 2091
2092 2092 %edit runs IPython's editor hook. The default version of this hook is
2093 2093 set to call the __IPYTHON__.rc.editor command. This is read from your
2094 2094 environment variable $EDITOR. If this isn't found, it will default to
2095 2095 vi under Linux/Unix and to notepad under Windows. See the end of this
2096 2096 docstring for how to change the editor hook.
2097 2097
2098 2098 You can also set the value of this editor via the command line option
2099 2099 '-editor' or in your ipythonrc file. This is useful if you wish to use
2100 2100 specifically for IPython an editor different from your typical default
2101 2101 (and for Windows users who typically don't set environment variables).
2102 2102
2103 2103 This command allows you to conveniently edit multi-line code right in
2104 2104 your IPython session.
2105 2105
2106 2106 If called without arguments, %edit opens up an empty editor with a
2107 2107 temporary file and will execute the contents of this file when you
2108 2108 close it (don't forget to save it!).
2109 2109
2110 2110
2111 2111 Options:
2112 2112
2113 2113 -n <number>: open the editor at a specified line number. By default,
2114 2114 the IPython editor hook uses the unix syntax 'editor +N filename', but
2115 2115 you can configure this by providing your own modified hook if your
2116 2116 favorite editor supports line-number specifications with a different
2117 2117 syntax.
2118 2118
2119 2119 -p: this will call the editor with the same data as the previous time
2120 2120 it was used, regardless of how long ago (in your current session) it
2121 2121 was.
2122 2122
2123 2123 -r: use 'raw' input. This option only applies to input taken from the
2124 2124 user's history. By default, the 'processed' history is used, so that
2125 2125 magics are loaded in their transformed version to valid Python. If
2126 2126 this option is given, the raw input as typed as the command line is
2127 2127 used instead. When you exit the editor, it will be executed by
2128 2128 IPython's own processor.
2129 2129
2130 2130 -x: do not execute the edited code immediately upon exit. This is
2131 2131 mainly useful if you are editing programs which need to be called with
2132 2132 command line arguments, which you can then do using %run.
2133 2133
2134 2134
2135 2135 Arguments:
2136 2136
2137 2137 If arguments are given, the following possibilites exist:
2138 2138
2139 2139 - If the argument is a filename, IPython will load that into the
2140 2140 editor. It will execute its contents with execfile() when you exit,
2141 2141 loading any code in the file into your interactive namespace.
2142 2142
2143 2143 - The arguments are ranges of input history, e.g. "7 ~1/4-6".
2144 2144 The syntax is the same as in the %history magic.
2145 2145
2146 2146 - If the argument is a string variable, its contents are loaded
2147 2147 into the editor. You can thus edit any string which contains
2148 2148 python code (including the result of previous edits).
2149 2149
2150 2150 - If the argument is the name of an object (other than a string),
2151 2151 IPython will try to locate the file where it was defined and open the
2152 2152 editor at the point where it is defined. You can use `%edit function`
2153 2153 to load an editor exactly at the point where 'function' is defined,
2154 2154 edit it and have the file be executed automatically.
2155 2155
2156 2156 If the object is a macro (see %macro for details), this opens up your
2157 2157 specified editor with a temporary file containing the macro's data.
2158 2158 Upon exit, the macro is reloaded with the contents of the file.
2159 2159
2160 2160 Note: opening at an exact line is only supported under Unix, and some
2161 2161 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2162 2162 '+NUMBER' parameter necessary for this feature. Good editors like
2163 2163 (X)Emacs, vi, jed, pico and joe all do.
2164 2164
2165 2165 After executing your code, %edit will return as output the code you
2166 2166 typed in the editor (except when it was an existing file). This way
2167 2167 you can reload the code in further invocations of %edit as a variable,
2168 2168 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2169 2169 the output.
2170 2170
2171 2171 Note that %edit is also available through the alias %ed.
2172 2172
2173 2173 This is an example of creating a simple function inside the editor and
2174 2174 then modifying it. First, start up the editor:
2175 2175
2176 2176 In [1]: ed
2177 2177 Editing... done. Executing edited code...
2178 2178 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2179 2179
2180 2180 We can then call the function foo():
2181 2181
2182 2182 In [2]: foo()
2183 2183 foo() was defined in an editing session
2184 2184
2185 2185 Now we edit foo. IPython automatically loads the editor with the
2186 2186 (temporary) file where foo() was previously defined:
2187 2187
2188 2188 In [3]: ed foo
2189 2189 Editing... done. Executing edited code...
2190 2190
2191 2191 And if we call foo() again we get the modified version:
2192 2192
2193 2193 In [4]: foo()
2194 2194 foo() has now been changed!
2195 2195
2196 2196 Here is an example of how to edit a code snippet successive
2197 2197 times. First we call the editor:
2198 2198
2199 2199 In [5]: ed
2200 2200 Editing... done. Executing edited code...
2201 2201 hello
2202 2202 Out[5]: "print 'hello'n"
2203 2203
2204 2204 Now we call it again with the previous output (stored in _):
2205 2205
2206 2206 In [6]: ed _
2207 2207 Editing... done. Executing edited code...
2208 2208 hello world
2209 2209 Out[6]: "print 'hello world'n"
2210 2210
2211 2211 Now we call it with the output #8 (stored in _8, also as Out[8]):
2212 2212
2213 2213 In [7]: ed _8
2214 2214 Editing... done. Executing edited code...
2215 2215 hello again
2216 2216 Out[7]: "print 'hello again'n"
2217 2217
2218 2218
2219 2219 Changing the default editor hook:
2220 2220
2221 2221 If you wish to write your own editor hook, you can put it in a
2222 2222 configuration file which you load at startup time. The default hook
2223 2223 is defined in the IPython.core.hooks module, and you can use that as a
2224 2224 starting example for further modifications. That file also has
2225 2225 general instructions on how to set a new hook for use once you've
2226 2226 defined it."""
2227 2227
2228 2228 # FIXME: This function has become a convoluted mess. It needs a
2229 2229 # ground-up rewrite with clean, simple logic.
2230 2230
2231 2231 def make_filename(arg):
2232 2232 "Make a filename from the given args"
2233 2233 try:
2234 2234 filename = get_py_filename(arg)
2235 2235 except IOError:
2236 2236 if args.endswith('.py'):
2237 2237 filename = arg
2238 2238 else:
2239 2239 filename = None
2240 2240 return filename
2241 2241
2242 2242 # custom exceptions
2243 2243 class DataIsObject(Exception): pass
2244 2244
2245 2245 opts,args = self.parse_options(parameter_s,'prxn:')
2246 2246 # Set a few locals from the options for convenience:
2247 2247 opts_prev = 'p' in opts
2248 2248 opts_raw = 'r' in opts
2249 2249
2250 2250 # Default line number value
2251 2251 lineno = opts.get('n',None)
2252 2252
2253 2253 if opts_prev:
2254 2254 args = '_%s' % last_call[0]
2255 2255 if not self.shell.user_ns.has_key(args):
2256 2256 args = last_call[1]
2257 2257
2258 2258 # use last_call to remember the state of the previous call, but don't
2259 2259 # let it be clobbered by successive '-p' calls.
2260 2260 try:
2261 2261 last_call[0] = self.shell.displayhook.prompt_count
2262 2262 if not opts_prev:
2263 2263 last_call[1] = parameter_s
2264 2264 except:
2265 2265 pass
2266 2266
2267 2267 # by default this is done with temp files, except when the given
2268 2268 # arg is a filename
2269 2269 use_temp = True
2270 2270
2271 2271 data = ''
2272 2272 if args.endswith('.py'):
2273 2273 filename = make_filename(args)
2274 2274 use_temp = False
2275 2275 elif args:
2276 2276 # Mode where user specifies ranges of lines, like in %macro.
2277 2277 data = self.extract_input_lines(args, opts_raw)
2278 2278 if not data:
2279 2279 try:
2280 2280 # Load the parameter given as a variable. If not a string,
2281 2281 # process it as an object instead (below)
2282 2282
2283 2283 #print '*** args',args,'type',type(args) # dbg
2284 2284 data = eval(args, self.shell.user_ns)
2285 2285 if not isinstance(data, basestring):
2286 2286 raise DataIsObject
2287 2287
2288 2288 except (NameError,SyntaxError):
2289 2289 # given argument is not a variable, try as a filename
2290 2290 filename = make_filename(args)
2291 2291 if filename is None:
2292 2292 warn("Argument given (%s) can't be found as a variable "
2293 2293 "or as a filename." % args)
2294 2294 return
2295 2295 use_temp = False
2296 2296
2297 2297 except DataIsObject:
2298 2298 # macros have a special edit function
2299 2299 if isinstance(data, Macro):
2300 2300 self._edit_macro(args,data)
2301 2301 return
2302 2302
2303 2303 # For objects, try to edit the file where they are defined
2304 2304 try:
2305 2305 filename = inspect.getabsfile(data)
2306 2306 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2307 2307 # class created by %edit? Try to find source
2308 2308 # by looking for method definitions instead, the
2309 2309 # __module__ in those classes is FakeModule.
2310 2310 attrs = [getattr(data, aname) for aname in dir(data)]
2311 2311 for attr in attrs:
2312 2312 if not inspect.ismethod(attr):
2313 2313 continue
2314 2314 filename = inspect.getabsfile(attr)
2315 2315 if filename and 'fakemodule' not in filename.lower():
2316 2316 # change the attribute to be the edit target instead
2317 2317 data = attr
2318 2318 break
2319 2319
2320 2320 datafile = 1
2321 2321 except TypeError:
2322 2322 filename = make_filename(args)
2323 2323 datafile = 1
2324 2324 warn('Could not find file where `%s` is defined.\n'
2325 2325 'Opening a file named `%s`' % (args,filename))
2326 2326 # Now, make sure we can actually read the source (if it was in
2327 2327 # a temp file it's gone by now).
2328 2328 if datafile:
2329 2329 try:
2330 2330 if lineno is None:
2331 2331 lineno = inspect.getsourcelines(data)[1]
2332 2332 except IOError:
2333 2333 filename = make_filename(args)
2334 2334 if filename is None:
2335 2335 warn('The file `%s` where `%s` was defined cannot '
2336 2336 'be read.' % (filename,data))
2337 2337 return
2338 2338 use_temp = False
2339 2339
2340 2340 if use_temp:
2341 2341 filename = self.shell.mktempfile(data)
2342 2342 print 'IPython will make a temporary file named:',filename
2343 2343
2344 2344 # do actual editing here
2345 2345 print 'Editing...',
2346 2346 sys.stdout.flush()
2347 2347 try:
2348 2348 # Quote filenames that may have spaces in them
2349 2349 if ' ' in filename:
2350 2350 filename = "%s" % filename
2351 2351 self.shell.hooks.editor(filename,lineno)
2352 2352 except TryNext:
2353 2353 warn('Could not open editor')
2354 2354 return
2355 2355
2356 2356 # XXX TODO: should this be generalized for all string vars?
2357 2357 # For now, this is special-cased to blocks created by cpaste
2358 2358 if args.strip() == 'pasted_block':
2359 2359 self.shell.user_ns['pasted_block'] = file_read(filename)
2360 2360
2361 2361 if 'x' in opts: # -x prevents actual execution
2362 2362 print
2363 2363 else:
2364 2364 print 'done. Executing edited code...'
2365 2365 if opts_raw:
2366 2366 self.shell.run_cell(file_read(filename),
2367 2367 store_history=False)
2368 2368 else:
2369 2369 self.shell.safe_execfile(filename,self.shell.user_ns,
2370 2370 self.shell.user_ns)
2371 2371
2372 2372
2373 2373 if use_temp:
2374 2374 try:
2375 2375 return open(filename).read()
2376 2376 except IOError,msg:
2377 2377 if msg.filename == filename:
2378 2378 warn('File not found. Did you forget to save?')
2379 2379 return
2380 2380 else:
2381 2381 self.shell.showtraceback()
2382 2382
2383 2383 def magic_xmode(self,parameter_s = ''):
2384 2384 """Switch modes for the exception handlers.
2385 2385
2386 2386 Valid modes: Plain, Context and Verbose.
2387 2387
2388 2388 If called without arguments, acts as a toggle."""
2389 2389
2390 2390 def xmode_switch_err(name):
2391 2391 warn('Error changing %s exception modes.\n%s' %
2392 2392 (name,sys.exc_info()[1]))
2393 2393
2394 2394 shell = self.shell
2395 2395 new_mode = parameter_s.strip().capitalize()
2396 2396 try:
2397 2397 shell.InteractiveTB.set_mode(mode=new_mode)
2398 2398 print 'Exception reporting mode:',shell.InteractiveTB.mode
2399 2399 except:
2400 2400 xmode_switch_err('user')
2401 2401
2402 2402 def magic_colors(self,parameter_s = ''):
2403 2403 """Switch color scheme for prompts, info system and exception handlers.
2404 2404
2405 2405 Currently implemented schemes: NoColor, Linux, LightBG.
2406 2406
2407 2407 Color scheme names are not case-sensitive.
2408 2408
2409 2409 Examples
2410 2410 --------
2411 2411 To get a plain black and white terminal::
2412 2412
2413 2413 %colors nocolor
2414 2414 """
2415 2415
2416 2416 def color_switch_err(name):
2417 2417 warn('Error changing %s color schemes.\n%s' %
2418 2418 (name,sys.exc_info()[1]))
2419 2419
2420 2420
2421 2421 new_scheme = parameter_s.strip()
2422 2422 if not new_scheme:
2423 2423 raise UsageError(
2424 2424 "%colors: you must specify a color scheme. See '%colors?'")
2425 2425 return
2426 2426 # local shortcut
2427 2427 shell = self.shell
2428 2428
2429 2429 import IPython.utils.rlineimpl as readline
2430 2430
2431 2431 if not readline.have_readline and sys.platform == "win32":
2432 2432 msg = """\
2433 2433 Proper color support under MS Windows requires the pyreadline library.
2434 2434 You can find it at:
2435 2435 http://ipython.scipy.org/moin/PyReadline/Intro
2436 2436 Gary's readline needs the ctypes module, from:
2437 2437 http://starship.python.net/crew/theller/ctypes
2438 2438 (Note that ctypes is already part of Python versions 2.5 and newer).
2439 2439
2440 2440 Defaulting color scheme to 'NoColor'"""
2441 2441 new_scheme = 'NoColor'
2442 2442 warn(msg)
2443 2443
2444 2444 # readline option is 0
2445 2445 if not shell.has_readline:
2446 2446 new_scheme = 'NoColor'
2447 2447
2448 2448 # Set prompt colors
2449 2449 try:
2450 2450 shell.displayhook.set_colors(new_scheme)
2451 2451 except:
2452 2452 color_switch_err('prompt')
2453 2453 else:
2454 2454 shell.colors = \
2455 2455 shell.displayhook.color_table.active_scheme_name
2456 2456 # Set exception colors
2457 2457 try:
2458 2458 shell.InteractiveTB.set_colors(scheme = new_scheme)
2459 2459 shell.SyntaxTB.set_colors(scheme = new_scheme)
2460 2460 except:
2461 2461 color_switch_err('exception')
2462 2462
2463 2463 # Set info (for 'object?') colors
2464 2464 if shell.color_info:
2465 2465 try:
2466 2466 shell.inspector.set_active_scheme(new_scheme)
2467 2467 except:
2468 2468 color_switch_err('object inspector')
2469 2469 else:
2470 2470 shell.inspector.set_active_scheme('NoColor')
2471 2471
2472 2472 def magic_pprint(self, parameter_s=''):
2473 2473 """Toggle pretty printing on/off."""
2474 2474 ptformatter = self.shell.display_formatter.formatters['text/plain']
2475 2475 ptformatter.pprint = bool(1 - ptformatter.pprint)
2476 2476 print 'Pretty printing has been turned', \
2477 2477 ['OFF','ON'][ptformatter.pprint]
2478 2478
2479 2479 def magic_Exit(self, parameter_s=''):
2480 2480 """Exit IPython."""
2481 2481
2482 2482 self.shell.ask_exit()
2483 2483
2484 2484 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2485 2485 magic_exit = magic_quit = magic_Quit = magic_Exit
2486 2486
2487 2487 #......................................................................
2488 2488 # Functions to implement unix shell-type things
2489 2489
2490 2490 @testdec.skip_doctest
2491 2491 def magic_alias(self, parameter_s = ''):
2492 2492 """Define an alias for a system command.
2493 2493
2494 2494 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2495 2495
2496 2496 Then, typing 'alias_name params' will execute the system command 'cmd
2497 2497 params' (from your underlying operating system).
2498 2498
2499 2499 Aliases have lower precedence than magic functions and Python normal
2500 2500 variables, so if 'foo' is both a Python variable and an alias, the
2501 2501 alias can not be executed until 'del foo' removes the Python variable.
2502 2502
2503 2503 You can use the %l specifier in an alias definition to represent the
2504 2504 whole line when the alias is called. For example:
2505 2505
2506 2506 In [2]: alias bracket echo "Input in brackets: <%l>"
2507 2507 In [3]: bracket hello world
2508 2508 Input in brackets: <hello world>
2509 2509
2510 2510 You can also define aliases with parameters using %s specifiers (one
2511 2511 per parameter):
2512 2512
2513 2513 In [1]: alias parts echo first %s second %s
2514 2514 In [2]: %parts A B
2515 2515 first A second B
2516 2516 In [3]: %parts A
2517 2517 Incorrect number of arguments: 2 expected.
2518 2518 parts is an alias to: 'echo first %s second %s'
2519 2519
2520 2520 Note that %l and %s are mutually exclusive. You can only use one or
2521 2521 the other in your aliases.
2522 2522
2523 2523 Aliases expand Python variables just like system calls using ! or !!
2524 2524 do: all expressions prefixed with '$' get expanded. For details of
2525 2525 the semantic rules, see PEP-215:
2526 2526 http://www.python.org/peps/pep-0215.html. This is the library used by
2527 2527 IPython for variable expansion. If you want to access a true shell
2528 2528 variable, an extra $ is necessary to prevent its expansion by IPython:
2529 2529
2530 2530 In [6]: alias show echo
2531 2531 In [7]: PATH='A Python string'
2532 2532 In [8]: show $PATH
2533 2533 A Python string
2534 2534 In [9]: show $$PATH
2535 2535 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2536 2536
2537 2537 You can use the alias facility to acess all of $PATH. See the %rehash
2538 2538 and %rehashx functions, which automatically create aliases for the
2539 2539 contents of your $PATH.
2540 2540
2541 2541 If called with no parameters, %alias prints the current alias table."""
2542 2542
2543 2543 par = parameter_s.strip()
2544 2544 if not par:
2545 2545 stored = self.db.get('stored_aliases', {} )
2546 2546 aliases = sorted(self.shell.alias_manager.aliases)
2547 2547 # for k, v in stored:
2548 2548 # atab.append(k, v[0])
2549 2549
2550 2550 print "Total number of aliases:", len(aliases)
2551 2551 sys.stdout.flush()
2552 2552 return aliases
2553 2553
2554 2554 # Now try to define a new one
2555 2555 try:
2556 2556 alias,cmd = par.split(None, 1)
2557 2557 except:
2558 2558 print oinspect.getdoc(self.magic_alias)
2559 2559 else:
2560 2560 self.shell.alias_manager.soft_define_alias(alias, cmd)
2561 2561 # end magic_alias
2562 2562
2563 2563 def magic_unalias(self, parameter_s = ''):
2564 2564 """Remove an alias"""
2565 2565
2566 2566 aname = parameter_s.strip()
2567 2567 self.shell.alias_manager.undefine_alias(aname)
2568 2568 stored = self.db.get('stored_aliases', {} )
2569 2569 if aname in stored:
2570 2570 print "Removing %stored alias",aname
2571 2571 del stored[aname]
2572 2572 self.db['stored_aliases'] = stored
2573 2573
2574 2574 def magic_rehashx(self, parameter_s = ''):
2575 2575 """Update the alias table with all executable files in $PATH.
2576 2576
2577 2577 This version explicitly checks that every entry in $PATH is a file
2578 2578 with execute access (os.X_OK), so it is much slower than %rehash.
2579 2579
2580 2580 Under Windows, it checks executability as a match agains a
2581 2581 '|'-separated string of extensions, stored in the IPython config
2582 2582 variable win_exec_ext. This defaults to 'exe|com|bat'.
2583 2583
2584 2584 This function also resets the root module cache of module completer,
2585 2585 used on slow filesystems.
2586 2586 """
2587 2587 from IPython.core.alias import InvalidAliasError
2588 2588
2589 2589 # for the benefit of module completer in ipy_completers.py
2590 2590 del self.db['rootmodules']
2591 2591
2592 2592 path = [os.path.abspath(os.path.expanduser(p)) for p in
2593 2593 os.environ.get('PATH','').split(os.pathsep)]
2594 2594 path = filter(os.path.isdir,path)
2595 2595
2596 2596 syscmdlist = []
2597 2597 # Now define isexec in a cross platform manner.
2598 2598 if os.name == 'posix':
2599 2599 isexec = lambda fname:os.path.isfile(fname) and \
2600 2600 os.access(fname,os.X_OK)
2601 2601 else:
2602 2602 try:
2603 2603 winext = os.environ['pathext'].replace(';','|').replace('.','')
2604 2604 except KeyError:
2605 2605 winext = 'exe|com|bat|py'
2606 2606 if 'py' not in winext:
2607 2607 winext += '|py'
2608 2608 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2609 2609 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2610 2610 savedir = os.getcwd()
2611 2611
2612 2612 # Now walk the paths looking for executables to alias.
2613 2613 try:
2614 2614 # write the whole loop for posix/Windows so we don't have an if in
2615 2615 # the innermost part
2616 2616 if os.name == 'posix':
2617 2617 for pdir in path:
2618 2618 os.chdir(pdir)
2619 2619 for ff in os.listdir(pdir):
2620 2620 if isexec(ff):
2621 2621 try:
2622 2622 # Removes dots from the name since ipython
2623 2623 # will assume names with dots to be python.
2624 2624 self.shell.alias_manager.define_alias(
2625 2625 ff.replace('.',''), ff)
2626 2626 except InvalidAliasError:
2627 2627 pass
2628 2628 else:
2629 2629 syscmdlist.append(ff)
2630 2630 else:
2631 2631 no_alias = self.shell.alias_manager.no_alias
2632 2632 for pdir in path:
2633 2633 os.chdir(pdir)
2634 2634 for ff in os.listdir(pdir):
2635 2635 base, ext = os.path.splitext(ff)
2636 2636 if isexec(ff) and base.lower() not in no_alias:
2637 2637 if ext.lower() == '.exe':
2638 2638 ff = base
2639 2639 try:
2640 2640 # Removes dots from the name since ipython
2641 2641 # will assume names with dots to be python.
2642 2642 self.shell.alias_manager.define_alias(
2643 2643 base.lower().replace('.',''), ff)
2644 2644 except InvalidAliasError:
2645 2645 pass
2646 2646 syscmdlist.append(ff)
2647 2647 db = self.db
2648 2648 db['syscmdlist'] = syscmdlist
2649 2649 finally:
2650 2650 os.chdir(savedir)
2651 2651
2652 2652 @testdec.skip_doctest
2653 2653 def magic_pwd(self, parameter_s = ''):
2654 2654 """Return the current working directory path.
2655 2655
2656 2656 Examples
2657 2657 --------
2658 2658 ::
2659 2659
2660 2660 In [9]: pwd
2661 2661 Out[9]: '/home/tsuser/sprint/ipython'
2662 2662 """
2663 2663 return os.getcwd()
2664 2664
2665 2665 @testdec.skip_doctest
2666 2666 def magic_cd(self, parameter_s=''):
2667 2667 """Change the current working directory.
2668 2668
2669 2669 This command automatically maintains an internal list of directories
2670 2670 you visit during your IPython session, in the variable _dh. The
2671 2671 command %dhist shows this history nicely formatted. You can also
2672 2672 do 'cd -<tab>' to see directory history conveniently.
2673 2673
2674 2674 Usage:
2675 2675
2676 2676 cd 'dir': changes to directory 'dir'.
2677 2677
2678 2678 cd -: changes to the last visited directory.
2679 2679
2680 2680 cd -<n>: changes to the n-th directory in the directory history.
2681 2681
2682 2682 cd --foo: change to directory that matches 'foo' in history
2683 2683
2684 2684 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2685 2685 (note: cd <bookmark_name> is enough if there is no
2686 2686 directory <bookmark_name>, but a bookmark with the name exists.)
2687 2687 'cd -b <tab>' allows you to tab-complete bookmark names.
2688 2688
2689 2689 Options:
2690 2690
2691 2691 -q: quiet. Do not print the working directory after the cd command is
2692 2692 executed. By default IPython's cd command does print this directory,
2693 2693 since the default prompts do not display path information.
2694 2694
2695 2695 Note that !cd doesn't work for this purpose because the shell where
2696 2696 !command runs is immediately discarded after executing 'command'.
2697 2697
2698 2698 Examples
2699 2699 --------
2700 2700 ::
2701 2701
2702 2702 In [10]: cd parent/child
2703 2703 /home/tsuser/parent/child
2704 2704 """
2705 2705
2706 2706 parameter_s = parameter_s.strip()
2707 2707 #bkms = self.shell.persist.get("bookmarks",{})
2708 2708
2709 2709 oldcwd = os.getcwd()
2710 2710 numcd = re.match(r'(-)(\d+)$',parameter_s)
2711 2711 # jump in directory history by number
2712 2712 if numcd:
2713 2713 nn = int(numcd.group(2))
2714 2714 try:
2715 2715 ps = self.shell.user_ns['_dh'][nn]
2716 2716 except IndexError:
2717 2717 print 'The requested directory does not exist in history.'
2718 2718 return
2719 2719 else:
2720 2720 opts = {}
2721 2721 elif parameter_s.startswith('--'):
2722 2722 ps = None
2723 2723 fallback = None
2724 2724 pat = parameter_s[2:]
2725 2725 dh = self.shell.user_ns['_dh']
2726 2726 # first search only by basename (last component)
2727 2727 for ent in reversed(dh):
2728 2728 if pat in os.path.basename(ent) and os.path.isdir(ent):
2729 2729 ps = ent
2730 2730 break
2731 2731
2732 2732 if fallback is None and pat in ent and os.path.isdir(ent):
2733 2733 fallback = ent
2734 2734
2735 2735 # if we have no last part match, pick the first full path match
2736 2736 if ps is None:
2737 2737 ps = fallback
2738 2738
2739 2739 if ps is None:
2740 2740 print "No matching entry in directory history"
2741 2741 return
2742 2742 else:
2743 2743 opts = {}
2744 2744
2745 2745
2746 2746 else:
2747 2747 #turn all non-space-escaping backslashes to slashes,
2748 2748 # for c:\windows\directory\names\
2749 2749 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2750 2750 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2751 2751 # jump to previous
2752 2752 if ps == '-':
2753 2753 try:
2754 2754 ps = self.shell.user_ns['_dh'][-2]
2755 2755 except IndexError:
2756 2756 raise UsageError('%cd -: No previous directory to change to.')
2757 2757 # jump to bookmark if needed
2758 2758 else:
2759 2759 if not os.path.isdir(ps) or opts.has_key('b'):
2760 2760 bkms = self.db.get('bookmarks', {})
2761 2761
2762 2762 if bkms.has_key(ps):
2763 2763 target = bkms[ps]
2764 2764 print '(bookmark:%s) -> %s' % (ps,target)
2765 2765 ps = target
2766 2766 else:
2767 2767 if opts.has_key('b'):
2768 2768 raise UsageError("Bookmark '%s' not found. "
2769 2769 "Use '%%bookmark -l' to see your bookmarks." % ps)
2770 2770
2771 2771 # at this point ps should point to the target dir
2772 2772 if ps:
2773 2773 try:
2774 2774 os.chdir(os.path.expanduser(ps))
2775 2775 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2776 2776 set_term_title('IPython: ' + abbrev_cwd())
2777 2777 except OSError:
2778 2778 print sys.exc_info()[1]
2779 2779 else:
2780 2780 cwd = os.getcwd()
2781 2781 dhist = self.shell.user_ns['_dh']
2782 2782 if oldcwd != cwd:
2783 2783 dhist.append(cwd)
2784 2784 self.db['dhist'] = compress_dhist(dhist)[-100:]
2785 2785
2786 2786 else:
2787 2787 os.chdir(self.shell.home_dir)
2788 2788 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2789 2789 set_term_title('IPython: ' + '~')
2790 2790 cwd = os.getcwd()
2791 2791 dhist = self.shell.user_ns['_dh']
2792 2792
2793 2793 if oldcwd != cwd:
2794 2794 dhist.append(cwd)
2795 2795 self.db['dhist'] = compress_dhist(dhist)[-100:]
2796 2796 if not 'q' in opts and self.shell.user_ns['_dh']:
2797 2797 print self.shell.user_ns['_dh'][-1]
2798 2798
2799 2799
2800 2800 def magic_env(self, parameter_s=''):
2801 2801 """List environment variables."""
2802 2802
2803 2803 return os.environ.data
2804 2804
2805 2805 def magic_pushd(self, parameter_s=''):
2806 2806 """Place the current dir on stack and change directory.
2807 2807
2808 2808 Usage:\\
2809 2809 %pushd ['dirname']
2810 2810 """
2811 2811
2812 2812 dir_s = self.shell.dir_stack
2813 2813 tgt = os.path.expanduser(parameter_s)
2814 2814 cwd = os.getcwd().replace(self.home_dir,'~')
2815 2815 if tgt:
2816 2816 self.magic_cd(parameter_s)
2817 2817 dir_s.insert(0,cwd)
2818 2818 return self.magic_dirs()
2819 2819
2820 2820 def magic_popd(self, parameter_s=''):
2821 2821 """Change to directory popped off the top of the stack.
2822 2822 """
2823 2823 if not self.shell.dir_stack:
2824 2824 raise UsageError("%popd on empty stack")
2825 2825 top = self.shell.dir_stack.pop(0)
2826 2826 self.magic_cd(top)
2827 2827 print "popd ->",top
2828 2828
2829 2829 def magic_dirs(self, parameter_s=''):
2830 2830 """Return the current directory stack."""
2831 2831
2832 2832 return self.shell.dir_stack
2833 2833
2834 2834 def magic_dhist(self, parameter_s=''):
2835 2835 """Print your history of visited directories.
2836 2836
2837 2837 %dhist -> print full history\\
2838 2838 %dhist n -> print last n entries only\\
2839 2839 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2840 2840
2841 2841 This history is automatically maintained by the %cd command, and
2842 2842 always available as the global list variable _dh. You can use %cd -<n>
2843 2843 to go to directory number <n>.
2844 2844
2845 2845 Note that most of time, you should view directory history by entering
2846 2846 cd -<TAB>.
2847 2847
2848 2848 """
2849 2849
2850 2850 dh = self.shell.user_ns['_dh']
2851 2851 if parameter_s:
2852 2852 try:
2853 2853 args = map(int,parameter_s.split())
2854 2854 except:
2855 2855 self.arg_err(Magic.magic_dhist)
2856 2856 return
2857 2857 if len(args) == 1:
2858 2858 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2859 2859 elif len(args) == 2:
2860 2860 ini,fin = args
2861 2861 else:
2862 2862 self.arg_err(Magic.magic_dhist)
2863 2863 return
2864 2864 else:
2865 2865 ini,fin = 0,len(dh)
2866 2866 nlprint(dh,
2867 2867 header = 'Directory history (kept in _dh)',
2868 2868 start=ini,stop=fin)
2869 2869
2870 2870 @testdec.skip_doctest
2871 2871 def magic_sc(self, parameter_s=''):
2872 2872 """Shell capture - execute a shell command and capture its output.
2873 2873
2874 2874 DEPRECATED. Suboptimal, retained for backwards compatibility.
2875 2875
2876 2876 You should use the form 'var = !command' instead. Example:
2877 2877
2878 2878 "%sc -l myfiles = ls ~" should now be written as
2879 2879
2880 2880 "myfiles = !ls ~"
2881 2881
2882 2882 myfiles.s, myfiles.l and myfiles.n still apply as documented
2883 2883 below.
2884 2884
2885 2885 --
2886 2886 %sc [options] varname=command
2887 2887
2888 2888 IPython will run the given command using commands.getoutput(), and
2889 2889 will then update the user's interactive namespace with a variable
2890 2890 called varname, containing the value of the call. Your command can
2891 2891 contain shell wildcards, pipes, etc.
2892 2892
2893 2893 The '=' sign in the syntax is mandatory, and the variable name you
2894 2894 supply must follow Python's standard conventions for valid names.
2895 2895
2896 2896 (A special format without variable name exists for internal use)
2897 2897
2898 2898 Options:
2899 2899
2900 2900 -l: list output. Split the output on newlines into a list before
2901 2901 assigning it to the given variable. By default the output is stored
2902 2902 as a single string.
2903 2903
2904 2904 -v: verbose. Print the contents of the variable.
2905 2905
2906 2906 In most cases you should not need to split as a list, because the
2907 2907 returned value is a special type of string which can automatically
2908 2908 provide its contents either as a list (split on newlines) or as a
2909 2909 space-separated string. These are convenient, respectively, either
2910 2910 for sequential processing or to be passed to a shell command.
2911 2911
2912 2912 For example:
2913 2913
2914 2914 # all-random
2915 2915
2916 2916 # Capture into variable a
2917 2917 In [1]: sc a=ls *py
2918 2918
2919 2919 # a is a string with embedded newlines
2920 2920 In [2]: a
2921 2921 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2922 2922
2923 2923 # which can be seen as a list:
2924 2924 In [3]: a.l
2925 2925 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2926 2926
2927 2927 # or as a whitespace-separated string:
2928 2928 In [4]: a.s
2929 2929 Out[4]: 'setup.py win32_manual_post_install.py'
2930 2930
2931 2931 # a.s is useful to pass as a single command line:
2932 2932 In [5]: !wc -l $a.s
2933 2933 146 setup.py
2934 2934 130 win32_manual_post_install.py
2935 2935 276 total
2936 2936
2937 2937 # while the list form is useful to loop over:
2938 2938 In [6]: for f in a.l:
2939 2939 ...: !wc -l $f
2940 2940 ...:
2941 2941 146 setup.py
2942 2942 130 win32_manual_post_install.py
2943 2943
2944 2944 Similiarly, the lists returned by the -l option are also special, in
2945 2945 the sense that you can equally invoke the .s attribute on them to
2946 2946 automatically get a whitespace-separated string from their contents:
2947 2947
2948 2948 In [7]: sc -l b=ls *py
2949 2949
2950 2950 In [8]: b
2951 2951 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2952 2952
2953 2953 In [9]: b.s
2954 2954 Out[9]: 'setup.py win32_manual_post_install.py'
2955 2955
2956 2956 In summary, both the lists and strings used for ouptut capture have
2957 2957 the following special attributes:
2958 2958
2959 2959 .l (or .list) : value as list.
2960 2960 .n (or .nlstr): value as newline-separated string.
2961 2961 .s (or .spstr): value as space-separated string.
2962 2962 """
2963 2963
2964 2964 opts,args = self.parse_options(parameter_s,'lv')
2965 2965 # Try to get a variable name and command to run
2966 2966 try:
2967 2967 # the variable name must be obtained from the parse_options
2968 2968 # output, which uses shlex.split to strip options out.
2969 2969 var,_ = args.split('=',1)
2970 2970 var = var.strip()
2971 2971 # But the the command has to be extracted from the original input
2972 2972 # parameter_s, not on what parse_options returns, to avoid the
2973 2973 # quote stripping which shlex.split performs on it.
2974 2974 _,cmd = parameter_s.split('=',1)
2975 2975 except ValueError:
2976 2976 var,cmd = '',''
2977 2977 # If all looks ok, proceed
2978 2978 split = 'l' in opts
2979 2979 out = self.shell.getoutput(cmd, split=split)
2980 2980 if opts.has_key('v'):
2981 2981 print '%s ==\n%s' % (var,pformat(out))
2982 2982 if var:
2983 2983 self.shell.user_ns.update({var:out})
2984 2984 else:
2985 2985 return out
2986 2986
2987 2987 def magic_sx(self, parameter_s=''):
2988 2988 """Shell execute - run a shell command and capture its output.
2989 2989
2990 2990 %sx command
2991 2991
2992 2992 IPython will run the given command using commands.getoutput(), and
2993 2993 return the result formatted as a list (split on '\\n'). Since the
2994 2994 output is _returned_, it will be stored in ipython's regular output
2995 2995 cache Out[N] and in the '_N' automatic variables.
2996 2996
2997 2997 Notes:
2998 2998
2999 2999 1) If an input line begins with '!!', then %sx is automatically
3000 3000 invoked. That is, while:
3001 3001 !ls
3002 3002 causes ipython to simply issue system('ls'), typing
3003 3003 !!ls
3004 3004 is a shorthand equivalent to:
3005 3005 %sx ls
3006 3006
3007 3007 2) %sx differs from %sc in that %sx automatically splits into a list,
3008 3008 like '%sc -l'. The reason for this is to make it as easy as possible
3009 3009 to process line-oriented shell output via further python commands.
3010 3010 %sc is meant to provide much finer control, but requires more
3011 3011 typing.
3012 3012
3013 3013 3) Just like %sc -l, this is a list with special attributes:
3014 3014
3015 3015 .l (or .list) : value as list.
3016 3016 .n (or .nlstr): value as newline-separated string.
3017 3017 .s (or .spstr): value as whitespace-separated string.
3018 3018
3019 3019 This is very useful when trying to use such lists as arguments to
3020 3020 system commands."""
3021 3021
3022 3022 if parameter_s:
3023 3023 return self.shell.getoutput(parameter_s)
3024 3024
3025 3025
3026 3026 def magic_bookmark(self, parameter_s=''):
3027 3027 """Manage IPython's bookmark system.
3028 3028
3029 3029 %bookmark <name> - set bookmark to current dir
3030 3030 %bookmark <name> <dir> - set bookmark to <dir>
3031 3031 %bookmark -l - list all bookmarks
3032 3032 %bookmark -d <name> - remove bookmark
3033 3033 %bookmark -r - remove all bookmarks
3034 3034
3035 3035 You can later on access a bookmarked folder with:
3036 3036 %cd -b <name>
3037 3037 or simply '%cd <name>' if there is no directory called <name> AND
3038 3038 there is such a bookmark defined.
3039 3039
3040 3040 Your bookmarks persist through IPython sessions, but they are
3041 3041 associated with each profile."""
3042 3042
3043 3043 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3044 3044 if len(args) > 2:
3045 3045 raise UsageError("%bookmark: too many arguments")
3046 3046
3047 3047 bkms = self.db.get('bookmarks',{})
3048 3048
3049 3049 if opts.has_key('d'):
3050 3050 try:
3051 3051 todel = args[0]
3052 3052 except IndexError:
3053 3053 raise UsageError(
3054 3054 "%bookmark -d: must provide a bookmark to delete")
3055 3055 else:
3056 3056 try:
3057 3057 del bkms[todel]
3058 3058 except KeyError:
3059 3059 raise UsageError(
3060 3060 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3061 3061
3062 3062 elif opts.has_key('r'):
3063 3063 bkms = {}
3064 3064 elif opts.has_key('l'):
3065 3065 bks = bkms.keys()
3066 3066 bks.sort()
3067 3067 if bks:
3068 3068 size = max(map(len,bks))
3069 3069 else:
3070 3070 size = 0
3071 3071 fmt = '%-'+str(size)+'s -> %s'
3072 3072 print 'Current bookmarks:'
3073 3073 for bk in bks:
3074 3074 print fmt % (bk,bkms[bk])
3075 3075 else:
3076 3076 if not args:
3077 3077 raise UsageError("%bookmark: You must specify the bookmark name")
3078 3078 elif len(args)==1:
3079 3079 bkms[args[0]] = os.getcwd()
3080 3080 elif len(args)==2:
3081 3081 bkms[args[0]] = args[1]
3082 3082 self.db['bookmarks'] = bkms
3083 3083
3084 3084 def magic_pycat(self, parameter_s=''):
3085 3085 """Show a syntax-highlighted file through a pager.
3086 3086
3087 3087 This magic is similar to the cat utility, but it will assume the file
3088 3088 to be Python source and will show it with syntax highlighting. """
3089 3089
3090 3090 try:
3091 3091 filename = get_py_filename(parameter_s)
3092 3092 cont = file_read(filename)
3093 3093 except IOError:
3094 3094 try:
3095 3095 cont = eval(parameter_s,self.user_ns)
3096 3096 except NameError:
3097 3097 cont = None
3098 3098 if cont is None:
3099 3099 print "Error: no such file or variable"
3100 3100 return
3101 3101
3102 3102 page.page(self.shell.pycolorize(cont))
3103 3103
3104 3104 def _rerun_pasted(self):
3105 3105 """ Rerun a previously pasted command.
3106 3106 """
3107 3107 b = self.user_ns.get('pasted_block', None)
3108 3108 if b is None:
3109 3109 raise UsageError('No previous pasted block available')
3110 3110 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3111 3111 exec b in self.user_ns
3112 3112
3113 3113 def _get_pasted_lines(self, sentinel):
3114 3114 """ Yield pasted lines until the user enters the given sentinel value.
3115 3115 """
3116 3116 from IPython.core import interactiveshell
3117 3117 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3118 3118 while True:
3119 3119 l = interactiveshell.raw_input_original(':')
3120 3120 if l == sentinel:
3121 3121 return
3122 3122 else:
3123 3123 yield l
3124 3124
3125 3125 def _strip_pasted_lines_for_code(self, raw_lines):
3126 3126 """ Strip non-code parts of a sequence of lines to return a block of
3127 3127 code.
3128 3128 """
3129 3129 # Regular expressions that declare text we strip from the input:
3130 3130 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3131 3131 r'^\s*(\s?>)+', # Python input prompt
3132 3132 r'^\s*\.{3,}', # Continuation prompts
3133 3133 r'^\++',
3134 3134 ]
3135 3135
3136 3136 strip_from_start = map(re.compile,strip_re)
3137 3137
3138 3138 lines = []
3139 3139 for l in raw_lines:
3140 3140 for pat in strip_from_start:
3141 3141 l = pat.sub('',l)
3142 3142 lines.append(l)
3143 3143
3144 3144 block = "\n".join(lines) + '\n'
3145 3145 #print "block:\n",block
3146 3146 return block
3147 3147
3148 3148 def _execute_block(self, block, par):
3149 3149 """ Execute a block, or store it in a variable, per the user's request.
3150 3150 """
3151 3151 if not par:
3152 3152 b = textwrap.dedent(block)
3153 3153 self.user_ns['pasted_block'] = b
3154 3154 exec b in self.user_ns
3155 3155 else:
3156 3156 self.user_ns[par] = SList(block.splitlines())
3157 3157 print "Block assigned to '%s'" % par
3158 3158
3159 3159 def magic_quickref(self,arg):
3160 3160 """ Show a quick reference sheet """
3161 3161 import IPython.core.usage
3162 3162 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3163 3163
3164 3164 page.page(qr)
3165 3165
3166 3166 def magic_doctest_mode(self,parameter_s=''):
3167 3167 """Toggle doctest mode on and off.
3168 3168
3169 3169 This mode is intended to make IPython behave as much as possible like a
3170 3170 plain Python shell, from the perspective of how its prompts, exceptions
3171 3171 and output look. This makes it easy to copy and paste parts of a
3172 3172 session into doctests. It does so by:
3173 3173
3174 3174 - Changing the prompts to the classic ``>>>`` ones.
3175 3175 - Changing the exception reporting mode to 'Plain'.
3176 3176 - Disabling pretty-printing of output.
3177 3177
3178 3178 Note that IPython also supports the pasting of code snippets that have
3179 3179 leading '>>>' and '...' prompts in them. This means that you can paste
3180 3180 doctests from files or docstrings (even if they have leading
3181 3181 whitespace), and the code will execute correctly. You can then use
3182 3182 '%history -t' to see the translated history; this will give you the
3183 3183 input after removal of all the leading prompts and whitespace, which
3184 3184 can be pasted back into an editor.
3185 3185
3186 3186 With these features, you can switch into this mode easily whenever you
3187 3187 need to do testing and changes to doctests, without having to leave
3188 3188 your existing IPython session.
3189 3189 """
3190 3190
3191 3191 from IPython.utils.ipstruct import Struct
3192 3192
3193 3193 # Shorthands
3194 3194 shell = self.shell
3195 3195 oc = shell.displayhook
3196 3196 meta = shell.meta
3197 3197 disp_formatter = self.shell.display_formatter
3198 3198 ptformatter = disp_formatter.formatters['text/plain']
3199 3199 # dstore is a data store kept in the instance metadata bag to track any
3200 3200 # changes we make, so we can undo them later.
3201 3201 dstore = meta.setdefault('doctest_mode',Struct())
3202 3202 save_dstore = dstore.setdefault
3203 3203
3204 3204 # save a few values we'll need to recover later
3205 3205 mode = save_dstore('mode',False)
3206 3206 save_dstore('rc_pprint',ptformatter.pprint)
3207 3207 save_dstore('xmode',shell.InteractiveTB.mode)
3208 3208 save_dstore('rc_separate_out',shell.separate_out)
3209 3209 save_dstore('rc_separate_out2',shell.separate_out2)
3210 3210 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3211 3211 save_dstore('rc_separate_in',shell.separate_in)
3212 3212 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3213 3213
3214 3214 if mode == False:
3215 3215 # turn on
3216 3216 oc.prompt1.p_template = '>>> '
3217 3217 oc.prompt2.p_template = '... '
3218 3218 oc.prompt_out.p_template = ''
3219 3219
3220 3220 # Prompt separators like plain python
3221 3221 oc.input_sep = oc.prompt1.sep = ''
3222 3222 oc.output_sep = ''
3223 3223 oc.output_sep2 = ''
3224 3224
3225 3225 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3226 3226 oc.prompt_out.pad_left = False
3227 3227
3228 3228 ptformatter.pprint = False
3229 3229 disp_formatter.plain_text_only = True
3230 3230
3231 3231 shell.magic_xmode('Plain')
3232 3232 else:
3233 3233 # turn off
3234 3234 oc.prompt1.p_template = shell.prompt_in1
3235 3235 oc.prompt2.p_template = shell.prompt_in2
3236 3236 oc.prompt_out.p_template = shell.prompt_out
3237 3237
3238 3238 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3239 3239
3240 3240 oc.output_sep = dstore.rc_separate_out
3241 3241 oc.output_sep2 = dstore.rc_separate_out2
3242 3242
3243 3243 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3244 3244 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3245 3245
3246 3246 ptformatter.pprint = dstore.rc_pprint
3247 3247 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3248 3248
3249 3249 shell.magic_xmode(dstore.xmode)
3250 3250
3251 3251 # Store new mode and inform
3252 3252 dstore.mode = bool(1-int(mode))
3253 3253 mode_label = ['OFF','ON'][dstore.mode]
3254 3254 print 'Doctest mode is:', mode_label
3255 3255
3256 3256 def magic_gui(self, parameter_s=''):
3257 3257 """Enable or disable IPython GUI event loop integration.
3258 3258
3259 3259 %gui [GUINAME]
3260 3260
3261 3261 This magic replaces IPython's threaded shells that were activated
3262 3262 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3263 3263 can now be enabled, disabled and swtiched at runtime and keyboard
3264 3264 interrupts should work without any problems. The following toolkits
3265 3265 are supported: wxPython, PyQt4, PyGTK, and Tk::
3266 3266
3267 3267 %gui wx # enable wxPython event loop integration
3268 3268 %gui qt4|qt # enable PyQt4 event loop integration
3269 3269 %gui gtk # enable PyGTK event loop integration
3270 3270 %gui tk # enable Tk event loop integration
3271 3271 %gui # disable all event loop integration
3272 3272
3273 3273 WARNING: after any of these has been called you can simply create
3274 3274 an application object, but DO NOT start the event loop yourself, as
3275 3275 we have already handled that.
3276 3276 """
3277 3277 from IPython.lib.inputhook import enable_gui
3278 3278 opts, arg = self.parse_options(parameter_s, '')
3279 3279 if arg=='': arg = None
3280 3280 return enable_gui(arg)
3281 3281
3282 3282 def magic_load_ext(self, module_str):
3283 3283 """Load an IPython extension by its module name."""
3284 3284 return self.extension_manager.load_extension(module_str)
3285 3285
3286 3286 def magic_unload_ext(self, module_str):
3287 3287 """Unload an IPython extension by its module name."""
3288 3288 self.extension_manager.unload_extension(module_str)
3289 3289
3290 3290 def magic_reload_ext(self, module_str):
3291 3291 """Reload an IPython extension by its module name."""
3292 3292 self.extension_manager.reload_extension(module_str)
3293 3293
3294 3294 @testdec.skip_doctest
3295 3295 def magic_install_profiles(self, s):
3296 3296 """Install the default IPython profiles into the .ipython dir.
3297 3297
3298 3298 If the default profiles have already been installed, they will not
3299 3299 be overwritten. You can force overwriting them by using the ``-o``
3300 3300 option::
3301 3301
3302 3302 In [1]: %install_profiles -o
3303 3303 """
3304 3304 if '-o' in s:
3305 3305 overwrite = True
3306 3306 else:
3307 3307 overwrite = False
3308 3308 from IPython.config import profile
3309 3309 profile_dir = os.path.split(profile.__file__)[0]
3310 3310 ipython_dir = self.ipython_dir
3311 3311 files = os.listdir(profile_dir)
3312 3312
3313 3313 to_install = []
3314 3314 for f in files:
3315 3315 if f.startswith('ipython_config'):
3316 3316 src = os.path.join(profile_dir, f)
3317 3317 dst = os.path.join(ipython_dir, f)
3318 3318 if (not os.path.isfile(dst)) or overwrite:
3319 3319 to_install.append((f, src, dst))
3320 3320 if len(to_install)>0:
3321 3321 print "Installing profiles to: ", ipython_dir
3322 3322 for (f, src, dst) in to_install:
3323 3323 shutil.copy(src, dst)
3324 3324 print " %s" % f
3325 3325
3326 3326 def magic_install_default_config(self, s):
3327 3327 """Install IPython's default config file into the .ipython dir.
3328 3328
3329 3329 If the default config file (:file:`ipython_config.py`) is already
3330 3330 installed, it will not be overwritten. You can force overwriting
3331 3331 by using the ``-o`` option::
3332 3332
3333 3333 In [1]: %install_default_config
3334 3334 """
3335 3335 if '-o' in s:
3336 3336 overwrite = True
3337 3337 else:
3338 3338 overwrite = False
3339 3339 from IPython.config import default
3340 3340 config_dir = os.path.split(default.__file__)[0]
3341 3341 ipython_dir = self.ipython_dir
3342 3342 default_config_file_name = 'ipython_config.py'
3343 3343 src = os.path.join(config_dir, default_config_file_name)
3344 3344 dst = os.path.join(ipython_dir, default_config_file_name)
3345 3345 if (not os.path.isfile(dst)) or overwrite:
3346 3346 shutil.copy(src, dst)
3347 3347 print "Installing default config file: %s" % dst
3348 3348
3349 3349 # Pylab support: simple wrappers that activate pylab, load gui input
3350 3350 # handling and modify slightly %run
3351 3351
3352 3352 @testdec.skip_doctest
3353 3353 def _pylab_magic_run(self, parameter_s=''):
3354 3354 Magic.magic_run(self, parameter_s,
3355 3355 runner=mpl_runner(self.shell.safe_execfile))
3356 3356
3357 3357 _pylab_magic_run.__doc__ = magic_run.__doc__
3358 3358
3359 3359 @testdec.skip_doctest
3360 3360 def magic_pylab(self, s):
3361 3361 """Load numpy and matplotlib to work interactively.
3362 3362
3363 3363 %pylab [GUINAME]
3364 3364
3365 3365 This function lets you activate pylab (matplotlib, numpy and
3366 3366 interactive support) at any point during an IPython session.
3367 3367
3368 3368 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3369 3369 pylab and mlab, as well as all names from numpy and pylab.
3370 3370
3371 3371 Parameters
3372 3372 ----------
3373 3373 guiname : optional
3374 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk' or
3374 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or
3375 3375 'tk'). If given, the corresponding Matplotlib backend is used,
3376 3376 otherwise matplotlib's default (which you can override in your
3377 3377 matplotlib config file) is used.
3378 3378
3379 3379 Examples
3380 3380 --------
3381 3381 In this case, where the MPL default is TkAgg:
3382 3382 In [2]: %pylab
3383 3383
3384 3384 Welcome to pylab, a matplotlib-based Python environment.
3385 3385 Backend in use: TkAgg
3386 3386 For more information, type 'help(pylab)'.
3387 3387
3388 3388 But you can explicitly request a different backend:
3389 3389 In [3]: %pylab qt
3390 3390
3391 3391 Welcome to pylab, a matplotlib-based Python environment.
3392 3392 Backend in use: Qt4Agg
3393 3393 For more information, type 'help(pylab)'.
3394 3394 """
3395 3395 self.shell.enable_pylab(s)
3396 3396
3397 3397 def magic_tb(self, s):
3398 3398 """Print the last traceback with the currently active exception mode.
3399 3399
3400 3400 See %xmode for changing exception reporting modes."""
3401 3401 self.shell.showtraceback()
3402 3402
3403 3403 @testdec.skip_doctest
3404 3404 def magic_precision(self, s=''):
3405 3405 """Set floating point precision for pretty printing.
3406 3406
3407 3407 Can set either integer precision or a format string.
3408 3408
3409 3409 If numpy has been imported and precision is an int,
3410 3410 numpy display precision will also be set, via ``numpy.set_printoptions``.
3411 3411
3412 3412 If no argument is given, defaults will be restored.
3413 3413
3414 3414 Examples
3415 3415 --------
3416 3416 ::
3417 3417
3418 3418 In [1]: from math import pi
3419 3419
3420 3420 In [2]: %precision 3
3421 3421 Out[2]: '%.3f'
3422 3422
3423 3423 In [3]: pi
3424 3424 Out[3]: 3.142
3425 3425
3426 3426 In [4]: %precision %i
3427 3427 Out[4]: '%i'
3428 3428
3429 3429 In [5]: pi
3430 3430 Out[5]: 3
3431 3431
3432 3432 In [6]: %precision %e
3433 3433 Out[6]: '%e'
3434 3434
3435 3435 In [7]: pi**10
3436 3436 Out[7]: 9.364805e+04
3437 3437
3438 3438 In [8]: %precision
3439 3439 Out[8]: '%r'
3440 3440
3441 3441 In [9]: pi**10
3442 3442 Out[9]: 93648.047476082982
3443 3443
3444 3444 """
3445 3445
3446 3446 ptformatter = self.shell.display_formatter.formatters['text/plain']
3447 3447 ptformatter.float_precision = s
3448 3448 return ptformatter.float_format
3449 3449
3450 3450 # end Magic
@@ -1,324 +1,326 b''
1 1 #!/usr/bin/env python
2 2 # coding: utf-8
3 3 """
4 4 Inputhook management for GUI event loop integration.
5 5 """
6 6
7 7 #-----------------------------------------------------------------------------
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9 #
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import ctypes
19 19 import sys
20 20
21 21 #-----------------------------------------------------------------------------
22 22 # Constants
23 23 #-----------------------------------------------------------------------------
24 24
25 25 # Constants for identifying the GUI toolkits.
26 26 GUI_WX = 'wx'
27 27 GUI_QT = 'qt'
28 28 GUI_QT4 = 'qt4'
29 29 GUI_GTK = 'gtk'
30 30 GUI_TK = 'tk'
31 GUI_OSX = 'osx'
31 32
32 33 #-----------------------------------------------------------------------------
33 34 # Utility classes
34 35 #-----------------------------------------------------------------------------
35 36
36 37
37 38 #-----------------------------------------------------------------------------
38 39 # Main InputHookManager class
39 40 #-----------------------------------------------------------------------------
40 41
41 42
42 43 class InputHookManager(object):
43 44 """Manage PyOS_InputHook for different GUI toolkits.
44 45
45 46 This class installs various hooks under ``PyOSInputHook`` to handle
46 47 GUI event loop integration.
47 48 """
48 49
49 50 def __init__(self):
50 51 self.PYFUNC = ctypes.PYFUNCTYPE(ctypes.c_int)
51 52 self._apps = {}
52 53 self._reset()
53 54
54 55 def _reset(self):
55 56 self._callback_pyfunctype = None
56 57 self._callback = None
57 58 self._installed = False
58 59 self._current_gui = None
59 60
60 61 def get_pyos_inputhook(self):
61 62 """Return the current PyOS_InputHook as a ctypes.c_void_p."""
62 63 return ctypes.c_void_p.in_dll(ctypes.pythonapi,"PyOS_InputHook")
63 64
64 65 def get_pyos_inputhook_as_func(self):
65 66 """Return the current PyOS_InputHook as a ctypes.PYFUNCYPE."""
66 67 return self.PYFUNC.in_dll(ctypes.pythonapi,"PyOS_InputHook")
67 68
68 69 def set_inputhook(self, callback):
69 70 """Set PyOS_InputHook to callback and return the previous one."""
70 71 self._callback = callback
71 72 self._callback_pyfunctype = self.PYFUNC(callback)
72 73 pyos_inputhook_ptr = self.get_pyos_inputhook()
73 74 original = self.get_pyos_inputhook_as_func()
74 75 pyos_inputhook_ptr.value = \
75 76 ctypes.cast(self._callback_pyfunctype, ctypes.c_void_p).value
76 77 self._installed = True
77 78 return original
78 79
79 80 def clear_inputhook(self, app=None):
80 81 """Set PyOS_InputHook to NULL and return the previous one.
81 82
82 83 Parameters
83 84 ----------
84 85 app : optional, ignored
85 86 This parameter is allowed only so that clear_inputhook() can be
86 87 called with a similar interface as all the ``enable_*`` methods. But
87 88 the actual value of the parameter is ignored. This uniform interface
88 89 makes it easier to have user-level entry points in the main IPython
89 90 app like :meth:`enable_gui`."""
90 91 pyos_inputhook_ptr = self.get_pyos_inputhook()
91 92 original = self.get_pyos_inputhook_as_func()
92 93 pyos_inputhook_ptr.value = ctypes.c_void_p(None).value
93 94 self._reset()
94 95 return original
95 96
96 97 def clear_app_refs(self, gui=None):
97 98 """Clear IPython's internal reference to an application instance.
98 99
99 100 Whenever we create an app for a user on qt4 or wx, we hold a
100 101 reference to the app. This is needed because in some cases bad things
101 102 can happen if a user doesn't hold a reference themselves. This
102 103 method is provided to clear the references we are holding.
103 104
104 105 Parameters
105 106 ----------
106 107 gui : None or str
107 108 If None, clear all app references. If ('wx', 'qt4') clear
108 109 the app for that toolkit. References are not held for gtk or tk
109 110 as those toolkits don't have the notion of an app.
110 111 """
111 112 if gui is None:
112 113 self._apps = {}
113 114 elif self._apps.has_key(gui):
114 115 del self._apps[gui]
115 116
116 117 def enable_wx(self):
117 118 """Enable event loop integration with wxPython.
118 119
119 120 Parameters
120 121 ----------
121 122 app : bool
122 123 Create a running application object or not.
123 124
124 125 Notes
125 126 -----
126 127 This methods sets the ``PyOS_InputHook`` for wxPython, which allows
127 128 the wxPython to integrate with terminal based applications like
128 129 IPython.
129 130
130 131 If ``app`` is True, we create an :class:`wx.App` as follows::
131 132
132 133 import wx
133 134 app = wx.App(redirect=False, clearSigInt=False)
134 135
135 136 Both options this constructor are important for things to work
136 137 properly in an interactive context.
137 138
138 139 But, we first check to see if an application has already been
139 140 created. If so, we simply return that instance.
140 141 """
141 142 from IPython.lib.inputhookwx import inputhook_wx
142 143 self.set_inputhook(inputhook_wx)
143 144 self._current_gui = GUI_WX
144 145 import wx
145 146 app = wx.GetApp()
146 147 if app is None:
147 148 app = wx.App(redirect=False, clearSigInt=False)
148 149 app._in_event_loop = True
149 150 self._apps[GUI_WX] = app
150 151 return app
151 152
152 153 def disable_wx(self):
153 154 """Disable event loop integration with wxPython.
154 155
155 156 This merely sets PyOS_InputHook to NULL.
156 157 """
157 158 if self._apps.has_key(GUI_WX):
158 159 self._apps[GUI_WX]._in_event_loop = False
159 160 self.clear_inputhook()
160 161
161 162 def enable_qt4(self):
162 163 """Enable event loop integration with PyQt4.
163 164
164 165 Parameters
165 166 ----------
166 167 app : bool
167 168 Create a running application object or not.
168 169
169 170 Notes
170 171 -----
171 172 This methods sets the PyOS_InputHook for PyQt4, which allows
172 173 the PyQt4 to integrate with terminal based applications like
173 174 IPython.
174 175
175 176 If ``app`` is True, we create an :class:`QApplication` as follows::
176 177
177 178 from PyQt4 import QtCore
178 179 app = QtGui.QApplication(sys.argv)
179 180
180 181 But, we first check to see if an application has already been
181 182 created. If so, we simply return that instance.
182 183 """
183 184 from PyQt4 import QtCore
184 185 # PyQt4 has had this since 4.3.1. In version 4.2, PyOS_InputHook
185 186 # was set when QtCore was imported, but if it ever got removed,
186 187 # you couldn't reset it. For earlier versions we can
187 188 # probably implement a ctypes version.
188 189 try:
189 190 QtCore.pyqtRestoreInputHook()
190 191 except AttributeError:
191 192 pass
192 193 self._current_gui = GUI_QT4
193 194 from PyQt4 import QtGui
194 195 app = QtCore.QCoreApplication.instance()
195 196 if app is None:
196 197 app = QtGui.QApplication([" "])
197 198 app._in_event_loop = True
198 199 self._apps[GUI_QT4] = app
199 200 return app
200 201
201 202 def disable_qt4(self):
202 203 """Disable event loop integration with PyQt4.
203 204
204 205 This merely sets PyOS_InputHook to NULL.
205 206 """
206 207 if self._apps.has_key(GUI_QT4):
207 208 self._apps[GUI_QT4]._in_event_loop = False
208 209 self.clear_inputhook()
209 210
210 211 def enable_gtk(self, app=False):
211 212 """Enable event loop integration with PyGTK.
212 213
213 214 Parameters
214 215 ----------
215 216 app : bool
216 217 Create a running application object or not. Because gtk does't
217 218 have an app class, this does nothing.
218 219
219 220 Notes
220 221 -----
221 222 This methods sets the PyOS_InputHook for PyGTK, which allows
222 223 the PyGTK to integrate with terminal based applications like
223 224 IPython.
224 225 """
225 226 import gtk
226 227 try:
227 228 gtk.set_interactive(True)
228 229 self._current_gui = GUI_GTK
229 230 except AttributeError:
230 231 # For older versions of gtk, use our own ctypes version
231 232 from IPython.lib.inputhookgtk import inputhook_gtk
232 233 self.set_inputhook(inputhook_gtk)
233 234 self._current_gui = GUI_GTK
234 235
235 236 def disable_gtk(self):
236 237 """Disable event loop integration with PyGTK.
237 238
238 239 This merely sets PyOS_InputHook to NULL.
239 240 """
240 241 self.clear_inputhook()
241 242
242 243 def enable_tk(self, app=False):
243 244 """Enable event loop integration with Tk.
244 245
245 246 Parameters
246 247 ----------
247 248 app : bool
248 249 Create a running application object or not.
249 250
250 251 Notes
251 252 -----
252 253 Currently this is a no-op as creating a :class:`Tkinter.Tk` object
253 254 sets ``PyOS_InputHook``.
254 255 """
255 256 self._current_gui = GUI_TK
256 257 if app:
257 258 import Tkinter
258 259 app = Tkinter.Tk()
259 260 app.withdraw()
260 261 self._apps[GUI_TK] = app
261 262 return app
262 263
263 264 def disable_tk(self):
264 265 """Disable event loop integration with Tkinter.
265 266
266 267 This merely sets PyOS_InputHook to NULL.
267 268 """
268 269 self.clear_inputhook()
269 270
270 271 def current_gui(self):
271 272 """Return a string indicating the currently active GUI or None."""
272 273 return self._current_gui
273 274
274 275 inputhook_manager = InputHookManager()
275 276
276 277 enable_wx = inputhook_manager.enable_wx
277 278 disable_wx = inputhook_manager.disable_wx
278 279 enable_qt4 = inputhook_manager.enable_qt4
279 280 disable_qt4 = inputhook_manager.disable_qt4
280 281 enable_gtk = inputhook_manager.enable_gtk
281 282 disable_gtk = inputhook_manager.disable_gtk
282 283 enable_tk = inputhook_manager.enable_tk
283 284 disable_tk = inputhook_manager.disable_tk
284 285 clear_inputhook = inputhook_manager.clear_inputhook
285 286 set_inputhook = inputhook_manager.set_inputhook
286 287 current_gui = inputhook_manager.current_gui
287 288 clear_app_refs = inputhook_manager.clear_app_refs
288 289
289 290
290 291 # Convenience function to switch amongst them
291 292 def enable_gui(gui=None):
292 293 """Switch amongst GUI input hooks by name.
293 294
294 295 This is just a utility wrapper around the methods of the InputHookManager
295 296 object.
296 297
297 298 Parameters
298 299 ----------
299 300 gui : optional, string or None
300 301 If None, clears input hook, otherwise it must be one of the recognized
301 302 GUI names (see ``GUI_*`` constants in module).
302 303
303 304 app : optional, bool
304 305 If true, create an app object and return it.
305 306
306 307 Returns
307 308 -------
308 309 The output of the underlying gui switch routine, typically the actual
309 310 PyOS_InputHook wrapper object or the GUI toolkit app created, if there was
310 311 one.
311 312 """
312 313 guis = {None: clear_inputhook,
314 GUI_OSX: lambda app=False: None,
313 315 GUI_TK: enable_tk,
314 316 GUI_GTK: enable_gtk,
315 317 GUI_WX: enable_wx,
316 318 GUI_QT: enable_qt4, # qt3 not supported
317 319 GUI_QT4: enable_qt4 }
318 320 try:
319 321 gui_hook = guis[gui]
320 322 except KeyError:
321 323 e="Invalid GUI request %r, valid ones are:%s" % (gui, guis.keys())
322 324 raise ValueError(e)
323 325 return gui_hook()
324 326
@@ -1,294 +1,295 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Pylab (matplotlib) support utilities.
3 3
4 4 Authors
5 5 -------
6 6
7 7 * Fernando Perez.
8 8 * Brian Granger
9 9 """
10 10
11 11 #-----------------------------------------------------------------------------
12 12 # Copyright (C) 2009 The IPython Development Team
13 13 #
14 14 # Distributed under the terms of the BSD License. The full license is in
15 15 # the file COPYING, distributed as part of this software.
16 16 #-----------------------------------------------------------------------------
17 17
18 18 #-----------------------------------------------------------------------------
19 19 # Imports
20 20 #-----------------------------------------------------------------------------
21 21
22 22 from cStringIO import StringIO
23 23
24 24 from IPython.utils.decorators import flag_calls
25 25
26 26 # If user specifies a GUI, that dictates the backend, otherwise we read the
27 27 # user's mpl default from the mpl rc structure
28 28 backends = {'tk': 'TkAgg',
29 29 'gtk': 'GTKAgg',
30 30 'wx': 'WXAgg',
31 31 'qt': 'Qt4Agg', # qt3 not supported
32 32 'qt4': 'Qt4Agg',
33 'osx': 'MacOSX',
33 34 'inline' : 'module://IPython.zmq.pylab.backend_inline'}
34 35
35 36 #-----------------------------------------------------------------------------
36 37 # Matplotlib utilities
37 38 #-----------------------------------------------------------------------------
38 39
39 40
40 41 def getfigs(*fig_nums):
41 42 """Get a list of matplotlib figures by figure numbers.
42 43
43 44 If no arguments are given, all available figures are returned. If the
44 45 argument list contains references to invalid figures, a warning is printed
45 46 but the function continues pasting further figures.
46 47
47 48 Parameters
48 49 ----------
49 50 figs : tuple
50 51 A tuple of ints giving the figure numbers of the figures to return.
51 52 """
52 53 from matplotlib._pylab_helpers import Gcf
53 54 if not fig_nums:
54 55 fig_managers = Gcf.get_all_fig_managers()
55 56 return [fm.canvas.figure for fm in fig_managers]
56 57 else:
57 58 figs = []
58 59 for num in fig_nums:
59 60 f = Gcf.figs.get(num)
60 61 if f is None:
61 62 print('Warning: figure %s not available.' % num)
62 63 figs.append(f.canvas.figure)
63 64 return figs
64 65
65 66
66 67 def figsize(sizex, sizey):
67 68 """Set the default figure size to be [sizex, sizey].
68 69
69 70 This is just an easy to remember, convenience wrapper that sets::
70 71
71 72 matplotlib.rcParams['figure.figsize'] = [sizex, sizey]
72 73 """
73 74 import matplotlib
74 75 matplotlib.rcParams['figure.figsize'] = [sizex, sizey]
75 76
76 77
77 78 def figure_to_svg(fig):
78 79 """Convert a figure to svg for inline display."""
79 80 fc = fig.get_facecolor()
80 81 ec = fig.get_edgecolor()
81 82 fig.set_facecolor('white')
82 83 fig.set_edgecolor('white')
83 84 try:
84 85 string_io = StringIO()
85 86 fig.canvas.print_figure(string_io, format='svg')
86 87 svg = string_io.getvalue()
87 88 finally:
88 89 fig.set_facecolor(fc)
89 90 fig.set_edgecolor(ec)
90 91 return svg
91 92
92 93
93 94 # We need a little factory function here to create the closure where
94 95 # safe_execfile can live.
95 96 def mpl_runner(safe_execfile):
96 97 """Factory to return a matplotlib-enabled runner for %run.
97 98
98 99 Parameters
99 100 ----------
100 101 safe_execfile : function
101 102 This must be a function with the same interface as the
102 103 :meth:`safe_execfile` method of IPython.
103 104
104 105 Returns
105 106 -------
106 107 A function suitable for use as the ``runner`` argument of the %run magic
107 108 function.
108 109 """
109 110
110 111 def mpl_execfile(fname,*where,**kw):
111 112 """matplotlib-aware wrapper around safe_execfile.
112 113
113 114 Its interface is identical to that of the :func:`execfile` builtin.
114 115
115 116 This is ultimately a call to execfile(), but wrapped in safeties to
116 117 properly handle interactive rendering."""
117 118
118 119 import matplotlib
119 120 import matplotlib.pylab as pylab
120 121
121 122 #print '*** Matplotlib runner ***' # dbg
122 123 # turn off rendering until end of script
123 124 is_interactive = matplotlib.rcParams['interactive']
124 125 matplotlib.interactive(False)
125 126 safe_execfile(fname,*where,**kw)
126 127 matplotlib.interactive(is_interactive)
127 128 # make rendering call now, if the user tried to do it
128 129 if pylab.draw_if_interactive.called:
129 130 pylab.draw()
130 131 pylab.draw_if_interactive.called = False
131 132
132 133 return mpl_execfile
133 134
134 135
135 136 #-----------------------------------------------------------------------------
136 137 # Code for initializing matplotlib and importing pylab
137 138 #-----------------------------------------------------------------------------
138 139
139 140
140 141 def find_gui_and_backend(gui=None):
141 142 """Given a gui string return the gui and mpl backend.
142 143
143 144 Parameters
144 145 ----------
145 146 gui : str
146 147 Can be one of ('tk','gtk','wx','qt','qt4','inline').
147 148
148 149 Returns
149 150 -------
150 151 A tuple of (gui, backend) where backend is one of ('TkAgg','GTKAgg',
151 152 'WXAgg','Qt4Agg','module://IPython.zmq.pylab.backend_inline').
152 153 """
153 154
154 155 import matplotlib
155 156
156 157 if gui:
157 158 # select backend based on requested gui
158 159 backend = backends[gui]
159 160 else:
160 161 backend = matplotlib.rcParams['backend']
161 162 # In this case, we need to find what the appropriate gui selection call
162 163 # should be for IPython, so we can activate inputhook accordingly
163 164 g2b = backends # maps gui names to mpl backend names
164 165 b2g = dict(zip(g2b.values(), g2b.keys())) # reverse dict
165 166 gui = b2g.get(backend, None)
166 167 return gui, backend
167 168
168 169
169 170 def activate_matplotlib(backend):
170 171 """Activate the given backend and set interactive to True."""
171 172
172 173 import matplotlib
173 174 if backend.startswith('module://'):
174 175 # Work around bug in matplotlib: matplotlib.use converts the
175 176 # backend_id to lowercase even if a module name is specified!
176 177 matplotlib.rcParams['backend'] = backend
177 178 else:
178 179 matplotlib.use(backend)
179 180 matplotlib.interactive(True)
180 181
181 182 # This must be imported last in the matplotlib series, after
182 183 # backend/interactivity choices have been made
183 184 import matplotlib.pylab as pylab
184 185
185 186 # XXX For now leave this commented out, but depending on discussions with
186 187 # mpl-dev, we may be able to allow interactive switching...
187 188 #import matplotlib.pyplot
188 189 #matplotlib.pyplot.switch_backend(backend)
189 190
190 191 pylab.show._needmain = False
191 192 # We need to detect at runtime whether show() is called by the user.
192 193 # For this, we wrap it into a decorator which adds a 'called' flag.
193 194 pylab.draw_if_interactive = flag_calls(pylab.draw_if_interactive)
194 195
195 196
196 197 def import_pylab(user_ns, backend, import_all=True, shell=None):
197 198 """Import the standard pylab symbols into user_ns."""
198 199
199 200 # Import numpy as np/pyplot as plt are conventions we're trying to
200 201 # somewhat standardize on. Making them available to users by default
201 202 # will greatly help this.
202 203 s = ("import numpy\n"
203 204 "import matplotlib\n"
204 205 "from matplotlib import pylab, mlab, pyplot\n"
205 206 "np = numpy\n"
206 207 "plt = pyplot\n"
207 208 )
208 209 exec s in user_ns
209 210
210 211 if shell is not None:
211 212 exec s in shell.user_ns_hidden
212 213 # If using our svg payload backend, register the post-execution
213 214 # function that will pick up the results for display. This can only be
214 215 # done with access to the real shell object.
215 216 if backend == backends['inline']:
216 217 from IPython.zmq.pylab.backend_inline import flush_svg
217 218 from matplotlib import pyplot
218 219 shell.register_post_execute(flush_svg)
219 220 # The typical default figure size is too large for inline use,
220 221 # so we shrink the figure size to 6x4, and tweak fonts to
221 222 # make that fit. This is configurable via Global.pylab_inline_rc,
222 223 # or rather it will be once the zmq kernel is hooked up to
223 224 # the config system.
224 225
225 226 default_rc = {
226 227 'figure.figsize': (6.0,4.0),
227 228 # 12pt labels get cutoff on 6x4 logplots, so use 10pt.
228 229 'font.size': 10,
229 230 # 10pt still needs a little more room on the xlabel:
230 231 'figure.subplot.bottom' : .125
231 232 }
232 233 rc = getattr(shell.config.Global, 'pylab_inline_rc', default_rc)
233 234 pyplot.rcParams.update(rc)
234 235 shell.config.Global.pylab_inline_rc = rc
235 236
236 237 # Add 'figsize' to pyplot and to the user's namespace
237 238 user_ns['figsize'] = pyplot.figsize = figsize
238 239 shell.user_ns_hidden['figsize'] = figsize
239 240
240 241 # The old pastefig function has been replaced by display
241 242 # Always add this svg formatter so display works.
242 243 from IPython.zmq.pylab.backend_inline import figure_to_svg
243 244 from IPython.core.display import display, display_svg
244 245 svg_formatter = shell.display_formatter.formatters['image/svg+xml']
245 246 svg_formatter.for_type_by_name(
246 247 'matplotlib.figure','Figure',figure_to_svg
247 248 )
248 249 # Add display and display_png to the user's namespace
249 250 user_ns['display'] = display
250 251 shell.user_ns_hidden['display'] = display
251 252 user_ns['display_svg'] = display_svg
252 253 shell.user_ns_hidden['display_svg'] = display_svg
253 254 user_ns['getfigs'] = getfigs
254 255 shell.user_ns_hidden['getfigs'] = getfigs
255 256
256 257 if import_all:
257 258 s = ("from matplotlib.pylab import *\n"
258 259 "from numpy import *\n")
259 260 exec s in user_ns
260 261 if shell is not None:
261 262 exec s in shell.user_ns_hidden
262 263
263 264
264 265 def pylab_activate(user_ns, gui=None, import_all=True):
265 266 """Activate pylab mode in the user's namespace.
266 267
267 268 Loads and initializes numpy, matplotlib and friends for interactive use.
268 269
269 270 Parameters
270 271 ----------
271 272 user_ns : dict
272 273 Namespace where the imports will occur.
273 274
274 275 gui : optional, string
275 276 A valid gui name following the conventions of the %gui magic.
276 277
277 278 import_all : optional, boolean
278 279 If true, an 'import *' is done from numpy and pylab.
279 280
280 281 Returns
281 282 -------
282 283 The actual gui used (if not given as input, it was obtained from matplotlib
283 284 itself, and will be needed next to configure IPython's gui integration.
284 285 """
285 286 gui, backend = find_gui_and_backend(gui)
286 287 activate_matplotlib(backend)
287 288 import_pylab(user_ns, backend)
288 289
289 290 print """
290 291 Welcome to pylab, a matplotlib-based Python environment [backend: %s].
291 292 For more information, type 'help(pylab)'.""" % backend
292 293
293 294 return gui
294 295
General Comments 0
You need to be logged in to leave comments. Login now