##// END OF EJS Templates
Restore trace function after exiting debugger....
Matthias Bussonnier -
Show More
@@ -1,1499 +1,1502 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Implementation of execution-related magic functions."""
3 3
4 4 # Copyright (c) IPython Development Team.
5 5 # Distributed under the terms of the Modified BSD License.
6 6
7 7
8 8 import ast
9 9 import bdb
10 10 import builtins as builtin_mod
11 11 import gc
12 12 import itertools
13 13 import os
14 14 import shlex
15 15 import sys
16 16 import time
17 17 import timeit
18 18 import math
19 19 import re
20 20 from pdb import Restart
21 21
22 22 # cProfile was added in Python2.5
23 23 try:
24 24 import cProfile as profile
25 25 import pstats
26 26 except ImportError:
27 27 # profile isn't bundled by default in Debian for license reasons
28 28 try:
29 29 import profile, pstats
30 30 except ImportError:
31 31 profile = pstats = None
32 32
33 33 from IPython.core import oinspect
34 34 from IPython.core import magic_arguments
35 35 from IPython.core import page
36 36 from IPython.core.error import UsageError
37 37 from IPython.core.macro import Macro
38 38 from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic,
39 39 line_cell_magic, on_off, needs_local_scope,
40 40 no_var_expand)
41 41 from IPython.testing.skipdoctest import skip_doctest
42 42 from IPython.utils.contexts import preserve_keys
43 43 from IPython.utils.capture import capture_output
44 44 from IPython.utils.ipstruct import Struct
45 45 from IPython.utils.module_paths import find_mod
46 46 from IPython.utils.path import get_py_filename, shellglob
47 47 from IPython.utils.timing import clock, clock2
48 48 from warnings import warn
49 49 from logging import error
50 50 from io import StringIO
51 51
52 52 if sys.version_info > (3,8):
53 53 from ast import Module
54 54 else :
55 55 # mock the new API, ignore second argument
56 56 # see https://github.com/ipython/ipython/issues/11590
57 57 from ast import Module as OriginalModule
58 58 Module = lambda nodelist, type_ignores: OriginalModule(nodelist)
59 59
60 60
61 61 #-----------------------------------------------------------------------------
62 62 # Magic implementation classes
63 63 #-----------------------------------------------------------------------------
64 64
65 65
66 66 class TimeitResult(object):
67 67 """
68 68 Object returned by the timeit magic with info about the run.
69 69
70 70 Contains the following attributes :
71 71
72 72 loops: (int) number of loops done per measurement
73 73 repeat: (int) number of times the measurement has been repeated
74 74 best: (float) best execution time / number
75 75 all_runs: (list of float) execution time of each run (in s)
76 76 compile_time: (float) time of statement compilation (s)
77 77
78 78 """
79 79 def __init__(self, loops, repeat, best, worst, all_runs, compile_time, precision):
80 80 self.loops = loops
81 81 self.repeat = repeat
82 82 self.best = best
83 83 self.worst = worst
84 84 self.all_runs = all_runs
85 85 self.compile_time = compile_time
86 86 self._precision = precision
87 87 self.timings = [ dt / self.loops for dt in all_runs]
88 88
89 89 @property
90 90 def average(self):
91 91 return math.fsum(self.timings) / len(self.timings)
92 92
93 93 @property
94 94 def stdev(self):
95 95 mean = self.average
96 96 return (math.fsum([(x - mean) ** 2 for x in self.timings]) / len(self.timings)) ** 0.5
97 97
98 98 def __str__(self):
99 99 pm = '+-'
100 100 if hasattr(sys.stdout, 'encoding') and sys.stdout.encoding:
101 101 try:
102 102 u'\xb1'.encode(sys.stdout.encoding)
103 103 pm = u'\xb1'
104 104 except:
105 105 pass
106 106 return (
107 107 u"{mean} {pm} {std} per loop (mean {pm} std. dev. of {runs} run{run_plural}, {loops} loop{loop_plural} each)"
108 108 .format(
109 109 pm = pm,
110 110 runs = self.repeat,
111 111 loops = self.loops,
112 112 loop_plural = "" if self.loops == 1 else "s",
113 113 run_plural = "" if self.repeat == 1 else "s",
114 114 mean = _format_time(self.average, self._precision),
115 115 std = _format_time(self.stdev, self._precision))
116 116 )
117 117
118 118 def _repr_pretty_(self, p , cycle):
119 119 unic = self.__str__()
120 120 p.text(u'<TimeitResult : '+unic+u'>')
121 121
122 122
123 123 class TimeitTemplateFiller(ast.NodeTransformer):
124 124 """Fill in the AST template for timing execution.
125 125
126 126 This is quite closely tied to the template definition, which is in
127 127 :meth:`ExecutionMagics.timeit`.
128 128 """
129 129 def __init__(self, ast_setup, ast_stmt):
130 130 self.ast_setup = ast_setup
131 131 self.ast_stmt = ast_stmt
132 132
133 133 def visit_FunctionDef(self, node):
134 134 "Fill in the setup statement"
135 135 self.generic_visit(node)
136 136 if node.name == "inner":
137 137 node.body[:1] = self.ast_setup.body
138 138
139 139 return node
140 140
141 141 def visit_For(self, node):
142 142 "Fill in the statement to be timed"
143 143 if getattr(getattr(node.body[0], 'value', None), 'id', None) == 'stmt':
144 144 node.body = self.ast_stmt.body
145 145 return node
146 146
147 147
148 148 class Timer(timeit.Timer):
149 149 """Timer class that explicitly uses self.inner
150 150
151 151 which is an undocumented implementation detail of CPython,
152 152 not shared by PyPy.
153 153 """
154 154 # Timer.timeit copied from CPython 3.4.2
155 155 def timeit(self, number=timeit.default_number):
156 156 """Time 'number' executions of the main statement.
157 157
158 158 To be precise, this executes the setup statement once, and
159 159 then returns the time it takes to execute the main statement
160 160 a number of times, as a float measured in seconds. The
161 161 argument is the number of times through the loop, defaulting
162 162 to one million. The main statement, the setup statement and
163 163 the timer function to be used are passed to the constructor.
164 164 """
165 165 it = itertools.repeat(None, number)
166 166 gcold = gc.isenabled()
167 167 gc.disable()
168 168 try:
169 169 timing = self.inner(it, self.timer)
170 170 finally:
171 171 if gcold:
172 172 gc.enable()
173 173 return timing
174 174
175 175
176 176 @magics_class
177 177 class ExecutionMagics(Magics):
178 178 """Magics related to code execution, debugging, profiling, etc.
179 179
180 180 """
181 181
182 182 def __init__(self, shell):
183 183 super(ExecutionMagics, self).__init__(shell)
184 184 if profile is None:
185 185 self.prun = self.profile_missing_notice
186 186 # Default execution function used to actually run user code.
187 187 self.default_runner = None
188 188
189 189 def profile_missing_notice(self, *args, **kwargs):
190 190 error("""\
191 191 The profile module could not be found. It has been removed from the standard
192 192 python packages because of its non-free license. To use profiling, install the
193 193 python-profiler package from non-free.""")
194 194
195 195 @skip_doctest
196 196 @no_var_expand
197 197 @line_cell_magic
198 198 def prun(self, parameter_s='', cell=None):
199 199
200 200 """Run a statement through the python code profiler.
201 201
202 202 Usage, in line mode:
203 203 %prun [options] statement
204 204
205 205 Usage, in cell mode:
206 206 %%prun [options] [statement]
207 207 code...
208 208 code...
209 209
210 210 In cell mode, the additional code lines are appended to the (possibly
211 211 empty) statement in the first line. Cell mode allows you to easily
212 212 profile multiline blocks without having to put them in a separate
213 213 function.
214 214
215 215 The given statement (which doesn't require quote marks) is run via the
216 216 python profiler in a manner similar to the profile.run() function.
217 217 Namespaces are internally managed to work correctly; profile.run
218 218 cannot be used in IPython because it makes certain assumptions about
219 219 namespaces which do not hold under IPython.
220 220
221 221 Options:
222 222
223 223 -l <limit>
224 224 you can place restrictions on what or how much of the
225 225 profile gets printed. The limit value can be:
226 226
227 227 * A string: only information for function names containing this string
228 228 is printed.
229 229
230 230 * An integer: only these many lines are printed.
231 231
232 232 * A float (between 0 and 1): this fraction of the report is printed
233 233 (for example, use a limit of 0.4 to see the topmost 40% only).
234 234
235 235 You can combine several limits with repeated use of the option. For
236 236 example, ``-l __init__ -l 5`` will print only the topmost 5 lines of
237 237 information about class constructors.
238 238
239 239 -r
240 240 return the pstats.Stats object generated by the profiling. This
241 241 object has all the information about the profile in it, and you can
242 242 later use it for further analysis or in other functions.
243 243
244 244 -s <key>
245 245 sort profile by given key. You can provide more than one key
246 246 by using the option several times: '-s key1 -s key2 -s key3...'. The
247 247 default sorting key is 'time'.
248 248
249 249 The following is copied verbatim from the profile documentation
250 250 referenced below:
251 251
252 252 When more than one key is provided, additional keys are used as
253 253 secondary criteria when the there is equality in all keys selected
254 254 before them.
255 255
256 256 Abbreviations can be used for any key names, as long as the
257 257 abbreviation is unambiguous. The following are the keys currently
258 258 defined:
259 259
260 260 ============ =====================
261 261 Valid Arg Meaning
262 262 ============ =====================
263 263 "calls" call count
264 264 "cumulative" cumulative time
265 265 "file" file name
266 266 "module" file name
267 267 "pcalls" primitive call count
268 268 "line" line number
269 269 "name" function name
270 270 "nfl" name/file/line
271 271 "stdname" standard name
272 272 "time" internal time
273 273 ============ =====================
274 274
275 275 Note that all sorts on statistics are in descending order (placing
276 276 most time consuming items first), where as name, file, and line number
277 277 searches are in ascending order (i.e., alphabetical). The subtle
278 278 distinction between "nfl" and "stdname" is that the standard name is a
279 279 sort of the name as printed, which means that the embedded line
280 280 numbers get compared in an odd way. For example, lines 3, 20, and 40
281 281 would (if the file names were the same) appear in the string order
282 282 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
283 283 line numbers. In fact, sort_stats("nfl") is the same as
284 284 sort_stats("name", "file", "line").
285 285
286 286 -T <filename>
287 287 save profile results as shown on screen to a text
288 288 file. The profile is still shown on screen.
289 289
290 290 -D <filename>
291 291 save (via dump_stats) profile statistics to given
292 292 filename. This data is in a format understood by the pstats module, and
293 293 is generated by a call to the dump_stats() method of profile
294 294 objects. The profile is still shown on screen.
295 295
296 296 -q
297 297 suppress output to the pager. Best used with -T and/or -D above.
298 298
299 299 If you want to run complete programs under the profiler's control, use
300 300 ``%run -p [prof_opts] filename.py [args to program]`` where prof_opts
301 301 contains profiler specific options as described here.
302 302
303 303 You can read the complete documentation for the profile module with::
304 304
305 305 In [1]: import profile; profile.help()
306 306
307 307 .. versionchanged:: 7.3
308 308 User variables are no longer expanded,
309 309 the magic line is always left unmodified.
310 310
311 311 """
312 312 opts, arg_str = self.parse_options(parameter_s, 'D:l:rs:T:q',
313 313 list_all=True, posix=False)
314 314 if cell is not None:
315 315 arg_str += '\n' + cell
316 316 arg_str = self.shell.transform_cell(arg_str)
317 317 return self._run_with_profiler(arg_str, opts, self.shell.user_ns)
318 318
319 319 def _run_with_profiler(self, code, opts, namespace):
320 320 """
321 321 Run `code` with profiler. Used by ``%prun`` and ``%run -p``.
322 322
323 323 Parameters
324 324 ----------
325 325 code : str
326 326 Code to be executed.
327 327 opts : Struct
328 328 Options parsed by `self.parse_options`.
329 329 namespace : dict
330 330 A dictionary for Python namespace (e.g., `self.shell.user_ns`).
331 331
332 332 """
333 333
334 334 # Fill default values for unspecified options:
335 335 opts.merge(Struct(D=[''], l=[], s=['time'], T=['']))
336 336
337 337 prof = profile.Profile()
338 338 try:
339 339 prof = prof.runctx(code, namespace, namespace)
340 340 sys_exit = ''
341 341 except SystemExit:
342 342 sys_exit = """*** SystemExit exception caught in code being profiled."""
343 343
344 344 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
345 345
346 346 lims = opts.l
347 347 if lims:
348 348 lims = [] # rebuild lims with ints/floats/strings
349 349 for lim in opts.l:
350 350 try:
351 351 lims.append(int(lim))
352 352 except ValueError:
353 353 try:
354 354 lims.append(float(lim))
355 355 except ValueError:
356 356 lims.append(lim)
357 357
358 358 # Trap output.
359 359 stdout_trap = StringIO()
360 360 stats_stream = stats.stream
361 361 try:
362 362 stats.stream = stdout_trap
363 363 stats.print_stats(*lims)
364 364 finally:
365 365 stats.stream = stats_stream
366 366
367 367 output = stdout_trap.getvalue()
368 368 output = output.rstrip()
369 369
370 370 if 'q' not in opts:
371 371 page.page(output)
372 372 print(sys_exit, end=' ')
373 373
374 374 dump_file = opts.D[0]
375 375 text_file = opts.T[0]
376 376 if dump_file:
377 377 prof.dump_stats(dump_file)
378 378 print('\n*** Profile stats marshalled to file',\
379 379 repr(dump_file)+'.',sys_exit)
380 380 if text_file:
381 381 with open(text_file, 'w') as pfile:
382 382 pfile.write(output)
383 383 print('\n*** Profile printout saved to text file',\
384 384 repr(text_file)+'.',sys_exit)
385 385
386 386 if 'r' in opts:
387 387 return stats
388 388 else:
389 389 return None
390 390
391 391 @line_magic
392 392 def pdb(self, parameter_s=''):
393 393 """Control the automatic calling of the pdb interactive debugger.
394 394
395 395 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
396 396 argument it works as a toggle.
397 397
398 398 When an exception is triggered, IPython can optionally call the
399 399 interactive pdb debugger after the traceback printout. %pdb toggles
400 400 this feature on and off.
401 401
402 402 The initial state of this feature is set in your configuration
403 403 file (the option is ``InteractiveShell.pdb``).
404 404
405 405 If you want to just activate the debugger AFTER an exception has fired,
406 406 without having to type '%pdb on' and rerunning your code, you can use
407 407 the %debug magic."""
408 408
409 409 par = parameter_s.strip().lower()
410 410
411 411 if par:
412 412 try:
413 413 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
414 414 except KeyError:
415 415 print ('Incorrect argument. Use on/1, off/0, '
416 416 'or nothing for a toggle.')
417 417 return
418 418 else:
419 419 # toggle
420 420 new_pdb = not self.shell.call_pdb
421 421
422 422 # set on the shell
423 423 self.shell.call_pdb = new_pdb
424 424 print('Automatic pdb calling has been turned',on_off(new_pdb))
425 425
426 426 @skip_doctest
427 427 @magic_arguments.magic_arguments()
428 428 @magic_arguments.argument('--breakpoint', '-b', metavar='FILE:LINE',
429 429 help="""
430 430 Set break point at LINE in FILE.
431 431 """
432 432 )
433 433 @magic_arguments.argument('statement', nargs='*',
434 434 help="""
435 435 Code to run in debugger.
436 436 You can omit this in cell magic mode.
437 437 """
438 438 )
439 439 @no_var_expand
440 440 @line_cell_magic
441 441 def debug(self, line='', cell=None):
442 442 """Activate the interactive debugger.
443 443
444 444 This magic command support two ways of activating debugger.
445 445 One is to activate debugger before executing code. This way, you
446 446 can set a break point, to step through the code from the point.
447 447 You can use this mode by giving statements to execute and optionally
448 448 a breakpoint.
449 449
450 450 The other one is to activate debugger in post-mortem mode. You can
451 451 activate this mode simply running %debug without any argument.
452 452 If an exception has just occurred, this lets you inspect its stack
453 453 frames interactively. Note that this will always work only on the last
454 454 traceback that occurred, so you must call this quickly after an
455 455 exception that you wish to inspect has fired, because if another one
456 456 occurs, it clobbers the previous one.
457 457
458 458 If you want IPython to automatically do this on every exception, see
459 459 the %pdb magic for more details.
460 460
461 461 .. versionchanged:: 7.3
462 462 When running code, user variables are no longer expanded,
463 463 the magic line is always left unmodified.
464 464
465 465 """
466 466 args = magic_arguments.parse_argstring(self.debug, line)
467 467
468 468 if not (args.breakpoint or args.statement or cell):
469 469 self._debug_post_mortem()
470 470 else:
471 471 code = "\n".join(args.statement)
472 472 if cell:
473 473 code += "\n" + cell
474 474 self._debug_exec(code, args.breakpoint)
475 475
476 476 def _debug_post_mortem(self):
477 477 self.shell.debugger(force=True)
478 478
479 479 def _debug_exec(self, code, breakpoint):
480 480 if breakpoint:
481 481 (filename, bp_line) = breakpoint.rsplit(':', 1)
482 482 bp_line = int(bp_line)
483 483 else:
484 484 (filename, bp_line) = (None, None)
485 485 self._run_with_debugger(code, self.shell.user_ns, filename, bp_line)
486 486
487 487 @line_magic
488 488 def tb(self, s):
489 489 """Print the last traceback.
490 490
491 491 Optionally, specify an exception reporting mode, tuning the
492 492 verbosity of the traceback. By default the currently-active exception
493 493 mode is used. See %xmode for changing exception reporting modes.
494 494
495 495 Valid modes: Plain, Context, Verbose, and Minimal.
496 496 """
497 497 interactive_tb = self.shell.InteractiveTB
498 498 if s:
499 499 # Switch exception reporting mode for this one call.
500 500 # Ensure it is switched back.
501 501 def xmode_switch_err(name):
502 502 warn('Error changing %s exception modes.\n%s' %
503 503 (name,sys.exc_info()[1]))
504 504
505 505 new_mode = s.strip().capitalize()
506 506 original_mode = interactive_tb.mode
507 507 try:
508 508 try:
509 509 interactive_tb.set_mode(mode=new_mode)
510 510 except Exception:
511 511 xmode_switch_err('user')
512 512 else:
513 513 self.shell.showtraceback()
514 514 finally:
515 515 interactive_tb.set_mode(mode=original_mode)
516 516 else:
517 517 self.shell.showtraceback()
518 518
519 519 @skip_doctest
520 520 @line_magic
521 521 def run(self, parameter_s='', runner=None,
522 522 file_finder=get_py_filename):
523 523 """Run the named file inside IPython as a program.
524 524
525 525 Usage::
526 526
527 527 %run [-n -i -e -G]
528 528 [( -t [-N<N>] | -d [-b<N>] | -p [profile options] )]
529 529 ( -m mod | file ) [args]
530 530
531 531 Parameters after the filename are passed as command-line arguments to
532 532 the program (put in sys.argv). Then, control returns to IPython's
533 533 prompt.
534 534
535 535 This is similar to running at a system prompt ``python file args``,
536 536 but with the advantage of giving you IPython's tracebacks, and of
537 537 loading all variables into your interactive namespace for further use
538 538 (unless -p is used, see below).
539 539
540 540 The file is executed in a namespace initially consisting only of
541 541 ``__name__=='__main__'`` and sys.argv constructed as indicated. It thus
542 542 sees its environment as if it were being run as a stand-alone program
543 543 (except for sharing global objects such as previously imported
544 544 modules). But after execution, the IPython interactive namespace gets
545 545 updated with all variables defined in the program (except for __name__
546 546 and sys.argv). This allows for very convenient loading of code for
547 547 interactive work, while giving each program a 'clean sheet' to run in.
548 548
549 549 Arguments are expanded using shell-like glob match. Patterns
550 550 '*', '?', '[seq]' and '[!seq]' can be used. Additionally,
551 551 tilde '~' will be expanded into user's home directory. Unlike
552 552 real shells, quotation does not suppress expansions. Use
553 553 *two* back slashes (e.g. ``\\\\*``) to suppress expansions.
554 554 To completely disable these expansions, you can use -G flag.
555 555
556 556 On Windows systems, the use of single quotes `'` when specifying
557 557 a file is not supported. Use double quotes `"`.
558 558
559 559 Options:
560 560
561 561 -n
562 562 __name__ is NOT set to '__main__', but to the running file's name
563 563 without extension (as python does under import). This allows running
564 564 scripts and reloading the definitions in them without calling code
565 565 protected by an ``if __name__ == "__main__"`` clause.
566 566
567 567 -i
568 568 run the file in IPython's namespace instead of an empty one. This
569 569 is useful if you are experimenting with code written in a text editor
570 570 which depends on variables defined interactively.
571 571
572 572 -e
573 573 ignore sys.exit() calls or SystemExit exceptions in the script
574 574 being run. This is particularly useful if IPython is being used to
575 575 run unittests, which always exit with a sys.exit() call. In such
576 576 cases you are interested in the output of the test results, not in
577 577 seeing a traceback of the unittest module.
578 578
579 579 -t
580 580 print timing information at the end of the run. IPython will give
581 581 you an estimated CPU time consumption for your script, which under
582 582 Unix uses the resource module to avoid the wraparound problems of
583 583 time.clock(). Under Unix, an estimate of time spent on system tasks
584 584 is also given (for Windows platforms this is reported as 0.0).
585 585
586 586 If -t is given, an additional ``-N<N>`` option can be given, where <N>
587 587 must be an integer indicating how many times you want the script to
588 588 run. The final timing report will include total and per run results.
589 589
590 590 For example (testing the script uniq_stable.py)::
591 591
592 592 In [1]: run -t uniq_stable
593 593
594 594 IPython CPU timings (estimated):
595 595 User : 0.19597 s.
596 596 System: 0.0 s.
597 597
598 598 In [2]: run -t -N5 uniq_stable
599 599
600 600 IPython CPU timings (estimated):
601 601 Total runs performed: 5
602 602 Times : Total Per run
603 603 User : 0.910862 s, 0.1821724 s.
604 604 System: 0.0 s, 0.0 s.
605 605
606 606 -d
607 607 run your program under the control of pdb, the Python debugger.
608 608 This allows you to execute your program step by step, watch variables,
609 609 etc. Internally, what IPython does is similar to calling::
610 610
611 611 pdb.run('execfile("YOURFILENAME")')
612 612
613 613 with a breakpoint set on line 1 of your file. You can change the line
614 614 number for this automatic breakpoint to be <N> by using the -bN option
615 615 (where N must be an integer). For example::
616 616
617 617 %run -d -b40 myscript
618 618
619 619 will set the first breakpoint at line 40 in myscript.py. Note that
620 620 the first breakpoint must be set on a line which actually does
621 621 something (not a comment or docstring) for it to stop execution.
622 622
623 623 Or you can specify a breakpoint in a different file::
624 624
625 625 %run -d -b myotherfile.py:20 myscript
626 626
627 627 When the pdb debugger starts, you will see a (Pdb) prompt. You must
628 628 first enter 'c' (without quotes) to start execution up to the first
629 629 breakpoint.
630 630
631 631 Entering 'help' gives information about the use of the debugger. You
632 632 can easily see pdb's full documentation with "import pdb;pdb.help()"
633 633 at a prompt.
634 634
635 635 -p
636 636 run program under the control of the Python profiler module (which
637 637 prints a detailed report of execution times, function calls, etc).
638 638
639 639 You can pass other options after -p which affect the behavior of the
640 640 profiler itself. See the docs for %prun for details.
641 641
642 642 In this mode, the program's variables do NOT propagate back to the
643 643 IPython interactive namespace (because they remain in the namespace
644 644 where the profiler executes them).
645 645
646 646 Internally this triggers a call to %prun, see its documentation for
647 647 details on the options available specifically for profiling.
648 648
649 649 There is one special usage for which the text above doesn't apply:
650 650 if the filename ends with .ipy[nb], the file is run as ipython script,
651 651 just as if the commands were written on IPython prompt.
652 652
653 653 -m
654 654 specify module name to load instead of script path. Similar to
655 655 the -m option for the python interpreter. Use this option last if you
656 656 want to combine with other %run options. Unlike the python interpreter
657 657 only source modules are allowed no .pyc or .pyo files.
658 658 For example::
659 659
660 660 %run -m example
661 661
662 662 will run the example module.
663 663
664 664 -G
665 665 disable shell-like glob expansion of arguments.
666 666
667 667 """
668 668
669 669 # Logic to handle issue #3664
670 670 # Add '--' after '-m <module_name>' to ignore additional args passed to a module.
671 671 if '-m' in parameter_s and '--' not in parameter_s:
672 672 argv = shlex.split(parameter_s, posix=(os.name == 'posix'))
673 673 for idx, arg in enumerate(argv):
674 674 if arg and arg.startswith('-') and arg != '-':
675 675 if arg == '-m':
676 676 argv.insert(idx + 2, '--')
677 677 break
678 678 else:
679 679 # Positional arg, break
680 680 break
681 681 parameter_s = ' '.join(shlex.quote(arg) for arg in argv)
682 682
683 683 # get arguments and set sys.argv for program to be run.
684 684 opts, arg_lst = self.parse_options(parameter_s,
685 685 'nidtN:b:pD:l:rs:T:em:G',
686 686 mode='list', list_all=1)
687 687 if "m" in opts:
688 688 modulename = opts["m"][0]
689 689 modpath = find_mod(modulename)
690 690 if modpath is None:
691 691 warn('%r is not a valid modulename on sys.path'%modulename)
692 692 return
693 693 arg_lst = [modpath] + arg_lst
694 694 try:
695 695 fpath = None # initialize to make sure fpath is in scope later
696 696 fpath = arg_lst[0]
697 697 filename = file_finder(fpath)
698 698 except IndexError:
699 699 warn('you must provide at least a filename.')
700 700 print('\n%run:\n', oinspect.getdoc(self.run))
701 701 return
702 702 except IOError as e:
703 703 try:
704 704 msg = str(e)
705 705 except UnicodeError:
706 706 msg = e.message
707 707 if os.name == 'nt' and re.match(r"^'.*'$",fpath):
708 708 warn('For Windows, use double quotes to wrap a filename: %run "mypath\\myfile.py"')
709 709 error(msg)
710 710 return
711 711
712 712 if filename.lower().endswith(('.ipy', '.ipynb')):
713 713 with preserve_keys(self.shell.user_ns, '__file__'):
714 714 self.shell.user_ns['__file__'] = filename
715 715 self.shell.safe_execfile_ipy(filename)
716 716 return
717 717
718 718 # Control the response to exit() calls made by the script being run
719 719 exit_ignore = 'e' in opts
720 720
721 721 # Make sure that the running script gets a proper sys.argv as if it
722 722 # were run from a system shell.
723 723 save_argv = sys.argv # save it for later restoring
724 724
725 725 if 'G' in opts:
726 726 args = arg_lst[1:]
727 727 else:
728 728 # tilde and glob expansion
729 729 args = shellglob(map(os.path.expanduser, arg_lst[1:]))
730 730
731 731 sys.argv = [filename] + args # put in the proper filename
732 732
733 733 if 'n' in opts:
734 734 name = os.path.splitext(os.path.basename(filename))[0]
735 735 else:
736 736 name = '__main__'
737 737
738 738 if 'i' in opts:
739 739 # Run in user's interactive namespace
740 740 prog_ns = self.shell.user_ns
741 741 __name__save = self.shell.user_ns['__name__']
742 742 prog_ns['__name__'] = name
743 743 main_mod = self.shell.user_module
744 744
745 745 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
746 746 # set the __file__ global in the script's namespace
747 747 # TK: Is this necessary in interactive mode?
748 748 prog_ns['__file__'] = filename
749 749 else:
750 750 # Run in a fresh, empty namespace
751 751
752 752 # The shell MUST hold a reference to prog_ns so after %run
753 753 # exits, the python deletion mechanism doesn't zero it out
754 754 # (leaving dangling references). See interactiveshell for details
755 755 main_mod = self.shell.new_main_mod(filename, name)
756 756 prog_ns = main_mod.__dict__
757 757
758 758 # pickle fix. See interactiveshell for an explanation. But we need to
759 759 # make sure that, if we overwrite __main__, we replace it at the end
760 760 main_mod_name = prog_ns['__name__']
761 761
762 762 if main_mod_name == '__main__':
763 763 restore_main = sys.modules['__main__']
764 764 else:
765 765 restore_main = False
766 766
767 767 # This needs to be undone at the end to prevent holding references to
768 768 # every single object ever created.
769 769 sys.modules[main_mod_name] = main_mod
770 770
771 771 if 'p' in opts or 'd' in opts:
772 772 if 'm' in opts:
773 773 code = 'run_module(modulename, prog_ns)'
774 774 code_ns = {
775 775 'run_module': self.shell.safe_run_module,
776 776 'prog_ns': prog_ns,
777 777 'modulename': modulename,
778 778 }
779 779 else:
780 780 if 'd' in opts:
781 781 # allow exceptions to raise in debug mode
782 782 code = 'execfile(filename, prog_ns, raise_exceptions=True)'
783 783 else:
784 784 code = 'execfile(filename, prog_ns)'
785 785 code_ns = {
786 786 'execfile': self.shell.safe_execfile,
787 787 'prog_ns': prog_ns,
788 788 'filename': get_py_filename(filename),
789 789 }
790 790
791 791 try:
792 792 stats = None
793 793 if 'p' in opts:
794 794 stats = self._run_with_profiler(code, opts, code_ns)
795 795 else:
796 796 if 'd' in opts:
797 797 bp_file, bp_line = parse_breakpoint(
798 798 opts.get('b', ['1'])[0], filename)
799 799 self._run_with_debugger(
800 800 code, code_ns, filename, bp_line, bp_file)
801 801 else:
802 802 if 'm' in opts:
803 803 def run():
804 804 self.shell.safe_run_module(modulename, prog_ns)
805 805 else:
806 806 if runner is None:
807 807 runner = self.default_runner
808 808 if runner is None:
809 809 runner = self.shell.safe_execfile
810 810
811 811 def run():
812 812 runner(filename, prog_ns, prog_ns,
813 813 exit_ignore=exit_ignore)
814 814
815 815 if 't' in opts:
816 816 # timed execution
817 817 try:
818 818 nruns = int(opts['N'][0])
819 819 if nruns < 1:
820 820 error('Number of runs must be >=1')
821 821 return
822 822 except (KeyError):
823 823 nruns = 1
824 824 self._run_with_timing(run, nruns)
825 825 else:
826 826 # regular execution
827 827 run()
828 828
829 829 if 'i' in opts:
830 830 self.shell.user_ns['__name__'] = __name__save
831 831 else:
832 832 # update IPython interactive namespace
833 833
834 834 # Some forms of read errors on the file may mean the
835 835 # __name__ key was never set; using pop we don't have to
836 836 # worry about a possible KeyError.
837 837 prog_ns.pop('__name__', None)
838 838
839 839 with preserve_keys(self.shell.user_ns, '__file__'):
840 840 self.shell.user_ns.update(prog_ns)
841 841 finally:
842 842 # It's a bit of a mystery why, but __builtins__ can change from
843 843 # being a module to becoming a dict missing some key data after
844 844 # %run. As best I can see, this is NOT something IPython is doing
845 845 # at all, and similar problems have been reported before:
846 846 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
847 847 # Since this seems to be done by the interpreter itself, the best
848 848 # we can do is to at least restore __builtins__ for the user on
849 849 # exit.
850 850 self.shell.user_ns['__builtins__'] = builtin_mod
851 851
852 852 # Ensure key global structures are restored
853 853 sys.argv = save_argv
854 854 if restore_main:
855 855 sys.modules['__main__'] = restore_main
856 856 else:
857 857 # Remove from sys.modules the reference to main_mod we'd
858 858 # added. Otherwise it will trap references to objects
859 859 # contained therein.
860 860 del sys.modules[main_mod_name]
861 861
862 862 return stats
863 863
864 864 def _run_with_debugger(self, code, code_ns, filename=None,
865 865 bp_line=None, bp_file=None):
866 866 """
867 867 Run `code` in debugger with a break point.
868 868
869 869 Parameters
870 870 ----------
871 871 code : str
872 872 Code to execute.
873 873 code_ns : dict
874 874 A namespace in which `code` is executed.
875 875 filename : str
876 876 `code` is ran as if it is in `filename`.
877 877 bp_line : int, optional
878 878 Line number of the break point.
879 879 bp_file : str, optional
880 880 Path to the file in which break point is specified.
881 881 `filename` is used if not given.
882 882
883 883 Raises
884 884 ------
885 885 UsageError
886 886 If the break point given by `bp_line` is not valid.
887 887
888 888 """
889 889 deb = self.shell.InteractiveTB.pdb
890 890 if not deb:
891 891 self.shell.InteractiveTB.pdb = self.shell.InteractiveTB.debugger_cls()
892 892 deb = self.shell.InteractiveTB.pdb
893 893
894 894 # deb.checkline() fails if deb.curframe exists but is None; it can
895 895 # handle it not existing. https://github.com/ipython/ipython/issues/10028
896 896 if hasattr(deb, 'curframe'):
897 897 del deb.curframe
898 898
899 899 # reset Breakpoint state, which is moronically kept
900 900 # in a class
901 901 bdb.Breakpoint.next = 1
902 902 bdb.Breakpoint.bplist = {}
903 903 bdb.Breakpoint.bpbynumber = [None]
904 904 deb.clear_all_breaks()
905 905 if bp_line is not None:
906 906 # Set an initial breakpoint to stop execution
907 907 maxtries = 10
908 908 bp_file = bp_file or filename
909 909 checkline = deb.checkline(bp_file, bp_line)
910 910 if not checkline:
911 911 for bp in range(bp_line + 1, bp_line + maxtries + 1):
912 912 if deb.checkline(bp_file, bp):
913 913 break
914 914 else:
915 915 msg = ("\nI failed to find a valid line to set "
916 916 "a breakpoint\n"
917 917 "after trying up to line: %s.\n"
918 918 "Please set a valid breakpoint manually "
919 919 "with the -b option." % bp)
920 920 raise UsageError(msg)
921 921 # if we find a good linenumber, set the breakpoint
922 922 deb.do_break('%s:%s' % (bp_file, bp_line))
923 923
924 924 if filename:
925 925 # Mimic Pdb._runscript(...)
926 926 deb._wait_for_mainpyfile = True
927 927 deb.mainpyfile = deb.canonic(filename)
928 928
929 929 # Start file run
930 930 print("NOTE: Enter 'c' at the %s prompt to continue execution." % deb.prompt)
931 931 try:
932 932 if filename:
933 933 # save filename so it can be used by methods on the deb object
934 934 deb._exec_filename = filename
935 935 while True:
936 936 try:
937 trace = sys.gettrace()
937 938 deb.run(code, code_ns)
938 939 except Restart:
939 940 print("Restarting")
940 941 if filename:
941 942 deb._wait_for_mainpyfile = True
942 943 deb.mainpyfile = deb.canonic(filename)
943 944 continue
944 945 else:
945 946 break
947 finally:
948 sys.settrace(trace)
946 949
947 950
948 951 except:
949 952 etype, value, tb = sys.exc_info()
950 953 # Skip three frames in the traceback: the %run one,
951 954 # one inside bdb.py, and the command-line typed by the
952 955 # user (run by exec in pdb itself).
953 956 self.shell.InteractiveTB(etype, value, tb, tb_offset=3)
954 957
955 958 @staticmethod
956 959 def _run_with_timing(run, nruns):
957 960 """
958 961 Run function `run` and print timing information.
959 962
960 963 Parameters
961 964 ----------
962 965 run : callable
963 966 Any callable object which takes no argument.
964 967 nruns : int
965 968 Number of times to execute `run`.
966 969
967 970 """
968 971 twall0 = time.perf_counter()
969 972 if nruns == 1:
970 973 t0 = clock2()
971 974 run()
972 975 t1 = clock2()
973 976 t_usr = t1[0] - t0[0]
974 977 t_sys = t1[1] - t0[1]
975 978 print("\nIPython CPU timings (estimated):")
976 979 print(" User : %10.2f s." % t_usr)
977 980 print(" System : %10.2f s." % t_sys)
978 981 else:
979 982 runs = range(nruns)
980 983 t0 = clock2()
981 984 for nr in runs:
982 985 run()
983 986 t1 = clock2()
984 987 t_usr = t1[0] - t0[0]
985 988 t_sys = t1[1] - t0[1]
986 989 print("\nIPython CPU timings (estimated):")
987 990 print("Total runs performed:", nruns)
988 991 print(" Times : %10s %10s" % ('Total', 'Per run'))
989 992 print(" User : %10.2f s, %10.2f s." % (t_usr, t_usr / nruns))
990 993 print(" System : %10.2f s, %10.2f s." % (t_sys, t_sys / nruns))
991 994 twall1 = time.perf_counter()
992 995 print("Wall time: %10.2f s." % (twall1 - twall0))
993 996
994 997 @skip_doctest
995 998 @no_var_expand
996 999 @line_cell_magic
997 1000 @needs_local_scope
998 1001 def timeit(self, line='', cell=None, local_ns=None):
999 1002 """Time execution of a Python statement or expression
1000 1003
1001 1004 Usage, in line mode:
1002 1005 %timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] statement
1003 1006 or in cell mode:
1004 1007 %%timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] setup_code
1005 1008 code
1006 1009 code...
1007 1010
1008 1011 Time execution of a Python statement or expression using the timeit
1009 1012 module. This function can be used both as a line and cell magic:
1010 1013
1011 1014 - In line mode you can time a single-line statement (though multiple
1012 1015 ones can be chained with using semicolons).
1013 1016
1014 1017 - In cell mode, the statement in the first line is used as setup code
1015 1018 (executed but not timed) and the body of the cell is timed. The cell
1016 1019 body has access to any variables created in the setup code.
1017 1020
1018 1021 Options:
1019 1022 -n<N>: execute the given statement <N> times in a loop. If <N> is not
1020 1023 provided, <N> is determined so as to get sufficient accuracy.
1021 1024
1022 1025 -r<R>: number of repeats <R>, each consisting of <N> loops, and take the
1023 1026 best result.
1024 1027 Default: 7
1025 1028
1026 1029 -t: use time.time to measure the time, which is the default on Unix.
1027 1030 This function measures wall time.
1028 1031
1029 1032 -c: use time.clock to measure the time, which is the default on
1030 1033 Windows and measures wall time. On Unix, resource.getrusage is used
1031 1034 instead and returns the CPU user time.
1032 1035
1033 1036 -p<P>: use a precision of <P> digits to display the timing result.
1034 1037 Default: 3
1035 1038
1036 1039 -q: Quiet, do not print result.
1037 1040
1038 1041 -o: return a TimeitResult that can be stored in a variable to inspect
1039 1042 the result in more details.
1040 1043
1041 1044 .. versionchanged:: 7.3
1042 1045 User variables are no longer expanded,
1043 1046 the magic line is always left unmodified.
1044 1047
1045 1048 Examples
1046 1049 --------
1047 1050 ::
1048 1051
1049 1052 In [1]: %timeit pass
1050 1053 8.26 ns ± 0.12 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each)
1051 1054
1052 1055 In [2]: u = None
1053 1056
1054 1057 In [3]: %timeit u is None
1055 1058 29.9 ns ± 0.643 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
1056 1059
1057 1060 In [4]: %timeit -r 4 u == None
1058 1061
1059 1062 In [5]: import time
1060 1063
1061 1064 In [6]: %timeit -n1 time.sleep(2)
1062 1065
1063 1066
1064 1067 The times reported by %timeit will be slightly higher than those
1065 1068 reported by the timeit.py script when variables are accessed. This is
1066 1069 due to the fact that %timeit executes the statement in the namespace
1067 1070 of the shell, compared with timeit.py, which uses a single setup
1068 1071 statement to import function or create variables. Generally, the bias
1069 1072 does not matter as long as results from timeit.py are not mixed with
1070 1073 those from %timeit."""
1071 1074
1072 1075 opts, stmt = self.parse_options(line,'n:r:tcp:qo',
1073 1076 posix=False, strict=False)
1074 1077 if stmt == "" and cell is None:
1075 1078 return
1076 1079
1077 1080 timefunc = timeit.default_timer
1078 1081 number = int(getattr(opts, "n", 0))
1079 1082 default_repeat = 7 if timeit.default_repeat < 7 else timeit.default_repeat
1080 1083 repeat = int(getattr(opts, "r", default_repeat))
1081 1084 precision = int(getattr(opts, "p", 3))
1082 1085 quiet = 'q' in opts
1083 1086 return_result = 'o' in opts
1084 1087 if hasattr(opts, "t"):
1085 1088 timefunc = time.time
1086 1089 if hasattr(opts, "c"):
1087 1090 timefunc = clock
1088 1091
1089 1092 timer = Timer(timer=timefunc)
1090 1093 # this code has tight coupling to the inner workings of timeit.Timer,
1091 1094 # but is there a better way to achieve that the code stmt has access
1092 1095 # to the shell namespace?
1093 1096 transform = self.shell.transform_cell
1094 1097
1095 1098 if cell is None:
1096 1099 # called as line magic
1097 1100 ast_setup = self.shell.compile.ast_parse("pass")
1098 1101 ast_stmt = self.shell.compile.ast_parse(transform(stmt))
1099 1102 else:
1100 1103 ast_setup = self.shell.compile.ast_parse(transform(stmt))
1101 1104 ast_stmt = self.shell.compile.ast_parse(transform(cell))
1102 1105
1103 1106 ast_setup = self.shell.transform_ast(ast_setup)
1104 1107 ast_stmt = self.shell.transform_ast(ast_stmt)
1105 1108
1106 1109 # Check that these compile to valid Python code *outside* the timer func
1107 1110 # Invalid code may become valid when put inside the function & loop,
1108 1111 # which messes up error messages.
1109 1112 # https://github.com/ipython/ipython/issues/10636
1110 1113 self.shell.compile(ast_setup, "<magic-timeit-setup>", "exec")
1111 1114 self.shell.compile(ast_stmt, "<magic-timeit-stmt>", "exec")
1112 1115
1113 1116 # This codestring is taken from timeit.template - we fill it in as an
1114 1117 # AST, so that we can apply our AST transformations to the user code
1115 1118 # without affecting the timing code.
1116 1119 timeit_ast_template = ast.parse('def inner(_it, _timer):\n'
1117 1120 ' setup\n'
1118 1121 ' _t0 = _timer()\n'
1119 1122 ' for _i in _it:\n'
1120 1123 ' stmt\n'
1121 1124 ' _t1 = _timer()\n'
1122 1125 ' return _t1 - _t0\n')
1123 1126
1124 1127 timeit_ast = TimeitTemplateFiller(ast_setup, ast_stmt).visit(timeit_ast_template)
1125 1128 timeit_ast = ast.fix_missing_locations(timeit_ast)
1126 1129
1127 1130 # Track compilation time so it can be reported if too long
1128 1131 # Minimum time above which compilation time will be reported
1129 1132 tc_min = 0.1
1130 1133
1131 1134 t0 = clock()
1132 1135 code = self.shell.compile(timeit_ast, "<magic-timeit>", "exec")
1133 1136 tc = clock()-t0
1134 1137
1135 1138 ns = {}
1136 1139 glob = self.shell.user_ns
1137 1140 # handles global vars with same name as local vars. We store them in conflict_globs.
1138 1141 conflict_globs = {}
1139 1142 if local_ns and cell is None:
1140 1143 for var_name, var_val in glob.items():
1141 1144 if var_name in local_ns:
1142 1145 conflict_globs[var_name] = var_val
1143 1146 glob.update(local_ns)
1144 1147
1145 1148 exec(code, glob, ns)
1146 1149 timer.inner = ns["inner"]
1147 1150
1148 1151 # This is used to check if there is a huge difference between the
1149 1152 # best and worst timings.
1150 1153 # Issue: https://github.com/ipython/ipython/issues/6471
1151 1154 if number == 0:
1152 1155 # determine number so that 0.2 <= total time < 2.0
1153 1156 for index in range(0, 10):
1154 1157 number = 10 ** index
1155 1158 time_number = timer.timeit(number)
1156 1159 if time_number >= 0.2:
1157 1160 break
1158 1161
1159 1162 all_runs = timer.repeat(repeat, number)
1160 1163 best = min(all_runs) / number
1161 1164 worst = max(all_runs) / number
1162 1165 timeit_result = TimeitResult(number, repeat, best, worst, all_runs, tc, precision)
1163 1166
1164 1167 # Restore global vars from conflict_globs
1165 1168 if conflict_globs:
1166 1169 glob.update(conflict_globs)
1167 1170
1168 1171 if not quiet :
1169 1172 # Check best timing is greater than zero to avoid a
1170 1173 # ZeroDivisionError.
1171 1174 # In cases where the slowest timing is lesser than a micosecond
1172 1175 # we assume that it does not really matter if the fastest
1173 1176 # timing is 4 times faster than the slowest timing or not.
1174 1177 if worst > 4 * best and best > 0 and worst > 1e-6:
1175 1178 print("The slowest run took %0.2f times longer than the "
1176 1179 "fastest. This could mean that an intermediate result "
1177 1180 "is being cached." % (worst / best))
1178 1181
1179 1182 print( timeit_result )
1180 1183
1181 1184 if tc > tc_min:
1182 1185 print("Compiler time: %.2f s" % tc)
1183 1186 if return_result:
1184 1187 return timeit_result
1185 1188
1186 1189 @skip_doctest
1187 1190 @no_var_expand
1188 1191 @needs_local_scope
1189 1192 @line_cell_magic
1190 1193 def time(self,line='', cell=None, local_ns=None):
1191 1194 """Time execution of a Python statement or expression.
1192 1195
1193 1196 The CPU and wall clock times are printed, and the value of the
1194 1197 expression (if any) is returned. Note that under Win32, system time
1195 1198 is always reported as 0, since it can not be measured.
1196 1199
1197 1200 This function can be used both as a line and cell magic:
1198 1201
1199 1202 - In line mode you can time a single-line statement (though multiple
1200 1203 ones can be chained with using semicolons).
1201 1204
1202 1205 - In cell mode, you can time the cell body (a directly
1203 1206 following statement raises an error).
1204 1207
1205 1208 This function provides very basic timing functionality. Use the timeit
1206 1209 magic for more control over the measurement.
1207 1210
1208 1211 .. versionchanged:: 7.3
1209 1212 User variables are no longer expanded,
1210 1213 the magic line is always left unmodified.
1211 1214
1212 1215 Examples
1213 1216 --------
1214 1217 ::
1215 1218
1216 1219 In [1]: %time 2**128
1217 1220 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1218 1221 Wall time: 0.00
1219 1222 Out[1]: 340282366920938463463374607431768211456L
1220 1223
1221 1224 In [2]: n = 1000000
1222 1225
1223 1226 In [3]: %time sum(range(n))
1224 1227 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1225 1228 Wall time: 1.37
1226 1229 Out[3]: 499999500000L
1227 1230
1228 1231 In [4]: %time print 'hello world'
1229 1232 hello world
1230 1233 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1231 1234 Wall time: 0.00
1232 1235
1233 1236 Note that the time needed by Python to compile the given expression
1234 1237 will be reported if it is more than 0.1s. In this example, the
1235 1238 actual exponentiation is done by Python at compilation time, so while
1236 1239 the expression can take a noticeable amount of time to compute, that
1237 1240 time is purely due to the compilation:
1238 1241
1239 1242 In [5]: %time 3**9999;
1240 1243 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1241 1244 Wall time: 0.00 s
1242 1245
1243 1246 In [6]: %time 3**999999;
1244 1247 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1245 1248 Wall time: 0.00 s
1246 1249 Compiler : 0.78 s
1247 1250 """
1248 1251
1249 1252 # fail immediately if the given expression can't be compiled
1250 1253
1251 1254 if line and cell:
1252 1255 raise UsageError("Can't use statement directly after '%%time'!")
1253 1256
1254 1257 if cell:
1255 1258 expr = self.shell.transform_cell(cell)
1256 1259 else:
1257 1260 expr = self.shell.transform_cell(line)
1258 1261
1259 1262 # Minimum time above which parse time will be reported
1260 1263 tp_min = 0.1
1261 1264
1262 1265 t0 = clock()
1263 1266 expr_ast = self.shell.compile.ast_parse(expr)
1264 1267 tp = clock()-t0
1265 1268
1266 1269 # Apply AST transformations
1267 1270 expr_ast = self.shell.transform_ast(expr_ast)
1268 1271
1269 1272 # Minimum time above which compilation time will be reported
1270 1273 tc_min = 0.1
1271 1274
1272 1275 expr_val=None
1273 1276 if len(expr_ast.body)==1 and isinstance(expr_ast.body[0], ast.Expr):
1274 1277 mode = 'eval'
1275 1278 source = '<timed eval>'
1276 1279 expr_ast = ast.Expression(expr_ast.body[0].value)
1277 1280 else:
1278 1281 mode = 'exec'
1279 1282 source = '<timed exec>'
1280 1283 # multi-line %%time case
1281 1284 if len(expr_ast.body) > 1 :
1282 1285 expr_val=expr_ast.body[-1]
1283 1286 code_val = self.shell.compile(ast.Expression(expr_val.value)
1284 1287 , '<timed eval>'
1285 1288 , 'eval')
1286 1289 expr_ast=expr_ast.body[:-1]
1287 1290 expr_ast = Module(expr_ast, [])
1288 1291
1289 1292 t0 = clock()
1290 1293 code = self.shell.compile(expr_ast, source, mode)
1291 1294 tc = clock()-t0
1292 1295
1293 1296 # skew measurement as little as possible
1294 1297 glob = self.shell.user_ns
1295 1298 wtime = time.time
1296 1299 # time execution
1297 1300 wall_st = wtime()
1298 1301 if mode=='eval':
1299 1302 st = clock2()
1300 1303 try:
1301 1304 out = eval(code, glob, local_ns)
1302 1305 except:
1303 1306 self.shell.showtraceback()
1304 1307 return
1305 1308 end = clock2()
1306 1309 else:
1307 1310 st = clock2()
1308 1311 try:
1309 1312 exec(code, glob, local_ns)
1310 1313 out=None
1311 1314 # multi-line %%time case
1312 1315 if expr_val and isinstance(expr_val, ast.Expr):
1313 1316 out = eval(code_val, glob, local_ns)
1314 1317 except:
1315 1318 self.shell.showtraceback()
1316 1319 return
1317 1320 end = clock2()
1318 1321
1319 1322 wall_end = wtime()
1320 1323 # Compute actual times and report
1321 1324 wall_time = wall_end-wall_st
1322 1325 cpu_user = end[0]-st[0]
1323 1326 cpu_sys = end[1]-st[1]
1324 1327 cpu_tot = cpu_user+cpu_sys
1325 1328 # On windows cpu_sys is always zero, so no new information to the next print
1326 1329 if sys.platform != 'win32':
1327 1330 print("CPU times: user %s, sys: %s, total: %s" % \
1328 1331 (_format_time(cpu_user),_format_time(cpu_sys),_format_time(cpu_tot)))
1329 1332 print("Wall time: %s" % _format_time(wall_time))
1330 1333 if tc > tc_min:
1331 1334 print("Compiler : %s" % _format_time(tc))
1332 1335 if tp > tp_min:
1333 1336 print("Parser : %s" % _format_time(tp))
1334 1337 return out
1335 1338
1336 1339 @skip_doctest
1337 1340 @line_magic
1338 1341 def macro(self, parameter_s=''):
1339 1342 """Define a macro for future re-execution. It accepts ranges of history,
1340 1343 filenames or string objects.
1341 1344
1342 1345 Usage:\\
1343 1346 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1344 1347
1345 1348 Options:
1346 1349
1347 1350 -r: use 'raw' input. By default, the 'processed' history is used,
1348 1351 so that magics are loaded in their transformed version to valid
1349 1352 Python. If this option is given, the raw input as typed at the
1350 1353 command line is used instead.
1351 1354
1352 1355 -q: quiet macro definition. By default, a tag line is printed
1353 1356 to indicate the macro has been created, and then the contents of
1354 1357 the macro are printed. If this option is given, then no printout
1355 1358 is produced once the macro is created.
1356 1359
1357 1360 This will define a global variable called `name` which is a string
1358 1361 made of joining the slices and lines you specify (n1,n2,... numbers
1359 1362 above) from your input history into a single string. This variable
1360 1363 acts like an automatic function which re-executes those lines as if
1361 1364 you had typed them. You just type 'name' at the prompt and the code
1362 1365 executes.
1363 1366
1364 1367 The syntax for indicating input ranges is described in %history.
1365 1368
1366 1369 Note: as a 'hidden' feature, you can also use traditional python slice
1367 1370 notation, where N:M means numbers N through M-1.
1368 1371
1369 1372 For example, if your history contains (print using %hist -n )::
1370 1373
1371 1374 44: x=1
1372 1375 45: y=3
1373 1376 46: z=x+y
1374 1377 47: print x
1375 1378 48: a=5
1376 1379 49: print 'x',x,'y',y
1377 1380
1378 1381 you can create a macro with lines 44 through 47 (included) and line 49
1379 1382 called my_macro with::
1380 1383
1381 1384 In [55]: %macro my_macro 44-47 49
1382 1385
1383 1386 Now, typing `my_macro` (without quotes) will re-execute all this code
1384 1387 in one pass.
1385 1388
1386 1389 You don't need to give the line-numbers in order, and any given line
1387 1390 number can appear multiple times. You can assemble macros with any
1388 1391 lines from your input history in any order.
1389 1392
1390 1393 The macro is a simple object which holds its value in an attribute,
1391 1394 but IPython's display system checks for macros and executes them as
1392 1395 code instead of printing them when you type their name.
1393 1396
1394 1397 You can view a macro's contents by explicitly printing it with::
1395 1398
1396 1399 print macro_name
1397 1400
1398 1401 """
1399 1402 opts,args = self.parse_options(parameter_s,'rq',mode='list')
1400 1403 if not args: # List existing macros
1401 1404 return sorted(k for k,v in self.shell.user_ns.items() if isinstance(v, Macro))
1402 1405 if len(args) == 1:
1403 1406 raise UsageError(
1404 1407 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
1405 1408 name, codefrom = args[0], " ".join(args[1:])
1406 1409
1407 1410 #print 'rng',ranges # dbg
1408 1411 try:
1409 1412 lines = self.shell.find_user_code(codefrom, 'r' in opts)
1410 1413 except (ValueError, TypeError) as e:
1411 1414 print(e.args[0])
1412 1415 return
1413 1416 macro = Macro(lines)
1414 1417 self.shell.define_macro(name, macro)
1415 1418 if not ( 'q' in opts) :
1416 1419 print('Macro `%s` created. To execute, type its name (without quotes).' % name)
1417 1420 print('=== Macro contents: ===')
1418 1421 print(macro, end=' ')
1419 1422
1420 1423 @magic_arguments.magic_arguments()
1421 1424 @magic_arguments.argument('output', type=str, default='', nargs='?',
1422 1425 help="""The name of the variable in which to store output.
1423 1426 This is a utils.io.CapturedIO object with stdout/err attributes
1424 1427 for the text of the captured output.
1425 1428
1426 1429 CapturedOutput also has a show() method for displaying the output,
1427 1430 and __call__ as well, so you can use that to quickly display the
1428 1431 output.
1429 1432
1430 1433 If unspecified, captured output is discarded.
1431 1434 """
1432 1435 )
1433 1436 @magic_arguments.argument('--no-stderr', action="store_true",
1434 1437 help="""Don't capture stderr."""
1435 1438 )
1436 1439 @magic_arguments.argument('--no-stdout', action="store_true",
1437 1440 help="""Don't capture stdout."""
1438 1441 )
1439 1442 @magic_arguments.argument('--no-display', action="store_true",
1440 1443 help="""Don't capture IPython's rich display."""
1441 1444 )
1442 1445 @cell_magic
1443 1446 def capture(self, line, cell):
1444 1447 """run the cell, capturing stdout, stderr, and IPython's rich display() calls."""
1445 1448 args = magic_arguments.parse_argstring(self.capture, line)
1446 1449 out = not args.no_stdout
1447 1450 err = not args.no_stderr
1448 1451 disp = not args.no_display
1449 1452 with capture_output(out, err, disp) as io:
1450 1453 self.shell.run_cell(cell)
1451 1454 if args.output:
1452 1455 self.shell.user_ns[args.output] = io
1453 1456
1454 1457 def parse_breakpoint(text, current_file):
1455 1458 '''Returns (file, line) for file:line and (current_file, line) for line'''
1456 1459 colon = text.find(':')
1457 1460 if colon == -1:
1458 1461 return current_file, int(text)
1459 1462 else:
1460 1463 return text[:colon], int(text[colon+1:])
1461 1464
1462 1465 def _format_time(timespan, precision=3):
1463 1466 """Formats the timespan in a human readable form"""
1464 1467
1465 1468 if timespan >= 60.0:
1466 1469 # we have more than a minute, format that in a human readable form
1467 1470 # Idea from http://snipplr.com/view/5713/
1468 1471 parts = [("d", 60*60*24),("h", 60*60),("min", 60), ("s", 1)]
1469 1472 time = []
1470 1473 leftover = timespan
1471 1474 for suffix, length in parts:
1472 1475 value = int(leftover / length)
1473 1476 if value > 0:
1474 1477 leftover = leftover % length
1475 1478 time.append(u'%s%s' % (str(value), suffix))
1476 1479 if leftover < 1:
1477 1480 break
1478 1481 return " ".join(time)
1479 1482
1480 1483
1481 1484 # Unfortunately the unicode 'micro' symbol can cause problems in
1482 1485 # certain terminals.
1483 1486 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1484 1487 # Try to prevent crashes by being more secure than it needs to
1485 1488 # E.g. eclipse is able to print a µ, but has no sys.stdout.encoding set.
1486 1489 units = [u"s", u"ms",u'us',"ns"] # the save value
1487 1490 if hasattr(sys.stdout, 'encoding') and sys.stdout.encoding:
1488 1491 try:
1489 1492 u'\xb5'.encode(sys.stdout.encoding)
1490 1493 units = [u"s", u"ms",u'\xb5s',"ns"]
1491 1494 except:
1492 1495 pass
1493 1496 scaling = [1, 1e3, 1e6, 1e9]
1494 1497
1495 1498 if timespan > 0.0:
1496 1499 order = min(-int(math.floor(math.log10(timespan)) // 3), 3)
1497 1500 else:
1498 1501 order = 3
1499 1502 return u"%.*g %s" % (precision, timespan * scaling[order], units[order])
General Comments 0
You need to be logged in to leave comments. Login now