##// END OF EJS Templates
Tidy up history retrieval APIs, and magic commands using them (%hist, %macro, %save, %edit)
Thomas Kluyver -
Show More
@@ -1,531 +1,576 b''
1 1 """ History related magics and functionality """
2 2 #-----------------------------------------------------------------------------
3 3 # Copyright (C) 2010 The IPython Development Team.
4 4 #
5 5 # Distributed under the terms of the BSD License.
6 6 #
7 7 # The full license is in the file COPYING.txt, distributed with this software.
8 8 #-----------------------------------------------------------------------------
9 9
10 10 #-----------------------------------------------------------------------------
11 11 # Imports
12 12 #-----------------------------------------------------------------------------
13 13 from __future__ import print_function
14 14
15 15 # Stdlib imports
16 import fnmatch
17 16 import os
17 import re
18 18 import sqlite3
19 19
20 20 # Our own packages
21 21 from IPython.config.configurable import Configurable
22 22 import IPython.utils.io
23 23
24 24 from IPython.testing import decorators as testdec
25 25 from IPython.utils.io import ask_yes_no
26 26 from IPython.utils.traitlets import Bool, Dict, Instance, Int, List, Unicode
27 27 from IPython.utils.warn import warn
28 28
29 29 #-----------------------------------------------------------------------------
30 30 # Classes and functions
31 31 #-----------------------------------------------------------------------------
32 32
33 33 class HistoryManager(Configurable):
34 34 """A class to organize all history-related functionality in one place.
35 35 """
36 36 # Public interface
37 37
38 38 # An instance of the IPython shell we are attached to
39 39 shell = Instance('IPython.core.interactiveshell.InteractiveShellABC')
40 40 # Lists to hold processed and raw history. These start with a blank entry
41 41 # so that we can index them starting from 1
42 42 input_hist_parsed = List([""])
43 43 input_hist_raw = List([""])
44 44 # A list of directories visited during session
45 45 dir_hist = List()
46 46 # A dict of output history, keyed with ints from the shell's execution count
47 47 output_hist = Dict()
48 48 # String holding the path to the history file
49 49 hist_file = Unicode()
50 50 # The SQLite database
51 51 db = Instance(sqlite3.Connection)
52 52 # The number of the current session in the history database
53 53 session_number = Int()
54 54 # Should we log output to the database? (default no)
55 55 db_log_output = Bool(False, config=True)
56 56 # Write to database every x commands (higher values save disk access & power)
57 57 # Values of 1 or less effectively disable caching.
58 58 db_cache_size = Int(0, config=True)
59 59 # The input and output caches
60 60 db_input_cache = List()
61 61 db_output_cache = List()
62 62
63 63 # Private interface
64 64 # Variables used to store the three last inputs from the user. On each new
65 65 # history update, we populate the user's namespace with these, shifted as
66 66 # necessary.
67 67 _i00, _i, _ii, _iii = '','','',''
68 68
69 69 # A set with all forms of the exit command, so that we don't store them in
70 70 # the history (it's annoying to rewind the first entry and land on an exit
71 71 # call).
72 72 _exit_commands = None
73 73
74 74 def __init__(self, shell, config=None):
75 75 """Create a new history manager associated with a shell instance.
76 76 """
77 77 # We need a pointer back to the shell for various tasks.
78 78 super(HistoryManager, self).__init__(shell=shell, config=config)
79 79
80 80 # list of visited directories
81 81 try:
82 82 self.dir_hist = [os.getcwd()]
83 83 except OSError:
84 84 self.dir_hist = []
85 85
86 86 # Now the history file
87 87 if shell.profile:
88 88 histfname = 'history-%s' % shell.profile
89 89 else:
90 90 histfname = 'history'
91 91 self.hist_file = os.path.join(shell.ipython_dir, histfname + '.sqlite')
92 92 self.init_db()
93 93
94 94 self._i00, self._i, self._ii, self._iii = '','','',''
95 95
96 96 self._exit_commands = set(['Quit', 'quit', 'Exit', 'exit', '%Quit',
97 97 '%quit', '%Exit', '%exit'])
98 98
99 99 def init_db(self):
100 100 self.db = sqlite3.connect(self.hist_file)
101 101 self.db.execute("""CREATE TABLE IF NOT EXISTS history
102 102 (session integer, line integer, source text, source_raw text,
103 103 PRIMARY KEY (session, line))""")
104 104 # Output history is optional, but ensure the table's there so it can be
105 105 # enabled later.
106 106 self.db.execute("""CREATE TABLE IF NOT EXISTS output_history
107 107 (session integer, line integer, output text,
108 108 PRIMARY KEY (session, line))""")
109 109 cur = self.db.execute("""SELECT name FROM sqlite_master WHERE
110 110 type='table' AND name='singletons'""")
111 111 if not cur.fetchone():
112 112 self.db.execute("""CREATE TABLE singletons
113 113 (name text PRIMARY KEY, value)""")
114 114 self.db.execute("""INSERT INTO singletons VALUES
115 115 ('session_number', 1)""")
116 116 self.db.commit()
117 117 cur = self.db.execute("""SELECT value FROM singletons WHERE
118 118 name='session_number'""")
119 119 self.session_number = cur.fetchone()[0]
120 120
121 121 #Increment by one for next session.
122 122 self.db.execute("""UPDATE singletons SET value=? WHERE
123 123 name='session_number'""", (self.session_number+1,))
124 124 self.db.commit()
125
126 def get_db_history(self, session, start=1, stop=None, raw=True):
127 """Retrieve input history from the database by session.
128
129 Parameters
130 ----------
131 session : int
132 Session number to retrieve. If negative, counts back from current
133 session (so -1 is previous session).
134 start : int
135 First line to retrieve.
136 stop : int
137 Last line to retrieve. If None, retrieve to the end of the session.
138 raw : bool
139 If True, return raw input
140
141 Returns
142 -------
143 An iterator over the desired lines.
144 """
145 toget = 'source_raw' if raw else 'source'
146 if session < 0:
147 session += self.session_number
148
149 if stop:
150 cur = self.db.execute("SELECT " + toget + """ FROM history WHERE
151 session==? AND line BETWEEN ? and ?""",
152 (session, start, stop))
153 else:
154 cur = self.db.execute("SELECT " + toget + """ FROM history WHERE
155 session==? AND line>=?""", (session, start))
156 return (x[0] for x in cur)
157 125
158 def tail_db_history(self, n=10, raw=True):
126 def get_hist_tail(self, n=10, raw=True):
159 127 """Get the last n lines from the history database."""
160 128 toget = 'source_raw' if raw else 'source'
161 cur = self.db.execute("SELECT " + toget + """ FROM history ORDER BY
162 session DESC, line DESC LIMIT ?""", (n,))
163 return (x[0] for x in reversed(cur.fetchall()))
129 cur = self.db.execute("SELECT session, line, " + toget +\
130 " FROM history ORDER BY session DESC, line DESC LIMIT ?""", (n,))
131 return reversed(cur.fetchall())
164 132
165 def globsearch_db(self, pattern="*"):
133 def get_hist_search(self, pattern="*", raw=True):
166 134 """Search the database using unix glob-style matching (wildcards * and
167 135 ?, escape using \).
168 136
169 137 Returns
170 138 -------
171 139 An iterator over tuples: (session, line_number, command)
172 140 """
173 return self.db.execute("""SELECT session, line, source_raw FROM history
174 WHERE source_raw GLOB ?""", (pattern,))
175
176 def get_history(self, start=1, stop=None, raw=False, output=True):
177 """Get the history list.
178
179 Get the input and output history.
180
181 Parameters
182 ----------
183 start : int
184 From (prompt number in the current session). Negative numbers count
185 back from the end.
186 stop : int
187 To (prompt number in the current session, exclusive). Negative
188 numbers count back from the end, and None goes to the end.
189 raw : bool
190 If True, return the raw input.
191 output : bool
192 If True, then return the output as well.
193 this_session : bool
194 If True, indexing is from 1 at the start of this session.
195 If False, indexing is from 1 at the start of the whole history.
196
197 Returns
198 -------
199 If output is True, then return a dict of tuples, keyed by the prompt
200 numbers and with values of (input, output). If output is False, then
201 a dict, keyed by the prompt number with the values of input.
202 """
203 if raw:
204 input_hist = self.input_hist_raw
205 else:
206 input_hist = self.input_hist_parsed
207 if output:
208 output_hist = self.output_hist
141 toget = "source_raw" if raw else source
142 return self.db.execute("SELECT session, line, " +toget+ \
143 "FROM history WHERE" +toget+ "GLOB ?", (pattern,))
144
145 def _get_hist_session(self, start=1, stop=None, raw=True, output=False):
146 """Get input and output history from the current session. Called by
147 get_history, and takes similar parameters."""
148 input_hist = self.input_hist_raw if raw else self.input_hist_parsed
209 149
210 150 n = len(input_hist)
211 151 if start < 0:
212 152 start += n
213 153 if not stop:
214 154 stop = n
215 155 elif stop < 0:
216 156 stop += n
217 157
218 hist = {}
219 158 for i in range(start, stop):
220 159 if output:
221 hist[i] = (input_hist[i], output_hist.get(i))
160 line = (input_hist[i], self.output_hist.get(i))
222 161 else:
223 hist[i] = input_hist[i]
224 return hist
162 line = input_hist[i]
163 yield (0, i, line)
164
165 def get_history(self, session=0, start=1, stop=None, raw=True,output=False):
166 """Retrieve input by session.
167
168 Parameters
169 ----------
170 session : int
171 Session number to retrieve. The current session is 0, and negative
172 numbers count back from current session, so -1 is previous session.
173 start : int
174 First line to retrieve.
175 stop : int
176 Last line to retrieve. If None, retrieve to the end of the session.
177 raw : bool
178 If True, return untranslated input
179 output : bool
180 If True, attempt to include output. This will be 'real' Python
181 objects for the current session, or text reprs from previous
182 sessions if db_log_output was enabled at the time. Where no output
183 is found, None is used.
184
185 Returns
186 -------
187 An iterator over the desired lines. Each line is a 3-tuple, either
188 (session, line, input) if output is False, or
189 (session, line, (input, output)) if output is True.
190 """
191 if session == 0 or session==self.session_number: # Current session
192 return self._get_hist_session(start, stop, raw, output)
193 if session < 0:
194 session += self.session_number
195
196 # Assemble the SQL query:
197 sqlfrom = "history"
198 toget = 'source_raw' if raw else 'source'
199 if output:
200 sqlfrom = "history LEFT JOIN output_history USING (session, line)"
201 toget = "history.%s, output_history.output" % toget
202 if stop:
203 lineclause = "line BETWEEN ? and ?"
204 params = (session, start, stop)
205 else:
206 lineclause = "line>=?"
207 params = (session, start)
208
209 cur = self.db.execute("SELECT %s FROM %s WHERE session==? AND %s"\
210 %(toget, sqlfrom, lineclause), params)
211 if output: # Regroup into 3-tuples
212 return ((ses, lin (inp, out)) for ses, lin, inp, out in cur)
213 return cur
214
215 def get_hist_from_rangestr(self, rangestr, raw=True, output=False):
216 """Get lines of history from a string of ranges, as used by magic
217 commands %hist, %save, %macro, etc."""
218 for parts in extract_hist_ranges(rangestr):
219 for line in self.get_history(*parts, raw=raw, output=output):
220 yield line
225 221
226 222 def store_inputs(self, line_num, source, source_raw=None):
227 223 """Store source and raw input in history and create input cache
228 224 variables _i*.
229 225
230 226 Parameters
231 227 ----------
232 228 line_num : int
233 229 The prompt number of this input.
234 230
235 231 source : str
236 232 Python input.
237 233
238 234 source_raw : str, optional
239 235 If given, this is the raw input without any IPython transformations
240 236 applied to it. If not given, ``source`` is used.
241 237 """
242 238 if source_raw is None:
243 239 source_raw = source
244 240
245 241 # do not store exit/quit commands
246 242 if source_raw.strip() in self._exit_commands:
247 243 return
248 244
249 245 self.input_hist_parsed.append(source.rstrip())
250 246 self.input_hist_raw.append(source_raw.rstrip())
251 247
252 248 self.db_input_cache.append((self.session_number, line_num,
253 249 source, source_raw))
254 250 # Trigger to flush cache and write to DB.
255 251 if len(self.db_input_cache) >= self.db_cache_size:
256 252 self.writeout_cache()
257 253
258 254 # update the auto _i variables
259 255 self._iii = self._ii
260 256 self._ii = self._i
261 257 self._i = self._i00
262 258 self._i00 = source_raw
263 259
264 260 # hackish access to user namespace to create _i1,_i2... dynamically
265 261 new_i = '_i%s' % line_num
266 262 to_main = {'_i': self._i,
267 263 '_ii': self._ii,
268 264 '_iii': self._iii,
269 265 new_i : self._i00 }
270 266 self.shell.user_ns.update(to_main)
271 267
272 268 def store_output(self, line_num, output):
273 269 if not self.db_log_output:
274 270 return
275 271 db_row = (self.session_number, line_num, output)
276 272 if self.db_cache_size > 1:
277 273 self.db_output_cache.append(db_row)
278 274 else:
279 275 with self.db:
280 276 self.db.execute("INSERT INTO output_history VALUES (?,?,?)", db_row)
281 277
282 278 def writeout_cache(self):
283 279 with self.db:
284 280 self.db.executemany("INSERT INTO history VALUES (?, ?, ?, ?)",
285 281 self.db_input_cache)
286 282 self.db.executemany("INSERT INTO output_history VALUES (?, ?, ?)",
287 283 self.db_output_cache)
288 284 self.db_input_cache = []
289 285 self.db_output_cache = []
290 286
291 287 def sync_inputs(self):
292 288 """Ensure raw and translated histories have same length."""
293 289 lr = len(self.input_hist_raw)
294 290 lp = len(self.input_hist_parsed)
295 291 if lp < lr:
296 292 self.input_hist_raw[:lr-lp] = []
297 293 elif lr < lp:
298 294 self.input_hist_parsed[:lp-lr] = []
299 295
300 296 def reset(self):
301 297 """Clear all histories managed by this object."""
302 298 self.input_hist_parsed[:] = []
303 299 self.input_hist_raw[:] = []
304 300 self.output_hist.clear()
305 301 # The directory history can't be completely empty
306 302 self.dir_hist[:] = [os.getcwd()]
303
304 # To match, e.g. ~5#8-~2#3
305 range_re = re.compile(r"""
306 ((?P<startsess>~?\d+)\#)?
307 (?P<start>\d+) # Only the start line num is compulsory
308 ((?P<sep>[\-:])
309 ((?P<endsess>~?\d+)\#)?
310 (?P<end>\d+))?
311 """, re.VERBOSE)
312
313 def extract_hist_ranges(ranges_str):
314 """Turn a string of history ranges into 3-tuples of (session, start, stop).
315
316 Examples
317 --------
318 list(extract_input_ranges("~8#5-~7#4 2"))
319 [(-8, 5, None), (-7, 1, 4), (0, 2, 3)]
320 """
321 print(ranges_str)
322 for range_str in ranges_str.split():
323 rmatch = range_re.match(range_str)
324 start = int(rmatch.group("start"))
325 end = rmatch.group("end")
326 end = int(end) if end else start+1 # If no end specified, get (a, a+1)
327 if rmatch.group("sep") == "-": # 1-3 == 1:4 --> [1, 2, 3]
328 end += 1
329 startsess = rmatch.group("startsess") or "0"
330 endsess = rmatch.group("endsess") or startsess
331 startsess = int(startsess.replace("~","-"))
332 endsess = int(endsess.replace("~","-"))
333 assert endsess >= startsess
334
335 if endsess == startsess:
336 yield (startsess, start, end)
337 continue
338 # Multiple sessions in one range:
339 yield (startsess, start, None)
340 for sess in range(startsess+1, endsess):
341 yield (sess, 1, None)
342 yield (endsess, 1, end)
343
344 def _format_lineno(session, line):
345 """Helper function to format line numbers properly."""
346 if session == 0:
347 return str(line)
348 return "%s#%s" % (session, line)
307 349
308 350 @testdec.skip_doctest
309 351 def magic_history(self, parameter_s = ''):
310 352 """Print input history (_i<n> variables), with most recent last.
311 353
312 354 %history -> print at most 40 inputs (some may be multi-line)\\
313 355 %history n -> print at most n inputs\\
314 356 %history n1 n2 -> print inputs between n1 and n2 (n2 not included)\\
315 357
316 358 By default, input history is printed without line numbers so it can be
317 359 directly pasted into an editor.
318 360
319 361 With -n, each input's number <n> is shown, and is accessible as the
320 362 automatically generated variable _i<n> as well as In[<n>]. Multi-line
321 363 statements are printed starting at a new line for easy copy/paste.
322 364
323 365 Options:
324 366
325 367 -n: print line numbers for each input.
326 368 This feature is only available if numbered prompts are in use.
327 369
328 370 -o: also print outputs for each input.
329 371
330 372 -p: print classic '>>>' python prompts before each input. This is useful
331 373 for making documentation, and in conjunction with -o, for producing
332 374 doctest-ready output.
333 375
334 376 -r: (default) print the 'raw' history, i.e. the actual commands you typed.
335 377
336 378 -t: print the 'translated' history, as IPython understands it. IPython
337 379 filters your input and converts it all into valid Python source before
338 380 executing it (things like magics or aliases are turned into function
339 381 calls, for example). With this option, you'll see the native history
340 382 instead of the user-entered version: '%cd /' will be seen as
341 383 'get_ipython().magic("%cd /")' instead of '%cd /'.
342 384
343 385 -g: treat the arg as a pattern to grep for in (full) history.
344 386 This includes the saved history (almost all commands ever written).
345 387 Use '%hist -g' to show full saved history (may be very long).
388
389 -l: get the last n lines from all sessions. Specify n as a single arg, or
390 the default is the last 10 lines.
346 391
347 392 -f FILENAME: instead of printing the output to the screen, redirect it to
348 393 the given file. The file is always overwritten, though IPython asks for
349 394 confirmation first if it already exists.
350 395
351 396 Examples
352 397 --------
353 398 ::
354 399
355 400 In [6]: %hist -n 4 6
356 401 4:a = 12
357 402 5:print a**2
358 403
359 404 """
360 405
361 406 if not self.shell.displayhook.do_full_cache:
362 407 print('This feature is only available if numbered prompts are in use.')
363 408 return
364 opts,args = self.parse_options(parameter_s,'gnoptsrf:',mode='list')
409 opts,args = self.parse_options(parameter_s,'noprtglf:',mode='string')
365 410
366 411 # For brevity
367 412 history_manager = self.shell.history_manager
368 413
369 414 # Check if output to specific file was requested.
370 415 try:
371 416 outfname = opts['f']
372 417 except KeyError:
373 418 outfile = IPython.utils.io.Term.cout # default
374 419 # We don't want to close stdout at the end!
375 420 close_at_end = False
376 421 else:
377 422 if os.path.exists(outfname):
378 423 if not ask_yes_no("File %r exists. Overwrite?" % outfname):
379 424 print('Aborting.')
380 425 return
381 426
382 427 outfile = open(outfname,'w')
383 428 close_at_end = True
384 429
385 430 print_nums = 'n' in opts
386 print_outputs = 'o' in opts
431 get_output = 'o' in opts
387 432 pyprompts = 'p' in opts
388 433 # Raw history is the default
389 434 raw = not('t' in opts)
390 435
391 436 default_length = 40
392 437 pattern = None
438
439 # Glob search:
393 440 if 'g' in opts:
394 start = 1; stop = None
395 parts = parameter_s.split(None, 1)
396 if len(parts) == 1:
397 parts += '*'
398 head, pattern = parts
399 pattern = "*" + pattern + "*"
400 elif len(args) == 0:
401 start = 1; stop = None
402 elif len(args) == 1:
403 start = -int(args[0]); stop=None
404 elif len(args) == 2:
405 start = int(args[0]); stop = int(args[1])
406 else:
407 warn('%hist takes 0, 1 or 2 arguments separated by spaces.')
408 print(self.magic_hist.__doc__, file=IPython.utils.io.Term.cout)
409 return
441 pattern = "*" + args + "*" if args else "*"
410 442
411 hist = history_manager.get_history(start, stop, raw, print_outputs)
412
413 width = len(str(max(hist.iterkeys())))
414 line_sep = ['','\n']
415
416 found = False
417 if pattern is not None:
418 for session, line, s in history_manager.globsearch_db(pattern):
443 # Display:
444 matches_current_session = []
445 for session, line, s in history_manager.get_hist_search(pattern, raw):
446 if session == history_manager.session_number:
447 matches_current_session.append(line, s)
448 continue
419 449 print("%d#%d: %s" %(session, line, s.expandtabs(4)), file=outfile)
420 found = True
450 if matches_current_session:
451 print("=== Current session: ===", file=outfile)
452 for line, s in matches_current_session:
453 print("%d: %s" %(line, s.expandtabs(4)), file=outfile)
454 return
455
456 if 'l' in opts: # Get 'tail'
457 try:
458 n = int(args)
459 except ValueError, IndexError:
460 n = 10
461 hist = history_manager.get_hist_tail(n, raw=raw)
462 else:
463 if args: # Get history by ranges
464 hist = history_manager.get_hist_from_rangestr(args, raw, get_output)
465 else: # Just get history for the current session
466 hist = history_manager.get_history(raw=raw, output=get_output)
467 # Pull hist into a list, so we can get the widest number in it.
468 hist = list(hist)
421 469
422 if found:
423 print("===", file=outfile)
424 print("shadow history ends, fetch by %rep session#line",
425 file=outfile)
426 print("=== start of normal history ===", file=outfile)
470 width = max(len(_format_lineno(s, l)) for s, l, _ in hist)
427 471
428 for in_num, inline in sorted(hist.iteritems()):
472 for session, lineno, inline in hist:
429 473 # Print user history with tabs expanded to 4 spaces. The GUI clients
430 474 # use hard tabs for easier usability in auto-indented code, but we want
431 475 # to produce PEP-8 compliant history for safe pasting into an editor.
432 if print_outputs:
476 if get_output:
433 477 inline, output = inline
434 478 inline = inline.expandtabs(4).rstrip()
435 479
436 480 if pattern is not None and not fnmatch.fnmatch(inline, pattern):
437 481 continue
438 482
439 483 multiline = "\n" in inline
484 line_sep = '\n' if multiline else ''
440 485 if print_nums:
441 print('%s:%s' % (str(in_num).ljust(width), line_sep[multiline]),
442 file=outfile, end='')
486 print('%s:%s' % (_format_lineno(session, lineno).ljust(width),
487 line_sep[multiline]), file=outfile, end='')
443 488 if pyprompts:
444 489 print(">>> ", end="", file=outfile)
445 490 if multiline:
446 491 inline = "\n... ".join(inline.splitlines()) + "\n..."
447 492 print(inline, file=outfile)
448 if print_outputs and output:
493 if get_output and output:
449 494 print(repr(output), file=outfile)
450 495
451 496 if close_at_end:
452 497 outfile.close()
453 498
454 499 # %hist is an alternative name
455 500 magic_hist = magic_history
456 501
457 502
458 503 def rep_f(self, arg):
459 504 r""" Repeat a command, or get command to input line for editing
460 505
461 506 - %rep (no arguments):
462 507
463 508 Place a string version of last computation result (stored in the special '_'
464 509 variable) to the next input prompt. Allows you to create elaborate command
465 510 lines without using copy-paste::
466 511
467 512 $ l = ["hei", "vaan"]
468 513 $ "".join(l)
469 514 ==> heivaan
470 515 $ %rep
471 516 $ heivaan_ <== cursor blinking
472 517
473 518 %rep 45
474 519
475 520 Place history line 45 to next input prompt. Use %hist to find out the
476 521 number.
477 522
478 523 %rep 1-4 6-7 3
479 524
480 525 Repeat the specified lines immediately. Input slice syntax is the same as
481 526 in %macro and %save.
482 527
483 528 %rep foo
484 529
485 530 Place the most recent line that has the substring "foo" to next input.
486 531 (e.g. 'svn ci -m foobar').
487 532 """
488 533
489 534 opts,args = self.parse_options(arg,'',mode='list')
490 535 if not args:
491 536 self.set_next_input(str(self.shell.user_ns["_"]))
492 537 return
493 538
494 539 if len(args) == 1 and not '-' in args[0]:
495 540 arg = args[0]
496 541 if len(arg) > 1 and arg.startswith('0'):
497 542 # get from shadow hist
498 543 num = int(arg[1:])
499 544 line = self.shell.shadowhist.get(num)
500 545 self.set_next_input(str(line))
501 546 return
502 547 try:
503 548 num = int(args[0])
504 549 self.set_next_input(str(self.shell.input_hist_raw[num]).rstrip())
505 550 return
506 551 except ValueError:
507 552 pass
508 553
509 554 for h in reversed(self.shell.input_hist_raw):
510 555 if 'rep' in h:
511 556 continue
512 557 if fnmatch.fnmatch(h,'*' + arg + '*'):
513 558 self.set_next_input(str(h).rstrip())
514 559 return
515 560
516 561 try:
517 562 lines = self.extract_input_slices(args, True)
518 563 print("lines", lines)
519 564 self.run_cell(lines)
520 565 except ValueError:
521 566 print("Not found in recent history:", args)
522 567
523 568
524 569 def init_ipython(ip):
525 570 ip.define_magic("rep",rep_f)
526 571 ip.define_magic("hist",magic_hist)
527 572 ip.define_magic("history",magic_history)
528 573
529 574 # XXX - ipy_completers are in quarantine, need to be updated to new apis
530 575 #import ipy_completers
531 576 #ipy_completers.quick_completer('%hist' ,'-g -t -r -n')
@@ -1,2549 +1,2549 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import os
26 26 import re
27 27 import sys
28 28 import tempfile
29 29 import types
30 30 from contextlib import nested
31 31
32 32 from IPython.config.configurable import Configurable
33 33 from IPython.core import debugger, oinspect
34 34 from IPython.core import history as ipcorehist
35 35 from IPython.core import page
36 36 from IPython.core import prefilter
37 37 from IPython.core import shadowns
38 38 from IPython.core import ultratb
39 39 from IPython.core.alias import AliasManager
40 40 from IPython.core.builtin_trap import BuiltinTrap
41 41 from IPython.core.compilerop import CachingCompiler
42 42 from IPython.core.display_trap import DisplayTrap
43 43 from IPython.core.displayhook import DisplayHook
44 44 from IPython.core.displaypub import DisplayPublisher
45 45 from IPython.core.error import TryNext, UsageError
46 46 from IPython.core.extensions import ExtensionManager
47 47 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 48 from IPython.core.formatters import DisplayFormatter
49 49 from IPython.core.history import HistoryManager
50 50 from IPython.core.inputsplitter import IPythonInputSplitter
51 51 from IPython.core.logger import Logger
52 52 from IPython.core.magic import Magic
53 53 from IPython.core.payload import PayloadManager
54 54 from IPython.core.plugin import PluginManager
55 55 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
56 56 from IPython.external.Itpl import ItplNS
57 57 from IPython.utils import PyColorize
58 58 from IPython.utils import io
59 59 from IPython.utils.doctestreload import doctest_reload
60 60 from IPython.utils.io import ask_yes_no, rprint
61 61 from IPython.utils.ipstruct import Struct
62 62 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
63 63 from IPython.utils.pickleshare import PickleShareDB
64 64 from IPython.utils.process import system, getoutput
65 65 from IPython.utils.strdispatch import StrDispatch
66 66 from IPython.utils.syspathcontext import prepended_to_syspath
67 67 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
68 68 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
69 69 List, Unicode, Instance, Type)
70 70 from IPython.utils.warn import warn, error, fatal
71 71 import IPython.core.hooks
72 72
73 73 #-----------------------------------------------------------------------------
74 74 # Globals
75 75 #-----------------------------------------------------------------------------
76 76
77 77 # compiled regexps for autoindent management
78 78 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
79 79
80 80 #-----------------------------------------------------------------------------
81 81 # Utilities
82 82 #-----------------------------------------------------------------------------
83 83
84 84 # store the builtin raw_input globally, and use this always, in case user code
85 85 # overwrites it (like wx.py.PyShell does)
86 86 raw_input_original = raw_input
87 87
88 88 def softspace(file, newvalue):
89 89 """Copied from code.py, to remove the dependency"""
90 90
91 91 oldvalue = 0
92 92 try:
93 93 oldvalue = file.softspace
94 94 except AttributeError:
95 95 pass
96 96 try:
97 97 file.softspace = newvalue
98 98 except (AttributeError, TypeError):
99 99 # "attribute-less object" or "read-only attributes"
100 100 pass
101 101 return oldvalue
102 102
103 103
104 104 def no_op(*a, **kw): pass
105 105
106 106 class SpaceInInput(Exception): pass
107 107
108 108 class Bunch: pass
109 109
110 110
111 111 def get_default_colors():
112 112 if sys.platform=='darwin':
113 113 return "LightBG"
114 114 elif os.name=='nt':
115 115 return 'Linux'
116 116 else:
117 117 return 'Linux'
118 118
119 119
120 120 class SeparateStr(Str):
121 121 """A Str subclass to validate separate_in, separate_out, etc.
122 122
123 123 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
124 124 """
125 125
126 126 def validate(self, obj, value):
127 127 if value == '0': value = ''
128 128 value = value.replace('\\n','\n')
129 129 return super(SeparateStr, self).validate(obj, value)
130 130
131 131 class MultipleInstanceError(Exception):
132 132 pass
133 133
134 134
135 135 #-----------------------------------------------------------------------------
136 136 # Main IPython class
137 137 #-----------------------------------------------------------------------------
138 138
139 139 class InteractiveShell(Configurable, Magic):
140 140 """An enhanced, interactive shell for Python."""
141 141
142 142 _instance = None
143 143 autocall = Enum((0,1,2), default_value=1, config=True)
144 144 # TODO: remove all autoindent logic and put into frontends.
145 145 # We can't do this yet because even runlines uses the autoindent.
146 146 autoindent = CBool(True, config=True)
147 147 automagic = CBool(True, config=True)
148 148 cache_size = Int(1000, config=True)
149 149 color_info = CBool(True, config=True)
150 150 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
151 151 default_value=get_default_colors(), config=True)
152 152 debug = CBool(False, config=True)
153 153 deep_reload = CBool(False, config=True)
154 154 display_formatter = Instance(DisplayFormatter)
155 155 displayhook_class = Type(DisplayHook)
156 156 display_pub_class = Type(DisplayPublisher)
157 157
158 158 exit_now = CBool(False)
159 159 # Monotonically increasing execution counter
160 160 execution_count = Int(1)
161 161 filename = Str("<ipython console>")
162 162 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
163 163
164 164 # Input splitter, to split entire cells of input into either individual
165 165 # interactive statements or whole blocks.
166 166 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
167 167 (), {})
168 168 logstart = CBool(False, config=True)
169 169 logfile = Str('', config=True)
170 170 logappend = Str('', config=True)
171 171 object_info_string_level = Enum((0,1,2), default_value=0,
172 172 config=True)
173 173 pdb = CBool(False, config=True)
174 174
175 175 profile = Str('', config=True)
176 176 prompt_in1 = Str('In [\\#]: ', config=True)
177 177 prompt_in2 = Str(' .\\D.: ', config=True)
178 178 prompt_out = Str('Out[\\#]: ', config=True)
179 179 prompts_pad_left = CBool(True, config=True)
180 180 quiet = CBool(False, config=True)
181 181
182 182 history_length = Int(10000, config=True)
183 183
184 184 # The readline stuff will eventually be moved to the terminal subclass
185 185 # but for now, we can't do that as readline is welded in everywhere.
186 186 readline_use = CBool(True, config=True)
187 187 readline_merge_completions = CBool(True, config=True)
188 188 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
189 189 readline_remove_delims = Str('-/~', config=True)
190 190 readline_parse_and_bind = List([
191 191 'tab: complete',
192 192 '"\C-l": clear-screen',
193 193 'set show-all-if-ambiguous on',
194 194 '"\C-o": tab-insert',
195 195 '"\M-i": " "',
196 196 '"\M-o": "\d\d\d\d"',
197 197 '"\M-I": "\d\d\d\d"',
198 198 '"\C-r": reverse-search-history',
199 199 '"\C-s": forward-search-history',
200 200 '"\C-p": history-search-backward',
201 201 '"\C-n": history-search-forward',
202 202 '"\e[A": history-search-backward',
203 203 '"\e[B": history-search-forward',
204 204 '"\C-k": kill-line',
205 205 '"\C-u": unix-line-discard',
206 206 ], allow_none=False, config=True)
207 207
208 208 # TODO: this part of prompt management should be moved to the frontends.
209 209 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
210 210 separate_in = SeparateStr('\n', config=True)
211 211 separate_out = SeparateStr('', config=True)
212 212 separate_out2 = SeparateStr('', config=True)
213 213 wildcards_case_sensitive = CBool(True, config=True)
214 214 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
215 215 default_value='Context', config=True)
216 216
217 217 # Subcomponents of InteractiveShell
218 218 alias_manager = Instance('IPython.core.alias.AliasManager')
219 219 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
220 220 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
221 221 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
222 222 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
223 223 plugin_manager = Instance('IPython.core.plugin.PluginManager')
224 224 payload_manager = Instance('IPython.core.payload.PayloadManager')
225 225 history_manager = Instance('IPython.core.history.HistoryManager')
226 226
227 227 # Private interface
228 228 _post_execute = set()
229 229
230 230 def __init__(self, config=None, ipython_dir=None,
231 231 user_ns=None, user_global_ns=None,
232 232 custom_exceptions=((), None)):
233 233
234 234 # This is where traits with a config_key argument are updated
235 235 # from the values on config.
236 236 super(InteractiveShell, self).__init__(config=config)
237 237
238 238 # These are relatively independent and stateless
239 239 self.init_ipython_dir(ipython_dir)
240 240 self.init_instance_attrs()
241 241 self.init_environment()
242 242
243 243 # Create namespaces (user_ns, user_global_ns, etc.)
244 244 self.init_create_namespaces(user_ns, user_global_ns)
245 245 # This has to be done after init_create_namespaces because it uses
246 246 # something in self.user_ns, but before init_sys_modules, which
247 247 # is the first thing to modify sys.
248 248 # TODO: When we override sys.stdout and sys.stderr before this class
249 249 # is created, we are saving the overridden ones here. Not sure if this
250 250 # is what we want to do.
251 251 self.save_sys_module_state()
252 252 self.init_sys_modules()
253 253
254 254 # While we're trying to have each part of the code directly access what
255 255 # it needs without keeping redundant references to objects, we have too
256 256 # much legacy code that expects ip.db to exist.
257 257 self.db = PickleShareDB(os.path.join(self.ipython_dir, 'db'))
258 258
259 259 self.init_history()
260 260 self.init_encoding()
261 261 self.init_prefilter()
262 262
263 263 Magic.__init__(self, self)
264 264
265 265 self.init_syntax_highlighting()
266 266 self.init_hooks()
267 267 self.init_pushd_popd_magic()
268 268 # self.init_traceback_handlers use to be here, but we moved it below
269 269 # because it and init_io have to come after init_readline.
270 270 self.init_user_ns()
271 271 self.init_logger()
272 272 self.init_alias()
273 273 self.init_builtins()
274 274
275 275 # pre_config_initialization
276 276
277 277 # The next section should contain everything that was in ipmaker.
278 278 self.init_logstart()
279 279
280 280 # The following was in post_config_initialization
281 281 self.init_inspector()
282 282 # init_readline() must come before init_io(), because init_io uses
283 283 # readline related things.
284 284 self.init_readline()
285 285 # init_completer must come after init_readline, because it needs to
286 286 # know whether readline is present or not system-wide to configure the
287 287 # completers, since the completion machinery can now operate
288 288 # independently of readline (e.g. over the network)
289 289 self.init_completer()
290 290 # TODO: init_io() needs to happen before init_traceback handlers
291 291 # because the traceback handlers hardcode the stdout/stderr streams.
292 292 # This logic in in debugger.Pdb and should eventually be changed.
293 293 self.init_io()
294 294 self.init_traceback_handlers(custom_exceptions)
295 295 self.init_prompts()
296 296 self.init_display_formatter()
297 297 self.init_display_pub()
298 298 self.init_displayhook()
299 299 self.init_reload_doctest()
300 300 self.init_magics()
301 301 self.init_pdb()
302 302 self.init_extension_manager()
303 303 self.init_plugin_manager()
304 304 self.init_payload()
305 305 self.hooks.late_startup_hook()
306 306 atexit.register(self.atexit_operations)
307 307
308 308 @classmethod
309 309 def instance(cls, *args, **kwargs):
310 310 """Returns a global InteractiveShell instance."""
311 311 if cls._instance is None:
312 312 inst = cls(*args, **kwargs)
313 313 # Now make sure that the instance will also be returned by
314 314 # the subclasses instance attribute.
315 315 for subclass in cls.mro():
316 316 if issubclass(cls, subclass) and \
317 317 issubclass(subclass, InteractiveShell):
318 318 subclass._instance = inst
319 319 else:
320 320 break
321 321 if isinstance(cls._instance, cls):
322 322 return cls._instance
323 323 else:
324 324 raise MultipleInstanceError(
325 325 'Multiple incompatible subclass instances of '
326 326 'InteractiveShell are being created.'
327 327 )
328 328
329 329 @classmethod
330 330 def initialized(cls):
331 331 return hasattr(cls, "_instance")
332 332
333 333 def get_ipython(self):
334 334 """Return the currently running IPython instance."""
335 335 return self
336 336
337 337 #-------------------------------------------------------------------------
338 338 # Trait changed handlers
339 339 #-------------------------------------------------------------------------
340 340
341 341 def _ipython_dir_changed(self, name, new):
342 342 if not os.path.isdir(new):
343 343 os.makedirs(new, mode = 0777)
344 344
345 345 def set_autoindent(self,value=None):
346 346 """Set the autoindent flag, checking for readline support.
347 347
348 348 If called with no arguments, it acts as a toggle."""
349 349
350 350 if not self.has_readline:
351 351 if os.name == 'posix':
352 352 warn("The auto-indent feature requires the readline library")
353 353 self.autoindent = 0
354 354 return
355 355 if value is None:
356 356 self.autoindent = not self.autoindent
357 357 else:
358 358 self.autoindent = value
359 359
360 360 #-------------------------------------------------------------------------
361 361 # init_* methods called by __init__
362 362 #-------------------------------------------------------------------------
363 363
364 364 def init_ipython_dir(self, ipython_dir):
365 365 if ipython_dir is not None:
366 366 self.ipython_dir = ipython_dir
367 367 self.config.Global.ipython_dir = self.ipython_dir
368 368 return
369 369
370 370 if hasattr(self.config.Global, 'ipython_dir'):
371 371 self.ipython_dir = self.config.Global.ipython_dir
372 372 else:
373 373 self.ipython_dir = get_ipython_dir()
374 374
375 375 # All children can just read this
376 376 self.config.Global.ipython_dir = self.ipython_dir
377 377
378 378 def init_instance_attrs(self):
379 379 self.more = False
380 380
381 381 # command compiler
382 382 self.compile = CachingCompiler()
383 383
384 384 # User input buffers
385 385 # NOTE: these variables are slated for full removal, once we are 100%
386 386 # sure that the new execution logic is solid. We will delte runlines,
387 387 # push_line and these buffers, as all input will be managed by the
388 388 # frontends via an inputsplitter instance.
389 389 self.buffer = []
390 390 self.buffer_raw = []
391 391
392 392 # Make an empty namespace, which extension writers can rely on both
393 393 # existing and NEVER being used by ipython itself. This gives them a
394 394 # convenient location for storing additional information and state
395 395 # their extensions may require, without fear of collisions with other
396 396 # ipython names that may develop later.
397 397 self.meta = Struct()
398 398
399 399 # Object variable to store code object waiting execution. This is
400 400 # used mainly by the multithreaded shells, but it can come in handy in
401 401 # other situations. No need to use a Queue here, since it's a single
402 402 # item which gets cleared once run.
403 403 self.code_to_run = None
404 404
405 405 # Temporary files used for various purposes. Deleted at exit.
406 406 self.tempfiles = []
407 407
408 408 # Keep track of readline usage (later set by init_readline)
409 409 self.has_readline = False
410 410
411 411 # keep track of where we started running (mainly for crash post-mortem)
412 412 # This is not being used anywhere currently.
413 413 self.starting_dir = os.getcwd()
414 414
415 415 # Indentation management
416 416 self.indent_current_nsp = 0
417 417
418 418 def init_environment(self):
419 419 """Any changes we need to make to the user's environment."""
420 420 pass
421 421
422 422 def init_encoding(self):
423 423 # Get system encoding at startup time. Certain terminals (like Emacs
424 424 # under Win32 have it set to None, and we need to have a known valid
425 425 # encoding to use in the raw_input() method
426 426 try:
427 427 self.stdin_encoding = sys.stdin.encoding or 'ascii'
428 428 except AttributeError:
429 429 self.stdin_encoding = 'ascii'
430 430
431 431 def init_syntax_highlighting(self):
432 432 # Python source parser/formatter for syntax highlighting
433 433 pyformat = PyColorize.Parser().format
434 434 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
435 435
436 436 def init_pushd_popd_magic(self):
437 437 # for pushd/popd management
438 438 try:
439 439 self.home_dir = get_home_dir()
440 440 except HomeDirError, msg:
441 441 fatal(msg)
442 442
443 443 self.dir_stack = []
444 444
445 445 def init_logger(self):
446 446 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
447 447 logmode='rotate')
448 448
449 449 def init_logstart(self):
450 450 """Initialize logging in case it was requested at the command line.
451 451 """
452 452 if self.logappend:
453 453 self.magic_logstart(self.logappend + ' append')
454 454 elif self.logfile:
455 455 self.magic_logstart(self.logfile)
456 456 elif self.logstart:
457 457 self.magic_logstart()
458 458
459 459 def init_builtins(self):
460 460 self.builtin_trap = BuiltinTrap(shell=self)
461 461
462 462 def init_inspector(self):
463 463 # Object inspector
464 464 self.inspector = oinspect.Inspector(oinspect.InspectColors,
465 465 PyColorize.ANSICodeColors,
466 466 'NoColor',
467 467 self.object_info_string_level)
468 468
469 469 def init_io(self):
470 470 # This will just use sys.stdout and sys.stderr. If you want to
471 471 # override sys.stdout and sys.stderr themselves, you need to do that
472 472 # *before* instantiating this class, because Term holds onto
473 473 # references to the underlying streams.
474 474 if sys.platform == 'win32' and self.has_readline:
475 475 Term = io.IOTerm(cout=self.readline._outputfile,
476 476 cerr=self.readline._outputfile)
477 477 else:
478 478 Term = io.IOTerm()
479 479 io.Term = Term
480 480
481 481 def init_prompts(self):
482 482 # TODO: This is a pass for now because the prompts are managed inside
483 483 # the DisplayHook. Once there is a separate prompt manager, this
484 484 # will initialize that object and all prompt related information.
485 485 pass
486 486
487 487 def init_display_formatter(self):
488 488 self.display_formatter = DisplayFormatter(config=self.config)
489 489
490 490 def init_display_pub(self):
491 491 self.display_pub = self.display_pub_class(config=self.config)
492 492
493 493 def init_displayhook(self):
494 494 # Initialize displayhook, set in/out prompts and printing system
495 495 self.displayhook = self.displayhook_class(
496 496 config=self.config,
497 497 shell=self,
498 498 cache_size=self.cache_size,
499 499 input_sep = self.separate_in,
500 500 output_sep = self.separate_out,
501 501 output_sep2 = self.separate_out2,
502 502 ps1 = self.prompt_in1,
503 503 ps2 = self.prompt_in2,
504 504 ps_out = self.prompt_out,
505 505 pad_left = self.prompts_pad_left
506 506 )
507 507 # This is a context manager that installs/revmoes the displayhook at
508 508 # the appropriate time.
509 509 self.display_trap = DisplayTrap(hook=self.displayhook)
510 510
511 511 def init_reload_doctest(self):
512 512 # Do a proper resetting of doctest, including the necessary displayhook
513 513 # monkeypatching
514 514 try:
515 515 doctest_reload()
516 516 except ImportError:
517 517 warn("doctest module does not exist.")
518 518
519 519 #-------------------------------------------------------------------------
520 520 # Things related to injections into the sys module
521 521 #-------------------------------------------------------------------------
522 522
523 523 def save_sys_module_state(self):
524 524 """Save the state of hooks in the sys module.
525 525
526 526 This has to be called after self.user_ns is created.
527 527 """
528 528 self._orig_sys_module_state = {}
529 529 self._orig_sys_module_state['stdin'] = sys.stdin
530 530 self._orig_sys_module_state['stdout'] = sys.stdout
531 531 self._orig_sys_module_state['stderr'] = sys.stderr
532 532 self._orig_sys_module_state['excepthook'] = sys.excepthook
533 533 try:
534 534 self._orig_sys_modules_main_name = self.user_ns['__name__']
535 535 except KeyError:
536 536 pass
537 537
538 538 def restore_sys_module_state(self):
539 539 """Restore the state of the sys module."""
540 540 try:
541 541 for k, v in self._orig_sys_module_state.iteritems():
542 542 setattr(sys, k, v)
543 543 except AttributeError:
544 544 pass
545 545 # Reset what what done in self.init_sys_modules
546 546 try:
547 547 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
548 548 except (AttributeError, KeyError):
549 549 pass
550 550
551 551 #-------------------------------------------------------------------------
552 552 # Things related to hooks
553 553 #-------------------------------------------------------------------------
554 554
555 555 def init_hooks(self):
556 556 # hooks holds pointers used for user-side customizations
557 557 self.hooks = Struct()
558 558
559 559 self.strdispatchers = {}
560 560
561 561 # Set all default hooks, defined in the IPython.hooks module.
562 562 hooks = IPython.core.hooks
563 563 for hook_name in hooks.__all__:
564 564 # default hooks have priority 100, i.e. low; user hooks should have
565 565 # 0-100 priority
566 566 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
567 567
568 568 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
569 569 """set_hook(name,hook) -> sets an internal IPython hook.
570 570
571 571 IPython exposes some of its internal API as user-modifiable hooks. By
572 572 adding your function to one of these hooks, you can modify IPython's
573 573 behavior to call at runtime your own routines."""
574 574
575 575 # At some point in the future, this should validate the hook before it
576 576 # accepts it. Probably at least check that the hook takes the number
577 577 # of args it's supposed to.
578 578
579 579 f = types.MethodType(hook,self)
580 580
581 581 # check if the hook is for strdispatcher first
582 582 if str_key is not None:
583 583 sdp = self.strdispatchers.get(name, StrDispatch())
584 584 sdp.add_s(str_key, f, priority )
585 585 self.strdispatchers[name] = sdp
586 586 return
587 587 if re_key is not None:
588 588 sdp = self.strdispatchers.get(name, StrDispatch())
589 589 sdp.add_re(re.compile(re_key), f, priority )
590 590 self.strdispatchers[name] = sdp
591 591 return
592 592
593 593 dp = getattr(self.hooks, name, None)
594 594 if name not in IPython.core.hooks.__all__:
595 595 print "Warning! Hook '%s' is not one of %s" % \
596 596 (name, IPython.core.hooks.__all__ )
597 597 if not dp:
598 598 dp = IPython.core.hooks.CommandChainDispatcher()
599 599
600 600 try:
601 601 dp.add(f,priority)
602 602 except AttributeError:
603 603 # it was not commandchain, plain old func - replace
604 604 dp = f
605 605
606 606 setattr(self.hooks,name, dp)
607 607
608 608 def register_post_execute(self, func):
609 609 """Register a function for calling after code execution.
610 610 """
611 611 if not callable(func):
612 612 raise ValueError('argument %s must be callable' % func)
613 613 self._post_execute.add(func)
614 614
615 615 #-------------------------------------------------------------------------
616 616 # Things related to the "main" module
617 617 #-------------------------------------------------------------------------
618 618
619 619 def new_main_mod(self,ns=None):
620 620 """Return a new 'main' module object for user code execution.
621 621 """
622 622 main_mod = self._user_main_module
623 623 init_fakemod_dict(main_mod,ns)
624 624 return main_mod
625 625
626 626 def cache_main_mod(self,ns,fname):
627 627 """Cache a main module's namespace.
628 628
629 629 When scripts are executed via %run, we must keep a reference to the
630 630 namespace of their __main__ module (a FakeModule instance) around so
631 631 that Python doesn't clear it, rendering objects defined therein
632 632 useless.
633 633
634 634 This method keeps said reference in a private dict, keyed by the
635 635 absolute path of the module object (which corresponds to the script
636 636 path). This way, for multiple executions of the same script we only
637 637 keep one copy of the namespace (the last one), thus preventing memory
638 638 leaks from old references while allowing the objects from the last
639 639 execution to be accessible.
640 640
641 641 Note: we can not allow the actual FakeModule instances to be deleted,
642 642 because of how Python tears down modules (it hard-sets all their
643 643 references to None without regard for reference counts). This method
644 644 must therefore make a *copy* of the given namespace, to allow the
645 645 original module's __dict__ to be cleared and reused.
646 646
647 647
648 648 Parameters
649 649 ----------
650 650 ns : a namespace (a dict, typically)
651 651
652 652 fname : str
653 653 Filename associated with the namespace.
654 654
655 655 Examples
656 656 --------
657 657
658 658 In [10]: import IPython
659 659
660 660 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
661 661
662 662 In [12]: IPython.__file__ in _ip._main_ns_cache
663 663 Out[12]: True
664 664 """
665 665 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
666 666
667 667 def clear_main_mod_cache(self):
668 668 """Clear the cache of main modules.
669 669
670 670 Mainly for use by utilities like %reset.
671 671
672 672 Examples
673 673 --------
674 674
675 675 In [15]: import IPython
676 676
677 677 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
678 678
679 679 In [17]: len(_ip._main_ns_cache) > 0
680 680 Out[17]: True
681 681
682 682 In [18]: _ip.clear_main_mod_cache()
683 683
684 684 In [19]: len(_ip._main_ns_cache) == 0
685 685 Out[19]: True
686 686 """
687 687 self._main_ns_cache.clear()
688 688
689 689 #-------------------------------------------------------------------------
690 690 # Things related to debugging
691 691 #-------------------------------------------------------------------------
692 692
693 693 def init_pdb(self):
694 694 # Set calling of pdb on exceptions
695 695 # self.call_pdb is a property
696 696 self.call_pdb = self.pdb
697 697
698 698 def _get_call_pdb(self):
699 699 return self._call_pdb
700 700
701 701 def _set_call_pdb(self,val):
702 702
703 703 if val not in (0,1,False,True):
704 704 raise ValueError,'new call_pdb value must be boolean'
705 705
706 706 # store value in instance
707 707 self._call_pdb = val
708 708
709 709 # notify the actual exception handlers
710 710 self.InteractiveTB.call_pdb = val
711 711
712 712 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
713 713 'Control auto-activation of pdb at exceptions')
714 714
715 715 def debugger(self,force=False):
716 716 """Call the pydb/pdb debugger.
717 717
718 718 Keywords:
719 719
720 720 - force(False): by default, this routine checks the instance call_pdb
721 721 flag and does not actually invoke the debugger if the flag is false.
722 722 The 'force' option forces the debugger to activate even if the flag
723 723 is false.
724 724 """
725 725
726 726 if not (force or self.call_pdb):
727 727 return
728 728
729 729 if not hasattr(sys,'last_traceback'):
730 730 error('No traceback has been produced, nothing to debug.')
731 731 return
732 732
733 733 # use pydb if available
734 734 if debugger.has_pydb:
735 735 from pydb import pm
736 736 else:
737 737 # fallback to our internal debugger
738 738 pm = lambda : self.InteractiveTB.debugger(force=True)
739 739 self.history_saving_wrapper(pm)()
740 740
741 741 #-------------------------------------------------------------------------
742 742 # Things related to IPython's various namespaces
743 743 #-------------------------------------------------------------------------
744 744
745 745 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
746 746 # Create the namespace where the user will operate. user_ns is
747 747 # normally the only one used, and it is passed to the exec calls as
748 748 # the locals argument. But we do carry a user_global_ns namespace
749 749 # given as the exec 'globals' argument, This is useful in embedding
750 750 # situations where the ipython shell opens in a context where the
751 751 # distinction between locals and globals is meaningful. For
752 752 # non-embedded contexts, it is just the same object as the user_ns dict.
753 753
754 754 # FIXME. For some strange reason, __builtins__ is showing up at user
755 755 # level as a dict instead of a module. This is a manual fix, but I
756 756 # should really track down where the problem is coming from. Alex
757 757 # Schmolck reported this problem first.
758 758
759 759 # A useful post by Alex Martelli on this topic:
760 760 # Re: inconsistent value from __builtins__
761 761 # Von: Alex Martelli <aleaxit@yahoo.com>
762 762 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
763 763 # Gruppen: comp.lang.python
764 764
765 765 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
766 766 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
767 767 # > <type 'dict'>
768 768 # > >>> print type(__builtins__)
769 769 # > <type 'module'>
770 770 # > Is this difference in return value intentional?
771 771
772 772 # Well, it's documented that '__builtins__' can be either a dictionary
773 773 # or a module, and it's been that way for a long time. Whether it's
774 774 # intentional (or sensible), I don't know. In any case, the idea is
775 775 # that if you need to access the built-in namespace directly, you
776 776 # should start with "import __builtin__" (note, no 's') which will
777 777 # definitely give you a module. Yeah, it's somewhat confusing:-(.
778 778
779 779 # These routines return properly built dicts as needed by the rest of
780 780 # the code, and can also be used by extension writers to generate
781 781 # properly initialized namespaces.
782 782 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
783 783 user_global_ns)
784 784
785 785 # Assign namespaces
786 786 # This is the namespace where all normal user variables live
787 787 self.user_ns = user_ns
788 788 self.user_global_ns = user_global_ns
789 789
790 790 # An auxiliary namespace that checks what parts of the user_ns were
791 791 # loaded at startup, so we can list later only variables defined in
792 792 # actual interactive use. Since it is always a subset of user_ns, it
793 793 # doesn't need to be separately tracked in the ns_table.
794 794 self.user_ns_hidden = {}
795 795
796 796 # A namespace to keep track of internal data structures to prevent
797 797 # them from cluttering user-visible stuff. Will be updated later
798 798 self.internal_ns = {}
799 799
800 800 # Now that FakeModule produces a real module, we've run into a nasty
801 801 # problem: after script execution (via %run), the module where the user
802 802 # code ran is deleted. Now that this object is a true module (needed
803 803 # so docetst and other tools work correctly), the Python module
804 804 # teardown mechanism runs over it, and sets to None every variable
805 805 # present in that module. Top-level references to objects from the
806 806 # script survive, because the user_ns is updated with them. However,
807 807 # calling functions defined in the script that use other things from
808 808 # the script will fail, because the function's closure had references
809 809 # to the original objects, which are now all None. So we must protect
810 810 # these modules from deletion by keeping a cache.
811 811 #
812 812 # To avoid keeping stale modules around (we only need the one from the
813 813 # last run), we use a dict keyed with the full path to the script, so
814 814 # only the last version of the module is held in the cache. Note,
815 815 # however, that we must cache the module *namespace contents* (their
816 816 # __dict__). Because if we try to cache the actual modules, old ones
817 817 # (uncached) could be destroyed while still holding references (such as
818 818 # those held by GUI objects that tend to be long-lived)>
819 819 #
820 820 # The %reset command will flush this cache. See the cache_main_mod()
821 821 # and clear_main_mod_cache() methods for details on use.
822 822
823 823 # This is the cache used for 'main' namespaces
824 824 self._main_ns_cache = {}
825 825 # And this is the single instance of FakeModule whose __dict__ we keep
826 826 # copying and clearing for reuse on each %run
827 827 self._user_main_module = FakeModule()
828 828
829 829 # A table holding all the namespaces IPython deals with, so that
830 830 # introspection facilities can search easily.
831 831 self.ns_table = {'user':user_ns,
832 832 'user_global':user_global_ns,
833 833 'internal':self.internal_ns,
834 834 'builtin':__builtin__.__dict__
835 835 }
836 836
837 837 # Similarly, track all namespaces where references can be held and that
838 838 # we can safely clear (so it can NOT include builtin). This one can be
839 839 # a simple list. Note that the main execution namespaces, user_ns and
840 840 # user_global_ns, can NOT be listed here, as clearing them blindly
841 841 # causes errors in object __del__ methods. Instead, the reset() method
842 842 # clears them manually and carefully.
843 843 self.ns_refs_table = [ self.user_ns_hidden,
844 844 self.internal_ns, self._main_ns_cache ]
845 845
846 846 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
847 847 """Return a valid local and global user interactive namespaces.
848 848
849 849 This builds a dict with the minimal information needed to operate as a
850 850 valid IPython user namespace, which you can pass to the various
851 851 embedding classes in ipython. The default implementation returns the
852 852 same dict for both the locals and the globals to allow functions to
853 853 refer to variables in the namespace. Customized implementations can
854 854 return different dicts. The locals dictionary can actually be anything
855 855 following the basic mapping protocol of a dict, but the globals dict
856 856 must be a true dict, not even a subclass. It is recommended that any
857 857 custom object for the locals namespace synchronize with the globals
858 858 dict somehow.
859 859
860 860 Raises TypeError if the provided globals namespace is not a true dict.
861 861
862 862 Parameters
863 863 ----------
864 864 user_ns : dict-like, optional
865 865 The current user namespace. The items in this namespace should
866 866 be included in the output. If None, an appropriate blank
867 867 namespace should be created.
868 868 user_global_ns : dict, optional
869 869 The current user global namespace. The items in this namespace
870 870 should be included in the output. If None, an appropriate
871 871 blank namespace should be created.
872 872
873 873 Returns
874 874 -------
875 875 A pair of dictionary-like object to be used as the local namespace
876 876 of the interpreter and a dict to be used as the global namespace.
877 877 """
878 878
879 879
880 880 # We must ensure that __builtin__ (without the final 's') is always
881 881 # available and pointing to the __builtin__ *module*. For more details:
882 882 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
883 883
884 884 if user_ns is None:
885 885 # Set __name__ to __main__ to better match the behavior of the
886 886 # normal interpreter.
887 887 user_ns = {'__name__' :'__main__',
888 888 '__builtin__' : __builtin__,
889 889 '__builtins__' : __builtin__,
890 890 }
891 891 else:
892 892 user_ns.setdefault('__name__','__main__')
893 893 user_ns.setdefault('__builtin__',__builtin__)
894 894 user_ns.setdefault('__builtins__',__builtin__)
895 895
896 896 if user_global_ns is None:
897 897 user_global_ns = user_ns
898 898 if type(user_global_ns) is not dict:
899 899 raise TypeError("user_global_ns must be a true dict; got %r"
900 900 % type(user_global_ns))
901 901
902 902 return user_ns, user_global_ns
903 903
904 904 def init_sys_modules(self):
905 905 # We need to insert into sys.modules something that looks like a
906 906 # module but which accesses the IPython namespace, for shelve and
907 907 # pickle to work interactively. Normally they rely on getting
908 908 # everything out of __main__, but for embedding purposes each IPython
909 909 # instance has its own private namespace, so we can't go shoving
910 910 # everything into __main__.
911 911
912 912 # note, however, that we should only do this for non-embedded
913 913 # ipythons, which really mimic the __main__.__dict__ with their own
914 914 # namespace. Embedded instances, on the other hand, should not do
915 915 # this because they need to manage the user local/global namespaces
916 916 # only, but they live within a 'normal' __main__ (meaning, they
917 917 # shouldn't overtake the execution environment of the script they're
918 918 # embedded in).
919 919
920 920 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
921 921
922 922 try:
923 923 main_name = self.user_ns['__name__']
924 924 except KeyError:
925 925 raise KeyError('user_ns dictionary MUST have a "__name__" key')
926 926 else:
927 927 sys.modules[main_name] = FakeModule(self.user_ns)
928 928
929 929 def init_user_ns(self):
930 930 """Initialize all user-visible namespaces to their minimum defaults.
931 931
932 932 Certain history lists are also initialized here, as they effectively
933 933 act as user namespaces.
934 934
935 935 Notes
936 936 -----
937 937 All data structures here are only filled in, they are NOT reset by this
938 938 method. If they were not empty before, data will simply be added to
939 939 therm.
940 940 """
941 941 # This function works in two parts: first we put a few things in
942 942 # user_ns, and we sync that contents into user_ns_hidden so that these
943 943 # initial variables aren't shown by %who. After the sync, we add the
944 944 # rest of what we *do* want the user to see with %who even on a new
945 945 # session (probably nothing, so theye really only see their own stuff)
946 946
947 947 # The user dict must *always* have a __builtin__ reference to the
948 948 # Python standard __builtin__ namespace, which must be imported.
949 949 # This is so that certain operations in prompt evaluation can be
950 950 # reliably executed with builtins. Note that we can NOT use
951 951 # __builtins__ (note the 's'), because that can either be a dict or a
952 952 # module, and can even mutate at runtime, depending on the context
953 953 # (Python makes no guarantees on it). In contrast, __builtin__ is
954 954 # always a module object, though it must be explicitly imported.
955 955
956 956 # For more details:
957 957 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
958 958 ns = dict(__builtin__ = __builtin__)
959 959
960 960 # Put 'help' in the user namespace
961 961 try:
962 962 from site import _Helper
963 963 ns['help'] = _Helper()
964 964 except ImportError:
965 965 warn('help() not available - check site.py')
966 966
967 967 # make global variables for user access to the histories
968 968 ns['_ih'] = self.history_manager.input_hist_parsed
969 969 ns['_oh'] = self.history_manager.output_hist
970 970 ns['_dh'] = self.history_manager.dir_hist
971 971
972 972 ns['_sh'] = shadowns
973 973
974 974 # user aliases to input and output histories. These shouldn't show up
975 975 # in %who, as they can have very large reprs.
976 976 ns['In'] = self.history_manager.input_hist_parsed
977 977 ns['Out'] = self.history_manager.output_hist
978 978
979 979 # Store myself as the public api!!!
980 980 ns['get_ipython'] = self.get_ipython
981 981
982 982 # Sync what we've added so far to user_ns_hidden so these aren't seen
983 983 # by %who
984 984 self.user_ns_hidden.update(ns)
985 985
986 986 # Anything put into ns now would show up in %who. Think twice before
987 987 # putting anything here, as we really want %who to show the user their
988 988 # stuff, not our variables.
989 989
990 990 # Finally, update the real user's namespace
991 991 self.user_ns.update(ns)
992 992
993 993 def reset(self):
994 994 """Clear all internal namespaces.
995 995
996 996 Note that this is much more aggressive than %reset, since it clears
997 997 fully all namespaces, as well as all input/output lists.
998 998 """
999 999 # Clear histories
1000 1000 self.history_manager.reset()
1001 1001
1002 1002 # Reset counter used to index all histories
1003 1003 self.execution_count = 0
1004 1004
1005 1005 # Restore the user namespaces to minimal usability
1006 1006 for ns in self.ns_refs_table:
1007 1007 ns.clear()
1008 1008
1009 1009 # The main execution namespaces must be cleared very carefully,
1010 1010 # skipping the deletion of the builtin-related keys, because doing so
1011 1011 # would cause errors in many object's __del__ methods.
1012 1012 for ns in [self.user_ns, self.user_global_ns]:
1013 1013 drop_keys = set(ns.keys())
1014 1014 drop_keys.discard('__builtin__')
1015 1015 drop_keys.discard('__builtins__')
1016 1016 for k in drop_keys:
1017 1017 del ns[k]
1018 1018
1019 1019 # Restore the user namespaces to minimal usability
1020 1020 self.init_user_ns()
1021 1021
1022 1022 # Restore the default and user aliases
1023 1023 self.alias_manager.clear_aliases()
1024 1024 self.alias_manager.init_aliases()
1025 1025
1026 1026 def reset_selective(self, regex=None):
1027 1027 """Clear selective variables from internal namespaces based on a
1028 1028 specified regular expression.
1029 1029
1030 1030 Parameters
1031 1031 ----------
1032 1032 regex : string or compiled pattern, optional
1033 1033 A regular expression pattern that will be used in searching
1034 1034 variable names in the users namespaces.
1035 1035 """
1036 1036 if regex is not None:
1037 1037 try:
1038 1038 m = re.compile(regex)
1039 1039 except TypeError:
1040 1040 raise TypeError('regex must be a string or compiled pattern')
1041 1041 # Search for keys in each namespace that match the given regex
1042 1042 # If a match is found, delete the key/value pair.
1043 1043 for ns in self.ns_refs_table:
1044 1044 for var in ns:
1045 1045 if m.search(var):
1046 1046 del ns[var]
1047 1047
1048 1048 def push(self, variables, interactive=True):
1049 1049 """Inject a group of variables into the IPython user namespace.
1050 1050
1051 1051 Parameters
1052 1052 ----------
1053 1053 variables : dict, str or list/tuple of str
1054 1054 The variables to inject into the user's namespace. If a dict, a
1055 1055 simple update is done. If a str, the string is assumed to have
1056 1056 variable names separated by spaces. A list/tuple of str can also
1057 1057 be used to give the variable names. If just the variable names are
1058 1058 give (list/tuple/str) then the variable values looked up in the
1059 1059 callers frame.
1060 1060 interactive : bool
1061 1061 If True (default), the variables will be listed with the ``who``
1062 1062 magic.
1063 1063 """
1064 1064 vdict = None
1065 1065
1066 1066 # We need a dict of name/value pairs to do namespace updates.
1067 1067 if isinstance(variables, dict):
1068 1068 vdict = variables
1069 1069 elif isinstance(variables, (basestring, list, tuple)):
1070 1070 if isinstance(variables, basestring):
1071 1071 vlist = variables.split()
1072 1072 else:
1073 1073 vlist = variables
1074 1074 vdict = {}
1075 1075 cf = sys._getframe(1)
1076 1076 for name in vlist:
1077 1077 try:
1078 1078 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1079 1079 except:
1080 1080 print ('Could not get variable %s from %s' %
1081 1081 (name,cf.f_code.co_name))
1082 1082 else:
1083 1083 raise ValueError('variables must be a dict/str/list/tuple')
1084 1084
1085 1085 # Propagate variables to user namespace
1086 1086 self.user_ns.update(vdict)
1087 1087
1088 1088 # And configure interactive visibility
1089 1089 config_ns = self.user_ns_hidden
1090 1090 if interactive:
1091 1091 for name, val in vdict.iteritems():
1092 1092 config_ns.pop(name, None)
1093 1093 else:
1094 1094 for name,val in vdict.iteritems():
1095 1095 config_ns[name] = val
1096 1096
1097 1097 #-------------------------------------------------------------------------
1098 1098 # Things related to object introspection
1099 1099 #-------------------------------------------------------------------------
1100 1100
1101 1101 def _ofind(self, oname, namespaces=None):
1102 1102 """Find an object in the available namespaces.
1103 1103
1104 1104 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1105 1105
1106 1106 Has special code to detect magic functions.
1107 1107 """
1108 1108 #oname = oname.strip()
1109 1109 #print '1- oname: <%r>' % oname # dbg
1110 1110 try:
1111 1111 oname = oname.strip().encode('ascii')
1112 1112 #print '2- oname: <%r>' % oname # dbg
1113 1113 except UnicodeEncodeError:
1114 1114 print 'Python identifiers can only contain ascii characters.'
1115 1115 return dict(found=False)
1116 1116
1117 1117 alias_ns = None
1118 1118 if namespaces is None:
1119 1119 # Namespaces to search in:
1120 1120 # Put them in a list. The order is important so that we
1121 1121 # find things in the same order that Python finds them.
1122 1122 namespaces = [ ('Interactive', self.user_ns),
1123 1123 ('IPython internal', self.internal_ns),
1124 1124 ('Python builtin', __builtin__.__dict__),
1125 1125 ('Alias', self.alias_manager.alias_table),
1126 1126 ]
1127 1127 alias_ns = self.alias_manager.alias_table
1128 1128
1129 1129 # initialize results to 'null'
1130 1130 found = False; obj = None; ospace = None; ds = None;
1131 1131 ismagic = False; isalias = False; parent = None
1132 1132
1133 1133 # We need to special-case 'print', which as of python2.6 registers as a
1134 1134 # function but should only be treated as one if print_function was
1135 1135 # loaded with a future import. In this case, just bail.
1136 1136 if (oname == 'print' and not (self.compile.compiler_flags &
1137 1137 __future__.CO_FUTURE_PRINT_FUNCTION)):
1138 1138 return {'found':found, 'obj':obj, 'namespace':ospace,
1139 1139 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1140 1140
1141 1141 # Look for the given name by splitting it in parts. If the head is
1142 1142 # found, then we look for all the remaining parts as members, and only
1143 1143 # declare success if we can find them all.
1144 1144 oname_parts = oname.split('.')
1145 1145 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1146 1146 for nsname,ns in namespaces:
1147 1147 try:
1148 1148 obj = ns[oname_head]
1149 1149 except KeyError:
1150 1150 continue
1151 1151 else:
1152 1152 #print 'oname_rest:', oname_rest # dbg
1153 1153 for part in oname_rest:
1154 1154 try:
1155 1155 parent = obj
1156 1156 obj = getattr(obj,part)
1157 1157 except:
1158 1158 # Blanket except b/c some badly implemented objects
1159 1159 # allow __getattr__ to raise exceptions other than
1160 1160 # AttributeError, which then crashes IPython.
1161 1161 break
1162 1162 else:
1163 1163 # If we finish the for loop (no break), we got all members
1164 1164 found = True
1165 1165 ospace = nsname
1166 1166 if ns == alias_ns:
1167 1167 isalias = True
1168 1168 break # namespace loop
1169 1169
1170 1170 # Try to see if it's magic
1171 1171 if not found:
1172 1172 if oname.startswith(ESC_MAGIC):
1173 1173 oname = oname[1:]
1174 1174 obj = getattr(self,'magic_'+oname,None)
1175 1175 if obj is not None:
1176 1176 found = True
1177 1177 ospace = 'IPython internal'
1178 1178 ismagic = True
1179 1179
1180 1180 # Last try: special-case some literals like '', [], {}, etc:
1181 1181 if not found and oname_head in ["''",'""','[]','{}','()']:
1182 1182 obj = eval(oname_head)
1183 1183 found = True
1184 1184 ospace = 'Interactive'
1185 1185
1186 1186 return {'found':found, 'obj':obj, 'namespace':ospace,
1187 1187 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1188 1188
1189 1189 def _ofind_property(self, oname, info):
1190 1190 """Second part of object finding, to look for property details."""
1191 1191 if info.found:
1192 1192 # Get the docstring of the class property if it exists.
1193 1193 path = oname.split('.')
1194 1194 root = '.'.join(path[:-1])
1195 1195 if info.parent is not None:
1196 1196 try:
1197 1197 target = getattr(info.parent, '__class__')
1198 1198 # The object belongs to a class instance.
1199 1199 try:
1200 1200 target = getattr(target, path[-1])
1201 1201 # The class defines the object.
1202 1202 if isinstance(target, property):
1203 1203 oname = root + '.__class__.' + path[-1]
1204 1204 info = Struct(self._ofind(oname))
1205 1205 except AttributeError: pass
1206 1206 except AttributeError: pass
1207 1207
1208 1208 # We return either the new info or the unmodified input if the object
1209 1209 # hadn't been found
1210 1210 return info
1211 1211
1212 1212 def _object_find(self, oname, namespaces=None):
1213 1213 """Find an object and return a struct with info about it."""
1214 1214 inf = Struct(self._ofind(oname, namespaces))
1215 1215 return Struct(self._ofind_property(oname, inf))
1216 1216
1217 1217 def _inspect(self, meth, oname, namespaces=None, **kw):
1218 1218 """Generic interface to the inspector system.
1219 1219
1220 1220 This function is meant to be called by pdef, pdoc & friends."""
1221 1221 info = self._object_find(oname)
1222 1222 if info.found:
1223 1223 pmethod = getattr(self.inspector, meth)
1224 1224 formatter = format_screen if info.ismagic else None
1225 1225 if meth == 'pdoc':
1226 1226 pmethod(info.obj, oname, formatter)
1227 1227 elif meth == 'pinfo':
1228 1228 pmethod(info.obj, oname, formatter, info, **kw)
1229 1229 else:
1230 1230 pmethod(info.obj, oname)
1231 1231 else:
1232 1232 print 'Object `%s` not found.' % oname
1233 1233 return 'not found' # so callers can take other action
1234 1234
1235 1235 def object_inspect(self, oname):
1236 1236 info = self._object_find(oname)
1237 1237 if info.found:
1238 1238 return self.inspector.info(info.obj, oname, info=info)
1239 1239 else:
1240 1240 return oinspect.object_info(name=oname, found=False)
1241 1241
1242 1242 #-------------------------------------------------------------------------
1243 1243 # Things related to history management
1244 1244 #-------------------------------------------------------------------------
1245 1245
1246 1246 def init_history(self):
1247 1247 """Sets up the command history, and starts regular autosaves."""
1248 1248 self.history_manager = HistoryManager(shell=self, config=self.config)
1249 1249
1250 1250 def history_saving_wrapper(self, func):
1251 1251 """ Wrap func for readline history saving
1252 1252
1253 1253 Convert func into callable that saves & restores
1254 1254 history around the call """
1255 1255
1256 1256 if self.has_readline:
1257 1257 from IPython.utils import rlineimpl as readline
1258 1258 else:
1259 1259 return func
1260 1260
1261 1261 def wrapper():
1262 1262 self.save_history()
1263 1263 try:
1264 1264 func()
1265 1265 finally:
1266 1266 self.reload_history()
1267 1267 return wrapper
1268 1268
1269 1269 def get_history(self, start=1, stop=None, raw=False, output=True):
1270 1270 return self.history_manager.get_history(start, stop, raw, output)
1271 1271
1272 1272
1273 1273 #-------------------------------------------------------------------------
1274 1274 # Things related to exception handling and tracebacks (not debugging)
1275 1275 #-------------------------------------------------------------------------
1276 1276
1277 1277 def init_traceback_handlers(self, custom_exceptions):
1278 1278 # Syntax error handler.
1279 1279 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1280 1280
1281 1281 # The interactive one is initialized with an offset, meaning we always
1282 1282 # want to remove the topmost item in the traceback, which is our own
1283 1283 # internal code. Valid modes: ['Plain','Context','Verbose']
1284 1284 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1285 1285 color_scheme='NoColor',
1286 1286 tb_offset = 1,
1287 1287 check_cache=self.compile.check_cache)
1288 1288
1289 1289 # The instance will store a pointer to the system-wide exception hook,
1290 1290 # so that runtime code (such as magics) can access it. This is because
1291 1291 # during the read-eval loop, it may get temporarily overwritten.
1292 1292 self.sys_excepthook = sys.excepthook
1293 1293
1294 1294 # and add any custom exception handlers the user may have specified
1295 1295 self.set_custom_exc(*custom_exceptions)
1296 1296
1297 1297 # Set the exception mode
1298 1298 self.InteractiveTB.set_mode(mode=self.xmode)
1299 1299
1300 1300 def set_custom_exc(self, exc_tuple, handler):
1301 1301 """set_custom_exc(exc_tuple,handler)
1302 1302
1303 1303 Set a custom exception handler, which will be called if any of the
1304 1304 exceptions in exc_tuple occur in the mainloop (specifically, in the
1305 1305 run_code() method.
1306 1306
1307 1307 Inputs:
1308 1308
1309 1309 - exc_tuple: a *tuple* of valid exceptions to call the defined
1310 1310 handler for. It is very important that you use a tuple, and NOT A
1311 1311 LIST here, because of the way Python's except statement works. If
1312 1312 you only want to trap a single exception, use a singleton tuple:
1313 1313
1314 1314 exc_tuple == (MyCustomException,)
1315 1315
1316 1316 - handler: this must be defined as a function with the following
1317 1317 basic interface::
1318 1318
1319 1319 def my_handler(self, etype, value, tb, tb_offset=None)
1320 1320 ...
1321 1321 # The return value must be
1322 1322 return structured_traceback
1323 1323
1324 1324 This will be made into an instance method (via types.MethodType)
1325 1325 of IPython itself, and it will be called if any of the exceptions
1326 1326 listed in the exc_tuple are caught. If the handler is None, an
1327 1327 internal basic one is used, which just prints basic info.
1328 1328
1329 1329 WARNING: by putting in your own exception handler into IPython's main
1330 1330 execution loop, you run a very good chance of nasty crashes. This
1331 1331 facility should only be used if you really know what you are doing."""
1332 1332
1333 1333 assert type(exc_tuple)==type(()) , \
1334 1334 "The custom exceptions must be given AS A TUPLE."
1335 1335
1336 1336 def dummy_handler(self,etype,value,tb):
1337 1337 print '*** Simple custom exception handler ***'
1338 1338 print 'Exception type :',etype
1339 1339 print 'Exception value:',value
1340 1340 print 'Traceback :',tb
1341 1341 print 'Source code :','\n'.join(self.buffer)
1342 1342
1343 1343 if handler is None: handler = dummy_handler
1344 1344
1345 1345 self.CustomTB = types.MethodType(handler,self)
1346 1346 self.custom_exceptions = exc_tuple
1347 1347
1348 1348 def excepthook(self, etype, value, tb):
1349 1349 """One more defense for GUI apps that call sys.excepthook.
1350 1350
1351 1351 GUI frameworks like wxPython trap exceptions and call
1352 1352 sys.excepthook themselves. I guess this is a feature that
1353 1353 enables them to keep running after exceptions that would
1354 1354 otherwise kill their mainloop. This is a bother for IPython
1355 1355 which excepts to catch all of the program exceptions with a try:
1356 1356 except: statement.
1357 1357
1358 1358 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1359 1359 any app directly invokes sys.excepthook, it will look to the user like
1360 1360 IPython crashed. In order to work around this, we can disable the
1361 1361 CrashHandler and replace it with this excepthook instead, which prints a
1362 1362 regular traceback using our InteractiveTB. In this fashion, apps which
1363 1363 call sys.excepthook will generate a regular-looking exception from
1364 1364 IPython, and the CrashHandler will only be triggered by real IPython
1365 1365 crashes.
1366 1366
1367 1367 This hook should be used sparingly, only in places which are not likely
1368 1368 to be true IPython errors.
1369 1369 """
1370 1370 self.showtraceback((etype,value,tb),tb_offset=0)
1371 1371
1372 1372 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1373 1373 exception_only=False):
1374 1374 """Display the exception that just occurred.
1375 1375
1376 1376 If nothing is known about the exception, this is the method which
1377 1377 should be used throughout the code for presenting user tracebacks,
1378 1378 rather than directly invoking the InteractiveTB object.
1379 1379
1380 1380 A specific showsyntaxerror() also exists, but this method can take
1381 1381 care of calling it if needed, so unless you are explicitly catching a
1382 1382 SyntaxError exception, don't try to analyze the stack manually and
1383 1383 simply call this method."""
1384 1384
1385 1385 try:
1386 1386 if exc_tuple is None:
1387 1387 etype, value, tb = sys.exc_info()
1388 1388 else:
1389 1389 etype, value, tb = exc_tuple
1390 1390
1391 1391 if etype is None:
1392 1392 if hasattr(sys, 'last_type'):
1393 1393 etype, value, tb = sys.last_type, sys.last_value, \
1394 1394 sys.last_traceback
1395 1395 else:
1396 1396 self.write_err('No traceback available to show.\n')
1397 1397 return
1398 1398
1399 1399 if etype is SyntaxError:
1400 1400 # Though this won't be called by syntax errors in the input
1401 1401 # line, there may be SyntaxError cases whith imported code.
1402 1402 self.showsyntaxerror(filename)
1403 1403 elif etype is UsageError:
1404 1404 print "UsageError:", value
1405 1405 else:
1406 1406 # WARNING: these variables are somewhat deprecated and not
1407 1407 # necessarily safe to use in a threaded environment, but tools
1408 1408 # like pdb depend on their existence, so let's set them. If we
1409 1409 # find problems in the field, we'll need to revisit their use.
1410 1410 sys.last_type = etype
1411 1411 sys.last_value = value
1412 1412 sys.last_traceback = tb
1413 1413
1414 1414 if etype in self.custom_exceptions:
1415 1415 # FIXME: Old custom traceback objects may just return a
1416 1416 # string, in that case we just put it into a list
1417 1417 stb = self.CustomTB(etype, value, tb, tb_offset)
1418 1418 if isinstance(ctb, basestring):
1419 1419 stb = [stb]
1420 1420 else:
1421 1421 if exception_only:
1422 1422 stb = ['An exception has occurred, use %tb to see '
1423 1423 'the full traceback.\n']
1424 1424 stb.extend(self.InteractiveTB.get_exception_only(etype,
1425 1425 value))
1426 1426 else:
1427 1427 stb = self.InteractiveTB.structured_traceback(etype,
1428 1428 value, tb, tb_offset=tb_offset)
1429 1429 # FIXME: the pdb calling should be done by us, not by
1430 1430 # the code computing the traceback.
1431 1431 if self.InteractiveTB.call_pdb:
1432 1432 # pdb mucks up readline, fix it back
1433 1433 self.set_readline_completer()
1434 1434
1435 1435 # Actually show the traceback
1436 1436 self._showtraceback(etype, value, stb)
1437 1437
1438 1438 except KeyboardInterrupt:
1439 1439 self.write_err("\nKeyboardInterrupt\n")
1440 1440
1441 1441 def _showtraceback(self, etype, evalue, stb):
1442 1442 """Actually show a traceback.
1443 1443
1444 1444 Subclasses may override this method to put the traceback on a different
1445 1445 place, like a side channel.
1446 1446 """
1447 1447 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1448 1448
1449 1449 def showsyntaxerror(self, filename=None):
1450 1450 """Display the syntax error that just occurred.
1451 1451
1452 1452 This doesn't display a stack trace because there isn't one.
1453 1453
1454 1454 If a filename is given, it is stuffed in the exception instead
1455 1455 of what was there before (because Python's parser always uses
1456 1456 "<string>" when reading from a string).
1457 1457 """
1458 1458 etype, value, last_traceback = sys.exc_info()
1459 1459
1460 1460 # See note about these variables in showtraceback() above
1461 1461 sys.last_type = etype
1462 1462 sys.last_value = value
1463 1463 sys.last_traceback = last_traceback
1464 1464
1465 1465 if filename and etype is SyntaxError:
1466 1466 # Work hard to stuff the correct filename in the exception
1467 1467 try:
1468 1468 msg, (dummy_filename, lineno, offset, line) = value
1469 1469 except:
1470 1470 # Not the format we expect; leave it alone
1471 1471 pass
1472 1472 else:
1473 1473 # Stuff in the right filename
1474 1474 try:
1475 1475 # Assume SyntaxError is a class exception
1476 1476 value = SyntaxError(msg, (filename, lineno, offset, line))
1477 1477 except:
1478 1478 # If that failed, assume SyntaxError is a string
1479 1479 value = msg, (filename, lineno, offset, line)
1480 1480 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1481 1481 self._showtraceback(etype, value, stb)
1482 1482
1483 1483 #-------------------------------------------------------------------------
1484 1484 # Things related to readline
1485 1485 #-------------------------------------------------------------------------
1486 1486
1487 1487 def init_readline(self):
1488 1488 """Command history completion/saving/reloading."""
1489 1489
1490 1490 if self.readline_use:
1491 1491 import IPython.utils.rlineimpl as readline
1492 1492
1493 1493 self.rl_next_input = None
1494 1494 self.rl_do_indent = False
1495 1495
1496 1496 if not self.readline_use or not readline.have_readline:
1497 1497 self.has_readline = False
1498 1498 self.readline = None
1499 1499 # Set a number of methods that depend on readline to be no-op
1500 1500 self.set_readline_completer = no_op
1501 1501 self.set_custom_completer = no_op
1502 1502 self.set_completer_frame = no_op
1503 1503 warn('Readline services not available or not loaded.')
1504 1504 else:
1505 1505 self.has_readline = True
1506 1506 self.readline = readline
1507 1507 sys.modules['readline'] = readline
1508 1508
1509 1509 # Platform-specific configuration
1510 1510 if os.name == 'nt':
1511 1511 # FIXME - check with Frederick to see if we can harmonize
1512 1512 # naming conventions with pyreadline to avoid this
1513 1513 # platform-dependent check
1514 1514 self.readline_startup_hook = readline.set_pre_input_hook
1515 1515 else:
1516 1516 self.readline_startup_hook = readline.set_startup_hook
1517 1517
1518 1518 # Load user's initrc file (readline config)
1519 1519 # Or if libedit is used, load editrc.
1520 1520 inputrc_name = os.environ.get('INPUTRC')
1521 1521 if inputrc_name is None:
1522 1522 home_dir = get_home_dir()
1523 1523 if home_dir is not None:
1524 1524 inputrc_name = '.inputrc'
1525 1525 if readline.uses_libedit:
1526 1526 inputrc_name = '.editrc'
1527 1527 inputrc_name = os.path.join(home_dir, inputrc_name)
1528 1528 if os.path.isfile(inputrc_name):
1529 1529 try:
1530 1530 readline.read_init_file(inputrc_name)
1531 1531 except:
1532 1532 warn('Problems reading readline initialization file <%s>'
1533 1533 % inputrc_name)
1534 1534
1535 1535 # Configure readline according to user's prefs
1536 1536 # This is only done if GNU readline is being used. If libedit
1537 1537 # is being used (as on Leopard) the readline config is
1538 1538 # not run as the syntax for libedit is different.
1539 1539 if not readline.uses_libedit:
1540 1540 for rlcommand in self.readline_parse_and_bind:
1541 1541 #print "loading rl:",rlcommand # dbg
1542 1542 readline.parse_and_bind(rlcommand)
1543 1543
1544 1544 # Remove some chars from the delimiters list. If we encounter
1545 1545 # unicode chars, discard them.
1546 1546 delims = readline.get_completer_delims().encode("ascii", "ignore")
1547 1547 delims = delims.translate(None, self.readline_remove_delims)
1548 1548 delims = delims.replace(ESC_MAGIC, '')
1549 1549 readline.set_completer_delims(delims)
1550 1550 # otherwise we end up with a monster history after a while:
1551 1551 readline.set_history_length(self.history_length)
1552 1552
1553 1553 # Load the last 1000 lines from history
1554 for cell in self.history_manager.tail_db_history(1000):
1554 for _, _, cell in self.history_manager.get_hist_tail(1000):
1555 1555 if cell.strip(): # Ignore blank lines
1556 1556 for line in cell.splitlines():
1557 1557 readline.add_history(line)
1558 1558
1559 1559 # Configure auto-indent for all platforms
1560 1560 self.set_autoindent(self.autoindent)
1561 1561
1562 1562 def set_next_input(self, s):
1563 1563 """ Sets the 'default' input string for the next command line.
1564 1564
1565 1565 Requires readline.
1566 1566
1567 1567 Example:
1568 1568
1569 1569 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1570 1570 [D:\ipython]|2> Hello Word_ # cursor is here
1571 1571 """
1572 1572
1573 1573 self.rl_next_input = s
1574 1574
1575 1575 # Maybe move this to the terminal subclass?
1576 1576 def pre_readline(self):
1577 1577 """readline hook to be used at the start of each line.
1578 1578
1579 1579 Currently it handles auto-indent only."""
1580 1580
1581 1581 if self.rl_do_indent:
1582 1582 self.readline.insert_text(self._indent_current_str())
1583 1583 if self.rl_next_input is not None:
1584 1584 self.readline.insert_text(self.rl_next_input)
1585 1585 self.rl_next_input = None
1586 1586
1587 1587 def _indent_current_str(self):
1588 1588 """return the current level of indentation as a string"""
1589 1589 return self.input_splitter.indent_spaces * ' '
1590 1590
1591 1591 #-------------------------------------------------------------------------
1592 1592 # Things related to text completion
1593 1593 #-------------------------------------------------------------------------
1594 1594
1595 1595 def init_completer(self):
1596 1596 """Initialize the completion machinery.
1597 1597
1598 1598 This creates completion machinery that can be used by client code,
1599 1599 either interactively in-process (typically triggered by the readline
1600 1600 library), programatically (such as in test suites) or out-of-prcess
1601 1601 (typically over the network by remote frontends).
1602 1602 """
1603 1603 from IPython.core.completer import IPCompleter
1604 1604 from IPython.core.completerlib import (module_completer,
1605 1605 magic_run_completer, cd_completer)
1606 1606
1607 1607 self.Completer = IPCompleter(self,
1608 1608 self.user_ns,
1609 1609 self.user_global_ns,
1610 1610 self.readline_omit__names,
1611 1611 self.alias_manager.alias_table,
1612 1612 self.has_readline)
1613 1613
1614 1614 # Add custom completers to the basic ones built into IPCompleter
1615 1615 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1616 1616 self.strdispatchers['complete_command'] = sdisp
1617 1617 self.Completer.custom_completers = sdisp
1618 1618
1619 1619 self.set_hook('complete_command', module_completer, str_key = 'import')
1620 1620 self.set_hook('complete_command', module_completer, str_key = 'from')
1621 1621 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1622 1622 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1623 1623
1624 1624 # Only configure readline if we truly are using readline. IPython can
1625 1625 # do tab-completion over the network, in GUIs, etc, where readline
1626 1626 # itself may be absent
1627 1627 if self.has_readline:
1628 1628 self.set_readline_completer()
1629 1629
1630 1630 def complete(self, text, line=None, cursor_pos=None):
1631 1631 """Return the completed text and a list of completions.
1632 1632
1633 1633 Parameters
1634 1634 ----------
1635 1635
1636 1636 text : string
1637 1637 A string of text to be completed on. It can be given as empty and
1638 1638 instead a line/position pair are given. In this case, the
1639 1639 completer itself will split the line like readline does.
1640 1640
1641 1641 line : string, optional
1642 1642 The complete line that text is part of.
1643 1643
1644 1644 cursor_pos : int, optional
1645 1645 The position of the cursor on the input line.
1646 1646
1647 1647 Returns
1648 1648 -------
1649 1649 text : string
1650 1650 The actual text that was completed.
1651 1651
1652 1652 matches : list
1653 1653 A sorted list with all possible completions.
1654 1654
1655 1655 The optional arguments allow the completion to take more context into
1656 1656 account, and are part of the low-level completion API.
1657 1657
1658 1658 This is a wrapper around the completion mechanism, similar to what
1659 1659 readline does at the command line when the TAB key is hit. By
1660 1660 exposing it as a method, it can be used by other non-readline
1661 1661 environments (such as GUIs) for text completion.
1662 1662
1663 1663 Simple usage example:
1664 1664
1665 1665 In [1]: x = 'hello'
1666 1666
1667 1667 In [2]: _ip.complete('x.l')
1668 1668 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1669 1669 """
1670 1670
1671 1671 # Inject names into __builtin__ so we can complete on the added names.
1672 1672 with self.builtin_trap:
1673 1673 return self.Completer.complete(text, line, cursor_pos)
1674 1674
1675 1675 def set_custom_completer(self, completer, pos=0):
1676 1676 """Adds a new custom completer function.
1677 1677
1678 1678 The position argument (defaults to 0) is the index in the completers
1679 1679 list where you want the completer to be inserted."""
1680 1680
1681 1681 newcomp = types.MethodType(completer,self.Completer)
1682 1682 self.Completer.matchers.insert(pos,newcomp)
1683 1683
1684 1684 def set_readline_completer(self):
1685 1685 """Reset readline's completer to be our own."""
1686 1686 self.readline.set_completer(self.Completer.rlcomplete)
1687 1687
1688 1688 def set_completer_frame(self, frame=None):
1689 1689 """Set the frame of the completer."""
1690 1690 if frame:
1691 1691 self.Completer.namespace = frame.f_locals
1692 1692 self.Completer.global_namespace = frame.f_globals
1693 1693 else:
1694 1694 self.Completer.namespace = self.user_ns
1695 1695 self.Completer.global_namespace = self.user_global_ns
1696 1696
1697 1697 #-------------------------------------------------------------------------
1698 1698 # Things related to magics
1699 1699 #-------------------------------------------------------------------------
1700 1700
1701 1701 def init_magics(self):
1702 1702 # FIXME: Move the color initialization to the DisplayHook, which
1703 1703 # should be split into a prompt manager and displayhook. We probably
1704 1704 # even need a centralize colors management object.
1705 1705 self.magic_colors(self.colors)
1706 1706 # History was moved to a separate module
1707 1707 from . import history
1708 1708 history.init_ipython(self)
1709 1709
1710 1710 def magic(self,arg_s):
1711 1711 """Call a magic function by name.
1712 1712
1713 1713 Input: a string containing the name of the magic function to call and
1714 1714 any additional arguments to be passed to the magic.
1715 1715
1716 1716 magic('name -opt foo bar') is equivalent to typing at the ipython
1717 1717 prompt:
1718 1718
1719 1719 In[1]: %name -opt foo bar
1720 1720
1721 1721 To call a magic without arguments, simply use magic('name').
1722 1722
1723 1723 This provides a proper Python function to call IPython's magics in any
1724 1724 valid Python code you can type at the interpreter, including loops and
1725 1725 compound statements.
1726 1726 """
1727 1727 args = arg_s.split(' ',1)
1728 1728 magic_name = args[0]
1729 1729 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1730 1730
1731 1731 try:
1732 1732 magic_args = args[1]
1733 1733 except IndexError:
1734 1734 magic_args = ''
1735 1735 fn = getattr(self,'magic_'+magic_name,None)
1736 1736 if fn is None:
1737 1737 error("Magic function `%s` not found." % magic_name)
1738 1738 else:
1739 1739 magic_args = self.var_expand(magic_args,1)
1740 1740 with nested(self.builtin_trap,):
1741 1741 result = fn(magic_args)
1742 1742 return result
1743 1743
1744 1744 def define_magic(self, magicname, func):
1745 1745 """Expose own function as magic function for ipython
1746 1746
1747 1747 def foo_impl(self,parameter_s=''):
1748 1748 'My very own magic!. (Use docstrings, IPython reads them).'
1749 1749 print 'Magic function. Passed parameter is between < >:'
1750 1750 print '<%s>' % parameter_s
1751 1751 print 'The self object is:',self
1752 1752
1753 1753 self.define_magic('foo',foo_impl)
1754 1754 """
1755 1755
1756 1756 import new
1757 1757 im = types.MethodType(func,self)
1758 1758 old = getattr(self, "magic_" + magicname, None)
1759 1759 setattr(self, "magic_" + magicname, im)
1760 1760 return old
1761 1761
1762 1762 #-------------------------------------------------------------------------
1763 1763 # Things related to macros
1764 1764 #-------------------------------------------------------------------------
1765 1765
1766 1766 def define_macro(self, name, themacro):
1767 1767 """Define a new macro
1768 1768
1769 1769 Parameters
1770 1770 ----------
1771 1771 name : str
1772 1772 The name of the macro.
1773 1773 themacro : str or Macro
1774 1774 The action to do upon invoking the macro. If a string, a new
1775 1775 Macro object is created by passing the string to it.
1776 1776 """
1777 1777
1778 1778 from IPython.core import macro
1779 1779
1780 1780 if isinstance(themacro, basestring):
1781 1781 themacro = macro.Macro(themacro)
1782 1782 if not isinstance(themacro, macro.Macro):
1783 1783 raise ValueError('A macro must be a string or a Macro instance.')
1784 1784 self.user_ns[name] = themacro
1785 1785
1786 1786 #-------------------------------------------------------------------------
1787 1787 # Things related to the running of system commands
1788 1788 #-------------------------------------------------------------------------
1789 1789
1790 1790 def system(self, cmd):
1791 1791 """Call the given cmd in a subprocess.
1792 1792
1793 1793 Parameters
1794 1794 ----------
1795 1795 cmd : str
1796 1796 Command to execute (can not end in '&', as bacground processes are
1797 1797 not supported.
1798 1798 """
1799 1799 # We do not support backgrounding processes because we either use
1800 1800 # pexpect or pipes to read from. Users can always just call
1801 1801 # os.system() if they really want a background process.
1802 1802 if cmd.endswith('&'):
1803 1803 raise OSError("Background processes not supported.")
1804 1804
1805 1805 return system(self.var_expand(cmd, depth=2))
1806 1806
1807 1807 def getoutput(self, cmd, split=True):
1808 1808 """Get output (possibly including stderr) from a subprocess.
1809 1809
1810 1810 Parameters
1811 1811 ----------
1812 1812 cmd : str
1813 1813 Command to execute (can not end in '&', as background processes are
1814 1814 not supported.
1815 1815 split : bool, optional
1816 1816
1817 1817 If True, split the output into an IPython SList. Otherwise, an
1818 1818 IPython LSString is returned. These are objects similar to normal
1819 1819 lists and strings, with a few convenience attributes for easier
1820 1820 manipulation of line-based output. You can use '?' on them for
1821 1821 details.
1822 1822 """
1823 1823 if cmd.endswith('&'):
1824 1824 raise OSError("Background processes not supported.")
1825 1825 out = getoutput(self.var_expand(cmd, depth=2))
1826 1826 if split:
1827 1827 out = SList(out.splitlines())
1828 1828 else:
1829 1829 out = LSString(out)
1830 1830 return out
1831 1831
1832 1832 #-------------------------------------------------------------------------
1833 1833 # Things related to aliases
1834 1834 #-------------------------------------------------------------------------
1835 1835
1836 1836 def init_alias(self):
1837 1837 self.alias_manager = AliasManager(shell=self, config=self.config)
1838 1838 self.ns_table['alias'] = self.alias_manager.alias_table,
1839 1839
1840 1840 #-------------------------------------------------------------------------
1841 1841 # Things related to extensions and plugins
1842 1842 #-------------------------------------------------------------------------
1843 1843
1844 1844 def init_extension_manager(self):
1845 1845 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1846 1846
1847 1847 def init_plugin_manager(self):
1848 1848 self.plugin_manager = PluginManager(config=self.config)
1849 1849
1850 1850 #-------------------------------------------------------------------------
1851 1851 # Things related to payloads
1852 1852 #-------------------------------------------------------------------------
1853 1853
1854 1854 def init_payload(self):
1855 1855 self.payload_manager = PayloadManager(config=self.config)
1856 1856
1857 1857 #-------------------------------------------------------------------------
1858 1858 # Things related to the prefilter
1859 1859 #-------------------------------------------------------------------------
1860 1860
1861 1861 def init_prefilter(self):
1862 1862 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1863 1863 # Ultimately this will be refactored in the new interpreter code, but
1864 1864 # for now, we should expose the main prefilter method (there's legacy
1865 1865 # code out there that may rely on this).
1866 1866 self.prefilter = self.prefilter_manager.prefilter_lines
1867 1867
1868 1868 def auto_rewrite_input(self, cmd):
1869 1869 """Print to the screen the rewritten form of the user's command.
1870 1870
1871 1871 This shows visual feedback by rewriting input lines that cause
1872 1872 automatic calling to kick in, like::
1873 1873
1874 1874 /f x
1875 1875
1876 1876 into::
1877 1877
1878 1878 ------> f(x)
1879 1879
1880 1880 after the user's input prompt. This helps the user understand that the
1881 1881 input line was transformed automatically by IPython.
1882 1882 """
1883 1883 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1884 1884
1885 1885 try:
1886 1886 # plain ascii works better w/ pyreadline, on some machines, so
1887 1887 # we use it and only print uncolored rewrite if we have unicode
1888 1888 rw = str(rw)
1889 1889 print >> IPython.utils.io.Term.cout, rw
1890 1890 except UnicodeEncodeError:
1891 1891 print "------> " + cmd
1892 1892
1893 1893 #-------------------------------------------------------------------------
1894 1894 # Things related to extracting values/expressions from kernel and user_ns
1895 1895 #-------------------------------------------------------------------------
1896 1896
1897 1897 def _simple_error(self):
1898 1898 etype, value = sys.exc_info()[:2]
1899 1899 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1900 1900
1901 1901 def user_variables(self, names):
1902 1902 """Get a list of variable names from the user's namespace.
1903 1903
1904 1904 Parameters
1905 1905 ----------
1906 1906 names : list of strings
1907 1907 A list of names of variables to be read from the user namespace.
1908 1908
1909 1909 Returns
1910 1910 -------
1911 1911 A dict, keyed by the input names and with the repr() of each value.
1912 1912 """
1913 1913 out = {}
1914 1914 user_ns = self.user_ns
1915 1915 for varname in names:
1916 1916 try:
1917 1917 value = repr(user_ns[varname])
1918 1918 except:
1919 1919 value = self._simple_error()
1920 1920 out[varname] = value
1921 1921 return out
1922 1922
1923 1923 def user_expressions(self, expressions):
1924 1924 """Evaluate a dict of expressions in the user's namespace.
1925 1925
1926 1926 Parameters
1927 1927 ----------
1928 1928 expressions : dict
1929 1929 A dict with string keys and string values. The expression values
1930 1930 should be valid Python expressions, each of which will be evaluated
1931 1931 in the user namespace.
1932 1932
1933 1933 Returns
1934 1934 -------
1935 1935 A dict, keyed like the input expressions dict, with the repr() of each
1936 1936 value.
1937 1937 """
1938 1938 out = {}
1939 1939 user_ns = self.user_ns
1940 1940 global_ns = self.user_global_ns
1941 1941 for key, expr in expressions.iteritems():
1942 1942 try:
1943 1943 value = repr(eval(expr, global_ns, user_ns))
1944 1944 except:
1945 1945 value = self._simple_error()
1946 1946 out[key] = value
1947 1947 return out
1948 1948
1949 1949 #-------------------------------------------------------------------------
1950 1950 # Things related to the running of code
1951 1951 #-------------------------------------------------------------------------
1952 1952
1953 1953 def ex(self, cmd):
1954 1954 """Execute a normal python statement in user namespace."""
1955 1955 with nested(self.builtin_trap,):
1956 1956 exec cmd in self.user_global_ns, self.user_ns
1957 1957
1958 1958 def ev(self, expr):
1959 1959 """Evaluate python expression expr in user namespace.
1960 1960
1961 1961 Returns the result of evaluation
1962 1962 """
1963 1963 with nested(self.builtin_trap,):
1964 1964 return eval(expr, self.user_global_ns, self.user_ns)
1965 1965
1966 1966 def safe_execfile(self, fname, *where, **kw):
1967 1967 """A safe version of the builtin execfile().
1968 1968
1969 1969 This version will never throw an exception, but instead print
1970 1970 helpful error messages to the screen. This only works on pure
1971 1971 Python files with the .py extension.
1972 1972
1973 1973 Parameters
1974 1974 ----------
1975 1975 fname : string
1976 1976 The name of the file to be executed.
1977 1977 where : tuple
1978 1978 One or two namespaces, passed to execfile() as (globals,locals).
1979 1979 If only one is given, it is passed as both.
1980 1980 exit_ignore : bool (False)
1981 1981 If True, then silence SystemExit for non-zero status (it is always
1982 1982 silenced for zero status, as it is so common).
1983 1983 """
1984 1984 kw.setdefault('exit_ignore', False)
1985 1985
1986 1986 fname = os.path.abspath(os.path.expanduser(fname))
1987 1987
1988 1988 # Make sure we have a .py file
1989 1989 if not fname.endswith('.py'):
1990 1990 warn('File must end with .py to be run using execfile: <%s>' % fname)
1991 1991
1992 1992 # Make sure we can open the file
1993 1993 try:
1994 1994 with open(fname) as thefile:
1995 1995 pass
1996 1996 except:
1997 1997 warn('Could not open file <%s> for safe execution.' % fname)
1998 1998 return
1999 1999
2000 2000 # Find things also in current directory. This is needed to mimic the
2001 2001 # behavior of running a script from the system command line, where
2002 2002 # Python inserts the script's directory into sys.path
2003 2003 dname = os.path.dirname(fname)
2004 2004
2005 2005 with prepended_to_syspath(dname):
2006 2006 try:
2007 2007 execfile(fname,*where)
2008 2008 except SystemExit, status:
2009 2009 # If the call was made with 0 or None exit status (sys.exit(0)
2010 2010 # or sys.exit() ), don't bother showing a traceback, as both of
2011 2011 # these are considered normal by the OS:
2012 2012 # > python -c'import sys;sys.exit(0)'; echo $?
2013 2013 # 0
2014 2014 # > python -c'import sys;sys.exit()'; echo $?
2015 2015 # 0
2016 2016 # For other exit status, we show the exception unless
2017 2017 # explicitly silenced, but only in short form.
2018 2018 if status.code not in (0, None) and not kw['exit_ignore']:
2019 2019 self.showtraceback(exception_only=True)
2020 2020 except:
2021 2021 self.showtraceback()
2022 2022
2023 2023 def safe_execfile_ipy(self, fname):
2024 2024 """Like safe_execfile, but for .ipy files with IPython syntax.
2025 2025
2026 2026 Parameters
2027 2027 ----------
2028 2028 fname : str
2029 2029 The name of the file to execute. The filename must have a
2030 2030 .ipy extension.
2031 2031 """
2032 2032 fname = os.path.abspath(os.path.expanduser(fname))
2033 2033
2034 2034 # Make sure we have a .py file
2035 2035 if not fname.endswith('.ipy'):
2036 2036 warn('File must end with .py to be run using execfile: <%s>' % fname)
2037 2037
2038 2038 # Make sure we can open the file
2039 2039 try:
2040 2040 with open(fname) as thefile:
2041 2041 pass
2042 2042 except:
2043 2043 warn('Could not open file <%s> for safe execution.' % fname)
2044 2044 return
2045 2045
2046 2046 # Find things also in current directory. This is needed to mimic the
2047 2047 # behavior of running a script from the system command line, where
2048 2048 # Python inserts the script's directory into sys.path
2049 2049 dname = os.path.dirname(fname)
2050 2050
2051 2051 with prepended_to_syspath(dname):
2052 2052 try:
2053 2053 with open(fname) as thefile:
2054 2054 # self.run_cell currently captures all exceptions
2055 2055 # raised in user code. It would be nice if there were
2056 2056 # versions of runlines, execfile that did raise, so
2057 2057 # we could catch the errors.
2058 2058 self.run_cell(thefile.read())
2059 2059 except:
2060 2060 self.showtraceback()
2061 2061 warn('Unknown failure executing file: <%s>' % fname)
2062 2062
2063 2063 def run_cell(self, cell):
2064 2064 """Run the contents of an entire multiline 'cell' of code.
2065 2065
2066 2066 The cell is split into separate blocks which can be executed
2067 2067 individually. Then, based on how many blocks there are, they are
2068 2068 executed as follows:
2069 2069
2070 2070 - A single block: 'single' mode.
2071 2071
2072 2072 If there's more than one block, it depends:
2073 2073
2074 2074 - if the last one is no more than two lines long, run all but the last
2075 2075 in 'exec' mode and the very last one in 'single' mode. This makes it
2076 2076 easy to type simple expressions at the end to see computed values. -
2077 2077 otherwise (last one is also multiline), run all in 'exec' mode
2078 2078
2079 2079 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2080 2080 results are displayed and output prompts are computed. In 'exec' mode,
2081 2081 no results are displayed unless :func:`print` is called explicitly;
2082 2082 this mode is more akin to running a script.
2083 2083
2084 2084 Parameters
2085 2085 ----------
2086 2086 cell : str
2087 2087 A single or multiline string.
2088 2088 """
2089 2089
2090 2090 # We need to break up the input into executable blocks that can be run
2091 2091 # in 'single' mode, to provide comfortable user behavior.
2092 2092 blocks = self.input_splitter.split_blocks(cell)
2093 2093
2094 2094 if not blocks:
2095 2095 return
2096 2096
2097 2097 # Store the 'ipython' version of the cell as well, since that's what
2098 2098 # needs to go into the translated history and get executed (the
2099 2099 # original cell may contain non-python syntax).
2100 2100 ipy_cell = ''.join(blocks)
2101 2101
2102 2102 # Store raw and processed history
2103 2103 self.history_manager.store_inputs(self.execution_count, ipy_cell, cell)
2104 2104
2105 2105 self.logger.log(ipy_cell, cell)
2106 2106
2107 2107 # All user code execution must happen with our context managers active
2108 2108 with nested(self.builtin_trap, self.display_trap):
2109 2109
2110 2110 # Single-block input should behave like an interactive prompt
2111 2111 if len(blocks) == 1:
2112 2112 # since we return here, we need to update the execution count
2113 2113 out = self.run_one_block(blocks[0])
2114 2114 self.execution_count += 1
2115 2115 return out
2116 2116
2117 2117 # In multi-block input, if the last block is a simple (one-two
2118 2118 # lines) expression, run it in single mode so it produces output.
2119 2119 # Otherwise just feed the whole thing to run_code. This seems like
2120 2120 # a reasonable usability design.
2121 2121 last = blocks[-1]
2122 2122 last_nlines = len(last.splitlines())
2123 2123
2124 2124 # Note: below, whenever we call run_code, we must sync history
2125 2125 # ourselves, because run_code is NOT meant to manage history at all.
2126 2126 if last_nlines < 2:
2127 2127 # Here we consider the cell split between 'body' and 'last',
2128 2128 # store all history and execute 'body', and if successful, then
2129 2129 # proceed to execute 'last'.
2130 2130
2131 2131 # Get the main body to run as a cell
2132 2132 ipy_body = ''.join(blocks[:-1])
2133 2133 retcode = self.run_source(ipy_body, symbol='exec',
2134 2134 post_execute=False)
2135 2135 if retcode==0:
2136 2136 # And the last expression via runlines so it produces output
2137 2137 self.run_one_block(last)
2138 2138 else:
2139 2139 # Run the whole cell as one entity, storing both raw and
2140 2140 # processed input in history
2141 2141 self.run_source(ipy_cell, symbol='exec')
2142 2142
2143 2143 # Each cell is a *single* input, regardless of how many lines it has
2144 2144 self.execution_count += 1
2145 2145
2146 2146 def run_one_block(self, block):
2147 2147 """Run a single interactive block of source code.
2148 2148
2149 2149 If the block is single-line, dynamic transformations are applied to it
2150 2150 (like automagics, autocall and alias recognition).
2151 2151
2152 2152 If the block is multi-line, it must consist of valid Python code only.
2153 2153
2154 2154 Parameters
2155 2155 ----------
2156 2156 block : string
2157 2157 A (possibly multiline) string of code to be executed.
2158 2158
2159 2159 Returns
2160 2160 -------
2161 2161 The output of the underlying execution method used, be it
2162 2162 :meth:`run_source` or :meth:`run_single_line`.
2163 2163 """
2164 2164 if len(block.splitlines()) <= 1:
2165 2165 out = self.run_single_line(block)
2166 2166 else:
2167 2167 # Call run_source, which correctly compiles the input cell.
2168 2168 # run_code must only be called when we know we have a code object,
2169 2169 # as it does a naked exec and the compilation mode may not be what
2170 2170 # we wanted.
2171 2171 out = self.run_source(block)
2172 2172 return out
2173 2173
2174 2174 def run_single_line(self, line):
2175 2175 """Run a single-line interactive statement.
2176 2176
2177 2177 This assumes the input has been transformed to IPython syntax by
2178 2178 applying all static transformations (those with an explicit prefix like
2179 2179 % or !), but it will further try to apply the dynamic ones.
2180 2180
2181 2181 It does not update history.
2182 2182 """
2183 2183 tline = self.prefilter_manager.prefilter_line(line)
2184 2184 return self.run_source(tline)
2185 2185
2186 2186 # PENDING REMOVAL: this method is slated for deletion, once our new
2187 2187 # input logic has been 100% moved to frontends and is stable.
2188 2188 def runlines(self, lines, clean=False):
2189 2189 """Run a string of one or more lines of source.
2190 2190
2191 2191 This method is capable of running a string containing multiple source
2192 2192 lines, as if they had been entered at the IPython prompt. Since it
2193 2193 exposes IPython's processing machinery, the given strings can contain
2194 2194 magic calls (%magic), special shell access (!cmd), etc.
2195 2195 """
2196 2196
2197 2197 if isinstance(lines, (list, tuple)):
2198 2198 lines = '\n'.join(lines)
2199 2199
2200 2200 if clean:
2201 2201 lines = self._cleanup_ipy_script(lines)
2202 2202
2203 2203 # We must start with a clean buffer, in case this is run from an
2204 2204 # interactive IPython session (via a magic, for example).
2205 2205 self.reset_buffer()
2206 2206 lines = lines.splitlines()
2207 2207
2208 2208 # Since we will prefilter all lines, store the user's raw input too
2209 2209 # before we apply any transformations
2210 2210 self.buffer_raw[:] = [ l+'\n' for l in lines]
2211 2211
2212 2212 more = False
2213 2213 prefilter_lines = self.prefilter_manager.prefilter_lines
2214 2214 with nested(self.builtin_trap, self.display_trap):
2215 2215 for line in lines:
2216 2216 # skip blank lines so we don't mess up the prompt counter, but
2217 2217 # do NOT skip even a blank line if we are in a code block (more
2218 2218 # is true)
2219 2219
2220 2220 if line or more:
2221 2221 more = self.push_line(prefilter_lines(line, more))
2222 2222 # IPython's run_source returns None if there was an error
2223 2223 # compiling the code. This allows us to stop processing
2224 2224 # right away, so the user gets the error message at the
2225 2225 # right place.
2226 2226 if more is None:
2227 2227 break
2228 2228 # final newline in case the input didn't have it, so that the code
2229 2229 # actually does get executed
2230 2230 if more:
2231 2231 self.push_line('\n')
2232 2232
2233 2233 def run_source(self, source, filename=None,
2234 2234 symbol='single', post_execute=True):
2235 2235 """Compile and run some source in the interpreter.
2236 2236
2237 2237 Arguments are as for compile_command().
2238 2238
2239 2239 One several things can happen:
2240 2240
2241 2241 1) The input is incorrect; compile_command() raised an
2242 2242 exception (SyntaxError or OverflowError). A syntax traceback
2243 2243 will be printed by calling the showsyntaxerror() method.
2244 2244
2245 2245 2) The input is incomplete, and more input is required;
2246 2246 compile_command() returned None. Nothing happens.
2247 2247
2248 2248 3) The input is complete; compile_command() returned a code
2249 2249 object. The code is executed by calling self.run_code() (which
2250 2250 also handles run-time exceptions, except for SystemExit).
2251 2251
2252 2252 The return value is:
2253 2253
2254 2254 - True in case 2
2255 2255
2256 2256 - False in the other cases, unless an exception is raised, where
2257 2257 None is returned instead. This can be used by external callers to
2258 2258 know whether to continue feeding input or not.
2259 2259
2260 2260 The return value can be used to decide whether to use sys.ps1 or
2261 2261 sys.ps2 to prompt the next line."""
2262 2262
2263 2263 # We need to ensure that the source is unicode from here on.
2264 2264 if type(source)==str:
2265 2265 usource = source.decode(self.stdin_encoding)
2266 2266 else:
2267 2267 usource = source
2268 2268
2269 2269 if 0: # dbg
2270 2270 print 'Source:', repr(source) # dbg
2271 2271 print 'USource:', repr(usource) # dbg
2272 2272 print 'type:', type(source) # dbg
2273 2273 print 'encoding', self.stdin_encoding # dbg
2274 2274
2275 2275 try:
2276 2276 code = self.compile(usource, symbol, self.execution_count)
2277 2277 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2278 2278 # Case 1
2279 2279 self.showsyntaxerror(filename)
2280 2280 return None
2281 2281
2282 2282 if code is None:
2283 2283 # Case 2
2284 2284 return True
2285 2285
2286 2286 # Case 3
2287 2287 # We store the code object so that threaded shells and
2288 2288 # custom exception handlers can access all this info if needed.
2289 2289 # The source corresponding to this can be obtained from the
2290 2290 # buffer attribute as '\n'.join(self.buffer).
2291 2291 self.code_to_run = code
2292 2292 # now actually execute the code object
2293 2293 if self.run_code(code, post_execute) == 0:
2294 2294 return False
2295 2295 else:
2296 2296 return None
2297 2297
2298 2298 # For backwards compatibility
2299 2299 runsource = run_source
2300 2300
2301 2301 def run_code(self, code_obj, post_execute=True):
2302 2302 """Execute a code object.
2303 2303
2304 2304 When an exception occurs, self.showtraceback() is called to display a
2305 2305 traceback.
2306 2306
2307 2307 Return value: a flag indicating whether the code to be run completed
2308 2308 successfully:
2309 2309
2310 2310 - 0: successful execution.
2311 2311 - 1: an error occurred.
2312 2312 """
2313 2313
2314 2314 # Set our own excepthook in case the user code tries to call it
2315 2315 # directly, so that the IPython crash handler doesn't get triggered
2316 2316 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2317 2317
2318 2318 # we save the original sys.excepthook in the instance, in case config
2319 2319 # code (such as magics) needs access to it.
2320 2320 self.sys_excepthook = old_excepthook
2321 2321 outflag = 1 # happens in more places, so it's easier as default
2322 2322 try:
2323 2323 try:
2324 2324 self.hooks.pre_run_code_hook()
2325 2325 #rprint('Running code', repr(code_obj)) # dbg
2326 2326 exec code_obj in self.user_global_ns, self.user_ns
2327 2327 finally:
2328 2328 # Reset our crash handler in place
2329 2329 sys.excepthook = old_excepthook
2330 2330 except SystemExit:
2331 2331 self.reset_buffer()
2332 2332 self.showtraceback(exception_only=True)
2333 2333 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2334 2334 except self.custom_exceptions:
2335 2335 etype,value,tb = sys.exc_info()
2336 2336 self.CustomTB(etype,value,tb)
2337 2337 except:
2338 2338 self.showtraceback()
2339 2339 else:
2340 2340 outflag = 0
2341 2341 if softspace(sys.stdout, 0):
2342 2342 print
2343 2343
2344 2344 # Execute any registered post-execution functions. Here, any errors
2345 2345 # are reported only minimally and just on the terminal, because the
2346 2346 # main exception channel may be occupied with a user traceback.
2347 2347 # FIXME: we need to think this mechanism a little more carefully.
2348 2348 if post_execute:
2349 2349 for func in self._post_execute:
2350 2350 try:
2351 2351 func()
2352 2352 except:
2353 2353 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2354 2354 func
2355 2355 print >> io.Term.cout, head
2356 2356 print >> io.Term.cout, self._simple_error()
2357 2357 print >> io.Term.cout, 'Removing from post_execute'
2358 2358 self._post_execute.remove(func)
2359 2359
2360 2360 # Flush out code object which has been run (and source)
2361 2361 self.code_to_run = None
2362 2362 return outflag
2363 2363
2364 2364 # For backwards compatibility
2365 2365 runcode = run_code
2366 2366
2367 2367 # PENDING REMOVAL: this method is slated for deletion, once our new
2368 2368 # input logic has been 100% moved to frontends and is stable.
2369 2369 def push_line(self, line):
2370 2370 """Push a line to the interpreter.
2371 2371
2372 2372 The line should not have a trailing newline; it may have
2373 2373 internal newlines. The line is appended to a buffer and the
2374 2374 interpreter's run_source() method is called with the
2375 2375 concatenated contents of the buffer as source. If this
2376 2376 indicates that the command was executed or invalid, the buffer
2377 2377 is reset; otherwise, the command is incomplete, and the buffer
2378 2378 is left as it was after the line was appended. The return
2379 2379 value is 1 if more input is required, 0 if the line was dealt
2380 2380 with in some way (this is the same as run_source()).
2381 2381 """
2382 2382
2383 2383 # autoindent management should be done here, and not in the
2384 2384 # interactive loop, since that one is only seen by keyboard input. We
2385 2385 # need this done correctly even for code run via runlines (which uses
2386 2386 # push).
2387 2387
2388 2388 #print 'push line: <%s>' % line # dbg
2389 2389 self.buffer.append(line)
2390 2390 full_source = '\n'.join(self.buffer)
2391 2391 more = self.run_source(full_source, self.filename)
2392 2392 if not more:
2393 2393 self.history_manager.store_inputs(self.execution_count,
2394 2394 '\n'.join(self.buffer_raw), full_source)
2395 2395 self.reset_buffer()
2396 2396 self.execution_count += 1
2397 2397 return more
2398 2398
2399 2399 def reset_buffer(self):
2400 2400 """Reset the input buffer."""
2401 2401 self.buffer[:] = []
2402 2402 self.buffer_raw[:] = []
2403 2403 self.input_splitter.reset()
2404 2404
2405 2405 # For backwards compatibility
2406 2406 resetbuffer = reset_buffer
2407 2407
2408 2408 def _is_secondary_block_start(self, s):
2409 2409 if not s.endswith(':'):
2410 2410 return False
2411 2411 if (s.startswith('elif') or
2412 2412 s.startswith('else') or
2413 2413 s.startswith('except') or
2414 2414 s.startswith('finally')):
2415 2415 return True
2416 2416
2417 2417 def _cleanup_ipy_script(self, script):
2418 2418 """Make a script safe for self.runlines()
2419 2419
2420 2420 Currently, IPython is lines based, with blocks being detected by
2421 2421 empty lines. This is a problem for block based scripts that may
2422 2422 not have empty lines after blocks. This script adds those empty
2423 2423 lines to make scripts safe for running in the current line based
2424 2424 IPython.
2425 2425 """
2426 2426 res = []
2427 2427 lines = script.splitlines()
2428 2428 level = 0
2429 2429
2430 2430 for l in lines:
2431 2431 lstripped = l.lstrip()
2432 2432 stripped = l.strip()
2433 2433 if not stripped:
2434 2434 continue
2435 2435 newlevel = len(l) - len(lstripped)
2436 2436 if level > 0 and newlevel == 0 and \
2437 2437 not self._is_secondary_block_start(stripped):
2438 2438 # add empty line
2439 2439 res.append('')
2440 2440 res.append(l)
2441 2441 level = newlevel
2442 2442
2443 2443 return '\n'.join(res) + '\n'
2444 2444
2445 2445 #-------------------------------------------------------------------------
2446 2446 # Things related to GUI support and pylab
2447 2447 #-------------------------------------------------------------------------
2448 2448
2449 2449 def enable_pylab(self, gui=None):
2450 2450 raise NotImplementedError('Implement enable_pylab in a subclass')
2451 2451
2452 2452 #-------------------------------------------------------------------------
2453 2453 # Utilities
2454 2454 #-------------------------------------------------------------------------
2455 2455
2456 2456 def var_expand(self,cmd,depth=0):
2457 2457 """Expand python variables in a string.
2458 2458
2459 2459 The depth argument indicates how many frames above the caller should
2460 2460 be walked to look for the local namespace where to expand variables.
2461 2461
2462 2462 The global namespace for expansion is always the user's interactive
2463 2463 namespace.
2464 2464 """
2465 2465
2466 2466 return str(ItplNS(cmd,
2467 2467 self.user_ns, # globals
2468 2468 # Skip our own frame in searching for locals:
2469 2469 sys._getframe(depth+1).f_locals # locals
2470 2470 ))
2471 2471
2472 2472 def mktempfile(self, data=None, prefix='ipython_edit_'):
2473 2473 """Make a new tempfile and return its filename.
2474 2474
2475 2475 This makes a call to tempfile.mktemp, but it registers the created
2476 2476 filename internally so ipython cleans it up at exit time.
2477 2477
2478 2478 Optional inputs:
2479 2479
2480 2480 - data(None): if data is given, it gets written out to the temp file
2481 2481 immediately, and the file is closed again."""
2482 2482
2483 2483 filename = tempfile.mktemp('.py', prefix)
2484 2484 self.tempfiles.append(filename)
2485 2485
2486 2486 if data:
2487 2487 tmp_file = open(filename,'w')
2488 2488 tmp_file.write(data)
2489 2489 tmp_file.close()
2490 2490 return filename
2491 2491
2492 2492 # TODO: This should be removed when Term is refactored.
2493 2493 def write(self,data):
2494 2494 """Write a string to the default output"""
2495 2495 io.Term.cout.write(data)
2496 2496
2497 2497 # TODO: This should be removed when Term is refactored.
2498 2498 def write_err(self,data):
2499 2499 """Write a string to the default error output"""
2500 2500 io.Term.cerr.write(data)
2501 2501
2502 2502 def ask_yes_no(self,prompt,default=True):
2503 2503 if self.quiet:
2504 2504 return True
2505 2505 return ask_yes_no(prompt,default)
2506 2506
2507 2507 def show_usage(self):
2508 2508 """Show a usage message"""
2509 2509 page.page(IPython.core.usage.interactive_usage)
2510 2510
2511 2511 #-------------------------------------------------------------------------
2512 2512 # Things related to IPython exiting
2513 2513 #-------------------------------------------------------------------------
2514 2514 def atexit_operations(self):
2515 2515 """This will be executed at the time of exit.
2516 2516
2517 2517 Cleanup operations and saving of persistent data that is done
2518 2518 unconditionally by IPython should be performed here.
2519 2519
2520 2520 For things that may depend on startup flags or platform specifics (such
2521 2521 as having readline or not), register a separate atexit function in the
2522 2522 code that has the appropriate information, rather than trying to
2523 2523 clutter
2524 2524 """
2525 2525 # Cleanup all tempfiles left around
2526 2526 for tfile in self.tempfiles:
2527 2527 try:
2528 2528 os.unlink(tfile)
2529 2529 except OSError:
2530 2530 pass
2531 2531
2532 2532 # Write anything in the history cache to the database.
2533 2533 self.history_manager.writeout_cache()
2534 2534
2535 2535 # Clear all user namespaces to release all references cleanly.
2536 2536 self.reset()
2537 2537
2538 2538 # Run user hooks
2539 2539 self.hooks.shutdown_hook()
2540 2540
2541 2541 def cleanup(self):
2542 2542 self.restore_sys_module_state()
2543 2543
2544 2544
2545 2545 class InteractiveShellABC(object):
2546 2546 """An abstract base class for InteractiveShell."""
2547 2547 __metaclass__ = abc.ABCMeta
2548 2548
2549 2549 InteractiveShellABC.register(InteractiveShell)
@@ -1,3501 +1,3489 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 import types
29 29 from cStringIO import StringIO
30 30 from getopt import getopt,GetoptError
31 31 from pprint import pformat
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.macro import Macro
50 50 from IPython.core import page
51 51 from IPython.core.prefilter import ESC_MAGIC
52 52 from IPython.lib.pylabtools import mpl_runner
53 53 from IPython.external.Itpl import itpl, printpl
54 54 from IPython.testing import decorators as testdec
55 55 from IPython.utils.io import file_read, nlprint
56 56 import IPython.utils.io
57 57 from IPython.utils.path import get_py_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 import IPython.utils.generics
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89
90 90 #***************************************************************************
91 91 # Main class implementing Magic functionality
92 92
93 93 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
94 94 # on construction of the main InteractiveShell object. Something odd is going
95 95 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
96 96 # eventually this needs to be clarified.
97 97 # BG: This is because InteractiveShell inherits from this, but is itself a
98 98 # Configurable. This messes up the MRO in some way. The fix is that we need to
99 99 # make Magic a configurable that InteractiveShell does not subclass.
100 100
101 101 class Magic:
102 102 """Magic functions for InteractiveShell.
103 103
104 104 Shell functions which can be reached as %function_name. All magic
105 105 functions should accept a string, which they can parse for their own
106 106 needs. This can make some functions easier to type, eg `%cd ../`
107 107 vs. `%cd("../")`
108 108
109 109 ALL definitions MUST begin with the prefix magic_. The user won't need it
110 110 at the command line, but it is is needed in the definition. """
111 111
112 112 # class globals
113 113 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
114 114 'Automagic is ON, % prefix NOT needed for magic functions.']
115 115
116 116 #......................................................................
117 117 # some utility functions
118 118
119 119 def __init__(self,shell):
120 120
121 121 self.options_table = {}
122 122 if profile is None:
123 123 self.magic_prun = self.profile_missing_notice
124 124 self.shell = shell
125 125
126 126 # namespace for holding state we may need
127 127 self._magic_state = Bunch()
128 128
129 129 def profile_missing_notice(self, *args, **kwargs):
130 130 error("""\
131 131 The profile module could not be found. It has been removed from the standard
132 132 python packages because of its non-free license. To use profiling, install the
133 133 python-profiler package from non-free.""")
134 134
135 135 def default_option(self,fn,optstr):
136 136 """Make an entry in the options_table for fn, with value optstr"""
137 137
138 138 if fn not in self.lsmagic():
139 139 error("%s is not a magic function" % fn)
140 140 self.options_table[fn] = optstr
141 141
142 142 def lsmagic(self):
143 143 """Return a list of currently available magic functions.
144 144
145 145 Gives a list of the bare names after mangling (['ls','cd', ...], not
146 146 ['magic_ls','magic_cd',...]"""
147 147
148 148 # FIXME. This needs a cleanup, in the way the magics list is built.
149 149
150 150 # magics in class definition
151 151 class_magic = lambda fn: fn.startswith('magic_') and \
152 152 callable(Magic.__dict__[fn])
153 153 # in instance namespace (run-time user additions)
154 154 inst_magic = lambda fn: fn.startswith('magic_') and \
155 155 callable(self.__dict__[fn])
156 156 # and bound magics by user (so they can access self):
157 157 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
158 158 callable(self.__class__.__dict__[fn])
159 159 magics = filter(class_magic,Magic.__dict__.keys()) + \
160 160 filter(inst_magic,self.__dict__.keys()) + \
161 161 filter(inst_bound_magic,self.__class__.__dict__.keys())
162 162 out = []
163 163 for fn in set(magics):
164 164 out.append(fn.replace('magic_','',1))
165 165 out.sort()
166 166 return out
167 167
168 def extract_input_slices(self,slices,raw=False):
168 def extract_input_lines(self, range_str, raw=False):
169 169 """Return as a string a set of input history slices.
170 170
171 171 Inputs:
172 172
173 - slices: the set of slices is given as a list of strings (like
174 ['1','4:8','9'], since this function is for use by magic functions
175 which get their arguments as strings.
173 - range_str: the set of slices is given as a string, like
174 "~5#6-~4#2 4:8 9", since this function is for use by magic functions
175 which get their arguments as strings. The number before the # is the
176 session number: ~n goes n back from the current session.
176 177
177 178 Optional inputs:
178 179
179 180 - raw(False): by default, the processed input is used. If this is
180 181 true, the raw input history is used instead.
181 182
182 183 Note that slices can be called with two notations:
183 184
184 185 N:M -> standard python form, means including items N...(M-1).
185 186
186 187 N-M -> include items N..M (closed endpoint)."""
187 history_manager = self.shell.history_manager
188
189 cmds = []
190 for chunk in slices:
191 if ':' in chunk:
192 ini,fin = map(int,chunk.split(':'))
193 elif '-' in chunk:
194 ini,fin = map(int,chunk.split('-'))
195 fin += 1
196 else:
197 ini = int(chunk)
198 fin = ini+1
199 hist = history_manager.get_history((ini,fin), raw=raw, output=False)
200 cmds.append('\n'.join(hist[i] for i in sorted(hist.iterkeys())))
201 return cmds
188 lines = self.shell.history_manager.\
189 get_hist_from_rangestr(range_str, raw=raw)
190 return "\n".join(x for _, _, x in lines)
202 191
203 192 def arg_err(self,func):
204 193 """Print docstring if incorrect arguments were passed"""
205 194 print 'Error in arguments:'
206 195 print oinspect.getdoc(func)
207 196
208 197 def format_latex(self,strng):
209 198 """Format a string for latex inclusion."""
210 199
211 200 # Characters that need to be escaped for latex:
212 201 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
213 202 # Magic command names as headers:
214 203 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
215 204 re.MULTILINE)
216 205 # Magic commands
217 206 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
218 207 re.MULTILINE)
219 208 # Paragraph continue
220 209 par_re = re.compile(r'\\$',re.MULTILINE)
221 210
222 211 # The "\n" symbol
223 212 newline_re = re.compile(r'\\n')
224 213
225 214 # Now build the string for output:
226 215 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
227 216 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
228 217 strng)
229 218 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
230 219 strng = par_re.sub(r'\\\\',strng)
231 220 strng = escape_re.sub(r'\\\1',strng)
232 221 strng = newline_re.sub(r'\\textbackslash{}n',strng)
233 222 return strng
234 223
235 224 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
236 225 """Parse options passed to an argument string.
237 226
238 227 The interface is similar to that of getopt(), but it returns back a
239 228 Struct with the options as keys and the stripped argument string still
240 229 as a string.
241 230
242 231 arg_str is quoted as a true sys.argv vector by using shlex.split.
243 232 This allows us to easily expand variables, glob files, quote
244 233 arguments, etc.
245 234
246 235 Options:
247 236 -mode: default 'string'. If given as 'list', the argument string is
248 237 returned as a list (split on whitespace) instead of a string.
249 238
250 239 -list_all: put all option values in lists. Normally only options
251 240 appearing more than once are put in a list.
252 241
253 242 -posix (True): whether to split the input line in POSIX mode or not,
254 243 as per the conventions outlined in the shlex module from the
255 244 standard library."""
256 245
257 246 # inject default options at the beginning of the input line
258 247 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
259 248 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
260 249
261 250 mode = kw.get('mode','string')
262 251 if mode not in ['string','list']:
263 252 raise ValueError,'incorrect mode given: %s' % mode
264 253 # Get options
265 254 list_all = kw.get('list_all',0)
266 255 posix = kw.get('posix', os.name == 'posix')
267 256
268 257 # Check if we have more than one argument to warrant extra processing:
269 258 odict = {} # Dictionary with options
270 259 args = arg_str.split()
271 260 if len(args) >= 1:
272 261 # If the list of inputs only has 0 or 1 thing in it, there's no
273 262 # need to look for options
274 263 argv = arg_split(arg_str,posix)
275 264 # Do regular option processing
276 265 try:
277 266 opts,args = getopt(argv,opt_str,*long_opts)
278 267 except GetoptError,e:
279 268 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
280 269 " ".join(long_opts)))
281 270 for o,a in opts:
282 271 if o.startswith('--'):
283 272 o = o[2:]
284 273 else:
285 274 o = o[1:]
286 275 try:
287 276 odict[o].append(a)
288 277 except AttributeError:
289 278 odict[o] = [odict[o],a]
290 279 except KeyError:
291 280 if list_all:
292 281 odict[o] = [a]
293 282 else:
294 283 odict[o] = a
295 284
296 285 # Prepare opts,args for return
297 286 opts = Struct(odict)
298 287 if mode == 'string':
299 288 args = ' '.join(args)
300 289
301 290 return opts,args
302 291
303 292 #......................................................................
304 293 # And now the actual magic functions
305 294
306 295 # Functions for IPython shell work (vars,funcs, config, etc)
307 296 def magic_lsmagic(self, parameter_s = ''):
308 297 """List currently available magic functions."""
309 298 mesc = ESC_MAGIC
310 299 print 'Available magic functions:\n'+mesc+\
311 300 (' '+mesc).join(self.lsmagic())
312 301 print '\n' + Magic.auto_status[self.shell.automagic]
313 302 return None
314 303
315 304 def magic_magic(self, parameter_s = ''):
316 305 """Print information about the magic function system.
317 306
318 307 Supported formats: -latex, -brief, -rest
319 308 """
320 309
321 310 mode = ''
322 311 try:
323 312 if parameter_s.split()[0] == '-latex':
324 313 mode = 'latex'
325 314 if parameter_s.split()[0] == '-brief':
326 315 mode = 'brief'
327 316 if parameter_s.split()[0] == '-rest':
328 317 mode = 'rest'
329 318 rest_docs = []
330 319 except:
331 320 pass
332 321
333 322 magic_docs = []
334 323 for fname in self.lsmagic():
335 324 mname = 'magic_' + fname
336 325 for space in (Magic,self,self.__class__):
337 326 try:
338 327 fn = space.__dict__[mname]
339 328 except KeyError:
340 329 pass
341 330 else:
342 331 break
343 332 if mode == 'brief':
344 333 # only first line
345 334 if fn.__doc__:
346 335 fndoc = fn.__doc__.split('\n',1)[0]
347 336 else:
348 337 fndoc = 'No documentation'
349 338 else:
350 339 if fn.__doc__:
351 340 fndoc = fn.__doc__.rstrip()
352 341 else:
353 342 fndoc = 'No documentation'
354 343
355 344
356 345 if mode == 'rest':
357 346 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
358 347 fname,fndoc))
359 348
360 349 else:
361 350 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
362 351 fname,fndoc))
363 352
364 353 magic_docs = ''.join(magic_docs)
365 354
366 355 if mode == 'rest':
367 356 return "".join(rest_docs)
368 357
369 358 if mode == 'latex':
370 359 print self.format_latex(magic_docs)
371 360 return
372 361 else:
373 362 magic_docs = format_screen(magic_docs)
374 363 if mode == 'brief':
375 364 return magic_docs
376 365
377 366 outmsg = """
378 367 IPython's 'magic' functions
379 368 ===========================
380 369
381 370 The magic function system provides a series of functions which allow you to
382 371 control the behavior of IPython itself, plus a lot of system-type
383 372 features. All these functions are prefixed with a % character, but parameters
384 373 are given without parentheses or quotes.
385 374
386 375 NOTE: If you have 'automagic' enabled (via the command line option or with the
387 376 %automagic function), you don't need to type in the % explicitly. By default,
388 377 IPython ships with automagic on, so you should only rarely need the % escape.
389 378
390 379 Example: typing '%cd mydir' (without the quotes) changes you working directory
391 380 to 'mydir', if it exists.
392 381
393 382 You can define your own magic functions to extend the system. See the supplied
394 383 ipythonrc and example-magic.py files for details (in your ipython
395 384 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
396 385
397 386 You can also define your own aliased names for magic functions. In your
398 387 ipythonrc file, placing a line like:
399 388
400 389 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
401 390
402 391 will define %pf as a new name for %profile.
403 392
404 393 You can also call magics in code using the magic() function, which IPython
405 394 automatically adds to the builtin namespace. Type 'magic?' for details.
406 395
407 396 For a list of the available magic functions, use %lsmagic. For a description
408 397 of any of them, type %magic_name?, e.g. '%cd?'.
409 398
410 399 Currently the magic system has the following functions:\n"""
411 400
412 401 mesc = ESC_MAGIC
413 402 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
414 403 "\n\n%s%s\n\n%s" % (outmsg,
415 404 magic_docs,mesc,mesc,
416 405 (' '+mesc).join(self.lsmagic()),
417 406 Magic.auto_status[self.shell.automagic] ) )
418 407 page.page(outmsg)
419 408
420 409 def magic_automagic(self, parameter_s = ''):
421 410 """Make magic functions callable without having to type the initial %.
422 411
423 412 Without argumentsl toggles on/off (when off, you must call it as
424 413 %automagic, of course). With arguments it sets the value, and you can
425 414 use any of (case insensitive):
426 415
427 416 - on,1,True: to activate
428 417
429 418 - off,0,False: to deactivate.
430 419
431 420 Note that magic functions have lowest priority, so if there's a
432 421 variable whose name collides with that of a magic fn, automagic won't
433 422 work for that function (you get the variable instead). However, if you
434 423 delete the variable (del var), the previously shadowed magic function
435 424 becomes visible to automagic again."""
436 425
437 426 arg = parameter_s.lower()
438 427 if parameter_s in ('on','1','true'):
439 428 self.shell.automagic = True
440 429 elif parameter_s in ('off','0','false'):
441 430 self.shell.automagic = False
442 431 else:
443 432 self.shell.automagic = not self.shell.automagic
444 433 print '\n' + Magic.auto_status[self.shell.automagic]
445 434
446 435 @testdec.skip_doctest
447 436 def magic_autocall(self, parameter_s = ''):
448 437 """Make functions callable without having to type parentheses.
449 438
450 439 Usage:
451 440
452 441 %autocall [mode]
453 442
454 443 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
455 444 value is toggled on and off (remembering the previous state).
456 445
457 446 In more detail, these values mean:
458 447
459 448 0 -> fully disabled
460 449
461 450 1 -> active, but do not apply if there are no arguments on the line.
462 451
463 452 In this mode, you get:
464 453
465 454 In [1]: callable
466 455 Out[1]: <built-in function callable>
467 456
468 457 In [2]: callable 'hello'
469 458 ------> callable('hello')
470 459 Out[2]: False
471 460
472 461 2 -> Active always. Even if no arguments are present, the callable
473 462 object is called:
474 463
475 464 In [2]: float
476 465 ------> float()
477 466 Out[2]: 0.0
478 467
479 468 Note that even with autocall off, you can still use '/' at the start of
480 469 a line to treat the first argument on the command line as a function
481 470 and add parentheses to it:
482 471
483 472 In [8]: /str 43
484 473 ------> str(43)
485 474 Out[8]: '43'
486 475
487 476 # all-random (note for auto-testing)
488 477 """
489 478
490 479 if parameter_s:
491 480 arg = int(parameter_s)
492 481 else:
493 482 arg = 'toggle'
494 483
495 484 if not arg in (0,1,2,'toggle'):
496 485 error('Valid modes: (0->Off, 1->Smart, 2->Full')
497 486 return
498 487
499 488 if arg in (0,1,2):
500 489 self.shell.autocall = arg
501 490 else: # toggle
502 491 if self.shell.autocall:
503 492 self._magic_state.autocall_save = self.shell.autocall
504 493 self.shell.autocall = 0
505 494 else:
506 495 try:
507 496 self.shell.autocall = self._magic_state.autocall_save
508 497 except AttributeError:
509 498 self.shell.autocall = self._magic_state.autocall_save = 1
510 499
511 500 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
512 501
513 502
514 503 def magic_page(self, parameter_s=''):
515 504 """Pretty print the object and display it through a pager.
516 505
517 506 %page [options] OBJECT
518 507
519 508 If no object is given, use _ (last output).
520 509
521 510 Options:
522 511
523 512 -r: page str(object), don't pretty-print it."""
524 513
525 514 # After a function contributed by Olivier Aubert, slightly modified.
526 515
527 516 # Process options/args
528 517 opts,args = self.parse_options(parameter_s,'r')
529 518 raw = 'r' in opts
530 519
531 520 oname = args and args or '_'
532 521 info = self._ofind(oname)
533 522 if info['found']:
534 523 txt = (raw and str or pformat)( info['obj'] )
535 524 page.page(txt)
536 525 else:
537 526 print 'Object `%s` not found' % oname
538 527
539 528 def magic_profile(self, parameter_s=''):
540 529 """Print your currently active IPython profile."""
541 530 if self.shell.profile:
542 531 printpl('Current IPython profile: $self.shell.profile.')
543 532 else:
544 533 print 'No profile active.'
545 534
546 535 def magic_pinfo(self, parameter_s='', namespaces=None):
547 536 """Provide detailed information about an object.
548 537
549 538 '%pinfo object' is just a synonym for object? or ?object."""
550 539
551 540 #print 'pinfo par: <%s>' % parameter_s # dbg
552 541
553 542
554 543 # detail_level: 0 -> obj? , 1 -> obj??
555 544 detail_level = 0
556 545 # We need to detect if we got called as 'pinfo pinfo foo', which can
557 546 # happen if the user types 'pinfo foo?' at the cmd line.
558 547 pinfo,qmark1,oname,qmark2 = \
559 548 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
560 549 if pinfo or qmark1 or qmark2:
561 550 detail_level = 1
562 551 if "*" in oname:
563 552 self.magic_psearch(oname)
564 553 else:
565 554 self.shell._inspect('pinfo', oname, detail_level=detail_level,
566 555 namespaces=namespaces)
567 556
568 557 def magic_pinfo2(self, parameter_s='', namespaces=None):
569 558 """Provide extra detailed information about an object.
570 559
571 560 '%pinfo2 object' is just a synonym for object?? or ??object."""
572 561 self.shell._inspect('pinfo', parameter_s, detail_level=1,
573 562 namespaces=namespaces)
574 563
575 564 @testdec.skip_doctest
576 565 def magic_pdef(self, parameter_s='', namespaces=None):
577 566 """Print the definition header for any callable object.
578 567
579 568 If the object is a class, print the constructor information.
580 569
581 570 Examples
582 571 --------
583 572 ::
584 573
585 574 In [3]: %pdef urllib.urlopen
586 575 urllib.urlopen(url, data=None, proxies=None)
587 576 """
588 577 self._inspect('pdef',parameter_s, namespaces)
589 578
590 579 def magic_pdoc(self, parameter_s='', namespaces=None):
591 580 """Print the docstring for an object.
592 581
593 582 If the given object is a class, it will print both the class and the
594 583 constructor docstrings."""
595 584 self._inspect('pdoc',parameter_s, namespaces)
596 585
597 586 def magic_psource(self, parameter_s='', namespaces=None):
598 587 """Print (or run through pager) the source code for an object."""
599 588 self._inspect('psource',parameter_s, namespaces)
600 589
601 590 def magic_pfile(self, parameter_s=''):
602 591 """Print (or run through pager) the file where an object is defined.
603 592
604 593 The file opens at the line where the object definition begins. IPython
605 594 will honor the environment variable PAGER if set, and otherwise will
606 595 do its best to print the file in a convenient form.
607 596
608 597 If the given argument is not an object currently defined, IPython will
609 598 try to interpret it as a filename (automatically adding a .py extension
610 599 if needed). You can thus use %pfile as a syntax highlighting code
611 600 viewer."""
612 601
613 602 # first interpret argument as an object name
614 603 out = self._inspect('pfile',parameter_s)
615 604 # if not, try the input as a filename
616 605 if out == 'not found':
617 606 try:
618 607 filename = get_py_filename(parameter_s)
619 608 except IOError,msg:
620 609 print msg
621 610 return
622 611 page.page(self.shell.inspector.format(file(filename).read()))
623 612
624 613 def magic_psearch(self, parameter_s=''):
625 614 """Search for object in namespaces by wildcard.
626 615
627 616 %psearch [options] PATTERN [OBJECT TYPE]
628 617
629 618 Note: ? can be used as a synonym for %psearch, at the beginning or at
630 619 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
631 620 rest of the command line must be unchanged (options come first), so
632 621 for example the following forms are equivalent
633 622
634 623 %psearch -i a* function
635 624 -i a* function?
636 625 ?-i a* function
637 626
638 627 Arguments:
639 628
640 629 PATTERN
641 630
642 631 where PATTERN is a string containing * as a wildcard similar to its
643 632 use in a shell. The pattern is matched in all namespaces on the
644 633 search path. By default objects starting with a single _ are not
645 634 matched, many IPython generated objects have a single
646 635 underscore. The default is case insensitive matching. Matching is
647 636 also done on the attributes of objects and not only on the objects
648 637 in a module.
649 638
650 639 [OBJECT TYPE]
651 640
652 641 Is the name of a python type from the types module. The name is
653 642 given in lowercase without the ending type, ex. StringType is
654 643 written string. By adding a type here only objects matching the
655 644 given type are matched. Using all here makes the pattern match all
656 645 types (this is the default).
657 646
658 647 Options:
659 648
660 649 -a: makes the pattern match even objects whose names start with a
661 650 single underscore. These names are normally ommitted from the
662 651 search.
663 652
664 653 -i/-c: make the pattern case insensitive/sensitive. If neither of
665 654 these options is given, the default is read from your ipythonrc
666 655 file. The option name which sets this value is
667 656 'wildcards_case_sensitive'. If this option is not specified in your
668 657 ipythonrc file, IPython's internal default is to do a case sensitive
669 658 search.
670 659
671 660 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
672 661 specifiy can be searched in any of the following namespaces:
673 662 'builtin', 'user', 'user_global','internal', 'alias', where
674 663 'builtin' and 'user' are the search defaults. Note that you should
675 664 not use quotes when specifying namespaces.
676 665
677 666 'Builtin' contains the python module builtin, 'user' contains all
678 667 user data, 'alias' only contain the shell aliases and no python
679 668 objects, 'internal' contains objects used by IPython. The
680 669 'user_global' namespace is only used by embedded IPython instances,
681 670 and it contains module-level globals. You can add namespaces to the
682 671 search with -s or exclude them with -e (these options can be given
683 672 more than once).
684 673
685 674 Examples:
686 675
687 676 %psearch a* -> objects beginning with an a
688 677 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
689 678 %psearch a* function -> all functions beginning with an a
690 679 %psearch re.e* -> objects beginning with an e in module re
691 680 %psearch r*.e* -> objects that start with e in modules starting in r
692 681 %psearch r*.* string -> all strings in modules beginning with r
693 682
694 683 Case sensitve search:
695 684
696 685 %psearch -c a* list all object beginning with lower case a
697 686
698 687 Show objects beginning with a single _:
699 688
700 689 %psearch -a _* list objects beginning with a single underscore"""
701 690 try:
702 691 parameter_s = parameter_s.encode('ascii')
703 692 except UnicodeEncodeError:
704 693 print 'Python identifiers can only contain ascii characters.'
705 694 return
706 695
707 696 # default namespaces to be searched
708 697 def_search = ['user','builtin']
709 698
710 699 # Process options/args
711 700 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
712 701 opt = opts.get
713 702 shell = self.shell
714 703 psearch = shell.inspector.psearch
715 704
716 705 # select case options
717 706 if opts.has_key('i'):
718 707 ignore_case = True
719 708 elif opts.has_key('c'):
720 709 ignore_case = False
721 710 else:
722 711 ignore_case = not shell.wildcards_case_sensitive
723 712
724 713 # Build list of namespaces to search from user options
725 714 def_search.extend(opt('s',[]))
726 715 ns_exclude = ns_exclude=opt('e',[])
727 716 ns_search = [nm for nm in def_search if nm not in ns_exclude]
728 717
729 718 # Call the actual search
730 719 try:
731 720 psearch(args,shell.ns_table,ns_search,
732 721 show_all=opt('a'),ignore_case=ignore_case)
733 722 except:
734 723 shell.showtraceback()
735 724
736 725 @testdec.skip_doctest
737 726 def magic_who_ls(self, parameter_s=''):
738 727 """Return a sorted list of all interactive variables.
739 728
740 729 If arguments are given, only variables of types matching these
741 730 arguments are returned.
742 731
743 732 Examples
744 733 --------
745 734
746 735 Define two variables and list them with who_ls::
747 736
748 737 In [1]: alpha = 123
749 738
750 739 In [2]: beta = 'test'
751 740
752 741 In [3]: %who_ls
753 742 Out[3]: ['alpha', 'beta']
754 743
755 744 In [4]: %who_ls int
756 745 Out[4]: ['alpha']
757 746
758 747 In [5]: %who_ls str
759 748 Out[5]: ['beta']
760 749 """
761 750
762 751 user_ns = self.shell.user_ns
763 752 internal_ns = self.shell.internal_ns
764 753 user_ns_hidden = self.shell.user_ns_hidden
765 754 out = [ i for i in user_ns
766 755 if not i.startswith('_') \
767 756 and not (i in internal_ns or i in user_ns_hidden) ]
768 757
769 758 typelist = parameter_s.split()
770 759 if typelist:
771 760 typeset = set(typelist)
772 761 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
773 762
774 763 out.sort()
775 764 return out
776 765
777 766 @testdec.skip_doctest
778 767 def magic_who(self, parameter_s=''):
779 768 """Print all interactive variables, with some minimal formatting.
780 769
781 770 If any arguments are given, only variables whose type matches one of
782 771 these are printed. For example:
783 772
784 773 %who function str
785 774
786 775 will only list functions and strings, excluding all other types of
787 776 variables. To find the proper type names, simply use type(var) at a
788 777 command line to see how python prints type names. For example:
789 778
790 779 In [1]: type('hello')\\
791 780 Out[1]: <type 'str'>
792 781
793 782 indicates that the type name for strings is 'str'.
794 783
795 784 %who always excludes executed names loaded through your configuration
796 785 file and things which are internal to IPython.
797 786
798 787 This is deliberate, as typically you may load many modules and the
799 788 purpose of %who is to show you only what you've manually defined.
800 789
801 790 Examples
802 791 --------
803 792
804 793 Define two variables and list them with who::
805 794
806 795 In [1]: alpha = 123
807 796
808 797 In [2]: beta = 'test'
809 798
810 799 In [3]: %who
811 800 alpha beta
812 801
813 802 In [4]: %who int
814 803 alpha
815 804
816 805 In [5]: %who str
817 806 beta
818 807 """
819 808
820 809 varlist = self.magic_who_ls(parameter_s)
821 810 if not varlist:
822 811 if parameter_s:
823 812 print 'No variables match your requested type.'
824 813 else:
825 814 print 'Interactive namespace is empty.'
826 815 return
827 816
828 817 # if we have variables, move on...
829 818 count = 0
830 819 for i in varlist:
831 820 print i+'\t',
832 821 count += 1
833 822 if count > 8:
834 823 count = 0
835 824 print
836 825 print
837 826
838 827 @testdec.skip_doctest
839 828 def magic_whos(self, parameter_s=''):
840 829 """Like %who, but gives some extra information about each variable.
841 830
842 831 The same type filtering of %who can be applied here.
843 832
844 833 For all variables, the type is printed. Additionally it prints:
845 834
846 835 - For {},[],(): their length.
847 836
848 837 - For numpy and Numeric arrays, a summary with shape, number of
849 838 elements, typecode and size in memory.
850 839
851 840 - Everything else: a string representation, snipping their middle if
852 841 too long.
853 842
854 843 Examples
855 844 --------
856 845
857 846 Define two variables and list them with whos::
858 847
859 848 In [1]: alpha = 123
860 849
861 850 In [2]: beta = 'test'
862 851
863 852 In [3]: %whos
864 853 Variable Type Data/Info
865 854 --------------------------------
866 855 alpha int 123
867 856 beta str test
868 857 """
869 858
870 859 varnames = self.magic_who_ls(parameter_s)
871 860 if not varnames:
872 861 if parameter_s:
873 862 print 'No variables match your requested type.'
874 863 else:
875 864 print 'Interactive namespace is empty.'
876 865 return
877 866
878 867 # if we have variables, move on...
879 868
880 869 # for these types, show len() instead of data:
881 870 seq_types = [types.DictType,types.ListType,types.TupleType]
882 871
883 872 # for numpy/Numeric arrays, display summary info
884 873 try:
885 874 import numpy
886 875 except ImportError:
887 876 ndarray_type = None
888 877 else:
889 878 ndarray_type = numpy.ndarray.__name__
890 879 try:
891 880 import Numeric
892 881 except ImportError:
893 882 array_type = None
894 883 else:
895 884 array_type = Numeric.ArrayType.__name__
896 885
897 886 # Find all variable names and types so we can figure out column sizes
898 887 def get_vars(i):
899 888 return self.shell.user_ns[i]
900 889
901 890 # some types are well known and can be shorter
902 891 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
903 892 def type_name(v):
904 893 tn = type(v).__name__
905 894 return abbrevs.get(tn,tn)
906 895
907 896 varlist = map(get_vars,varnames)
908 897
909 898 typelist = []
910 899 for vv in varlist:
911 900 tt = type_name(vv)
912 901
913 902 if tt=='instance':
914 903 typelist.append( abbrevs.get(str(vv.__class__),
915 904 str(vv.__class__)))
916 905 else:
917 906 typelist.append(tt)
918 907
919 908 # column labels and # of spaces as separator
920 909 varlabel = 'Variable'
921 910 typelabel = 'Type'
922 911 datalabel = 'Data/Info'
923 912 colsep = 3
924 913 # variable format strings
925 914 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
926 915 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
927 916 aformat = "%s: %s elems, type `%s`, %s bytes"
928 917 # find the size of the columns to format the output nicely
929 918 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
930 919 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
931 920 # table header
932 921 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
933 922 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
934 923 # and the table itself
935 924 kb = 1024
936 925 Mb = 1048576 # kb**2
937 926 for vname,var,vtype in zip(varnames,varlist,typelist):
938 927 print itpl(vformat),
939 928 if vtype in seq_types:
940 929 print len(var)
941 930 elif vtype in [array_type,ndarray_type]:
942 931 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
943 932 if vtype==ndarray_type:
944 933 # numpy
945 934 vsize = var.size
946 935 vbytes = vsize*var.itemsize
947 936 vdtype = var.dtype
948 937 else:
949 938 # Numeric
950 939 vsize = Numeric.size(var)
951 940 vbytes = vsize*var.itemsize()
952 941 vdtype = var.typecode()
953 942
954 943 if vbytes < 100000:
955 944 print aformat % (vshape,vsize,vdtype,vbytes)
956 945 else:
957 946 print aformat % (vshape,vsize,vdtype,vbytes),
958 947 if vbytes < Mb:
959 948 print '(%s kb)' % (vbytes/kb,)
960 949 else:
961 950 print '(%s Mb)' % (vbytes/Mb,)
962 951 else:
963 952 try:
964 953 vstr = str(var)
965 954 except UnicodeEncodeError:
966 955 vstr = unicode(var).encode(sys.getdefaultencoding(),
967 956 'backslashreplace')
968 957 vstr = vstr.replace('\n','\\n')
969 958 if len(vstr) < 50:
970 959 print vstr
971 960 else:
972 961 printpl(vfmt_short)
973 962
974 963 def magic_reset(self, parameter_s=''):
975 964 """Resets the namespace by removing all names defined by the user.
976 965
977 966 Input/Output history are left around in case you need them.
978 967
979 968 Parameters
980 969 ----------
981 970 -y : force reset without asking for confirmation.
982 971
983 972 Examples
984 973 --------
985 974 In [6]: a = 1
986 975
987 976 In [7]: a
988 977 Out[7]: 1
989 978
990 979 In [8]: 'a' in _ip.user_ns
991 980 Out[8]: True
992 981
993 982 In [9]: %reset -f
994 983
995 984 In [10]: 'a' in _ip.user_ns
996 985 Out[10]: False
997 986 """
998 987
999 988 if parameter_s == '-f':
1000 989 ans = True
1001 990 else:
1002 991 ans = self.shell.ask_yes_no(
1003 992 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1004 993 if not ans:
1005 994 print 'Nothing done.'
1006 995 return
1007 996 user_ns = self.shell.user_ns
1008 997 for i in self.magic_who_ls():
1009 998 del(user_ns[i])
1010 999
1011 1000 # Also flush the private list of module references kept for script
1012 1001 # execution protection
1013 1002 self.shell.clear_main_mod_cache()
1014 1003
1015 1004 def magic_reset_selective(self, parameter_s=''):
1016 1005 """Resets the namespace by removing names defined by the user.
1017 1006
1018 1007 Input/Output history are left around in case you need them.
1019 1008
1020 1009 %reset_selective [-f] regex
1021 1010
1022 1011 No action is taken if regex is not included
1023 1012
1024 1013 Options
1025 1014 -f : force reset without asking for confirmation.
1026 1015
1027 1016 Examples
1028 1017 --------
1029 1018
1030 1019 We first fully reset the namespace so your output looks identical to
1031 1020 this example for pedagogical reasons; in practice you do not need a
1032 1021 full reset.
1033 1022
1034 1023 In [1]: %reset -f
1035 1024
1036 1025 Now, with a clean namespace we can make a few variables and use
1037 1026 %reset_selective to only delete names that match our regexp:
1038 1027
1039 1028 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1040 1029
1041 1030 In [3]: who_ls
1042 1031 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1043 1032
1044 1033 In [4]: %reset_selective -f b[2-3]m
1045 1034
1046 1035 In [5]: who_ls
1047 1036 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1048 1037
1049 1038 In [6]: %reset_selective -f d
1050 1039
1051 1040 In [7]: who_ls
1052 1041 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1053 1042
1054 1043 In [8]: %reset_selective -f c
1055 1044
1056 1045 In [9]: who_ls
1057 1046 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1058 1047
1059 1048 In [10]: %reset_selective -f b
1060 1049
1061 1050 In [11]: who_ls
1062 1051 Out[11]: ['a']
1063 1052 """
1064 1053
1065 1054 opts, regex = self.parse_options(parameter_s,'f')
1066 1055
1067 1056 if opts.has_key('f'):
1068 1057 ans = True
1069 1058 else:
1070 1059 ans = self.shell.ask_yes_no(
1071 1060 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1072 1061 if not ans:
1073 1062 print 'Nothing done.'
1074 1063 return
1075 1064 user_ns = self.shell.user_ns
1076 1065 if not regex:
1077 1066 print 'No regex pattern specified. Nothing done.'
1078 1067 return
1079 1068 else:
1080 1069 try:
1081 1070 m = re.compile(regex)
1082 1071 except TypeError:
1083 1072 raise TypeError('regex must be a string or compiled pattern')
1084 1073 for i in self.magic_who_ls():
1085 1074 if m.search(i):
1086 1075 del(user_ns[i])
1087 1076
1088 1077 def magic_logstart(self,parameter_s=''):
1089 1078 """Start logging anywhere in a session.
1090 1079
1091 1080 %logstart [-o|-r|-t] [log_name [log_mode]]
1092 1081
1093 1082 If no name is given, it defaults to a file named 'ipython_log.py' in your
1094 1083 current directory, in 'rotate' mode (see below).
1095 1084
1096 1085 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1097 1086 history up to that point and then continues logging.
1098 1087
1099 1088 %logstart takes a second optional parameter: logging mode. This can be one
1100 1089 of (note that the modes are given unquoted):\\
1101 1090 append: well, that says it.\\
1102 1091 backup: rename (if exists) to name~ and start name.\\
1103 1092 global: single logfile in your home dir, appended to.\\
1104 1093 over : overwrite existing log.\\
1105 1094 rotate: create rotating logs name.1~, name.2~, etc.
1106 1095
1107 1096 Options:
1108 1097
1109 1098 -o: log also IPython's output. In this mode, all commands which
1110 1099 generate an Out[NN] prompt are recorded to the logfile, right after
1111 1100 their corresponding input line. The output lines are always
1112 1101 prepended with a '#[Out]# ' marker, so that the log remains valid
1113 1102 Python code.
1114 1103
1115 1104 Since this marker is always the same, filtering only the output from
1116 1105 a log is very easy, using for example a simple awk call:
1117 1106
1118 1107 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1119 1108
1120 1109 -r: log 'raw' input. Normally, IPython's logs contain the processed
1121 1110 input, so that user lines are logged in their final form, converted
1122 1111 into valid Python. For example, %Exit is logged as
1123 1112 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1124 1113 exactly as typed, with no transformations applied.
1125 1114
1126 1115 -t: put timestamps before each input line logged (these are put in
1127 1116 comments)."""
1128 1117
1129 1118 opts,par = self.parse_options(parameter_s,'ort')
1130 1119 log_output = 'o' in opts
1131 1120 log_raw_input = 'r' in opts
1132 1121 timestamp = 't' in opts
1133 1122
1134 1123 logger = self.shell.logger
1135 1124
1136 1125 # if no args are given, the defaults set in the logger constructor by
1137 1126 # ipytohn remain valid
1138 1127 if par:
1139 1128 try:
1140 1129 logfname,logmode = par.split()
1141 1130 except:
1142 1131 logfname = par
1143 1132 logmode = 'backup'
1144 1133 else:
1145 1134 logfname = logger.logfname
1146 1135 logmode = logger.logmode
1147 1136 # put logfname into rc struct as if it had been called on the command
1148 1137 # line, so it ends up saved in the log header Save it in case we need
1149 1138 # to restore it...
1150 1139 old_logfile = self.shell.logfile
1151 1140 if logfname:
1152 1141 logfname = os.path.expanduser(logfname)
1153 1142 self.shell.logfile = logfname
1154 1143
1155 1144 loghead = '# IPython log file\n\n'
1156 1145 try:
1157 1146 started = logger.logstart(logfname,loghead,logmode,
1158 1147 log_output,timestamp,log_raw_input)
1159 1148 except:
1160 1149 self.shell.logfile = old_logfile
1161 1150 warn("Couldn't start log: %s" % sys.exc_info()[1])
1162 1151 else:
1163 1152 # log input history up to this point, optionally interleaving
1164 1153 # output if requested
1165 1154
1166 1155 if timestamp:
1167 1156 # disable timestamping for the previous history, since we've
1168 1157 # lost those already (no time machine here).
1169 1158 logger.timestamp = False
1170 1159
1171 1160 if log_raw_input:
1172 1161 input_hist = self.shell.history_manager.input_hist_raw
1173 1162 else:
1174 1163 input_hist = self.shell.history_manager.input_hist_parsed
1175 1164
1176 1165 if log_output:
1177 1166 log_write = logger.log_write
1178 1167 output_hist = self.shell.history_manager.output_hist
1179 1168 for n in range(1,len(input_hist)-1):
1180 1169 log_write(input_hist[n].rstrip())
1181 1170 if n in output_hist:
1182 1171 log_write(repr(output_hist[n]),'output')
1183 1172 else:
1184 1173 logger.log_write(''.join(input_hist[1:]))
1185 1174 if timestamp:
1186 1175 # re-enable timestamping
1187 1176 logger.timestamp = True
1188 1177
1189 1178 print ('Activating auto-logging. '
1190 1179 'Current session state plus future input saved.')
1191 1180 logger.logstate()
1192 1181
1193 1182 def magic_logstop(self,parameter_s=''):
1194 1183 """Fully stop logging and close log file.
1195 1184
1196 1185 In order to start logging again, a new %logstart call needs to be made,
1197 1186 possibly (though not necessarily) with a new filename, mode and other
1198 1187 options."""
1199 1188 self.logger.logstop()
1200 1189
1201 1190 def magic_logoff(self,parameter_s=''):
1202 1191 """Temporarily stop logging.
1203 1192
1204 1193 You must have previously started logging."""
1205 1194 self.shell.logger.switch_log(0)
1206 1195
1207 1196 def magic_logon(self,parameter_s=''):
1208 1197 """Restart logging.
1209 1198
1210 1199 This function is for restarting logging which you've temporarily
1211 1200 stopped with %logoff. For starting logging for the first time, you
1212 1201 must use the %logstart function, which allows you to specify an
1213 1202 optional log filename."""
1214 1203
1215 1204 self.shell.logger.switch_log(1)
1216 1205
1217 1206 def magic_logstate(self,parameter_s=''):
1218 1207 """Print the status of the logging system."""
1219 1208
1220 1209 self.shell.logger.logstate()
1221 1210
1222 1211 def magic_pdb(self, parameter_s=''):
1223 1212 """Control the automatic calling of the pdb interactive debugger.
1224 1213
1225 1214 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1226 1215 argument it works as a toggle.
1227 1216
1228 1217 When an exception is triggered, IPython can optionally call the
1229 1218 interactive pdb debugger after the traceback printout. %pdb toggles
1230 1219 this feature on and off.
1231 1220
1232 1221 The initial state of this feature is set in your ipythonrc
1233 1222 configuration file (the variable is called 'pdb').
1234 1223
1235 1224 If you want to just activate the debugger AFTER an exception has fired,
1236 1225 without having to type '%pdb on' and rerunning your code, you can use
1237 1226 the %debug magic."""
1238 1227
1239 1228 par = parameter_s.strip().lower()
1240 1229
1241 1230 if par:
1242 1231 try:
1243 1232 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1244 1233 except KeyError:
1245 1234 print ('Incorrect argument. Use on/1, off/0, '
1246 1235 'or nothing for a toggle.')
1247 1236 return
1248 1237 else:
1249 1238 # toggle
1250 1239 new_pdb = not self.shell.call_pdb
1251 1240
1252 1241 # set on the shell
1253 1242 self.shell.call_pdb = new_pdb
1254 1243 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1255 1244
1256 1245 def magic_debug(self, parameter_s=''):
1257 1246 """Activate the interactive debugger in post-mortem mode.
1258 1247
1259 1248 If an exception has just occurred, this lets you inspect its stack
1260 1249 frames interactively. Note that this will always work only on the last
1261 1250 traceback that occurred, so you must call this quickly after an
1262 1251 exception that you wish to inspect has fired, because if another one
1263 1252 occurs, it clobbers the previous one.
1264 1253
1265 1254 If you want IPython to automatically do this on every exception, see
1266 1255 the %pdb magic for more details.
1267 1256 """
1268 1257 self.shell.debugger(force=True)
1269 1258
1270 1259 @testdec.skip_doctest
1271 1260 def magic_prun(self, parameter_s ='',user_mode=1,
1272 1261 opts=None,arg_lst=None,prog_ns=None):
1273 1262
1274 1263 """Run a statement through the python code profiler.
1275 1264
1276 1265 Usage:
1277 1266 %prun [options] statement
1278 1267
1279 1268 The given statement (which doesn't require quote marks) is run via the
1280 1269 python profiler in a manner similar to the profile.run() function.
1281 1270 Namespaces are internally managed to work correctly; profile.run
1282 1271 cannot be used in IPython because it makes certain assumptions about
1283 1272 namespaces which do not hold under IPython.
1284 1273
1285 1274 Options:
1286 1275
1287 1276 -l <limit>: you can place restrictions on what or how much of the
1288 1277 profile gets printed. The limit value can be:
1289 1278
1290 1279 * A string: only information for function names containing this string
1291 1280 is printed.
1292 1281
1293 1282 * An integer: only these many lines are printed.
1294 1283
1295 1284 * A float (between 0 and 1): this fraction of the report is printed
1296 1285 (for example, use a limit of 0.4 to see the topmost 40% only).
1297 1286
1298 1287 You can combine several limits with repeated use of the option. For
1299 1288 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1300 1289 information about class constructors.
1301 1290
1302 1291 -r: return the pstats.Stats object generated by the profiling. This
1303 1292 object has all the information about the profile in it, and you can
1304 1293 later use it for further analysis or in other functions.
1305 1294
1306 1295 -s <key>: sort profile by given key. You can provide more than one key
1307 1296 by using the option several times: '-s key1 -s key2 -s key3...'. The
1308 1297 default sorting key is 'time'.
1309 1298
1310 1299 The following is copied verbatim from the profile documentation
1311 1300 referenced below:
1312 1301
1313 1302 When more than one key is provided, additional keys are used as
1314 1303 secondary criteria when the there is equality in all keys selected
1315 1304 before them.
1316 1305
1317 1306 Abbreviations can be used for any key names, as long as the
1318 1307 abbreviation is unambiguous. The following are the keys currently
1319 1308 defined:
1320 1309
1321 1310 Valid Arg Meaning
1322 1311 "calls" call count
1323 1312 "cumulative" cumulative time
1324 1313 "file" file name
1325 1314 "module" file name
1326 1315 "pcalls" primitive call count
1327 1316 "line" line number
1328 1317 "name" function name
1329 1318 "nfl" name/file/line
1330 1319 "stdname" standard name
1331 1320 "time" internal time
1332 1321
1333 1322 Note that all sorts on statistics are in descending order (placing
1334 1323 most time consuming items first), where as name, file, and line number
1335 1324 searches are in ascending order (i.e., alphabetical). The subtle
1336 1325 distinction between "nfl" and "stdname" is that the standard name is a
1337 1326 sort of the name as printed, which means that the embedded line
1338 1327 numbers get compared in an odd way. For example, lines 3, 20, and 40
1339 1328 would (if the file names were the same) appear in the string order
1340 1329 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1341 1330 line numbers. In fact, sort_stats("nfl") is the same as
1342 1331 sort_stats("name", "file", "line").
1343 1332
1344 1333 -T <filename>: save profile results as shown on screen to a text
1345 1334 file. The profile is still shown on screen.
1346 1335
1347 1336 -D <filename>: save (via dump_stats) profile statistics to given
1348 1337 filename. This data is in a format understod by the pstats module, and
1349 1338 is generated by a call to the dump_stats() method of profile
1350 1339 objects. The profile is still shown on screen.
1351 1340
1352 1341 If you want to run complete programs under the profiler's control, use
1353 1342 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1354 1343 contains profiler specific options as described here.
1355 1344
1356 1345 You can read the complete documentation for the profile module with::
1357 1346
1358 1347 In [1]: import profile; profile.help()
1359 1348 """
1360 1349
1361 1350 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1362 1351 # protect user quote marks
1363 1352 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1364 1353
1365 1354 if user_mode: # regular user call
1366 1355 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1367 1356 list_all=1)
1368 1357 namespace = self.shell.user_ns
1369 1358 else: # called to run a program by %run -p
1370 1359 try:
1371 1360 filename = get_py_filename(arg_lst[0])
1372 1361 except IOError,msg:
1373 1362 error(msg)
1374 1363 return
1375 1364
1376 1365 arg_str = 'execfile(filename,prog_ns)'
1377 1366 namespace = locals()
1378 1367
1379 1368 opts.merge(opts_def)
1380 1369
1381 1370 prof = profile.Profile()
1382 1371 try:
1383 1372 prof = prof.runctx(arg_str,namespace,namespace)
1384 1373 sys_exit = ''
1385 1374 except SystemExit:
1386 1375 sys_exit = """*** SystemExit exception caught in code being profiled."""
1387 1376
1388 1377 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1389 1378
1390 1379 lims = opts.l
1391 1380 if lims:
1392 1381 lims = [] # rebuild lims with ints/floats/strings
1393 1382 for lim in opts.l:
1394 1383 try:
1395 1384 lims.append(int(lim))
1396 1385 except ValueError:
1397 1386 try:
1398 1387 lims.append(float(lim))
1399 1388 except ValueError:
1400 1389 lims.append(lim)
1401 1390
1402 1391 # Trap output.
1403 1392 stdout_trap = StringIO()
1404 1393
1405 1394 if hasattr(stats,'stream'):
1406 1395 # In newer versions of python, the stats object has a 'stream'
1407 1396 # attribute to write into.
1408 1397 stats.stream = stdout_trap
1409 1398 stats.print_stats(*lims)
1410 1399 else:
1411 1400 # For older versions, we manually redirect stdout during printing
1412 1401 sys_stdout = sys.stdout
1413 1402 try:
1414 1403 sys.stdout = stdout_trap
1415 1404 stats.print_stats(*lims)
1416 1405 finally:
1417 1406 sys.stdout = sys_stdout
1418 1407
1419 1408 output = stdout_trap.getvalue()
1420 1409 output = output.rstrip()
1421 1410
1422 1411 page.page(output)
1423 1412 print sys_exit,
1424 1413
1425 1414 dump_file = opts.D[0]
1426 1415 text_file = opts.T[0]
1427 1416 if dump_file:
1428 1417 prof.dump_stats(dump_file)
1429 1418 print '\n*** Profile stats marshalled to file',\
1430 1419 `dump_file`+'.',sys_exit
1431 1420 if text_file:
1432 1421 pfile = file(text_file,'w')
1433 1422 pfile.write(output)
1434 1423 pfile.close()
1435 1424 print '\n*** Profile printout saved to text file',\
1436 1425 `text_file`+'.',sys_exit
1437 1426
1438 1427 if opts.has_key('r'):
1439 1428 return stats
1440 1429 else:
1441 1430 return None
1442 1431
1443 1432 @testdec.skip_doctest
1444 1433 def magic_run(self, parameter_s ='',runner=None,
1445 1434 file_finder=get_py_filename):
1446 1435 """Run the named file inside IPython as a program.
1447 1436
1448 1437 Usage:\\
1449 1438 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1450 1439
1451 1440 Parameters after the filename are passed as command-line arguments to
1452 1441 the program (put in sys.argv). Then, control returns to IPython's
1453 1442 prompt.
1454 1443
1455 1444 This is similar to running at a system prompt:\\
1456 1445 $ python file args\\
1457 1446 but with the advantage of giving you IPython's tracebacks, and of
1458 1447 loading all variables into your interactive namespace for further use
1459 1448 (unless -p is used, see below).
1460 1449
1461 1450 The file is executed in a namespace initially consisting only of
1462 1451 __name__=='__main__' and sys.argv constructed as indicated. It thus
1463 1452 sees its environment as if it were being run as a stand-alone program
1464 1453 (except for sharing global objects such as previously imported
1465 1454 modules). But after execution, the IPython interactive namespace gets
1466 1455 updated with all variables defined in the program (except for __name__
1467 1456 and sys.argv). This allows for very convenient loading of code for
1468 1457 interactive work, while giving each program a 'clean sheet' to run in.
1469 1458
1470 1459 Options:
1471 1460
1472 1461 -n: __name__ is NOT set to '__main__', but to the running file's name
1473 1462 without extension (as python does under import). This allows running
1474 1463 scripts and reloading the definitions in them without calling code
1475 1464 protected by an ' if __name__ == "__main__" ' clause.
1476 1465
1477 1466 -i: run the file in IPython's namespace instead of an empty one. This
1478 1467 is useful if you are experimenting with code written in a text editor
1479 1468 which depends on variables defined interactively.
1480 1469
1481 1470 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1482 1471 being run. This is particularly useful if IPython is being used to
1483 1472 run unittests, which always exit with a sys.exit() call. In such
1484 1473 cases you are interested in the output of the test results, not in
1485 1474 seeing a traceback of the unittest module.
1486 1475
1487 1476 -t: print timing information at the end of the run. IPython will give
1488 1477 you an estimated CPU time consumption for your script, which under
1489 1478 Unix uses the resource module to avoid the wraparound problems of
1490 1479 time.clock(). Under Unix, an estimate of time spent on system tasks
1491 1480 is also given (for Windows platforms this is reported as 0.0).
1492 1481
1493 1482 If -t is given, an additional -N<N> option can be given, where <N>
1494 1483 must be an integer indicating how many times you want the script to
1495 1484 run. The final timing report will include total and per run results.
1496 1485
1497 1486 For example (testing the script uniq_stable.py):
1498 1487
1499 1488 In [1]: run -t uniq_stable
1500 1489
1501 1490 IPython CPU timings (estimated):\\
1502 1491 User : 0.19597 s.\\
1503 1492 System: 0.0 s.\\
1504 1493
1505 1494 In [2]: run -t -N5 uniq_stable
1506 1495
1507 1496 IPython CPU timings (estimated):\\
1508 1497 Total runs performed: 5\\
1509 1498 Times : Total Per run\\
1510 1499 User : 0.910862 s, 0.1821724 s.\\
1511 1500 System: 0.0 s, 0.0 s.
1512 1501
1513 1502 -d: run your program under the control of pdb, the Python debugger.
1514 1503 This allows you to execute your program step by step, watch variables,
1515 1504 etc. Internally, what IPython does is similar to calling:
1516 1505
1517 1506 pdb.run('execfile("YOURFILENAME")')
1518 1507
1519 1508 with a breakpoint set on line 1 of your file. You can change the line
1520 1509 number for this automatic breakpoint to be <N> by using the -bN option
1521 1510 (where N must be an integer). For example:
1522 1511
1523 1512 %run -d -b40 myscript
1524 1513
1525 1514 will set the first breakpoint at line 40 in myscript.py. Note that
1526 1515 the first breakpoint must be set on a line which actually does
1527 1516 something (not a comment or docstring) for it to stop execution.
1528 1517
1529 1518 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1530 1519 first enter 'c' (without qoutes) to start execution up to the first
1531 1520 breakpoint.
1532 1521
1533 1522 Entering 'help' gives information about the use of the debugger. You
1534 1523 can easily see pdb's full documentation with "import pdb;pdb.help()"
1535 1524 at a prompt.
1536 1525
1537 1526 -p: run program under the control of the Python profiler module (which
1538 1527 prints a detailed report of execution times, function calls, etc).
1539 1528
1540 1529 You can pass other options after -p which affect the behavior of the
1541 1530 profiler itself. See the docs for %prun for details.
1542 1531
1543 1532 In this mode, the program's variables do NOT propagate back to the
1544 1533 IPython interactive namespace (because they remain in the namespace
1545 1534 where the profiler executes them).
1546 1535
1547 1536 Internally this triggers a call to %prun, see its documentation for
1548 1537 details on the options available specifically for profiling.
1549 1538
1550 1539 There is one special usage for which the text above doesn't apply:
1551 1540 if the filename ends with .ipy, the file is run as ipython script,
1552 1541 just as if the commands were written on IPython prompt.
1553 1542 """
1554 1543
1555 1544 # get arguments and set sys.argv for program to be run.
1556 1545 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1557 1546 mode='list',list_all=1)
1558 1547
1559 1548 try:
1560 1549 filename = file_finder(arg_lst[0])
1561 1550 except IndexError:
1562 1551 warn('you must provide at least a filename.')
1563 1552 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1564 1553 return
1565 1554 except IOError,msg:
1566 1555 error(msg)
1567 1556 return
1568 1557
1569 1558 if filename.lower().endswith('.ipy'):
1570 1559 self.shell.safe_execfile_ipy(filename)
1571 1560 return
1572 1561
1573 1562 # Control the response to exit() calls made by the script being run
1574 1563 exit_ignore = opts.has_key('e')
1575 1564
1576 1565 # Make sure that the running script gets a proper sys.argv as if it
1577 1566 # were run from a system shell.
1578 1567 save_argv = sys.argv # save it for later restoring
1579 1568 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1580 1569
1581 1570 if opts.has_key('i'):
1582 1571 # Run in user's interactive namespace
1583 1572 prog_ns = self.shell.user_ns
1584 1573 __name__save = self.shell.user_ns['__name__']
1585 1574 prog_ns['__name__'] = '__main__'
1586 1575 main_mod = self.shell.new_main_mod(prog_ns)
1587 1576 else:
1588 1577 # Run in a fresh, empty namespace
1589 1578 if opts.has_key('n'):
1590 1579 name = os.path.splitext(os.path.basename(filename))[0]
1591 1580 else:
1592 1581 name = '__main__'
1593 1582
1594 1583 main_mod = self.shell.new_main_mod()
1595 1584 prog_ns = main_mod.__dict__
1596 1585 prog_ns['__name__'] = name
1597 1586
1598 1587 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1599 1588 # set the __file__ global in the script's namespace
1600 1589 prog_ns['__file__'] = filename
1601 1590
1602 1591 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1603 1592 # that, if we overwrite __main__, we replace it at the end
1604 1593 main_mod_name = prog_ns['__name__']
1605 1594
1606 1595 if main_mod_name == '__main__':
1607 1596 restore_main = sys.modules['__main__']
1608 1597 else:
1609 1598 restore_main = False
1610 1599
1611 1600 # This needs to be undone at the end to prevent holding references to
1612 1601 # every single object ever created.
1613 1602 sys.modules[main_mod_name] = main_mod
1614 1603
1615 1604 stats = None
1616 1605 try:
1617 1606 self.shell.save_history()
1618 1607
1619 1608 if opts.has_key('p'):
1620 1609 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1621 1610 else:
1622 1611 if opts.has_key('d'):
1623 1612 deb = debugger.Pdb(self.shell.colors)
1624 1613 # reset Breakpoint state, which is moronically kept
1625 1614 # in a class
1626 1615 bdb.Breakpoint.next = 1
1627 1616 bdb.Breakpoint.bplist = {}
1628 1617 bdb.Breakpoint.bpbynumber = [None]
1629 1618 # Set an initial breakpoint to stop execution
1630 1619 maxtries = 10
1631 1620 bp = int(opts.get('b',[1])[0])
1632 1621 checkline = deb.checkline(filename,bp)
1633 1622 if not checkline:
1634 1623 for bp in range(bp+1,bp+maxtries+1):
1635 1624 if deb.checkline(filename,bp):
1636 1625 break
1637 1626 else:
1638 1627 msg = ("\nI failed to find a valid line to set "
1639 1628 "a breakpoint\n"
1640 1629 "after trying up to line: %s.\n"
1641 1630 "Please set a valid breakpoint manually "
1642 1631 "with the -b option." % bp)
1643 1632 error(msg)
1644 1633 return
1645 1634 # if we find a good linenumber, set the breakpoint
1646 1635 deb.do_break('%s:%s' % (filename,bp))
1647 1636 # Start file run
1648 1637 print "NOTE: Enter 'c' at the",
1649 1638 print "%s prompt to start your script." % deb.prompt
1650 1639 try:
1651 1640 deb.run('execfile("%s")' % filename,prog_ns)
1652 1641
1653 1642 except:
1654 1643 etype, value, tb = sys.exc_info()
1655 1644 # Skip three frames in the traceback: the %run one,
1656 1645 # one inside bdb.py, and the command-line typed by the
1657 1646 # user (run by exec in pdb itself).
1658 1647 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1659 1648 else:
1660 1649 if runner is None:
1661 1650 runner = self.shell.safe_execfile
1662 1651 if opts.has_key('t'):
1663 1652 # timed execution
1664 1653 try:
1665 1654 nruns = int(opts['N'][0])
1666 1655 if nruns < 1:
1667 1656 error('Number of runs must be >=1')
1668 1657 return
1669 1658 except (KeyError):
1670 1659 nruns = 1
1671 1660 if nruns == 1:
1672 1661 t0 = clock2()
1673 1662 runner(filename,prog_ns,prog_ns,
1674 1663 exit_ignore=exit_ignore)
1675 1664 t1 = clock2()
1676 1665 t_usr = t1[0]-t0[0]
1677 1666 t_sys = t1[1]-t0[1]
1678 1667 print "\nIPython CPU timings (estimated):"
1679 1668 print " User : %10s s." % t_usr
1680 1669 print " System: %10s s." % t_sys
1681 1670 else:
1682 1671 runs = range(nruns)
1683 1672 t0 = clock2()
1684 1673 for nr in runs:
1685 1674 runner(filename,prog_ns,prog_ns,
1686 1675 exit_ignore=exit_ignore)
1687 1676 t1 = clock2()
1688 1677 t_usr = t1[0]-t0[0]
1689 1678 t_sys = t1[1]-t0[1]
1690 1679 print "\nIPython CPU timings (estimated):"
1691 1680 print "Total runs performed:",nruns
1692 1681 print " Times : %10s %10s" % ('Total','Per run')
1693 1682 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1694 1683 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1695 1684
1696 1685 else:
1697 1686 # regular execution
1698 1687 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1699 1688
1700 1689 if opts.has_key('i'):
1701 1690 self.shell.user_ns['__name__'] = __name__save
1702 1691 else:
1703 1692 # The shell MUST hold a reference to prog_ns so after %run
1704 1693 # exits, the python deletion mechanism doesn't zero it out
1705 1694 # (leaving dangling references).
1706 1695 self.shell.cache_main_mod(prog_ns,filename)
1707 1696 # update IPython interactive namespace
1708 1697
1709 1698 # Some forms of read errors on the file may mean the
1710 1699 # __name__ key was never set; using pop we don't have to
1711 1700 # worry about a possible KeyError.
1712 1701 prog_ns.pop('__name__', None)
1713 1702
1714 1703 self.shell.user_ns.update(prog_ns)
1715 1704 finally:
1716 1705 # It's a bit of a mystery why, but __builtins__ can change from
1717 1706 # being a module to becoming a dict missing some key data after
1718 1707 # %run. As best I can see, this is NOT something IPython is doing
1719 1708 # at all, and similar problems have been reported before:
1720 1709 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1721 1710 # Since this seems to be done by the interpreter itself, the best
1722 1711 # we can do is to at least restore __builtins__ for the user on
1723 1712 # exit.
1724 1713 self.shell.user_ns['__builtins__'] = __builtin__
1725 1714
1726 1715 # Ensure key global structures are restored
1727 1716 sys.argv = save_argv
1728 1717 if restore_main:
1729 1718 sys.modules['__main__'] = restore_main
1730 1719 else:
1731 1720 # Remove from sys.modules the reference to main_mod we'd
1732 1721 # added. Otherwise it will trap references to objects
1733 1722 # contained therein.
1734 1723 del sys.modules[main_mod_name]
1735 1724
1736 1725 self.shell.reload_history()
1737 1726
1738 1727 return stats
1739 1728
1740 1729 @testdec.skip_doctest
1741 1730 def magic_timeit(self, parameter_s =''):
1742 1731 """Time execution of a Python statement or expression
1743 1732
1744 1733 Usage:\\
1745 1734 %timeit [-n<N> -r<R> [-t|-c]] statement
1746 1735
1747 1736 Time execution of a Python statement or expression using the timeit
1748 1737 module.
1749 1738
1750 1739 Options:
1751 1740 -n<N>: execute the given statement <N> times in a loop. If this value
1752 1741 is not given, a fitting value is chosen.
1753 1742
1754 1743 -r<R>: repeat the loop iteration <R> times and take the best result.
1755 1744 Default: 3
1756 1745
1757 1746 -t: use time.time to measure the time, which is the default on Unix.
1758 1747 This function measures wall time.
1759 1748
1760 1749 -c: use time.clock to measure the time, which is the default on
1761 1750 Windows and measures wall time. On Unix, resource.getrusage is used
1762 1751 instead and returns the CPU user time.
1763 1752
1764 1753 -p<P>: use a precision of <P> digits to display the timing result.
1765 1754 Default: 3
1766 1755
1767 1756
1768 1757 Examples:
1769 1758
1770 1759 In [1]: %timeit pass
1771 1760 10000000 loops, best of 3: 53.3 ns per loop
1772 1761
1773 1762 In [2]: u = None
1774 1763
1775 1764 In [3]: %timeit u is None
1776 1765 10000000 loops, best of 3: 184 ns per loop
1777 1766
1778 1767 In [4]: %timeit -r 4 u == None
1779 1768 1000000 loops, best of 4: 242 ns per loop
1780 1769
1781 1770 In [5]: import time
1782 1771
1783 1772 In [6]: %timeit -n1 time.sleep(2)
1784 1773 1 loops, best of 3: 2 s per loop
1785 1774
1786 1775
1787 1776 The times reported by %timeit will be slightly higher than those
1788 1777 reported by the timeit.py script when variables are accessed. This is
1789 1778 due to the fact that %timeit executes the statement in the namespace
1790 1779 of the shell, compared with timeit.py, which uses a single setup
1791 1780 statement to import function or create variables. Generally, the bias
1792 1781 does not matter as long as results from timeit.py are not mixed with
1793 1782 those from %timeit."""
1794 1783
1795 1784 import timeit
1796 1785 import math
1797 1786
1798 1787 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1799 1788 # certain terminals. Until we figure out a robust way of
1800 1789 # auto-detecting if the terminal can deal with it, use plain 'us' for
1801 1790 # microseconds. I am really NOT happy about disabling the proper
1802 1791 # 'micro' prefix, but crashing is worse... If anyone knows what the
1803 1792 # right solution for this is, I'm all ears...
1804 1793 #
1805 1794 # Note: using
1806 1795 #
1807 1796 # s = u'\xb5'
1808 1797 # s.encode(sys.getdefaultencoding())
1809 1798 #
1810 1799 # is not sufficient, as I've seen terminals where that fails but
1811 1800 # print s
1812 1801 #
1813 1802 # succeeds
1814 1803 #
1815 1804 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1816 1805
1817 1806 #units = [u"s", u"ms",u'\xb5',"ns"]
1818 1807 units = [u"s", u"ms",u'us',"ns"]
1819 1808
1820 1809 scaling = [1, 1e3, 1e6, 1e9]
1821 1810
1822 1811 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1823 1812 posix=False)
1824 1813 if stmt == "":
1825 1814 return
1826 1815 timefunc = timeit.default_timer
1827 1816 number = int(getattr(opts, "n", 0))
1828 1817 repeat = int(getattr(opts, "r", timeit.default_repeat))
1829 1818 precision = int(getattr(opts, "p", 3))
1830 1819 if hasattr(opts, "t"):
1831 1820 timefunc = time.time
1832 1821 if hasattr(opts, "c"):
1833 1822 timefunc = clock
1834 1823
1835 1824 timer = timeit.Timer(timer=timefunc)
1836 1825 # this code has tight coupling to the inner workings of timeit.Timer,
1837 1826 # but is there a better way to achieve that the code stmt has access
1838 1827 # to the shell namespace?
1839 1828
1840 1829 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1841 1830 'setup': "pass"}
1842 1831 # Track compilation time so it can be reported if too long
1843 1832 # Minimum time above which compilation time will be reported
1844 1833 tc_min = 0.1
1845 1834
1846 1835 t0 = clock()
1847 1836 code = compile(src, "<magic-timeit>", "exec")
1848 1837 tc = clock()-t0
1849 1838
1850 1839 ns = {}
1851 1840 exec code in self.shell.user_ns, ns
1852 1841 timer.inner = ns["inner"]
1853 1842
1854 1843 if number == 0:
1855 1844 # determine number so that 0.2 <= total time < 2.0
1856 1845 number = 1
1857 1846 for i in range(1, 10):
1858 1847 if timer.timeit(number) >= 0.2:
1859 1848 break
1860 1849 number *= 10
1861 1850
1862 1851 best = min(timer.repeat(repeat, number)) / number
1863 1852
1864 1853 if best > 0.0 and best < 1000.0:
1865 1854 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1866 1855 elif best >= 1000.0:
1867 1856 order = 0
1868 1857 else:
1869 1858 order = 3
1870 1859 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1871 1860 precision,
1872 1861 best * scaling[order],
1873 1862 units[order])
1874 1863 if tc > tc_min:
1875 1864 print "Compiler time: %.2f s" % tc
1876 1865
1877 1866 @testdec.skip_doctest
1878 1867 def magic_time(self,parameter_s = ''):
1879 1868 """Time execution of a Python statement or expression.
1880 1869
1881 1870 The CPU and wall clock times are printed, and the value of the
1882 1871 expression (if any) is returned. Note that under Win32, system time
1883 1872 is always reported as 0, since it can not be measured.
1884 1873
1885 1874 This function provides very basic timing functionality. In Python
1886 1875 2.3, the timeit module offers more control and sophistication, so this
1887 1876 could be rewritten to use it (patches welcome).
1888 1877
1889 1878 Some examples:
1890 1879
1891 1880 In [1]: time 2**128
1892 1881 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1893 1882 Wall time: 0.00
1894 1883 Out[1]: 340282366920938463463374607431768211456L
1895 1884
1896 1885 In [2]: n = 1000000
1897 1886
1898 1887 In [3]: time sum(range(n))
1899 1888 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1900 1889 Wall time: 1.37
1901 1890 Out[3]: 499999500000L
1902 1891
1903 1892 In [4]: time print 'hello world'
1904 1893 hello world
1905 1894 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1906 1895 Wall time: 0.00
1907 1896
1908 1897 Note that the time needed by Python to compile the given expression
1909 1898 will be reported if it is more than 0.1s. In this example, the
1910 1899 actual exponentiation is done by Python at compilation time, so while
1911 1900 the expression can take a noticeable amount of time to compute, that
1912 1901 time is purely due to the compilation:
1913 1902
1914 1903 In [5]: time 3**9999;
1915 1904 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1916 1905 Wall time: 0.00 s
1917 1906
1918 1907 In [6]: time 3**999999;
1919 1908 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1920 1909 Wall time: 0.00 s
1921 1910 Compiler : 0.78 s
1922 1911 """
1923 1912
1924 1913 # fail immediately if the given expression can't be compiled
1925 1914
1926 1915 expr = self.shell.prefilter(parameter_s,False)
1927 1916
1928 1917 # Minimum time above which compilation time will be reported
1929 1918 tc_min = 0.1
1930 1919
1931 1920 try:
1932 1921 mode = 'eval'
1933 1922 t0 = clock()
1934 1923 code = compile(expr,'<timed eval>',mode)
1935 1924 tc = clock()-t0
1936 1925 except SyntaxError:
1937 1926 mode = 'exec'
1938 1927 t0 = clock()
1939 1928 code = compile(expr,'<timed exec>',mode)
1940 1929 tc = clock()-t0
1941 1930 # skew measurement as little as possible
1942 1931 glob = self.shell.user_ns
1943 1932 clk = clock2
1944 1933 wtime = time.time
1945 1934 # time execution
1946 1935 wall_st = wtime()
1947 1936 if mode=='eval':
1948 1937 st = clk()
1949 1938 out = eval(code,glob)
1950 1939 end = clk()
1951 1940 else:
1952 1941 st = clk()
1953 1942 exec code in glob
1954 1943 end = clk()
1955 1944 out = None
1956 1945 wall_end = wtime()
1957 1946 # Compute actual times and report
1958 1947 wall_time = wall_end-wall_st
1959 1948 cpu_user = end[0]-st[0]
1960 1949 cpu_sys = end[1]-st[1]
1961 1950 cpu_tot = cpu_user+cpu_sys
1962 1951 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1963 1952 (cpu_user,cpu_sys,cpu_tot)
1964 1953 print "Wall time: %.2f s" % wall_time
1965 1954 if tc > tc_min:
1966 1955 print "Compiler : %.2f s" % tc
1967 1956 return out
1968 1957
1969 1958 @testdec.skip_doctest
1970 1959 def magic_macro(self,parameter_s = ''):
1971 1960 """Define a set of input lines as a macro for future re-execution.
1972 1961
1973 1962 Usage:\\
1974 1963 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1975 1964
1976 1965 Options:
1977 1966
1978 1967 -r: use 'raw' input. By default, the 'processed' history is used,
1979 1968 so that magics are loaded in their transformed version to valid
1980 1969 Python. If this option is given, the raw input as typed as the
1981 1970 command line is used instead.
1982 1971
1983 1972 This will define a global variable called `name` which is a string
1984 1973 made of joining the slices and lines you specify (n1,n2,... numbers
1985 1974 above) from your input history into a single string. This variable
1986 1975 acts like an automatic function which re-executes those lines as if
1987 1976 you had typed them. You just type 'name' at the prompt and the code
1988 1977 executes.
1989 1978
1990 1979 The notation for indicating number ranges is: n1-n2 means 'use line
1991 1980 numbers n1,...n2' (the endpoint is included). That is, '5-7' means
1992 1981 using the lines numbered 5,6 and 7.
1993 1982
1994 1983 Note: as a 'hidden' feature, you can also use traditional python slice
1995 1984 notation, where N:M means numbers N through M-1.
1996 1985
1997 1986 For example, if your history contains (%hist prints it):
1998 1987
1999 1988 44: x=1
2000 1989 45: y=3
2001 1990 46: z=x+y
2002 1991 47: print x
2003 1992 48: a=5
2004 1993 49: print 'x',x,'y',y
2005 1994
2006 1995 you can create a macro with lines 44 through 47 (included) and line 49
2007 1996 called my_macro with:
2008 1997
2009 1998 In [55]: %macro my_macro 44-47 49
2010 1999
2011 2000 Now, typing `my_macro` (without quotes) will re-execute all this code
2012 2001 in one pass.
2013 2002
2014 2003 You don't need to give the line-numbers in order, and any given line
2015 2004 number can appear multiple times. You can assemble macros with any
2016 2005 lines from your input history in any order.
2017 2006
2018 2007 The macro is a simple object which holds its value in an attribute,
2019 2008 but IPython's display system checks for macros and executes them as
2020 2009 code instead of printing them when you type their name.
2021 2010
2022 2011 You can view a macro's contents by explicitly printing it with:
2023 2012
2024 2013 'print macro_name'.
2025 2014
2026 2015 For one-off cases which DON'T contain magic function calls in them you
2027 2016 can obtain similar results by explicitly executing slices from your
2028 2017 input history with:
2029 2018
2030 2019 In [60]: exec In[44:48]+In[49]"""
2031 2020
2032 2021 opts,args = self.parse_options(parameter_s,'r',mode='list')
2033 2022 if not args: # List existing macros
2034 2023 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2035 2024 isinstance(v, Macro))
2036 2025 if len(args) == 1:
2037 2026 raise UsageError(
2038 2027 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2039 name,ranges = args[0], args[1:]
2028 name, ranges = args[0], " ".join(args[1:])
2040 2029
2041 2030 #print 'rng',ranges # dbg
2042 lines = self.extract_input_slices(ranges,'r' in opts)
2043 macro = Macro("\n".join(lines))
2031 lines = self.extract_input_lines(ranges,'r' in opts)
2032 macro = Macro(lines)
2044 2033 self.shell.define_macro(name, macro)
2045 2034 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2046 2035 print 'Macro contents:'
2047 2036 print macro,
2048 2037
2049 2038 def magic_save(self,parameter_s = ''):
2050 2039 """Save a set of lines to a given filename.
2051 2040
2052 2041 Usage:\\
2053 2042 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2054 2043
2055 2044 Options:
2056 2045
2057 2046 -r: use 'raw' input. By default, the 'processed' history is used,
2058 2047 so that magics are loaded in their transformed version to valid
2059 2048 Python. If this option is given, the raw input as typed as the
2060 2049 command line is used instead.
2061 2050
2062 2051 This function uses the same syntax as %macro for line extraction, but
2063 2052 instead of creating a macro it saves the resulting string to the
2064 2053 filename you specify.
2065 2054
2066 2055 It adds a '.py' extension to the file if you don't do so yourself, and
2067 2056 it asks for confirmation before overwriting existing files."""
2068 2057
2069 2058 opts,args = self.parse_options(parameter_s,'r',mode='list')
2070 fname,ranges = args[0], args[1:]
2059 fname,ranges = args[0], " ".join(args[1:])
2071 2060 if not fname.endswith('.py'):
2072 2061 fname += '.py'
2073 2062 if os.path.isfile(fname):
2074 2063 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2075 2064 if ans.lower() not in ['y','yes']:
2076 2065 print 'Operation cancelled.'
2077 2066 return
2078 cmds = '\n'.join(self.extract_input_slices(ranges, 'r' in opts))
2067 cmds = self.extract_input_lines(ranges, 'r' in opts)
2079 2068 with open(fname,'w') as f:
2080 2069 f.write(cmds)
2081 2070 print 'The following commands were written to file `%s`:' % fname
2082 2071 print cmds
2083 2072
2084 2073 def _edit_macro(self,mname,macro):
2085 2074 """open an editor with the macro data in a file"""
2086 2075 filename = self.shell.mktempfile(macro.value)
2087 2076 self.shell.hooks.editor(filename)
2088 2077
2089 2078 # and make a new macro object, to replace the old one
2090 2079 mfile = open(filename)
2091 2080 mvalue = mfile.read()
2092 2081 mfile.close()
2093 2082 self.shell.user_ns[mname] = Macro(mvalue)
2094 2083
2095 2084 def magic_ed(self,parameter_s=''):
2096 2085 """Alias to %edit."""
2097 2086 return self.magic_edit(parameter_s)
2098 2087
2099 2088 @testdec.skip_doctest
2100 2089 def magic_edit(self,parameter_s='',last_call=['','']):
2101 2090 """Bring up an editor and execute the resulting code.
2102 2091
2103 2092 Usage:
2104 2093 %edit [options] [args]
2105 2094
2106 2095 %edit runs IPython's editor hook. The default version of this hook is
2107 2096 set to call the __IPYTHON__.rc.editor command. This is read from your
2108 2097 environment variable $EDITOR. If this isn't found, it will default to
2109 2098 vi under Linux/Unix and to notepad under Windows. See the end of this
2110 2099 docstring for how to change the editor hook.
2111 2100
2112 2101 You can also set the value of this editor via the command line option
2113 2102 '-editor' or in your ipythonrc file. This is useful if you wish to use
2114 2103 specifically for IPython an editor different from your typical default
2115 2104 (and for Windows users who typically don't set environment variables).
2116 2105
2117 2106 This command allows you to conveniently edit multi-line code right in
2118 2107 your IPython session.
2119 2108
2120 2109 If called without arguments, %edit opens up an empty editor with a
2121 2110 temporary file and will execute the contents of this file when you
2122 2111 close it (don't forget to save it!).
2123 2112
2124 2113
2125 2114 Options:
2126 2115
2127 2116 -n <number>: open the editor at a specified line number. By default,
2128 2117 the IPython editor hook uses the unix syntax 'editor +N filename', but
2129 2118 you can configure this by providing your own modified hook if your
2130 2119 favorite editor supports line-number specifications with a different
2131 2120 syntax.
2132 2121
2133 2122 -p: this will call the editor with the same data as the previous time
2134 2123 it was used, regardless of how long ago (in your current session) it
2135 2124 was.
2136 2125
2137 2126 -r: use 'raw' input. This option only applies to input taken from the
2138 2127 user's history. By default, the 'processed' history is used, so that
2139 2128 magics are loaded in their transformed version to valid Python. If
2140 2129 this option is given, the raw input as typed as the command line is
2141 2130 used instead. When you exit the editor, it will be executed by
2142 2131 IPython's own processor.
2143 2132
2144 2133 -x: do not execute the edited code immediately upon exit. This is
2145 2134 mainly useful if you are editing programs which need to be called with
2146 2135 command line arguments, which you can then do using %run.
2147 2136
2148 2137
2149 2138 Arguments:
2150 2139
2151 2140 If arguments are given, the following possibilites exist:
2152 2141
2153 2142 - The arguments are numbers or pairs of colon-separated numbers (like
2154 2143 1 4:8 9). These are interpreted as lines of previous input to be
2155 2144 loaded into the editor. The syntax is the same of the %macro command.
2156 2145
2157 2146 - If the argument doesn't start with a number, it is evaluated as a
2158 2147 variable and its contents loaded into the editor. You can thus edit
2159 2148 any string which contains python code (including the result of
2160 2149 previous edits).
2161 2150
2162 2151 - If the argument is the name of an object (other than a string),
2163 2152 IPython will try to locate the file where it was defined and open the
2164 2153 editor at the point where it is defined. You can use `%edit function`
2165 2154 to load an editor exactly at the point where 'function' is defined,
2166 2155 edit it and have the file be executed automatically.
2167 2156
2168 2157 If the object is a macro (see %macro for details), this opens up your
2169 2158 specified editor with a temporary file containing the macro's data.
2170 2159 Upon exit, the macro is reloaded with the contents of the file.
2171 2160
2172 2161 Note: opening at an exact line is only supported under Unix, and some
2173 2162 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2174 2163 '+NUMBER' parameter necessary for this feature. Good editors like
2175 2164 (X)Emacs, vi, jed, pico and joe all do.
2176 2165
2177 2166 - If the argument is not found as a variable, IPython will look for a
2178 2167 file with that name (adding .py if necessary) and load it into the
2179 2168 editor. It will execute its contents with execfile() when you exit,
2180 2169 loading any code in the file into your interactive namespace.
2181 2170
2182 2171 After executing your code, %edit will return as output the code you
2183 2172 typed in the editor (except when it was an existing file). This way
2184 2173 you can reload the code in further invocations of %edit as a variable,
2185 2174 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2186 2175 the output.
2187 2176
2188 2177 Note that %edit is also available through the alias %ed.
2189 2178
2190 2179 This is an example of creating a simple function inside the editor and
2191 2180 then modifying it. First, start up the editor:
2192 2181
2193 2182 In [1]: ed
2194 2183 Editing... done. Executing edited code...
2195 2184 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2196 2185
2197 2186 We can then call the function foo():
2198 2187
2199 2188 In [2]: foo()
2200 2189 foo() was defined in an editing session
2201 2190
2202 2191 Now we edit foo. IPython automatically loads the editor with the
2203 2192 (temporary) file where foo() was previously defined:
2204 2193
2205 2194 In [3]: ed foo
2206 2195 Editing... done. Executing edited code...
2207 2196
2208 2197 And if we call foo() again we get the modified version:
2209 2198
2210 2199 In [4]: foo()
2211 2200 foo() has now been changed!
2212 2201
2213 2202 Here is an example of how to edit a code snippet successive
2214 2203 times. First we call the editor:
2215 2204
2216 2205 In [5]: ed
2217 2206 Editing... done. Executing edited code...
2218 2207 hello
2219 2208 Out[5]: "print 'hello'n"
2220 2209
2221 2210 Now we call it again with the previous output (stored in _):
2222 2211
2223 2212 In [6]: ed _
2224 2213 Editing... done. Executing edited code...
2225 2214 hello world
2226 2215 Out[6]: "print 'hello world'n"
2227 2216
2228 2217 Now we call it with the output #8 (stored in _8, also as Out[8]):
2229 2218
2230 2219 In [7]: ed _8
2231 2220 Editing... done. Executing edited code...
2232 2221 hello again
2233 2222 Out[7]: "print 'hello again'n"
2234 2223
2235 2224
2236 2225 Changing the default editor hook:
2237 2226
2238 2227 If you wish to write your own editor hook, you can put it in a
2239 2228 configuration file which you load at startup time. The default hook
2240 2229 is defined in the IPython.core.hooks module, and you can use that as a
2241 2230 starting example for further modifications. That file also has
2242 2231 general instructions on how to set a new hook for use once you've
2243 2232 defined it."""
2244 2233
2245 2234 # FIXME: This function has become a convoluted mess. It needs a
2246 2235 # ground-up rewrite with clean, simple logic.
2247 2236
2248 2237 def make_filename(arg):
2249 2238 "Make a filename from the given args"
2250 2239 try:
2251 2240 filename = get_py_filename(arg)
2252 2241 except IOError:
2253 2242 if args.endswith('.py'):
2254 2243 filename = arg
2255 2244 else:
2256 2245 filename = None
2257 2246 return filename
2258 2247
2259 2248 # custom exceptions
2260 2249 class DataIsObject(Exception): pass
2261 2250
2262 2251 opts,args = self.parse_options(parameter_s,'prxn:')
2263 2252 # Set a few locals from the options for convenience:
2264 opts_p = opts.has_key('p')
2265 opts_r = opts.has_key('r')
2253 opts_prev = 'p' in opts
2254 opts_raw = 'r' in opts
2266 2255
2267 2256 # Default line number value
2268 2257 lineno = opts.get('n',None)
2269 2258
2270 if opts_p:
2259 if opts_prev:
2271 2260 args = '_%s' % last_call[0]
2272 2261 if not self.shell.user_ns.has_key(args):
2273 2262 args = last_call[1]
2274 2263
2275 2264 # use last_call to remember the state of the previous call, but don't
2276 2265 # let it be clobbered by successive '-p' calls.
2277 2266 try:
2278 2267 last_call[0] = self.shell.displayhook.prompt_count
2279 if not opts_p:
2268 if not opts_prev:
2280 2269 last_call[1] = parameter_s
2281 2270 except:
2282 2271 pass
2283 2272
2284 2273 # by default this is done with temp files, except when the given
2285 2274 # arg is a filename
2286 2275 use_temp = True
2287 2276
2288 2277 data = ''
2289 2278 if args[0].isdigit():
2290 2279 # Mode where user specifies ranges of lines, like in %macro.
2291 2280 # This means that you can't edit files whose names begin with
2292 2281 # numbers this way. Tough.
2293 ranges = args.split()
2294 data = '\n'.join(self.extract_input_slices(ranges,opts_r))
2282 data = self.extract_input_lines(args, opts_raw)
2295 2283 elif args.endswith('.py'):
2296 2284 filename = make_filename(args)
2297 2285 use_temp = False
2298 2286 elif args:
2299 2287 try:
2300 2288 # Load the parameter given as a variable. If not a string,
2301 2289 # process it as an object instead (below)
2302 2290
2303 2291 #print '*** args',args,'type',type(args) # dbg
2304 2292 data = eval(args, self.shell.user_ns)
2305 2293 if not isinstance(data, basestring):
2306 2294 raise DataIsObject
2307 2295
2308 2296 except (NameError,SyntaxError):
2309 2297 # given argument is not a variable, try as a filename
2310 2298 filename = make_filename(args)
2311 2299 if filename is None:
2312 2300 warn("Argument given (%s) can't be found as a variable "
2313 2301 "or as a filename." % args)
2314 2302 return
2315 2303 use_temp = False
2316 2304
2317 2305 except DataIsObject:
2318 2306 # macros have a special edit function
2319 2307 if isinstance(data, Macro):
2320 2308 self._edit_macro(args,data)
2321 2309 return
2322 2310
2323 2311 # For objects, try to edit the file where they are defined
2324 2312 try:
2325 2313 filename = inspect.getabsfile(data)
2326 2314 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2327 2315 # class created by %edit? Try to find source
2328 2316 # by looking for method definitions instead, the
2329 2317 # __module__ in those classes is FakeModule.
2330 2318 attrs = [getattr(data, aname) for aname in dir(data)]
2331 2319 for attr in attrs:
2332 2320 if not inspect.ismethod(attr):
2333 2321 continue
2334 2322 filename = inspect.getabsfile(attr)
2335 2323 if filename and 'fakemodule' not in filename.lower():
2336 2324 # change the attribute to be the edit target instead
2337 2325 data = attr
2338 2326 break
2339 2327
2340 2328 datafile = 1
2341 2329 except TypeError:
2342 2330 filename = make_filename(args)
2343 2331 datafile = 1
2344 2332 warn('Could not find file where `%s` is defined.\n'
2345 2333 'Opening a file named `%s`' % (args,filename))
2346 2334 # Now, make sure we can actually read the source (if it was in
2347 2335 # a temp file it's gone by now).
2348 2336 if datafile:
2349 2337 try:
2350 2338 if lineno is None:
2351 2339 lineno = inspect.getsourcelines(data)[1]
2352 2340 except IOError:
2353 2341 filename = make_filename(args)
2354 2342 if filename is None:
2355 2343 warn('The file `%s` where `%s` was defined cannot '
2356 2344 'be read.' % (filename,data))
2357 2345 return
2358 2346 use_temp = False
2359 2347
2360 2348 if use_temp:
2361 2349 filename = self.shell.mktempfile(data)
2362 2350 print 'IPython will make a temporary file named:',filename
2363 2351
2364 2352 # do actual editing here
2365 2353 print 'Editing...',
2366 2354 sys.stdout.flush()
2367 2355 try:
2368 2356 # Quote filenames that may have spaces in them
2369 2357 if ' ' in filename:
2370 2358 filename = "%s" % filename
2371 2359 self.shell.hooks.editor(filename,lineno)
2372 2360 except TryNext:
2373 2361 warn('Could not open editor')
2374 2362 return
2375 2363
2376 2364 # XXX TODO: should this be generalized for all string vars?
2377 2365 # For now, this is special-cased to blocks created by cpaste
2378 2366 if args.strip() == 'pasted_block':
2379 2367 self.shell.user_ns['pasted_block'] = file_read(filename)
2380 2368
2381 2369 if 'x' in opts: # -x prevents actual execution
2382 2370 print
2383 2371 else:
2384 2372 print 'done. Executing edited code...'
2385 2373 if opts_r:
2386 2374 self.shell.run_cell(file_read(filename))
2387 2375 else:
2388 2376 self.shell.safe_execfile(filename,self.shell.user_ns,
2389 2377 self.shell.user_ns)
2390 2378
2391 2379
2392 2380 if use_temp:
2393 2381 try:
2394 2382 return open(filename).read()
2395 2383 except IOError,msg:
2396 2384 if msg.filename == filename:
2397 2385 warn('File not found. Did you forget to save?')
2398 2386 return
2399 2387 else:
2400 2388 self.shell.showtraceback()
2401 2389
2402 2390 def magic_xmode(self,parameter_s = ''):
2403 2391 """Switch modes for the exception handlers.
2404 2392
2405 2393 Valid modes: Plain, Context and Verbose.
2406 2394
2407 2395 If called without arguments, acts as a toggle."""
2408 2396
2409 2397 def xmode_switch_err(name):
2410 2398 warn('Error changing %s exception modes.\n%s' %
2411 2399 (name,sys.exc_info()[1]))
2412 2400
2413 2401 shell = self.shell
2414 2402 new_mode = parameter_s.strip().capitalize()
2415 2403 try:
2416 2404 shell.InteractiveTB.set_mode(mode=new_mode)
2417 2405 print 'Exception reporting mode:',shell.InteractiveTB.mode
2418 2406 except:
2419 2407 xmode_switch_err('user')
2420 2408
2421 2409 def magic_colors(self,parameter_s = ''):
2422 2410 """Switch color scheme for prompts, info system and exception handlers.
2423 2411
2424 2412 Currently implemented schemes: NoColor, Linux, LightBG.
2425 2413
2426 2414 Color scheme names are not case-sensitive.
2427 2415
2428 2416 Examples
2429 2417 --------
2430 2418 To get a plain black and white terminal::
2431 2419
2432 2420 %colors nocolor
2433 2421 """
2434 2422
2435 2423 def color_switch_err(name):
2436 2424 warn('Error changing %s color schemes.\n%s' %
2437 2425 (name,sys.exc_info()[1]))
2438 2426
2439 2427
2440 2428 new_scheme = parameter_s.strip()
2441 2429 if not new_scheme:
2442 2430 raise UsageError(
2443 2431 "%colors: you must specify a color scheme. See '%colors?'")
2444 2432 return
2445 2433 # local shortcut
2446 2434 shell = self.shell
2447 2435
2448 2436 import IPython.utils.rlineimpl as readline
2449 2437
2450 2438 if not readline.have_readline and sys.platform == "win32":
2451 2439 msg = """\
2452 2440 Proper color support under MS Windows requires the pyreadline library.
2453 2441 You can find it at:
2454 2442 http://ipython.scipy.org/moin/PyReadline/Intro
2455 2443 Gary's readline needs the ctypes module, from:
2456 2444 http://starship.python.net/crew/theller/ctypes
2457 2445 (Note that ctypes is already part of Python versions 2.5 and newer).
2458 2446
2459 2447 Defaulting color scheme to 'NoColor'"""
2460 2448 new_scheme = 'NoColor'
2461 2449 warn(msg)
2462 2450
2463 2451 # readline option is 0
2464 2452 if not shell.has_readline:
2465 2453 new_scheme = 'NoColor'
2466 2454
2467 2455 # Set prompt colors
2468 2456 try:
2469 2457 shell.displayhook.set_colors(new_scheme)
2470 2458 except:
2471 2459 color_switch_err('prompt')
2472 2460 else:
2473 2461 shell.colors = \
2474 2462 shell.displayhook.color_table.active_scheme_name
2475 2463 # Set exception colors
2476 2464 try:
2477 2465 shell.InteractiveTB.set_colors(scheme = new_scheme)
2478 2466 shell.SyntaxTB.set_colors(scheme = new_scheme)
2479 2467 except:
2480 2468 color_switch_err('exception')
2481 2469
2482 2470 # Set info (for 'object?') colors
2483 2471 if shell.color_info:
2484 2472 try:
2485 2473 shell.inspector.set_active_scheme(new_scheme)
2486 2474 except:
2487 2475 color_switch_err('object inspector')
2488 2476 else:
2489 2477 shell.inspector.set_active_scheme('NoColor')
2490 2478
2491 2479 def magic_pprint(self, parameter_s=''):
2492 2480 """Toggle pretty printing on/off."""
2493 2481 ptformatter = self.shell.display_formatter.formatters['text/plain']
2494 2482 ptformatter.pprint = bool(1 - ptformatter.pprint)
2495 2483 print 'Pretty printing has been turned', \
2496 2484 ['OFF','ON'][ptformatter.pprint]
2497 2485
2498 2486 def magic_Exit(self, parameter_s=''):
2499 2487 """Exit IPython."""
2500 2488
2501 2489 self.shell.ask_exit()
2502 2490
2503 2491 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2504 2492 magic_exit = magic_quit = magic_Quit = magic_Exit
2505 2493
2506 2494 #......................................................................
2507 2495 # Functions to implement unix shell-type things
2508 2496
2509 2497 @testdec.skip_doctest
2510 2498 def magic_alias(self, parameter_s = ''):
2511 2499 """Define an alias for a system command.
2512 2500
2513 2501 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2514 2502
2515 2503 Then, typing 'alias_name params' will execute the system command 'cmd
2516 2504 params' (from your underlying operating system).
2517 2505
2518 2506 Aliases have lower precedence than magic functions and Python normal
2519 2507 variables, so if 'foo' is both a Python variable and an alias, the
2520 2508 alias can not be executed until 'del foo' removes the Python variable.
2521 2509
2522 2510 You can use the %l specifier in an alias definition to represent the
2523 2511 whole line when the alias is called. For example:
2524 2512
2525 2513 In [2]: alias bracket echo "Input in brackets: <%l>"
2526 2514 In [3]: bracket hello world
2527 2515 Input in brackets: <hello world>
2528 2516
2529 2517 You can also define aliases with parameters using %s specifiers (one
2530 2518 per parameter):
2531 2519
2532 2520 In [1]: alias parts echo first %s second %s
2533 2521 In [2]: %parts A B
2534 2522 first A second B
2535 2523 In [3]: %parts A
2536 2524 Incorrect number of arguments: 2 expected.
2537 2525 parts is an alias to: 'echo first %s second %s'
2538 2526
2539 2527 Note that %l and %s are mutually exclusive. You can only use one or
2540 2528 the other in your aliases.
2541 2529
2542 2530 Aliases expand Python variables just like system calls using ! or !!
2543 2531 do: all expressions prefixed with '$' get expanded. For details of
2544 2532 the semantic rules, see PEP-215:
2545 2533 http://www.python.org/peps/pep-0215.html. This is the library used by
2546 2534 IPython for variable expansion. If you want to access a true shell
2547 2535 variable, an extra $ is necessary to prevent its expansion by IPython:
2548 2536
2549 2537 In [6]: alias show echo
2550 2538 In [7]: PATH='A Python string'
2551 2539 In [8]: show $PATH
2552 2540 A Python string
2553 2541 In [9]: show $$PATH
2554 2542 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2555 2543
2556 2544 You can use the alias facility to acess all of $PATH. See the %rehash
2557 2545 and %rehashx functions, which automatically create aliases for the
2558 2546 contents of your $PATH.
2559 2547
2560 2548 If called with no parameters, %alias prints the current alias table."""
2561 2549
2562 2550 par = parameter_s.strip()
2563 2551 if not par:
2564 2552 stored = self.db.get('stored_aliases', {} )
2565 2553 aliases = sorted(self.shell.alias_manager.aliases)
2566 2554 # for k, v in stored:
2567 2555 # atab.append(k, v[0])
2568 2556
2569 2557 print "Total number of aliases:", len(aliases)
2570 2558 sys.stdout.flush()
2571 2559 return aliases
2572 2560
2573 2561 # Now try to define a new one
2574 2562 try:
2575 2563 alias,cmd = par.split(None, 1)
2576 2564 except:
2577 2565 print oinspect.getdoc(self.magic_alias)
2578 2566 else:
2579 2567 self.shell.alias_manager.soft_define_alias(alias, cmd)
2580 2568 # end magic_alias
2581 2569
2582 2570 def magic_unalias(self, parameter_s = ''):
2583 2571 """Remove an alias"""
2584 2572
2585 2573 aname = parameter_s.strip()
2586 2574 self.shell.alias_manager.undefine_alias(aname)
2587 2575 stored = self.db.get('stored_aliases', {} )
2588 2576 if aname in stored:
2589 2577 print "Removing %stored alias",aname
2590 2578 del stored[aname]
2591 2579 self.db['stored_aliases'] = stored
2592 2580
2593 2581 def magic_rehashx(self, parameter_s = ''):
2594 2582 """Update the alias table with all executable files in $PATH.
2595 2583
2596 2584 This version explicitly checks that every entry in $PATH is a file
2597 2585 with execute access (os.X_OK), so it is much slower than %rehash.
2598 2586
2599 2587 Under Windows, it checks executability as a match agains a
2600 2588 '|'-separated string of extensions, stored in the IPython config
2601 2589 variable win_exec_ext. This defaults to 'exe|com|bat'.
2602 2590
2603 2591 This function also resets the root module cache of module completer,
2604 2592 used on slow filesystems.
2605 2593 """
2606 2594 from IPython.core.alias import InvalidAliasError
2607 2595
2608 2596 # for the benefit of module completer in ipy_completers.py
2609 2597 del self.db['rootmodules']
2610 2598
2611 2599 path = [os.path.abspath(os.path.expanduser(p)) for p in
2612 2600 os.environ.get('PATH','').split(os.pathsep)]
2613 2601 path = filter(os.path.isdir,path)
2614 2602
2615 2603 syscmdlist = []
2616 2604 # Now define isexec in a cross platform manner.
2617 2605 if os.name == 'posix':
2618 2606 isexec = lambda fname:os.path.isfile(fname) and \
2619 2607 os.access(fname,os.X_OK)
2620 2608 else:
2621 2609 try:
2622 2610 winext = os.environ['pathext'].replace(';','|').replace('.','')
2623 2611 except KeyError:
2624 2612 winext = 'exe|com|bat|py'
2625 2613 if 'py' not in winext:
2626 2614 winext += '|py'
2627 2615 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2628 2616 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2629 2617 savedir = os.getcwd()
2630 2618
2631 2619 # Now walk the paths looking for executables to alias.
2632 2620 try:
2633 2621 # write the whole loop for posix/Windows so we don't have an if in
2634 2622 # the innermost part
2635 2623 if os.name == 'posix':
2636 2624 for pdir in path:
2637 2625 os.chdir(pdir)
2638 2626 for ff in os.listdir(pdir):
2639 2627 if isexec(ff):
2640 2628 try:
2641 2629 # Removes dots from the name since ipython
2642 2630 # will assume names with dots to be python.
2643 2631 self.shell.alias_manager.define_alias(
2644 2632 ff.replace('.',''), ff)
2645 2633 except InvalidAliasError:
2646 2634 pass
2647 2635 else:
2648 2636 syscmdlist.append(ff)
2649 2637 else:
2650 2638 no_alias = self.shell.alias_manager.no_alias
2651 2639 for pdir in path:
2652 2640 os.chdir(pdir)
2653 2641 for ff in os.listdir(pdir):
2654 2642 base, ext = os.path.splitext(ff)
2655 2643 if isexec(ff) and base.lower() not in no_alias:
2656 2644 if ext.lower() == '.exe':
2657 2645 ff = base
2658 2646 try:
2659 2647 # Removes dots from the name since ipython
2660 2648 # will assume names with dots to be python.
2661 2649 self.shell.alias_manager.define_alias(
2662 2650 base.lower().replace('.',''), ff)
2663 2651 except InvalidAliasError:
2664 2652 pass
2665 2653 syscmdlist.append(ff)
2666 2654 db = self.db
2667 2655 db['syscmdlist'] = syscmdlist
2668 2656 finally:
2669 2657 os.chdir(savedir)
2670 2658
2671 2659 @testdec.skip_doctest
2672 2660 def magic_pwd(self, parameter_s = ''):
2673 2661 """Return the current working directory path.
2674 2662
2675 2663 Examples
2676 2664 --------
2677 2665 ::
2678 2666
2679 2667 In [9]: pwd
2680 2668 Out[9]: '/home/tsuser/sprint/ipython'
2681 2669 """
2682 2670 return os.getcwd()
2683 2671
2684 2672 @testdec.skip_doctest
2685 2673 def magic_cd(self, parameter_s=''):
2686 2674 """Change the current working directory.
2687 2675
2688 2676 This command automatically maintains an internal list of directories
2689 2677 you visit during your IPython session, in the variable _dh. The
2690 2678 command %dhist shows this history nicely formatted. You can also
2691 2679 do 'cd -<tab>' to see directory history conveniently.
2692 2680
2693 2681 Usage:
2694 2682
2695 2683 cd 'dir': changes to directory 'dir'.
2696 2684
2697 2685 cd -: changes to the last visited directory.
2698 2686
2699 2687 cd -<n>: changes to the n-th directory in the directory history.
2700 2688
2701 2689 cd --foo: change to directory that matches 'foo' in history
2702 2690
2703 2691 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2704 2692 (note: cd <bookmark_name> is enough if there is no
2705 2693 directory <bookmark_name>, but a bookmark with the name exists.)
2706 2694 'cd -b <tab>' allows you to tab-complete bookmark names.
2707 2695
2708 2696 Options:
2709 2697
2710 2698 -q: quiet. Do not print the working directory after the cd command is
2711 2699 executed. By default IPython's cd command does print this directory,
2712 2700 since the default prompts do not display path information.
2713 2701
2714 2702 Note that !cd doesn't work for this purpose because the shell where
2715 2703 !command runs is immediately discarded after executing 'command'.
2716 2704
2717 2705 Examples
2718 2706 --------
2719 2707 ::
2720 2708
2721 2709 In [10]: cd parent/child
2722 2710 /home/tsuser/parent/child
2723 2711 """
2724 2712
2725 2713 parameter_s = parameter_s.strip()
2726 2714 #bkms = self.shell.persist.get("bookmarks",{})
2727 2715
2728 2716 oldcwd = os.getcwd()
2729 2717 numcd = re.match(r'(-)(\d+)$',parameter_s)
2730 2718 # jump in directory history by number
2731 2719 if numcd:
2732 2720 nn = int(numcd.group(2))
2733 2721 try:
2734 2722 ps = self.shell.user_ns['_dh'][nn]
2735 2723 except IndexError:
2736 2724 print 'The requested directory does not exist in history.'
2737 2725 return
2738 2726 else:
2739 2727 opts = {}
2740 2728 elif parameter_s.startswith('--'):
2741 2729 ps = None
2742 2730 fallback = None
2743 2731 pat = parameter_s[2:]
2744 2732 dh = self.shell.user_ns['_dh']
2745 2733 # first search only by basename (last component)
2746 2734 for ent in reversed(dh):
2747 2735 if pat in os.path.basename(ent) and os.path.isdir(ent):
2748 2736 ps = ent
2749 2737 break
2750 2738
2751 2739 if fallback is None and pat in ent and os.path.isdir(ent):
2752 2740 fallback = ent
2753 2741
2754 2742 # if we have no last part match, pick the first full path match
2755 2743 if ps is None:
2756 2744 ps = fallback
2757 2745
2758 2746 if ps is None:
2759 2747 print "No matching entry in directory history"
2760 2748 return
2761 2749 else:
2762 2750 opts = {}
2763 2751
2764 2752
2765 2753 else:
2766 2754 #turn all non-space-escaping backslashes to slashes,
2767 2755 # for c:\windows\directory\names\
2768 2756 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2769 2757 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2770 2758 # jump to previous
2771 2759 if ps == '-':
2772 2760 try:
2773 2761 ps = self.shell.user_ns['_dh'][-2]
2774 2762 except IndexError:
2775 2763 raise UsageError('%cd -: No previous directory to change to.')
2776 2764 # jump to bookmark if needed
2777 2765 else:
2778 2766 if not os.path.isdir(ps) or opts.has_key('b'):
2779 2767 bkms = self.db.get('bookmarks', {})
2780 2768
2781 2769 if bkms.has_key(ps):
2782 2770 target = bkms[ps]
2783 2771 print '(bookmark:%s) -> %s' % (ps,target)
2784 2772 ps = target
2785 2773 else:
2786 2774 if opts.has_key('b'):
2787 2775 raise UsageError("Bookmark '%s' not found. "
2788 2776 "Use '%%bookmark -l' to see your bookmarks." % ps)
2789 2777
2790 2778 # at this point ps should point to the target dir
2791 2779 if ps:
2792 2780 try:
2793 2781 os.chdir(os.path.expanduser(ps))
2794 2782 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2795 2783 set_term_title('IPython: ' + abbrev_cwd())
2796 2784 except OSError:
2797 2785 print sys.exc_info()[1]
2798 2786 else:
2799 2787 cwd = os.getcwd()
2800 2788 dhist = self.shell.user_ns['_dh']
2801 2789 if oldcwd != cwd:
2802 2790 dhist.append(cwd)
2803 2791 self.db['dhist'] = compress_dhist(dhist)[-100:]
2804 2792
2805 2793 else:
2806 2794 os.chdir(self.shell.home_dir)
2807 2795 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2808 2796 set_term_title('IPython: ' + '~')
2809 2797 cwd = os.getcwd()
2810 2798 dhist = self.shell.user_ns['_dh']
2811 2799
2812 2800 if oldcwd != cwd:
2813 2801 dhist.append(cwd)
2814 2802 self.db['dhist'] = compress_dhist(dhist)[-100:]
2815 2803 if not 'q' in opts and self.shell.user_ns['_dh']:
2816 2804 print self.shell.user_ns['_dh'][-1]
2817 2805
2818 2806
2819 2807 def magic_env(self, parameter_s=''):
2820 2808 """List environment variables."""
2821 2809
2822 2810 return os.environ.data
2823 2811
2824 2812 def magic_pushd(self, parameter_s=''):
2825 2813 """Place the current dir on stack and change directory.
2826 2814
2827 2815 Usage:\\
2828 2816 %pushd ['dirname']
2829 2817 """
2830 2818
2831 2819 dir_s = self.shell.dir_stack
2832 2820 tgt = os.path.expanduser(parameter_s)
2833 2821 cwd = os.getcwd().replace(self.home_dir,'~')
2834 2822 if tgt:
2835 2823 self.magic_cd(parameter_s)
2836 2824 dir_s.insert(0,cwd)
2837 2825 return self.magic_dirs()
2838 2826
2839 2827 def magic_popd(self, parameter_s=''):
2840 2828 """Change to directory popped off the top of the stack.
2841 2829 """
2842 2830 if not self.shell.dir_stack:
2843 2831 raise UsageError("%popd on empty stack")
2844 2832 top = self.shell.dir_stack.pop(0)
2845 2833 self.magic_cd(top)
2846 2834 print "popd ->",top
2847 2835
2848 2836 def magic_dirs(self, parameter_s=''):
2849 2837 """Return the current directory stack."""
2850 2838
2851 2839 return self.shell.dir_stack
2852 2840
2853 2841 def magic_dhist(self, parameter_s=''):
2854 2842 """Print your history of visited directories.
2855 2843
2856 2844 %dhist -> print full history\\
2857 2845 %dhist n -> print last n entries only\\
2858 2846 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2859 2847
2860 2848 This history is automatically maintained by the %cd command, and
2861 2849 always available as the global list variable _dh. You can use %cd -<n>
2862 2850 to go to directory number <n>.
2863 2851
2864 2852 Note that most of time, you should view directory history by entering
2865 2853 cd -<TAB>.
2866 2854
2867 2855 """
2868 2856
2869 2857 dh = self.shell.user_ns['_dh']
2870 2858 if parameter_s:
2871 2859 try:
2872 2860 args = map(int,parameter_s.split())
2873 2861 except:
2874 2862 self.arg_err(Magic.magic_dhist)
2875 2863 return
2876 2864 if len(args) == 1:
2877 2865 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2878 2866 elif len(args) == 2:
2879 2867 ini,fin = args
2880 2868 else:
2881 2869 self.arg_err(Magic.magic_dhist)
2882 2870 return
2883 2871 else:
2884 2872 ini,fin = 0,len(dh)
2885 2873 nlprint(dh,
2886 2874 header = 'Directory history (kept in _dh)',
2887 2875 start=ini,stop=fin)
2888 2876
2889 2877 @testdec.skip_doctest
2890 2878 def magic_sc(self, parameter_s=''):
2891 2879 """Shell capture - execute a shell command and capture its output.
2892 2880
2893 2881 DEPRECATED. Suboptimal, retained for backwards compatibility.
2894 2882
2895 2883 You should use the form 'var = !command' instead. Example:
2896 2884
2897 2885 "%sc -l myfiles = ls ~" should now be written as
2898 2886
2899 2887 "myfiles = !ls ~"
2900 2888
2901 2889 myfiles.s, myfiles.l and myfiles.n still apply as documented
2902 2890 below.
2903 2891
2904 2892 --
2905 2893 %sc [options] varname=command
2906 2894
2907 2895 IPython will run the given command using commands.getoutput(), and
2908 2896 will then update the user's interactive namespace with a variable
2909 2897 called varname, containing the value of the call. Your command can
2910 2898 contain shell wildcards, pipes, etc.
2911 2899
2912 2900 The '=' sign in the syntax is mandatory, and the variable name you
2913 2901 supply must follow Python's standard conventions for valid names.
2914 2902
2915 2903 (A special format without variable name exists for internal use)
2916 2904
2917 2905 Options:
2918 2906
2919 2907 -l: list output. Split the output on newlines into a list before
2920 2908 assigning it to the given variable. By default the output is stored
2921 2909 as a single string.
2922 2910
2923 2911 -v: verbose. Print the contents of the variable.
2924 2912
2925 2913 In most cases you should not need to split as a list, because the
2926 2914 returned value is a special type of string which can automatically
2927 2915 provide its contents either as a list (split on newlines) or as a
2928 2916 space-separated string. These are convenient, respectively, either
2929 2917 for sequential processing or to be passed to a shell command.
2930 2918
2931 2919 For example:
2932 2920
2933 2921 # all-random
2934 2922
2935 2923 # Capture into variable a
2936 2924 In [1]: sc a=ls *py
2937 2925
2938 2926 # a is a string with embedded newlines
2939 2927 In [2]: a
2940 2928 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2941 2929
2942 2930 # which can be seen as a list:
2943 2931 In [3]: a.l
2944 2932 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2945 2933
2946 2934 # or as a whitespace-separated string:
2947 2935 In [4]: a.s
2948 2936 Out[4]: 'setup.py win32_manual_post_install.py'
2949 2937
2950 2938 # a.s is useful to pass as a single command line:
2951 2939 In [5]: !wc -l $a.s
2952 2940 146 setup.py
2953 2941 130 win32_manual_post_install.py
2954 2942 276 total
2955 2943
2956 2944 # while the list form is useful to loop over:
2957 2945 In [6]: for f in a.l:
2958 2946 ...: !wc -l $f
2959 2947 ...:
2960 2948 146 setup.py
2961 2949 130 win32_manual_post_install.py
2962 2950
2963 2951 Similiarly, the lists returned by the -l option are also special, in
2964 2952 the sense that you can equally invoke the .s attribute on them to
2965 2953 automatically get a whitespace-separated string from their contents:
2966 2954
2967 2955 In [7]: sc -l b=ls *py
2968 2956
2969 2957 In [8]: b
2970 2958 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2971 2959
2972 2960 In [9]: b.s
2973 2961 Out[9]: 'setup.py win32_manual_post_install.py'
2974 2962
2975 2963 In summary, both the lists and strings used for ouptut capture have
2976 2964 the following special attributes:
2977 2965
2978 2966 .l (or .list) : value as list.
2979 2967 .n (or .nlstr): value as newline-separated string.
2980 2968 .s (or .spstr): value as space-separated string.
2981 2969 """
2982 2970
2983 2971 opts,args = self.parse_options(parameter_s,'lv')
2984 2972 # Try to get a variable name and command to run
2985 2973 try:
2986 2974 # the variable name must be obtained from the parse_options
2987 2975 # output, which uses shlex.split to strip options out.
2988 2976 var,_ = args.split('=',1)
2989 2977 var = var.strip()
2990 2978 # But the the command has to be extracted from the original input
2991 2979 # parameter_s, not on what parse_options returns, to avoid the
2992 2980 # quote stripping which shlex.split performs on it.
2993 2981 _,cmd = parameter_s.split('=',1)
2994 2982 except ValueError:
2995 2983 var,cmd = '',''
2996 2984 # If all looks ok, proceed
2997 2985 split = 'l' in opts
2998 2986 out = self.shell.getoutput(cmd, split=split)
2999 2987 if opts.has_key('v'):
3000 2988 print '%s ==\n%s' % (var,pformat(out))
3001 2989 if var:
3002 2990 self.shell.user_ns.update({var:out})
3003 2991 else:
3004 2992 return out
3005 2993
3006 2994 def magic_sx(self, parameter_s=''):
3007 2995 """Shell execute - run a shell command and capture its output.
3008 2996
3009 2997 %sx command
3010 2998
3011 2999 IPython will run the given command using commands.getoutput(), and
3012 3000 return the result formatted as a list (split on '\\n'). Since the
3013 3001 output is _returned_, it will be stored in ipython's regular output
3014 3002 cache Out[N] and in the '_N' automatic variables.
3015 3003
3016 3004 Notes:
3017 3005
3018 3006 1) If an input line begins with '!!', then %sx is automatically
3019 3007 invoked. That is, while:
3020 3008 !ls
3021 3009 causes ipython to simply issue system('ls'), typing
3022 3010 !!ls
3023 3011 is a shorthand equivalent to:
3024 3012 %sx ls
3025 3013
3026 3014 2) %sx differs from %sc in that %sx automatically splits into a list,
3027 3015 like '%sc -l'. The reason for this is to make it as easy as possible
3028 3016 to process line-oriented shell output via further python commands.
3029 3017 %sc is meant to provide much finer control, but requires more
3030 3018 typing.
3031 3019
3032 3020 3) Just like %sc -l, this is a list with special attributes:
3033 3021
3034 3022 .l (or .list) : value as list.
3035 3023 .n (or .nlstr): value as newline-separated string.
3036 3024 .s (or .spstr): value as whitespace-separated string.
3037 3025
3038 3026 This is very useful when trying to use such lists as arguments to
3039 3027 system commands."""
3040 3028
3041 3029 if parameter_s:
3042 3030 return self.shell.getoutput(parameter_s)
3043 3031
3044 3032 def magic_r(self, parameter_s=''):
3045 3033 """Repeat previous input.
3046 3034
3047 3035 Note: Consider using the more powerfull %rep instead!
3048 3036
3049 3037 If given an argument, repeats the previous command which starts with
3050 3038 the same string, otherwise it just repeats the previous input.
3051 3039
3052 3040 Shell escaped commands (with ! as first character) are not recognized
3053 3041 by this system, only pure python code and magic commands.
3054 3042 """
3055 3043
3056 3044 start = parameter_s.strip()
3057 3045 esc_magic = ESC_MAGIC
3058 3046 # Identify magic commands even if automagic is on (which means
3059 3047 # the in-memory version is different from that typed by the user).
3060 3048 if self.shell.automagic:
3061 3049 start_magic = esc_magic+start
3062 3050 else:
3063 3051 start_magic = start
3064 3052 # Look through the input history in reverse
3065 3053 for n in range(len(self.shell.history_manager.input_hist_parsed)-2,0,-1):
3066 3054 input = self.shell.history_manager.input_hist_parsed[n]
3067 3055 # skip plain 'r' lines so we don't recurse to infinity
3068 3056 if input != '_ip.magic("r")\n' and \
3069 3057 (input.startswith(start) or input.startswith(start_magic)):
3070 3058 #print 'match',`input` # dbg
3071 3059 print 'Executing:',input,
3072 3060 self.shell.run_cell(input)
3073 3061 return
3074 3062 print 'No previous input matching `%s` found.' % start
3075 3063
3076 3064
3077 3065 def magic_bookmark(self, parameter_s=''):
3078 3066 """Manage IPython's bookmark system.
3079 3067
3080 3068 %bookmark <name> - set bookmark to current dir
3081 3069 %bookmark <name> <dir> - set bookmark to <dir>
3082 3070 %bookmark -l - list all bookmarks
3083 3071 %bookmark -d <name> - remove bookmark
3084 3072 %bookmark -r - remove all bookmarks
3085 3073
3086 3074 You can later on access a bookmarked folder with:
3087 3075 %cd -b <name>
3088 3076 or simply '%cd <name>' if there is no directory called <name> AND
3089 3077 there is such a bookmark defined.
3090 3078
3091 3079 Your bookmarks persist through IPython sessions, but they are
3092 3080 associated with each profile."""
3093 3081
3094 3082 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3095 3083 if len(args) > 2:
3096 3084 raise UsageError("%bookmark: too many arguments")
3097 3085
3098 3086 bkms = self.db.get('bookmarks',{})
3099 3087
3100 3088 if opts.has_key('d'):
3101 3089 try:
3102 3090 todel = args[0]
3103 3091 except IndexError:
3104 3092 raise UsageError(
3105 3093 "%bookmark -d: must provide a bookmark to delete")
3106 3094 else:
3107 3095 try:
3108 3096 del bkms[todel]
3109 3097 except KeyError:
3110 3098 raise UsageError(
3111 3099 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3112 3100
3113 3101 elif opts.has_key('r'):
3114 3102 bkms = {}
3115 3103 elif opts.has_key('l'):
3116 3104 bks = bkms.keys()
3117 3105 bks.sort()
3118 3106 if bks:
3119 3107 size = max(map(len,bks))
3120 3108 else:
3121 3109 size = 0
3122 3110 fmt = '%-'+str(size)+'s -> %s'
3123 3111 print 'Current bookmarks:'
3124 3112 for bk in bks:
3125 3113 print fmt % (bk,bkms[bk])
3126 3114 else:
3127 3115 if not args:
3128 3116 raise UsageError("%bookmark: You must specify the bookmark name")
3129 3117 elif len(args)==1:
3130 3118 bkms[args[0]] = os.getcwd()
3131 3119 elif len(args)==2:
3132 3120 bkms[args[0]] = args[1]
3133 3121 self.db['bookmarks'] = bkms
3134 3122
3135 3123 def magic_pycat(self, parameter_s=''):
3136 3124 """Show a syntax-highlighted file through a pager.
3137 3125
3138 3126 This magic is similar to the cat utility, but it will assume the file
3139 3127 to be Python source and will show it with syntax highlighting. """
3140 3128
3141 3129 try:
3142 3130 filename = get_py_filename(parameter_s)
3143 3131 cont = file_read(filename)
3144 3132 except IOError:
3145 3133 try:
3146 3134 cont = eval(parameter_s,self.user_ns)
3147 3135 except NameError:
3148 3136 cont = None
3149 3137 if cont is None:
3150 3138 print "Error: no such file or variable"
3151 3139 return
3152 3140
3153 3141 page.page(self.shell.pycolorize(cont))
3154 3142
3155 3143 def _rerun_pasted(self):
3156 3144 """ Rerun a previously pasted command.
3157 3145 """
3158 3146 b = self.user_ns.get('pasted_block', None)
3159 3147 if b is None:
3160 3148 raise UsageError('No previous pasted block available')
3161 3149 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3162 3150 exec b in self.user_ns
3163 3151
3164 3152 def _get_pasted_lines(self, sentinel):
3165 3153 """ Yield pasted lines until the user enters the given sentinel value.
3166 3154 """
3167 3155 from IPython.core import interactiveshell
3168 3156 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3169 3157 while True:
3170 3158 l = interactiveshell.raw_input_original(':')
3171 3159 if l == sentinel:
3172 3160 return
3173 3161 else:
3174 3162 yield l
3175 3163
3176 3164 def _strip_pasted_lines_for_code(self, raw_lines):
3177 3165 """ Strip non-code parts of a sequence of lines to return a block of
3178 3166 code.
3179 3167 """
3180 3168 # Regular expressions that declare text we strip from the input:
3181 3169 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3182 3170 r'^\s*(\s?>)+', # Python input prompt
3183 3171 r'^\s*\.{3,}', # Continuation prompts
3184 3172 r'^\++',
3185 3173 ]
3186 3174
3187 3175 strip_from_start = map(re.compile,strip_re)
3188 3176
3189 3177 lines = []
3190 3178 for l in raw_lines:
3191 3179 for pat in strip_from_start:
3192 3180 l = pat.sub('',l)
3193 3181 lines.append(l)
3194 3182
3195 3183 block = "\n".join(lines) + '\n'
3196 3184 #print "block:\n",block
3197 3185 return block
3198 3186
3199 3187 def _execute_block(self, block, par):
3200 3188 """ Execute a block, or store it in a variable, per the user's request.
3201 3189 """
3202 3190 if not par:
3203 3191 b = textwrap.dedent(block)
3204 3192 self.user_ns['pasted_block'] = b
3205 3193 exec b in self.user_ns
3206 3194 else:
3207 3195 self.user_ns[par] = SList(block.splitlines())
3208 3196 print "Block assigned to '%s'" % par
3209 3197
3210 3198 def magic_quickref(self,arg):
3211 3199 """ Show a quick reference sheet """
3212 3200 import IPython.core.usage
3213 3201 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3214 3202
3215 3203 page.page(qr)
3216 3204
3217 3205 def magic_doctest_mode(self,parameter_s=''):
3218 3206 """Toggle doctest mode on and off.
3219 3207
3220 3208 This mode is intended to make IPython behave as much as possible like a
3221 3209 plain Python shell, from the perspective of how its prompts, exceptions
3222 3210 and output look. This makes it easy to copy and paste parts of a
3223 3211 session into doctests. It does so by:
3224 3212
3225 3213 - Changing the prompts to the classic ``>>>`` ones.
3226 3214 - Changing the exception reporting mode to 'Plain'.
3227 3215 - Disabling pretty-printing of output.
3228 3216
3229 3217 Note that IPython also supports the pasting of code snippets that have
3230 3218 leading '>>>' and '...' prompts in them. This means that you can paste
3231 3219 doctests from files or docstrings (even if they have leading
3232 3220 whitespace), and the code will execute correctly. You can then use
3233 3221 '%history -t' to see the translated history; this will give you the
3234 3222 input after removal of all the leading prompts and whitespace, which
3235 3223 can be pasted back into an editor.
3236 3224
3237 3225 With these features, you can switch into this mode easily whenever you
3238 3226 need to do testing and changes to doctests, without having to leave
3239 3227 your existing IPython session.
3240 3228 """
3241 3229
3242 3230 from IPython.utils.ipstruct import Struct
3243 3231
3244 3232 # Shorthands
3245 3233 shell = self.shell
3246 3234 oc = shell.displayhook
3247 3235 meta = shell.meta
3248 3236 disp_formatter = self.shell.display_formatter
3249 3237 ptformatter = disp_formatter.formatters['text/plain']
3250 3238 # dstore is a data store kept in the instance metadata bag to track any
3251 3239 # changes we make, so we can undo them later.
3252 3240 dstore = meta.setdefault('doctest_mode',Struct())
3253 3241 save_dstore = dstore.setdefault
3254 3242
3255 3243 # save a few values we'll need to recover later
3256 3244 mode = save_dstore('mode',False)
3257 3245 save_dstore('rc_pprint',ptformatter.pprint)
3258 3246 save_dstore('xmode',shell.InteractiveTB.mode)
3259 3247 save_dstore('rc_separate_out',shell.separate_out)
3260 3248 save_dstore('rc_separate_out2',shell.separate_out2)
3261 3249 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3262 3250 save_dstore('rc_separate_in',shell.separate_in)
3263 3251 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3264 3252
3265 3253 if mode == False:
3266 3254 # turn on
3267 3255 oc.prompt1.p_template = '>>> '
3268 3256 oc.prompt2.p_template = '... '
3269 3257 oc.prompt_out.p_template = ''
3270 3258
3271 3259 # Prompt separators like plain python
3272 3260 oc.input_sep = oc.prompt1.sep = ''
3273 3261 oc.output_sep = ''
3274 3262 oc.output_sep2 = ''
3275 3263
3276 3264 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3277 3265 oc.prompt_out.pad_left = False
3278 3266
3279 3267 ptformatter.pprint = False
3280 3268 disp_formatter.plain_text_only = True
3281 3269
3282 3270 shell.magic_xmode('Plain')
3283 3271 else:
3284 3272 # turn off
3285 3273 oc.prompt1.p_template = shell.prompt_in1
3286 3274 oc.prompt2.p_template = shell.prompt_in2
3287 3275 oc.prompt_out.p_template = shell.prompt_out
3288 3276
3289 3277 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3290 3278
3291 3279 oc.output_sep = dstore.rc_separate_out
3292 3280 oc.output_sep2 = dstore.rc_separate_out2
3293 3281
3294 3282 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3295 3283 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3296 3284
3297 3285 ptformatter.pprint = dstore.rc_pprint
3298 3286 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3299 3287
3300 3288 shell.magic_xmode(dstore.xmode)
3301 3289
3302 3290 # Store new mode and inform
3303 3291 dstore.mode = bool(1-int(mode))
3304 3292 mode_label = ['OFF','ON'][dstore.mode]
3305 3293 print 'Doctest mode is:', mode_label
3306 3294
3307 3295 def magic_gui(self, parameter_s=''):
3308 3296 """Enable or disable IPython GUI event loop integration.
3309 3297
3310 3298 %gui [GUINAME]
3311 3299
3312 3300 This magic replaces IPython's threaded shells that were activated
3313 3301 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3314 3302 can now be enabled, disabled and swtiched at runtime and keyboard
3315 3303 interrupts should work without any problems. The following toolkits
3316 3304 are supported: wxPython, PyQt4, PyGTK, and Tk::
3317 3305
3318 3306 %gui wx # enable wxPython event loop integration
3319 3307 %gui qt4|qt # enable PyQt4 event loop integration
3320 3308 %gui gtk # enable PyGTK event loop integration
3321 3309 %gui tk # enable Tk event loop integration
3322 3310 %gui # disable all event loop integration
3323 3311
3324 3312 WARNING: after any of these has been called you can simply create
3325 3313 an application object, but DO NOT start the event loop yourself, as
3326 3314 we have already handled that.
3327 3315 """
3328 3316 from IPython.lib.inputhook import enable_gui
3329 3317 opts, arg = self.parse_options(parameter_s, '')
3330 3318 if arg=='': arg = None
3331 3319 return enable_gui(arg)
3332 3320
3333 3321 def magic_load_ext(self, module_str):
3334 3322 """Load an IPython extension by its module name."""
3335 3323 return self.extension_manager.load_extension(module_str)
3336 3324
3337 3325 def magic_unload_ext(self, module_str):
3338 3326 """Unload an IPython extension by its module name."""
3339 3327 self.extension_manager.unload_extension(module_str)
3340 3328
3341 3329 def magic_reload_ext(self, module_str):
3342 3330 """Reload an IPython extension by its module name."""
3343 3331 self.extension_manager.reload_extension(module_str)
3344 3332
3345 3333 @testdec.skip_doctest
3346 3334 def magic_install_profiles(self, s):
3347 3335 """Install the default IPython profiles into the .ipython dir.
3348 3336
3349 3337 If the default profiles have already been installed, they will not
3350 3338 be overwritten. You can force overwriting them by using the ``-o``
3351 3339 option::
3352 3340
3353 3341 In [1]: %install_profiles -o
3354 3342 """
3355 3343 if '-o' in s:
3356 3344 overwrite = True
3357 3345 else:
3358 3346 overwrite = False
3359 3347 from IPython.config import profile
3360 3348 profile_dir = os.path.split(profile.__file__)[0]
3361 3349 ipython_dir = self.ipython_dir
3362 3350 files = os.listdir(profile_dir)
3363 3351
3364 3352 to_install = []
3365 3353 for f in files:
3366 3354 if f.startswith('ipython_config'):
3367 3355 src = os.path.join(profile_dir, f)
3368 3356 dst = os.path.join(ipython_dir, f)
3369 3357 if (not os.path.isfile(dst)) or overwrite:
3370 3358 to_install.append((f, src, dst))
3371 3359 if len(to_install)>0:
3372 3360 print "Installing profiles to: ", ipython_dir
3373 3361 for (f, src, dst) in to_install:
3374 3362 shutil.copy(src, dst)
3375 3363 print " %s" % f
3376 3364
3377 3365 def magic_install_default_config(self, s):
3378 3366 """Install IPython's default config file into the .ipython dir.
3379 3367
3380 3368 If the default config file (:file:`ipython_config.py`) is already
3381 3369 installed, it will not be overwritten. You can force overwriting
3382 3370 by using the ``-o`` option::
3383 3371
3384 3372 In [1]: %install_default_config
3385 3373 """
3386 3374 if '-o' in s:
3387 3375 overwrite = True
3388 3376 else:
3389 3377 overwrite = False
3390 3378 from IPython.config import default
3391 3379 config_dir = os.path.split(default.__file__)[0]
3392 3380 ipython_dir = self.ipython_dir
3393 3381 default_config_file_name = 'ipython_config.py'
3394 3382 src = os.path.join(config_dir, default_config_file_name)
3395 3383 dst = os.path.join(ipython_dir, default_config_file_name)
3396 3384 if (not os.path.isfile(dst)) or overwrite:
3397 3385 shutil.copy(src, dst)
3398 3386 print "Installing default config file: %s" % dst
3399 3387
3400 3388 # Pylab support: simple wrappers that activate pylab, load gui input
3401 3389 # handling and modify slightly %run
3402 3390
3403 3391 @testdec.skip_doctest
3404 3392 def _pylab_magic_run(self, parameter_s=''):
3405 3393 Magic.magic_run(self, parameter_s,
3406 3394 runner=mpl_runner(self.shell.safe_execfile))
3407 3395
3408 3396 _pylab_magic_run.__doc__ = magic_run.__doc__
3409 3397
3410 3398 @testdec.skip_doctest
3411 3399 def magic_pylab(self, s):
3412 3400 """Load numpy and matplotlib to work interactively.
3413 3401
3414 3402 %pylab [GUINAME]
3415 3403
3416 3404 This function lets you activate pylab (matplotlib, numpy and
3417 3405 interactive support) at any point during an IPython session.
3418 3406
3419 3407 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3420 3408 pylab and mlab, as well as all names from numpy and pylab.
3421 3409
3422 3410 Parameters
3423 3411 ----------
3424 3412 guiname : optional
3425 3413 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk' or
3426 3414 'tk'). If given, the corresponding Matplotlib backend is used,
3427 3415 otherwise matplotlib's default (which you can override in your
3428 3416 matplotlib config file) is used.
3429 3417
3430 3418 Examples
3431 3419 --------
3432 3420 In this case, where the MPL default is TkAgg:
3433 3421 In [2]: %pylab
3434 3422
3435 3423 Welcome to pylab, a matplotlib-based Python environment.
3436 3424 Backend in use: TkAgg
3437 3425 For more information, type 'help(pylab)'.
3438 3426
3439 3427 But you can explicitly request a different backend:
3440 3428 In [3]: %pylab qt
3441 3429
3442 3430 Welcome to pylab, a matplotlib-based Python environment.
3443 3431 Backend in use: Qt4Agg
3444 3432 For more information, type 'help(pylab)'.
3445 3433 """
3446 3434 self.shell.enable_pylab(s)
3447 3435
3448 3436 def magic_tb(self, s):
3449 3437 """Print the last traceback with the currently active exception mode.
3450 3438
3451 3439 See %xmode for changing exception reporting modes."""
3452 3440 self.shell.showtraceback()
3453 3441
3454 3442 @testdec.skip_doctest
3455 3443 def magic_precision(self, s=''):
3456 3444 """Set floating point precision for pretty printing.
3457 3445
3458 3446 Can set either integer precision or a format string.
3459 3447
3460 3448 If numpy has been imported and precision is an int,
3461 3449 numpy display precision will also be set, via ``numpy.set_printoptions``.
3462 3450
3463 3451 If no argument is given, defaults will be restored.
3464 3452
3465 3453 Examples
3466 3454 --------
3467 3455 ::
3468 3456
3469 3457 In [1]: from math import pi
3470 3458
3471 3459 In [2]: %precision 3
3472 3460 Out[2]: '%.3f'
3473 3461
3474 3462 In [3]: pi
3475 3463 Out[3]: 3.142
3476 3464
3477 3465 In [4]: %precision %i
3478 3466 Out[4]: '%i'
3479 3467
3480 3468 In [5]: pi
3481 3469 Out[5]: 3
3482 3470
3483 3471 In [6]: %precision %e
3484 3472 Out[6]: '%e'
3485 3473
3486 3474 In [7]: pi**10
3487 3475 Out[7]: 9.364805e+04
3488 3476
3489 3477 In [8]: %precision
3490 3478 Out[8]: '%r'
3491 3479
3492 3480 In [9]: pi**10
3493 3481 Out[9]: 93648.047476082982
3494 3482
3495 3483 """
3496 3484
3497 3485 ptformatter = self.shell.display_formatter.formatters['text/plain']
3498 3486 ptformatter.float_precision = s
3499 3487 return ptformatter.float_format
3500 3488
3501 3489 # end Magic
General Comments 0
You need to be logged in to leave comments. Login now