##// END OF EJS Templates
Change functions,...
Srinivas Reddy Thatiparthy -
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -1,103 +1,103 b''
1 1 """
2 2 A context manager for managing things injected into :mod:`__builtin__`.
3 3
4 4 Authors:
5 5
6 6 * Brian Granger
7 7 * Fernando Perez
8 8 """
9 9 #-----------------------------------------------------------------------------
10 10 # Copyright (C) 2010-2011 The IPython Development Team.
11 11 #
12 12 # Distributed under the terms of the BSD License.
13 13 #
14 14 # Complete license in the file COPYING.txt, distributed with this software.
15 15 #-----------------------------------------------------------------------------
16 16
17 17 #-----------------------------------------------------------------------------
18 18 # Imports
19 19 #-----------------------------------------------------------------------------
20 20
21 21 from traitlets.config.configurable import Configurable
22 22
23 from IPython.utils.py3compat import builtin_mod, iteritems
23 from IPython.utils.py3compat import builtin_mod
24 24 from traitlets import Instance
25 25
26 26 #-----------------------------------------------------------------------------
27 27 # Classes and functions
28 28 #-----------------------------------------------------------------------------
29 29
30 30 class __BuiltinUndefined(object): pass
31 31 BuiltinUndefined = __BuiltinUndefined()
32 32
33 33 class __HideBuiltin(object): pass
34 34 HideBuiltin = __HideBuiltin()
35 35
36 36
37 37 class BuiltinTrap(Configurable):
38 38
39 39 shell = Instance('IPython.core.interactiveshell.InteractiveShellABC',
40 40 allow_none=True)
41 41
42 42 def __init__(self, shell=None):
43 43 super(BuiltinTrap, self).__init__(shell=shell, config=None)
44 44 self._orig_builtins = {}
45 45 # We define this to track if a single BuiltinTrap is nested.
46 46 # Only turn off the trap when the outermost call to __exit__ is made.
47 47 self._nested_level = 0
48 48 self.shell = shell
49 49 # builtins we always add - if set to HideBuiltin, they will just
50 50 # be removed instead of being replaced by something else
51 51 self.auto_builtins = {'exit': HideBuiltin,
52 52 'quit': HideBuiltin,
53 53 'get_ipython': self.shell.get_ipython,
54 54 }
55 55
56 56 def __enter__(self):
57 57 if self._nested_level == 0:
58 58 self.activate()
59 59 self._nested_level += 1
60 60 # I return self, so callers can use add_builtin in a with clause.
61 61 return self
62 62
63 63 def __exit__(self, type, value, traceback):
64 64 if self._nested_level == 1:
65 65 self.deactivate()
66 66 self._nested_level -= 1
67 67 # Returning False will cause exceptions to propagate
68 68 return False
69 69
70 70 def add_builtin(self, key, value):
71 71 """Add a builtin and save the original."""
72 72 bdict = builtin_mod.__dict__
73 73 orig = bdict.get(key, BuiltinUndefined)
74 74 if value is HideBuiltin:
75 75 if orig is not BuiltinUndefined: #same as 'key in bdict'
76 76 self._orig_builtins[key] = orig
77 77 del bdict[key]
78 78 else:
79 79 self._orig_builtins[key] = orig
80 80 bdict[key] = value
81 81
82 82 def remove_builtin(self, key, orig):
83 83 """Remove an added builtin and re-set the original."""
84 84 if orig is BuiltinUndefined:
85 85 del builtin_mod.__dict__[key]
86 86 else:
87 87 builtin_mod.__dict__[key] = orig
88 88
89 89 def activate(self):
90 90 """Store ipython references in the __builtin__ namespace."""
91 91
92 92 add_builtin = self.add_builtin
93 for name, func in iteritems(self.auto_builtins):
93 for name, func in self.auto_builtins.items():
94 94 add_builtin(name, func)
95 95
96 96 def deactivate(self):
97 97 """Remove any builtins which might have been added by add_builtins, or
98 98 restore overwritten ones to their previous values."""
99 99 remove_builtin = self.remove_builtin
100 for key, val in iteritems(self._orig_builtins):
100 for key, val in self._orig_builtins.items():
101 101 remove_builtin(key, val)
102 102 self._orig_builtins.clear()
103 103 self._builtins_added = False
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
@@ -1,679 +1,679 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 import os
15 15 import re
16 16 import sys
17 17 import types
18 18 from getopt import getopt, GetoptError
19 19
20 20 from traitlets.config.configurable import Configurable
21 21 from IPython.core import oinspect
22 22 from IPython.core.error import UsageError
23 23 from IPython.core.inputsplitter import ESC_MAGIC, ESC_MAGIC2
24 24 from decorator import decorator
25 25 from IPython.utils.ipstruct import Struct
26 26 from IPython.utils.process import arg_split
27 from IPython.utils.py3compat import string_types, iteritems
27 from IPython.utils.py3compat import string_types
28 28 from IPython.utils.text import dedent
29 29 from traitlets import Bool, Dict, Instance, observe
30 30 from logging import error
31 31
32 32 #-----------------------------------------------------------------------------
33 33 # Globals
34 34 #-----------------------------------------------------------------------------
35 35
36 36 # A dict we'll use for each class that has magics, used as temporary storage to
37 37 # pass information between the @line/cell_magic method decorators and the
38 38 # @magics_class class decorator, because the method decorators have no
39 39 # access to the class when they run. See for more details:
40 40 # http://stackoverflow.com/questions/2366713/can-a-python-decorator-of-an-instance-method-access-the-class
41 41
42 42 magics = dict(line={}, cell={})
43 43
44 44 magic_kinds = ('line', 'cell')
45 45 magic_spec = ('line', 'cell', 'line_cell')
46 46 magic_escapes = dict(line=ESC_MAGIC, cell=ESC_MAGIC2)
47 47
48 48 #-----------------------------------------------------------------------------
49 49 # Utility classes and functions
50 50 #-----------------------------------------------------------------------------
51 51
52 52 class Bunch: pass
53 53
54 54
55 55 def on_off(tag):
56 56 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
57 57 return ['OFF','ON'][tag]
58 58
59 59
60 60 def compress_dhist(dh):
61 61 """Compress a directory history into a new one with at most 20 entries.
62 62
63 63 Return a new list made from the first and last 10 elements of dhist after
64 64 removal of duplicates.
65 65 """
66 66 head, tail = dh[:-10], dh[-10:]
67 67
68 68 newhead = []
69 69 done = set()
70 70 for h in head:
71 71 if h in done:
72 72 continue
73 73 newhead.append(h)
74 74 done.add(h)
75 75
76 76 return newhead + tail
77 77
78 78
79 79 def needs_local_scope(func):
80 80 """Decorator to mark magic functions which need to local scope to run."""
81 81 func.needs_local_scope = True
82 82 return func
83 83
84 84 #-----------------------------------------------------------------------------
85 85 # Class and method decorators for registering magics
86 86 #-----------------------------------------------------------------------------
87 87
88 88 def magics_class(cls):
89 89 """Class decorator for all subclasses of the main Magics class.
90 90
91 91 Any class that subclasses Magics *must* also apply this decorator, to
92 92 ensure that all the methods that have been decorated as line/cell magics
93 93 get correctly registered in the class instance. This is necessary because
94 94 when method decorators run, the class does not exist yet, so they
95 95 temporarily store their information into a module global. Application of
96 96 this class decorator copies that global data to the class instance and
97 97 clears the global.
98 98
99 99 Obviously, this mechanism is not thread-safe, which means that the
100 100 *creation* of subclasses of Magic should only be done in a single-thread
101 101 context. Instantiation of the classes has no restrictions. Given that
102 102 these classes are typically created at IPython startup time and before user
103 103 application code becomes active, in practice this should not pose any
104 104 problems.
105 105 """
106 106 cls.registered = True
107 107 cls.magics = dict(line = magics['line'],
108 108 cell = magics['cell'])
109 109 magics['line'] = {}
110 110 magics['cell'] = {}
111 111 return cls
112 112
113 113
114 114 def record_magic(dct, magic_kind, magic_name, func):
115 115 """Utility function to store a function as a magic of a specific kind.
116 116
117 117 Parameters
118 118 ----------
119 119 dct : dict
120 120 A dictionary with 'line' and 'cell' subdicts.
121 121
122 122 magic_kind : str
123 123 Kind of magic to be stored.
124 124
125 125 magic_name : str
126 126 Key to store the magic as.
127 127
128 128 func : function
129 129 Callable object to store.
130 130 """
131 131 if magic_kind == 'line_cell':
132 132 dct['line'][magic_name] = dct['cell'][magic_name] = func
133 133 else:
134 134 dct[magic_kind][magic_name] = func
135 135
136 136
137 137 def validate_type(magic_kind):
138 138 """Ensure that the given magic_kind is valid.
139 139
140 140 Check that the given magic_kind is one of the accepted spec types (stored
141 141 in the global `magic_spec`), raise ValueError otherwise.
142 142 """
143 143 if magic_kind not in magic_spec:
144 144 raise ValueError('magic_kind must be one of %s, %s given' %
145 145 magic_kinds, magic_kind)
146 146
147 147
148 148 # The docstrings for the decorator below will be fairly similar for the two
149 149 # types (method and function), so we generate them here once and reuse the
150 150 # templates below.
151 151 _docstring_template = \
152 152 """Decorate the given {0} as {1} magic.
153 153
154 154 The decorator can be used with or without arguments, as follows.
155 155
156 156 i) without arguments: it will create a {1} magic named as the {0} being
157 157 decorated::
158 158
159 159 @deco
160 160 def foo(...)
161 161
162 162 will create a {1} magic named `foo`.
163 163
164 164 ii) with one string argument: which will be used as the actual name of the
165 165 resulting magic::
166 166
167 167 @deco('bar')
168 168 def foo(...)
169 169
170 170 will create a {1} magic named `bar`.
171 171 """
172 172
173 173 # These two are decorator factories. While they are conceptually very similar,
174 174 # there are enough differences in the details that it's simpler to have them
175 175 # written as completely standalone functions rather than trying to share code
176 176 # and make a single one with convoluted logic.
177 177
178 178 def _method_magic_marker(magic_kind):
179 179 """Decorator factory for methods in Magics subclasses.
180 180 """
181 181
182 182 validate_type(magic_kind)
183 183
184 184 # This is a closure to capture the magic_kind. We could also use a class,
185 185 # but it's overkill for just that one bit of state.
186 186 def magic_deco(arg):
187 187 call = lambda f, *a, **k: f(*a, **k)
188 188
189 189 if callable(arg):
190 190 # "Naked" decorator call (just @foo, no args)
191 191 func = arg
192 192 name = func.__name__
193 193 retval = decorator(call, func)
194 194 record_magic(magics, magic_kind, name, name)
195 195 elif isinstance(arg, string_types):
196 196 # Decorator called with arguments (@foo('bar'))
197 197 name = arg
198 198 def mark(func, *a, **kw):
199 199 record_magic(magics, magic_kind, name, func.__name__)
200 200 return decorator(call, func)
201 201 retval = mark
202 202 else:
203 203 raise TypeError("Decorator can only be called with "
204 204 "string or function")
205 205 return retval
206 206
207 207 # Ensure the resulting decorator has a usable docstring
208 208 magic_deco.__doc__ = _docstring_template.format('method', magic_kind)
209 209 return magic_deco
210 210
211 211
212 212 def _function_magic_marker(magic_kind):
213 213 """Decorator factory for standalone functions.
214 214 """
215 215 validate_type(magic_kind)
216 216
217 217 # This is a closure to capture the magic_kind. We could also use a class,
218 218 # but it's overkill for just that one bit of state.
219 219 def magic_deco(arg):
220 220 call = lambda f, *a, **k: f(*a, **k)
221 221
222 222 # Find get_ipython() in the caller's namespace
223 223 caller = sys._getframe(1)
224 224 for ns in ['f_locals', 'f_globals', 'f_builtins']:
225 225 get_ipython = getattr(caller, ns).get('get_ipython')
226 226 if get_ipython is not None:
227 227 break
228 228 else:
229 229 raise NameError('Decorator can only run in context where '
230 230 '`get_ipython` exists')
231 231
232 232 ip = get_ipython()
233 233
234 234 if callable(arg):
235 235 # "Naked" decorator call (just @foo, no args)
236 236 func = arg
237 237 name = func.__name__
238 238 ip.register_magic_function(func, magic_kind, name)
239 239 retval = decorator(call, func)
240 240 elif isinstance(arg, string_types):
241 241 # Decorator called with arguments (@foo('bar'))
242 242 name = arg
243 243 def mark(func, *a, **kw):
244 244 ip.register_magic_function(func, magic_kind, name)
245 245 return decorator(call, func)
246 246 retval = mark
247 247 else:
248 248 raise TypeError("Decorator can only be called with "
249 249 "string or function")
250 250 return retval
251 251
252 252 # Ensure the resulting decorator has a usable docstring
253 253 ds = _docstring_template.format('function', magic_kind)
254 254
255 255 ds += dedent("""
256 256 Note: this decorator can only be used in a context where IPython is already
257 257 active, so that the `get_ipython()` call succeeds. You can therefore use
258 258 it in your startup files loaded after IPython initializes, but *not* in the
259 259 IPython configuration file itself, which is executed before IPython is
260 260 fully up and running. Any file located in the `startup` subdirectory of
261 261 your configuration profile will be OK in this sense.
262 262 """)
263 263
264 264 magic_deco.__doc__ = ds
265 265 return magic_deco
266 266
267 267
268 268 # Create the actual decorators for public use
269 269
270 270 # These three are used to decorate methods in class definitions
271 271 line_magic = _method_magic_marker('line')
272 272 cell_magic = _method_magic_marker('cell')
273 273 line_cell_magic = _method_magic_marker('line_cell')
274 274
275 275 # These three decorate standalone functions and perform the decoration
276 276 # immediately. They can only run where get_ipython() works
277 277 register_line_magic = _function_magic_marker('line')
278 278 register_cell_magic = _function_magic_marker('cell')
279 279 register_line_cell_magic = _function_magic_marker('line_cell')
280 280
281 281 #-----------------------------------------------------------------------------
282 282 # Core Magic classes
283 283 #-----------------------------------------------------------------------------
284 284
285 285 class MagicsManager(Configurable):
286 286 """Object that handles all magic-related functionality for IPython.
287 287 """
288 288 # Non-configurable class attributes
289 289
290 290 # A two-level dict, first keyed by magic type, then by magic function, and
291 291 # holding the actual callable object as value. This is the dict used for
292 292 # magic function dispatch
293 293 magics = Dict()
294 294
295 295 # A registry of the original objects that we've been given holding magics.
296 296 registry = Dict()
297 297
298 298 shell = Instance('IPython.core.interactiveshell.InteractiveShellABC', allow_none=True)
299 299
300 300 auto_magic = Bool(True, help=
301 301 "Automatically call line magics without requiring explicit % prefix"
302 302 ).tag(config=True)
303 303 @observe('auto_magic')
304 304 def _auto_magic_changed(self, change):
305 305 self.shell.automagic = change['new']
306 306
307 307 _auto_status = [
308 308 'Automagic is OFF, % prefix IS needed for line magics.',
309 309 'Automagic is ON, % prefix IS NOT needed for line magics.']
310 310
311 311 user_magics = Instance('IPython.core.magics.UserMagics', allow_none=True)
312 312
313 313 def __init__(self, shell=None, config=None, user_magics=None, **traits):
314 314
315 315 super(MagicsManager, self).__init__(shell=shell, config=config,
316 316 user_magics=user_magics, **traits)
317 317 self.magics = dict(line={}, cell={})
318 318 # Let's add the user_magics to the registry for uniformity, so *all*
319 319 # registered magic containers can be found there.
320 320 self.registry[user_magics.__class__.__name__] = user_magics
321 321
322 322 def auto_status(self):
323 323 """Return descriptive string with automagic status."""
324 324 return self._auto_status[self.auto_magic]
325 325
326 326 def lsmagic(self):
327 327 """Return a dict of currently available magic functions.
328 328
329 329 The return dict has the keys 'line' and 'cell', corresponding to the
330 330 two types of magics we support. Each value is a list of names.
331 331 """
332 332 return self.magics
333 333
334 334 def lsmagic_docs(self, brief=False, missing=''):
335 335 """Return dict of documentation of magic functions.
336 336
337 337 The return dict has the keys 'line' and 'cell', corresponding to the
338 338 two types of magics we support. Each value is a dict keyed by magic
339 339 name whose value is the function docstring. If a docstring is
340 340 unavailable, the value of `missing` is used instead.
341 341
342 342 If brief is True, only the first line of each docstring will be returned.
343 343 """
344 344 docs = {}
345 345 for m_type in self.magics:
346 346 m_docs = {}
347 for m_name, m_func in iteritems(self.magics[m_type]):
347 for m_name, m_func in self.magics[m_type].items():
348 348 if m_func.__doc__:
349 349 if brief:
350 350 m_docs[m_name] = m_func.__doc__.split('\n', 1)[0]
351 351 else:
352 352 m_docs[m_name] = m_func.__doc__.rstrip()
353 353 else:
354 354 m_docs[m_name] = missing
355 355 docs[m_type] = m_docs
356 356 return docs
357 357
358 358 def register(self, *magic_objects):
359 359 """Register one or more instances of Magics.
360 360
361 361 Take one or more classes or instances of classes that subclass the main
362 362 `core.Magic` class, and register them with IPython to use the magic
363 363 functions they provide. The registration process will then ensure that
364 364 any methods that have decorated to provide line and/or cell magics will
365 365 be recognized with the `%x`/`%%x` syntax as a line/cell magic
366 366 respectively.
367 367
368 368 If classes are given, they will be instantiated with the default
369 369 constructor. If your classes need a custom constructor, you should
370 370 instanitate them first and pass the instance.
371 371
372 372 The provided arguments can be an arbitrary mix of classes and instances.
373 373
374 374 Parameters
375 375 ----------
376 376 magic_objects : one or more classes or instances
377 377 """
378 378 # Start by validating them to ensure they have all had their magic
379 379 # methods registered at the instance level
380 380 for m in magic_objects:
381 381 if not m.registered:
382 382 raise ValueError("Class of magics %r was constructed without "
383 383 "the @register_magics class decorator")
384 384 if isinstance(m, type):
385 385 # If we're given an uninstantiated class
386 386 m = m(shell=self.shell)
387 387
388 388 # Now that we have an instance, we can register it and update the
389 389 # table of callables
390 390 self.registry[m.__class__.__name__] = m
391 391 for mtype in magic_kinds:
392 392 self.magics[mtype].update(m.magics[mtype])
393 393
394 394 def register_function(self, func, magic_kind='line', magic_name=None):
395 395 """Expose a standalone function as magic function for IPython.
396 396
397 397 This will create an IPython magic (line, cell or both) from a
398 398 standalone function. The functions should have the following
399 399 signatures:
400 400
401 401 * For line magics: `def f(line)`
402 402 * For cell magics: `def f(line, cell)`
403 403 * For a function that does both: `def f(line, cell=None)`
404 404
405 405 In the latter case, the function will be called with `cell==None` when
406 406 invoked as `%f`, and with cell as a string when invoked as `%%f`.
407 407
408 408 Parameters
409 409 ----------
410 410 func : callable
411 411 Function to be registered as a magic.
412 412
413 413 magic_kind : str
414 414 Kind of magic, one of 'line', 'cell' or 'line_cell'
415 415
416 416 magic_name : optional str
417 417 If given, the name the magic will have in the IPython namespace. By
418 418 default, the name of the function itself is used.
419 419 """
420 420
421 421 # Create the new method in the user_magics and register it in the
422 422 # global table
423 423 validate_type(magic_kind)
424 424 magic_name = func.__name__ if magic_name is None else magic_name
425 425 setattr(self.user_magics, magic_name, func)
426 426 record_magic(self.magics, magic_kind, magic_name, func)
427 427
428 428 def register_alias(self, alias_name, magic_name, magic_kind='line'):
429 429 """Register an alias to a magic function.
430 430
431 431 The alias is an instance of :class:`MagicAlias`, which holds the
432 432 name and kind of the magic it should call. Binding is done at
433 433 call time, so if the underlying magic function is changed the alias
434 434 will call the new function.
435 435
436 436 Parameters
437 437 ----------
438 438 alias_name : str
439 439 The name of the magic to be registered.
440 440
441 441 magic_name : str
442 442 The name of an existing magic.
443 443
444 444 magic_kind : str
445 445 Kind of magic, one of 'line' or 'cell'
446 446 """
447 447
448 448 # `validate_type` is too permissive, as it allows 'line_cell'
449 449 # which we do not handle.
450 450 if magic_kind not in magic_kinds:
451 451 raise ValueError('magic_kind must be one of %s, %s given' %
452 452 magic_kinds, magic_kind)
453 453
454 454 alias = MagicAlias(self.shell, magic_name, magic_kind)
455 455 setattr(self.user_magics, alias_name, alias)
456 456 record_magic(self.magics, magic_kind, alias_name, alias)
457 457
458 458 # Key base class that provides the central functionality for magics.
459 459
460 460
461 461 class Magics(Configurable):
462 462 """Base class for implementing magic functions.
463 463
464 464 Shell functions which can be reached as %function_name. All magic
465 465 functions should accept a string, which they can parse for their own
466 466 needs. This can make some functions easier to type, eg `%cd ../`
467 467 vs. `%cd("../")`
468 468
469 469 Classes providing magic functions need to subclass this class, and they
470 470 MUST:
471 471
472 472 - Use the method decorators `@line_magic` and `@cell_magic` to decorate
473 473 individual methods as magic functions, AND
474 474
475 475 - Use the class decorator `@magics_class` to ensure that the magic
476 476 methods are properly registered at the instance level upon instance
477 477 initialization.
478 478
479 479 See :mod:`magic_functions` for examples of actual implementation classes.
480 480 """
481 481 # Dict holding all command-line options for each magic.
482 482 options_table = None
483 483 # Dict for the mapping of magic names to methods, set by class decorator
484 484 magics = None
485 485 # Flag to check that the class decorator was properly applied
486 486 registered = False
487 487 # Instance of IPython shell
488 488 shell = None
489 489
490 490 def __init__(self, shell=None, **kwargs):
491 491 if not(self.__class__.registered):
492 492 raise ValueError('Magics subclass without registration - '
493 493 'did you forget to apply @magics_class?')
494 494 if shell is not None:
495 495 if hasattr(shell, 'configurables'):
496 496 shell.configurables.append(self)
497 497 if hasattr(shell, 'config'):
498 498 kwargs.setdefault('parent', shell)
499 499
500 500 self.shell = shell
501 501 self.options_table = {}
502 502 # The method decorators are run when the instance doesn't exist yet, so
503 503 # they can only record the names of the methods they are supposed to
504 504 # grab. Only now, that the instance exists, can we create the proper
505 505 # mapping to bound methods. So we read the info off the original names
506 506 # table and replace each method name by the actual bound method.
507 507 # But we mustn't clobber the *class* mapping, in case of multiple instances.
508 508 class_magics = self.magics
509 509 self.magics = {}
510 510 for mtype in magic_kinds:
511 511 tab = self.magics[mtype] = {}
512 512 cls_tab = class_magics[mtype]
513 for magic_name, meth_name in iteritems(cls_tab):
513 for magic_name, meth_name in cls_tab.items():
514 514 if isinstance(meth_name, string_types):
515 515 # it's a method name, grab it
516 516 tab[magic_name] = getattr(self, meth_name)
517 517 else:
518 518 # it's the real thing
519 519 tab[magic_name] = meth_name
520 520 # Configurable **needs** to be initiated at the end or the config
521 521 # magics get screwed up.
522 522 super(Magics, self).__init__(**kwargs)
523 523
524 524 def arg_err(self,func):
525 525 """Print docstring if incorrect arguments were passed"""
526 526 print('Error in arguments:')
527 527 print(oinspect.getdoc(func))
528 528
529 529 def format_latex(self, strng):
530 530 """Format a string for latex inclusion."""
531 531
532 532 # Characters that need to be escaped for latex:
533 533 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
534 534 # Magic command names as headers:
535 535 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
536 536 re.MULTILINE)
537 537 # Magic commands
538 538 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
539 539 re.MULTILINE)
540 540 # Paragraph continue
541 541 par_re = re.compile(r'\\$',re.MULTILINE)
542 542
543 543 # The "\n" symbol
544 544 newline_re = re.compile(r'\\n')
545 545
546 546 # Now build the string for output:
547 547 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
548 548 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
549 549 strng)
550 550 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
551 551 strng = par_re.sub(r'\\\\',strng)
552 552 strng = escape_re.sub(r'\\\1',strng)
553 553 strng = newline_re.sub(r'\\textbackslash{}n',strng)
554 554 return strng
555 555
556 556 def parse_options(self, arg_str, opt_str, *long_opts, **kw):
557 557 """Parse options passed to an argument string.
558 558
559 559 The interface is similar to that of :func:`getopt.getopt`, but it
560 560 returns a :class:`~IPython.utils.struct.Struct` with the options as keys
561 561 and the stripped argument string still as a string.
562 562
563 563 arg_str is quoted as a true sys.argv vector by using shlex.split.
564 564 This allows us to easily expand variables, glob files, quote
565 565 arguments, etc.
566 566
567 567 Parameters
568 568 ----------
569 569
570 570 arg_str : str
571 571 The arguments to parse.
572 572
573 573 opt_str : str
574 574 The options specification.
575 575
576 576 mode : str, default 'string'
577 577 If given as 'list', the argument string is returned as a list (split
578 578 on whitespace) instead of a string.
579 579
580 580 list_all : bool, default False
581 581 Put all option values in lists. Normally only options
582 582 appearing more than once are put in a list.
583 583
584 584 posix : bool, default True
585 585 Whether to split the input line in POSIX mode or not, as per the
586 586 conventions outlined in the :mod:`shlex` module from the standard
587 587 library.
588 588 """
589 589
590 590 # inject default options at the beginning of the input line
591 591 caller = sys._getframe(1).f_code.co_name
592 592 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
593 593
594 594 mode = kw.get('mode','string')
595 595 if mode not in ['string','list']:
596 596 raise ValueError('incorrect mode given: %s' % mode)
597 597 # Get options
598 598 list_all = kw.get('list_all',0)
599 599 posix = kw.get('posix', os.name == 'posix')
600 600 strict = kw.get('strict', True)
601 601
602 602 # Check if we have more than one argument to warrant extra processing:
603 603 odict = {} # Dictionary with options
604 604 args = arg_str.split()
605 605 if len(args) >= 1:
606 606 # If the list of inputs only has 0 or 1 thing in it, there's no
607 607 # need to look for options
608 608 argv = arg_split(arg_str, posix, strict)
609 609 # Do regular option processing
610 610 try:
611 611 opts,args = getopt(argv, opt_str, long_opts)
612 612 except GetoptError as e:
613 613 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
614 614 " ".join(long_opts)))
615 615 for o,a in opts:
616 616 if o.startswith('--'):
617 617 o = o[2:]
618 618 else:
619 619 o = o[1:]
620 620 try:
621 621 odict[o].append(a)
622 622 except AttributeError:
623 623 odict[o] = [odict[o],a]
624 624 except KeyError:
625 625 if list_all:
626 626 odict[o] = [a]
627 627 else:
628 628 odict[o] = a
629 629
630 630 # Prepare opts,args for return
631 631 opts = Struct(odict)
632 632 if mode == 'string':
633 633 args = ' '.join(args)
634 634
635 635 return opts,args
636 636
637 637 def default_option(self, fn, optstr):
638 638 """Make an entry in the options_table for fn, with value optstr"""
639 639
640 640 if fn not in self.lsmagic():
641 641 error("%s is not a magic function" % fn)
642 642 self.options_table[fn] = optstr
643 643
644 644
645 645 class MagicAlias(object):
646 646 """An alias to another magic function.
647 647
648 648 An alias is determined by its magic name and magic kind. Lookup
649 649 is done at call time, so if the underlying magic changes the alias
650 650 will call the new function.
651 651
652 652 Use the :meth:`MagicsManager.register_alias` method or the
653 653 `%alias_magic` magic function to create and register a new alias.
654 654 """
655 655 def __init__(self, shell, magic_name, magic_kind):
656 656 self.shell = shell
657 657 self.magic_name = magic_name
658 658 self.magic_kind = magic_kind
659 659
660 660 self.pretty_target = '%s%s' % (magic_escapes[self.magic_kind], self.magic_name)
661 661 self.__doc__ = "Alias for `%s`." % self.pretty_target
662 662
663 663 self._in_call = False
664 664
665 665 def __call__(self, *args, **kwargs):
666 666 """Call the magic alias."""
667 667 fn = self.shell.find_magic(self.magic_name, self.magic_kind)
668 668 if fn is None:
669 669 raise UsageError("Magic `%s` not found." % self.pretty_target)
670 670
671 671 # Protect against infinite recursion.
672 672 if self._in_call:
673 673 raise UsageError("Infinite recursion detected; "
674 674 "magic aliases cannot call themselves.")
675 675 self._in_call = True
676 676 try:
677 677 return fn(*args, **kwargs)
678 678 finally:
679 679 self._in_call = False
@@ -1,1373 +1,1372 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Implementation of execution-related magic functions."""
3 3
4 4 # Copyright (c) IPython Development Team.
5 5 # Distributed under the terms of the Modified BSD License.
6 6
7 7
8 8 import ast
9 9 import bdb
10 10 import gc
11 11 import itertools
12 12 import os
13 13 import sys
14 14 import time
15 15 import timeit
16 16 import math
17 17 from pdb import Restart
18 18
19 19 # cProfile was added in Python2.5
20 20 try:
21 21 import cProfile as profile
22 22 import pstats
23 23 except ImportError:
24 24 # profile isn't bundled by default in Debian for license reasons
25 25 try:
26 26 import profile, pstats
27 27 except ImportError:
28 28 profile = pstats = None
29 29
30 30 from IPython.core import oinspect
31 31 from IPython.core import magic_arguments
32 32 from IPython.core import page
33 33 from IPython.core.error import UsageError
34 34 from IPython.core.macro import Macro
35 35 from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic,
36 36 line_cell_magic, on_off, needs_local_scope)
37 37 from IPython.testing.skipdoctest import skip_doctest
38 38 from IPython.utils import py3compat
39 from IPython.utils.py3compat import builtin_mod, iteritems, PY3
39 from IPython.utils.py3compat import builtin_mod, PY3
40 40 from IPython.utils.contexts import preserve_keys
41 41 from IPython.utils.capture import capture_output
42 42 from IPython.utils.ipstruct import Struct
43 43 from IPython.utils.module_paths import find_mod
44 44 from IPython.utils.path import get_py_filename, shellglob
45 45 from IPython.utils.timing import clock, clock2
46 46 from warnings import warn
47 47 from logging import error
48 48
49 49 if PY3:
50 50 from io import StringIO
51 51 else:
52 52 from StringIO import StringIO
53 53
54 54 #-----------------------------------------------------------------------------
55 55 # Magic implementation classes
56 56 #-----------------------------------------------------------------------------
57 57
58 58
59 59 class TimeitResult(object):
60 60 """
61 61 Object returned by the timeit magic with info about the run.
62 62
63 63 Contains the following attributes :
64 64
65 65 loops: (int) number of loops done per measurement
66 66 repeat: (int) number of times the measurement has been repeated
67 67 best: (float) best execution time / number
68 68 all_runs: (list of float) execution time of each run (in s)
69 69 compile_time: (float) time of statement compilation (s)
70 70
71 71 """
72 72 def __init__(self, loops, repeat, best, worst, all_runs, compile_time, precision):
73 73 self.loops = loops
74 74 self.repeat = repeat
75 75 self.best = best
76 76 self.worst = worst
77 77 self.all_runs = all_runs
78 78 self.compile_time = compile_time
79 79 self._precision = precision
80 80 self.timings = [ dt / self.loops for dt in all_runs]
81 81
82 82 @property
83 83 def average(self):
84 84 return math.fsum(self.timings) / len(self.timings)
85 85
86 86 @property
87 87 def stdev(self):
88 88 mean = self.average
89 89 return (math.fsum([(x - mean) ** 2 for x in self.timings]) / len(self.timings)) ** 0.5
90 90
91 91 def __str__(self):
92 92 return (u"%s loop%s, average of %d: %s +- %s per loop (using standard deviation)"
93 93 % (self.loops,"" if self.loops == 1 else "s", self.repeat,
94 94 _format_time(self.average, self._precision),
95 95 _format_time(self.stdev, self._precision)))
96 96
97 97 def _repr_pretty_(self, p , cycle):
98 98 unic = self.__str__()
99 99 p.text(u'<TimeitResult : '+unic+u'>')
100 100
101 101
102 102
103 103 class TimeitTemplateFiller(ast.NodeTransformer):
104 104 """Fill in the AST template for timing execution.
105 105
106 106 This is quite closely tied to the template definition, which is in
107 107 :meth:`ExecutionMagics.timeit`.
108 108 """
109 109 def __init__(self, ast_setup, ast_stmt):
110 110 self.ast_setup = ast_setup
111 111 self.ast_stmt = ast_stmt
112 112
113 113 def visit_FunctionDef(self, node):
114 114 "Fill in the setup statement"
115 115 self.generic_visit(node)
116 116 if node.name == "inner":
117 117 node.body[:1] = self.ast_setup.body
118 118
119 119 return node
120 120
121 121 def visit_For(self, node):
122 122 "Fill in the statement to be timed"
123 123 if getattr(getattr(node.body[0], 'value', None), 'id', None) == 'stmt':
124 124 node.body = self.ast_stmt.body
125 125 return node
126 126
127 127
128 128 class Timer(timeit.Timer):
129 129 """Timer class that explicitly uses self.inner
130 130
131 131 which is an undocumented implementation detail of CPython,
132 132 not shared by PyPy.
133 133 """
134 134 # Timer.timeit copied from CPython 3.4.2
135 135 def timeit(self, number=timeit.default_number):
136 136 """Time 'number' executions of the main statement.
137 137
138 138 To be precise, this executes the setup statement once, and
139 139 then returns the time it takes to execute the main statement
140 140 a number of times, as a float measured in seconds. The
141 141 argument is the number of times through the loop, defaulting
142 142 to one million. The main statement, the setup statement and
143 143 the timer function to be used are passed to the constructor.
144 144 """
145 145 it = itertools.repeat(None, number)
146 146 gcold = gc.isenabled()
147 147 gc.disable()
148 148 try:
149 149 timing = self.inner(it, self.timer)
150 150 finally:
151 151 if gcold:
152 152 gc.enable()
153 153 return timing
154 154
155 155
156 156 @magics_class
157 157 class ExecutionMagics(Magics):
158 158 """Magics related to code execution, debugging, profiling, etc.
159 159
160 160 """
161 161
162 162 def __init__(self, shell):
163 163 super(ExecutionMagics, self).__init__(shell)
164 164 if profile is None:
165 165 self.prun = self.profile_missing_notice
166 166 # Default execution function used to actually run user code.
167 167 self.default_runner = None
168 168
169 169 def profile_missing_notice(self, *args, **kwargs):
170 170 error("""\
171 171 The profile module could not be found. It has been removed from the standard
172 172 python packages because of its non-free license. To use profiling, install the
173 173 python-profiler package from non-free.""")
174 174
175 175 @skip_doctest
176 176 @line_cell_magic
177 177 def prun(self, parameter_s='', cell=None):
178 178
179 179 """Run a statement through the python code profiler.
180 180
181 181 Usage, in line mode:
182 182 %prun [options] statement
183 183
184 184 Usage, in cell mode:
185 185 %%prun [options] [statement]
186 186 code...
187 187 code...
188 188
189 189 In cell mode, the additional code lines are appended to the (possibly
190 190 empty) statement in the first line. Cell mode allows you to easily
191 191 profile multiline blocks without having to put them in a separate
192 192 function.
193 193
194 194 The given statement (which doesn't require quote marks) is run via the
195 195 python profiler in a manner similar to the profile.run() function.
196 196 Namespaces are internally managed to work correctly; profile.run
197 197 cannot be used in IPython because it makes certain assumptions about
198 198 namespaces which do not hold under IPython.
199 199
200 200 Options:
201 201
202 202 -l <limit>
203 203 you can place restrictions on what or how much of the
204 204 profile gets printed. The limit value can be:
205 205
206 206 * A string: only information for function names containing this string
207 207 is printed.
208 208
209 209 * An integer: only these many lines are printed.
210 210
211 211 * A float (between 0 and 1): this fraction of the report is printed
212 212 (for example, use a limit of 0.4 to see the topmost 40% only).
213 213
214 214 You can combine several limits with repeated use of the option. For
215 215 example, ``-l __init__ -l 5`` will print only the topmost 5 lines of
216 216 information about class constructors.
217 217
218 218 -r
219 219 return the pstats.Stats object generated by the profiling. This
220 220 object has all the information about the profile in it, and you can
221 221 later use it for further analysis or in other functions.
222 222
223 223 -s <key>
224 224 sort profile by given key. You can provide more than one key
225 225 by using the option several times: '-s key1 -s key2 -s key3...'. The
226 226 default sorting key is 'time'.
227 227
228 228 The following is copied verbatim from the profile documentation
229 229 referenced below:
230 230
231 231 When more than one key is provided, additional keys are used as
232 232 secondary criteria when the there is equality in all keys selected
233 233 before them.
234 234
235 235 Abbreviations can be used for any key names, as long as the
236 236 abbreviation is unambiguous. The following are the keys currently
237 237 defined:
238 238
239 239 ============ =====================
240 240 Valid Arg Meaning
241 241 ============ =====================
242 242 "calls" call count
243 243 "cumulative" cumulative time
244 244 "file" file name
245 245 "module" file name
246 246 "pcalls" primitive call count
247 247 "line" line number
248 248 "name" function name
249 249 "nfl" name/file/line
250 250 "stdname" standard name
251 251 "time" internal time
252 252 ============ =====================
253 253
254 254 Note that all sorts on statistics are in descending order (placing
255 255 most time consuming items first), where as name, file, and line number
256 256 searches are in ascending order (i.e., alphabetical). The subtle
257 257 distinction between "nfl" and "stdname" is that the standard name is a
258 258 sort of the name as printed, which means that the embedded line
259 259 numbers get compared in an odd way. For example, lines 3, 20, and 40
260 260 would (if the file names were the same) appear in the string order
261 261 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
262 262 line numbers. In fact, sort_stats("nfl") is the same as
263 263 sort_stats("name", "file", "line").
264 264
265 265 -T <filename>
266 266 save profile results as shown on screen to a text
267 267 file. The profile is still shown on screen.
268 268
269 269 -D <filename>
270 270 save (via dump_stats) profile statistics to given
271 271 filename. This data is in a format understood by the pstats module, and
272 272 is generated by a call to the dump_stats() method of profile
273 273 objects. The profile is still shown on screen.
274 274
275 275 -q
276 276 suppress output to the pager. Best used with -T and/or -D above.
277 277
278 278 If you want to run complete programs under the profiler's control, use
279 279 ``%run -p [prof_opts] filename.py [args to program]`` where prof_opts
280 280 contains profiler specific options as described here.
281 281
282 282 You can read the complete documentation for the profile module with::
283 283
284 284 In [1]: import profile; profile.help()
285 285 """
286 286 opts, arg_str = self.parse_options(parameter_s, 'D:l:rs:T:q',
287 287 list_all=True, posix=False)
288 288 if cell is not None:
289 289 arg_str += '\n' + cell
290 290 arg_str = self.shell.input_splitter.transform_cell(arg_str)
291 291 return self._run_with_profiler(arg_str, opts, self.shell.user_ns)
292 292
293 293 def _run_with_profiler(self, code, opts, namespace):
294 294 """
295 295 Run `code` with profiler. Used by ``%prun`` and ``%run -p``.
296 296
297 297 Parameters
298 298 ----------
299 299 code : str
300 300 Code to be executed.
301 301 opts : Struct
302 302 Options parsed by `self.parse_options`.
303 303 namespace : dict
304 304 A dictionary for Python namespace (e.g., `self.shell.user_ns`).
305 305
306 306 """
307 307
308 308 # Fill default values for unspecified options:
309 309 opts.merge(Struct(D=[''], l=[], s=['time'], T=['']))
310 310
311 311 prof = profile.Profile()
312 312 try:
313 313 prof = prof.runctx(code, namespace, namespace)
314 314 sys_exit = ''
315 315 except SystemExit:
316 316 sys_exit = """*** SystemExit exception caught in code being profiled."""
317 317
318 318 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
319 319
320 320 lims = opts.l
321 321 if lims:
322 322 lims = [] # rebuild lims with ints/floats/strings
323 323 for lim in opts.l:
324 324 try:
325 325 lims.append(int(lim))
326 326 except ValueError:
327 327 try:
328 328 lims.append(float(lim))
329 329 except ValueError:
330 330 lims.append(lim)
331 331
332 332 # Trap output.
333 333 stdout_trap = StringIO()
334 334 stats_stream = stats.stream
335 335 try:
336 336 stats.stream = stdout_trap
337 337 stats.print_stats(*lims)
338 338 finally:
339 339 stats.stream = stats_stream
340 340
341 341 output = stdout_trap.getvalue()
342 342 output = output.rstrip()
343 343
344 344 if 'q' not in opts:
345 345 page.page(output)
346 346 print(sys_exit, end=' ')
347 347
348 348 dump_file = opts.D[0]
349 349 text_file = opts.T[0]
350 350 if dump_file:
351 351 prof.dump_stats(dump_file)
352 352 print('\n*** Profile stats marshalled to file',\
353 353 repr(dump_file)+'.',sys_exit)
354 354 if text_file:
355 355 pfile = open(text_file,'w')
356 356 pfile.write(output)
357 357 pfile.close()
358 358 print('\n*** Profile printout saved to text file',\
359 359 repr(text_file)+'.',sys_exit)
360 360
361 361 if 'r' in opts:
362 362 return stats
363 363 else:
364 364 return None
365 365
366 366 @line_magic
367 367 def pdb(self, parameter_s=''):
368 368 """Control the automatic calling of the pdb interactive debugger.
369 369
370 370 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
371 371 argument it works as a toggle.
372 372
373 373 When an exception is triggered, IPython can optionally call the
374 374 interactive pdb debugger after the traceback printout. %pdb toggles
375 375 this feature on and off.
376 376
377 377 The initial state of this feature is set in your configuration
378 378 file (the option is ``InteractiveShell.pdb``).
379 379
380 380 If you want to just activate the debugger AFTER an exception has fired,
381 381 without having to type '%pdb on' and rerunning your code, you can use
382 382 the %debug magic."""
383 383
384 384 par = parameter_s.strip().lower()
385 385
386 386 if par:
387 387 try:
388 388 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
389 389 except KeyError:
390 390 print ('Incorrect argument. Use on/1, off/0, '
391 391 'or nothing for a toggle.')
392 392 return
393 393 else:
394 394 # toggle
395 395 new_pdb = not self.shell.call_pdb
396 396
397 397 # set on the shell
398 398 self.shell.call_pdb = new_pdb
399 399 print('Automatic pdb calling has been turned',on_off(new_pdb))
400 400
401 401 @skip_doctest
402 402 @magic_arguments.magic_arguments()
403 403 @magic_arguments.argument('--breakpoint', '-b', metavar='FILE:LINE',
404 404 help="""
405 405 Set break point at LINE in FILE.
406 406 """
407 407 )
408 408 @magic_arguments.argument('statement', nargs='*',
409 409 help="""
410 410 Code to run in debugger.
411 411 You can omit this in cell magic mode.
412 412 """
413 413 )
414 414 @line_cell_magic
415 415 def debug(self, line='', cell=None):
416 416 """Activate the interactive debugger.
417 417
418 418 This magic command support two ways of activating debugger.
419 419 One is to activate debugger before executing code. This way, you
420 420 can set a break point, to step through the code from the point.
421 421 You can use this mode by giving statements to execute and optionally
422 422 a breakpoint.
423 423
424 424 The other one is to activate debugger in post-mortem mode. You can
425 425 activate this mode simply running %debug without any argument.
426 426 If an exception has just occurred, this lets you inspect its stack
427 427 frames interactively. Note that this will always work only on the last
428 428 traceback that occurred, so you must call this quickly after an
429 429 exception that you wish to inspect has fired, because if another one
430 430 occurs, it clobbers the previous one.
431 431
432 432 If you want IPython to automatically do this on every exception, see
433 433 the %pdb magic for more details.
434 434 """
435 435 args = magic_arguments.parse_argstring(self.debug, line)
436 436
437 437 if not (args.breakpoint or args.statement or cell):
438 438 self._debug_post_mortem()
439 439 else:
440 440 code = "\n".join(args.statement)
441 441 if cell:
442 442 code += "\n" + cell
443 443 self._debug_exec(code, args.breakpoint)
444 444
445 445 def _debug_post_mortem(self):
446 446 self.shell.debugger(force=True)
447 447
448 448 def _debug_exec(self, code, breakpoint):
449 449 if breakpoint:
450 450 (filename, bp_line) = breakpoint.rsplit(':', 1)
451 451 bp_line = int(bp_line)
452 452 else:
453 453 (filename, bp_line) = (None, None)
454 454 self._run_with_debugger(code, self.shell.user_ns, filename, bp_line)
455 455
456 456 @line_magic
457 457 def tb(self, s):
458 458 """Print the last traceback with the currently active exception mode.
459 459
460 460 See %xmode for changing exception reporting modes."""
461 461 self.shell.showtraceback()
462 462
463 463 @skip_doctest
464 464 @line_magic
465 465 def run(self, parameter_s='', runner=None,
466 466 file_finder=get_py_filename):
467 467 """Run the named file inside IPython as a program.
468 468
469 469 Usage::
470 470
471 471 %run [-n -i -e -G]
472 472 [( -t [-N<N>] | -d [-b<N>] | -p [profile options] )]
473 473 ( -m mod | file ) [args]
474 474
475 475 Parameters after the filename are passed as command-line arguments to
476 476 the program (put in sys.argv). Then, control returns to IPython's
477 477 prompt.
478 478
479 479 This is similar to running at a system prompt ``python file args``,
480 480 but with the advantage of giving you IPython's tracebacks, and of
481 481 loading all variables into your interactive namespace for further use
482 482 (unless -p is used, see below).
483 483
484 484 The file is executed in a namespace initially consisting only of
485 485 ``__name__=='__main__'`` and sys.argv constructed as indicated. It thus
486 486 sees its environment as if it were being run as a stand-alone program
487 487 (except for sharing global objects such as previously imported
488 488 modules). But after execution, the IPython interactive namespace gets
489 489 updated with all variables defined in the program (except for __name__
490 490 and sys.argv). This allows for very convenient loading of code for
491 491 interactive work, while giving each program a 'clean sheet' to run in.
492 492
493 493 Arguments are expanded using shell-like glob match. Patterns
494 494 '*', '?', '[seq]' and '[!seq]' can be used. Additionally,
495 495 tilde '~' will be expanded into user's home directory. Unlike
496 496 real shells, quotation does not suppress expansions. Use
497 497 *two* back slashes (e.g. ``\\\\*``) to suppress expansions.
498 498 To completely disable these expansions, you can use -G flag.
499 499
500 500 Options:
501 501
502 502 -n
503 503 __name__ is NOT set to '__main__', but to the running file's name
504 504 without extension (as python does under import). This allows running
505 505 scripts and reloading the definitions in them without calling code
506 506 protected by an ``if __name__ == "__main__"`` clause.
507 507
508 508 -i
509 509 run the file in IPython's namespace instead of an empty one. This
510 510 is useful if you are experimenting with code written in a text editor
511 511 which depends on variables defined interactively.
512 512
513 513 -e
514 514 ignore sys.exit() calls or SystemExit exceptions in the script
515 515 being run. This is particularly useful if IPython is being used to
516 516 run unittests, which always exit with a sys.exit() call. In such
517 517 cases you are interested in the output of the test results, not in
518 518 seeing a traceback of the unittest module.
519 519
520 520 -t
521 521 print timing information at the end of the run. IPython will give
522 522 you an estimated CPU time consumption for your script, which under
523 523 Unix uses the resource module to avoid the wraparound problems of
524 524 time.clock(). Under Unix, an estimate of time spent on system tasks
525 525 is also given (for Windows platforms this is reported as 0.0).
526 526
527 527 If -t is given, an additional ``-N<N>`` option can be given, where <N>
528 528 must be an integer indicating how many times you want the script to
529 529 run. The final timing report will include total and per run results.
530 530
531 531 For example (testing the script uniq_stable.py)::
532 532
533 533 In [1]: run -t uniq_stable
534 534
535 535 IPython CPU timings (estimated):
536 536 User : 0.19597 s.
537 537 System: 0.0 s.
538 538
539 539 In [2]: run -t -N5 uniq_stable
540 540
541 541 IPython CPU timings (estimated):
542 542 Total runs performed: 5
543 543 Times : Total Per run
544 544 User : 0.910862 s, 0.1821724 s.
545 545 System: 0.0 s, 0.0 s.
546 546
547 547 -d
548 548 run your program under the control of pdb, the Python debugger.
549 549 This allows you to execute your program step by step, watch variables,
550 550 etc. Internally, what IPython does is similar to calling::
551 551
552 552 pdb.run('execfile("YOURFILENAME")')
553 553
554 554 with a breakpoint set on line 1 of your file. You can change the line
555 555 number for this automatic breakpoint to be <N> by using the -bN option
556 556 (where N must be an integer). For example::
557 557
558 558 %run -d -b40 myscript
559 559
560 560 will set the first breakpoint at line 40 in myscript.py. Note that
561 561 the first breakpoint must be set on a line which actually does
562 562 something (not a comment or docstring) for it to stop execution.
563 563
564 564 Or you can specify a breakpoint in a different file::
565 565
566 566 %run -d -b myotherfile.py:20 myscript
567 567
568 568 When the pdb debugger starts, you will see a (Pdb) prompt. You must
569 569 first enter 'c' (without quotes) to start execution up to the first
570 570 breakpoint.
571 571
572 572 Entering 'help' gives information about the use of the debugger. You
573 573 can easily see pdb's full documentation with "import pdb;pdb.help()"
574 574 at a prompt.
575 575
576 576 -p
577 577 run program under the control of the Python profiler module (which
578 578 prints a detailed report of execution times, function calls, etc).
579 579
580 580 You can pass other options after -p which affect the behavior of the
581 581 profiler itself. See the docs for %prun for details.
582 582
583 583 In this mode, the program's variables do NOT propagate back to the
584 584 IPython interactive namespace (because they remain in the namespace
585 585 where the profiler executes them).
586 586
587 587 Internally this triggers a call to %prun, see its documentation for
588 588 details on the options available specifically for profiling.
589 589
590 590 There is one special usage for which the text above doesn't apply:
591 591 if the filename ends with .ipy[nb], the file is run as ipython script,
592 592 just as if the commands were written on IPython prompt.
593 593
594 594 -m
595 595 specify module name to load instead of script path. Similar to
596 596 the -m option for the python interpreter. Use this option last if you
597 597 want to combine with other %run options. Unlike the python interpreter
598 598 only source modules are allowed no .pyc or .pyo files.
599 599 For example::
600 600
601 601 %run -m example
602 602
603 603 will run the example module.
604 604
605 605 -G
606 606 disable shell-like glob expansion of arguments.
607 607
608 608 """
609 609
610 610 # get arguments and set sys.argv for program to be run.
611 611 opts, arg_lst = self.parse_options(parameter_s,
612 612 'nidtN:b:pD:l:rs:T:em:G',
613 613 mode='list', list_all=1)
614 614 if "m" in opts:
615 615 modulename = opts["m"][0]
616 616 modpath = find_mod(modulename)
617 617 if modpath is None:
618 618 warn('%r is not a valid modulename on sys.path'%modulename)
619 619 return
620 620 arg_lst = [modpath] + arg_lst
621 621 try:
622 622 filename = file_finder(arg_lst[0])
623 623 except IndexError:
624 624 warn('you must provide at least a filename.')
625 625 print('\n%run:\n', oinspect.getdoc(self.run))
626 626 return
627 627 except IOError as e:
628 628 try:
629 629 msg = str(e)
630 630 except UnicodeError:
631 631 msg = e.message
632 632 error(msg)
633 633 return
634 634
635 635 if filename.lower().endswith(('.ipy', '.ipynb')):
636 636 with preserve_keys(self.shell.user_ns, '__file__'):
637 637 self.shell.user_ns['__file__'] = filename
638 638 self.shell.safe_execfile_ipy(filename)
639 639 return
640 640
641 641 # Control the response to exit() calls made by the script being run
642 642 exit_ignore = 'e' in opts
643 643
644 644 # Make sure that the running script gets a proper sys.argv as if it
645 645 # were run from a system shell.
646 646 save_argv = sys.argv # save it for later restoring
647 647
648 648 if 'G' in opts:
649 649 args = arg_lst[1:]
650 650 else:
651 651 # tilde and glob expansion
652 652 args = shellglob(map(os.path.expanduser, arg_lst[1:]))
653 653
654 654 sys.argv = [filename] + args # put in the proper filename
655 655 # protect sys.argv from potential unicode strings on Python 2:
656 656 if not py3compat.PY3:
657 657 sys.argv = [ py3compat.cast_bytes(a) for a in sys.argv ]
658 658
659 659 if 'i' in opts:
660 660 # Run in user's interactive namespace
661 661 prog_ns = self.shell.user_ns
662 662 __name__save = self.shell.user_ns['__name__']
663 663 prog_ns['__name__'] = '__main__'
664 664 main_mod = self.shell.user_module
665 665
666 666 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
667 667 # set the __file__ global in the script's namespace
668 668 # TK: Is this necessary in interactive mode?
669 669 prog_ns['__file__'] = filename
670 670 else:
671 671 # Run in a fresh, empty namespace
672 672 if 'n' in opts:
673 673 name = os.path.splitext(os.path.basename(filename))[0]
674 674 else:
675 675 name = '__main__'
676 676
677 677 # The shell MUST hold a reference to prog_ns so after %run
678 678 # exits, the python deletion mechanism doesn't zero it out
679 679 # (leaving dangling references). See interactiveshell for details
680 680 main_mod = self.shell.new_main_mod(filename, name)
681 681 prog_ns = main_mod.__dict__
682 682
683 683 # pickle fix. See interactiveshell for an explanation. But we need to
684 684 # make sure that, if we overwrite __main__, we replace it at the end
685 685 main_mod_name = prog_ns['__name__']
686 686
687 687 if main_mod_name == '__main__':
688 688 restore_main = sys.modules['__main__']
689 689 else:
690 690 restore_main = False
691 691
692 692 # This needs to be undone at the end to prevent holding references to
693 693 # every single object ever created.
694 694 sys.modules[main_mod_name] = main_mod
695 695
696 696 if 'p' in opts or 'd' in opts:
697 697 if 'm' in opts:
698 698 code = 'run_module(modulename, prog_ns)'
699 699 code_ns = {
700 700 'run_module': self.shell.safe_run_module,
701 701 'prog_ns': prog_ns,
702 702 'modulename': modulename,
703 703 }
704 704 else:
705 705 if 'd' in opts:
706 706 # allow exceptions to raise in debug mode
707 707 code = 'execfile(filename, prog_ns, raise_exceptions=True)'
708 708 else:
709 709 code = 'execfile(filename, prog_ns)'
710 710 code_ns = {
711 711 'execfile': self.shell.safe_execfile,
712 712 'prog_ns': prog_ns,
713 713 'filename': get_py_filename(filename),
714 714 }
715 715
716 716 try:
717 717 stats = None
718 718 if 'p' in opts:
719 719 stats = self._run_with_profiler(code, opts, code_ns)
720 720 else:
721 721 if 'd' in opts:
722 722 bp_file, bp_line = parse_breakpoint(
723 723 opts.get('b', ['1'])[0], filename)
724 724 self._run_with_debugger(
725 725 code, code_ns, filename, bp_line, bp_file)
726 726 else:
727 727 if 'm' in opts:
728 728 def run():
729 729 self.shell.safe_run_module(modulename, prog_ns)
730 730 else:
731 731 if runner is None:
732 732 runner = self.default_runner
733 733 if runner is None:
734 734 runner = self.shell.safe_execfile
735 735
736 736 def run():
737 737 runner(filename, prog_ns, prog_ns,
738 738 exit_ignore=exit_ignore)
739 739
740 740 if 't' in opts:
741 741 # timed execution
742 742 try:
743 743 nruns = int(opts['N'][0])
744 744 if nruns < 1:
745 745 error('Number of runs must be >=1')
746 746 return
747 747 except (KeyError):
748 748 nruns = 1
749 749 self._run_with_timing(run, nruns)
750 750 else:
751 751 # regular execution
752 752 run()
753 753
754 754 if 'i' in opts:
755 755 self.shell.user_ns['__name__'] = __name__save
756 756 else:
757 757 # update IPython interactive namespace
758 758
759 759 # Some forms of read errors on the file may mean the
760 760 # __name__ key was never set; using pop we don't have to
761 761 # worry about a possible KeyError.
762 762 prog_ns.pop('__name__', None)
763 763
764 764 with preserve_keys(self.shell.user_ns, '__file__'):
765 765 self.shell.user_ns.update(prog_ns)
766 766 finally:
767 767 # It's a bit of a mystery why, but __builtins__ can change from
768 768 # being a module to becoming a dict missing some key data after
769 769 # %run. As best I can see, this is NOT something IPython is doing
770 770 # at all, and similar problems have been reported before:
771 771 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
772 772 # Since this seems to be done by the interpreter itself, the best
773 773 # we can do is to at least restore __builtins__ for the user on
774 774 # exit.
775 775 self.shell.user_ns['__builtins__'] = builtin_mod
776 776
777 777 # Ensure key global structures are restored
778 778 sys.argv = save_argv
779 779 if restore_main:
780 780 sys.modules['__main__'] = restore_main
781 781 else:
782 782 # Remove from sys.modules the reference to main_mod we'd
783 783 # added. Otherwise it will trap references to objects
784 784 # contained therein.
785 785 del sys.modules[main_mod_name]
786 786
787 787 return stats
788 788
789 789 def _run_with_debugger(self, code, code_ns, filename=None,
790 790 bp_line=None, bp_file=None):
791 791 """
792 792 Run `code` in debugger with a break point.
793 793
794 794 Parameters
795 795 ----------
796 796 code : str
797 797 Code to execute.
798 798 code_ns : dict
799 799 A namespace in which `code` is executed.
800 800 filename : str
801 801 `code` is ran as if it is in `filename`.
802 802 bp_line : int, optional
803 803 Line number of the break point.
804 804 bp_file : str, optional
805 805 Path to the file in which break point is specified.
806 806 `filename` is used if not given.
807 807
808 808 Raises
809 809 ------
810 810 UsageError
811 811 If the break point given by `bp_line` is not valid.
812 812
813 813 """
814 814 deb = self.shell.InteractiveTB.pdb
815 815 if not deb:
816 816 self.shell.InteractiveTB.pdb = self.shell.InteractiveTB.debugger_cls()
817 817 deb = self.shell.InteractiveTB.pdb
818 818
819 819 # deb.checkline() fails if deb.curframe exists but is None; it can
820 820 # handle it not existing. https://github.com/ipython/ipython/issues/10028
821 821 if hasattr(deb, 'curframe'):
822 822 del deb.curframe
823 823
824 824 # reset Breakpoint state, which is moronically kept
825 825 # in a class
826 826 bdb.Breakpoint.next = 1
827 827 bdb.Breakpoint.bplist = {}
828 828 bdb.Breakpoint.bpbynumber = [None]
829 829 if bp_line is not None:
830 830 # Set an initial breakpoint to stop execution
831 831 maxtries = 10
832 832 bp_file = bp_file or filename
833 833 checkline = deb.checkline(bp_file, bp_line)
834 834 if not checkline:
835 835 for bp in range(bp_line + 1, bp_line + maxtries + 1):
836 836 if deb.checkline(bp_file, bp):
837 837 break
838 838 else:
839 839 msg = ("\nI failed to find a valid line to set "
840 840 "a breakpoint\n"
841 841 "after trying up to line: %s.\n"
842 842 "Please set a valid breakpoint manually "
843 843 "with the -b option." % bp)
844 844 raise UsageError(msg)
845 845 # if we find a good linenumber, set the breakpoint
846 846 deb.do_break('%s:%s' % (bp_file, bp_line))
847 847
848 848 if filename:
849 849 # Mimic Pdb._runscript(...)
850 850 deb._wait_for_mainpyfile = True
851 851 deb.mainpyfile = deb.canonic(filename)
852 852
853 853 # Start file run
854 854 print("NOTE: Enter 'c' at the %s prompt to continue execution." % deb.prompt)
855 855 try:
856 856 if filename:
857 857 # save filename so it can be used by methods on the deb object
858 858 deb._exec_filename = filename
859 859 while True:
860 860 try:
861 861 deb.run(code, code_ns)
862 862 except Restart:
863 863 print("Restarting")
864 864 if filename:
865 865 deb._wait_for_mainpyfile = True
866 866 deb.mainpyfile = deb.canonic(filename)
867 867 continue
868 868 else:
869 869 break
870 870
871 871
872 872 except:
873 873 etype, value, tb = sys.exc_info()
874 874 # Skip three frames in the traceback: the %run one,
875 875 # one inside bdb.py, and the command-line typed by the
876 876 # user (run by exec in pdb itself).
877 877 self.shell.InteractiveTB(etype, value, tb, tb_offset=3)
878 878
879 879 @staticmethod
880 880 def _run_with_timing(run, nruns):
881 881 """
882 882 Run function `run` and print timing information.
883 883
884 884 Parameters
885 885 ----------
886 886 run : callable
887 887 Any callable object which takes no argument.
888 888 nruns : int
889 889 Number of times to execute `run`.
890 890
891 891 """
892 892 twall0 = time.time()
893 893 if nruns == 1:
894 894 t0 = clock2()
895 895 run()
896 896 t1 = clock2()
897 897 t_usr = t1[0] - t0[0]
898 898 t_sys = t1[1] - t0[1]
899 899 print("\nIPython CPU timings (estimated):")
900 900 print(" User : %10.2f s." % t_usr)
901 901 print(" System : %10.2f s." % t_sys)
902 902 else:
903 903 runs = range(nruns)
904 904 t0 = clock2()
905 905 for nr in runs:
906 906 run()
907 907 t1 = clock2()
908 908 t_usr = t1[0] - t0[0]
909 909 t_sys = t1[1] - t0[1]
910 910 print("\nIPython CPU timings (estimated):")
911 911 print("Total runs performed:", nruns)
912 912 print(" Times : %10s %10s" % ('Total', 'Per run'))
913 913 print(" User : %10.2f s, %10.2f s." % (t_usr, t_usr / nruns))
914 914 print(" System : %10.2f s, %10.2f s." % (t_sys, t_sys / nruns))
915 915 twall1 = time.time()
916 916 print("Wall time: %10.2f s." % (twall1 - twall0))
917 917
918 918 @skip_doctest
919 919 @line_cell_magic
920 920 def timeit(self, line='', cell=None):
921 921 """Time execution of a Python statement or expression
922 922
923 923 Usage, in line mode:
924 924 %timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] statement
925 925 or in cell mode:
926 926 %%timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] setup_code
927 927 code
928 928 code...
929 929
930 930 Time execution of a Python statement or expression using the timeit
931 931 module. This function can be used both as a line and cell magic:
932 932
933 933 - In line mode you can time a single-line statement (though multiple
934 934 ones can be chained with using semicolons).
935 935
936 936 - In cell mode, the statement in the first line is used as setup code
937 937 (executed but not timed) and the body of the cell is timed. The cell
938 938 body has access to any variables created in the setup code.
939 939
940 940 Options:
941 941 -n<N>: execute the given statement <N> times in a loop. If this value
942 942 is not given, a fitting value is chosen.
943 943
944 944 -r<R>: repeat the loop iteration <R> times and take the best result.
945 945 Default: 3
946 946
947 947 -t: use time.time to measure the time, which is the default on Unix.
948 948 This function measures wall time.
949 949
950 950 -c: use time.clock to measure the time, which is the default on
951 951 Windows and measures wall time. On Unix, resource.getrusage is used
952 952 instead and returns the CPU user time.
953 953
954 954 -p<P>: use a precision of <P> digits to display the timing result.
955 955 Default: 3
956 956
957 957 -q: Quiet, do not print result.
958 958
959 959 -o: return a TimeitResult that can be stored in a variable to inspect
960 960 the result in more details.
961 961
962 962
963 963 Examples
964 964 --------
965 965 ::
966 966
967 967 In [1]: %timeit pass
968 968 100000000 loops, average of 7: 5.48 ns +- 0.354 ns per loop (using standard deviation)
969 969
970 970 In [2]: u = None
971 971
972 972 In [3]: %timeit u is None
973 973 10000000 loops, average of 7: 22.7 ns +- 2.33 ns per loop (using standard deviation)
974 974
975 975 In [4]: %timeit -r 4 u == None
976 976 10000000 loops, average of 4: 27.5 ns +- 2.91 ns per loop (using standard deviation)
977 977
978 978 In [5]: import time
979 979
980 980 In [6]: %timeit -n1 time.sleep(2)
981 981 1 loop, average of 7: 2 s +- 4.71 Β΅s per loop (using standard deviation)
982 982
983 983
984 984 The times reported by %timeit will be slightly higher than those
985 985 reported by the timeit.py script when variables are accessed. This is
986 986 due to the fact that %timeit executes the statement in the namespace
987 987 of the shell, compared with timeit.py, which uses a single setup
988 988 statement to import function or create variables. Generally, the bias
989 989 does not matter as long as results from timeit.py are not mixed with
990 990 those from %timeit."""
991 991
992 992 opts, stmt = self.parse_options(line,'n:r:tcp:qo',
993 993 posix=False, strict=False)
994 994 if stmt == "" and cell is None:
995 995 return
996 996
997 997 timefunc = timeit.default_timer
998 998 number = int(getattr(opts, "n", 0))
999 999 default_repeat = 7 if timeit.default_repeat < 7 else timeit.default_repeat
1000 1000 repeat = int(getattr(opts, "r", default_repeat))
1001 1001 precision = int(getattr(opts, "p", 3))
1002 1002 quiet = 'q' in opts
1003 1003 return_result = 'o' in opts
1004 1004 if hasattr(opts, "t"):
1005 1005 timefunc = time.time
1006 1006 if hasattr(opts, "c"):
1007 1007 timefunc = clock
1008 1008
1009 1009 timer = Timer(timer=timefunc)
1010 1010 # this code has tight coupling to the inner workings of timeit.Timer,
1011 1011 # but is there a better way to achieve that the code stmt has access
1012 1012 # to the shell namespace?
1013 1013 transform = self.shell.input_splitter.transform_cell
1014 1014
1015 1015 if cell is None:
1016 1016 # called as line magic
1017 1017 ast_setup = self.shell.compile.ast_parse("pass")
1018 1018 ast_stmt = self.shell.compile.ast_parse(transform(stmt))
1019 1019 else:
1020 1020 ast_setup = self.shell.compile.ast_parse(transform(stmt))
1021 1021 ast_stmt = self.shell.compile.ast_parse(transform(cell))
1022 1022
1023 1023 ast_setup = self.shell.transform_ast(ast_setup)
1024 1024 ast_stmt = self.shell.transform_ast(ast_stmt)
1025 1025
1026 1026 # This codestring is taken from timeit.template - we fill it in as an
1027 1027 # AST, so that we can apply our AST transformations to the user code
1028 1028 # without affecting the timing code.
1029 1029 timeit_ast_template = ast.parse('def inner(_it, _timer):\n'
1030 1030 ' setup\n'
1031 1031 ' _t0 = _timer()\n'
1032 1032 ' for _i in _it:\n'
1033 1033 ' stmt\n'
1034 1034 ' _t1 = _timer()\n'
1035 1035 ' return _t1 - _t0\n')
1036 1036
1037 1037 timeit_ast = TimeitTemplateFiller(ast_setup, ast_stmt).visit(timeit_ast_template)
1038 1038 timeit_ast = ast.fix_missing_locations(timeit_ast)
1039 1039
1040 1040 # Track compilation time so it can be reported if too long
1041 1041 # Minimum time above which compilation time will be reported
1042 1042 tc_min = 0.1
1043 1043
1044 1044 t0 = clock()
1045 1045 code = self.shell.compile(timeit_ast, "<magic-timeit>", "exec")
1046 1046 tc = clock()-t0
1047 1047
1048 1048 ns = {}
1049 1049 exec(code, self.shell.user_ns, ns)
1050 1050 timer.inner = ns["inner"]
1051 1051
1052 1052 # This is used to check if there is a huge difference between the
1053 1053 # best and worst timings.
1054 1054 # Issue: https://github.com/ipython/ipython/issues/6471
1055 1055 if number == 0:
1056 1056 # determine number so that 0.2 <= total time < 2.0
1057 1057 for index in range(0, 10):
1058 1058 number = 10 ** index
1059 1059 time_number = timer.timeit(number)
1060 1060 if time_number >= 0.2:
1061 1061 break
1062 1062
1063 1063 all_runs = timer.repeat(repeat, number)
1064 1064 best = min(all_runs) / number
1065 1065 worst = max(all_runs) / number
1066 1066 timeit_result = TimeitResult(number, repeat, best, worst, all_runs, tc, precision)
1067 1067
1068 1068 if not quiet :
1069 1069 # Check best timing is greater than zero to avoid a
1070 1070 # ZeroDivisionError.
1071 1071 # In cases where the slowest timing is lesser than a micosecond
1072 1072 # we assume that it does not really matter if the fastest
1073 1073 # timing is 4 times faster than the slowest timing or not.
1074 1074 if worst > 4 * best and best > 0 and worst > 1e-6:
1075 1075 print("The slowest run took %0.2f times longer than the "
1076 1076 "fastest. This could mean that an intermediate result "
1077 1077 "is being cached." % (worst / best))
1078 1078
1079 1079 print( timeit_result )
1080 1080
1081 1081 if tc > tc_min:
1082 1082 print("Compiler time: %.2f s" % tc)
1083 1083 if return_result:
1084 1084 return timeit_result
1085 1085
1086 1086 @skip_doctest
1087 1087 @needs_local_scope
1088 1088 @line_cell_magic
1089 1089 def time(self,line='', cell=None, local_ns=None):
1090 1090 """Time execution of a Python statement or expression.
1091 1091
1092 1092 The CPU and wall clock times are printed, and the value of the
1093 1093 expression (if any) is returned. Note that under Win32, system time
1094 1094 is always reported as 0, since it can not be measured.
1095 1095
1096 1096 This function can be used both as a line and cell magic:
1097 1097
1098 1098 - In line mode you can time a single-line statement (though multiple
1099 1099 ones can be chained with using semicolons).
1100 1100
1101 1101 - In cell mode, you can time the cell body (a directly
1102 1102 following statement raises an error).
1103 1103
1104 1104 This function provides very basic timing functionality. Use the timeit
1105 1105 magic for more control over the measurement.
1106 1106
1107 1107 Examples
1108 1108 --------
1109 1109 ::
1110 1110
1111 1111 In [1]: %time 2**128
1112 1112 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1113 1113 Wall time: 0.00
1114 1114 Out[1]: 340282366920938463463374607431768211456L
1115 1115
1116 1116 In [2]: n = 1000000
1117 1117
1118 1118 In [3]: %time sum(range(n))
1119 1119 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1120 1120 Wall time: 1.37
1121 1121 Out[3]: 499999500000L
1122 1122
1123 1123 In [4]: %time print 'hello world'
1124 1124 hello world
1125 1125 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1126 1126 Wall time: 0.00
1127 1127
1128 1128 Note that the time needed by Python to compile the given expression
1129 1129 will be reported if it is more than 0.1s. In this example, the
1130 1130 actual exponentiation is done by Python at compilation time, so while
1131 1131 the expression can take a noticeable amount of time to compute, that
1132 1132 time is purely due to the compilation:
1133 1133
1134 1134 In [5]: %time 3**9999;
1135 1135 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1136 1136 Wall time: 0.00 s
1137 1137
1138 1138 In [6]: %time 3**999999;
1139 1139 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1140 1140 Wall time: 0.00 s
1141 1141 Compiler : 0.78 s
1142 1142 """
1143 1143
1144 1144 # fail immediately if the given expression can't be compiled
1145 1145
1146 1146 if line and cell:
1147 1147 raise UsageError("Can't use statement directly after '%%time'!")
1148 1148
1149 1149 if cell:
1150 1150 expr = self.shell.input_transformer_manager.transform_cell(cell)
1151 1151 else:
1152 1152 expr = self.shell.input_transformer_manager.transform_cell(line)
1153 1153
1154 1154 # Minimum time above which parse time will be reported
1155 1155 tp_min = 0.1
1156 1156
1157 1157 t0 = clock()
1158 1158 expr_ast = self.shell.compile.ast_parse(expr)
1159 1159 tp = clock()-t0
1160 1160
1161 1161 # Apply AST transformations
1162 1162 expr_ast = self.shell.transform_ast(expr_ast)
1163 1163
1164 1164 # Minimum time above which compilation time will be reported
1165 1165 tc_min = 0.1
1166 1166
1167 1167 if len(expr_ast.body)==1 and isinstance(expr_ast.body[0], ast.Expr):
1168 1168 mode = 'eval'
1169 1169 source = '<timed eval>'
1170 1170 expr_ast = ast.Expression(expr_ast.body[0].value)
1171 1171 else:
1172 1172 mode = 'exec'
1173 1173 source = '<timed exec>'
1174 1174 t0 = clock()
1175 1175 code = self.shell.compile(expr_ast, source, mode)
1176 1176 tc = clock()-t0
1177 1177
1178 1178 # skew measurement as little as possible
1179 1179 glob = self.shell.user_ns
1180 1180 wtime = time.time
1181 1181 # time execution
1182 1182 wall_st = wtime()
1183 1183 if mode=='eval':
1184 1184 st = clock2()
1185 1185 out = eval(code, glob, local_ns)
1186 1186 end = clock2()
1187 1187 else:
1188 1188 st = clock2()
1189 1189 exec(code, glob, local_ns)
1190 1190 end = clock2()
1191 1191 out = None
1192 1192 wall_end = wtime()
1193 1193 # Compute actual times and report
1194 1194 wall_time = wall_end-wall_st
1195 1195 cpu_user = end[0]-st[0]
1196 1196 cpu_sys = end[1]-st[1]
1197 1197 cpu_tot = cpu_user+cpu_sys
1198 1198 # On windows cpu_sys is always zero, so no new information to the next print
1199 1199 if sys.platform != 'win32':
1200 1200 print("CPU times: user %s, sys: %s, total: %s" % \
1201 1201 (_format_time(cpu_user),_format_time(cpu_sys),_format_time(cpu_tot)))
1202 1202 print("Wall time: %s" % _format_time(wall_time))
1203 1203 if tc > tc_min:
1204 1204 print("Compiler : %s" % _format_time(tc))
1205 1205 if tp > tp_min:
1206 1206 print("Parser : %s" % _format_time(tp))
1207 1207 return out
1208 1208
1209 1209 @skip_doctest
1210 1210 @line_magic
1211 1211 def macro(self, parameter_s=''):
1212 1212 """Define a macro for future re-execution. It accepts ranges of history,
1213 1213 filenames or string objects.
1214 1214
1215 1215 Usage:\\
1216 1216 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1217 1217
1218 1218 Options:
1219 1219
1220 1220 -r: use 'raw' input. By default, the 'processed' history is used,
1221 1221 so that magics are loaded in their transformed version to valid
1222 1222 Python. If this option is given, the raw input as typed at the
1223 1223 command line is used instead.
1224 1224
1225 1225 -q: quiet macro definition. By default, a tag line is printed
1226 1226 to indicate the macro has been created, and then the contents of
1227 1227 the macro are printed. If this option is given, then no printout
1228 1228 is produced once the macro is created.
1229 1229
1230 1230 This will define a global variable called `name` which is a string
1231 1231 made of joining the slices and lines you specify (n1,n2,... numbers
1232 1232 above) from your input history into a single string. This variable
1233 1233 acts like an automatic function which re-executes those lines as if
1234 1234 you had typed them. You just type 'name' at the prompt and the code
1235 1235 executes.
1236 1236
1237 1237 The syntax for indicating input ranges is described in %history.
1238 1238
1239 1239 Note: as a 'hidden' feature, you can also use traditional python slice
1240 1240 notation, where N:M means numbers N through M-1.
1241 1241
1242 1242 For example, if your history contains (print using %hist -n )::
1243 1243
1244 1244 44: x=1
1245 1245 45: y=3
1246 1246 46: z=x+y
1247 1247 47: print x
1248 1248 48: a=5
1249 1249 49: print 'x',x,'y',y
1250 1250
1251 1251 you can create a macro with lines 44 through 47 (included) and line 49
1252 1252 called my_macro with::
1253 1253
1254 1254 In [55]: %macro my_macro 44-47 49
1255 1255
1256 1256 Now, typing `my_macro` (without quotes) will re-execute all this code
1257 1257 in one pass.
1258 1258
1259 1259 You don't need to give the line-numbers in order, and any given line
1260 1260 number can appear multiple times. You can assemble macros with any
1261 1261 lines from your input history in any order.
1262 1262
1263 1263 The macro is a simple object which holds its value in an attribute,
1264 1264 but IPython's display system checks for macros and executes them as
1265 1265 code instead of printing them when you type their name.
1266 1266
1267 1267 You can view a macro's contents by explicitly printing it with::
1268 1268
1269 1269 print macro_name
1270 1270
1271 1271 """
1272 1272 opts,args = self.parse_options(parameter_s,'rq',mode='list')
1273 1273 if not args: # List existing macros
1274 return sorted(k for k,v in iteritems(self.shell.user_ns) if\
1275 isinstance(v, Macro))
1274 return sorted(k for k,v in self.shell.user_ns.items() if isinstance(v, Macro))
1276 1275 if len(args) == 1:
1277 1276 raise UsageError(
1278 1277 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
1279 1278 name, codefrom = args[0], " ".join(args[1:])
1280 1279
1281 1280 #print 'rng',ranges # dbg
1282 1281 try:
1283 1282 lines = self.shell.find_user_code(codefrom, 'r' in opts)
1284 1283 except (ValueError, TypeError) as e:
1285 1284 print(e.args[0])
1286 1285 return
1287 1286 macro = Macro(lines)
1288 1287 self.shell.define_macro(name, macro)
1289 1288 if not ( 'q' in opts) :
1290 1289 print('Macro `%s` created. To execute, type its name (without quotes).' % name)
1291 1290 print('=== Macro contents: ===')
1292 1291 print(macro, end=' ')
1293 1292
1294 1293 @magic_arguments.magic_arguments()
1295 1294 @magic_arguments.argument('output', type=str, default='', nargs='?',
1296 1295 help="""The name of the variable in which to store output.
1297 1296 This is a utils.io.CapturedIO object with stdout/err attributes
1298 1297 for the text of the captured output.
1299 1298
1300 1299 CapturedOutput also has a show() method for displaying the output,
1301 1300 and __call__ as well, so you can use that to quickly display the
1302 1301 output.
1303 1302
1304 1303 If unspecified, captured output is discarded.
1305 1304 """
1306 1305 )
1307 1306 @magic_arguments.argument('--no-stderr', action="store_true",
1308 1307 help="""Don't capture stderr."""
1309 1308 )
1310 1309 @magic_arguments.argument('--no-stdout', action="store_true",
1311 1310 help="""Don't capture stdout."""
1312 1311 )
1313 1312 @magic_arguments.argument('--no-display', action="store_true",
1314 1313 help="""Don't capture IPython's rich display."""
1315 1314 )
1316 1315 @cell_magic
1317 1316 def capture(self, line, cell):
1318 1317 """run the cell, capturing stdout, stderr, and IPython's rich display() calls."""
1319 1318 args = magic_arguments.parse_argstring(self.capture, line)
1320 1319 out = not args.no_stdout
1321 1320 err = not args.no_stderr
1322 1321 disp = not args.no_display
1323 1322 with capture_output(out, err, disp) as io:
1324 1323 self.shell.run_cell(cell)
1325 1324 if args.output:
1326 1325 self.shell.user_ns[args.output] = io
1327 1326
1328 1327 def parse_breakpoint(text, current_file):
1329 1328 '''Returns (file, line) for file:line and (current_file, line) for line'''
1330 1329 colon = text.find(':')
1331 1330 if colon == -1:
1332 1331 return current_file, int(text)
1333 1332 else:
1334 1333 return text[:colon], int(text[colon+1:])
1335 1334
1336 1335 def _format_time(timespan, precision=3):
1337 1336 """Formats the timespan in a human readable form"""
1338 1337
1339 1338 if timespan >= 60.0:
1340 1339 # we have more than a minute, format that in a human readable form
1341 1340 # Idea from http://snipplr.com/view/5713/
1342 1341 parts = [("d", 60*60*24),("h", 60*60),("min", 60), ("s", 1)]
1343 1342 time = []
1344 1343 leftover = timespan
1345 1344 for suffix, length in parts:
1346 1345 value = int(leftover / length)
1347 1346 if value > 0:
1348 1347 leftover = leftover % length
1349 1348 time.append(u'%s%s' % (str(value), suffix))
1350 1349 if leftover < 1:
1351 1350 break
1352 1351 return " ".join(time)
1353 1352
1354 1353
1355 1354 # Unfortunately the unicode 'micro' symbol can cause problems in
1356 1355 # certain terminals.
1357 1356 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1358 1357 # Try to prevent crashes by being more secure than it needs to
1359 1358 # E.g. eclipse is able to print a Β΅, but has no sys.stdout.encoding set.
1360 1359 units = [u"s", u"ms",u'us',"ns"] # the save value
1361 1360 if hasattr(sys.stdout, 'encoding') and sys.stdout.encoding:
1362 1361 try:
1363 1362 u'\xb5'.encode(sys.stdout.encoding)
1364 1363 units = [u"s", u"ms",u'\xb5s',"ns"]
1365 1364 except:
1366 1365 pass
1367 1366 scaling = [1, 1e3, 1e6, 1e9]
1368 1367
1369 1368 if timespan > 0.0:
1370 1369 order = min(-int(math.floor(math.log10(timespan)) // 3), 3)
1371 1370 else:
1372 1371 order = 3
1373 1372 return u"%.*g %s" % (precision, timespan * scaling[order], units[order])
@@ -1,867 +1,866 b''
1 1 # -*- coding: utf-8 -*-
2 2 """
3 3 Python advanced pretty printer. This pretty printer is intended to
4 4 replace the old `pprint` python module which does not allow developers
5 5 to provide their own pretty print callbacks.
6 6
7 7 This module is based on ruby's `prettyprint.rb` library by `Tanaka Akira`.
8 8
9 9
10 10 Example Usage
11 11 -------------
12 12
13 13 To directly print the representation of an object use `pprint`::
14 14
15 15 from pretty import pprint
16 16 pprint(complex_object)
17 17
18 18 To get a string of the output use `pretty`::
19 19
20 20 from pretty import pretty
21 21 string = pretty(complex_object)
22 22
23 23
24 24 Extending
25 25 ---------
26 26
27 27 The pretty library allows developers to add pretty printing rules for their
28 28 own objects. This process is straightforward. All you have to do is to
29 29 add a `_repr_pretty_` method to your object and call the methods on the
30 30 pretty printer passed::
31 31
32 32 class MyObject(object):
33 33
34 34 def _repr_pretty_(self, p, cycle):
35 35 ...
36 36
37 37 Here is an example implementation of a `_repr_pretty_` method for a list
38 38 subclass::
39 39
40 40 class MyList(list):
41 41
42 42 def _repr_pretty_(self, p, cycle):
43 43 if cycle:
44 44 p.text('MyList(...)')
45 45 else:
46 46 with p.group(8, 'MyList([', '])'):
47 47 for idx, item in enumerate(self):
48 48 if idx:
49 49 p.text(',')
50 50 p.breakable()
51 51 p.pretty(item)
52 52
53 53 The `cycle` parameter is `True` if pretty detected a cycle. You *have* to
54 54 react to that or the result is an infinite loop. `p.text()` just adds
55 55 non breaking text to the output, `p.breakable()` either adds a whitespace
56 56 or breaks here. If you pass it an argument it's used instead of the
57 57 default space. `p.pretty` prettyprints another object using the pretty print
58 58 method.
59 59
60 60 The first parameter to the `group` function specifies the extra indentation
61 61 of the next line. In this example the next item will either be on the same
62 62 line (if the items are short enough) or aligned with the right edge of the
63 63 opening bracket of `MyList`.
64 64
65 65 If you just want to indent something you can use the group function
66 66 without open / close parameters. You can also use this code::
67 67
68 68 with p.indent(2):
69 69 ...
70 70
71 71 Inheritance diagram:
72 72
73 73 .. inheritance-diagram:: IPython.lib.pretty
74 74 :parts: 3
75 75
76 76 :copyright: 2007 by Armin Ronacher.
77 77 Portions (c) 2009 by Robert Kern.
78 78 :license: BSD License.
79 79 """
80 80 from contextlib import contextmanager
81 81 import sys
82 82 import types
83 83 import re
84 84 import datetime
85 85 from collections import deque
86 86
87 87 from IPython.utils.py3compat import PY3, PYPY, cast_unicode, string_types
88 88 from IPython.utils.encoding import get_stream_enc
89 89
90 90 from io import StringIO
91 91
92 92
93 93 __all__ = ['pretty', 'pprint', 'PrettyPrinter', 'RepresentationPrinter',
94 94 'for_type', 'for_type_by_name']
95 95
96 96
97 97 MAX_SEQ_LENGTH = 1000
98 98 _re_pattern_type = type(re.compile(''))
99 99
100 100 def _safe_getattr(obj, attr, default=None):
101 101 """Safe version of getattr.
102 102
103 103 Same as getattr, but will return ``default`` on any Exception,
104 104 rather than raising.
105 105 """
106 106 try:
107 107 return getattr(obj, attr, default)
108 108 except Exception:
109 109 return default
110 110
111 111 if PY3:
112 112 CUnicodeIO = StringIO
113 113 else:
114 114 class CUnicodeIO(StringIO):
115 115 """StringIO that casts str to unicode on Python 2"""
116 116 def write(self, text):
117 117 return super(CUnicodeIO, self).write(
118 118 cast_unicode(text, encoding=get_stream_enc(sys.stdout)))
119 119
120 120
121 121 def pretty(obj, verbose=False, max_width=79, newline='\n', max_seq_length=MAX_SEQ_LENGTH):
122 122 """
123 123 Pretty print the object's representation.
124 124 """
125 125 stream = CUnicodeIO()
126 126 printer = RepresentationPrinter(stream, verbose, max_width, newline, max_seq_length=max_seq_length)
127 127 printer.pretty(obj)
128 128 printer.flush()
129 129 return stream.getvalue()
130 130
131 131
132 132 def pprint(obj, verbose=False, max_width=79, newline='\n', max_seq_length=MAX_SEQ_LENGTH):
133 133 """
134 134 Like `pretty` but print to stdout.
135 135 """
136 136 printer = RepresentationPrinter(sys.stdout, verbose, max_width, newline, max_seq_length=max_seq_length)
137 137 printer.pretty(obj)
138 138 printer.flush()
139 139 sys.stdout.write(newline)
140 140 sys.stdout.flush()
141 141
142 142 class _PrettyPrinterBase(object):
143 143
144 144 @contextmanager
145 145 def indent(self, indent):
146 146 """with statement support for indenting/dedenting."""
147 147 self.indentation += indent
148 148 try:
149 149 yield
150 150 finally:
151 151 self.indentation -= indent
152 152
153 153 @contextmanager
154 154 def group(self, indent=0, open='', close=''):
155 155 """like begin_group / end_group but for the with statement."""
156 156 self.begin_group(indent, open)
157 157 try:
158 158 yield
159 159 finally:
160 160 self.end_group(indent, close)
161 161
162 162 class PrettyPrinter(_PrettyPrinterBase):
163 163 """
164 164 Baseclass for the `RepresentationPrinter` prettyprinter that is used to
165 165 generate pretty reprs of objects. Contrary to the `RepresentationPrinter`
166 166 this printer knows nothing about the default pprinters or the `_repr_pretty_`
167 167 callback method.
168 168 """
169 169
170 170 def __init__(self, output, max_width=79, newline='\n', max_seq_length=MAX_SEQ_LENGTH):
171 171 self.output = output
172 172 self.max_width = max_width
173 173 self.newline = newline
174 174 self.max_seq_length = max_seq_length
175 175 self.output_width = 0
176 176 self.buffer_width = 0
177 177 self.buffer = deque()
178 178
179 179 root_group = Group(0)
180 180 self.group_stack = [root_group]
181 181 self.group_queue = GroupQueue(root_group)
182 182 self.indentation = 0
183 183
184 184 def _break_outer_groups(self):
185 185 while self.max_width < self.output_width + self.buffer_width:
186 186 group = self.group_queue.deq()
187 187 if not group:
188 188 return
189 189 while group.breakables:
190 190 x = self.buffer.popleft()
191 191 self.output_width = x.output(self.output, self.output_width)
192 192 self.buffer_width -= x.width
193 193 while self.buffer and isinstance(self.buffer[0], Text):
194 194 x = self.buffer.popleft()
195 195 self.output_width = x.output(self.output, self.output_width)
196 196 self.buffer_width -= x.width
197 197
198 198 def text(self, obj):
199 199 """Add literal text to the output."""
200 200 width = len(obj)
201 201 if self.buffer:
202 202 text = self.buffer[-1]
203 203 if not isinstance(text, Text):
204 204 text = Text()
205 205 self.buffer.append(text)
206 206 text.add(obj, width)
207 207 self.buffer_width += width
208 208 self._break_outer_groups()
209 209 else:
210 210 self.output.write(obj)
211 211 self.output_width += width
212 212
213 213 def breakable(self, sep=' '):
214 214 """
215 215 Add a breakable separator to the output. This does not mean that it
216 216 will automatically break here. If no breaking on this position takes
217 217 place the `sep` is inserted which default to one space.
218 218 """
219 219 width = len(sep)
220 220 group = self.group_stack[-1]
221 221 if group.want_break:
222 222 self.flush()
223 223 self.output.write(self.newline)
224 224 self.output.write(' ' * self.indentation)
225 225 self.output_width = self.indentation
226 226 self.buffer_width = 0
227 227 else:
228 228 self.buffer.append(Breakable(sep, width, self))
229 229 self.buffer_width += width
230 230 self._break_outer_groups()
231 231
232 232 def break_(self):
233 233 """
234 234 Explicitly insert a newline into the output, maintaining correct indentation.
235 235 """
236 236 self.flush()
237 237 self.output.write(self.newline)
238 238 self.output.write(' ' * self.indentation)
239 239 self.output_width = self.indentation
240 240 self.buffer_width = 0
241 241
242 242
243 243 def begin_group(self, indent=0, open=''):
244 244 """
245 245 Begin a group. If you want support for python < 2.5 which doesn't has
246 246 the with statement this is the preferred way:
247 247
248 248 p.begin_group(1, '{')
249 249 ...
250 250 p.end_group(1, '}')
251 251
252 252 The python 2.5 expression would be this:
253 253
254 254 with p.group(1, '{', '}'):
255 255 ...
256 256
257 257 The first parameter specifies the indentation for the next line (usually
258 258 the width of the opening text), the second the opening text. All
259 259 parameters are optional.
260 260 """
261 261 if open:
262 262 self.text(open)
263 263 group = Group(self.group_stack[-1].depth + 1)
264 264 self.group_stack.append(group)
265 265 self.group_queue.enq(group)
266 266 self.indentation += indent
267 267
268 268 def _enumerate(self, seq):
269 269 """like enumerate, but with an upper limit on the number of items"""
270 270 for idx, x in enumerate(seq):
271 271 if self.max_seq_length and idx >= self.max_seq_length:
272 272 self.text(',')
273 273 self.breakable()
274 274 self.text('...')
275 275 return
276 276 yield idx, x
277 277
278 278 def end_group(self, dedent=0, close=''):
279 279 """End a group. See `begin_group` for more details."""
280 280 self.indentation -= dedent
281 281 group = self.group_stack.pop()
282 282 if not group.breakables:
283 283 self.group_queue.remove(group)
284 284 if close:
285 285 self.text(close)
286 286
287 287 def flush(self):
288 288 """Flush data that is left in the buffer."""
289 289 for data in self.buffer:
290 290 self.output_width += data.output(self.output, self.output_width)
291 291 self.buffer.clear()
292 292 self.buffer_width = 0
293 293
294 294
295 295 def _get_mro(obj_class):
296 296 """ Get a reasonable method resolution order of a class and its superclasses
297 297 for both old-style and new-style classes.
298 298 """
299 299 if not hasattr(obj_class, '__mro__'):
300 300 # Old-style class. Mix in object to make a fake new-style class.
301 301 try:
302 302 obj_class = type(obj_class.__name__, (obj_class, object), {})
303 303 except TypeError:
304 304 # Old-style extension type that does not descend from object.
305 305 # FIXME: try to construct a more thorough MRO.
306 306 mro = [obj_class]
307 307 else:
308 308 mro = obj_class.__mro__[1:-1]
309 309 else:
310 310 mro = obj_class.__mro__
311 311 return mro
312 312
313 313
314 314 class RepresentationPrinter(PrettyPrinter):
315 315 """
316 316 Special pretty printer that has a `pretty` method that calls the pretty
317 317 printer for a python object.
318 318
319 319 This class stores processing data on `self` so you must *never* use
320 320 this class in a threaded environment. Always lock it or reinstanciate
321 321 it.
322 322
323 323 Instances also have a verbose flag callbacks can access to control their
324 324 output. For example the default instance repr prints all attributes and
325 325 methods that are not prefixed by an underscore if the printer is in
326 326 verbose mode.
327 327 """
328 328
329 329 def __init__(self, output, verbose=False, max_width=79, newline='\n',
330 330 singleton_pprinters=None, type_pprinters=None, deferred_pprinters=None,
331 331 max_seq_length=MAX_SEQ_LENGTH):
332 332
333 333 PrettyPrinter.__init__(self, output, max_width, newline, max_seq_length=max_seq_length)
334 334 self.verbose = verbose
335 335 self.stack = []
336 336 if singleton_pprinters is None:
337 337 singleton_pprinters = _singleton_pprinters.copy()
338 338 self.singleton_pprinters = singleton_pprinters
339 339 if type_pprinters is None:
340 340 type_pprinters = _type_pprinters.copy()
341 341 self.type_pprinters = type_pprinters
342 342 if deferred_pprinters is None:
343 343 deferred_pprinters = _deferred_type_pprinters.copy()
344 344 self.deferred_pprinters = deferred_pprinters
345 345
346 346 def pretty(self, obj):
347 347 """Pretty print the given object."""
348 348 obj_id = id(obj)
349 349 cycle = obj_id in self.stack
350 350 self.stack.append(obj_id)
351 351 self.begin_group()
352 352 try:
353 353 obj_class = _safe_getattr(obj, '__class__', None) or type(obj)
354 354 # First try to find registered singleton printers for the type.
355 355 try:
356 356 printer = self.singleton_pprinters[obj_id]
357 357 except (TypeError, KeyError):
358 358 pass
359 359 else:
360 360 return printer(obj, self, cycle)
361 361 # Next walk the mro and check for either:
362 362 # 1) a registered printer
363 363 # 2) a _repr_pretty_ method
364 364 for cls in _get_mro(obj_class):
365 365 if cls in self.type_pprinters:
366 366 # printer registered in self.type_pprinters
367 367 return self.type_pprinters[cls](obj, self, cycle)
368 368 else:
369 369 # deferred printer
370 370 printer = self._in_deferred_types(cls)
371 371 if printer is not None:
372 372 return printer(obj, self, cycle)
373 373 else:
374 374 # Finally look for special method names.
375 375 # Some objects automatically create any requested
376 376 # attribute. Try to ignore most of them by checking for
377 377 # callability.
378 378 if '_repr_pretty_' in cls.__dict__:
379 379 meth = cls._repr_pretty_
380 380 if callable(meth):
381 381 return meth(obj, self, cycle)
382 382 return _default_pprint(obj, self, cycle)
383 383 finally:
384 384 self.end_group()
385 385 self.stack.pop()
386 386
387 387 def _in_deferred_types(self, cls):
388 388 """
389 389 Check if the given class is specified in the deferred type registry.
390 390
391 391 Returns the printer from the registry if it exists, and None if the
392 392 class is not in the registry. Successful matches will be moved to the
393 393 regular type registry for future use.
394 394 """
395 395 mod = _safe_getattr(cls, '__module__', None)
396 396 name = _safe_getattr(cls, '__name__', None)
397 397 key = (mod, name)
398 398 printer = None
399 399 if key in self.deferred_pprinters:
400 400 # Move the printer over to the regular registry.
401 401 printer = self.deferred_pprinters.pop(key)
402 402 self.type_pprinters[cls] = printer
403 403 return printer
404 404
405 405
406 406 class Printable(object):
407 407
408 408 def output(self, stream, output_width):
409 409 return output_width
410 410
411 411
412 412 class Text(Printable):
413 413
414 414 def __init__(self):
415 415 self.objs = []
416 416 self.width = 0
417 417
418 418 def output(self, stream, output_width):
419 419 for obj in self.objs:
420 420 stream.write(obj)
421 421 return output_width + self.width
422 422
423 423 def add(self, obj, width):
424 424 self.objs.append(obj)
425 425 self.width += width
426 426
427 427
428 428 class Breakable(Printable):
429 429
430 430 def __init__(self, seq, width, pretty):
431 431 self.obj = seq
432 432 self.width = width
433 433 self.pretty = pretty
434 434 self.indentation = pretty.indentation
435 435 self.group = pretty.group_stack[-1]
436 436 self.group.breakables.append(self)
437 437
438 438 def output(self, stream, output_width):
439 439 self.group.breakables.popleft()
440 440 if self.group.want_break:
441 441 stream.write(self.pretty.newline)
442 442 stream.write(' ' * self.indentation)
443 443 return self.indentation
444 444 if not self.group.breakables:
445 445 self.pretty.group_queue.remove(self.group)
446 446 stream.write(self.obj)
447 447 return output_width + self.width
448 448
449 449
450 450 class Group(Printable):
451 451
452 452 def __init__(self, depth):
453 453 self.depth = depth
454 454 self.breakables = deque()
455 455 self.want_break = False
456 456
457 457
458 458 class GroupQueue(object):
459 459
460 460 def __init__(self, *groups):
461 461 self.queue = []
462 462 for group in groups:
463 463 self.enq(group)
464 464
465 465 def enq(self, group):
466 466 depth = group.depth
467 467 while depth > len(self.queue) - 1:
468 468 self.queue.append([])
469 469 self.queue[depth].append(group)
470 470
471 471 def deq(self):
472 472 for stack in self.queue:
473 473 for idx, group in enumerate(reversed(stack)):
474 474 if group.breakables:
475 475 del stack[idx]
476 476 group.want_break = True
477 477 return group
478 478 for group in stack:
479 479 group.want_break = True
480 480 del stack[:]
481 481
482 482 def remove(self, group):
483 483 try:
484 484 self.queue[group.depth].remove(group)
485 485 except ValueError:
486 486 pass
487 487
488 488 try:
489 489 _baseclass_reprs = (object.__repr__, types.InstanceType.__repr__)
490 490 except AttributeError: # Python 3
491 491 _baseclass_reprs = (object.__repr__,)
492 492
493 493
494 494 def _default_pprint(obj, p, cycle):
495 495 """
496 496 The default print function. Used if an object does not provide one and
497 497 it's none of the builtin objects.
498 498 """
499 499 klass = _safe_getattr(obj, '__class__', None) or type(obj)
500 500 if _safe_getattr(klass, '__repr__', None) not in _baseclass_reprs:
501 501 # A user-provided repr. Find newlines and replace them with p.break_()
502 502 _repr_pprint(obj, p, cycle)
503 503 return
504 504 p.begin_group(1, '<')
505 505 p.pretty(klass)
506 506 p.text(' at 0x%x' % id(obj))
507 507 if cycle:
508 508 p.text(' ...')
509 509 elif p.verbose:
510 510 first = True
511 511 for key in dir(obj):
512 512 if not key.startswith('_'):
513 513 try:
514 514 value = getattr(obj, key)
515 515 except AttributeError:
516 516 continue
517 517 if isinstance(value, types.MethodType):
518 518 continue
519 519 if not first:
520 520 p.text(',')
521 521 p.breakable()
522 522 p.text(key)
523 523 p.text('=')
524 524 step = len(key) + 1
525 525 p.indentation += step
526 526 p.pretty(value)
527 527 p.indentation -= step
528 528 first = False
529 529 p.end_group(1, '>')
530 530
531 531
532 532 def _seq_pprinter_factory(start, end, basetype):
533 533 """
534 534 Factory that returns a pprint function useful for sequences. Used by
535 535 the default pprint for tuples, dicts, and lists.
536 536 """
537 537 def inner(obj, p, cycle):
538 538 typ = type(obj)
539 539 if basetype is not None and typ is not basetype and typ.__repr__ != basetype.__repr__:
540 540 # If the subclass provides its own repr, use it instead.
541 541 return p.text(typ.__repr__(obj))
542 542
543 543 if cycle:
544 544 return p.text(start + '...' + end)
545 545 step = len(start)
546 546 p.begin_group(step, start)
547 547 for idx, x in p._enumerate(obj):
548 548 if idx:
549 549 p.text(',')
550 550 p.breakable()
551 551 p.pretty(x)
552 552 if len(obj) == 1 and type(obj) is tuple:
553 553 # Special case for 1-item tuples.
554 554 p.text(',')
555 555 p.end_group(step, end)
556 556 return inner
557 557
558 558
559 559 def _set_pprinter_factory(start, end, basetype):
560 560 """
561 561 Factory that returns a pprint function useful for sets and frozensets.
562 562 """
563 563 def inner(obj, p, cycle):
564 564 typ = type(obj)
565 565 if basetype is not None and typ is not basetype and typ.__repr__ != basetype.__repr__:
566 566 # If the subclass provides its own repr, use it instead.
567 567 return p.text(typ.__repr__(obj))
568 568
569 569 if cycle:
570 570 return p.text(start + '...' + end)
571 571 if len(obj) == 0:
572 572 # Special case.
573 573 p.text(basetype.__name__ + '()')
574 574 else:
575 575 step = len(start)
576 576 p.begin_group(step, start)
577 577 # Like dictionary keys, we will try to sort the items if there aren't too many
578 578 items = obj
579 579 if not (p.max_seq_length and len(obj) >= p.max_seq_length):
580 580 try:
581 581 items = sorted(obj)
582 582 except Exception:
583 583 # Sometimes the items don't sort.
584 584 pass
585 585 for idx, x in p._enumerate(items):
586 586 if idx:
587 587 p.text(',')
588 588 p.breakable()
589 589 p.pretty(x)
590 590 p.end_group(step, end)
591 591 return inner
592 592
593 593
594 594 def _dict_pprinter_factory(start, end, basetype=None):
595 595 """
596 596 Factory that returns a pprint function used by the default pprint of
597 597 dicts and dict proxies.
598 598 """
599 599 def inner(obj, p, cycle):
600 600 typ = type(obj)
601 601 if basetype is not None and typ is not basetype and typ.__repr__ != basetype.__repr__:
602 602 # If the subclass provides its own repr, use it instead.
603 603 return p.text(typ.__repr__(obj))
604 604
605 605 if cycle:
606 606 return p.text('{...}')
607 607 step = len(start)
608 608 p.begin_group(step, start)
609 609 keys = obj.keys()
610 610 # if dict isn't large enough to be truncated, sort keys before displaying
611 611 if not (p.max_seq_length and len(obj) >= p.max_seq_length):
612 612 try:
613 613 keys = sorted(keys)
614 614 except Exception:
615 615 # Sometimes the keys don't sort.
616 616 pass
617 617 for idx, key in p._enumerate(keys):
618 618 if idx:
619 619 p.text(',')
620 620 p.breakable()
621 621 p.pretty(key)
622 622 p.text(': ')
623 623 p.pretty(obj[key])
624 624 p.end_group(step, end)
625 625 return inner
626 626
627 627
628 628 def _super_pprint(obj, p, cycle):
629 629 """The pprint for the super type."""
630 630 p.begin_group(8, '<super: ')
631 631 p.pretty(obj.__thisclass__)
632 632 p.text(',')
633 633 p.breakable()
634 634 if PYPY: # In PyPy, super() objects don't have __self__ attributes
635 635 dself = obj.__repr__.__self__
636 636 p.pretty(None if dself is obj else dself)
637 637 else:
638 638 p.pretty(obj.__self__)
639 639 p.end_group(8, '>')
640 640
641 641
642 642 def _re_pattern_pprint(obj, p, cycle):
643 643 """The pprint function for regular expression patterns."""
644 644 p.text('re.compile(')
645 645 pattern = repr(obj.pattern)
646 646 if pattern[:1] in 'uU':
647 647 pattern = pattern[1:]
648 648 prefix = 'ur'
649 649 else:
650 650 prefix = 'r'
651 651 pattern = prefix + pattern.replace('\\\\', '\\')
652 652 p.text(pattern)
653 653 if obj.flags:
654 654 p.text(',')
655 655 p.breakable()
656 656 done_one = False
657 657 for flag in ('TEMPLATE', 'IGNORECASE', 'LOCALE', 'MULTILINE', 'DOTALL',
658 658 'UNICODE', 'VERBOSE', 'DEBUG'):
659 659 if obj.flags & getattr(re, flag):
660 660 if done_one:
661 661 p.text('|')
662 662 p.text('re.' + flag)
663 663 done_one = True
664 664 p.text(')')
665 665
666 666
667 667 def _type_pprint(obj, p, cycle):
668 668 """The pprint for classes and types."""
669 669 # Heap allocated types might not have the module attribute,
670 670 # and others may set it to None.
671 671
672 672 # Checks for a __repr__ override in the metaclass. Can't compare the
673 673 # type(obj).__repr__ directly because in PyPy the representation function
674 674 # inherited from type isn't the same type.__repr__
675 675 if [m for m in _get_mro(type(obj)) if "__repr__" in vars(m)][:1] != [type]:
676 676 _repr_pprint(obj, p, cycle)
677 677 return
678 678
679 679 mod = _safe_getattr(obj, '__module__', None)
680 680 try:
681 681 name = obj.__qualname__
682 682 if not isinstance(name, string_types):
683 683 # This can happen if the type implements __qualname__ as a property
684 684 # or other descriptor in Python 2.
685 685 raise Exception("Try __name__")
686 686 except Exception:
687 687 name = obj.__name__
688 688 if not isinstance(name, string_types):
689 689 name = '<unknown type>'
690 690
691 691 if mod in (None, '__builtin__', 'builtins', 'exceptions'):
692 692 p.text(name)
693 693 else:
694 694 p.text(mod + '.' + name)
695 695
696 696
697 697 def _repr_pprint(obj, p, cycle):
698 698 """A pprint that just redirects to the normal repr function."""
699 699 # Find newlines and replace them with p.break_()
700 700 output = repr(obj)
701 701 for idx,output_line in enumerate(output.splitlines()):
702 702 if idx:
703 703 p.break_()
704 704 p.text(output_line)
705 705
706 706
707 707 def _function_pprint(obj, p, cycle):
708 708 """Base pprint for all functions and builtin functions."""
709 709 name = _safe_getattr(obj, '__qualname__', obj.__name__)
710 710 mod = obj.__module__
711 711 if mod and mod not in ('__builtin__', 'builtins', 'exceptions'):
712 712 name = mod + '.' + name
713 713 p.text('<function %s>' % name)
714 714
715 715
716 716 def _exception_pprint(obj, p, cycle):
717 717 """Base pprint for all exceptions."""
718 718 name = getattr(obj.__class__, '__qualname__', obj.__class__.__name__)
719 719 if obj.__class__.__module__ not in ('exceptions', 'builtins'):
720 720 name = '%s.%s' % (obj.__class__.__module__, name)
721 721 step = len(name) + 1
722 722 p.begin_group(step, name + '(')
723 723 for idx, arg in enumerate(getattr(obj, 'args', ())):
724 724 if idx:
725 725 p.text(',')
726 726 p.breakable()
727 727 p.pretty(arg)
728 728 p.end_group(step, ')')
729 729
730 730
731 731 #: the exception base
732 732 try:
733 733 _exception_base = BaseException
734 734 except NameError:
735 735 _exception_base = Exception
736 736
737 737
738 738 #: printers for builtin types
739 739 _type_pprinters = {
740 740 int: _repr_pprint,
741 741 float: _repr_pprint,
742 742 str: _repr_pprint,
743 743 tuple: _seq_pprinter_factory('(', ')', tuple),
744 744 list: _seq_pprinter_factory('[', ']', list),
745 745 dict: _dict_pprinter_factory('{', '}', dict),
746 746
747 747 set: _set_pprinter_factory('{', '}', set),
748 748 frozenset: _set_pprinter_factory('frozenset({', '})', frozenset),
749 749 super: _super_pprint,
750 750 _re_pattern_type: _re_pattern_pprint,
751 751 type: _type_pprint,
752 752 types.FunctionType: _function_pprint,
753 753 types.BuiltinFunctionType: _function_pprint,
754 754 types.MethodType: _repr_pprint,
755 755
756 756 datetime.datetime: _repr_pprint,
757 757 datetime.timedelta: _repr_pprint,
758 758 _exception_base: _exception_pprint
759 759 }
760 760
761 761 try:
762 762 # In PyPy, types.DictProxyType is dict, setting the dictproxy printer
763 763 # using dict.setdefault avoids overwritting the dict printer
764 764 _type_pprinters.setdefault(types.DictProxyType,
765 765 _dict_pprinter_factory('dict_proxy({', '})'))
766 766 _type_pprinters[types.ClassType] = _type_pprint
767 767 _type_pprinters[types.SliceType] = _repr_pprint
768 768 except AttributeError: # Python 3
769 769 _type_pprinters[types.MappingProxyType] = \
770 770 _dict_pprinter_factory('mappingproxy({', '})')
771 771 _type_pprinters[slice] = _repr_pprint
772 772
773 773 try:
774 _type_pprinters[xrange] = _repr_pprint
775 774 _type_pprinters[long] = _repr_pprint
776 775 _type_pprinters[unicode] = _repr_pprint
777 776 except NameError:
778 777 _type_pprinters[range] = _repr_pprint
779 778 _type_pprinters[bytes] = _repr_pprint
780 779
781 780 #: printers for types specified by name
782 781 _deferred_type_pprinters = {
783 782 }
784 783
785 784 def for_type(typ, func):
786 785 """
787 786 Add a pretty printer for a given type.
788 787 """
789 788 oldfunc = _type_pprinters.get(typ, None)
790 789 if func is not None:
791 790 # To support easy restoration of old pprinters, we need to ignore Nones.
792 791 _type_pprinters[typ] = func
793 792 return oldfunc
794 793
795 794 def for_type_by_name(type_module, type_name, func):
796 795 """
797 796 Add a pretty printer for a type specified by the module and name of a type
798 797 rather than the type object itself.
799 798 """
800 799 key = (type_module, type_name)
801 800 oldfunc = _deferred_type_pprinters.get(key, None)
802 801 if func is not None:
803 802 # To support easy restoration of old pprinters, we need to ignore Nones.
804 803 _deferred_type_pprinters[key] = func
805 804 return oldfunc
806 805
807 806
808 807 #: printers for the default singletons
809 808 _singleton_pprinters = dict.fromkeys(map(id, [None, True, False, Ellipsis,
810 809 NotImplemented]), _repr_pprint)
811 810
812 811
813 812 def _defaultdict_pprint(obj, p, cycle):
814 813 name = obj.__class__.__name__
815 814 with p.group(len(name) + 1, name + '(', ')'):
816 815 if cycle:
817 816 p.text('...')
818 817 else:
819 818 p.pretty(obj.default_factory)
820 819 p.text(',')
821 820 p.breakable()
822 821 p.pretty(dict(obj))
823 822
824 823 def _ordereddict_pprint(obj, p, cycle):
825 824 name = obj.__class__.__name__
826 825 with p.group(len(name) + 1, name + '(', ')'):
827 826 if cycle:
828 827 p.text('...')
829 828 elif len(obj):
830 829 p.pretty(list(obj.items()))
831 830
832 831 def _deque_pprint(obj, p, cycle):
833 832 name = obj.__class__.__name__
834 833 with p.group(len(name) + 1, name + '(', ')'):
835 834 if cycle:
836 835 p.text('...')
837 836 else:
838 837 p.pretty(list(obj))
839 838
840 839
841 840 def _counter_pprint(obj, p, cycle):
842 841 name = obj.__class__.__name__
843 842 with p.group(len(name) + 1, name + '(', ')'):
844 843 if cycle:
845 844 p.text('...')
846 845 elif len(obj):
847 846 p.pretty(dict(obj))
848 847
849 848 for_type_by_name('collections', 'defaultdict', _defaultdict_pprint)
850 849 for_type_by_name('collections', 'OrderedDict', _ordereddict_pprint)
851 850 for_type_by_name('collections', 'deque', _deque_pprint)
852 851 for_type_by_name('collections', 'Counter', _counter_pprint)
853 852
854 853 if __name__ == '__main__':
855 854 from random import randrange
856 855 class Foo(object):
857 856 def __init__(self):
858 857 self.foo = 1
859 858 self.bar = re.compile(r'\s+')
860 859 self.blub = dict.fromkeys(range(30), randrange(1, 40))
861 860 self.hehe = 23424.234234
862 861 self.list = ["blub", "blah", self]
863 862
864 863 def get_foo(self):
865 864 print("foo")
866 865
867 866 pprint(Foo(), verbose=True)
@@ -1,37 +1,36 b''
1 1 # encoding: utf-8
2 2 """Utilities for working with data structures like lists, dicts and tuples.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2008-2011 The IPython Development Team
7 7 #
8 8 # Distributed under the terms of the BSD License. The full license is in
9 9 # the file COPYING, distributed as part of this software.
10 10 #-----------------------------------------------------------------------------
11 11
12 from .py3compat import xrange
13 12
14 13 def uniq_stable(elems):
15 14 """uniq_stable(elems) -> list
16 15
17 16 Return from an iterable, a list of all the unique elements in the input,
18 17 but maintaining the order in which they first appear.
19 18
20 19 Note: All elements in the input must be hashable for this routine
21 20 to work, as it internally uses a set for efficiency reasons.
22 21 """
23 22 seen = set()
24 23 return [x for x in elems if x not in seen and not seen.add(x)]
25 24
26 25
27 26 def flatten(seq):
28 27 """Flatten a list of lists (NOT recursive, only works for 2d lists)."""
29 28
30 29 return [x for subseq in seq for x in subseq]
31 30
32 31
33 32 def chop(seq, size):
34 33 """Chop a sequence into chunks of the given size."""
35 return [seq[i:i+size] for i in xrange(0,len(seq),size)]
34 return [seq[i:i+size] for i in range(0,len(seq),size)]
36 35
37 36
@@ -1,774 +1,774 b''
1 1 # encoding: utf-8
2 2 """
3 3 Utilities for working with strings and text.
4 4
5 5 Inheritance diagram:
6 6
7 7 .. inheritance-diagram:: IPython.utils.text
8 8 :parts: 3
9 9 """
10 10
11 11 import os
12 12 import re
13 13 import sys
14 14 import textwrap
15 15 from string import Formatter
16 16 try:
17 17 from pathlib import Path
18 18 except ImportError:
19 19 # Python 2 backport
20 20 from pathlib2 import Path
21 21
22 22 from IPython.utils import py3compat
23 23
24 24 # datetime.strftime date format for ipython
25 25 if sys.platform == 'win32':
26 26 date_format = "%B %d, %Y"
27 27 else:
28 28 date_format = "%B %-d, %Y"
29 29
30 30 class LSString(str):
31 31 """String derivative with a special access attributes.
32 32
33 33 These are normal strings, but with the special attributes:
34 34
35 35 .l (or .list) : value as list (split on newlines).
36 36 .n (or .nlstr): original value (the string itself).
37 37 .s (or .spstr): value as whitespace-separated string.
38 38 .p (or .paths): list of path objects (requires path.py package)
39 39
40 40 Any values which require transformations are computed only once and
41 41 cached.
42 42
43 43 Such strings are very useful to efficiently interact with the shell, which
44 44 typically only understands whitespace-separated options for commands."""
45 45
46 46 def get_list(self):
47 47 try:
48 48 return self.__list
49 49 except AttributeError:
50 50 self.__list = self.split('\n')
51 51 return self.__list
52 52
53 53 l = list = property(get_list)
54 54
55 55 def get_spstr(self):
56 56 try:
57 57 return self.__spstr
58 58 except AttributeError:
59 59 self.__spstr = self.replace('\n',' ')
60 60 return self.__spstr
61 61
62 62 s = spstr = property(get_spstr)
63 63
64 64 def get_nlstr(self):
65 65 return self
66 66
67 67 n = nlstr = property(get_nlstr)
68 68
69 69 def get_paths(self):
70 70 try:
71 71 return self.__paths
72 72 except AttributeError:
73 73 self.__paths = [Path(p) for p in self.split('\n') if os.path.exists(p)]
74 74 return self.__paths
75 75
76 76 p = paths = property(get_paths)
77 77
78 78 # FIXME: We need to reimplement type specific displayhook and then add this
79 79 # back as a custom printer. This should also be moved outside utils into the
80 80 # core.
81 81
82 82 # def print_lsstring(arg):
83 83 # """ Prettier (non-repr-like) and more informative printer for LSString """
84 84 # print "LSString (.p, .n, .l, .s available). Value:"
85 85 # print arg
86 86 #
87 87 #
88 88 # print_lsstring = result_display.when_type(LSString)(print_lsstring)
89 89
90 90
91 91 class SList(list):
92 92 """List derivative with a special access attributes.
93 93
94 94 These are normal lists, but with the special attributes:
95 95
96 96 * .l (or .list) : value as list (the list itself).
97 97 * .n (or .nlstr): value as a string, joined on newlines.
98 98 * .s (or .spstr): value as a string, joined on spaces.
99 99 * .p (or .paths): list of path objects (requires path.py package)
100 100
101 101 Any values which require transformations are computed only once and
102 102 cached."""
103 103
104 104 def get_list(self):
105 105 return self
106 106
107 107 l = list = property(get_list)
108 108
109 109 def get_spstr(self):
110 110 try:
111 111 return self.__spstr
112 112 except AttributeError:
113 113 self.__spstr = ' '.join(self)
114 114 return self.__spstr
115 115
116 116 s = spstr = property(get_spstr)
117 117
118 118 def get_nlstr(self):
119 119 try:
120 120 return self.__nlstr
121 121 except AttributeError:
122 122 self.__nlstr = '\n'.join(self)
123 123 return self.__nlstr
124 124
125 125 n = nlstr = property(get_nlstr)
126 126
127 127 def get_paths(self):
128 128 try:
129 129 return self.__paths
130 130 except AttributeError:
131 131 self.__paths = [Path(p) for p in self if os.path.exists(p)]
132 132 return self.__paths
133 133
134 134 p = paths = property(get_paths)
135 135
136 136 def grep(self, pattern, prune = False, field = None):
137 137 """ Return all strings matching 'pattern' (a regex or callable)
138 138
139 139 This is case-insensitive. If prune is true, return all items
140 140 NOT matching the pattern.
141 141
142 142 If field is specified, the match must occur in the specified
143 143 whitespace-separated field.
144 144
145 145 Examples::
146 146
147 147 a.grep( lambda x: x.startswith('C') )
148 148 a.grep('Cha.*log', prune=1)
149 149 a.grep('chm', field=-1)
150 150 """
151 151
152 152 def match_target(s):
153 153 if field is None:
154 154 return s
155 155 parts = s.split()
156 156 try:
157 157 tgt = parts[field]
158 158 return tgt
159 159 except IndexError:
160 160 return ""
161 161
162 162 if isinstance(pattern, py3compat.string_types):
163 163 pred = lambda x : re.search(pattern, x, re.IGNORECASE)
164 164 else:
165 165 pred = pattern
166 166 if not prune:
167 167 return SList([el for el in self if pred(match_target(el))])
168 168 else:
169 169 return SList([el for el in self if not pred(match_target(el))])
170 170
171 171 def fields(self, *fields):
172 172 """ Collect whitespace-separated fields from string list
173 173
174 174 Allows quick awk-like usage of string lists.
175 175
176 176 Example data (in var a, created by 'a = !ls -l')::
177 177
178 178 -rwxrwxrwx 1 ville None 18 Dec 14 2006 ChangeLog
179 179 drwxrwxrwx+ 6 ville None 0 Oct 24 18:05 IPython
180 180
181 181 * ``a.fields(0)`` is ``['-rwxrwxrwx', 'drwxrwxrwx+']``
182 182 * ``a.fields(1,0)`` is ``['1 -rwxrwxrwx', '6 drwxrwxrwx+']``
183 183 (note the joining by space).
184 184 * ``a.fields(-1)`` is ``['ChangeLog', 'IPython']``
185 185
186 186 IndexErrors are ignored.
187 187
188 188 Without args, fields() just split()'s the strings.
189 189 """
190 190 if len(fields) == 0:
191 191 return [el.split() for el in self]
192 192
193 193 res = SList()
194 194 for el in [f.split() for f in self]:
195 195 lineparts = []
196 196
197 197 for fd in fields:
198 198 try:
199 199 lineparts.append(el[fd])
200 200 except IndexError:
201 201 pass
202 202 if lineparts:
203 203 res.append(" ".join(lineparts))
204 204
205 205 return res
206 206
207 207 def sort(self,field= None, nums = False):
208 208 """ sort by specified fields (see fields())
209 209
210 210 Example::
211 211
212 212 a.sort(1, nums = True)
213 213
214 214 Sorts a by second field, in numerical order (so that 21 > 3)
215 215
216 216 """
217 217
218 218 #decorate, sort, undecorate
219 219 if field is not None:
220 220 dsu = [[SList([line]).fields(field), line] for line in self]
221 221 else:
222 222 dsu = [[line, line] for line in self]
223 223 if nums:
224 224 for i in range(len(dsu)):
225 225 numstr = "".join([ch for ch in dsu[i][0] if ch.isdigit()])
226 226 try:
227 227 n = int(numstr)
228 228 except ValueError:
229 229 n = 0
230 230 dsu[i][0] = n
231 231
232 232
233 233 dsu.sort()
234 234 return SList([t[1] for t in dsu])
235 235
236 236
237 237 # FIXME: We need to reimplement type specific displayhook and then add this
238 238 # back as a custom printer. This should also be moved outside utils into the
239 239 # core.
240 240
241 241 # def print_slist(arg):
242 242 # """ Prettier (non-repr-like) and more informative printer for SList """
243 243 # print "SList (.p, .n, .l, .s, .grep(), .fields(), sort() available):"
244 244 # if hasattr(arg, 'hideonce') and arg.hideonce:
245 245 # arg.hideonce = False
246 246 # return
247 247 #
248 248 # nlprint(arg) # This was a nested list printer, now removed.
249 249 #
250 250 # print_slist = result_display.when_type(SList)(print_slist)
251 251
252 252
253 253 def indent(instr,nspaces=4, ntabs=0, flatten=False):
254 254 """Indent a string a given number of spaces or tabstops.
255 255
256 256 indent(str,nspaces=4,ntabs=0) -> indent str by ntabs+nspaces.
257 257
258 258 Parameters
259 259 ----------
260 260
261 261 instr : basestring
262 262 The string to be indented.
263 263 nspaces : int (default: 4)
264 264 The number of spaces to be indented.
265 265 ntabs : int (default: 0)
266 266 The number of tabs to be indented.
267 267 flatten : bool (default: False)
268 268 Whether to scrub existing indentation. If True, all lines will be
269 269 aligned to the same indentation. If False, existing indentation will
270 270 be strictly increased.
271 271
272 272 Returns
273 273 -------
274 274
275 275 str|unicode : string indented by ntabs and nspaces.
276 276
277 277 """
278 278 if instr is None:
279 279 return
280 280 ind = '\t'*ntabs+' '*nspaces
281 281 if flatten:
282 282 pat = re.compile(r'^\s*', re.MULTILINE)
283 283 else:
284 284 pat = re.compile(r'^', re.MULTILINE)
285 285 outstr = re.sub(pat, ind, instr)
286 286 if outstr.endswith(os.linesep+ind):
287 287 return outstr[:-len(ind)]
288 288 else:
289 289 return outstr
290 290
291 291
292 292 def list_strings(arg):
293 293 """Always return a list of strings, given a string or list of strings
294 294 as input.
295 295
296 296 Examples
297 297 --------
298 298 ::
299 299
300 300 In [7]: list_strings('A single string')
301 301 Out[7]: ['A single string']
302 302
303 303 In [8]: list_strings(['A single string in a list'])
304 304 Out[8]: ['A single string in a list']
305 305
306 306 In [9]: list_strings(['A','list','of','strings'])
307 307 Out[9]: ['A', 'list', 'of', 'strings']
308 308 """
309 309
310 310 if isinstance(arg, py3compat.string_types): return [arg]
311 311 else: return arg
312 312
313 313
314 314 def marquee(txt='',width=78,mark='*'):
315 315 """Return the input string centered in a 'marquee'.
316 316
317 317 Examples
318 318 --------
319 319 ::
320 320
321 321 In [16]: marquee('A test',40)
322 322 Out[16]: '**************** A test ****************'
323 323
324 324 In [17]: marquee('A test',40,'-')
325 325 Out[17]: '---------------- A test ----------------'
326 326
327 327 In [18]: marquee('A test',40,' ')
328 328 Out[18]: ' A test '
329 329
330 330 """
331 331 if not txt:
332 332 return (mark*width)[:width]
333 333 nmark = (width-len(txt)-2)//len(mark)//2
334 334 if nmark < 0: nmark =0
335 335 marks = mark*nmark
336 336 return '%s %s %s' % (marks,txt,marks)
337 337
338 338
339 339 ini_spaces_re = re.compile(r'^(\s+)')
340 340
341 341 def num_ini_spaces(strng):
342 342 """Return the number of initial spaces in a string"""
343 343
344 344 ini_spaces = ini_spaces_re.match(strng)
345 345 if ini_spaces:
346 346 return ini_spaces.end()
347 347 else:
348 348 return 0
349 349
350 350
351 351 def format_screen(strng):
352 352 """Format a string for screen printing.
353 353
354 354 This removes some latex-type format codes."""
355 355 # Paragraph continue
356 356 par_re = re.compile(r'\\$',re.MULTILINE)
357 357 strng = par_re.sub('',strng)
358 358 return strng
359 359
360 360
361 361 def dedent(text):
362 362 """Equivalent of textwrap.dedent that ignores unindented first line.
363 363
364 364 This means it will still dedent strings like:
365 365 '''foo
366 366 is a bar
367 367 '''
368 368
369 369 For use in wrap_paragraphs.
370 370 """
371 371
372 372 if text.startswith('\n'):
373 373 # text starts with blank line, don't ignore the first line
374 374 return textwrap.dedent(text)
375 375
376 376 # split first line
377 377 splits = text.split('\n',1)
378 378 if len(splits) == 1:
379 379 # only one line
380 380 return textwrap.dedent(text)
381 381
382 382 first, rest = splits
383 383 # dedent everything but the first line
384 384 rest = textwrap.dedent(rest)
385 385 return '\n'.join([first, rest])
386 386
387 387
388 388 def wrap_paragraphs(text, ncols=80):
389 389 """Wrap multiple paragraphs to fit a specified width.
390 390
391 391 This is equivalent to textwrap.wrap, but with support for multiple
392 392 paragraphs, as separated by empty lines.
393 393
394 394 Returns
395 395 -------
396 396
397 397 list of complete paragraphs, wrapped to fill `ncols` columns.
398 398 """
399 399 paragraph_re = re.compile(r'\n(\s*\n)+', re.MULTILINE)
400 400 text = dedent(text).strip()
401 401 paragraphs = paragraph_re.split(text)[::2] # every other entry is space
402 402 out_ps = []
403 403 indent_re = re.compile(r'\n\s+', re.MULTILINE)
404 404 for p in paragraphs:
405 405 # presume indentation that survives dedent is meaningful formatting,
406 406 # so don't fill unless text is flush.
407 407 if indent_re.search(p) is None:
408 408 # wrap paragraph
409 409 p = textwrap.fill(p, ncols)
410 410 out_ps.append(p)
411 411 return out_ps
412 412
413 413
414 414 def long_substr(data):
415 415 """Return the longest common substring in a list of strings.
416 416
417 417 Credit: http://stackoverflow.com/questions/2892931/longest-common-substring-from-more-than-two-strings-python
418 418 """
419 419 substr = ''
420 420 if len(data) > 1 and len(data[0]) > 0:
421 421 for i in range(len(data[0])):
422 422 for j in range(len(data[0])-i+1):
423 423 if j > len(substr) and all(data[0][i:i+j] in x for x in data):
424 424 substr = data[0][i:i+j]
425 425 elif len(data) == 1:
426 426 substr = data[0]
427 427 return substr
428 428
429 429
430 430 def strip_email_quotes(text):
431 431 """Strip leading email quotation characters ('>').
432 432
433 433 Removes any combination of leading '>' interspersed with whitespace that
434 434 appears *identically* in all lines of the input text.
435 435
436 436 Parameters
437 437 ----------
438 438 text : str
439 439
440 440 Examples
441 441 --------
442 442
443 443 Simple uses::
444 444
445 445 In [2]: strip_email_quotes('> > text')
446 446 Out[2]: 'text'
447 447
448 448 In [3]: strip_email_quotes('> > text\\n> > more')
449 449 Out[3]: 'text\\nmore'
450 450
451 451 Note how only the common prefix that appears in all lines is stripped::
452 452
453 453 In [4]: strip_email_quotes('> > text\\n> > more\\n> more...')
454 454 Out[4]: '> text\\n> more\\nmore...'
455 455
456 456 So if any line has no quote marks ('>') , then none are stripped from any
457 457 of them ::
458 458
459 459 In [5]: strip_email_quotes('> > text\\n> > more\\nlast different')
460 460 Out[5]: '> > text\\n> > more\\nlast different'
461 461 """
462 462 lines = text.splitlines()
463 463 matches = set()
464 464 for line in lines:
465 465 prefix = re.match(r'^(\s*>[ >]*)', line)
466 466 if prefix:
467 467 matches.add(prefix.group(1))
468 468 else:
469 469 break
470 470 else:
471 471 prefix = long_substr(list(matches))
472 472 if prefix:
473 473 strip = len(prefix)
474 474 text = '\n'.join([ ln[strip:] for ln in lines])
475 475 return text
476 476
477 477 def strip_ansi(source):
478 478 """
479 479 Remove ansi escape codes from text.
480 480
481 481 Parameters
482 482 ----------
483 483 source : str
484 484 Source to remove the ansi from
485 485 """
486 486 return re.sub(r'\033\[(\d|;)+?m', '', source)
487 487
488 488
489 489 class EvalFormatter(Formatter):
490 490 """A String Formatter that allows evaluation of simple expressions.
491 491
492 492 Note that this version interprets a : as specifying a format string (as per
493 493 standard string formatting), so if slicing is required, you must explicitly
494 494 create a slice.
495 495
496 496 This is to be used in templating cases, such as the parallel batch
497 497 script templates, where simple arithmetic on arguments is useful.
498 498
499 499 Examples
500 500 --------
501 501 ::
502 502
503 503 In [1]: f = EvalFormatter()
504 504 In [2]: f.format('{n//4}', n=8)
505 505 Out[2]: '2'
506 506
507 507 In [3]: f.format("{greeting[slice(2,4)]}", greeting="Hello")
508 508 Out[3]: 'll'
509 509 """
510 510 def get_field(self, name, args, kwargs):
511 511 v = eval(name, kwargs)
512 512 return v, name
513 513
514 514 #XXX: As of Python 3.4, the format string parsing no longer splits on a colon
515 515 # inside [], so EvalFormatter can handle slicing. Once we only support 3.4 and
516 516 # above, it should be possible to remove FullEvalFormatter.
517 517
518 518 class FullEvalFormatter(Formatter):
519 519 """A String Formatter that allows evaluation of simple expressions.
520 520
521 521 Any time a format key is not found in the kwargs,
522 522 it will be tried as an expression in the kwargs namespace.
523 523
524 524 Note that this version allows slicing using [1:2], so you cannot specify
525 525 a format string. Use :class:`EvalFormatter` to permit format strings.
526 526
527 527 Examples
528 528 --------
529 529 ::
530 530
531 531 In [1]: f = FullEvalFormatter()
532 532 In [2]: f.format('{n//4}', n=8)
533 533 Out[2]: '2'
534 534
535 535 In [3]: f.format('{list(range(5))[2:4]}')
536 536 Out[3]: '[2, 3]'
537 537
538 538 In [4]: f.format('{3*2}')
539 539 Out[4]: '6'
540 540 """
541 541 # copied from Formatter._vformat with minor changes to allow eval
542 542 # and replace the format_spec code with slicing
543 543 def vformat(self, format_string, args, kwargs):
544 544 result = []
545 545 for literal_text, field_name, format_spec, conversion in \
546 546 self.parse(format_string):
547 547
548 548 # output the literal text
549 549 if literal_text:
550 550 result.append(literal_text)
551 551
552 552 # if there's a field, output it
553 553 if field_name is not None:
554 554 # this is some markup, find the object and do
555 555 # the formatting
556 556
557 557 if format_spec:
558 558 # override format spec, to allow slicing:
559 559 field_name = ':'.join([field_name, format_spec])
560 560
561 561 # eval the contents of the field for the object
562 562 # to be formatted
563 563 obj = eval(field_name, kwargs)
564 564
565 565 # do any conversion on the resulting object
566 566 obj = self.convert_field(obj, conversion)
567 567
568 568 # format the object and append to the result
569 569 result.append(self.format_field(obj, ''))
570 570
571 571 return u''.join(py3compat.cast_unicode(s) for s in result)
572 572
573 573
574 574 class DollarFormatter(FullEvalFormatter):
575 575 """Formatter allowing Itpl style $foo replacement, for names and attribute
576 576 access only. Standard {foo} replacement also works, and allows full
577 577 evaluation of its arguments.
578 578
579 579 Examples
580 580 --------
581 581 ::
582 582
583 583 In [1]: f = DollarFormatter()
584 584 In [2]: f.format('{n//4}', n=8)
585 585 Out[2]: '2'
586 586
587 587 In [3]: f.format('23 * 76 is $result', result=23*76)
588 588 Out[3]: '23 * 76 is 1748'
589 589
590 590 In [4]: f.format('$a or {b}', a=1, b=2)
591 591 Out[4]: '1 or 2'
592 592 """
593 593 _dollar_pattern = re.compile("(.*?)\$(\$?[\w\.]+)")
594 594 def parse(self, fmt_string):
595 595 for literal_txt, field_name, format_spec, conversion \
596 596 in Formatter.parse(self, fmt_string):
597 597
598 598 # Find $foo patterns in the literal text.
599 599 continue_from = 0
600 600 txt = ""
601 601 for m in self._dollar_pattern.finditer(literal_txt):
602 602 new_txt, new_field = m.group(1,2)
603 603 # $$foo --> $foo
604 604 if new_field.startswith("$"):
605 605 txt += new_txt + new_field
606 606 else:
607 607 yield (txt + new_txt, new_field, "", None)
608 608 txt = ""
609 609 continue_from = m.end()
610 610
611 611 # Re-yield the {foo} style pattern
612 612 yield (txt + literal_txt[continue_from:], field_name, format_spec, conversion)
613 613
614 614 #-----------------------------------------------------------------------------
615 615 # Utils to columnize a list of string
616 616 #-----------------------------------------------------------------------------
617 617
618 618 def _col_chunks(l, max_rows, row_first=False):
619 619 """Yield successive max_rows-sized column chunks from l."""
620 620 if row_first:
621 621 ncols = (len(l) // max_rows) + (len(l) % max_rows > 0)
622 for i in py3compat.xrange(ncols):
623 yield [l[j] for j in py3compat.xrange(i, len(l), ncols)]
622 for i in range(ncols):
623 yield [l[j] for j in range(i, len(l), ncols)]
624 624 else:
625 for i in py3compat.xrange(0, len(l), max_rows):
625 for i in range(0, len(l), max_rows):
626 626 yield l[i:(i + max_rows)]
627 627
628 628
629 629 def _find_optimal(rlist, row_first=False, separator_size=2, displaywidth=80):
630 630 """Calculate optimal info to columnize a list of string"""
631 631 for max_rows in range(1, len(rlist) + 1):
632 632 col_widths = list(map(max, _col_chunks(rlist, max_rows, row_first)))
633 633 sumlength = sum(col_widths)
634 634 ncols = len(col_widths)
635 635 if sumlength + separator_size * (ncols - 1) <= displaywidth:
636 636 break
637 637 return {'num_columns': ncols,
638 638 'optimal_separator_width': (displaywidth - sumlength) // (ncols - 1) if (ncols - 1) else 0,
639 639 'max_rows': max_rows,
640 640 'column_widths': col_widths
641 641 }
642 642
643 643
644 644 def _get_or_default(mylist, i, default=None):
645 645 """return list item number, or default if don't exist"""
646 646 if i >= len(mylist):
647 647 return default
648 648 else :
649 649 return mylist[i]
650 650
651 651
652 652 def compute_item_matrix(items, row_first=False, empty=None, *args, **kwargs) :
653 653 """Returns a nested list, and info to columnize items
654 654
655 655 Parameters
656 656 ----------
657 657
658 658 items
659 659 list of strings to columize
660 660 row_first : (default False)
661 661 Whether to compute columns for a row-first matrix instead of
662 662 column-first (default).
663 663 empty : (default None)
664 664 default value to fill list if needed
665 665 separator_size : int (default=2)
666 666 How much caracters will be used as a separation between each columns.
667 667 displaywidth : int (default=80)
668 668 The width of the area onto wich the columns should enter
669 669
670 670 Returns
671 671 -------
672 672
673 673 strings_matrix
674 674
675 675 nested list of string, the outer most list contains as many list as
676 676 rows, the innermost lists have each as many element as colums. If the
677 677 total number of elements in `items` does not equal the product of
678 678 rows*columns, the last element of some lists are filled with `None`.
679 679
680 680 dict_info
681 681 some info to make columnize easier:
682 682
683 683 num_columns
684 684 number of columns
685 685 max_rows
686 686 maximum number of rows (final number may be less)
687 687 column_widths
688 688 list of with of each columns
689 689 optimal_separator_width
690 690 best separator width between columns
691 691
692 692 Examples
693 693 --------
694 694 ::
695 695
696 696 In [1]: l = ['aaa','b','cc','d','eeeee','f','g','h','i','j','k','l']
697 697 In [2]: list, info = compute_item_matrix(l, displaywidth=12)
698 698 In [3]: list
699 699 Out[3]: [['aaa', 'f', 'k'], ['b', 'g', 'l'], ['cc', 'h', None], ['d', 'i', None], ['eeeee', 'j', None]]
700 700 In [4]: ideal = {'num_columns': 3, 'column_widths': [5, 1, 1], 'optimal_separator_width': 2, 'max_rows': 5}
701 701 In [5]: all((info[k] == ideal[k] for k in ideal.keys()))
702 702 Out[5]: True
703 703 """
704 704 info = _find_optimal(list(map(len, items)), row_first, *args, **kwargs)
705 705 nrow, ncol = info['max_rows'], info['num_columns']
706 706 if row_first:
707 707 return ([[_get_or_default(items, r * ncol + c, default=empty) for c in range(ncol)] for r in range(nrow)], info)
708 708 else:
709 709 return ([[_get_or_default(items, c * nrow + r, default=empty) for c in range(ncol)] for r in range(nrow)], info)
710 710
711 711
712 712 def columnize(items, row_first=False, separator=' ', displaywidth=80, spread=False):
713 713 """ Transform a list of strings into a single string with columns.
714 714
715 715 Parameters
716 716 ----------
717 717 items : sequence of strings
718 718 The strings to process.
719 719
720 720 row_first : (default False)
721 721 Whether to compute columns for a row-first matrix instead of
722 722 column-first (default).
723 723
724 724 separator : str, optional [default is two spaces]
725 725 The string that separates columns.
726 726
727 727 displaywidth : int, optional [default is 80]
728 728 Width of the display in number of characters.
729 729
730 730 Returns
731 731 -------
732 732 The formatted string.
733 733 """
734 734 if not items:
735 735 return '\n'
736 736 matrix, info = compute_item_matrix(items, row_first=row_first, separator_size=len(separator), displaywidth=displaywidth)
737 737 if spread:
738 738 separator = separator.ljust(int(info['optimal_separator_width']))
739 739 fmatrix = [filter(None, x) for x in matrix]
740 740 sjoin = lambda x : separator.join([ y.ljust(w, ' ') for y, w in zip(x, info['column_widths'])])
741 741 return '\n'.join(map(sjoin, fmatrix))+'\n'
742 742
743 743
744 744 def get_text_list(list_, last_sep=' and ', sep=", ", wrap_item_with=""):
745 745 """
746 746 Return a string with a natural enumeration of items
747 747
748 748 >>> get_text_list(['a', 'b', 'c', 'd'])
749 749 'a, b, c and d'
750 750 >>> get_text_list(['a', 'b', 'c'], ' or ')
751 751 'a, b or c'
752 752 >>> get_text_list(['a', 'b', 'c'], ', ')
753 753 'a, b, c'
754 754 >>> get_text_list(['a', 'b'], ' or ')
755 755 'a or b'
756 756 >>> get_text_list(['a'])
757 757 'a'
758 758 >>> get_text_list([])
759 759 ''
760 760 >>> get_text_list(['a', 'b'], wrap_item_with="`")
761 761 '`a` and `b`'
762 762 >>> get_text_list(['a', 'b', 'c', 'd'], " = ", sep=" + ")
763 763 'a + b + c = d'
764 764 """
765 765 if len(list_) == 0:
766 766 return ''
767 767 if wrap_item_with:
768 768 list_ = ['%s%s%s' % (wrap_item_with, item, wrap_item_with) for
769 769 item in list_]
770 770 if len(list_) == 1:
771 771 return list_[0]
772 772 return '%s%s%s' % (
773 773 sep.join(i for i in list_[:-1]),
774 774 last_sep, list_[-1])
@@ -1,118 +1,116 b''
1 1 # encoding: utf-8
2 2 """
3 3 Utilities for timing code execution.
4 4 """
5 5
6 6 #-----------------------------------------------------------------------------
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 import time
18 18
19 from .py3compat import xrange
20
21 19 #-----------------------------------------------------------------------------
22 20 # Code
23 21 #-----------------------------------------------------------------------------
24 22
25 23 # If possible (Unix), use the resource module instead of time.clock()
26 24 try:
27 25 import resource
28 26 def clocku():
29 27 """clocku() -> floating point number
30 28
31 29 Return the *USER* CPU time in seconds since the start of the process.
32 30 This is done via a call to resource.getrusage, so it avoids the
33 31 wraparound problems in time.clock()."""
34 32
35 33 return resource.getrusage(resource.RUSAGE_SELF)[0]
36 34
37 35 def clocks():
38 36 """clocks() -> floating point number
39 37
40 38 Return the *SYSTEM* CPU time in seconds since the start of the process.
41 39 This is done via a call to resource.getrusage, so it avoids the
42 40 wraparound problems in time.clock()."""
43 41
44 42 return resource.getrusage(resource.RUSAGE_SELF)[1]
45 43
46 44 def clock():
47 45 """clock() -> floating point number
48 46
49 47 Return the *TOTAL USER+SYSTEM* CPU time in seconds since the start of
50 48 the process. This is done via a call to resource.getrusage, so it
51 49 avoids the wraparound problems in time.clock()."""
52 50
53 51 u,s = resource.getrusage(resource.RUSAGE_SELF)[:2]
54 52 return u+s
55 53
56 54 def clock2():
57 55 """clock2() -> (t_user,t_system)
58 56
59 57 Similar to clock(), but return a tuple of user/system times."""
60 58 return resource.getrusage(resource.RUSAGE_SELF)[:2]
61 59 except ImportError:
62 60 # There is no distinction of user/system time under windows, so we just use
63 61 # time.clock() for everything...
64 62 clocku = clocks = clock = time.clock
65 63 def clock2():
66 64 """Under windows, system CPU time can't be measured.
67 65
68 66 This just returns clock() and zero."""
69 67 return time.clock(),0.0
70 68
71 69
72 70 def timings_out(reps,func,*args,**kw):
73 71 """timings_out(reps,func,*args,**kw) -> (t_total,t_per_call,output)
74 72
75 73 Execute a function reps times, return a tuple with the elapsed total
76 74 CPU time in seconds, the time per call and the function's output.
77 75
78 76 Under Unix, the return value is the sum of user+system time consumed by
79 77 the process, computed via the resource module. This prevents problems
80 78 related to the wraparound effect which the time.clock() function has.
81 79
82 80 Under Windows the return value is in wall clock seconds. See the
83 81 documentation for the time module for more details."""
84 82
85 83 reps = int(reps)
86 84 assert reps >=1, 'reps must be >= 1'
87 85 if reps==1:
88 86 start = clock()
89 87 out = func(*args,**kw)
90 88 tot_time = clock()-start
91 89 else:
92 rng = xrange(reps-1) # the last time is executed separately to store output
90 rng = range(reps-1) # the last time is executed separately to store output
93 91 start = clock()
94 92 for dummy in rng: func(*args,**kw)
95 93 out = func(*args,**kw) # one last time
96 94 tot_time = clock()-start
97 95 av_time = tot_time / reps
98 96 return tot_time,av_time,out
99 97
100 98
101 99 def timings(reps,func,*args,**kw):
102 100 """timings(reps,func,*args,**kw) -> (t_total,t_per_call)
103 101
104 102 Execute a function reps times, return a tuple with the elapsed total CPU
105 103 time in seconds and the time per call. These are just the first two values
106 104 in timings_out()."""
107 105
108 106 return timings_out(reps,func,*args,**kw)[0:2]
109 107
110 108
111 109 def timing(func,*args,**kw):
112 110 """timing(func,*args,**kw) -> t_total
113 111
114 112 Execute a function once, return the elapsed total CPU time in
115 113 seconds. This is just the first value in timings_out()."""
116 114
117 115 return timings_out(1,func,*args,**kw)[0]
118 116
@@ -1,112 +1,111 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Support for wildcard pattern matching in object inspection.
3 3
4 4 Authors
5 5 -------
6 6 - JΓΆrgen Stenarson <jorgen.stenarson@bostream.nu>
7 7 - Thomas Kluyver
8 8 """
9 9
10 10 #*****************************************************************************
11 11 # Copyright (C) 2005 JΓΆrgen Stenarson <jorgen.stenarson@bostream.nu>
12 12 #
13 13 # Distributed under the terms of the BSD License. The full license is in
14 14 # the file COPYING, distributed as part of this software.
15 15 #*****************************************************************************
16 16
17 17 import re
18 18 import types
19 19
20 20 from IPython.utils.dir2 import dir2
21 from .py3compat import iteritems
22 21
23 22 def create_typestr2type_dicts(dont_include_in_type2typestr=["lambda"]):
24 23 """Return dictionaries mapping lower case typename (e.g. 'tuple') to type
25 24 objects from the types package, and vice versa."""
26 25 typenamelist = [tname for tname in dir(types) if tname.endswith("Type")]
27 26 typestr2type, type2typestr = {}, {}
28 27
29 28 for tname in typenamelist:
30 29 name = tname[:-4].lower() # Cut 'Type' off the end of the name
31 30 obj = getattr(types, tname)
32 31 typestr2type[name] = obj
33 32 if name not in dont_include_in_type2typestr:
34 33 type2typestr[obj] = name
35 34 return typestr2type, type2typestr
36 35
37 36 typestr2type, type2typestr = create_typestr2type_dicts()
38 37
39 38 def is_type(obj, typestr_or_type):
40 39 """is_type(obj, typestr_or_type) verifies if obj is of a certain type. It
41 40 can take strings or actual python types for the second argument, i.e.
42 41 'tuple'<->TupleType. 'all' matches all types.
43 42
44 43 TODO: Should be extended for choosing more than one type."""
45 44 if typestr_or_type == "all":
46 45 return True
47 46 if type(typestr_or_type) == type:
48 47 test_type = typestr_or_type
49 48 else:
50 49 test_type = typestr2type.get(typestr_or_type, False)
51 50 if test_type:
52 51 return isinstance(obj, test_type)
53 52 return False
54 53
55 54 def show_hidden(str, show_all=False):
56 55 """Return true for strings starting with single _ if show_all is true."""
57 56 return show_all or str.startswith("__") or not str.startswith("_")
58 57
59 58 def dict_dir(obj):
60 59 """Produce a dictionary of an object's attributes. Builds on dir2 by
61 60 checking that a getattr() call actually succeeds."""
62 61 ns = {}
63 62 for key in dir2(obj):
64 63 # This seemingly unnecessary try/except is actually needed
65 64 # because there is code out there with metaclasses that
66 65 # create 'write only' attributes, where a getattr() call
67 66 # will fail even if the attribute appears listed in the
68 67 # object's dictionary. Properties can actually do the same
69 68 # thing. In particular, Traits use this pattern
70 69 try:
71 70 ns[key] = getattr(obj, key)
72 71 except AttributeError:
73 72 pass
74 73 return ns
75 74
76 75 def filter_ns(ns, name_pattern="*", type_pattern="all", ignore_case=True,
77 76 show_all=True):
78 77 """Filter a namespace dictionary by name pattern and item type."""
79 78 pattern = name_pattern.replace("*",".*").replace("?",".")
80 79 if ignore_case:
81 80 reg = re.compile(pattern+"$", re.I)
82 81 else:
83 82 reg = re.compile(pattern+"$")
84 83
85 84 # Check each one matches regex; shouldn't be hidden; of correct type.
86 return dict((key,obj) for key, obj in iteritems(ns) if reg.match(key) \
85 return dict((key,obj) for key, obj in ns.items() if reg.match(key) \
87 86 and show_hidden(key, show_all) \
88 87 and is_type(obj, type_pattern) )
89 88
90 89 def list_namespace(namespace, type_pattern, filter, ignore_case=False, show_all=False):
91 90 """Return dictionary of all objects in a namespace dictionary that match
92 91 type_pattern and filter."""
93 92 pattern_list=filter.split(".")
94 93 if len(pattern_list) == 1:
95 94 return filter_ns(namespace, name_pattern=pattern_list[0],
96 95 type_pattern=type_pattern,
97 96 ignore_case=ignore_case, show_all=show_all)
98 97 else:
99 98 # This is where we can change if all objects should be searched or
100 99 # only modules. Just change the type_pattern to module to search only
101 100 # modules
102 101 filtered = filter_ns(namespace, name_pattern=pattern_list[0],
103 102 type_pattern="all",
104 103 ignore_case=ignore_case, show_all=show_all)
105 104 results = {}
106 for name, obj in iteritems(filtered):
105 for name, obj in filtered.items():
107 106 ns = list_namespace(dict_dir(obj), type_pattern,
108 107 ".".join(pattern_list[1:]),
109 108 ignore_case=ignore_case, show_all=show_all)
110 for inner_name, inner_obj in iteritems(ns):
109 for inner_name, inner_obj in ns.items():
111 110 results["%s.%s"%(name,inner_name)] = inner_obj
112 111 return results
General Comments 0
You need to be logged in to leave comments. Login now